| 1 | //===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_ADT_TINYPTRVECTOR_H |
| 10 | #define LLVM_ADT_TINYPTRVECTOR_H |
| 11 | |
| 12 | #include "llvm/ADT/ArrayRef.h" |
| 13 | #include "llvm/ADT/PointerUnion.h" |
| 14 | #include "llvm/ADT/SmallVector.h" |
| 15 | #include <cassert> |
| 16 | #include <cstddef> |
| 17 | #include <iterator> |
| 18 | #include <type_traits> |
| 19 | |
| 20 | namespace llvm { |
| 21 | |
| 22 | /// TinyPtrVector - This class is specialized for cases where there are |
| 23 | /// normally 0 or 1 element in a vector, but is general enough to go beyond that |
| 24 | /// when required. |
| 25 | /// |
| 26 | /// NOTE: This container doesn't allow you to store a null pointer into it. |
| 27 | /// |
| 28 | template <typename EltTy> |
| 29 | class TinyPtrVector { |
| 30 | public: |
| 31 | using VecTy = SmallVector<EltTy, 4>; |
| 32 | using value_type = typename VecTy::value_type; |
| 33 | // EltTy must be the first pointer type so that is<EltTy> is true for the |
| 34 | // default-constructed PtrUnion. This allows an empty TinyPtrVector to |
| 35 | // naturally vend a begin/end iterator of type EltTy* without an additional |
| 36 | // check for the empty state. |
| 37 | using PtrUnion = PointerUnion<EltTy, VecTy *>; |
| 38 | |
| 39 | private: |
| 40 | PtrUnion Val; |
| 41 | |
| 42 | public: |
| 43 | TinyPtrVector() = default; |
| 44 | |
| 45 | ~TinyPtrVector() { |
| 46 | if (VecTy *V = dyn_cast_if_present<VecTy *>(Val)) |
| 47 | delete V; |
| 48 | } |
| 49 | |
| 50 | TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) { |
| 51 | if (VecTy *V = dyn_cast_if_present<VecTy *>(Val)) |
| 52 | Val = new VecTy(*V); |
| 53 | } |
| 54 | |
| 55 | TinyPtrVector &operator=(const TinyPtrVector &RHS) { |
| 56 | if (this == &RHS) |
| 57 | return *this; |
| 58 | if (RHS.empty()) { |
| 59 | this->clear(); |
| 60 | return *this; |
| 61 | } |
| 62 | |
| 63 | // Try to squeeze into the single slot. If it won't fit, allocate a copied |
| 64 | // vector. |
| 65 | if (isa<EltTy>(Val)) { |
| 66 | if (RHS.size() == 1) |
| 67 | Val = RHS.front(); |
| 68 | else |
| 69 | Val = new VecTy(*cast<VecTy *>(RHS.Val)); |
| 70 | return *this; |
| 71 | } |
| 72 | |
| 73 | // If we have a full vector allocated, try to re-use it. |
| 74 | if (isa<EltTy>(RHS.Val)) { |
| 75 | cast<VecTy *>(Val)->clear(); |
| 76 | cast<VecTy *>(Val)->push_back(RHS.front()); |
| 77 | } else { |
| 78 | *cast<VecTy *>(Val) = *cast<VecTy *>(RHS.Val); |
| 79 | } |
| 80 | return *this; |
| 81 | } |
| 82 | |
| 83 | TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) { |
| 84 | RHS.Val = (EltTy)nullptr; |
| 85 | } |
| 86 | |
| 87 | TinyPtrVector &operator=(TinyPtrVector &&RHS) { |
| 88 | if (this == &RHS) |
| 89 | return *this; |
| 90 | if (RHS.empty()) { |
| 91 | this->clear(); |
| 92 | return *this; |
| 93 | } |
| 94 | |
| 95 | // If this vector has been allocated on the heap, re-use it if cheap. If it |
| 96 | // would require more copying, just delete it and we'll steal the other |
| 97 | // side. |
| 98 | if (VecTy *V = dyn_cast_if_present<VecTy *>(Val)) { |
| 99 | if (isa<EltTy>(RHS.Val)) { |
| 100 | V->clear(); |
| 101 | V->push_back(RHS.front()); |
| 102 | RHS.Val = EltTy(); |
| 103 | return *this; |
| 104 | } |
| 105 | delete V; |
| 106 | } |
| 107 | |
| 108 | Val = RHS.Val; |
| 109 | RHS.Val = EltTy(); |
| 110 | return *this; |
| 111 | } |
| 112 | |
| 113 | TinyPtrVector(std::initializer_list<EltTy> IL) |
| 114 | : Val(IL.size() == 0 |
| 115 | ? PtrUnion() |
| 116 | : IL.size() == 1 ? PtrUnion(*IL.begin()) |
| 117 | : PtrUnion(new VecTy(IL.begin(), IL.end()))) {} |
| 118 | |
| 119 | /// Constructor from an ArrayRef. |
| 120 | /// |
| 121 | /// This also is a constructor for individual array elements due to the single |
| 122 | /// element constructor for ArrayRef. |
| 123 | explicit TinyPtrVector(ArrayRef<EltTy> Elts) |
| 124 | : Val(Elts.empty() |
| 125 | ? PtrUnion() |
| 126 | : Elts.size() == 1 |
| 127 | ? PtrUnion(Elts[0]) |
| 128 | : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {} |
| 129 | |
| 130 | TinyPtrVector(size_t Count, EltTy Value) |
| 131 | : Val(Count == 0 ? PtrUnion() |
| 132 | : Count == 1 ? PtrUnion(Value) |
| 133 | : PtrUnion(new VecTy(Count, Value))) {} |
| 134 | |
| 135 | // implicit conversion operator to ArrayRef. |
| 136 | operator ArrayRef<EltTy>() const { |
| 137 | if (Val.isNull()) |
| 138 | return std::nullopt; |
| 139 | if (isa<EltTy>(Val)) |
| 140 | return *Val.getAddrOfPtr1(); |
| 141 | return *cast<VecTy *>(Val); |
| 142 | } |
| 143 | |
| 144 | // implicit conversion operator to MutableArrayRef. |
| 145 | operator MutableArrayRef<EltTy>() { |
| 146 | if (Val.isNull()) |
| 147 | return std::nullopt; |
| 148 | if (isa<EltTy>(Val)) |
| 149 | return *Val.getAddrOfPtr1(); |
| 150 | return *cast<VecTy *>(Val); |
| 151 | } |
| 152 | |
| 153 | // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*. |
| 154 | template < |
| 155 | typename U, |
| 156 | std::enable_if_t<std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value, |
| 157 | bool> = false> |
| 158 | operator ArrayRef<U>() const { |
| 159 | return operator ArrayRef<EltTy>(); |
| 160 | } |
| 161 | |
| 162 | bool empty() const { |
| 163 | // This vector can be empty if it contains no element, or if it |
| 164 | // contains a pointer to an empty vector. |
| 165 | if (Val.isNull()) return true; |
| 166 | if (VecTy *Vec = dyn_cast_if_present<VecTy *>(Val)) |
| 167 | return Vec->empty(); |
| 168 | return false; |
| 169 | } |
| 170 | |
| 171 | unsigned size() const { |
| 172 | if (empty()) |
| 173 | return 0; |
| 174 | if (isa<EltTy>(Val)) |
| 175 | return 1; |
| 176 | return cast<VecTy *>(Val)->size(); |
| 177 | } |
| 178 | |
| 179 | using iterator = EltTy *; |
| 180 | using const_iterator = const EltTy *; |
| 181 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 182 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 183 | |
| 184 | iterator begin() { |
| 185 | if (isa<EltTy>(Val)) |
| 186 | return Val.getAddrOfPtr1(); |
| 187 | |
| 188 | return cast<VecTy *>(Val)->begin(); |
| 189 | } |
| 190 | |
| 191 | iterator end() { |
| 192 | if (isa<EltTy>(Val)) |
| 193 | return begin() + (Val.isNull() ? 0 : 1); |
| 194 | |
| 195 | return cast<VecTy *>(Val)->end(); |
| 196 | } |
| 197 | |
| 198 | const_iterator begin() const { |
| 199 | return (const_iterator)const_cast<TinyPtrVector*>(this)->begin(); |
| 200 | } |
| 201 | |
| 202 | const_iterator end() const { |
| 203 | return (const_iterator)const_cast<TinyPtrVector*>(this)->end(); |
| 204 | } |
| 205 | |
| 206 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
| 207 | reverse_iterator rend() { return reverse_iterator(begin()); } |
| 208 | |
| 209 | const_reverse_iterator rbegin() const { |
| 210 | return const_reverse_iterator(end()); |
| 211 | } |
| 212 | |
| 213 | const_reverse_iterator rend() const { |
| 214 | return const_reverse_iterator(begin()); |
| 215 | } |
| 216 | |
| 217 | EltTy operator[](unsigned i) const { |
| 218 | assert(!Val.isNull() && "can't index into an empty vector" ); |
| 219 | if (isa<EltTy>(Val)) { |
| 220 | assert(i == 0 && "tinyvector index out of range" ); |
| 221 | return cast<EltTy>(Val); |
| 222 | } |
| 223 | |
| 224 | assert(i < cast<VecTy *>(Val)->size() && "tinyvector index out of range" ); |
| 225 | return (*cast<VecTy *>(Val))[i]; |
| 226 | } |
| 227 | |
| 228 | EltTy front() const { |
| 229 | assert(!empty() && "vector empty" ); |
| 230 | if (isa<EltTy>(Val)) |
| 231 | return cast<EltTy>(Val); |
| 232 | return cast<VecTy *>(Val)->front(); |
| 233 | } |
| 234 | |
| 235 | EltTy back() const { |
| 236 | assert(!empty() && "vector empty" ); |
| 237 | if (isa<EltTy>(Val)) |
| 238 | return cast<EltTy>(Val); |
| 239 | return cast<VecTy *>(Val)->back(); |
| 240 | } |
| 241 | |
| 242 | void push_back(EltTy NewVal) { |
| 243 | // If we have nothing, add something. |
| 244 | if (Val.isNull()) { |
| 245 | Val = NewVal; |
| 246 | assert(!Val.isNull() && "Can't add a null value" ); |
| 247 | return; |
| 248 | } |
| 249 | |
| 250 | // If we have a single value, convert to a vector. |
| 251 | if (isa<EltTy>(Val)) { |
| 252 | EltTy V = cast<EltTy>(Val); |
| 253 | Val = new VecTy(); |
| 254 | cast<VecTy *>(Val)->push_back(V); |
| 255 | } |
| 256 | |
| 257 | // Add the new value, we know we have a vector. |
| 258 | cast<VecTy *>(Val)->push_back(NewVal); |
| 259 | } |
| 260 | |
| 261 | void pop_back() { |
| 262 | // If we have a single value, convert to empty. |
| 263 | if (isa<EltTy>(Val)) |
| 264 | Val = (EltTy)nullptr; |
| 265 | else if (VecTy *Vec = cast<VecTy *>(Val)) |
| 266 | Vec->pop_back(); |
| 267 | } |
| 268 | |
| 269 | void clear() { |
| 270 | // If we have a single value, convert to empty. |
| 271 | if (isa<EltTy>(Val)) { |
| 272 | Val = EltTy(); |
| 273 | } else if (VecTy *Vec = dyn_cast_if_present<VecTy *>(Val)) { |
| 274 | // If we have a vector form, just clear it. |
| 275 | Vec->clear(); |
| 276 | } |
| 277 | // Otherwise, we're already empty. |
| 278 | } |
| 279 | |
| 280 | iterator erase(iterator I) { |
| 281 | assert(I >= begin() && "Iterator to erase is out of bounds." ); |
| 282 | assert(I < end() && "Erasing at past-the-end iterator." ); |
| 283 | |
| 284 | // If we have a single value, convert to empty. |
| 285 | if (isa<EltTy>(Val)) { |
| 286 | if (I == begin()) |
| 287 | Val = EltTy(); |
| 288 | } else if (VecTy *Vec = dyn_cast_if_present<VecTy *>(Val)) { |
| 289 | // multiple items in a vector; just do the erase, there is no |
| 290 | // benefit to collapsing back to a pointer |
| 291 | return Vec->erase(I); |
| 292 | } |
| 293 | return end(); |
| 294 | } |
| 295 | |
| 296 | iterator erase(iterator S, iterator E) { |
| 297 | assert(S >= begin() && "Range to erase is out of bounds." ); |
| 298 | assert(S <= E && "Trying to erase invalid range." ); |
| 299 | assert(E <= end() && "Trying to erase past the end." ); |
| 300 | |
| 301 | if (isa<EltTy>(Val)) { |
| 302 | if (S == begin() && S != E) |
| 303 | Val = EltTy(); |
| 304 | } else if (VecTy *Vec = dyn_cast_if_present<VecTy *>(Val)) { |
| 305 | return Vec->erase(S, E); |
| 306 | } |
| 307 | return end(); |
| 308 | } |
| 309 | |
| 310 | iterator insert(iterator I, const EltTy &Elt) { |
| 311 | assert(I >= this->begin() && "Insertion iterator is out of bounds." ); |
| 312 | assert(I <= this->end() && "Inserting past the end of the vector." ); |
| 313 | if (I == end()) { |
| 314 | push_back(NewVal: Elt); |
| 315 | return std::prev(end()); |
| 316 | } |
| 317 | assert(!Val.isNull() && "Null value with non-end insert iterator." ); |
| 318 | if (isa<EltTy>(Val)) { |
| 319 | EltTy V = cast<EltTy>(Val); |
| 320 | assert(I == begin()); |
| 321 | Val = Elt; |
| 322 | push_back(NewVal: V); |
| 323 | return begin(); |
| 324 | } |
| 325 | |
| 326 | return cast<VecTy *>(Val)->insert(I, Elt); |
| 327 | } |
| 328 | |
| 329 | template<typename ItTy> |
| 330 | iterator insert(iterator I, ItTy From, ItTy To) { |
| 331 | assert(I >= this->begin() && "Insertion iterator is out of bounds." ); |
| 332 | assert(I <= this->end() && "Inserting past the end of the vector." ); |
| 333 | if (From == To) |
| 334 | return I; |
| 335 | |
| 336 | // If we have a single value, convert to a vector. |
| 337 | ptrdiff_t Offset = I - begin(); |
| 338 | if (Val.isNull()) { |
| 339 | if (std::next(From) == To) { |
| 340 | Val = *From; |
| 341 | return begin(); |
| 342 | } |
| 343 | |
| 344 | Val = new VecTy(); |
| 345 | } else if (isa<EltTy>(Val)) { |
| 346 | EltTy V = cast<EltTy>(Val); |
| 347 | Val = new VecTy(); |
| 348 | cast<VecTy *>(Val)->push_back(V); |
| 349 | } |
| 350 | return cast<VecTy *>(Val)->insert(begin() + Offset, From, To); |
| 351 | } |
| 352 | }; |
| 353 | |
| 354 | } // end namespace llvm |
| 355 | |
| 356 | #endif // LLVM_ADT_TINYPTRVECTOR_H |
| 357 | |