1 | //! Parallel quicksort. |
2 | //! |
3 | //! This implementation is copied verbatim from `std::slice::sort_unstable` and then parallelized. |
4 | //! The only difference from the original is that calls to `recurse` are executed in parallel using |
5 | //! `rayon_core::join`. |
6 | |
7 | use std::cmp; |
8 | use std::marker::PhantomData; |
9 | use std::mem::{self, MaybeUninit}; |
10 | use std::ptr; |
11 | |
12 | /// When dropped, copies from `src` into `dest`. |
13 | #[must_use ] |
14 | struct CopyOnDrop<'a, T> { |
15 | src: *const T, |
16 | dest: *mut T, |
17 | /// `src` is often a local pointer here, make sure we have appropriate |
18 | /// PhantomData so that dropck can protect us. |
19 | marker: PhantomData<&'a mut T>, |
20 | } |
21 | |
22 | impl<'a, T> CopyOnDrop<'a, T> { |
23 | /// Construct from a source pointer and a destination |
24 | /// Assumes dest lives longer than src, since there is no easy way to |
25 | /// copy down lifetime information from another pointer |
26 | unsafe fn new(src: &'a T, dest: *mut T) -> Self { |
27 | CopyOnDrop { |
28 | src, |
29 | dest, |
30 | marker: PhantomData, |
31 | } |
32 | } |
33 | } |
34 | |
35 | impl<T> Drop for CopyOnDrop<'_, T> { |
36 | fn drop(&mut self) { |
37 | // SAFETY: This is a helper class. |
38 | // Please refer to its usage for correctness. |
39 | // Namely, one must be sure that `src` and `dst` does not overlap as required by `ptr::copy_nonoverlapping`. |
40 | unsafe { |
41 | ptr::copy_nonoverlapping(self.src, self.dest, 1); |
42 | } |
43 | } |
44 | } |
45 | |
46 | /// Shifts the first element to the right until it encounters a greater or equal element. |
47 | fn shift_head<T, F>(v: &mut [T], is_less: &F) |
48 | where |
49 | F: Fn(&T, &T) -> bool, |
50 | { |
51 | let len = v.len(); |
52 | // SAFETY: The unsafe operations below involves indexing without a bounds check (by offsetting a |
53 | // pointer) and copying memory (`ptr::copy_nonoverlapping`). |
54 | // |
55 | // a. Indexing: |
56 | // 1. We checked the size of the array to >=2. |
57 | // 2. All the indexing that we will do is always between {0 <= index < len} at most. |
58 | // |
59 | // b. Memory copying |
60 | // 1. We are obtaining pointers to references which are guaranteed to be valid. |
61 | // 2. They cannot overlap because we obtain pointers to difference indices of the slice. |
62 | // Namely, `i` and `i-1`. |
63 | // 3. If the slice is properly aligned, the elements are properly aligned. |
64 | // It is the caller's responsibility to make sure the slice is properly aligned. |
65 | // |
66 | // See comments below for further detail. |
67 | unsafe { |
68 | // If the first two elements are out-of-order... |
69 | if len >= 2 && is_less(v.get_unchecked(1), v.get_unchecked(0)) { |
70 | // Read the first element into a stack-allocated variable. If a following comparison |
71 | // operation panics, `hole` will get dropped and automatically write the element back |
72 | // into the slice. |
73 | let tmp = mem::ManuallyDrop::new(ptr::read(v.get_unchecked(0))); |
74 | let v = v.as_mut_ptr(); |
75 | let mut hole = CopyOnDrop::new(&*tmp, v.add(1)); |
76 | ptr::copy_nonoverlapping(v.add(1), v.add(0), 1); |
77 | |
78 | for i in 2..len { |
79 | if !is_less(&*v.add(i), &*tmp) { |
80 | break; |
81 | } |
82 | |
83 | // Move `i`-th element one place to the left, thus shifting the hole to the right. |
84 | ptr::copy_nonoverlapping(v.add(i), v.add(i - 1), 1); |
85 | hole.dest = v.add(i); |
86 | } |
87 | // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. |
88 | } |
89 | } |
90 | } |
91 | |
92 | /// Shifts the last element to the left until it encounters a smaller or equal element. |
93 | fn shift_tail<T, F>(v: &mut [T], is_less: &F) |
94 | where |
95 | F: Fn(&T, &T) -> bool, |
96 | { |
97 | let len = v.len(); |
98 | // SAFETY: The unsafe operations below involves indexing without a bound check (by offsetting a |
99 | // pointer) and copying memory (`ptr::copy_nonoverlapping`). |
100 | // |
101 | // a. Indexing: |
102 | // 1. We checked the size of the array to >= 2. |
103 | // 2. All the indexing that we will do is always between `0 <= index < len-1` at most. |
104 | // |
105 | // b. Memory copying |
106 | // 1. We are obtaining pointers to references which are guaranteed to be valid. |
107 | // 2. They cannot overlap because we obtain pointers to difference indices of the slice. |
108 | // Namely, `i` and `i+1`. |
109 | // 3. If the slice is properly aligned, the elements are properly aligned. |
110 | // It is the caller's responsibility to make sure the slice is properly aligned. |
111 | // |
112 | // See comments below for further detail. |
113 | unsafe { |
114 | // If the last two elements are out-of-order... |
115 | if len >= 2 && is_less(v.get_unchecked(len - 1), v.get_unchecked(len - 2)) { |
116 | // Read the last element into a stack-allocated variable. If a following comparison |
117 | // operation panics, `hole` will get dropped and automatically write the element back |
118 | // into the slice. |
119 | let tmp = mem::ManuallyDrop::new(ptr::read(v.get_unchecked(len - 1))); |
120 | let v = v.as_mut_ptr(); |
121 | let mut hole = CopyOnDrop::new(&*tmp, v.add(len - 2)); |
122 | ptr::copy_nonoverlapping(v.add(len - 2), v.add(len - 1), 1); |
123 | |
124 | for i in (0..len - 2).rev() { |
125 | if !is_less(&*tmp, &*v.add(i)) { |
126 | break; |
127 | } |
128 | |
129 | // Move `i`-th element one place to the right, thus shifting the hole to the left. |
130 | ptr::copy_nonoverlapping(v.add(i), v.add(i + 1), 1); |
131 | hole.dest = v.add(i); |
132 | } |
133 | // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. |
134 | } |
135 | } |
136 | } |
137 | |
138 | /// Partially sorts a slice by shifting several out-of-order elements around. |
139 | /// |
140 | /// Returns `true` if the slice is sorted at the end. This function is *O*(*n*) worst-case. |
141 | #[cold ] |
142 | fn partial_insertion_sort<T, F>(v: &mut [T], is_less: &F) -> bool |
143 | where |
144 | F: Fn(&T, &T) -> bool, |
145 | { |
146 | // Maximum number of adjacent out-of-order pairs that will get shifted. |
147 | const MAX_STEPS: usize = 5; |
148 | // If the slice is shorter than this, don't shift any elements. |
149 | const SHORTEST_SHIFTING: usize = 50; |
150 | |
151 | let len = v.len(); |
152 | let mut i = 1; |
153 | |
154 | for _ in 0..MAX_STEPS { |
155 | // SAFETY: We already explicitly did the bound checking with `i < len`. |
156 | // All our subsequent indexing is only in the range `0 <= index < len` |
157 | unsafe { |
158 | // Find the next pair of adjacent out-of-order elements. |
159 | while i < len && !is_less(v.get_unchecked(i), v.get_unchecked(i - 1)) { |
160 | i += 1; |
161 | } |
162 | } |
163 | |
164 | // Are we done? |
165 | if i == len { |
166 | return true; |
167 | } |
168 | |
169 | // Don't shift elements on short arrays, that has a performance cost. |
170 | if len < SHORTEST_SHIFTING { |
171 | return false; |
172 | } |
173 | |
174 | // Swap the found pair of elements. This puts them in correct order. |
175 | v.swap(i - 1, i); |
176 | |
177 | // Shift the smaller element to the left. |
178 | shift_tail(&mut v[..i], is_less); |
179 | // Shift the greater element to the right. |
180 | shift_head(&mut v[i..], is_less); |
181 | } |
182 | |
183 | // Didn't manage to sort the slice in the limited number of steps. |
184 | false |
185 | } |
186 | |
187 | /// Sorts a slice using insertion sort, which is *O*(*n*^2) worst-case. |
188 | fn insertion_sort<T, F>(v: &mut [T], is_less: &F) |
189 | where |
190 | F: Fn(&T, &T) -> bool, |
191 | { |
192 | for i in 1..v.len() { |
193 | shift_tail(&mut v[..i + 1], is_less); |
194 | } |
195 | } |
196 | |
197 | /// Sorts `v` using heapsort, which guarantees *O*(*n* \* log(*n*)) worst-case. |
198 | #[cold ] |
199 | fn heapsort<T, F>(v: &mut [T], is_less: &F) |
200 | where |
201 | F: Fn(&T, &T) -> bool, |
202 | { |
203 | // This binary heap respects the invariant `parent >= child`. |
204 | let sift_down = |v: &mut [T], mut node| { |
205 | loop { |
206 | // Children of `node`. |
207 | let mut child = 2 * node + 1; |
208 | if child >= v.len() { |
209 | break; |
210 | } |
211 | |
212 | // Choose the greater child. |
213 | if child + 1 < v.len() && is_less(&v[child], &v[child + 1]) { |
214 | child += 1; |
215 | } |
216 | |
217 | // Stop if the invariant holds at `node`. |
218 | if !is_less(&v[node], &v[child]) { |
219 | break; |
220 | } |
221 | |
222 | // Swap `node` with the greater child, move one step down, and continue sifting. |
223 | v.swap(node, child); |
224 | node = child; |
225 | } |
226 | }; |
227 | |
228 | // Build the heap in linear time. |
229 | for i in (0..v.len() / 2).rev() { |
230 | sift_down(v, i); |
231 | } |
232 | |
233 | // Pop maximal elements from the heap. |
234 | for i in (1..v.len()).rev() { |
235 | v.swap(0, i); |
236 | sift_down(&mut v[..i], 0); |
237 | } |
238 | } |
239 | |
240 | /// Partitions `v` into elements smaller than `pivot`, followed by elements greater than or equal |
241 | /// to `pivot`. |
242 | /// |
243 | /// Returns the number of elements smaller than `pivot`. |
244 | /// |
245 | /// Partitioning is performed block-by-block in order to minimize the cost of branching operations. |
246 | /// This idea is presented in the [BlockQuicksort][pdf] paper. |
247 | /// |
248 | /// [pdf]: https://drops.dagstuhl.de/opus/volltexte/2016/6389/pdf/LIPIcs-ESA-2016-38.pdf |
249 | fn partition_in_blocks<T, F>(v: &mut [T], pivot: &T, is_less: &F) -> usize |
250 | where |
251 | F: Fn(&T, &T) -> bool, |
252 | { |
253 | // Number of elements in a typical block. |
254 | const BLOCK: usize = 128; |
255 | |
256 | // The partitioning algorithm repeats the following steps until completion: |
257 | // |
258 | // 1. Trace a block from the left side to identify elements greater than or equal to the pivot. |
259 | // 2. Trace a block from the right side to identify elements smaller than the pivot. |
260 | // 3. Exchange the identified elements between the left and right side. |
261 | // |
262 | // We keep the following variables for a block of elements: |
263 | // |
264 | // 1. `block` - Number of elements in the block. |
265 | // 2. `start` - Start pointer into the `offsets` array. |
266 | // 3. `end` - End pointer into the `offsets` array. |
267 | // 4. `offsets - Indices of out-of-order elements within the block. |
268 | |
269 | // The current block on the left side (from `l` to `l.add(block_l)`). |
270 | let mut l = v.as_mut_ptr(); |
271 | let mut block_l = BLOCK; |
272 | let mut start_l = ptr::null_mut(); |
273 | let mut end_l = ptr::null_mut(); |
274 | let mut offsets_l = [MaybeUninit::<u8>::uninit(); BLOCK]; |
275 | |
276 | // The current block on the right side (from `r.sub(block_r)` to `r`). |
277 | // SAFETY: The documentation for .add() specifically mention that `vec.as_ptr().add(vec.len())` is always safe` |
278 | let mut r = unsafe { l.add(v.len()) }; |
279 | let mut block_r = BLOCK; |
280 | let mut start_r = ptr::null_mut(); |
281 | let mut end_r = ptr::null_mut(); |
282 | let mut offsets_r = [MaybeUninit::<u8>::uninit(); BLOCK]; |
283 | |
284 | // FIXME: When we get VLAs, try creating one array of length `min(v.len(), 2 * BLOCK)` rather |
285 | // than two fixed-size arrays of length `BLOCK`. VLAs might be more cache-efficient. |
286 | |
287 | // Returns the number of elements between pointers `l` (inclusive) and `r` (exclusive). |
288 | fn width<T>(l: *mut T, r: *mut T) -> usize { |
289 | assert!(mem::size_of::<T>() > 0); |
290 | // FIXME: this should *likely* use `offset_from`, but more |
291 | // investigation is needed (including running tests in miri). |
292 | // TODO unstable: (r.addr() - l.addr()) / mem::size_of::<T>() |
293 | (r as usize - l as usize) / mem::size_of::<T>() |
294 | } |
295 | |
296 | loop { |
297 | // We are done with partitioning block-by-block when `l` and `r` get very close. Then we do |
298 | // some patch-up work in order to partition the remaining elements in between. |
299 | let is_done = width(l, r) <= 2 * BLOCK; |
300 | |
301 | if is_done { |
302 | // Number of remaining elements (still not compared to the pivot). |
303 | let mut rem = width(l, r); |
304 | if start_l < end_l || start_r < end_r { |
305 | rem -= BLOCK; |
306 | } |
307 | |
308 | // Adjust block sizes so that the left and right block don't overlap, but get perfectly |
309 | // aligned to cover the whole remaining gap. |
310 | if start_l < end_l { |
311 | block_r = rem; |
312 | } else if start_r < end_r { |
313 | block_l = rem; |
314 | } else { |
315 | // There were the same number of elements to switch on both blocks during the last |
316 | // iteration, so there are no remaining elements on either block. Cover the remaining |
317 | // items with roughly equally-sized blocks. |
318 | block_l = rem / 2; |
319 | block_r = rem - block_l; |
320 | } |
321 | debug_assert!(block_l <= BLOCK && block_r <= BLOCK); |
322 | debug_assert!(width(l, r) == block_l + block_r); |
323 | } |
324 | |
325 | if start_l == end_l { |
326 | // Trace `block_l` elements from the left side. |
327 | // TODO unstable: start_l = MaybeUninit::slice_as_mut_ptr(&mut offsets_l); |
328 | start_l = offsets_l.as_mut_ptr() as *mut u8; |
329 | end_l = start_l; |
330 | let mut elem = l; |
331 | |
332 | for i in 0..block_l { |
333 | // SAFETY: The unsafety operations below involve the usage of the `offset`. |
334 | // According to the conditions required by the function, we satisfy them because: |
335 | // 1. `offsets_l` is stack-allocated, and thus considered separate allocated object. |
336 | // 2. The function `is_less` returns a `bool`. |
337 | // Casting a `bool` will never overflow `isize`. |
338 | // 3. We have guaranteed that `block_l` will be `<= BLOCK`. |
339 | // Plus, `end_l` was initially set to the begin pointer of `offsets_` which was declared on the stack. |
340 | // Thus, we know that even in the worst case (all invocations of `is_less` returns false) we will only be at most 1 byte pass the end. |
341 | // Another unsafety operation here is dereferencing `elem`. |
342 | // However, `elem` was initially the begin pointer to the slice which is always valid. |
343 | unsafe { |
344 | // Branchless comparison. |
345 | *end_l = i as u8; |
346 | end_l = end_l.offset(!is_less(&*elem, pivot) as isize); |
347 | elem = elem.offset(1); |
348 | } |
349 | } |
350 | } |
351 | |
352 | if start_r == end_r { |
353 | // Trace `block_r` elements from the right side. |
354 | // TODO unstable: start_r = MaybeUninit::slice_as_mut_ptr(&mut offsets_r); |
355 | start_r = offsets_r.as_mut_ptr() as *mut u8; |
356 | end_r = start_r; |
357 | let mut elem = r; |
358 | |
359 | for i in 0..block_r { |
360 | // SAFETY: The unsafety operations below involve the usage of the `offset`. |
361 | // According to the conditions required by the function, we satisfy them because: |
362 | // 1. `offsets_r` is stack-allocated, and thus considered separate allocated object. |
363 | // 2. The function `is_less` returns a `bool`. |
364 | // Casting a `bool` will never overflow `isize`. |
365 | // 3. We have guaranteed that `block_r` will be `<= BLOCK`. |
366 | // Plus, `end_r` was initially set to the begin pointer of `offsets_` which was declared on the stack. |
367 | // Thus, we know that even in the worst case (all invocations of `is_less` returns true) we will only be at most 1 byte pass the end. |
368 | // Another unsafety operation here is dereferencing `elem`. |
369 | // However, `elem` was initially `1 * sizeof(T)` past the end and we decrement it by `1 * sizeof(T)` before accessing it. |
370 | // Plus, `block_r` was asserted to be less than `BLOCK` and `elem` will therefore at most be pointing to the beginning of the slice. |
371 | unsafe { |
372 | // Branchless comparison. |
373 | elem = elem.offset(-1); |
374 | *end_r = i as u8; |
375 | end_r = end_r.offset(is_less(&*elem, pivot) as isize); |
376 | } |
377 | } |
378 | } |
379 | |
380 | // Number of out-of-order elements to swap between the left and right side. |
381 | let count = cmp::min(width(start_l, end_l), width(start_r, end_r)); |
382 | |
383 | if count > 0 { |
384 | macro_rules! left { |
385 | () => { |
386 | l.offset(*start_l as isize) |
387 | }; |
388 | } |
389 | macro_rules! right { |
390 | () => { |
391 | r.offset(-(*start_r as isize) - 1) |
392 | }; |
393 | } |
394 | |
395 | // Instead of swapping one pair at the time, it is more efficient to perform a cyclic |
396 | // permutation. This is not strictly equivalent to swapping, but produces a similar |
397 | // result using fewer memory operations. |
398 | |
399 | // SAFETY: The use of `ptr::read` is valid because there is at least one element in |
400 | // both `offsets_l` and `offsets_r`, so `left!` is a valid pointer to read from. |
401 | // |
402 | // The uses of `left!` involve calls to `offset` on `l`, which points to the |
403 | // beginning of `v`. All the offsets pointed-to by `start_l` are at most `block_l`, so |
404 | // these `offset` calls are safe as all reads are within the block. The same argument |
405 | // applies for the uses of `right!`. |
406 | // |
407 | // The calls to `start_l.offset` are valid because there are at most `count-1` of them, |
408 | // plus the final one at the end of the unsafe block, where `count` is the minimum number |
409 | // of collected offsets in `offsets_l` and `offsets_r`, so there is no risk of there not |
410 | // being enough elements. The same reasoning applies to the calls to `start_r.offset`. |
411 | // |
412 | // The calls to `copy_nonoverlapping` are safe because `left!` and `right!` are guaranteed |
413 | // not to overlap, and are valid because of the reasoning above. |
414 | unsafe { |
415 | let tmp = ptr::read(left!()); |
416 | ptr::copy_nonoverlapping(right!(), left!(), 1); |
417 | |
418 | for _ in 1..count { |
419 | start_l = start_l.offset(1); |
420 | ptr::copy_nonoverlapping(left!(), right!(), 1); |
421 | start_r = start_r.offset(1); |
422 | ptr::copy_nonoverlapping(right!(), left!(), 1); |
423 | } |
424 | |
425 | ptr::copy_nonoverlapping(&tmp, right!(), 1); |
426 | mem::forget(tmp); |
427 | start_l = start_l.offset(1); |
428 | start_r = start_r.offset(1); |
429 | } |
430 | } |
431 | |
432 | if start_l == end_l { |
433 | // All out-of-order elements in the left block were moved. Move to the next block. |
434 | |
435 | // block-width-guarantee |
436 | // SAFETY: if `!is_done` then the slice width is guaranteed to be at least `2*BLOCK` wide. There |
437 | // are at most `BLOCK` elements in `offsets_l` because of its size, so the `offset` operation is |
438 | // safe. Otherwise, the debug assertions in the `is_done` case guarantee that |
439 | // `width(l, r) == block_l + block_r`, namely, that the block sizes have been adjusted to account |
440 | // for the smaller number of remaining elements. |
441 | l = unsafe { l.add(block_l) }; |
442 | } |
443 | |
444 | if start_r == end_r { |
445 | // All out-of-order elements in the right block were moved. Move to the previous block. |
446 | |
447 | // SAFETY: Same argument as [block-width-guarantee]. Either this is a full block `2*BLOCK`-wide, |
448 | // or `block_r` has been adjusted for the last handful of elements. |
449 | r = unsafe { r.offset(-(block_r as isize)) }; |
450 | } |
451 | |
452 | if is_done { |
453 | break; |
454 | } |
455 | } |
456 | |
457 | // All that remains now is at most one block (either the left or the right) with out-of-order |
458 | // elements that need to be moved. Such remaining elements can be simply shifted to the end |
459 | // within their block. |
460 | |
461 | if start_l < end_l { |
462 | // The left block remains. |
463 | // Move its remaining out-of-order elements to the far right. |
464 | debug_assert_eq!(width(l, r), block_l); |
465 | while start_l < end_l { |
466 | // remaining-elements-safety |
467 | // SAFETY: while the loop condition holds there are still elements in `offsets_l`, so it |
468 | // is safe to point `end_l` to the previous element. |
469 | // |
470 | // The `ptr::swap` is safe if both its arguments are valid for reads and writes: |
471 | // - Per the debug assert above, the distance between `l` and `r` is `block_l` |
472 | // elements, so there can be at most `block_l` remaining offsets between `start_l` |
473 | // and `end_l`. This means `r` will be moved at most `block_l` steps back, which |
474 | // makes the `r.offset` calls valid (at that point `l == r`). |
475 | // - `offsets_l` contains valid offsets into `v` collected during the partitioning of |
476 | // the last block, so the `l.offset` calls are valid. |
477 | unsafe { |
478 | end_l = end_l.offset(-1); |
479 | ptr::swap(l.offset(*end_l as isize), r.offset(-1)); |
480 | r = r.offset(-1); |
481 | } |
482 | } |
483 | width(v.as_mut_ptr(), r) |
484 | } else if start_r < end_r { |
485 | // The right block remains. |
486 | // Move its remaining out-of-order elements to the far left. |
487 | debug_assert_eq!(width(l, r), block_r); |
488 | while start_r < end_r { |
489 | // SAFETY: See the reasoning in [remaining-elements-safety]. |
490 | unsafe { |
491 | end_r = end_r.offset(-1); |
492 | ptr::swap(l, r.offset(-(*end_r as isize) - 1)); |
493 | l = l.offset(1); |
494 | } |
495 | } |
496 | width(v.as_mut_ptr(), l) |
497 | } else { |
498 | // Nothing else to do, we're done. |
499 | width(v.as_mut_ptr(), l) |
500 | } |
501 | } |
502 | |
503 | /// Partitions `v` into elements smaller than `v[pivot]`, followed by elements greater than or |
504 | /// equal to `v[pivot]`. |
505 | /// |
506 | /// Returns a tuple of: |
507 | /// |
508 | /// 1. Number of elements smaller than `v[pivot]`. |
509 | /// 2. True if `v` was already partitioned. |
510 | fn partition<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> (usize, bool) |
511 | where |
512 | F: Fn(&T, &T) -> bool, |
513 | { |
514 | let (mid, was_partitioned) = { |
515 | // Place the pivot at the beginning of slice. |
516 | v.swap(0, pivot); |
517 | let (pivot, v) = v.split_at_mut(1); |
518 | let pivot = &mut pivot[0]; |
519 | |
520 | // Read the pivot into a stack-allocated variable for efficiency. If a following comparison |
521 | // operation panics, the pivot will be automatically written back into the slice. |
522 | |
523 | // SAFETY: `pivot` is a reference to the first element of `v`, so `ptr::read` is safe. |
524 | let tmp = mem::ManuallyDrop::new(unsafe { ptr::read(pivot) }); |
525 | let _pivot_guard = unsafe { CopyOnDrop::new(&*tmp, pivot) }; |
526 | let pivot = &*tmp; |
527 | |
528 | // Find the first pair of out-of-order elements. |
529 | let mut l = 0; |
530 | let mut r = v.len(); |
531 | |
532 | // SAFETY: The unsafety below involves indexing an array. |
533 | // For the first one: We already do the bounds checking here with `l < r`. |
534 | // For the second one: We initially have `l == 0` and `r == v.len()` and we checked that `l < r` at every indexing operation. |
535 | // From here we know that `r` must be at least `r == l` which was shown to be valid from the first one. |
536 | unsafe { |
537 | // Find the first element greater than or equal to the pivot. |
538 | while l < r && is_less(v.get_unchecked(l), pivot) { |
539 | l += 1; |
540 | } |
541 | |
542 | // Find the last element smaller that the pivot. |
543 | while l < r && !is_less(v.get_unchecked(r - 1), pivot) { |
544 | r -= 1; |
545 | } |
546 | } |
547 | |
548 | ( |
549 | l + partition_in_blocks(&mut v[l..r], pivot, is_less), |
550 | l >= r, |
551 | ) |
552 | |
553 | // `_pivot_guard` goes out of scope and writes the pivot (which is a stack-allocated |
554 | // variable) back into the slice where it originally was. This step is critical in ensuring |
555 | // safety! |
556 | }; |
557 | |
558 | // Place the pivot between the two partitions. |
559 | v.swap(0, mid); |
560 | |
561 | (mid, was_partitioned) |
562 | } |
563 | |
564 | /// Partitions `v` into elements equal to `v[pivot]` followed by elements greater than `v[pivot]`. |
565 | /// |
566 | /// Returns the number of elements equal to the pivot. It is assumed that `v` does not contain |
567 | /// elements smaller than the pivot. |
568 | fn partition_equal<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> usize |
569 | where |
570 | F: Fn(&T, &T) -> bool, |
571 | { |
572 | // Place the pivot at the beginning of slice. |
573 | v.swap(0, pivot); |
574 | let (pivot, v) = v.split_at_mut(1); |
575 | let pivot = &mut pivot[0]; |
576 | |
577 | // Read the pivot into a stack-allocated variable for efficiency. If a following comparison |
578 | // operation panics, the pivot will be automatically written back into the slice. |
579 | // SAFETY: The pointer here is valid because it is obtained from a reference to a slice. |
580 | let tmp = mem::ManuallyDrop::new(unsafe { ptr::read(pivot) }); |
581 | let _pivot_guard = unsafe { CopyOnDrop::new(&*tmp, pivot) }; |
582 | let pivot = &*tmp; |
583 | |
584 | // Now partition the slice. |
585 | let mut l = 0; |
586 | let mut r = v.len(); |
587 | loop { |
588 | // SAFETY: The unsafety below involves indexing an array. |
589 | // For the first one: We already do the bounds checking here with `l < r`. |
590 | // For the second one: We initially have `l == 0` and `r == v.len()` and we checked that `l < r` at every indexing operation. |
591 | // From here we know that `r` must be at least `r == l` which was shown to be valid from the first one. |
592 | unsafe { |
593 | // Find the first element greater than the pivot. |
594 | while l < r && !is_less(pivot, v.get_unchecked(l)) { |
595 | l += 1; |
596 | } |
597 | |
598 | // Find the last element equal to the pivot. |
599 | while l < r && is_less(pivot, v.get_unchecked(r - 1)) { |
600 | r -= 1; |
601 | } |
602 | |
603 | // Are we done? |
604 | if l >= r { |
605 | break; |
606 | } |
607 | |
608 | // Swap the found pair of out-of-order elements. |
609 | r -= 1; |
610 | let ptr = v.as_mut_ptr(); |
611 | ptr::swap(ptr.add(l), ptr.add(r)); |
612 | l += 1; |
613 | } |
614 | } |
615 | |
616 | // We found `l` elements equal to the pivot. Add 1 to account for the pivot itself. |
617 | l + 1 |
618 | |
619 | // `_pivot_guard` goes out of scope and writes the pivot (which is a stack-allocated variable) |
620 | // back into the slice where it originally was. This step is critical in ensuring safety! |
621 | } |
622 | |
623 | /// Scatters some elements around in an attempt to break patterns that might cause imbalanced |
624 | /// partitions in quicksort. |
625 | #[cold ] |
626 | fn break_patterns<T>(v: &mut [T]) { |
627 | let len = v.len(); |
628 | if len >= 8 { |
629 | // Pseudorandom number generator from the "Xorshift RNGs" paper by George Marsaglia. |
630 | let mut random = len as u32; |
631 | let mut gen_u32 = || { |
632 | random ^= random << 13; |
633 | random ^= random >> 17; |
634 | random ^= random << 5; |
635 | random |
636 | }; |
637 | let mut gen_usize = || { |
638 | if usize::BITS <= 32 { |
639 | gen_u32() as usize |
640 | } else { |
641 | (((gen_u32() as u64) << 32) | (gen_u32() as u64)) as usize |
642 | } |
643 | }; |
644 | |
645 | // Take random numbers modulo this number. |
646 | // The number fits into `usize` because `len` is not greater than `isize::MAX`. |
647 | let modulus = len.next_power_of_two(); |
648 | |
649 | // Some pivot candidates will be in the nearby of this index. Let's randomize them. |
650 | let pos = len / 4 * 2; |
651 | |
652 | for i in 0..3 { |
653 | // Generate a random number modulo `len`. However, in order to avoid costly operations |
654 | // we first take it modulo a power of two, and then decrease by `len` until it fits |
655 | // into the range `[0, len - 1]`. |
656 | let mut other = gen_usize() & (modulus - 1); |
657 | |
658 | // `other` is guaranteed to be less than `2 * len`. |
659 | if other >= len { |
660 | other -= len; |
661 | } |
662 | |
663 | v.swap(pos - 1 + i, other); |
664 | } |
665 | } |
666 | } |
667 | |
668 | /// Chooses a pivot in `v` and returns the index and `true` if the slice is likely already sorted. |
669 | /// |
670 | /// Elements in `v` might be reordered in the process. |
671 | fn choose_pivot<T, F>(v: &mut [T], is_less: &F) -> (usize, bool) |
672 | where |
673 | F: Fn(&T, &T) -> bool, |
674 | { |
675 | // Minimum length to choose the median-of-medians method. |
676 | // Shorter slices use the simple median-of-three method. |
677 | const SHORTEST_MEDIAN_OF_MEDIANS: usize = 50; |
678 | // Maximum number of swaps that can be performed in this function. |
679 | const MAX_SWAPS: usize = 4 * 3; |
680 | |
681 | let len = v.len(); |
682 | |
683 | // Three indices near which we are going to choose a pivot. |
684 | #[allow (clippy::identity_op)] |
685 | let mut a = len / 4 * 1; |
686 | let mut b = len / 4 * 2; |
687 | let mut c = len / 4 * 3; |
688 | |
689 | // Counts the total number of swaps we are about to perform while sorting indices. |
690 | let mut swaps = 0; |
691 | |
692 | if len >= 8 { |
693 | // Swaps indices so that `v[a] <= v[b]`. |
694 | // SAFETY: `len >= 8` so there are at least two elements in the neighborhoods of |
695 | // `a`, `b` and `c`. This means the three calls to `sort_adjacent` result in |
696 | // corresponding calls to `sort3` with valid 3-item neighborhoods around each |
697 | // pointer, which in turn means the calls to `sort2` are done with valid |
698 | // references. Thus the `v.get_unchecked` calls are safe, as is the `ptr::swap` |
699 | // call. |
700 | let mut sort2 = |a: &mut usize, b: &mut usize| unsafe { |
701 | if is_less(v.get_unchecked(*b), v.get_unchecked(*a)) { |
702 | ptr::swap(a, b); |
703 | swaps += 1; |
704 | } |
705 | }; |
706 | |
707 | // Swaps indices so that `v[a] <= v[b] <= v[c]`. |
708 | let mut sort3 = |a: &mut usize, b: &mut usize, c: &mut usize| { |
709 | sort2(a, b); |
710 | sort2(b, c); |
711 | sort2(a, b); |
712 | }; |
713 | |
714 | if len >= SHORTEST_MEDIAN_OF_MEDIANS { |
715 | // Finds the median of `v[a - 1], v[a], v[a + 1]` and stores the index into `a`. |
716 | let mut sort_adjacent = |a: &mut usize| { |
717 | let tmp = *a; |
718 | sort3(&mut (tmp - 1), a, &mut (tmp + 1)); |
719 | }; |
720 | |
721 | // Find medians in the neighborhoods of `a`, `b`, and `c`. |
722 | sort_adjacent(&mut a); |
723 | sort_adjacent(&mut b); |
724 | sort_adjacent(&mut c); |
725 | } |
726 | |
727 | // Find the median among `a`, `b`, and `c`. |
728 | sort3(&mut a, &mut b, &mut c); |
729 | } |
730 | |
731 | if swaps < MAX_SWAPS { |
732 | (b, swaps == 0) |
733 | } else { |
734 | // The maximum number of swaps was performed. Chances are the slice is descending or mostly |
735 | // descending, so reversing will probably help sort it faster. |
736 | v.reverse(); |
737 | (len - 1 - b, true) |
738 | } |
739 | } |
740 | |
741 | /// Sorts `v` recursively. |
742 | /// |
743 | /// If the slice had a predecessor in the original array, it is specified as `pred`. |
744 | /// |
745 | /// `limit` is the number of allowed imbalanced partitions before switching to `heapsort`. If zero, |
746 | /// this function will immediately switch to heapsort. |
747 | fn recurse<'a, T, F>(mut v: &'a mut [T], is_less: &F, mut pred: Option<&'a mut T>, mut limit: u32) |
748 | where |
749 | T: Send, |
750 | F: Fn(&T, &T) -> bool + Sync, |
751 | { |
752 | // Slices of up to this length get sorted using insertion sort. |
753 | const MAX_INSERTION: usize = 20; |
754 | // If both partitions are up to this length, we continue sequentially. This number is as small |
755 | // as possible but so that the overhead of Rayon's task scheduling is still negligible. |
756 | const MAX_SEQUENTIAL: usize = 2000; |
757 | |
758 | // True if the last partitioning was reasonably balanced. |
759 | let mut was_balanced = true; |
760 | // True if the last partitioning didn't shuffle elements (the slice was already partitioned). |
761 | let mut was_partitioned = true; |
762 | |
763 | loop { |
764 | let len = v.len(); |
765 | |
766 | // Very short slices get sorted using insertion sort. |
767 | if len <= MAX_INSERTION { |
768 | insertion_sort(v, is_less); |
769 | return; |
770 | } |
771 | |
772 | // If too many bad pivot choices were made, simply fall back to heapsort in order to |
773 | // guarantee `O(n * log(n))` worst-case. |
774 | if limit == 0 { |
775 | heapsort(v, is_less); |
776 | return; |
777 | } |
778 | |
779 | // If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling |
780 | // some elements around. Hopefully we'll choose a better pivot this time. |
781 | if !was_balanced { |
782 | break_patterns(v); |
783 | limit -= 1; |
784 | } |
785 | |
786 | // Choose a pivot and try guessing whether the slice is already sorted. |
787 | let (pivot, likely_sorted) = choose_pivot(v, is_less); |
788 | |
789 | // If the last partitioning was decently balanced and didn't shuffle elements, and if pivot |
790 | // selection predicts the slice is likely already sorted... |
791 | if was_balanced && was_partitioned && likely_sorted { |
792 | // Try identifying several out-of-order elements and shifting them to correct |
793 | // positions. If the slice ends up being completely sorted, we're done. |
794 | if partial_insertion_sort(v, is_less) { |
795 | return; |
796 | } |
797 | } |
798 | |
799 | // If the chosen pivot is equal to the predecessor, then it's the smallest element in the |
800 | // slice. Partition the slice into elements equal to and elements greater than the pivot. |
801 | // This case is usually hit when the slice contains many duplicate elements. |
802 | if let Some(ref p) = pred { |
803 | if !is_less(p, &v[pivot]) { |
804 | let mid = partition_equal(v, pivot, is_less); |
805 | |
806 | // Continue sorting elements greater than the pivot. |
807 | v = &mut v[mid..]; |
808 | continue; |
809 | } |
810 | } |
811 | |
812 | // Partition the slice. |
813 | let (mid, was_p) = partition(v, pivot, is_less); |
814 | was_balanced = cmp::min(mid, len - mid) >= len / 8; |
815 | was_partitioned = was_p; |
816 | |
817 | // Split the slice into `left`, `pivot`, and `right`. |
818 | let (left, right) = v.split_at_mut(mid); |
819 | let (pivot, right) = right.split_at_mut(1); |
820 | let pivot = &mut pivot[0]; |
821 | |
822 | if cmp::max(left.len(), right.len()) <= MAX_SEQUENTIAL { |
823 | // Recurse into the shorter side only in order to minimize the total number of recursive |
824 | // calls and consume less stack space. Then just continue with the longer side (this is |
825 | // akin to tail recursion). |
826 | if left.len() < right.len() { |
827 | recurse(left, is_less, pred, limit); |
828 | v = right; |
829 | pred = Some(pivot); |
830 | } else { |
831 | recurse(right, is_less, Some(pivot), limit); |
832 | v = left; |
833 | } |
834 | } else { |
835 | // Sort the left and right half in parallel. |
836 | rayon_core::join( |
837 | || recurse(left, is_less, pred, limit), |
838 | || recurse(right, is_less, Some(pivot), limit), |
839 | ); |
840 | break; |
841 | } |
842 | } |
843 | } |
844 | |
845 | /// Sorts `v` using pattern-defeating quicksort in parallel. |
846 | /// |
847 | /// The algorithm is unstable, in-place, and *O*(*n* \* log(*n*)) worst-case. |
848 | pub(super) fn par_quicksort<T, F>(v: &mut [T], is_less: F) |
849 | where |
850 | T: Send, |
851 | F: Fn(&T, &T) -> bool + Sync, |
852 | { |
853 | // Sorting has no meaningful behavior on zero-sized types. |
854 | if mem::size_of::<T>() == 0 { |
855 | return; |
856 | } |
857 | |
858 | // Limit the number of imbalanced partitions to `floor(log2(len)) + 1`. |
859 | let limit = usize::BITS - v.len().leading_zeros(); |
860 | |
861 | recurse(v, &is_less, None, limit); |
862 | } |
863 | |
864 | #[cfg (test)] |
865 | mod tests { |
866 | use super::heapsort; |
867 | use rand::distributions::Uniform; |
868 | use rand::{thread_rng, Rng}; |
869 | |
870 | #[test] |
871 | fn test_heapsort() { |
872 | let rng = &mut thread_rng(); |
873 | |
874 | for len in (0..25).chain(500..501) { |
875 | for &modulus in &[5, 10, 100] { |
876 | let dist = Uniform::new(0, modulus); |
877 | for _ in 0..100 { |
878 | let v: Vec<i32> = rng.sample_iter(&dist).take(len).collect(); |
879 | |
880 | // Test heapsort using `<` operator. |
881 | let mut tmp = v.clone(); |
882 | heapsort(&mut tmp, &|a, b| a < b); |
883 | assert!(tmp.windows(2).all(|w| w[0] <= w[1])); |
884 | |
885 | // Test heapsort using `>` operator. |
886 | let mut tmp = v.clone(); |
887 | heapsort(&mut tmp, &|a, b| a > b); |
888 | assert!(tmp.windows(2).all(|w| w[0] >= w[1])); |
889 | } |
890 | } |
891 | } |
892 | |
893 | // Sort using a completely random comparison function. |
894 | // This will reorder the elements *somehow*, but won't panic. |
895 | let mut v: Vec<_> = (0..100).collect(); |
896 | heapsort(&mut v, &|_, _| thread_rng().gen()); |
897 | heapsort(&mut v, &|a, b| a < b); |
898 | |
899 | for (i, &entry) in v.iter().enumerate() { |
900 | assert_eq!(entry, i); |
901 | } |
902 | } |
903 | } |
904 | |