1 | #![warn (missing_docs)] |
2 | #![crate_name ="itertools" ] |
3 | #![cfg_attr (not(feature = "use_std" ), no_std)] |
4 | |
5 | //! Extra iterator adaptors, functions and macros. |
6 | //! |
7 | //! To extend [`Iterator`] with methods in this crate, import |
8 | //! the [`Itertools`] trait: |
9 | //! |
10 | //! ``` |
11 | //! use itertools::Itertools; |
12 | //! ``` |
13 | //! |
14 | //! Now, new methods like [`interleave`](Itertools::interleave) |
15 | //! are available on all iterators: |
16 | //! |
17 | //! ``` |
18 | //! use itertools::Itertools; |
19 | //! |
20 | //! let it = (1..3).interleave(vec![-1, -2]); |
21 | //! itertools::assert_equal(it, vec![1, -1, 2, -2]); |
22 | //! ``` |
23 | //! |
24 | //! Most iterator methods are also provided as functions (with the benefit |
25 | //! that they convert parameters using [`IntoIterator`]): |
26 | //! |
27 | //! ``` |
28 | //! use itertools::interleave; |
29 | //! |
30 | //! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) { |
31 | //! /* loop body */ |
32 | //! } |
33 | //! ``` |
34 | //! |
35 | //! ## Crate Features |
36 | //! |
37 | //! - `use_std` |
38 | //! - Enabled by default. |
39 | //! - Disable to compile itertools using `#![no_std]`. This disables |
40 | //! any items that depend on collections (like `group_by`, `unique`, |
41 | //! `kmerge`, `join` and many more). |
42 | //! |
43 | //! ## Rust Version |
44 | //! |
45 | //! This version of itertools requires Rust 1.32 or later. |
46 | #![doc (html_root_url="https://docs.rs/itertools/0.8/" )] |
47 | |
48 | #[cfg (not(feature = "use_std" ))] |
49 | extern crate core as std; |
50 | |
51 | #[cfg (feature = "use_alloc" )] |
52 | extern crate alloc; |
53 | |
54 | #[cfg (feature = "use_alloc" )] |
55 | use alloc::{ |
56 | string::String, |
57 | vec::Vec, |
58 | }; |
59 | |
60 | pub use either::Either; |
61 | |
62 | use core::borrow::Borrow; |
63 | #[cfg (feature = "use_std" )] |
64 | use std::collections::HashMap; |
65 | use std::iter::{IntoIterator, once}; |
66 | use std::cmp::Ordering; |
67 | use std::fmt; |
68 | #[cfg (feature = "use_std" )] |
69 | use std::collections::HashSet; |
70 | #[cfg (feature = "use_std" )] |
71 | use std::hash::Hash; |
72 | #[cfg (feature = "use_alloc" )] |
73 | use std::fmt::Write; |
74 | #[cfg (feature = "use_alloc" )] |
75 | type VecIntoIter<T> = alloc::vec::IntoIter<T>; |
76 | #[cfg (feature = "use_alloc" )] |
77 | use std::iter::FromIterator; |
78 | |
79 | #[macro_use ] |
80 | mod impl_macros; |
81 | |
82 | // for compatibility with no std and macros |
83 | #[doc (hidden)] |
84 | pub use std::iter as __std_iter; |
85 | |
86 | /// The concrete iterator types. |
87 | pub mod structs { |
88 | pub use crate::adaptors::{ |
89 | Dedup, |
90 | DedupBy, |
91 | DedupWithCount, |
92 | DedupByWithCount, |
93 | Interleave, |
94 | InterleaveShortest, |
95 | FilterMapOk, |
96 | FilterOk, |
97 | Product, |
98 | PutBack, |
99 | Batching, |
100 | MapInto, |
101 | MapOk, |
102 | Merge, |
103 | MergeBy, |
104 | TakeWhileRef, |
105 | WhileSome, |
106 | Coalesce, |
107 | TupleCombinations, |
108 | Positions, |
109 | Update, |
110 | }; |
111 | #[allow (deprecated)] |
112 | pub use crate::adaptors::{MapResults, Step}; |
113 | #[cfg (feature = "use_alloc" )] |
114 | pub use crate::adaptors::MultiProduct; |
115 | #[cfg (feature = "use_alloc" )] |
116 | pub use crate::combinations::Combinations; |
117 | #[cfg (feature = "use_alloc" )] |
118 | pub use crate::combinations_with_replacement::CombinationsWithReplacement; |
119 | pub use crate::cons_tuples_impl::ConsTuples; |
120 | pub use crate::exactly_one_err::ExactlyOneError; |
121 | pub use crate::format::{Format, FormatWith}; |
122 | pub use crate::flatten_ok::FlattenOk; |
123 | #[cfg (feature = "use_std" )] |
124 | pub use crate::grouping_map::{GroupingMap, GroupingMapBy}; |
125 | #[cfg (feature = "use_alloc" )] |
126 | pub use crate::groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups}; |
127 | pub use crate::intersperse::{Intersperse, IntersperseWith}; |
128 | #[cfg (feature = "use_alloc" )] |
129 | pub use crate::kmerge_impl::{KMerge, KMergeBy}; |
130 | pub use crate::merge_join::MergeJoinBy; |
131 | #[cfg (feature = "use_alloc" )] |
132 | pub use crate::multipeek_impl::MultiPeek; |
133 | #[cfg (feature = "use_alloc" )] |
134 | pub use crate::peek_nth::PeekNth; |
135 | pub use crate::pad_tail::PadUsing; |
136 | pub use crate::peeking_take_while::PeekingTakeWhile; |
137 | #[cfg (feature = "use_alloc" )] |
138 | pub use crate::permutations::Permutations; |
139 | pub use crate::process_results_impl::ProcessResults; |
140 | #[cfg (feature = "use_alloc" )] |
141 | pub use crate::powerset::Powerset; |
142 | #[cfg (feature = "use_alloc" )] |
143 | pub use crate::put_back_n_impl::PutBackN; |
144 | #[cfg (feature = "use_alloc" )] |
145 | pub use crate::rciter_impl::RcIter; |
146 | pub use crate::repeatn::RepeatN; |
147 | #[allow (deprecated)] |
148 | pub use crate::sources::{RepeatCall, Unfold, Iterate}; |
149 | #[cfg (feature = "use_alloc" )] |
150 | pub use crate::tee::Tee; |
151 | pub use crate::tuple_impl::{TupleBuffer, TupleWindows, CircularTupleWindows, Tuples}; |
152 | #[cfg (feature = "use_std" )] |
153 | pub use crate::duplicates_impl::{Duplicates, DuplicatesBy}; |
154 | #[cfg (feature = "use_std" )] |
155 | pub use crate::unique_impl::{Unique, UniqueBy}; |
156 | pub use crate::with_position::WithPosition; |
157 | pub use crate::zip_eq_impl::ZipEq; |
158 | pub use crate::zip_longest::ZipLongest; |
159 | pub use crate::ziptuple::Zip; |
160 | } |
161 | |
162 | /// Traits helpful for using certain `Itertools` methods in generic contexts. |
163 | pub mod traits { |
164 | pub use crate::tuple_impl::HomogeneousTuple; |
165 | } |
166 | |
167 | #[allow (deprecated)] |
168 | pub use crate::structs::*; |
169 | pub use crate::concat_impl::concat; |
170 | pub use crate::cons_tuples_impl::cons_tuples; |
171 | pub use crate::diff::diff_with; |
172 | pub use crate::diff::Diff; |
173 | #[cfg (feature = "use_alloc" )] |
174 | pub use crate::kmerge_impl::{kmerge_by}; |
175 | pub use crate::minmax::MinMaxResult; |
176 | pub use crate::peeking_take_while::PeekingNext; |
177 | pub use crate::process_results_impl::process_results; |
178 | pub use crate::repeatn::repeat_n; |
179 | #[allow (deprecated)] |
180 | pub use crate::sources::{repeat_call, unfold, iterate}; |
181 | pub use crate::with_position::Position; |
182 | pub use crate::unziptuple::{multiunzip, MultiUnzip}; |
183 | pub use crate::ziptuple::multizip; |
184 | mod adaptors; |
185 | mod either_or_both; |
186 | pub use crate::either_or_both::EitherOrBoth; |
187 | #[doc (hidden)] |
188 | pub mod free; |
189 | #[doc (inline)] |
190 | pub use crate::free::*; |
191 | mod concat_impl; |
192 | mod cons_tuples_impl; |
193 | #[cfg (feature = "use_alloc" )] |
194 | mod combinations; |
195 | #[cfg (feature = "use_alloc" )] |
196 | mod combinations_with_replacement; |
197 | mod exactly_one_err; |
198 | mod diff; |
199 | mod flatten_ok; |
200 | #[cfg (feature = "use_std" )] |
201 | mod extrema_set; |
202 | mod format; |
203 | #[cfg (feature = "use_std" )] |
204 | mod grouping_map; |
205 | #[cfg (feature = "use_alloc" )] |
206 | mod group_map; |
207 | #[cfg (feature = "use_alloc" )] |
208 | mod groupbylazy; |
209 | mod intersperse; |
210 | #[cfg (feature = "use_alloc" )] |
211 | mod k_smallest; |
212 | #[cfg (feature = "use_alloc" )] |
213 | mod kmerge_impl; |
214 | #[cfg (feature = "use_alloc" )] |
215 | mod lazy_buffer; |
216 | mod merge_join; |
217 | mod minmax; |
218 | #[cfg (feature = "use_alloc" )] |
219 | mod multipeek_impl; |
220 | mod pad_tail; |
221 | #[cfg (feature = "use_alloc" )] |
222 | mod peek_nth; |
223 | mod peeking_take_while; |
224 | #[cfg (feature = "use_alloc" )] |
225 | mod permutations; |
226 | #[cfg (feature = "use_alloc" )] |
227 | mod powerset; |
228 | mod process_results_impl; |
229 | #[cfg (feature = "use_alloc" )] |
230 | mod put_back_n_impl; |
231 | #[cfg (feature = "use_alloc" )] |
232 | mod rciter_impl; |
233 | mod repeatn; |
234 | mod size_hint; |
235 | mod sources; |
236 | #[cfg (feature = "use_alloc" )] |
237 | mod tee; |
238 | mod tuple_impl; |
239 | #[cfg (feature = "use_std" )] |
240 | mod duplicates_impl; |
241 | #[cfg (feature = "use_std" )] |
242 | mod unique_impl; |
243 | mod unziptuple; |
244 | mod with_position; |
245 | mod zip_eq_impl; |
246 | mod zip_longest; |
247 | mod ziptuple; |
248 | |
249 | #[macro_export ] |
250 | /// Create an iterator over the “cartesian product” of iterators. |
251 | /// |
252 | /// Iterator element type is like `(A, B, ..., E)` if formed |
253 | /// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc. |
254 | /// |
255 | /// ``` |
256 | /// # use itertools::iproduct; |
257 | /// # |
258 | /// # fn main() { |
259 | /// // Iterate over the coordinates of a 4 x 4 x 4 grid |
260 | /// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3) |
261 | /// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) { |
262 | /// // .. |
263 | /// } |
264 | /// # } |
265 | /// ``` |
266 | macro_rules! iproduct { |
267 | (@flatten $I:expr,) => ( |
268 | $I |
269 | ); |
270 | (@flatten $I:expr, $J:expr, $($K:expr,)*) => ( |
271 | $crate::iproduct!(@flatten $crate::cons_tuples($crate::iproduct!($I, $J)), $($K,)*) |
272 | ); |
273 | ($I:expr) => ( |
274 | $crate::__std_iter::IntoIterator::into_iter($I) |
275 | ); |
276 | ($I:expr, $J:expr) => ( |
277 | $crate::Itertools::cartesian_product($crate::iproduct!($I), $crate::iproduct!($J)) |
278 | ); |
279 | ($I:expr, $J:expr, $($K:expr),+) => ( |
280 | $crate::iproduct!(@flatten $crate::iproduct!($I, $J), $($K,)+) |
281 | ); |
282 | } |
283 | |
284 | #[macro_export ] |
285 | /// Create an iterator running multiple iterators in lockstep. |
286 | /// |
287 | /// The `izip!` iterator yields elements until any subiterator |
288 | /// returns `None`. |
289 | /// |
290 | /// This is a version of the standard ``.zip()`` that's supporting more than |
291 | /// two iterators. The iterator element type is a tuple with one element |
292 | /// from each of the input iterators. Just like ``.zip()``, the iteration stops |
293 | /// when the shortest of the inputs reaches its end. |
294 | /// |
295 | /// **Note:** The result of this macro is in the general case an iterator |
296 | /// composed of repeated `.zip()` and a `.map()`; it has an anonymous type. |
297 | /// The special cases of one and two arguments produce the equivalent of |
298 | /// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively. |
299 | /// |
300 | /// Prefer this macro `izip!()` over [`multizip`] for the performance benefits |
301 | /// of using the standard library `.zip()`. |
302 | /// |
303 | /// ``` |
304 | /// # use itertools::izip; |
305 | /// # |
306 | /// # fn main() { |
307 | /// |
308 | /// // iterate over three sequences side-by-side |
309 | /// let mut results = [0, 0, 0, 0]; |
310 | /// let inputs = [3, 7, 9, 6]; |
311 | /// |
312 | /// for (r, index, input) in izip!(&mut results, 0..10, &inputs) { |
313 | /// *r = index * 10 + input; |
314 | /// } |
315 | /// |
316 | /// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); |
317 | /// # } |
318 | /// ``` |
319 | macro_rules! izip { |
320 | // @closure creates a tuple-flattening closure for .map() call. usage: |
321 | // @closure partial_pattern => partial_tuple , rest , of , iterators |
322 | // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee ) |
323 | ( @closure $p:pat => $tup:expr ) => { |
324 | |$p| $tup |
325 | }; |
326 | |
327 | // The "b" identifier is a different identifier on each recursion level thanks to hygiene. |
328 | ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => { |
329 | $crate::izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*) |
330 | }; |
331 | |
332 | // unary |
333 | ($first:expr $(,)*) => { |
334 | $crate::__std_iter::IntoIterator::into_iter($first) |
335 | }; |
336 | |
337 | // binary |
338 | ($first:expr, $second:expr $(,)*) => { |
339 | $crate::izip!($first) |
340 | .zip($second) |
341 | }; |
342 | |
343 | // n-ary where n > 2 |
344 | ( $first:expr $( , $rest:expr )* $(,)* ) => { |
345 | $crate::izip!($first) |
346 | $( |
347 | .zip($rest) |
348 | )* |
349 | .map( |
350 | $crate::izip!(@closure a => (a) $( , $rest )*) |
351 | ) |
352 | }; |
353 | } |
354 | |
355 | #[macro_export ] |
356 | /// [Chain][`chain`] zero or more iterators together into one sequence. |
357 | /// |
358 | /// The comma-separated arguments must implement [`IntoIterator`]. |
359 | /// The final argument may be followed by a trailing comma. |
360 | /// |
361 | /// [`chain`]: Iterator::chain |
362 | /// |
363 | /// # Examples |
364 | /// |
365 | /// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]: |
366 | /// ``` |
367 | /// use std::iter; |
368 | /// use itertools::chain; |
369 | /// |
370 | /// let _: iter::Empty<()> = chain!(); |
371 | /// let _: iter::Empty<i8> = chain!(); |
372 | /// ``` |
373 | /// |
374 | /// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator): |
375 | /// ``` |
376 | /// use std::{ops::Range, slice}; |
377 | /// use itertools::chain; |
378 | /// let _: <Range<_> as IntoIterator>::IntoIter = chain!((2..6),); // trailing comma optional! |
379 | /// let _: <&[_] as IntoIterator>::IntoIter = chain!(&[2, 3, 4]); |
380 | /// ``` |
381 | /// |
382 | /// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each |
383 | /// argument, and then [`chain`] them together: |
384 | /// ``` |
385 | /// use std::{iter::*, ops::Range, slice}; |
386 | /// use itertools::{assert_equal, chain}; |
387 | /// |
388 | /// // e.g., this: |
389 | /// let with_macro: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = |
390 | /// chain![once(&0), repeat(&1).take(2), &[2, 3, 5],]; |
391 | /// |
392 | /// // ...is equivalent to this: |
393 | /// let with_method: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = |
394 | /// once(&0) |
395 | /// .chain(repeat(&1).take(2)) |
396 | /// .chain(&[2, 3, 5]); |
397 | /// |
398 | /// assert_equal(with_macro, with_method); |
399 | /// ``` |
400 | macro_rules! chain { |
401 | () => { |
402 | core::iter::empty() |
403 | }; |
404 | ($first:expr $(, $rest:expr )* $(,)?) => { |
405 | { |
406 | let iter = core::iter::IntoIterator::into_iter($first); |
407 | $( |
408 | let iter = |
409 | core::iter::Iterator::chain( |
410 | iter, |
411 | core::iter::IntoIterator::into_iter($rest)); |
412 | )* |
413 | iter |
414 | } |
415 | }; |
416 | } |
417 | |
418 | /// An [`Iterator`] blanket implementation that provides extra adaptors and |
419 | /// methods. |
420 | /// |
421 | /// This trait defines a number of methods. They are divided into two groups: |
422 | /// |
423 | /// * *Adaptors* take an iterator and parameter as input, and return |
424 | /// a new iterator value. These are listed first in the trait. An example |
425 | /// of an adaptor is [`.interleave()`](Itertools::interleave) |
426 | /// |
427 | /// * *Regular methods* are those that don't return iterators and instead |
428 | /// return a regular value of some other kind. |
429 | /// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular |
430 | /// method in the list. |
431 | pub trait Itertools : Iterator { |
432 | // adaptors |
433 | |
434 | /// Alternate elements from two iterators until both have run out. |
435 | /// |
436 | /// Iterator element type is `Self::Item`. |
437 | /// |
438 | /// This iterator is *fused*. |
439 | /// |
440 | /// ``` |
441 | /// use itertools::Itertools; |
442 | /// |
443 | /// let it = (1..7).interleave(vec![-1, -2]); |
444 | /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]); |
445 | /// ``` |
446 | fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter> |
447 | where J: IntoIterator<Item = Self::Item>, |
448 | Self: Sized |
449 | { |
450 | interleave(self, other) |
451 | } |
452 | |
453 | /// Alternate elements from two iterators until at least one of them has run |
454 | /// out. |
455 | /// |
456 | /// Iterator element type is `Self::Item`. |
457 | /// |
458 | /// ``` |
459 | /// use itertools::Itertools; |
460 | /// |
461 | /// let it = (1..7).interleave_shortest(vec![-1, -2]); |
462 | /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]); |
463 | /// ``` |
464 | fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter> |
465 | where J: IntoIterator<Item = Self::Item>, |
466 | Self: Sized |
467 | { |
468 | adaptors::interleave_shortest(self, other.into_iter()) |
469 | } |
470 | |
471 | /// An iterator adaptor to insert a particular value |
472 | /// between each element of the adapted iterator. |
473 | /// |
474 | /// Iterator element type is `Self::Item`. |
475 | /// |
476 | /// This iterator is *fused*. |
477 | /// |
478 | /// ``` |
479 | /// use itertools::Itertools; |
480 | /// |
481 | /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]); |
482 | /// ``` |
483 | fn intersperse(self, element: Self::Item) -> Intersperse<Self> |
484 | where Self: Sized, |
485 | Self::Item: Clone |
486 | { |
487 | intersperse::intersperse(self, element) |
488 | } |
489 | |
490 | /// An iterator adaptor to insert a particular value created by a function |
491 | /// between each element of the adapted iterator. |
492 | /// |
493 | /// Iterator element type is `Self::Item`. |
494 | /// |
495 | /// This iterator is *fused*. |
496 | /// |
497 | /// ``` |
498 | /// use itertools::Itertools; |
499 | /// |
500 | /// let mut i = 10; |
501 | /// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]); |
502 | /// assert_eq!(i, 8); |
503 | /// ``` |
504 | fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F> |
505 | where Self: Sized, |
506 | F: FnMut() -> Self::Item |
507 | { |
508 | intersperse::intersperse_with(self, element) |
509 | } |
510 | |
511 | /// Create an iterator which iterates over both this and the specified |
512 | /// iterator simultaneously, yielding pairs of two optional elements. |
513 | /// |
514 | /// This iterator is *fused*. |
515 | /// |
516 | /// As long as neither input iterator is exhausted yet, it yields two values |
517 | /// via `EitherOrBoth::Both`. |
518 | /// |
519 | /// When the parameter iterator is exhausted, it only yields a value from the |
520 | /// `self` iterator via `EitherOrBoth::Left`. |
521 | /// |
522 | /// When the `self` iterator is exhausted, it only yields a value from the |
523 | /// parameter iterator via `EitherOrBoth::Right`. |
524 | /// |
525 | /// When both iterators return `None`, all further invocations of `.next()` |
526 | /// will return `None`. |
527 | /// |
528 | /// Iterator element type is |
529 | /// [`EitherOrBoth<Self::Item, J::Item>`](EitherOrBoth). |
530 | /// |
531 | /// ```rust |
532 | /// use itertools::EitherOrBoth::{Both, Right}; |
533 | /// use itertools::Itertools; |
534 | /// let it = (0..1).zip_longest(1..3); |
535 | /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]); |
536 | /// ``` |
537 | #[inline ] |
538 | fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter> |
539 | where J: IntoIterator, |
540 | Self: Sized |
541 | { |
542 | zip_longest::zip_longest(self, other.into_iter()) |
543 | } |
544 | |
545 | /// Create an iterator which iterates over both this and the specified |
546 | /// iterator simultaneously, yielding pairs of elements. |
547 | /// |
548 | /// **Panics** if the iterators reach an end and they are not of equal |
549 | /// lengths. |
550 | #[inline ] |
551 | fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter> |
552 | where J: IntoIterator, |
553 | Self: Sized |
554 | { |
555 | zip_eq(self, other) |
556 | } |
557 | |
558 | /// A “meta iterator adaptor”. Its closure receives a reference to the |
559 | /// iterator and may pick off as many elements as it likes, to produce the |
560 | /// next iterator element. |
561 | /// |
562 | /// Iterator element type is `B`. |
563 | /// |
564 | /// ``` |
565 | /// use itertools::Itertools; |
566 | /// |
567 | /// // An adaptor that gathers elements in pairs |
568 | /// let pit = (0..4).batching(|it| { |
569 | /// match it.next() { |
570 | /// None => None, |
571 | /// Some(x) => match it.next() { |
572 | /// None => None, |
573 | /// Some(y) => Some((x, y)), |
574 | /// } |
575 | /// } |
576 | /// }); |
577 | /// |
578 | /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]); |
579 | /// ``` |
580 | /// |
581 | fn batching<B, F>(self, f: F) -> Batching<Self, F> |
582 | where F: FnMut(&mut Self) -> Option<B>, |
583 | Self: Sized |
584 | { |
585 | adaptors::batching(self, f) |
586 | } |
587 | |
588 | /// Return an *iterable* that can group iterator elements. |
589 | /// Consecutive elements that map to the same key (“runs”), are assigned |
590 | /// to the same group. |
591 | /// |
592 | /// `GroupBy` is the storage for the lazy grouping operation. |
593 | /// |
594 | /// If the groups are consumed in order, or if each group's iterator is |
595 | /// dropped without keeping it around, then `GroupBy` uses no |
596 | /// allocations. It needs allocations only if several group iterators |
597 | /// are alive at the same time. |
598 | /// |
599 | /// This type implements [`IntoIterator`] (it is **not** an iterator |
600 | /// itself), because the group iterators need to borrow from this |
601 | /// value. It should be stored in a local variable or temporary and |
602 | /// iterated. |
603 | /// |
604 | /// Iterator element type is `(K, Group)`: the group's key and the |
605 | /// group iterator. |
606 | /// |
607 | /// ``` |
608 | /// use itertools::Itertools; |
609 | /// |
610 | /// // group data into runs of larger than zero or not. |
611 | /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2]; |
612 | /// // groups: |---->|------>|--------->| |
613 | /// |
614 | /// // Note: The `&` is significant here, `GroupBy` is iterable |
615 | /// // only by reference. You can also call `.into_iter()` explicitly. |
616 | /// let mut data_grouped = Vec::new(); |
617 | /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) { |
618 | /// data_grouped.push((key, group.collect())); |
619 | /// } |
620 | /// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]); |
621 | /// ``` |
622 | #[cfg (feature = "use_alloc" )] |
623 | fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F> |
624 | where Self: Sized, |
625 | F: FnMut(&Self::Item) -> K, |
626 | K: PartialEq, |
627 | { |
628 | groupbylazy::new(self, key) |
629 | } |
630 | |
631 | /// Return an *iterable* that can chunk the iterator. |
632 | /// |
633 | /// Yield subiterators (chunks) that each yield a fixed number elements, |
634 | /// determined by `size`. The last chunk will be shorter if there aren't |
635 | /// enough elements. |
636 | /// |
637 | /// `IntoChunks` is based on `GroupBy`: it is iterable (implements |
638 | /// `IntoIterator`, **not** `Iterator`), and it only buffers if several |
639 | /// chunk iterators are alive at the same time. |
640 | /// |
641 | /// Iterator element type is `Chunk`, each chunk's iterator. |
642 | /// |
643 | /// **Panics** if `size` is 0. |
644 | /// |
645 | /// ``` |
646 | /// use itertools::Itertools; |
647 | /// |
648 | /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1]; |
649 | /// //chunk size=3 |------->|-------->|--->| |
650 | /// |
651 | /// // Note: The `&` is significant here, `IntoChunks` is iterable |
652 | /// // only by reference. You can also call `.into_iter()` explicitly. |
653 | /// for chunk in &data.into_iter().chunks(3) { |
654 | /// // Check that the sum of each chunk is 4. |
655 | /// assert_eq!(4, chunk.sum()); |
656 | /// } |
657 | /// ``` |
658 | #[cfg (feature = "use_alloc" )] |
659 | fn chunks(self, size: usize) -> IntoChunks<Self> |
660 | where Self: Sized, |
661 | { |
662 | assert!(size != 0); |
663 | groupbylazy::new_chunks(self, size) |
664 | } |
665 | |
666 | /// Return an iterator over all contiguous windows producing tuples of |
667 | /// a specific size (up to 12). |
668 | /// |
669 | /// `tuple_windows` clones the iterator elements so that they can be |
670 | /// part of successive windows, this makes it most suited for iterators |
671 | /// of references and other values that are cheap to copy. |
672 | /// |
673 | /// ``` |
674 | /// use itertools::Itertools; |
675 | /// let mut v = Vec::new(); |
676 | /// |
677 | /// // pairwise iteration |
678 | /// for (a, b) in (1..5).tuple_windows() { |
679 | /// v.push((a, b)); |
680 | /// } |
681 | /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]); |
682 | /// |
683 | /// let mut it = (1..5).tuple_windows(); |
684 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
685 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
686 | /// assert_eq!(None, it.next()); |
687 | /// |
688 | /// // this requires a type hint |
689 | /// let it = (1..5).tuple_windows::<(_, _, _)>(); |
690 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); |
691 | /// |
692 | /// // you can also specify the complete type |
693 | /// use itertools::TupleWindows; |
694 | /// use std::ops::Range; |
695 | /// |
696 | /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows(); |
697 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); |
698 | /// ``` |
699 | fn tuple_windows<T>(self) -> TupleWindows<Self, T> |
700 | where Self: Sized + Iterator<Item = T::Item>, |
701 | T: traits::HomogeneousTuple, |
702 | T::Item: Clone |
703 | { |
704 | tuple_impl::tuple_windows(self) |
705 | } |
706 | |
707 | /// Return an iterator over all windows, wrapping back to the first |
708 | /// elements when the window would otherwise exceed the length of the |
709 | /// iterator, producing tuples of a specific size (up to 12). |
710 | /// |
711 | /// `circular_tuple_windows` clones the iterator elements so that they can be |
712 | /// part of successive windows, this makes it most suited for iterators |
713 | /// of references and other values that are cheap to copy. |
714 | /// |
715 | /// ``` |
716 | /// use itertools::Itertools; |
717 | /// let mut v = Vec::new(); |
718 | /// for (a, b) in (1..5).circular_tuple_windows() { |
719 | /// v.push((a, b)); |
720 | /// } |
721 | /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]); |
722 | /// |
723 | /// let mut it = (1..5).circular_tuple_windows(); |
724 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
725 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
726 | /// assert_eq!(Some((3, 4, 1)), it.next()); |
727 | /// assert_eq!(Some((4, 1, 2)), it.next()); |
728 | /// assert_eq!(None, it.next()); |
729 | /// |
730 | /// // this requires a type hint |
731 | /// let it = (1..5).circular_tuple_windows::<(_, _, _)>(); |
732 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]); |
733 | /// ``` |
734 | fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T> |
735 | where Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator, |
736 | T: tuple_impl::TupleCollect + Clone, |
737 | T::Item: Clone |
738 | { |
739 | tuple_impl::circular_tuple_windows(self) |
740 | } |
741 | /// Return an iterator that groups the items in tuples of a specific size |
742 | /// (up to 12). |
743 | /// |
744 | /// See also the method [`.next_tuple()`](Itertools::next_tuple). |
745 | /// |
746 | /// ``` |
747 | /// use itertools::Itertools; |
748 | /// let mut v = Vec::new(); |
749 | /// for (a, b) in (1..5).tuples() { |
750 | /// v.push((a, b)); |
751 | /// } |
752 | /// assert_eq!(v, vec![(1, 2), (3, 4)]); |
753 | /// |
754 | /// let mut it = (1..7).tuples(); |
755 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
756 | /// assert_eq!(Some((4, 5, 6)), it.next()); |
757 | /// assert_eq!(None, it.next()); |
758 | /// |
759 | /// // this requires a type hint |
760 | /// let it = (1..7).tuples::<(_, _, _)>(); |
761 | /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); |
762 | /// |
763 | /// // you can also specify the complete type |
764 | /// use itertools::Tuples; |
765 | /// use std::ops::Range; |
766 | /// |
767 | /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples(); |
768 | /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); |
769 | /// ``` |
770 | /// |
771 | /// See also [`Tuples::into_buffer`]. |
772 | fn tuples<T>(self) -> Tuples<Self, T> |
773 | where Self: Sized + Iterator<Item = T::Item>, |
774 | T: traits::HomogeneousTuple |
775 | { |
776 | tuple_impl::tuples(self) |
777 | } |
778 | |
779 | /// Split into an iterator pair that both yield all elements from |
780 | /// the original iterator. |
781 | /// |
782 | /// **Note:** If the iterator is clonable, prefer using that instead |
783 | /// of using this method. Cloning is likely to be more efficient. |
784 | /// |
785 | /// Iterator element type is `Self::Item`. |
786 | /// |
787 | /// ``` |
788 | /// use itertools::Itertools; |
789 | /// let xs = vec![0, 1, 2, 3]; |
790 | /// |
791 | /// let (mut t1, t2) = xs.into_iter().tee(); |
792 | /// itertools::assert_equal(t1.next(), Some(0)); |
793 | /// itertools::assert_equal(t2, 0..4); |
794 | /// itertools::assert_equal(t1, 1..4); |
795 | /// ``` |
796 | #[cfg (feature = "use_alloc" )] |
797 | fn tee(self) -> (Tee<Self>, Tee<Self>) |
798 | where Self: Sized, |
799 | Self::Item: Clone |
800 | { |
801 | tee::new(self) |
802 | } |
803 | |
804 | /// Return an iterator adaptor that steps `n` elements in the base iterator |
805 | /// for each iteration. |
806 | /// |
807 | /// The iterator steps by yielding the next element from the base iterator, |
808 | /// then skipping forward `n - 1` elements. |
809 | /// |
810 | /// Iterator element type is `Self::Item`. |
811 | /// |
812 | /// **Panics** if the step is 0. |
813 | /// |
814 | /// ``` |
815 | /// use itertools::Itertools; |
816 | /// |
817 | /// let it = (0..8).step(3); |
818 | /// itertools::assert_equal(it, vec![0, 3, 6]); |
819 | /// ``` |
820 | #[deprecated (note="Use std .step_by() instead" , since="0.8.0" )] |
821 | #[allow (deprecated)] |
822 | fn step(self, n: usize) -> Step<Self> |
823 | where Self: Sized |
824 | { |
825 | adaptors::step(self, n) |
826 | } |
827 | |
828 | /// Convert each item of the iterator using the [`Into`] trait. |
829 | /// |
830 | /// ```rust |
831 | /// use itertools::Itertools; |
832 | /// |
833 | /// (1i32..42i32).map_into::<f64>().collect_vec(); |
834 | /// ``` |
835 | fn map_into<R>(self) -> MapInto<Self, R> |
836 | where Self: Sized, |
837 | Self::Item: Into<R>, |
838 | { |
839 | adaptors::map_into(self) |
840 | } |
841 | |
842 | /// See [`.map_ok()`](Itertools::map_ok). |
843 | #[deprecated (note="Use .map_ok() instead" , since="0.10.0" )] |
844 | fn map_results<F, T, U, E>(self, f: F) -> MapOk<Self, F> |
845 | where Self: Iterator<Item = Result<T, E>> + Sized, |
846 | F: FnMut(T) -> U, |
847 | { |
848 | self.map_ok(f) |
849 | } |
850 | |
851 | /// Return an iterator adaptor that applies the provided closure |
852 | /// to every `Result::Ok` value. `Result::Err` values are |
853 | /// unchanged. |
854 | /// |
855 | /// ``` |
856 | /// use itertools::Itertools; |
857 | /// |
858 | /// let input = vec![Ok(41), Err(false), Ok(11)]; |
859 | /// let it = input.into_iter().map_ok(|i| i + 1); |
860 | /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]); |
861 | /// ``` |
862 | fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F> |
863 | where Self: Iterator<Item = Result<T, E>> + Sized, |
864 | F: FnMut(T) -> U, |
865 | { |
866 | adaptors::map_ok(self, f) |
867 | } |
868 | |
869 | /// Return an iterator adaptor that filters every `Result::Ok` |
870 | /// value with the provided closure. `Result::Err` values are |
871 | /// unchanged. |
872 | /// |
873 | /// ``` |
874 | /// use itertools::Itertools; |
875 | /// |
876 | /// let input = vec![Ok(22), Err(false), Ok(11)]; |
877 | /// let it = input.into_iter().filter_ok(|&i| i > 20); |
878 | /// itertools::assert_equal(it, vec![Ok(22), Err(false)]); |
879 | /// ``` |
880 | fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F> |
881 | where Self: Iterator<Item = Result<T, E>> + Sized, |
882 | F: FnMut(&T) -> bool, |
883 | { |
884 | adaptors::filter_ok(self, f) |
885 | } |
886 | |
887 | /// Return an iterator adaptor that filters and transforms every |
888 | /// `Result::Ok` value with the provided closure. `Result::Err` |
889 | /// values are unchanged. |
890 | /// |
891 | /// ``` |
892 | /// use itertools::Itertools; |
893 | /// |
894 | /// let input = vec![Ok(22), Err(false), Ok(11)]; |
895 | /// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None }); |
896 | /// itertools::assert_equal(it, vec![Ok(44), Err(false)]); |
897 | /// ``` |
898 | fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F> |
899 | where Self: Iterator<Item = Result<T, E>> + Sized, |
900 | F: FnMut(T) -> Option<U>, |
901 | { |
902 | adaptors::filter_map_ok(self, f) |
903 | } |
904 | |
905 | /// Return an iterator adaptor that flattens every `Result::Ok` value into |
906 | /// a series of `Result::Ok` values. `Result::Err` values are unchanged. |
907 | /// |
908 | /// This is useful when you have some common error type for your crate and |
909 | /// need to propagate it upwards, but the `Result::Ok` case needs to be flattened. |
910 | /// |
911 | /// ``` |
912 | /// use itertools::Itertools; |
913 | /// |
914 | /// let input = vec![Ok(0..2), Err(false), Ok(2..4)]; |
915 | /// let it = input.iter().cloned().flatten_ok(); |
916 | /// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]); |
917 | /// |
918 | /// // This can also be used to propagate errors when collecting. |
919 | /// let output_result: Result<Vec<i32>, bool> = it.collect(); |
920 | /// assert_eq!(output_result, Err(false)); |
921 | /// ``` |
922 | fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E> |
923 | where Self: Iterator<Item = Result<T, E>> + Sized, |
924 | T: IntoIterator |
925 | { |
926 | flatten_ok::flatten_ok(self) |
927 | } |
928 | |
929 | /// Return an iterator adaptor that merges the two base iterators in |
930 | /// ascending order. If both base iterators are sorted (ascending), the |
931 | /// result is sorted. |
932 | /// |
933 | /// Iterator element type is `Self::Item`. |
934 | /// |
935 | /// ``` |
936 | /// use itertools::Itertools; |
937 | /// |
938 | /// let a = (0..11).step(3); |
939 | /// let b = (0..11).step(5); |
940 | /// let it = a.merge(b); |
941 | /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]); |
942 | /// ``` |
943 | fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter> |
944 | where Self: Sized, |
945 | Self::Item: PartialOrd, |
946 | J: IntoIterator<Item = Self::Item> |
947 | { |
948 | merge(self, other) |
949 | } |
950 | |
951 | /// Return an iterator adaptor that merges the two base iterators in order. |
952 | /// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering. |
953 | /// |
954 | /// This can be especially useful for sequences of tuples. |
955 | /// |
956 | /// Iterator element type is `Self::Item`. |
957 | /// |
958 | /// ``` |
959 | /// use itertools::Itertools; |
960 | /// |
961 | /// let a = (0..).zip("bc" .chars()); |
962 | /// let b = (0..).zip("ad" .chars()); |
963 | /// let it = a.merge_by(b, |x, y| x.1 <= y.1); |
964 | /// itertools::assert_equal(it, vec![(0, 'a' ), (0, 'b' ), (1, 'c' ), (1, 'd' )]); |
965 | /// ``` |
966 | |
967 | fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F> |
968 | where Self: Sized, |
969 | J: IntoIterator<Item = Self::Item>, |
970 | F: FnMut(&Self::Item, &Self::Item) -> bool |
971 | { |
972 | adaptors::merge_by_new(self, other.into_iter(), is_first) |
973 | } |
974 | |
975 | /// Create an iterator that merges items from both this and the specified |
976 | /// iterator in ascending order. |
977 | /// |
978 | /// It chooses whether to pair elements based on the `Ordering` returned by the |
979 | /// specified compare function. At any point, inspecting the tip of the |
980 | /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type |
981 | /// `J::Item` respectively, the resulting iterator will: |
982 | /// |
983 | /// - Emit `EitherOrBoth::Left(i)` when `i < j`, |
984 | /// and remove `i` from its source iterator |
985 | /// - Emit `EitherOrBoth::Right(j)` when `i > j`, |
986 | /// and remove `j` from its source iterator |
987 | /// - Emit `EitherOrBoth::Both(i, j)` when `i == j`, |
988 | /// and remove both `i` and `j` from their respective source iterators |
989 | /// |
990 | /// ``` |
991 | /// use itertools::Itertools; |
992 | /// use itertools::EitherOrBoth::{Left, Right, Both}; |
993 | /// |
994 | /// let multiples_of_2 = (0..10).step(2); |
995 | /// let multiples_of_3 = (0..10).step(3); |
996 | /// |
997 | /// itertools::assert_equal( |
998 | /// multiples_of_2.merge_join_by(multiples_of_3, |i, j| i.cmp(j)), |
999 | /// vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(8), Right(9)] |
1000 | /// ); |
1001 | /// ``` |
1002 | #[inline ] |
1003 | fn merge_join_by<J, F>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F> |
1004 | where J: IntoIterator, |
1005 | F: FnMut(&Self::Item, &J::Item) -> std::cmp::Ordering, |
1006 | Self: Sized |
1007 | { |
1008 | merge_join_by(self, other, cmp_fn) |
1009 | } |
1010 | |
1011 | /// Return an iterator adaptor that flattens an iterator of iterators by |
1012 | /// merging them in ascending order. |
1013 | /// |
1014 | /// If all base iterators are sorted (ascending), the result is sorted. |
1015 | /// |
1016 | /// Iterator element type is `Self::Item`. |
1017 | /// |
1018 | /// ``` |
1019 | /// use itertools::Itertools; |
1020 | /// |
1021 | /// let a = (0..6).step(3); |
1022 | /// let b = (1..6).step(3); |
1023 | /// let c = (2..6).step(3); |
1024 | /// let it = vec![a, b, c].into_iter().kmerge(); |
1025 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]); |
1026 | /// ``` |
1027 | #[cfg (feature = "use_alloc" )] |
1028 | fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter> |
1029 | where Self: Sized, |
1030 | Self::Item: IntoIterator, |
1031 | <Self::Item as IntoIterator>::Item: PartialOrd, |
1032 | { |
1033 | kmerge(self) |
1034 | } |
1035 | |
1036 | /// Return an iterator adaptor that flattens an iterator of iterators by |
1037 | /// merging them according to the given closure. |
1038 | /// |
1039 | /// The closure `first` is called with two elements *a*, *b* and should |
1040 | /// return `true` if *a* is ordered before *b*. |
1041 | /// |
1042 | /// If all base iterators are sorted according to `first`, the result is |
1043 | /// sorted. |
1044 | /// |
1045 | /// Iterator element type is `Self::Item`. |
1046 | /// |
1047 | /// ``` |
1048 | /// use itertools::Itertools; |
1049 | /// |
1050 | /// let a = vec![-1f64, 2., 3., -5., 6., -7.]; |
1051 | /// let b = vec![0., 2., -4.]; |
1052 | /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs()); |
1053 | /// assert_eq!(it.next(), Some(0.)); |
1054 | /// assert_eq!(it.last(), Some(-7.)); |
1055 | /// ``` |
1056 | #[cfg (feature = "use_alloc" )] |
1057 | fn kmerge_by<F>(self, first: F) |
1058 | -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> |
1059 | where Self: Sized, |
1060 | Self::Item: IntoIterator, |
1061 | F: FnMut(&<Self::Item as IntoIterator>::Item, |
1062 | &<Self::Item as IntoIterator>::Item) -> bool |
1063 | { |
1064 | kmerge_by(self, first) |
1065 | } |
1066 | |
1067 | /// Return an iterator adaptor that iterates over the cartesian product of |
1068 | /// the element sets of two iterators `self` and `J`. |
1069 | /// |
1070 | /// Iterator element type is `(Self::Item, J::Item)`. |
1071 | /// |
1072 | /// ``` |
1073 | /// use itertools::Itertools; |
1074 | /// |
1075 | /// let it = (0..2).cartesian_product("αβ" .chars()); |
1076 | /// itertools::assert_equal(it, vec![(0, 'α' ), (0, 'β' ), (1, 'α' ), (1, 'β' )]); |
1077 | /// ``` |
1078 | fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter> |
1079 | where Self: Sized, |
1080 | Self::Item: Clone, |
1081 | J: IntoIterator, |
1082 | J::IntoIter: Clone |
1083 | { |
1084 | adaptors::cartesian_product(self, other.into_iter()) |
1085 | } |
1086 | |
1087 | /// Return an iterator adaptor that iterates over the cartesian product of |
1088 | /// all subiterators returned by meta-iterator `self`. |
1089 | /// |
1090 | /// All provided iterators must yield the same `Item` type. To generate |
1091 | /// the product of iterators yielding multiple types, use the |
1092 | /// [`iproduct`] macro instead. |
1093 | /// |
1094 | /// |
1095 | /// The iterator element type is `Vec<T>`, where `T` is the iterator element |
1096 | /// of the subiterators. |
1097 | /// |
1098 | /// ``` |
1099 | /// use itertools::Itertools; |
1100 | /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2)) |
1101 | /// .multi_cartesian_product(); |
1102 | /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4])); |
1103 | /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5])); |
1104 | /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4])); |
1105 | /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5])); |
1106 | /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4])); |
1107 | /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5])); |
1108 | /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4])); |
1109 | /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5])); |
1110 | /// assert_eq!(multi_prod.next(), None); |
1111 | /// ``` |
1112 | #[cfg (feature = "use_alloc" )] |
1113 | fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> |
1114 | where Self: Sized, |
1115 | Self::Item: IntoIterator, |
1116 | <Self::Item as IntoIterator>::IntoIter: Clone, |
1117 | <Self::Item as IntoIterator>::Item: Clone |
1118 | { |
1119 | adaptors::multi_cartesian_product(self) |
1120 | } |
1121 | |
1122 | /// Return an iterator adaptor that uses the passed-in closure to |
1123 | /// optionally merge together consecutive elements. |
1124 | /// |
1125 | /// The closure `f` is passed two elements, `previous` and `current` and may |
1126 | /// return either (1) `Ok(combined)` to merge the two values or |
1127 | /// (2) `Err((previous', current'))` to indicate they can't be merged. |
1128 | /// In (2), the value `previous'` is emitted by the iterator. |
1129 | /// Either (1) `combined` or (2) `current'` becomes the previous value |
1130 | /// when coalesce continues with the next pair of elements to merge. The |
1131 | /// value that remains at the end is also emitted by the iterator. |
1132 | /// |
1133 | /// Iterator element type is `Self::Item`. |
1134 | /// |
1135 | /// This iterator is *fused*. |
1136 | /// |
1137 | /// ``` |
1138 | /// use itertools::Itertools; |
1139 | /// |
1140 | /// // sum same-sign runs together |
1141 | /// let data = vec![-1., -2., -3., 3., 1., 0., -1.]; |
1142 | /// itertools::assert_equal(data.into_iter().coalesce(|x, y| |
1143 | /// if (x >= 0.) == (y >= 0.) { |
1144 | /// Ok(x + y) |
1145 | /// } else { |
1146 | /// Err((x, y)) |
1147 | /// }), |
1148 | /// vec![-6., 4., -1.]); |
1149 | /// ``` |
1150 | fn coalesce<F>(self, f: F) -> Coalesce<Self, F> |
1151 | where Self: Sized, |
1152 | F: FnMut(Self::Item, Self::Item) |
1153 | -> Result<Self::Item, (Self::Item, Self::Item)> |
1154 | { |
1155 | adaptors::coalesce(self, f) |
1156 | } |
1157 | |
1158 | /// Remove duplicates from sections of consecutive identical elements. |
1159 | /// If the iterator is sorted, all elements will be unique. |
1160 | /// |
1161 | /// Iterator element type is `Self::Item`. |
1162 | /// |
1163 | /// This iterator is *fused*. |
1164 | /// |
1165 | /// ``` |
1166 | /// use itertools::Itertools; |
1167 | /// |
1168 | /// let data = vec![1., 1., 2., 3., 3., 2., 2.]; |
1169 | /// itertools::assert_equal(data.into_iter().dedup(), |
1170 | /// vec![1., 2., 3., 2.]); |
1171 | /// ``` |
1172 | fn dedup(self) -> Dedup<Self> |
1173 | where Self: Sized, |
1174 | Self::Item: PartialEq, |
1175 | { |
1176 | adaptors::dedup(self) |
1177 | } |
1178 | |
1179 | /// Remove duplicates from sections of consecutive identical elements, |
1180 | /// determining equality using a comparison function. |
1181 | /// If the iterator is sorted, all elements will be unique. |
1182 | /// |
1183 | /// Iterator element type is `Self::Item`. |
1184 | /// |
1185 | /// This iterator is *fused*. |
1186 | /// |
1187 | /// ``` |
1188 | /// use itertools::Itertools; |
1189 | /// |
1190 | /// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)]; |
1191 | /// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1), |
1192 | /// vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]); |
1193 | /// ``` |
1194 | fn dedup_by<Cmp>(self, cmp: Cmp) -> DedupBy<Self, Cmp> |
1195 | where Self: Sized, |
1196 | Cmp: FnMut(&Self::Item, &Self::Item)->bool, |
1197 | { |
1198 | adaptors::dedup_by(self, cmp) |
1199 | } |
1200 | |
1201 | /// Remove duplicates from sections of consecutive identical elements, while keeping a count of |
1202 | /// how many repeated elements were present. |
1203 | /// If the iterator is sorted, all elements will be unique. |
1204 | /// |
1205 | /// Iterator element type is `(usize, Self::Item)`. |
1206 | /// |
1207 | /// This iterator is *fused*. |
1208 | /// |
1209 | /// ``` |
1210 | /// use itertools::Itertools; |
1211 | /// |
1212 | /// let data = vec!['a' , 'a' , 'b' , 'c' , 'c' , 'b' , 'b' ]; |
1213 | /// itertools::assert_equal(data.into_iter().dedup_with_count(), |
1214 | /// vec![(2, 'a' ), (1, 'b' ), (2, 'c' ), (2, 'b' )]); |
1215 | /// ``` |
1216 | fn dedup_with_count(self) -> DedupWithCount<Self> |
1217 | where |
1218 | Self: Sized, |
1219 | { |
1220 | adaptors::dedup_with_count(self) |
1221 | } |
1222 | |
1223 | /// Remove duplicates from sections of consecutive identical elements, while keeping a count of |
1224 | /// how many repeated elements were present. |
1225 | /// This will determine equality using a comparison function. |
1226 | /// If the iterator is sorted, all elements will be unique. |
1227 | /// |
1228 | /// Iterator element type is `(usize, Self::Item)`. |
1229 | /// |
1230 | /// This iterator is *fused*. |
1231 | /// |
1232 | /// ``` |
1233 | /// use itertools::Itertools; |
1234 | /// |
1235 | /// let data = vec![(0, 'a' ), (1, 'a' ), (0, 'b' ), (0, 'c' ), (1, 'c' ), (1, 'b' ), (2, 'b' )]; |
1236 | /// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1), |
1237 | /// vec![(2, (0, 'a' )), (1, (0, 'b' )), (2, (0, 'c' )), (2, (1, 'b' ))]); |
1238 | /// ``` |
1239 | fn dedup_by_with_count<Cmp>(self, cmp: Cmp) -> DedupByWithCount<Self, Cmp> |
1240 | where |
1241 | Self: Sized, |
1242 | Cmp: FnMut(&Self::Item, &Self::Item) -> bool, |
1243 | { |
1244 | adaptors::dedup_by_with_count(self, cmp) |
1245 | } |
1246 | |
1247 | /// Return an iterator adaptor that produces elements that appear more than once during the |
1248 | /// iteration. Duplicates are detected using hash and equality. |
1249 | /// |
1250 | /// The iterator is stable, returning the duplicate items in the order in which they occur in |
1251 | /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more |
1252 | /// than twice, the second item is the item retained and the rest are discarded. |
1253 | /// |
1254 | /// ``` |
1255 | /// use itertools::Itertools; |
1256 | /// |
1257 | /// let data = vec![10, 20, 30, 20, 40, 10, 50]; |
1258 | /// itertools::assert_equal(data.into_iter().duplicates(), |
1259 | /// vec![20, 10]); |
1260 | /// ``` |
1261 | #[cfg (feature = "use_std" )] |
1262 | fn duplicates(self) -> Duplicates<Self> |
1263 | where Self: Sized, |
1264 | Self::Item: Eq + Hash |
1265 | { |
1266 | duplicates_impl::duplicates(self) |
1267 | } |
1268 | |
1269 | /// Return an iterator adaptor that produces elements that appear more than once during the |
1270 | /// iteration. Duplicates are detected using hash and equality. |
1271 | /// |
1272 | /// Duplicates are detected by comparing the key they map to with the keying function `f` by |
1273 | /// hash and equality. The keys are stored in a hash map in the iterator. |
1274 | /// |
1275 | /// The iterator is stable, returning the duplicate items in the order in which they occur in |
1276 | /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more |
1277 | /// than twice, the second item is the item retained and the rest are discarded. |
1278 | /// |
1279 | /// ``` |
1280 | /// use itertools::Itertools; |
1281 | /// |
1282 | /// let data = vec!["a" , "bb" , "aa" , "c" , "ccc" ]; |
1283 | /// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()), |
1284 | /// vec!["aa" , "c" ]); |
1285 | /// ``` |
1286 | #[cfg (feature = "use_std" )] |
1287 | fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, F> |
1288 | where Self: Sized, |
1289 | V: Eq + Hash, |
1290 | F: FnMut(&Self::Item) -> V |
1291 | { |
1292 | duplicates_impl::duplicates_by(self, f) |
1293 | } |
1294 | |
1295 | /// Return an iterator adaptor that filters out elements that have |
1296 | /// already been produced once during the iteration. Duplicates |
1297 | /// are detected using hash and equality. |
1298 | /// |
1299 | /// Clones of visited elements are stored in a hash set in the |
1300 | /// iterator. |
1301 | /// |
1302 | /// The iterator is stable, returning the non-duplicate items in the order |
1303 | /// in which they occur in the adapted iterator. In a set of duplicate |
1304 | /// items, the first item encountered is the item retained. |
1305 | /// |
1306 | /// ``` |
1307 | /// use itertools::Itertools; |
1308 | /// |
1309 | /// let data = vec![10, 20, 30, 20, 40, 10, 50]; |
1310 | /// itertools::assert_equal(data.into_iter().unique(), |
1311 | /// vec![10, 20, 30, 40, 50]); |
1312 | /// ``` |
1313 | #[cfg (feature = "use_std" )] |
1314 | fn unique(self) -> Unique<Self> |
1315 | where Self: Sized, |
1316 | Self::Item: Clone + Eq + Hash |
1317 | { |
1318 | unique_impl::unique(self) |
1319 | } |
1320 | |
1321 | /// Return an iterator adaptor that filters out elements that have |
1322 | /// already been produced once during the iteration. |
1323 | /// |
1324 | /// Duplicates are detected by comparing the key they map to |
1325 | /// with the keying function `f` by hash and equality. |
1326 | /// The keys are stored in a hash set in the iterator. |
1327 | /// |
1328 | /// The iterator is stable, returning the non-duplicate items in the order |
1329 | /// in which they occur in the adapted iterator. In a set of duplicate |
1330 | /// items, the first item encountered is the item retained. |
1331 | /// |
1332 | /// ``` |
1333 | /// use itertools::Itertools; |
1334 | /// |
1335 | /// let data = vec!["a" , "bb" , "aa" , "c" , "ccc" ]; |
1336 | /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()), |
1337 | /// vec!["a" , "bb" , "ccc" ]); |
1338 | /// ``` |
1339 | #[cfg (feature = "use_std" )] |
1340 | fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> |
1341 | where Self: Sized, |
1342 | V: Eq + Hash, |
1343 | F: FnMut(&Self::Item) -> V |
1344 | { |
1345 | unique_impl::unique_by(self, f) |
1346 | } |
1347 | |
1348 | /// Return an iterator adaptor that borrows from this iterator and |
1349 | /// takes items while the closure `accept` returns `true`. |
1350 | /// |
1351 | /// This adaptor can only be used on iterators that implement `PeekingNext` |
1352 | /// like `.peekable()`, `put_back` and a few other collection iterators. |
1353 | /// |
1354 | /// The last and rejected element (first `false`) is still available when |
1355 | /// `peeking_take_while` is done. |
1356 | /// |
1357 | /// |
1358 | /// See also [`.take_while_ref()`](Itertools::take_while_ref) |
1359 | /// which is a similar adaptor. |
1360 | fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F> |
1361 | where Self: Sized + PeekingNext, |
1362 | F: FnMut(&Self::Item) -> bool, |
1363 | { |
1364 | peeking_take_while::peeking_take_while(self, accept) |
1365 | } |
1366 | |
1367 | /// Return an iterator adaptor that borrows from a `Clone`-able iterator |
1368 | /// to only pick off elements while the predicate `accept` returns `true`. |
1369 | /// |
1370 | /// It uses the `Clone` trait to restore the original iterator so that the |
1371 | /// last and rejected element (first `false`) is still available when |
1372 | /// `take_while_ref` is done. |
1373 | /// |
1374 | /// ``` |
1375 | /// use itertools::Itertools; |
1376 | /// |
1377 | /// let mut hexadecimals = "0123456789abcdef" .chars(); |
1378 | /// |
1379 | /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric()) |
1380 | /// .collect::<String>(); |
1381 | /// assert_eq!(decimals, "0123456789" ); |
1382 | /// assert_eq!(hexadecimals.next(), Some('a' )); |
1383 | /// |
1384 | /// ``` |
1385 | fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F> |
1386 | where Self: Clone, |
1387 | F: FnMut(&Self::Item) -> bool |
1388 | { |
1389 | adaptors::take_while_ref(self, accept) |
1390 | } |
1391 | |
1392 | /// Return an iterator adaptor that filters `Option<A>` iterator elements |
1393 | /// and produces `A`. Stops on the first `None` encountered. |
1394 | /// |
1395 | /// Iterator element type is `A`, the unwrapped element. |
1396 | /// |
1397 | /// ``` |
1398 | /// use itertools::Itertools; |
1399 | /// |
1400 | /// // List all hexadecimal digits |
1401 | /// itertools::assert_equal( |
1402 | /// (0..).map(|i| std::char::from_digit(i, 16)).while_some(), |
1403 | /// "0123456789abcdef" .chars()); |
1404 | /// |
1405 | /// ``` |
1406 | fn while_some<A>(self) -> WhileSome<Self> |
1407 | where Self: Sized + Iterator<Item = Option<A>> |
1408 | { |
1409 | adaptors::while_some(self) |
1410 | } |
1411 | |
1412 | /// Return an iterator adaptor that iterates over the combinations of the |
1413 | /// elements from an iterator. |
1414 | /// |
1415 | /// Iterator element can be any homogeneous tuple of type `Self::Item` with |
1416 | /// size up to 12. |
1417 | /// |
1418 | /// ``` |
1419 | /// use itertools::Itertools; |
1420 | /// |
1421 | /// let mut v = Vec::new(); |
1422 | /// for (a, b) in (1..5).tuple_combinations() { |
1423 | /// v.push((a, b)); |
1424 | /// } |
1425 | /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]); |
1426 | /// |
1427 | /// let mut it = (1..5).tuple_combinations(); |
1428 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
1429 | /// assert_eq!(Some((1, 2, 4)), it.next()); |
1430 | /// assert_eq!(Some((1, 3, 4)), it.next()); |
1431 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
1432 | /// assert_eq!(None, it.next()); |
1433 | /// |
1434 | /// // this requires a type hint |
1435 | /// let it = (1..5).tuple_combinations::<(_, _, _)>(); |
1436 | /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); |
1437 | /// |
1438 | /// // you can also specify the complete type |
1439 | /// use itertools::TupleCombinations; |
1440 | /// use std::ops::Range; |
1441 | /// |
1442 | /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations(); |
1443 | /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); |
1444 | /// ``` |
1445 | fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> |
1446 | where Self: Sized + Clone, |
1447 | Self::Item: Clone, |
1448 | T: adaptors::HasCombination<Self>, |
1449 | { |
1450 | adaptors::tuple_combinations(self) |
1451 | } |
1452 | |
1453 | /// Return an iterator adaptor that iterates over the `k`-length combinations of |
1454 | /// the elements from an iterator. |
1455 | /// |
1456 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, |
1457 | /// and clones the iterator elements. |
1458 | /// |
1459 | /// ``` |
1460 | /// use itertools::Itertools; |
1461 | /// |
1462 | /// let it = (1..5).combinations(3); |
1463 | /// itertools::assert_equal(it, vec![ |
1464 | /// vec![1, 2, 3], |
1465 | /// vec![1, 2, 4], |
1466 | /// vec![1, 3, 4], |
1467 | /// vec![2, 3, 4], |
1468 | /// ]); |
1469 | /// ``` |
1470 | /// |
1471 | /// Note: Combinations does not take into account the equality of the iterated values. |
1472 | /// ``` |
1473 | /// use itertools::Itertools; |
1474 | /// |
1475 | /// let it = vec![1, 2, 2].into_iter().combinations(2); |
1476 | /// itertools::assert_equal(it, vec![ |
1477 | /// vec![1, 2], // Note: these are the same |
1478 | /// vec![1, 2], // Note: these are the same |
1479 | /// vec![2, 2], |
1480 | /// ]); |
1481 | /// ``` |
1482 | #[cfg (feature = "use_alloc" )] |
1483 | fn combinations(self, k: usize) -> Combinations<Self> |
1484 | where Self: Sized, |
1485 | Self::Item: Clone |
1486 | { |
1487 | combinations::combinations(self, k) |
1488 | } |
1489 | |
1490 | /// Return an iterator that iterates over the `k`-length combinations of |
1491 | /// the elements from an iterator, with replacement. |
1492 | /// |
1493 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, |
1494 | /// and clones the iterator elements. |
1495 | /// |
1496 | /// ``` |
1497 | /// use itertools::Itertools; |
1498 | /// |
1499 | /// let it = (1..4).combinations_with_replacement(2); |
1500 | /// itertools::assert_equal(it, vec![ |
1501 | /// vec![1, 1], |
1502 | /// vec![1, 2], |
1503 | /// vec![1, 3], |
1504 | /// vec![2, 2], |
1505 | /// vec![2, 3], |
1506 | /// vec![3, 3], |
1507 | /// ]); |
1508 | /// ``` |
1509 | #[cfg (feature = "use_alloc" )] |
1510 | fn combinations_with_replacement(self, k: usize) -> CombinationsWithReplacement<Self> |
1511 | where |
1512 | Self: Sized, |
1513 | Self::Item: Clone, |
1514 | { |
1515 | combinations_with_replacement::combinations_with_replacement(self, k) |
1516 | } |
1517 | |
1518 | /// Return an iterator adaptor that iterates over all k-permutations of the |
1519 | /// elements from an iterator. |
1520 | /// |
1521 | /// Iterator element type is `Vec<Self::Item>` with length `k`. The iterator |
1522 | /// produces a new Vec per iteration, and clones the iterator elements. |
1523 | /// |
1524 | /// If `k` is greater than the length of the input iterator, the resultant |
1525 | /// iterator adaptor will be empty. |
1526 | /// |
1527 | /// ``` |
1528 | /// use itertools::Itertools; |
1529 | /// |
1530 | /// let perms = (5..8).permutations(2); |
1531 | /// itertools::assert_equal(perms, vec![ |
1532 | /// vec![5, 6], |
1533 | /// vec![5, 7], |
1534 | /// vec![6, 5], |
1535 | /// vec![6, 7], |
1536 | /// vec![7, 5], |
1537 | /// vec![7, 6], |
1538 | /// ]); |
1539 | /// ``` |
1540 | /// |
1541 | /// Note: Permutations does not take into account the equality of the iterated values. |
1542 | /// |
1543 | /// ``` |
1544 | /// use itertools::Itertools; |
1545 | /// |
1546 | /// let it = vec![2, 2].into_iter().permutations(2); |
1547 | /// itertools::assert_equal(it, vec![ |
1548 | /// vec![2, 2], // Note: these are the same |
1549 | /// vec![2, 2], // Note: these are the same |
1550 | /// ]); |
1551 | /// ``` |
1552 | /// |
1553 | /// Note: The source iterator is collected lazily, and will not be |
1554 | /// re-iterated if the permutations adaptor is completed and re-iterated. |
1555 | #[cfg (feature = "use_alloc" )] |
1556 | fn permutations(self, k: usize) -> Permutations<Self> |
1557 | where Self: Sized, |
1558 | Self::Item: Clone |
1559 | { |
1560 | permutations::permutations(self, k) |
1561 | } |
1562 | |
1563 | /// Return an iterator that iterates through the powerset of the elements from an |
1564 | /// iterator. |
1565 | /// |
1566 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec` |
1567 | /// per iteration, and clones the iterator elements. |
1568 | /// |
1569 | /// The powerset of a set contains all subsets including the empty set and the full |
1570 | /// input set. A powerset has length _2^n_ where _n_ is the length of the input |
1571 | /// set. |
1572 | /// |
1573 | /// Each `Vec` produced by this iterator represents a subset of the elements |
1574 | /// produced by the source iterator. |
1575 | /// |
1576 | /// ``` |
1577 | /// use itertools::Itertools; |
1578 | /// |
1579 | /// let sets = (1..4).powerset().collect::<Vec<_>>(); |
1580 | /// itertools::assert_equal(sets, vec![ |
1581 | /// vec![], |
1582 | /// vec![1], |
1583 | /// vec![2], |
1584 | /// vec![3], |
1585 | /// vec![1, 2], |
1586 | /// vec![1, 3], |
1587 | /// vec![2, 3], |
1588 | /// vec![1, 2, 3], |
1589 | /// ]); |
1590 | /// ``` |
1591 | #[cfg (feature = "use_alloc" )] |
1592 | fn powerset(self) -> Powerset<Self> |
1593 | where Self: Sized, |
1594 | Self::Item: Clone, |
1595 | { |
1596 | powerset::powerset(self) |
1597 | } |
1598 | |
1599 | /// Return an iterator adaptor that pads the sequence to a minimum length of |
1600 | /// `min` by filling missing elements using a closure `f`. |
1601 | /// |
1602 | /// Iterator element type is `Self::Item`. |
1603 | /// |
1604 | /// ``` |
1605 | /// use itertools::Itertools; |
1606 | /// |
1607 | /// let it = (0..5).pad_using(10, |i| 2*i); |
1608 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]); |
1609 | /// |
1610 | /// let it = (0..10).pad_using(5, |i| 2*i); |
1611 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); |
1612 | /// |
1613 | /// let it = (0..5).pad_using(10, |i| 2*i).rev(); |
1614 | /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]); |
1615 | /// ``` |
1616 | fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> |
1617 | where Self: Sized, |
1618 | F: FnMut(usize) -> Self::Item |
1619 | { |
1620 | pad_tail::pad_using(self, min, f) |
1621 | } |
1622 | |
1623 | /// Return an iterator adaptor that wraps each element in a `Position` to |
1624 | /// ease special-case handling of the first or last elements. |
1625 | /// |
1626 | /// Iterator element type is |
1627 | /// [`Position<Self::Item>`](Position) |
1628 | /// |
1629 | /// ``` |
1630 | /// use itertools::{Itertools, Position}; |
1631 | /// |
1632 | /// let it = (0..4).with_position(); |
1633 | /// itertools::assert_equal(it, |
1634 | /// vec![Position::First(0), |
1635 | /// Position::Middle(1), |
1636 | /// Position::Middle(2), |
1637 | /// Position::Last(3)]); |
1638 | /// |
1639 | /// let it = (0..1).with_position(); |
1640 | /// itertools::assert_equal(it, vec![Position::Only(0)]); |
1641 | /// ``` |
1642 | fn with_position(self) -> WithPosition<Self> |
1643 | where Self: Sized, |
1644 | { |
1645 | with_position::with_position(self) |
1646 | } |
1647 | |
1648 | /// Return an iterator adaptor that yields the indices of all elements |
1649 | /// satisfying a predicate, counted from the start of the iterator. |
1650 | /// |
1651 | /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`. |
1652 | /// |
1653 | /// ``` |
1654 | /// use itertools::Itertools; |
1655 | /// |
1656 | /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9]; |
1657 | /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]); |
1658 | /// |
1659 | /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]); |
1660 | /// ``` |
1661 | fn positions<P>(self, predicate: P) -> Positions<Self, P> |
1662 | where Self: Sized, |
1663 | P: FnMut(Self::Item) -> bool, |
1664 | { |
1665 | adaptors::positions(self, predicate) |
1666 | } |
1667 | |
1668 | /// Return an iterator adaptor that applies a mutating function |
1669 | /// to each element before yielding it. |
1670 | /// |
1671 | /// ``` |
1672 | /// use itertools::Itertools; |
1673 | /// |
1674 | /// let input = vec![vec![1], vec![3, 2, 1]]; |
1675 | /// let it = input.into_iter().update(|mut v| v.push(0)); |
1676 | /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]); |
1677 | /// ``` |
1678 | fn update<F>(self, updater: F) -> Update<Self, F> |
1679 | where Self: Sized, |
1680 | F: FnMut(&mut Self::Item), |
1681 | { |
1682 | adaptors::update(self, updater) |
1683 | } |
1684 | |
1685 | // non-adaptor methods |
1686 | /// Advances the iterator and returns the next items grouped in a tuple of |
1687 | /// a specific size (up to 12). |
1688 | /// |
1689 | /// If there are enough elements to be grouped in a tuple, then the tuple is |
1690 | /// returned inside `Some`, otherwise `None` is returned. |
1691 | /// |
1692 | /// ``` |
1693 | /// use itertools::Itertools; |
1694 | /// |
1695 | /// let mut iter = 1..5; |
1696 | /// |
1697 | /// assert_eq!(Some((1, 2)), iter.next_tuple()); |
1698 | /// ``` |
1699 | fn next_tuple<T>(&mut self) -> Option<T> |
1700 | where Self: Sized + Iterator<Item = T::Item>, |
1701 | T: traits::HomogeneousTuple |
1702 | { |
1703 | T::collect_from_iter_no_buf(self) |
1704 | } |
1705 | |
1706 | /// Collects all items from the iterator into a tuple of a specific size |
1707 | /// (up to 12). |
1708 | /// |
1709 | /// If the number of elements inside the iterator is **exactly** equal to |
1710 | /// the tuple size, then the tuple is returned inside `Some`, otherwise |
1711 | /// `None` is returned. |
1712 | /// |
1713 | /// ``` |
1714 | /// use itertools::Itertools; |
1715 | /// |
1716 | /// let iter = 1..3; |
1717 | /// |
1718 | /// if let Some((x, y)) = iter.collect_tuple() { |
1719 | /// assert_eq!((x, y), (1, 2)) |
1720 | /// } else { |
1721 | /// panic!("Expected two elements" ) |
1722 | /// } |
1723 | /// ``` |
1724 | fn collect_tuple<T>(mut self) -> Option<T> |
1725 | where Self: Sized + Iterator<Item = T::Item>, |
1726 | T: traits::HomogeneousTuple |
1727 | { |
1728 | match self.next_tuple() { |
1729 | elt @ Some(_) => match self.next() { |
1730 | Some(_) => None, |
1731 | None => elt, |
1732 | }, |
1733 | _ => None |
1734 | } |
1735 | } |
1736 | |
1737 | |
1738 | /// Find the position and value of the first element satisfying a predicate. |
1739 | /// |
1740 | /// The iterator is not advanced past the first element found. |
1741 | /// |
1742 | /// ``` |
1743 | /// use itertools::Itertools; |
1744 | /// |
1745 | /// let text = "Hα" ; |
1746 | /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α' ))); |
1747 | /// ``` |
1748 | fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)> |
1749 | where P: FnMut(&Self::Item) -> bool |
1750 | { |
1751 | for (index, elt) in self.enumerate() { |
1752 | if pred(&elt) { |
1753 | return Some((index, elt)); |
1754 | } |
1755 | } |
1756 | None |
1757 | } |
1758 | /// Find the value of the first element satisfying a predicate or return the last element, if any. |
1759 | /// |
1760 | /// The iterator is not advanced past the first element found. |
1761 | /// |
1762 | /// ``` |
1763 | /// use itertools::Itertools; |
1764 | /// |
1765 | /// let numbers = [1, 2, 3, 4]; |
1766 | /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 5), Some(&4)); |
1767 | /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 2), Some(&3)); |
1768 | /// assert_eq!(std::iter::empty::<i32>().find_or_last(|&x| x > 5), None); |
1769 | /// ``` |
1770 | fn find_or_last<P>(mut self, mut predicate: P) -> Option<Self::Item> |
1771 | where Self: Sized, |
1772 | P: FnMut(&Self::Item) -> bool, |
1773 | { |
1774 | let mut prev = None; |
1775 | self.find_map(|x| if predicate(&x) { Some(x) } else { prev = Some(x); None }) |
1776 | .or(prev) |
1777 | } |
1778 | /// Find the value of the first element satisfying a predicate or return the first element, if any. |
1779 | /// |
1780 | /// The iterator is not advanced past the first element found. |
1781 | /// |
1782 | /// ``` |
1783 | /// use itertools::Itertools; |
1784 | /// |
1785 | /// let numbers = [1, 2, 3, 4]; |
1786 | /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 5), Some(&1)); |
1787 | /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 2), Some(&3)); |
1788 | /// assert_eq!(std::iter::empty::<i32>().find_or_first(|&x| x > 5), None); |
1789 | /// ``` |
1790 | fn find_or_first<P>(mut self, mut predicate: P) -> Option<Self::Item> |
1791 | where Self: Sized, |
1792 | P: FnMut(&Self::Item) -> bool, |
1793 | { |
1794 | let first = self.next()?; |
1795 | Some(if predicate(&first) { |
1796 | first |
1797 | } else { |
1798 | self.find(|x| predicate(x)).unwrap_or(first) |
1799 | }) |
1800 | } |
1801 | /// Returns `true` if the given item is present in this iterator. |
1802 | /// |
1803 | /// This method is short-circuiting. If the given item is present in this |
1804 | /// iterator, this method will consume the iterator up-to-and-including |
1805 | /// the item. If the given item is not present in this iterator, the |
1806 | /// iterator will be exhausted. |
1807 | /// |
1808 | /// ``` |
1809 | /// use itertools::Itertools; |
1810 | /// |
1811 | /// #[derive(PartialEq, Debug)] |
1812 | /// enum Enum { A, B, C, D, E, } |
1813 | /// |
1814 | /// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter(); |
1815 | /// |
1816 | /// // search `iter` for `B` |
1817 | /// assert_eq!(iter.contains(&Enum::B), true); |
1818 | /// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`). |
1819 | /// assert_eq!(iter.next(), Some(Enum::C)); |
1820 | /// |
1821 | /// // search `iter` for `E` |
1822 | /// assert_eq!(iter.contains(&Enum::E), false); |
1823 | /// // `E` wasn't found, so `iter` is now exhausted |
1824 | /// assert_eq!(iter.next(), None); |
1825 | /// ``` |
1826 | fn contains<Q>(&mut self, query: &Q) -> bool |
1827 | where |
1828 | Self: Sized, |
1829 | Self::Item: Borrow<Q>, |
1830 | Q: PartialEq, |
1831 | { |
1832 | self.any(|x| x.borrow() == query) |
1833 | } |
1834 | |
1835 | /// Check whether all elements compare equal. |
1836 | /// |
1837 | /// Empty iterators are considered to have equal elements: |
1838 | /// |
1839 | /// ``` |
1840 | /// use itertools::Itertools; |
1841 | /// |
1842 | /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; |
1843 | /// assert!(!data.iter().all_equal()); |
1844 | /// assert!(data[0..3].iter().all_equal()); |
1845 | /// assert!(data[3..5].iter().all_equal()); |
1846 | /// assert!(data[5..8].iter().all_equal()); |
1847 | /// |
1848 | /// let data : Option<usize> = None; |
1849 | /// assert!(data.into_iter().all_equal()); |
1850 | /// ``` |
1851 | fn all_equal(&mut self) -> bool |
1852 | where Self: Sized, |
1853 | Self::Item: PartialEq, |
1854 | { |
1855 | match self.next() { |
1856 | None => true, |
1857 | Some(a) => self.all(|x| a == x), |
1858 | } |
1859 | } |
1860 | |
1861 | /// Check whether all elements are unique (non equal). |
1862 | /// |
1863 | /// Empty iterators are considered to have unique elements: |
1864 | /// |
1865 | /// ``` |
1866 | /// use itertools::Itertools; |
1867 | /// |
1868 | /// let data = vec![1, 2, 3, 4, 1, 5]; |
1869 | /// assert!(!data.iter().all_unique()); |
1870 | /// assert!(data[0..4].iter().all_unique()); |
1871 | /// assert!(data[1..6].iter().all_unique()); |
1872 | /// |
1873 | /// let data : Option<usize> = None; |
1874 | /// assert!(data.into_iter().all_unique()); |
1875 | /// ``` |
1876 | #[cfg (feature = "use_std" )] |
1877 | fn all_unique(&mut self) -> bool |
1878 | where Self: Sized, |
1879 | Self::Item: Eq + Hash |
1880 | { |
1881 | let mut used = HashSet::new(); |
1882 | self.all(move |elt| used.insert(elt)) |
1883 | } |
1884 | |
1885 | /// Consume the first `n` elements from the iterator eagerly, |
1886 | /// and return the same iterator again. |
1887 | /// |
1888 | /// It works similarly to *.skip(* `n` *)* except it is eager and |
1889 | /// preserves the iterator type. |
1890 | /// |
1891 | /// ``` |
1892 | /// use itertools::Itertools; |
1893 | /// |
1894 | /// let mut iter = "αβγ" .chars().dropping(2); |
1895 | /// itertools::assert_equal(iter, "γ" .chars()); |
1896 | /// ``` |
1897 | /// |
1898 | /// *Fusing notes: if the iterator is exhausted by dropping, |
1899 | /// the result of calling `.next()` again depends on the iterator implementation.* |
1900 | fn dropping(mut self, n: usize) -> Self |
1901 | where Self: Sized |
1902 | { |
1903 | if n > 0 { |
1904 | self.nth(n - 1); |
1905 | } |
1906 | self |
1907 | } |
1908 | |
1909 | /// Consume the last `n` elements from the iterator eagerly, |
1910 | /// and return the same iterator again. |
1911 | /// |
1912 | /// This is only possible on double ended iterators. `n` may be |
1913 | /// larger than the number of elements. |
1914 | /// |
1915 | /// Note: This method is eager, dropping the back elements immediately and |
1916 | /// preserves the iterator type. |
1917 | /// |
1918 | /// ``` |
1919 | /// use itertools::Itertools; |
1920 | /// |
1921 | /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1); |
1922 | /// itertools::assert_equal(init, vec![0, 3, 6]); |
1923 | /// ``` |
1924 | fn dropping_back(mut self, n: usize) -> Self |
1925 | where Self: Sized, |
1926 | Self: DoubleEndedIterator |
1927 | { |
1928 | if n > 0 { |
1929 | (&mut self).rev().nth(n - 1); |
1930 | } |
1931 | self |
1932 | } |
1933 | |
1934 | /// Run the closure `f` eagerly on each element of the iterator. |
1935 | /// |
1936 | /// Consumes the iterator until its end. |
1937 | /// |
1938 | /// ``` |
1939 | /// use std::sync::mpsc::channel; |
1940 | /// use itertools::Itertools; |
1941 | /// |
1942 | /// let (tx, rx) = channel(); |
1943 | /// |
1944 | /// // use .foreach() to apply a function to each value -- sending it |
1945 | /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } ); |
1946 | /// |
1947 | /// drop(tx); |
1948 | /// |
1949 | /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]); |
1950 | /// ``` |
1951 | #[deprecated (note="Use .for_each() instead" , since="0.8.0" )] |
1952 | fn foreach<F>(self, f: F) |
1953 | where F: FnMut(Self::Item), |
1954 | Self: Sized, |
1955 | { |
1956 | self.for_each(f); |
1957 | } |
1958 | |
1959 | /// Combine all an iterator's elements into one element by using [`Extend`]. |
1960 | /// |
1961 | /// This combinator will extend the first item with each of the rest of the |
1962 | /// items of the iterator. If the iterator is empty, the default value of |
1963 | /// `I::Item` is returned. |
1964 | /// |
1965 | /// ```rust |
1966 | /// use itertools::Itertools; |
1967 | /// |
1968 | /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]]; |
1969 | /// assert_eq!(input.into_iter().concat(), |
1970 | /// vec![1, 2, 3, 4, 5, 6]); |
1971 | /// ``` |
1972 | fn concat(self) -> Self::Item |
1973 | where Self: Sized, |
1974 | Self::Item: Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default |
1975 | { |
1976 | concat(self) |
1977 | } |
1978 | |
1979 | /// `.collect_vec()` is simply a type specialization of [`Iterator::collect`], |
1980 | /// for convenience. |
1981 | #[cfg (feature = "use_alloc" )] |
1982 | fn collect_vec(self) -> Vec<Self::Item> |
1983 | where Self: Sized |
1984 | { |
1985 | self.collect() |
1986 | } |
1987 | |
1988 | /// `.try_collect()` is more convenient way of writing |
1989 | /// `.collect::<Result<_, _>>()` |
1990 | /// |
1991 | /// # Example |
1992 | /// |
1993 | /// ``` |
1994 | /// use std::{fs, io}; |
1995 | /// use itertools::Itertools; |
1996 | /// |
1997 | /// fn process_dir_entries(entries: &[fs::DirEntry]) { |
1998 | /// // ... |
1999 | /// } |
2000 | /// |
2001 | /// fn do_stuff() -> std::io::Result<()> { |
2002 | /// let entries: Vec<_> = fs::read_dir("." )?.try_collect()?; |
2003 | /// process_dir_entries(&entries); |
2004 | /// |
2005 | /// Ok(()) |
2006 | /// } |
2007 | /// ``` |
2008 | #[cfg (feature = "use_alloc" )] |
2009 | fn try_collect<T, U, E>(self) -> Result<U, E> |
2010 | where |
2011 | Self: Sized + Iterator<Item = Result<T, E>>, |
2012 | Result<U, E>: FromIterator<Result<T, E>>, |
2013 | { |
2014 | self.collect() |
2015 | } |
2016 | |
2017 | /// Assign to each reference in `self` from the `from` iterator, |
2018 | /// stopping at the shortest of the two iterators. |
2019 | /// |
2020 | /// The `from` iterator is queried for its next element before the `self` |
2021 | /// iterator, and if either is exhausted the method is done. |
2022 | /// |
2023 | /// Return the number of elements written. |
2024 | /// |
2025 | /// ``` |
2026 | /// use itertools::Itertools; |
2027 | /// |
2028 | /// let mut xs = [0; 4]; |
2029 | /// xs.iter_mut().set_from(1..); |
2030 | /// assert_eq!(xs, [1, 2, 3, 4]); |
2031 | /// ``` |
2032 | #[inline ] |
2033 | fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize |
2034 | where Self: Iterator<Item = &'a mut A>, |
2035 | J: IntoIterator<Item = A> |
2036 | { |
2037 | let mut count = 0; |
2038 | for elt in from { |
2039 | match self.next() { |
2040 | None => break, |
2041 | Some(ptr) => *ptr = elt, |
2042 | } |
2043 | count += 1; |
2044 | } |
2045 | count |
2046 | } |
2047 | |
2048 | /// Combine all iterator elements into one String, separated by `sep`. |
2049 | /// |
2050 | /// Use the `Display` implementation of each element. |
2051 | /// |
2052 | /// ``` |
2053 | /// use itertools::Itertools; |
2054 | /// |
2055 | /// assert_eq!(["a" , "b" , "c" ].iter().join(", " ), "a, b, c" ); |
2056 | /// assert_eq!([1, 2, 3].iter().join(", " ), "1, 2, 3" ); |
2057 | /// ``` |
2058 | #[cfg (feature = "use_alloc" )] |
2059 | fn join(&mut self, sep: &str) -> String |
2060 | where Self::Item: std::fmt::Display |
2061 | { |
2062 | match self.next() { |
2063 | None => String::new(), |
2064 | Some(first_elt) => { |
2065 | // estimate lower bound of capacity needed |
2066 | let (lower, _) = self.size_hint(); |
2067 | let mut result = String::with_capacity(sep.len() * lower); |
2068 | write!(&mut result, "{}" , first_elt).unwrap(); |
2069 | self.for_each(|elt| { |
2070 | result.push_str(sep); |
2071 | write!(&mut result, "{}" , elt).unwrap(); |
2072 | }); |
2073 | result |
2074 | } |
2075 | } |
2076 | } |
2077 | |
2078 | /// Format all iterator elements, separated by `sep`. |
2079 | /// |
2080 | /// All elements are formatted (any formatting trait) |
2081 | /// with `sep` inserted between each element. |
2082 | /// |
2083 | /// **Panics** if the formatter helper is formatted more than once. |
2084 | /// |
2085 | /// ``` |
2086 | /// use itertools::Itertools; |
2087 | /// |
2088 | /// let data = [1.1, 2.71828, -3.]; |
2089 | /// assert_eq!( |
2090 | /// format!("{:.2}" , data.iter().format(", " )), |
2091 | /// "1.10, 2.72, -3.00" ); |
2092 | /// ``` |
2093 | fn format(self, sep: &str) -> Format<Self> |
2094 | where Self: Sized, |
2095 | { |
2096 | format::new_format_default(self, sep) |
2097 | } |
2098 | |
2099 | /// Format all iterator elements, separated by `sep`. |
2100 | /// |
2101 | /// This is a customizable version of [`.format()`](Itertools::format). |
2102 | /// |
2103 | /// The supplied closure `format` is called once per iterator element, |
2104 | /// with two arguments: the element and a callback that takes a |
2105 | /// `&Display` value, i.e. any reference to type that implements `Display`. |
2106 | /// |
2107 | /// Using `&format_args!(...)` is the most versatile way to apply custom |
2108 | /// element formatting. The callback can be called multiple times if needed. |
2109 | /// |
2110 | /// **Panics** if the formatter helper is formatted more than once. |
2111 | /// |
2112 | /// ``` |
2113 | /// use itertools::Itertools; |
2114 | /// |
2115 | /// let data = [1.1, 2.71828, -3.]; |
2116 | /// let data_formatter = data.iter().format_with(", " , |elt, f| f(&format_args!("{:.2}" , elt))); |
2117 | /// assert_eq!(format!("{}" , data_formatter), |
2118 | /// "1.10, 2.72, -3.00" ); |
2119 | /// |
2120 | /// // .format_with() is recursively composable |
2121 | /// let matrix = [[1., 2., 3.], |
2122 | /// [4., 5., 6.]]; |
2123 | /// let matrix_formatter = matrix.iter().format_with(" \n" , |row, f| { |
2124 | /// f(&row.iter().format_with(", " , |elt, g| g(&elt))) |
2125 | /// }); |
2126 | /// assert_eq!(format!("{}" , matrix_formatter), |
2127 | /// "1, 2, 3 \n4, 5, 6" ); |
2128 | /// |
2129 | /// |
2130 | /// ``` |
2131 | fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F> |
2132 | where Self: Sized, |
2133 | F: FnMut(Self::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result, |
2134 | { |
2135 | format::new_format(self, sep, format) |
2136 | } |
2137 | |
2138 | /// See [`.fold_ok()`](Itertools::fold_ok). |
2139 | #[deprecated (note="Use .fold_ok() instead" , since="0.10.0" )] |
2140 | fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E> |
2141 | where Self: Iterator<Item = Result<A, E>>, |
2142 | F: FnMut(B, A) -> B |
2143 | { |
2144 | self.fold_ok(start, f) |
2145 | } |
2146 | |
2147 | /// Fold `Result` values from an iterator. |
2148 | /// |
2149 | /// Only `Ok` values are folded. If no error is encountered, the folded |
2150 | /// value is returned inside `Ok`. Otherwise, the operation terminates |
2151 | /// and returns the first `Err` value it encounters. No iterator elements are |
2152 | /// consumed after the first error. |
2153 | /// |
2154 | /// The first accumulator value is the `start` parameter. |
2155 | /// Each iteration passes the accumulator value and the next value inside `Ok` |
2156 | /// to the fold function `f` and its return value becomes the new accumulator value. |
2157 | /// |
2158 | /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a |
2159 | /// computation like this: |
2160 | /// |
2161 | /// ```ignore |
2162 | /// let mut accum = start; |
2163 | /// accum = f(accum, 1); |
2164 | /// accum = f(accum, 2); |
2165 | /// accum = f(accum, 3); |
2166 | /// ``` |
2167 | /// |
2168 | /// With a `start` value of 0 and an addition as folding function, |
2169 | /// this effectively results in *((0 + 1) + 2) + 3* |
2170 | /// |
2171 | /// ``` |
2172 | /// use std::ops::Add; |
2173 | /// use itertools::Itertools; |
2174 | /// |
2175 | /// let values = [1, 2, -2, -1, 2, 1]; |
2176 | /// assert_eq!( |
2177 | /// values.iter() |
2178 | /// .map(Ok::<_, ()>) |
2179 | /// .fold_ok(0, Add::add), |
2180 | /// Ok(3) |
2181 | /// ); |
2182 | /// assert!( |
2183 | /// values.iter() |
2184 | /// .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number" ) }) |
2185 | /// .fold_ok(0, Add::add) |
2186 | /// .is_err() |
2187 | /// ); |
2188 | /// ``` |
2189 | fn fold_ok<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E> |
2190 | where Self: Iterator<Item = Result<A, E>>, |
2191 | F: FnMut(B, A) -> B |
2192 | { |
2193 | for elt in self { |
2194 | match elt { |
2195 | Ok(v) => start = f(start, v), |
2196 | Err(u) => return Err(u), |
2197 | } |
2198 | } |
2199 | Ok(start) |
2200 | } |
2201 | |
2202 | /// Fold `Option` values from an iterator. |
2203 | /// |
2204 | /// Only `Some` values are folded. If no `None` is encountered, the folded |
2205 | /// value is returned inside `Some`. Otherwise, the operation terminates |
2206 | /// and returns `None`. No iterator elements are consumed after the `None`. |
2207 | /// |
2208 | /// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok). |
2209 | /// |
2210 | /// ``` |
2211 | /// use std::ops::Add; |
2212 | /// use itertools::Itertools; |
2213 | /// |
2214 | /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter(); |
2215 | /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2)); |
2216 | /// |
2217 | /// let mut more_values = vec![Some(2), None, Some(0)].into_iter(); |
2218 | /// assert!(more_values.fold_options(0, Add::add).is_none()); |
2219 | /// assert_eq!(more_values.next().unwrap(), Some(0)); |
2220 | /// ``` |
2221 | fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B> |
2222 | where Self: Iterator<Item = Option<A>>, |
2223 | F: FnMut(B, A) -> B |
2224 | { |
2225 | for elt in self { |
2226 | match elt { |
2227 | Some(v) => start = f(start, v), |
2228 | None => return None, |
2229 | } |
2230 | } |
2231 | Some(start) |
2232 | } |
2233 | |
2234 | /// Accumulator of the elements in the iterator. |
2235 | /// |
2236 | /// Like `.fold()`, without a base case. If the iterator is |
2237 | /// empty, return `None`. With just one element, return it. |
2238 | /// Otherwise elements are accumulated in sequence using the closure `f`. |
2239 | /// |
2240 | /// ``` |
2241 | /// use itertools::Itertools; |
2242 | /// |
2243 | /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45); |
2244 | /// assert_eq!((0..0).fold1(|x, y| x * y), None); |
2245 | /// ``` |
2246 | #[deprecated (since = "0.10.2" , note = "Use `Iterator::reduce` instead" )] |
2247 | fn fold1<F>(mut self, f: F) -> Option<Self::Item> |
2248 | where F: FnMut(Self::Item, Self::Item) -> Self::Item, |
2249 | Self: Sized, |
2250 | { |
2251 | self.next().map(move |x| self.fold(x, f)) |
2252 | } |
2253 | |
2254 | /// Accumulate the elements in the iterator in a tree-like manner. |
2255 | /// |
2256 | /// You can think of it as, while there's more than one item, repeatedly |
2257 | /// combining adjacent items. It does so in bottom-up-merge-sort order, |
2258 | /// however, so that it needs only logarithmic stack space. |
2259 | /// |
2260 | /// This produces a call tree like the following (where the calls under |
2261 | /// an item are done after reading that item): |
2262 | /// |
2263 | /// ```text |
2264 | /// 1 2 3 4 5 6 7 |
2265 | /// │ │ │ │ │ │ │ |
2266 | /// └─f └─f └─f │ |
2267 | /// │ │ │ │ |
2268 | /// └───f └─f |
2269 | /// │ │ |
2270 | /// └─────f |
2271 | /// ``` |
2272 | /// |
2273 | /// Which, for non-associative functions, will typically produce a different |
2274 | /// result than the linear call tree used by [`Iterator::reduce`]: |
2275 | /// |
2276 | /// ```text |
2277 | /// 1 2 3 4 5 6 7 |
2278 | /// │ │ │ │ │ │ │ |
2279 | /// └─f─f─f─f─f─f |
2280 | /// ``` |
2281 | /// |
2282 | /// If `f` is associative, prefer the normal [`Iterator::reduce`] instead. |
2283 | /// |
2284 | /// ``` |
2285 | /// use itertools::Itertools; |
2286 | /// |
2287 | /// // The same tree as above |
2288 | /// let num_strings = (1..8).map(|x| x.to_string()); |
2289 | /// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})" , x, y)), |
2290 | /// Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))" ))); |
2291 | /// |
2292 | /// // Like fold1, an empty iterator produces None |
2293 | /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None); |
2294 | /// |
2295 | /// // tree_fold1 matches fold1 for associative operations... |
2296 | /// assert_eq!((0..10).tree_fold1(|x, y| x + y), |
2297 | /// (0..10).fold1(|x, y| x + y)); |
2298 | /// // ...but not for non-associative ones |
2299 | /// assert_ne!((0..10).tree_fold1(|x, y| x - y), |
2300 | /// (0..10).fold1(|x, y| x - y)); |
2301 | /// ``` |
2302 | fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item> |
2303 | where F: FnMut(Self::Item, Self::Item) -> Self::Item, |
2304 | Self: Sized, |
2305 | { |
2306 | type State<T> = Result<T, Option<T>>; |
2307 | |
2308 | fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T> |
2309 | where |
2310 | II: Iterator<Item = T>, |
2311 | FF: FnMut(T, T) -> T |
2312 | { |
2313 | // This function could be replaced with `it.next().ok_or(None)`, |
2314 | // but half the useful tree_fold1 work is combining adjacent items, |
2315 | // so put that in a form that LLVM is more likely to optimize well. |
2316 | |
2317 | let a = |
2318 | if let Some(v) = it.next() { v } |
2319 | else { return Err(None) }; |
2320 | let b = |
2321 | if let Some(v) = it.next() { v } |
2322 | else { return Err(Some(a)) }; |
2323 | Ok(f(a, b)) |
2324 | } |
2325 | |
2326 | fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T> |
2327 | where |
2328 | II: Iterator<Item = T>, |
2329 | FF: FnMut(T, T) -> T |
2330 | { |
2331 | let mut x = inner0(it, f)?; |
2332 | for height in 0..stop { |
2333 | // Try to get another tree the same size with which to combine it, |
2334 | // creating a new tree that's twice as big for next time around. |
2335 | let next = |
2336 | if height == 0 { |
2337 | inner0(it, f) |
2338 | } else { |
2339 | inner(height, it, f) |
2340 | }; |
2341 | match next { |
2342 | Ok(y) => x = f(x, y), |
2343 | |
2344 | // If we ran out of items, combine whatever we did manage |
2345 | // to get. It's better combined with the current value |
2346 | // than something in a parent frame, because the tree in |
2347 | // the parent is always as least as big as this one. |
2348 | Err(None) => return Err(Some(x)), |
2349 | Err(Some(y)) => return Err(Some(f(x, y))), |
2350 | } |
2351 | } |
2352 | Ok(x) |
2353 | } |
2354 | |
2355 | match inner(usize::max_value(), &mut self, &mut f) { |
2356 | Err(x) => x, |
2357 | _ => unreachable!(), |
2358 | } |
2359 | } |
2360 | |
2361 | /// An iterator method that applies a function, producing a single, final value. |
2362 | /// |
2363 | /// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for |
2364 | /// early exit via short-circuiting. |
2365 | /// |
2366 | /// ``` |
2367 | /// use itertools::Itertools; |
2368 | /// use itertools::FoldWhile::{Continue, Done}; |
2369 | /// |
2370 | /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2371 | /// |
2372 | /// let mut result = 0; |
2373 | /// |
2374 | /// // for loop: |
2375 | /// for i in &numbers { |
2376 | /// if *i > 5 { |
2377 | /// break; |
2378 | /// } |
2379 | /// result = result + i; |
2380 | /// } |
2381 | /// |
2382 | /// // fold: |
2383 | /// let result2 = numbers.iter().fold(0, |acc, x| { |
2384 | /// if *x > 5 { acc } else { acc + x } |
2385 | /// }); |
2386 | /// |
2387 | /// // fold_while: |
2388 | /// let result3 = numbers.iter().fold_while(0, |acc, x| { |
2389 | /// if *x > 5 { Done(acc) } else { Continue(acc + x) } |
2390 | /// }).into_inner(); |
2391 | /// |
2392 | /// // they're the same |
2393 | /// assert_eq!(result, result2); |
2394 | /// assert_eq!(result2, result3); |
2395 | /// ``` |
2396 | /// |
2397 | /// The big difference between the computations of `result2` and `result3` is that while |
2398 | /// `fold()` called the provided closure for every item of the callee iterator, |
2399 | /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`. |
2400 | fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B> |
2401 | where Self: Sized, |
2402 | F: FnMut(B, Self::Item) -> FoldWhile<B> |
2403 | { |
2404 | use Result::{ |
2405 | Ok as Continue, |
2406 | Err as Break, |
2407 | }; |
2408 | |
2409 | let result = self.try_fold(init, #[inline (always)] |acc, v| |
2410 | match f(acc, v) { |
2411 | FoldWhile::Continue(acc) => Continue(acc), |
2412 | FoldWhile::Done(acc) => Break(acc), |
2413 | } |
2414 | ); |
2415 | |
2416 | match result { |
2417 | Continue(acc) => FoldWhile::Continue(acc), |
2418 | Break(acc) => FoldWhile::Done(acc), |
2419 | } |
2420 | } |
2421 | |
2422 | /// Iterate over the entire iterator and add all the elements. |
2423 | /// |
2424 | /// An empty iterator returns `None`, otherwise `Some(sum)`. |
2425 | /// |
2426 | /// # Panics |
2427 | /// |
2428 | /// When calling `sum1()` and a primitive integer type is being returned, this |
2429 | /// method will panic if the computation overflows and debug assertions are |
2430 | /// enabled. |
2431 | /// |
2432 | /// # Examples |
2433 | /// |
2434 | /// ``` |
2435 | /// use itertools::Itertools; |
2436 | /// |
2437 | /// let empty_sum = (1..1).sum1::<i32>(); |
2438 | /// assert_eq!(empty_sum, None); |
2439 | /// |
2440 | /// let nonempty_sum = (1..11).sum1::<i32>(); |
2441 | /// assert_eq!(nonempty_sum, Some(55)); |
2442 | /// ``` |
2443 | fn sum1<S>(mut self) -> Option<S> |
2444 | where Self: Sized, |
2445 | S: std::iter::Sum<Self::Item>, |
2446 | { |
2447 | self.next() |
2448 | .map(|first| once(first).chain(self).sum()) |
2449 | } |
2450 | |
2451 | /// Iterate over the entire iterator and multiply all the elements. |
2452 | /// |
2453 | /// An empty iterator returns `None`, otherwise `Some(product)`. |
2454 | /// |
2455 | /// # Panics |
2456 | /// |
2457 | /// When calling `product1()` and a primitive integer type is being returned, |
2458 | /// method will panic if the computation overflows and debug assertions are |
2459 | /// enabled. |
2460 | /// |
2461 | /// # Examples |
2462 | /// ``` |
2463 | /// use itertools::Itertools; |
2464 | /// |
2465 | /// let empty_product = (1..1).product1::<i32>(); |
2466 | /// assert_eq!(empty_product, None); |
2467 | /// |
2468 | /// let nonempty_product = (1..11).product1::<i32>(); |
2469 | /// assert_eq!(nonempty_product, Some(3628800)); |
2470 | /// ``` |
2471 | fn product1<P>(mut self) -> Option<P> |
2472 | where Self: Sized, |
2473 | P: std::iter::Product<Self::Item>, |
2474 | { |
2475 | self.next() |
2476 | .map(|first| once(first).chain(self).product()) |
2477 | } |
2478 | |
2479 | /// Sort all iterator elements into a new iterator in ascending order. |
2480 | /// |
2481 | /// **Note:** This consumes the entire iterator, uses the |
2482 | /// [`slice::sort_unstable`] method and returns the result as a new |
2483 | /// iterator that owns its elements. |
2484 | /// |
2485 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2486 | /// without any extra copying or allocation cost. |
2487 | /// |
2488 | /// ``` |
2489 | /// use itertools::Itertools; |
2490 | /// |
2491 | /// // sort the letters of the text in ascending order |
2492 | /// let text = "bdacfe" ; |
2493 | /// itertools::assert_equal(text.chars().sorted_unstable(), |
2494 | /// "abcdef" .chars()); |
2495 | /// ``` |
2496 | #[cfg (feature = "use_alloc" )] |
2497 | fn sorted_unstable(self) -> VecIntoIter<Self::Item> |
2498 | where Self: Sized, |
2499 | Self::Item: Ord |
2500 | { |
2501 | // Use .sort_unstable() directly since it is not quite identical with |
2502 | // .sort_by(Ord::cmp) |
2503 | let mut v = Vec::from_iter(self); |
2504 | v.sort_unstable(); |
2505 | v.into_iter() |
2506 | } |
2507 | |
2508 | /// Sort all iterator elements into a new iterator in ascending order. |
2509 | /// |
2510 | /// **Note:** This consumes the entire iterator, uses the |
2511 | /// [`slice::sort_unstable_by`] method and returns the result as a new |
2512 | /// iterator that owns its elements. |
2513 | /// |
2514 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2515 | /// without any extra copying or allocation cost. |
2516 | /// |
2517 | /// ``` |
2518 | /// use itertools::Itertools; |
2519 | /// |
2520 | /// // sort people in descending order by age |
2521 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2522 | /// |
2523 | /// let oldest_people_first = people |
2524 | /// .into_iter() |
2525 | /// .sorted_unstable_by(|a, b| Ord::cmp(&b.1, &a.1)) |
2526 | /// .map(|(person, _age)| person); |
2527 | /// |
2528 | /// itertools::assert_equal(oldest_people_first, |
2529 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2530 | /// ``` |
2531 | #[cfg (feature = "use_alloc" )] |
2532 | fn sorted_unstable_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> |
2533 | where Self: Sized, |
2534 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
2535 | { |
2536 | let mut v = Vec::from_iter(self); |
2537 | v.sort_unstable_by(cmp); |
2538 | v.into_iter() |
2539 | } |
2540 | |
2541 | /// Sort all iterator elements into a new iterator in ascending order. |
2542 | /// |
2543 | /// **Note:** This consumes the entire iterator, uses the |
2544 | /// [`slice::sort_unstable_by_key`] method and returns the result as a new |
2545 | /// iterator that owns its elements. |
2546 | /// |
2547 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2548 | /// without any extra copying or allocation cost. |
2549 | /// |
2550 | /// ``` |
2551 | /// use itertools::Itertools; |
2552 | /// |
2553 | /// // sort people in descending order by age |
2554 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2555 | /// |
2556 | /// let oldest_people_first = people |
2557 | /// .into_iter() |
2558 | /// .sorted_unstable_by_key(|x| -x.1) |
2559 | /// .map(|(person, _age)| person); |
2560 | /// |
2561 | /// itertools::assert_equal(oldest_people_first, |
2562 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2563 | /// ``` |
2564 | #[cfg (feature = "use_alloc" )] |
2565 | fn sorted_unstable_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2566 | where Self: Sized, |
2567 | K: Ord, |
2568 | F: FnMut(&Self::Item) -> K, |
2569 | { |
2570 | let mut v = Vec::from_iter(self); |
2571 | v.sort_unstable_by_key(f); |
2572 | v.into_iter() |
2573 | } |
2574 | |
2575 | /// Sort all iterator elements into a new iterator in ascending order. |
2576 | /// |
2577 | /// **Note:** This consumes the entire iterator, uses the |
2578 | /// [`slice::sort`] method and returns the result as a new |
2579 | /// iterator that owns its elements. |
2580 | /// |
2581 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2582 | /// without any extra copying or allocation cost. |
2583 | /// |
2584 | /// ``` |
2585 | /// use itertools::Itertools; |
2586 | /// |
2587 | /// // sort the letters of the text in ascending order |
2588 | /// let text = "bdacfe" ; |
2589 | /// itertools::assert_equal(text.chars().sorted(), |
2590 | /// "abcdef" .chars()); |
2591 | /// ``` |
2592 | #[cfg (feature = "use_alloc" )] |
2593 | fn sorted(self) -> VecIntoIter<Self::Item> |
2594 | where Self: Sized, |
2595 | Self::Item: Ord |
2596 | { |
2597 | // Use .sort() directly since it is not quite identical with |
2598 | // .sort_by(Ord::cmp) |
2599 | let mut v = Vec::from_iter(self); |
2600 | v.sort(); |
2601 | v.into_iter() |
2602 | } |
2603 | |
2604 | /// Sort all iterator elements into a new iterator in ascending order. |
2605 | /// |
2606 | /// **Note:** This consumes the entire iterator, uses the |
2607 | /// [`slice::sort_by`] method and returns the result as a new |
2608 | /// iterator that owns its elements. |
2609 | /// |
2610 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2611 | /// without any extra copying or allocation cost. |
2612 | /// |
2613 | /// ``` |
2614 | /// use itertools::Itertools; |
2615 | /// |
2616 | /// // sort people in descending order by age |
2617 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2618 | /// |
2619 | /// let oldest_people_first = people |
2620 | /// .into_iter() |
2621 | /// .sorted_by(|a, b| Ord::cmp(&b.1, &a.1)) |
2622 | /// .map(|(person, _age)| person); |
2623 | /// |
2624 | /// itertools::assert_equal(oldest_people_first, |
2625 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2626 | /// ``` |
2627 | #[cfg (feature = "use_alloc" )] |
2628 | fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> |
2629 | where Self: Sized, |
2630 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
2631 | { |
2632 | let mut v = Vec::from_iter(self); |
2633 | v.sort_by(cmp); |
2634 | v.into_iter() |
2635 | } |
2636 | |
2637 | /// Sort all iterator elements into a new iterator in ascending order. |
2638 | /// |
2639 | /// **Note:** This consumes the entire iterator, uses the |
2640 | /// [`slice::sort_by_key`] method and returns the result as a new |
2641 | /// iterator that owns its elements. |
2642 | /// |
2643 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2644 | /// without any extra copying or allocation cost. |
2645 | /// |
2646 | /// ``` |
2647 | /// use itertools::Itertools; |
2648 | /// |
2649 | /// // sort people in descending order by age |
2650 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2651 | /// |
2652 | /// let oldest_people_first = people |
2653 | /// .into_iter() |
2654 | /// .sorted_by_key(|x| -x.1) |
2655 | /// .map(|(person, _age)| person); |
2656 | /// |
2657 | /// itertools::assert_equal(oldest_people_first, |
2658 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2659 | /// ``` |
2660 | #[cfg (feature = "use_alloc" )] |
2661 | fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2662 | where Self: Sized, |
2663 | K: Ord, |
2664 | F: FnMut(&Self::Item) -> K, |
2665 | { |
2666 | let mut v = Vec::from_iter(self); |
2667 | v.sort_by_key(f); |
2668 | v.into_iter() |
2669 | } |
2670 | |
2671 | /// Sort all iterator elements into a new iterator in ascending order. The key function is |
2672 | /// called exactly once per key. |
2673 | /// |
2674 | /// **Note:** This consumes the entire iterator, uses the |
2675 | /// [`slice::sort_by_cached_key`] method and returns the result as a new |
2676 | /// iterator that owns its elements. |
2677 | /// |
2678 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2679 | /// without any extra copying or allocation cost. |
2680 | /// |
2681 | /// ``` |
2682 | /// use itertools::Itertools; |
2683 | /// |
2684 | /// // sort people in descending order by age |
2685 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2686 | /// |
2687 | /// let oldest_people_first = people |
2688 | /// .into_iter() |
2689 | /// .sorted_by_cached_key(|x| -x.1) |
2690 | /// .map(|(person, _age)| person); |
2691 | /// |
2692 | /// itertools::assert_equal(oldest_people_first, |
2693 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2694 | /// ``` |
2695 | #[cfg (feature = "use_alloc" )] |
2696 | fn sorted_by_cached_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2697 | where |
2698 | Self: Sized, |
2699 | K: Ord, |
2700 | F: FnMut(&Self::Item) -> K, |
2701 | { |
2702 | let mut v = Vec::from_iter(self); |
2703 | v.sort_by_cached_key(f); |
2704 | v.into_iter() |
2705 | } |
2706 | |
2707 | /// Sort the k smallest elements into a new iterator, in ascending order. |
2708 | /// |
2709 | /// **Note:** This consumes the entire iterator, and returns the result |
2710 | /// as a new iterator that owns its elements. If the input contains |
2711 | /// less than k elements, the result is equivalent to `self.sorted()`. |
2712 | /// |
2713 | /// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory |
2714 | /// and `O(n log k)` time, with `n` the number of elements in the input. |
2715 | /// |
2716 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2717 | /// without any extra copying or allocation cost. |
2718 | /// |
2719 | /// **Note:** This is functionally-equivalent to `self.sorted().take(k)` |
2720 | /// but much more efficient. |
2721 | /// |
2722 | /// ``` |
2723 | /// use itertools::Itertools; |
2724 | /// |
2725 | /// // A random permutation of 0..15 |
2726 | /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; |
2727 | /// |
2728 | /// let five_smallest = numbers |
2729 | /// .into_iter() |
2730 | /// .k_smallest(5); |
2731 | /// |
2732 | /// itertools::assert_equal(five_smallest, 0..5); |
2733 | /// ``` |
2734 | #[cfg (feature = "use_alloc" )] |
2735 | fn k_smallest(self, k: usize) -> VecIntoIter<Self::Item> |
2736 | where Self: Sized, |
2737 | Self::Item: Ord |
2738 | { |
2739 | crate::k_smallest::k_smallest(self, k) |
2740 | .into_sorted_vec() |
2741 | .into_iter() |
2742 | } |
2743 | |
2744 | /// Collect all iterator elements into one of two |
2745 | /// partitions. Unlike [`Iterator::partition`], each partition may |
2746 | /// have a distinct type. |
2747 | /// |
2748 | /// ``` |
2749 | /// use itertools::{Itertools, Either}; |
2750 | /// |
2751 | /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; |
2752 | /// |
2753 | /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures |
2754 | /// .into_iter() |
2755 | /// .partition_map(|r| { |
2756 | /// match r { |
2757 | /// Ok(v) => Either::Left(v), |
2758 | /// Err(v) => Either::Right(v), |
2759 | /// } |
2760 | /// }); |
2761 | /// |
2762 | /// assert_eq!(successes, [1, 2]); |
2763 | /// assert_eq!(failures, [false, true]); |
2764 | /// ``` |
2765 | fn partition_map<A, B, F, L, R>(self, mut predicate: F) -> (A, B) |
2766 | where Self: Sized, |
2767 | F: FnMut(Self::Item) -> Either<L, R>, |
2768 | A: Default + Extend<L>, |
2769 | B: Default + Extend<R>, |
2770 | { |
2771 | let mut left = A::default(); |
2772 | let mut right = B::default(); |
2773 | |
2774 | self.for_each(|val| match predicate(val) { |
2775 | Either::Left(v) => left.extend(Some(v)), |
2776 | Either::Right(v) => right.extend(Some(v)), |
2777 | }); |
2778 | |
2779 | (left, right) |
2780 | } |
2781 | |
2782 | /// Partition a sequence of `Result`s into one list of all the `Ok` elements |
2783 | /// and another list of all the `Err` elements. |
2784 | /// |
2785 | /// ``` |
2786 | /// use itertools::Itertools; |
2787 | /// |
2788 | /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; |
2789 | /// |
2790 | /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures |
2791 | /// .into_iter() |
2792 | /// .partition_result(); |
2793 | /// |
2794 | /// assert_eq!(successes, [1, 2]); |
2795 | /// assert_eq!(failures, [false, true]); |
2796 | /// ``` |
2797 | fn partition_result<A, B, T, E>(self) -> (A, B) |
2798 | where |
2799 | Self: Iterator<Item = Result<T, E>> + Sized, |
2800 | A: Default + Extend<T>, |
2801 | B: Default + Extend<E>, |
2802 | { |
2803 | self.partition_map(|r| match r { |
2804 | Ok(v) => Either::Left(v), |
2805 | Err(v) => Either::Right(v), |
2806 | }) |
2807 | } |
2808 | |
2809 | /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values |
2810 | /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator. |
2811 | /// |
2812 | /// Essentially a shorthand for `.into_grouping_map().collect::<Vec<_>>()`. |
2813 | /// |
2814 | /// ``` |
2815 | /// use itertools::Itertools; |
2816 | /// |
2817 | /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; |
2818 | /// let lookup = data.into_iter().into_group_map(); |
2819 | /// |
2820 | /// assert_eq!(lookup[&0], vec![10, 20]); |
2821 | /// assert_eq!(lookup.get(&1), None); |
2822 | /// assert_eq!(lookup[&2], vec![12, 42]); |
2823 | /// assert_eq!(lookup[&3], vec![13, 33]); |
2824 | /// ``` |
2825 | #[cfg (feature = "use_std" )] |
2826 | fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>> |
2827 | where Self: Iterator<Item=(K, V)> + Sized, |
2828 | K: Hash + Eq, |
2829 | { |
2830 | group_map::into_group_map(self) |
2831 | } |
2832 | |
2833 | /// Return an `Iterator` on a `HashMap`. Keys mapped to `Vec`s of values. The key is specified |
2834 | /// in the closure. |
2835 | /// |
2836 | /// Essentially a shorthand for `.into_grouping_map_by(f).collect::<Vec<_>>()`. |
2837 | /// |
2838 | /// ``` |
2839 | /// use itertools::Itertools; |
2840 | /// use std::collections::HashMap; |
2841 | /// |
2842 | /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; |
2843 | /// let lookup: HashMap<u32,Vec<(u32, u32)>> = |
2844 | /// data.clone().into_iter().into_group_map_by(|a| a.0); |
2845 | /// |
2846 | /// assert_eq!(lookup[&0], vec![(0,10),(0,20)]); |
2847 | /// assert_eq!(lookup.get(&1), None); |
2848 | /// assert_eq!(lookup[&2], vec![(2,12), (2,42)]); |
2849 | /// assert_eq!(lookup[&3], vec![(3,13), (3,33)]); |
2850 | /// |
2851 | /// assert_eq!( |
2852 | /// data.into_iter() |
2853 | /// .into_group_map_by(|x| x.0) |
2854 | /// .into_iter() |
2855 | /// .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v ))) |
2856 | /// .collect::<HashMap<u32,u32>>()[&0], |
2857 | /// 30, |
2858 | /// ); |
2859 | /// ``` |
2860 | #[cfg (feature = "use_std" )] |
2861 | fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>> |
2862 | where |
2863 | Self: Iterator<Item=V> + Sized, |
2864 | K: Hash + Eq, |
2865 | F: Fn(&V) -> K, |
2866 | { |
2867 | group_map::into_group_map_by(self, f) |
2868 | } |
2869 | |
2870 | /// Constructs a `GroupingMap` to be used later with one of the efficient |
2871 | /// group-and-fold operations it allows to perform. |
2872 | /// |
2873 | /// The input iterator must yield item in the form of `(K, V)` where the |
2874 | /// value of type `K` will be used as key to identify the groups and the |
2875 | /// value of type `V` as value for the folding operation. |
2876 | /// |
2877 | /// See [`GroupingMap`] for more informations |
2878 | /// on what operations are available. |
2879 | #[cfg (feature = "use_std" )] |
2880 | fn into_grouping_map<K, V>(self) -> GroupingMap<Self> |
2881 | where Self: Iterator<Item=(K, V)> + Sized, |
2882 | K: Hash + Eq, |
2883 | { |
2884 | grouping_map::new(self) |
2885 | } |
2886 | |
2887 | /// Constructs a `GroupingMap` to be used later with one of the efficient |
2888 | /// group-and-fold operations it allows to perform. |
2889 | /// |
2890 | /// The values from this iterator will be used as values for the folding operation |
2891 | /// while the keys will be obtained from the values by calling `key_mapper`. |
2892 | /// |
2893 | /// See [`GroupingMap`] for more informations |
2894 | /// on what operations are available. |
2895 | #[cfg (feature = "use_std" )] |
2896 | fn into_grouping_map_by<K, V, F>(self, key_mapper: F) -> GroupingMapBy<Self, F> |
2897 | where Self: Iterator<Item=V> + Sized, |
2898 | K: Hash + Eq, |
2899 | F: FnMut(&V) -> K |
2900 | { |
2901 | grouping_map::new(grouping_map::MapForGrouping::new(self, key_mapper)) |
2902 | } |
2903 | |
2904 | /// Return all minimum elements of an iterator. |
2905 | /// |
2906 | /// # Examples |
2907 | /// |
2908 | /// ``` |
2909 | /// use itertools::Itertools; |
2910 | /// |
2911 | /// let a: [i32; 0] = []; |
2912 | /// assert_eq!(a.iter().min_set(), Vec::<&i32>::new()); |
2913 | /// |
2914 | /// let a = [1]; |
2915 | /// assert_eq!(a.iter().min_set(), vec![&1]); |
2916 | /// |
2917 | /// let a = [1, 2, 3, 4, 5]; |
2918 | /// assert_eq!(a.iter().min_set(), vec![&1]); |
2919 | /// |
2920 | /// let a = [1, 1, 1, 1]; |
2921 | /// assert_eq!(a.iter().min_set(), vec![&1, &1, &1, &1]); |
2922 | /// ``` |
2923 | /// |
2924 | /// The elements can be floats but no particular result is guaranteed |
2925 | /// if an element is NaN. |
2926 | #[cfg (feature = "use_std" )] |
2927 | fn min_set(self) -> Vec<Self::Item> |
2928 | where Self: Sized, Self::Item: Ord |
2929 | { |
2930 | extrema_set::min_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) |
2931 | } |
2932 | |
2933 | /// Return all minimum elements of an iterator, as determined by |
2934 | /// the specified function. |
2935 | /// |
2936 | /// # Examples |
2937 | /// |
2938 | /// ``` |
2939 | /// # use std::cmp::Ordering; |
2940 | /// use itertools::Itertools; |
2941 | /// |
2942 | /// let a: [(i32, i32); 0] = []; |
2943 | /// assert_eq!(a.iter().min_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); |
2944 | /// |
2945 | /// let a = [(1, 2)]; |
2946 | /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); |
2947 | /// |
2948 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
2949 | /// assert_eq!(a.iter().min_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(1, 2), &(2, 2)]); |
2950 | /// |
2951 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
2952 | /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
2953 | /// ``` |
2954 | /// |
2955 | /// The elements can be floats but no particular result is guaranteed |
2956 | /// if an element is NaN. |
2957 | #[cfg (feature = "use_std" )] |
2958 | fn min_set_by<F>(self, mut compare: F) -> Vec<Self::Item> |
2959 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
2960 | { |
2961 | extrema_set::min_set_impl( |
2962 | self, |
2963 | |_| (), |
2964 | |x, y, _, _| compare(x, y) |
2965 | ) |
2966 | } |
2967 | |
2968 | /// Return all minimum elements of an iterator, as determined by |
2969 | /// the specified function. |
2970 | /// |
2971 | /// # Examples |
2972 | /// |
2973 | /// ``` |
2974 | /// use itertools::Itertools; |
2975 | /// |
2976 | /// let a: [(i32, i32); 0] = []; |
2977 | /// assert_eq!(a.iter().min_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); |
2978 | /// |
2979 | /// let a = [(1, 2)]; |
2980 | /// assert_eq!(a.iter().min_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); |
2981 | /// |
2982 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
2983 | /// assert_eq!(a.iter().min_set_by_key(|&&(_, k)| k), vec![&(1, 2), &(2, 2)]); |
2984 | /// |
2985 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
2986 | /// assert_eq!(a.iter().min_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
2987 | /// ``` |
2988 | /// |
2989 | /// The elements can be floats but no particular result is guaranteed |
2990 | /// if an element is NaN. |
2991 | #[cfg (feature = "use_std" )] |
2992 | fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> |
2993 | where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K |
2994 | { |
2995 | extrema_set::min_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) |
2996 | } |
2997 | |
2998 | /// Return all maximum elements of an iterator. |
2999 | /// |
3000 | /// # Examples |
3001 | /// |
3002 | /// ``` |
3003 | /// use itertools::Itertools; |
3004 | /// |
3005 | /// let a: [i32; 0] = []; |
3006 | /// assert_eq!(a.iter().max_set(), Vec::<&i32>::new()); |
3007 | /// |
3008 | /// let a = [1]; |
3009 | /// assert_eq!(a.iter().max_set(), vec![&1]); |
3010 | /// |
3011 | /// let a = [1, 2, 3, 4, 5]; |
3012 | /// assert_eq!(a.iter().max_set(), vec![&5]); |
3013 | /// |
3014 | /// let a = [1, 1, 1, 1]; |
3015 | /// assert_eq!(a.iter().max_set(), vec![&1, &1, &1, &1]); |
3016 | /// ``` |
3017 | /// |
3018 | /// The elements can be floats but no particular result is guaranteed |
3019 | /// if an element is NaN. |
3020 | #[cfg (feature = "use_std" )] |
3021 | fn max_set(self) -> Vec<Self::Item> |
3022 | where Self: Sized, Self::Item: Ord |
3023 | { |
3024 | extrema_set::max_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) |
3025 | } |
3026 | |
3027 | /// Return all maximum elements of an iterator, as determined by |
3028 | /// the specified function. |
3029 | /// |
3030 | /// # Examples |
3031 | /// |
3032 | /// ``` |
3033 | /// # use std::cmp::Ordering; |
3034 | /// use itertools::Itertools; |
3035 | /// |
3036 | /// let a: [(i32, i32); 0] = []; |
3037 | /// assert_eq!(a.iter().max_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); |
3038 | /// |
3039 | /// let a = [(1, 2)]; |
3040 | /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); |
3041 | /// |
3042 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3043 | /// assert_eq!(a.iter().max_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(3, 9), &(5, 9)]); |
3044 | /// |
3045 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3046 | /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3047 | /// ``` |
3048 | /// |
3049 | /// The elements can be floats but no particular result is guaranteed |
3050 | /// if an element is NaN. |
3051 | #[cfg (feature = "use_std" )] |
3052 | fn max_set_by<F>(self, mut compare: F) -> Vec<Self::Item> |
3053 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3054 | { |
3055 | extrema_set::max_set_impl( |
3056 | self, |
3057 | |_| (), |
3058 | |x, y, _, _| compare(x, y) |
3059 | ) |
3060 | } |
3061 | |
3062 | /// Return all minimum elements of an iterator, as determined by |
3063 | /// the specified function. |
3064 | /// |
3065 | /// # Examples |
3066 | /// |
3067 | /// ``` |
3068 | /// use itertools::Itertools; |
3069 | /// |
3070 | /// let a: [(i32, i32); 0] = []; |
3071 | /// assert_eq!(a.iter().max_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); |
3072 | /// |
3073 | /// let a = [(1, 2)]; |
3074 | /// assert_eq!(a.iter().max_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); |
3075 | /// |
3076 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3077 | /// assert_eq!(a.iter().max_set_by_key(|&&(_, k)| k), vec![&(3, 9), &(5, 9)]); |
3078 | /// |
3079 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3080 | /// assert_eq!(a.iter().max_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3081 | /// ``` |
3082 | /// |
3083 | /// The elements can be floats but no particular result is guaranteed |
3084 | /// if an element is NaN. |
3085 | #[cfg (feature = "use_std" )] |
3086 | fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> |
3087 | where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K |
3088 | { |
3089 | extrema_set::max_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) |
3090 | } |
3091 | |
3092 | /// Return the minimum and maximum elements in the iterator. |
3093 | /// |
3094 | /// The return type `MinMaxResult` is an enum of three variants: |
3095 | /// |
3096 | /// - `NoElements` if the iterator is empty. |
3097 | /// - `OneElement(x)` if the iterator has exactly one element. |
3098 | /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two |
3099 | /// values are equal if and only if there is more than one |
3100 | /// element in the iterator and all elements are equal. |
3101 | /// |
3102 | /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons, |
3103 | /// and so is faster than calling `min` and `max` separately which does |
3104 | /// `2 * n` comparisons. |
3105 | /// |
3106 | /// # Examples |
3107 | /// |
3108 | /// ``` |
3109 | /// use itertools::Itertools; |
3110 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3111 | /// |
3112 | /// let a: [i32; 0] = []; |
3113 | /// assert_eq!(a.iter().minmax(), NoElements); |
3114 | /// |
3115 | /// let a = [1]; |
3116 | /// assert_eq!(a.iter().minmax(), OneElement(&1)); |
3117 | /// |
3118 | /// let a = [1, 2, 3, 4, 5]; |
3119 | /// assert_eq!(a.iter().minmax(), MinMax(&1, &5)); |
3120 | /// |
3121 | /// let a = [1, 1, 1, 1]; |
3122 | /// assert_eq!(a.iter().minmax(), MinMax(&1, &1)); |
3123 | /// ``` |
3124 | /// |
3125 | /// The elements can be floats but no particular result is guaranteed |
3126 | /// if an element is NaN. |
3127 | fn minmax(self) -> MinMaxResult<Self::Item> |
3128 | where Self: Sized, Self::Item: PartialOrd |
3129 | { |
3130 | minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y) |
3131 | } |
3132 | |
3133 | /// Return the minimum and maximum element of an iterator, as determined by |
3134 | /// the specified function. |
3135 | /// |
3136 | /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). |
3137 | /// |
3138 | /// For the minimum, the first minimal element is returned. For the maximum, |
3139 | /// the last maximal element wins. This matches the behavior of the standard |
3140 | /// [`Iterator::min`] and [`Iterator::max`] methods. |
3141 | /// |
3142 | /// The keys can be floats but no particular result is guaranteed |
3143 | /// if a key is NaN. |
3144 | fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item> |
3145 | where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K |
3146 | { |
3147 | minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk) |
3148 | } |
3149 | |
3150 | /// Return the minimum and maximum element of an iterator, as determined by |
3151 | /// the specified comparison function. |
3152 | /// |
3153 | /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). |
3154 | /// |
3155 | /// For the minimum, the first minimal element is returned. For the maximum, |
3156 | /// the last maximal element wins. This matches the behavior of the standard |
3157 | /// [`Iterator::min`] and [`Iterator::max`] methods. |
3158 | fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item> |
3159 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3160 | { |
3161 | minmax::minmax_impl( |
3162 | self, |
3163 | |_| (), |
3164 | |x, y, _, _| Ordering::Less == compare(x, y) |
3165 | ) |
3166 | } |
3167 | |
3168 | /// Return the position of the maximum element in the iterator. |
3169 | /// |
3170 | /// If several elements are equally maximum, the position of the |
3171 | /// last of them is returned. |
3172 | /// |
3173 | /// # Examples |
3174 | /// |
3175 | /// ``` |
3176 | /// use itertools::Itertools; |
3177 | /// |
3178 | /// let a: [i32; 0] = []; |
3179 | /// assert_eq!(a.iter().position_max(), None); |
3180 | /// |
3181 | /// let a = [-3, 0, 1, 5, -10]; |
3182 | /// assert_eq!(a.iter().position_max(), Some(3)); |
3183 | /// |
3184 | /// let a = [1, 1, -1, -1]; |
3185 | /// assert_eq!(a.iter().position_max(), Some(1)); |
3186 | /// ``` |
3187 | fn position_max(self) -> Option<usize> |
3188 | where Self: Sized, Self::Item: Ord |
3189 | { |
3190 | self.enumerate() |
3191 | .max_by(|x, y| Ord::cmp(&x.1, &y.1)) |
3192 | .map(|x| x.0) |
3193 | } |
3194 | |
3195 | /// Return the position of the maximum element in the iterator, as |
3196 | /// determined by the specified function. |
3197 | /// |
3198 | /// If several elements are equally maximum, the position of the |
3199 | /// last of them is returned. |
3200 | /// |
3201 | /// # Examples |
3202 | /// |
3203 | /// ``` |
3204 | /// use itertools::Itertools; |
3205 | /// |
3206 | /// let a: [i32; 0] = []; |
3207 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None); |
3208 | /// |
3209 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3210 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4)); |
3211 | /// |
3212 | /// let a = [1_i32, 1, -1, -1]; |
3213 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3)); |
3214 | /// ``` |
3215 | fn position_max_by_key<K, F>(self, mut key: F) -> Option<usize> |
3216 | where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K |
3217 | { |
3218 | self.enumerate() |
3219 | .max_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) |
3220 | .map(|x| x.0) |
3221 | } |
3222 | |
3223 | /// Return the position of the maximum element in the iterator, as |
3224 | /// determined by the specified comparison function. |
3225 | /// |
3226 | /// If several elements are equally maximum, the position of the |
3227 | /// last of them is returned. |
3228 | /// |
3229 | /// # Examples |
3230 | /// |
3231 | /// ``` |
3232 | /// use itertools::Itertools; |
3233 | /// |
3234 | /// let a: [i32; 0] = []; |
3235 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None); |
3236 | /// |
3237 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3238 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3)); |
3239 | /// |
3240 | /// let a = [1_i32, 1, -1, -1]; |
3241 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1)); |
3242 | /// ``` |
3243 | fn position_max_by<F>(self, mut compare: F) -> Option<usize> |
3244 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3245 | { |
3246 | self.enumerate() |
3247 | .max_by(|x, y| compare(&x.1, &y.1)) |
3248 | .map(|x| x.0) |
3249 | } |
3250 | |
3251 | /// Return the position of the minimum element in the iterator. |
3252 | /// |
3253 | /// If several elements are equally minimum, the position of the |
3254 | /// first of them is returned. |
3255 | /// |
3256 | /// # Examples |
3257 | /// |
3258 | /// ``` |
3259 | /// use itertools::Itertools; |
3260 | /// |
3261 | /// let a: [i32; 0] = []; |
3262 | /// assert_eq!(a.iter().position_min(), None); |
3263 | /// |
3264 | /// let a = [-3, 0, 1, 5, -10]; |
3265 | /// assert_eq!(a.iter().position_min(), Some(4)); |
3266 | /// |
3267 | /// let a = [1, 1, -1, -1]; |
3268 | /// assert_eq!(a.iter().position_min(), Some(2)); |
3269 | /// ``` |
3270 | fn position_min(self) -> Option<usize> |
3271 | where Self: Sized, Self::Item: Ord |
3272 | { |
3273 | self.enumerate() |
3274 | .min_by(|x, y| Ord::cmp(&x.1, &y.1)) |
3275 | .map(|x| x.0) |
3276 | } |
3277 | |
3278 | /// Return the position of the minimum element in the iterator, as |
3279 | /// determined by the specified function. |
3280 | /// |
3281 | /// If several elements are equally minimum, the position of the |
3282 | /// first of them is returned. |
3283 | /// |
3284 | /// # Examples |
3285 | /// |
3286 | /// ``` |
3287 | /// use itertools::Itertools; |
3288 | /// |
3289 | /// let a: [i32; 0] = []; |
3290 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None); |
3291 | /// |
3292 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3293 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1)); |
3294 | /// |
3295 | /// let a = [1_i32, 1, -1, -1]; |
3296 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0)); |
3297 | /// ``` |
3298 | fn position_min_by_key<K, F>(self, mut key: F) -> Option<usize> |
3299 | where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K |
3300 | { |
3301 | self.enumerate() |
3302 | .min_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) |
3303 | .map(|x| x.0) |
3304 | } |
3305 | |
3306 | /// Return the position of the minimum element in the iterator, as |
3307 | /// determined by the specified comparison function. |
3308 | /// |
3309 | /// If several elements are equally minimum, the position of the |
3310 | /// first of them is returned. |
3311 | /// |
3312 | /// # Examples |
3313 | /// |
3314 | /// ``` |
3315 | /// use itertools::Itertools; |
3316 | /// |
3317 | /// let a: [i32; 0] = []; |
3318 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None); |
3319 | /// |
3320 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3321 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4)); |
3322 | /// |
3323 | /// let a = [1_i32, 1, -1, -1]; |
3324 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2)); |
3325 | /// ``` |
3326 | fn position_min_by<F>(self, mut compare: F) -> Option<usize> |
3327 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3328 | { |
3329 | self.enumerate() |
3330 | .min_by(|x, y| compare(&x.1, &y.1)) |
3331 | .map(|x| x.0) |
3332 | } |
3333 | |
3334 | /// Return the positions of the minimum and maximum elements in |
3335 | /// the iterator. |
3336 | /// |
3337 | /// The return type [`MinMaxResult`] is an enum of three variants: |
3338 | /// |
3339 | /// - `NoElements` if the iterator is empty. |
3340 | /// - `OneElement(xpos)` if the iterator has exactly one element. |
3341 | /// - `MinMax(xpos, ypos)` is returned otherwise, where the |
3342 | /// element at `xpos` ≤ the element at `ypos`. While the |
3343 | /// referenced elements themselves may be equal, `xpos` cannot |
3344 | /// be equal to `ypos`. |
3345 | /// |
3346 | /// On an iterator of length `n`, `position_minmax` does `1.5 * n` |
3347 | /// comparisons, and so is faster than calling `position_min` and |
3348 | /// `position_max` separately which does `2 * n` comparisons. |
3349 | /// |
3350 | /// For the minimum, if several elements are equally minimum, the |
3351 | /// position of the first of them is returned. For the maximum, if |
3352 | /// several elements are equally maximum, the position of the last |
3353 | /// of them is returned. |
3354 | /// |
3355 | /// The elements can be floats but no particular result is |
3356 | /// guaranteed if an element is NaN. |
3357 | /// |
3358 | /// # Examples |
3359 | /// |
3360 | /// ``` |
3361 | /// use itertools::Itertools; |
3362 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3363 | /// |
3364 | /// let a: [i32; 0] = []; |
3365 | /// assert_eq!(a.iter().position_minmax(), NoElements); |
3366 | /// |
3367 | /// let a = [10]; |
3368 | /// assert_eq!(a.iter().position_minmax(), OneElement(0)); |
3369 | /// |
3370 | /// let a = [-3, 0, 1, 5, -10]; |
3371 | /// assert_eq!(a.iter().position_minmax(), MinMax(4, 3)); |
3372 | /// |
3373 | /// let a = [1, 1, -1, -1]; |
3374 | /// assert_eq!(a.iter().position_minmax(), MinMax(2, 1)); |
3375 | /// ``` |
3376 | fn position_minmax(self) -> MinMaxResult<usize> |
3377 | where Self: Sized, Self::Item: PartialOrd |
3378 | { |
3379 | use crate::MinMaxResult::{NoElements, OneElement, MinMax}; |
3380 | match minmax::minmax_impl(self.enumerate(), |_| (), |x, y, _, _| x.1 < y.1) { |
3381 | NoElements => NoElements, |
3382 | OneElement(x) => OneElement(x.0), |
3383 | MinMax(x, y) => MinMax(x.0, y.0), |
3384 | } |
3385 | } |
3386 | |
3387 | /// Return the postions of the minimum and maximum elements of an |
3388 | /// iterator, as determined by the specified function. |
3389 | /// |
3390 | /// The return value is a variant of [`MinMaxResult`] like for |
3391 | /// [`position_minmax`]. |
3392 | /// |
3393 | /// For the minimum, if several elements are equally minimum, the |
3394 | /// position of the first of them is returned. For the maximum, if |
3395 | /// several elements are equally maximum, the position of the last |
3396 | /// of them is returned. |
3397 | /// |
3398 | /// The keys can be floats but no particular result is guaranteed |
3399 | /// if a key is NaN. |
3400 | /// |
3401 | /// # Examples |
3402 | /// |
3403 | /// ``` |
3404 | /// use itertools::Itertools; |
3405 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3406 | /// |
3407 | /// let a: [i32; 0] = []; |
3408 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements); |
3409 | /// |
3410 | /// let a = [10_i32]; |
3411 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0)); |
3412 | /// |
3413 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3414 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4)); |
3415 | /// |
3416 | /// let a = [1_i32, 1, -1, -1]; |
3417 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3)); |
3418 | /// ``` |
3419 | /// |
3420 | /// [`position_minmax`]: Self::position_minmax |
3421 | fn position_minmax_by_key<K, F>(self, mut key: F) -> MinMaxResult<usize> |
3422 | where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K |
3423 | { |
3424 | use crate::MinMaxResult::{NoElements, OneElement, MinMax}; |
3425 | match self.enumerate().minmax_by_key(|e| key(&e.1)) { |
3426 | NoElements => NoElements, |
3427 | OneElement(x) => OneElement(x.0), |
3428 | MinMax(x, y) => MinMax(x.0, y.0), |
3429 | } |
3430 | } |
3431 | |
3432 | /// Return the postions of the minimum and maximum elements of an |
3433 | /// iterator, as determined by the specified comparison function. |
3434 | /// |
3435 | /// The return value is a variant of [`MinMaxResult`] like for |
3436 | /// [`position_minmax`]. |
3437 | /// |
3438 | /// For the minimum, if several elements are equally minimum, the |
3439 | /// position of the first of them is returned. For the maximum, if |
3440 | /// several elements are equally maximum, the position of the last |
3441 | /// of them is returned. |
3442 | /// |
3443 | /// # Examples |
3444 | /// |
3445 | /// ``` |
3446 | /// use itertools::Itertools; |
3447 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3448 | /// |
3449 | /// let a: [i32; 0] = []; |
3450 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements); |
3451 | /// |
3452 | /// let a = [10_i32]; |
3453 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0)); |
3454 | /// |
3455 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3456 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3)); |
3457 | /// |
3458 | /// let a = [1_i32, 1, -1, -1]; |
3459 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1)); |
3460 | /// ``` |
3461 | /// |
3462 | /// [`position_minmax`]: Self::position_minmax |
3463 | fn position_minmax_by<F>(self, mut compare: F) -> MinMaxResult<usize> |
3464 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3465 | { |
3466 | use crate::MinMaxResult::{NoElements, OneElement, MinMax}; |
3467 | match self.enumerate().minmax_by(|x, y| compare(&x.1, &y.1)) { |
3468 | NoElements => NoElements, |
3469 | OneElement(x) => OneElement(x.0), |
3470 | MinMax(x, y) => MinMax(x.0, y.0), |
3471 | } |
3472 | } |
3473 | |
3474 | /// If the iterator yields exactly one element, that element will be returned, otherwise |
3475 | /// an error will be returned containing an iterator that has the same output as the input |
3476 | /// iterator. |
3477 | /// |
3478 | /// This provides an additional layer of validation over just calling `Iterator::next()`. |
3479 | /// If your assumption that there should only be one element yielded is false this provides |
3480 | /// the opportunity to detect and handle that, preventing errors at a distance. |
3481 | /// |
3482 | /// # Examples |
3483 | /// ``` |
3484 | /// use itertools::Itertools; |
3485 | /// |
3486 | /// assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2); |
3487 | /// assert!((0..10).filter(|&x| x > 1 && x < 4).exactly_one().unwrap_err().eq(2..4)); |
3488 | /// assert!((0..10).filter(|&x| x > 1 && x < 5).exactly_one().unwrap_err().eq(2..5)); |
3489 | /// assert!((0..10).filter(|&_| false).exactly_one().unwrap_err().eq(0..0)); |
3490 | /// ``` |
3491 | fn exactly_one(mut self) -> Result<Self::Item, ExactlyOneError<Self>> |
3492 | where |
3493 | Self: Sized, |
3494 | { |
3495 | match self.next() { |
3496 | Some(first) => { |
3497 | match self.next() { |
3498 | Some(second) => { |
3499 | Err(ExactlyOneError::new(Some(Either::Left([first, second])), self)) |
3500 | } |
3501 | None => { |
3502 | Ok(first) |
3503 | } |
3504 | } |
3505 | } |
3506 | None => Err(ExactlyOneError::new(None, self)), |
3507 | } |
3508 | } |
3509 | |
3510 | /// If the iterator yields no elements, Ok(None) will be returned. If the iterator yields |
3511 | /// exactly one element, that element will be returned, otherwise an error will be returned |
3512 | /// containing an iterator that has the same output as the input iterator. |
3513 | /// |
3514 | /// This provides an additional layer of validation over just calling `Iterator::next()`. |
3515 | /// If your assumption that there should be at most one element yielded is false this provides |
3516 | /// the opportunity to detect and handle that, preventing errors at a distance. |
3517 | /// |
3518 | /// # Examples |
3519 | /// ``` |
3520 | /// use itertools::Itertools; |
3521 | /// |
3522 | /// assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2)); |
3523 | /// assert!((0..10).filter(|&x| x > 1 && x < 4).at_most_one().unwrap_err().eq(2..4)); |
3524 | /// assert!((0..10).filter(|&x| x > 1 && x < 5).at_most_one().unwrap_err().eq(2..5)); |
3525 | /// assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None); |
3526 | /// ``` |
3527 | fn at_most_one(mut self) -> Result<Option<Self::Item>, ExactlyOneError<Self>> |
3528 | where |
3529 | Self: Sized, |
3530 | { |
3531 | match self.next() { |
3532 | Some(first) => { |
3533 | match self.next() { |
3534 | Some(second) => { |
3535 | Err(ExactlyOneError::new(Some(Either::Left([first, second])), self)) |
3536 | } |
3537 | None => { |
3538 | Ok(Some(first)) |
3539 | } |
3540 | } |
3541 | } |
3542 | None => Ok(None), |
3543 | } |
3544 | } |
3545 | |
3546 | /// An iterator adaptor that allows the user to peek at multiple `.next()` |
3547 | /// values without advancing the base iterator. |
3548 | /// |
3549 | /// # Examples |
3550 | /// ``` |
3551 | /// use itertools::Itertools; |
3552 | /// |
3553 | /// let mut iter = (0..10).multipeek(); |
3554 | /// assert_eq!(iter.peek(), Some(&0)); |
3555 | /// assert_eq!(iter.peek(), Some(&1)); |
3556 | /// assert_eq!(iter.peek(), Some(&2)); |
3557 | /// assert_eq!(iter.next(), Some(0)); |
3558 | /// assert_eq!(iter.peek(), Some(&1)); |
3559 | /// ``` |
3560 | #[cfg (feature = "use_alloc" )] |
3561 | fn multipeek(self) -> MultiPeek<Self> |
3562 | where |
3563 | Self: Sized, |
3564 | { |
3565 | multipeek_impl::multipeek(self) |
3566 | } |
3567 | |
3568 | /// Collect the items in this iterator and return a `HashMap` which |
3569 | /// contains each item that appears in the iterator and the number |
3570 | /// of times it appears. |
3571 | /// |
3572 | /// # Examples |
3573 | /// ``` |
3574 | /// # use itertools::Itertools; |
3575 | /// let counts = [1, 1, 1, 3, 3, 5].into_iter().counts(); |
3576 | /// assert_eq!(counts[&1], 3); |
3577 | /// assert_eq!(counts[&3], 2); |
3578 | /// assert_eq!(counts[&5], 1); |
3579 | /// assert_eq!(counts.get(&0), None); |
3580 | /// ``` |
3581 | #[cfg (feature = "use_std" )] |
3582 | fn counts(self) -> HashMap<Self::Item, usize> |
3583 | where |
3584 | Self: Sized, |
3585 | Self::Item: Eq + Hash, |
3586 | { |
3587 | let mut counts = HashMap::new(); |
3588 | self.for_each(|item| *counts.entry(item).or_default() += 1); |
3589 | counts |
3590 | } |
3591 | |
3592 | /// Collect the items in this iterator and return a `HashMap` which |
3593 | /// contains each item that appears in the iterator and the number |
3594 | /// of times it appears, |
3595 | /// determining identity using a keying function. |
3596 | /// |
3597 | /// ``` |
3598 | /// # use itertools::Itertools; |
3599 | /// struct Character { |
3600 | /// first_name: &'static str, |
3601 | /// last_name: &'static str, |
3602 | /// } |
3603 | /// |
3604 | /// let characters = |
3605 | /// vec![ |
3606 | /// Character { first_name: "Amy" , last_name: "Pond" }, |
3607 | /// Character { first_name: "Amy" , last_name: "Wong" }, |
3608 | /// Character { first_name: "Amy" , last_name: "Santiago" }, |
3609 | /// Character { first_name: "James" , last_name: "Bond" }, |
3610 | /// Character { first_name: "James" , last_name: "Sullivan" }, |
3611 | /// Character { first_name: "James" , last_name: "Norington" }, |
3612 | /// Character { first_name: "James" , last_name: "Kirk" }, |
3613 | /// ]; |
3614 | /// |
3615 | /// let first_name_frequency = |
3616 | /// characters |
3617 | /// .into_iter() |
3618 | /// .counts_by(|c| c.first_name); |
3619 | /// |
3620 | /// assert_eq!(first_name_frequency["Amy" ], 3); |
3621 | /// assert_eq!(first_name_frequency["James" ], 4); |
3622 | /// assert_eq!(first_name_frequency.contains_key("Asha" ), false); |
3623 | /// ``` |
3624 | #[cfg (feature = "use_std" )] |
3625 | fn counts_by<K, F>(self, f: F) -> HashMap<K, usize> |
3626 | where |
3627 | Self: Sized, |
3628 | K: Eq + Hash, |
3629 | F: FnMut(Self::Item) -> K, |
3630 | { |
3631 | self.map(f).counts() |
3632 | } |
3633 | |
3634 | /// Converts an iterator of tuples into a tuple of containers. |
3635 | /// |
3636 | /// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each |
3637 | /// column. |
3638 | /// |
3639 | /// This function is, in some sense, the opposite of [`multizip`]. |
3640 | /// |
3641 | /// ``` |
3642 | /// use itertools::Itertools; |
3643 | /// |
3644 | /// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)]; |
3645 | /// |
3646 | /// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = inputs |
3647 | /// .into_iter() |
3648 | /// .multiunzip(); |
3649 | /// |
3650 | /// assert_eq!(a, vec![1, 4, 7]); |
3651 | /// assert_eq!(b, vec![2, 5, 8]); |
3652 | /// assert_eq!(c, vec![3, 6, 9]); |
3653 | /// ``` |
3654 | fn multiunzip<FromI>(self) -> FromI |
3655 | where |
3656 | Self: Sized + MultiUnzip<FromI>, |
3657 | { |
3658 | MultiUnzip::multiunzip(self) |
3659 | } |
3660 | } |
3661 | |
3662 | impl<T: ?Sized> Itertools for T where T: Iterator { } |
3663 | |
3664 | /// Return `true` if both iterables produce equal sequences |
3665 | /// (elements pairwise equal and sequences of the same length), |
3666 | /// `false` otherwise. |
3667 | /// |
3668 | /// [`IntoIterator`] enabled version of [`Iterator::eq`]. |
3669 | /// |
3670 | /// ``` |
3671 | /// assert!(itertools::equal(vec![1, 2, 3], 1..4)); |
3672 | /// assert!(!itertools::equal(&[0, 0], &[0, 0, 0])); |
3673 | /// ``` |
3674 | pub fn equal<I, J>(a: I, b: J) -> bool |
3675 | where I: IntoIterator, |
3676 | J: IntoIterator, |
3677 | I::Item: PartialEq<J::Item> |
3678 | { |
3679 | a.into_iter().eq(b) |
3680 | } |
3681 | |
3682 | /// Assert that two iterables produce equal sequences, with the same |
3683 | /// semantics as [`equal(a, b)`](equal). |
3684 | /// |
3685 | /// **Panics** on assertion failure with a message that shows the |
3686 | /// two iteration elements. |
3687 | /// |
3688 | /// ```ignore |
3689 | /// assert_equal("exceed" .split('c' ), "excess" .split('c' )); |
3690 | /// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1', |
3691 | /// ``` |
3692 | pub fn assert_equal<I, J>(a: I, b: J) |
3693 | where I: IntoIterator, |
3694 | J: IntoIterator, |
3695 | I::Item: fmt::Debug + PartialEq<J::Item>, |
3696 | J::Item: fmt::Debug, |
3697 | { |
3698 | let mut ia = a.into_iter(); |
3699 | let mut ib = b.into_iter(); |
3700 | let mut i = 0; |
3701 | loop { |
3702 | match (ia.next(), ib.next()) { |
3703 | (None, None) => return, |
3704 | (a, b) => { |
3705 | let equal = match (&a, &b) { |
3706 | (&Some(ref a), &Some(ref b)) => a == b, |
3707 | _ => false, |
3708 | }; |
3709 | assert!(equal, "Failed assertion {a:?} == {b:?} for iteration {i}" , |
3710 | i=i, a=a, b=b); |
3711 | i += 1; |
3712 | } |
3713 | } |
3714 | } |
3715 | } |
3716 | |
3717 | /// Partition a sequence using predicate `pred` so that elements |
3718 | /// that map to `true` are placed before elements which map to `false`. |
3719 | /// |
3720 | /// The order within the partitions is arbitrary. |
3721 | /// |
3722 | /// Return the index of the split point. |
3723 | /// |
3724 | /// ``` |
3725 | /// use itertools::partition; |
3726 | /// |
3727 | /// # // use repeated numbers to not promise any ordering |
3728 | /// let mut data = [7, 1, 1, 7, 1, 1, 7]; |
3729 | /// let split_index = partition(&mut data, |elt| *elt >= 3); |
3730 | /// |
3731 | /// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]); |
3732 | /// assert_eq!(split_index, 3); |
3733 | /// ``` |
3734 | pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize |
3735 | where I: IntoIterator<Item = &'a mut A>, |
3736 | I::IntoIter: DoubleEndedIterator, |
3737 | F: FnMut(&A) -> bool |
3738 | { |
3739 | let mut split_index = 0; |
3740 | let mut iter = iter.into_iter(); |
3741 | 'main: while let Some(front) = iter.next() { |
3742 | if !pred(front) { |
3743 | loop { |
3744 | match iter.next_back() { |
3745 | Some(back) => if pred(back) { |
3746 | std::mem::swap(front, back); |
3747 | break; |
3748 | }, |
3749 | None => break 'main, |
3750 | } |
3751 | } |
3752 | } |
3753 | split_index += 1; |
3754 | } |
3755 | split_index |
3756 | } |
3757 | |
3758 | /// An enum used for controlling the execution of `fold_while`. |
3759 | /// |
3760 | /// See [`.fold_while()`](Itertools::fold_while) for more information. |
3761 | #[derive(Copy, Clone, Debug, Eq, PartialEq)] |
3762 | pub enum FoldWhile<T> { |
3763 | /// Continue folding with this value |
3764 | Continue(T), |
3765 | /// Fold is complete and will return this value |
3766 | Done(T), |
3767 | } |
3768 | |
3769 | impl<T> FoldWhile<T> { |
3770 | /// Return the value in the continue or done. |
3771 | pub fn into_inner(self) -> T { |
3772 | match self { |
3773 | FoldWhile::Continue(x) | FoldWhile::Done(x) => x, |
3774 | } |
3775 | } |
3776 | |
3777 | /// Return true if `self` is `Done`, false if it is `Continue`. |
3778 | pub fn is_done(&self) -> bool { |
3779 | match *self { |
3780 | FoldWhile::Continue(_) => false, |
3781 | FoldWhile::Done(_) => true, |
3782 | } |
3783 | } |
3784 | } |
3785 | |