| 1 | /* Code for GIMPLE range op related routines. |
| 2 | Copyright (C) 2019-2025 Free Software Foundation, Inc. |
| 3 | Contributed by Andrew MacLeod <amacleod@redhat.com> |
| 4 | and Aldy Hernandez <aldyh@redhat.com>. |
| 5 | |
| 6 | This file is part of GCC. |
| 7 | |
| 8 | GCC is free software; you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation; either version 3, or (at your option) |
| 11 | any later version. |
| 12 | |
| 13 | GCC is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with GCC; see the file COPYING3. If not see |
| 20 | <http://www.gnu.org/licenses/>. */ |
| 21 | |
| 22 | #include "config.h" |
| 23 | #include "system.h" |
| 24 | #include "coretypes.h" |
| 25 | #include "backend.h" |
| 26 | #include "insn-codes.h" |
| 27 | #include "tree.h" |
| 28 | #include "gimple.h" |
| 29 | #include "ssa.h" |
| 30 | #include "gimple-pretty-print.h" |
| 31 | #include "optabs-tree.h" |
| 32 | #include "gimple-iterator.h" |
| 33 | #include "gimple-fold.h" |
| 34 | #include "wide-int.h" |
| 35 | #include "fold-const.h" |
| 36 | #include "case-cfn-macros.h" |
| 37 | #include "omp-general.h" |
| 38 | #include "cfgloop.h" |
| 39 | #include "tree-ssa-loop.h" |
| 40 | #include "tree-scalar-evolution.h" |
| 41 | #include "langhooks.h" |
| 42 | #include "vr-values.h" |
| 43 | #include "range.h" |
| 44 | #include "value-query.h" |
| 45 | #include "gimple-range.h" |
| 46 | #include "attr-fnspec.h" |
| 47 | #include "realmpfr.h" |
| 48 | |
| 49 | // Given stmt S, fill VEC, up to VEC_SIZE elements, with relevant ssa-names |
| 50 | // on the statement. For efficiency, it is an error to not pass in enough |
| 51 | // elements for the vector. Return the number of ssa-names. |
| 52 | |
| 53 | unsigned |
| 54 | gimple_range_ssa_names (tree *vec, unsigned vec_size, gimple *stmt) |
| 55 | { |
| 56 | tree ssa; |
| 57 | int count = 0; |
| 58 | |
| 59 | gimple_range_op_handler handler (stmt); |
| 60 | if (handler) |
| 61 | { |
| 62 | gcc_checking_assert (vec_size >= 2); |
| 63 | if ((ssa = gimple_range_ssa_p (exp: handler.operand1 ()))) |
| 64 | vec[count++] = ssa; |
| 65 | if ((ssa = gimple_range_ssa_p (exp: handler.operand2 ()))) |
| 66 | vec[count++] = ssa; |
| 67 | } |
| 68 | else if (is_a<gassign *> (p: stmt) |
| 69 | && gimple_assign_rhs_code (gs: stmt) == COND_EXPR) |
| 70 | { |
| 71 | gcc_checking_assert (vec_size >= 3); |
| 72 | gassign *st = as_a<gassign *> (p: stmt); |
| 73 | if ((ssa = gimple_range_ssa_p (exp: gimple_assign_rhs1 (gs: st)))) |
| 74 | vec[count++] = ssa; |
| 75 | if ((ssa = gimple_range_ssa_p (exp: gimple_assign_rhs2 (gs: st)))) |
| 76 | vec[count++] = ssa; |
| 77 | if ((ssa = gimple_range_ssa_p (exp: gimple_assign_rhs3 (gs: st)))) |
| 78 | vec[count++] = ssa; |
| 79 | } |
| 80 | return count; |
| 81 | } |
| 82 | |
| 83 | // Return the base of the RHS of an assignment. |
| 84 | |
| 85 | static tree |
| 86 | gimple_range_base_of_assignment (const gimple *stmt) |
| 87 | { |
| 88 | gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); |
| 89 | tree op1 = gimple_assign_rhs1 (gs: stmt); |
| 90 | if (gimple_assign_rhs_code (gs: stmt) == ADDR_EXPR) |
| 91 | return get_base_address (TREE_OPERAND (op1, 0)); |
| 92 | return op1; |
| 93 | } |
| 94 | |
| 95 | // If statement is supported by range-ops, set the CODE and return the TYPE. |
| 96 | |
| 97 | static inline enum tree_code |
| 98 | get_code (gimple *s) |
| 99 | { |
| 100 | if (const gassign *ass = dyn_cast<const gassign *> (p: s)) |
| 101 | return gimple_assign_rhs_code (gs: ass); |
| 102 | if (const gcond *cond = dyn_cast<const gcond *> (p: s)) |
| 103 | return gimple_cond_code (gs: cond); |
| 104 | return ERROR_MARK; |
| 105 | } |
| 106 | |
| 107 | // If statement S has a supported range_op handler return TRUE. |
| 108 | |
| 109 | bool |
| 110 | gimple_range_op_handler::supported_p (gimple *s) |
| 111 | { |
| 112 | enum tree_code code = get_code (s); |
| 113 | if (range_op_handler (code)) |
| 114 | return true; |
| 115 | if (is_a <gcall *> (p: s) && gimple_range_op_handler (s)) |
| 116 | return true; |
| 117 | return false; |
| 118 | } |
| 119 | |
| 120 | // Construct a handler object for statement S. |
| 121 | |
| 122 | gimple_range_op_handler::gimple_range_op_handler (gimple *s) |
| 123 | { |
| 124 | range_op_handler oper (get_code (s)); |
| 125 | m_stmt = s; |
| 126 | m_op1 = NULL_TREE; |
| 127 | m_op2 = NULL_TREE; |
| 128 | |
| 129 | if (oper) |
| 130 | switch (gimple_code (g: m_stmt)) |
| 131 | { |
| 132 | case GIMPLE_COND: |
| 133 | m_op1 = gimple_cond_lhs (gs: m_stmt); |
| 134 | m_op2 = gimple_cond_rhs (gs: m_stmt); |
| 135 | // Check that operands are supported types. One check is enough. |
| 136 | if (value_range::supports_type_p (TREE_TYPE (m_op1))) |
| 137 | m_operator = oper.range_op (); |
| 138 | gcc_checking_assert (m_operator); |
| 139 | return; |
| 140 | case GIMPLE_ASSIGN: |
| 141 | m_op1 = gimple_range_base_of_assignment (stmt: m_stmt); |
| 142 | if (m_op1 && TREE_CODE (m_op1) == MEM_REF) |
| 143 | { |
| 144 | // If the base address is an SSA_NAME, we return it |
| 145 | // here. This allows processing of the range of that |
| 146 | // name, while the rest of the expression is simply |
| 147 | // ignored. The code in range_ops will see the |
| 148 | // ADDR_EXPR and do the right thing. |
| 149 | tree ssa = TREE_OPERAND (m_op1, 0); |
| 150 | if (TREE_CODE (ssa) == SSA_NAME) |
| 151 | m_op1 = ssa; |
| 152 | } |
| 153 | if (gimple_num_ops (gs: m_stmt) >= 3) |
| 154 | m_op2 = gimple_assign_rhs2 (gs: m_stmt); |
| 155 | // Check that operands are supported types. One check is enough. |
| 156 | if ((m_op1 && !value_range::supports_type_p (TREE_TYPE (m_op1)))) |
| 157 | return; |
| 158 | m_operator = oper.range_op (); |
| 159 | gcc_checking_assert (m_operator); |
| 160 | return; |
| 161 | default: |
| 162 | gcc_unreachable (); |
| 163 | return; |
| 164 | } |
| 165 | // If no range-op table entry handled this stmt, check for other supported |
| 166 | // statements. |
| 167 | if (is_a <gcall *> (p: m_stmt)) |
| 168 | maybe_builtin_call (); |
| 169 | else |
| 170 | maybe_non_standard (); |
| 171 | gcc_checking_assert (m_operator); |
| 172 | } |
| 173 | |
| 174 | // Calculate what we can determine of the range of this unary |
| 175 | // statement's operand if the lhs of the expression has the range |
| 176 | // LHS_RANGE. Return false if nothing can be determined. |
| 177 | |
| 178 | bool |
| 179 | gimple_range_op_handler::calc_op1 (vrange &r, const vrange &lhs_range) |
| 180 | { |
| 181 | // Give up on empty ranges. |
| 182 | if (lhs_range.undefined_p ()) |
| 183 | return false; |
| 184 | |
| 185 | // Unary operations require the type of the first operand in the |
| 186 | // second range position. |
| 187 | tree type = TREE_TYPE (operand1 ()); |
| 188 | value_range type_range (type); |
| 189 | type_range.set_varying (type); |
| 190 | return op1_range (r, type, lhs: lhs_range, op2: type_range); |
| 191 | } |
| 192 | |
| 193 | // Calculate what we can determine of the range of this statement's |
| 194 | // first operand if the lhs of the expression has the range LHS_RANGE |
| 195 | // and the second operand has the range OP2_RANGE. Return false if |
| 196 | // nothing can be determined. |
| 197 | |
| 198 | bool |
| 199 | gimple_range_op_handler::calc_op1 (vrange &r, const vrange &lhs_range, |
| 200 | const vrange &op2_range, relation_trio k) |
| 201 | { |
| 202 | // Give up on empty ranges. |
| 203 | if (lhs_range.undefined_p ()) |
| 204 | return false; |
| 205 | |
| 206 | // Unary operation are allowed to pass a range in for second operand |
| 207 | // as there are often additional restrictions beyond the type which |
| 208 | // can be imposed. See operator_cast::op1_range(). |
| 209 | tree type = TREE_TYPE (operand1 ()); |
| 210 | // If op2 is undefined, solve as if it is varying. |
| 211 | if (op2_range.undefined_p ()) |
| 212 | { |
| 213 | if (gimple_num_ops (gs: m_stmt) < 3) |
| 214 | return false; |
| 215 | tree op2_type; |
| 216 | // This is sometimes invoked on single operand stmts. |
| 217 | if (operand2 ()) |
| 218 | op2_type = TREE_TYPE (operand2 ()); |
| 219 | else |
| 220 | op2_type = TREE_TYPE (operand1 ()); |
| 221 | value_range trange (op2_type); |
| 222 | trange.set_varying (op2_type); |
| 223 | return op1_range (r, type, lhs: lhs_range, op2: trange, k); |
| 224 | } |
| 225 | return op1_range (r, type, lhs: lhs_range, op2: op2_range, k); |
| 226 | } |
| 227 | |
| 228 | // Calculate what we can determine of the range of this statement's |
| 229 | // second operand if the lhs of the expression has the range LHS_RANGE |
| 230 | // and the first operand has the range OP1_RANGE. Return false if |
| 231 | // nothing can be determined. |
| 232 | |
| 233 | bool |
| 234 | gimple_range_op_handler::calc_op2 (vrange &r, const vrange &lhs_range, |
| 235 | const vrange &op1_range, relation_trio k) |
| 236 | { |
| 237 | // Give up on empty ranges. |
| 238 | if (lhs_range.undefined_p ()) |
| 239 | return false; |
| 240 | |
| 241 | tree type = TREE_TYPE (operand2 ()); |
| 242 | // If op1 is undefined, solve as if it is varying. |
| 243 | if (op1_range.undefined_p ()) |
| 244 | { |
| 245 | tree op1_type = TREE_TYPE (operand1 ()); |
| 246 | value_range trange (op1_type); |
| 247 | trange.set_varying (op1_type); |
| 248 | return op2_range (r, type, lhs: lhs_range, op1: trange, k); |
| 249 | } |
| 250 | return op2_range (r, type, lhs: lhs_range, op1: op1_range, k); |
| 251 | } |
| 252 | |
| 253 | // -------------------------------------------------------------------- |
| 254 | |
| 255 | // Implement range operator for float CFN_BUILT_IN_CONSTANT_P. |
| 256 | class cfn_constant_float_p : public range_operator |
| 257 | { |
| 258 | public: |
| 259 | using range_operator::fold_range; |
| 260 | virtual bool fold_range (irange &r, tree type, const frange &lh, |
| 261 | const irange &, relation_trio) const |
| 262 | { |
| 263 | if (lh.singleton_p ()) |
| 264 | { |
| 265 | wide_int one = wi::one (TYPE_PRECISION (type)); |
| 266 | r.set (type, one, one); |
| 267 | return true; |
| 268 | } |
| 269 | if (cfun->after_inlining) |
| 270 | { |
| 271 | r.set_zero (type); |
| 272 | return true; |
| 273 | } |
| 274 | return false; |
| 275 | } |
| 276 | } op_cfn_constant_float_p; |
| 277 | |
| 278 | // Implement range operator for integral CFN_BUILT_IN_CONSTANT_P. |
| 279 | class cfn_constant_p : public range_operator |
| 280 | { |
| 281 | public: |
| 282 | using range_operator::fold_range; |
| 283 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 284 | const irange &, relation_trio) const |
| 285 | { |
| 286 | if (lh.singleton_p ()) |
| 287 | { |
| 288 | wide_int one = wi::one (TYPE_PRECISION (type)); |
| 289 | r.set (type, one, one); |
| 290 | return true; |
| 291 | } |
| 292 | if (cfun->after_inlining) |
| 293 | { |
| 294 | r.set_zero (type); |
| 295 | return true; |
| 296 | } |
| 297 | return false; |
| 298 | } |
| 299 | } op_cfn_constant_p; |
| 300 | |
| 301 | // Implement range operator for integral/pointer functions returning |
| 302 | // the first argument. |
| 303 | class cfn_pass_through_arg1 : public range_operator |
| 304 | { |
| 305 | public: |
| 306 | using range_operator::fold_range; |
| 307 | using range_operator::op1_range; |
| 308 | virtual bool fold_range (irange &r, tree, const irange &lh, |
| 309 | const irange &, relation_trio) const |
| 310 | { |
| 311 | r = lh; |
| 312 | return true; |
| 313 | } |
| 314 | virtual bool fold_range (prange &r, tree, const prange &lh, |
| 315 | const prange &, relation_trio) const |
| 316 | { |
| 317 | r = lh; |
| 318 | return true; |
| 319 | } |
| 320 | virtual bool op1_range (irange &r, tree, const irange &lhs, |
| 321 | const irange &, relation_trio) const |
| 322 | { |
| 323 | r = lhs; |
| 324 | return true; |
| 325 | } |
| 326 | virtual bool op1_range (prange &r, tree, const prange &lhs, |
| 327 | const prange &, relation_trio) const |
| 328 | { |
| 329 | r = lhs; |
| 330 | return true; |
| 331 | } |
| 332 | } op_cfn_pass_through_arg1; |
| 333 | |
| 334 | // Implement range operator for CFN_BUILT_IN_SIGNBIT. |
| 335 | class cfn_signbit : public range_operator |
| 336 | { |
| 337 | public: |
| 338 | using range_operator::fold_range; |
| 339 | using range_operator::op1_range; |
| 340 | virtual bool fold_range (irange &r, tree type, const frange &lh, |
| 341 | const irange &, relation_trio) const override |
| 342 | { |
| 343 | bool signbit; |
| 344 | if (lh.signbit_p (signbit)) |
| 345 | { |
| 346 | if (signbit) |
| 347 | r.set_nonzero (type); |
| 348 | else |
| 349 | r.set_zero (type); |
| 350 | return true; |
| 351 | } |
| 352 | return false; |
| 353 | } |
| 354 | virtual bool op1_range (frange &r, tree type, const irange &lhs, |
| 355 | const frange &, relation_trio) const override |
| 356 | { |
| 357 | if (lhs.zero_p ()) |
| 358 | { |
| 359 | r.set (type, dconst0, frange_val_max (type)); |
| 360 | r.update_nan (sign: false); |
| 361 | return true; |
| 362 | } |
| 363 | if (!lhs.contains_p (wi::zero (TYPE_PRECISION (lhs.type ())))) |
| 364 | { |
| 365 | r.set (type, frange_val_min (type), dconstm0); |
| 366 | r.update_nan (sign: true); |
| 367 | return true; |
| 368 | } |
| 369 | return false; |
| 370 | } |
| 371 | } op_cfn_signbit; |
| 372 | |
| 373 | // Implement range operator for CFN_BUILT_IN_COPYSIGN |
| 374 | class cfn_copysign : public range_operator |
| 375 | { |
| 376 | public: |
| 377 | using range_operator::fold_range; |
| 378 | virtual bool fold_range (frange &r, tree type, const frange &lh, |
| 379 | const frange &rh, relation_trio) const override |
| 380 | { |
| 381 | frange neg; |
| 382 | if (!range_op_handler (ABS_EXPR).fold_range (r, type, lh, rh: frange (type))) |
| 383 | return false; |
| 384 | if (!range_op_handler (NEGATE_EXPR).fold_range (r&: neg, type, lh: r, |
| 385 | rh: frange (type))) |
| 386 | return false; |
| 387 | |
| 388 | bool signbit; |
| 389 | if (rh.signbit_p (signbit)) |
| 390 | { |
| 391 | // If the sign is negative, flip the result from ABS, |
| 392 | // otherwise leave things positive. |
| 393 | if (signbit) |
| 394 | r = neg; |
| 395 | } |
| 396 | else |
| 397 | // If the sign is unknown, keep the positive and negative |
| 398 | // alternatives. |
| 399 | r.union_ (neg); |
| 400 | return true; |
| 401 | } |
| 402 | } op_cfn_copysign; |
| 403 | |
| 404 | /* Compute FUNC (ARG) where FUNC is a mpfr function. If RES_LOW is non-NULL, |
| 405 | set it to low bound of possible range if the function is expected to have |
| 406 | ULPS precision and similarly if RES_HIGH is non-NULL, set it to high bound. |
| 407 | If the function returns false, the results weren't set. */ |
| 408 | |
| 409 | static bool |
| 410 | frange_mpfr_arg1 (REAL_VALUE_TYPE *res_low, REAL_VALUE_TYPE *res_high, |
| 411 | int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t), |
| 412 | const REAL_VALUE_TYPE &arg, tree type, unsigned ulps) |
| 413 | { |
| 414 | if (ulps == ~0U || !real_isfinite (&arg)) |
| 415 | return false; |
| 416 | machine_mode mode = TYPE_MODE (type); |
| 417 | const real_format *format = REAL_MODE_FORMAT (mode); |
| 418 | auto_mpfr m (format->p); |
| 419 | mpfr_from_real (m, &arg, MPFR_RNDN); |
| 420 | mpfr_clear_flags (); |
| 421 | bool inexact = func (m, m, MPFR_RNDN); |
| 422 | if (!mpfr_number_p (m) || mpfr_overflow_p () || mpfr_underflow_p ()) |
| 423 | return false; |
| 424 | |
| 425 | REAL_VALUE_TYPE value, result; |
| 426 | real_from_mpfr (&value, m, format, MPFR_RNDN); |
| 427 | if (!real_isfinite (&value)) |
| 428 | return false; |
| 429 | if ((value.cl == rvc_zero) != (mpfr_zero_p (m) != 0)) |
| 430 | inexact = true; |
| 431 | |
| 432 | real_convert (&result, format, &value); |
| 433 | if (!real_isfinite (&result)) |
| 434 | return false; |
| 435 | bool round_low = false; |
| 436 | bool round_high = false; |
| 437 | if (!ulps && flag_rounding_math) |
| 438 | ++ulps; |
| 439 | if (inexact || !real_identical (&result, &value)) |
| 440 | { |
| 441 | if (MODE_COMPOSITE_P (mode)) |
| 442 | round_low = round_high = true; |
| 443 | else |
| 444 | { |
| 445 | round_low = !real_less (&result, &value); |
| 446 | round_high = !real_less (&value, &result); |
| 447 | } |
| 448 | } |
| 449 | if (res_low) |
| 450 | { |
| 451 | *res_low = result; |
| 452 | for (unsigned int i = 0; i < ulps + round_low; ++i) |
| 453 | frange_nextafter (mode, *res_low, dconstninf); |
| 454 | } |
| 455 | if (res_high) |
| 456 | { |
| 457 | *res_high = result; |
| 458 | for (unsigned int i = 0; i < ulps + round_high; ++i) |
| 459 | frange_nextafter (mode, *res_high, dconstinf); |
| 460 | } |
| 461 | return true; |
| 462 | } |
| 463 | |
| 464 | class cfn_sqrt : public range_operator |
| 465 | { |
| 466 | public: |
| 467 | using range_operator::fold_range; |
| 468 | using range_operator::op1_range; |
| 469 | virtual bool fold_range (frange &r, tree type, |
| 470 | const frange &lh, const frange &, |
| 471 | relation_trio) const final override |
| 472 | { |
| 473 | if (lh.undefined_p ()) |
| 474 | return false; |
| 475 | if (lh.known_isnan () || real_less (&lh.upper_bound (), &dconstm0)) |
| 476 | { |
| 477 | r.set_nan (type); |
| 478 | return true; |
| 479 | } |
| 480 | unsigned bulps |
| 481 | = targetm.libm_function_max_error (CFN_SQRT, TYPE_MODE (type), true); |
| 482 | if (bulps == ~0U) |
| 483 | r.set_varying (type); |
| 484 | else if (bulps == 0) |
| 485 | r.set (type, dconstm0, dconstinf); |
| 486 | else |
| 487 | { |
| 488 | REAL_VALUE_TYPE boundmin = dconstm0; |
| 489 | while (bulps--) |
| 490 | frange_nextafter (TYPE_MODE (type), boundmin, dconstninf); |
| 491 | r.set (type, boundmin, dconstinf); |
| 492 | } |
| 493 | if (!lh.maybe_isnan () && !real_less (&lh.lower_bound (), &dconst0)) |
| 494 | r.clear_nan (); |
| 495 | |
| 496 | unsigned ulps |
| 497 | = targetm.libm_function_max_error (CFN_SQRT, TYPE_MODE (type), false); |
| 498 | if (ulps == ~0U) |
| 499 | return true; |
| 500 | REAL_VALUE_TYPE lb = lh.lower_bound (); |
| 501 | REAL_VALUE_TYPE ub = lh.upper_bound (); |
| 502 | if (!frange_mpfr_arg1 (res_low: &lb, NULL, func: mpfr_sqrt, arg: lb, type, ulps)) |
| 503 | lb = dconstninf; |
| 504 | if (!frange_mpfr_arg1 (NULL, res_high: &ub, func: mpfr_sqrt, arg: ub, type, ulps)) |
| 505 | ub = dconstinf; |
| 506 | frange r2; |
| 507 | r2.set (type, lb, ub); |
| 508 | r2.flush_denormals_to_zero (); |
| 509 | r.intersect (r2); |
| 510 | return true; |
| 511 | } |
| 512 | virtual bool op1_range (frange &r, tree type, |
| 513 | const frange &lhs, const frange &, |
| 514 | relation_trio) const final override |
| 515 | { |
| 516 | if (lhs.undefined_p ()) |
| 517 | return false; |
| 518 | |
| 519 | // A known NAN means the input is [-INF,-0.) U +-NAN. |
| 520 | if (lhs.known_isnan ()) |
| 521 | { |
| 522 | known_nan: |
| 523 | REAL_VALUE_TYPE ub = dconstm0; |
| 524 | frange_nextafter (TYPE_MODE (type), ub, dconstninf); |
| 525 | r.set (type, dconstninf, ub); |
| 526 | // No r.flush_denormals_to_zero (); here - it is a reverse op. |
| 527 | return true; |
| 528 | } |
| 529 | |
| 530 | // Results outside of [-0.0, +Inf] are impossible. |
| 531 | unsigned bulps |
| 532 | = targetm.libm_function_max_error (CFN_SQRT, TYPE_MODE (type), true); |
| 533 | if (bulps != ~0U) |
| 534 | { |
| 535 | const REAL_VALUE_TYPE &ub = lhs.upper_bound (); |
| 536 | REAL_VALUE_TYPE m0 = dconstm0; |
| 537 | while (bulps--) |
| 538 | frange_nextafter (TYPE_MODE (type), m0, dconstninf); |
| 539 | if (real_less (&ub, &m0)) |
| 540 | { |
| 541 | if (!lhs.maybe_isnan ()) |
| 542 | r.set_undefined (); |
| 543 | else |
| 544 | // If lhs could be NAN and finite result is impossible, |
| 545 | // the range is like lhs.known_isnan () above. |
| 546 | goto known_nan; |
| 547 | return true; |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | if (!lhs.maybe_isnan ()) |
| 552 | // If NAN is not valid result, the input cannot include either |
| 553 | // a NAN nor values smaller than -0. |
| 554 | r.set (type, dconstm0, dconstinf, nan_state (false, false)); |
| 555 | else |
| 556 | r.set_varying (type); |
| 557 | |
| 558 | unsigned ulps |
| 559 | = targetm.libm_function_max_error (CFN_SQRT, TYPE_MODE (type), false); |
| 560 | if (ulps == ~0U) |
| 561 | return true; |
| 562 | REAL_VALUE_TYPE lb = lhs.lower_bound (); |
| 563 | REAL_VALUE_TYPE ub = lhs.upper_bound (); |
| 564 | if (!lhs.maybe_isnan () && real_less (&dconst0, &lb)) |
| 565 | { |
| 566 | for (unsigned i = 0; i < ulps; ++i) |
| 567 | frange_nextafter (TYPE_MODE (type), lb, dconstninf); |
| 568 | if (real_less (&dconst0, &lb)) |
| 569 | { |
| 570 | REAL_VALUE_TYPE op = lb; |
| 571 | frange_arithmetic (MULT_EXPR, type, lb, op, op, dconstninf); |
| 572 | } |
| 573 | else |
| 574 | lb = dconstninf; |
| 575 | } |
| 576 | else |
| 577 | lb = dconstninf; |
| 578 | if (real_isfinite (&ub) && real_less (&dconst0, &ub)) |
| 579 | { |
| 580 | for (unsigned i = 0; i < ulps; ++i) |
| 581 | frange_nextafter (TYPE_MODE (type), ub, dconstinf); |
| 582 | if (real_isfinite (&ub)) |
| 583 | { |
| 584 | REAL_VALUE_TYPE op = ub; |
| 585 | frange_arithmetic (MULT_EXPR, type, ub, op, op, dconstinf); |
| 586 | } |
| 587 | else |
| 588 | ub = dconstinf; |
| 589 | } |
| 590 | else |
| 591 | ub = dconstinf; |
| 592 | frange r2; |
| 593 | r2.set (type, lb, ub); |
| 594 | r.intersect (r2); |
| 595 | return true; |
| 596 | } |
| 597 | } op_cfn_sqrt; |
| 598 | |
| 599 | class cfn_sincos : public range_operator |
| 600 | { |
| 601 | public: |
| 602 | using range_operator::fold_range; |
| 603 | using range_operator::op1_range; |
| 604 | cfn_sincos (combined_fn cfn) { m_cfn = cfn; } |
| 605 | virtual bool fold_range (frange &r, tree type, |
| 606 | const frange &lh, const frange &, |
| 607 | relation_trio) const final override |
| 608 | { |
| 609 | if (lh.undefined_p ()) |
| 610 | return false; |
| 611 | if (lh.known_isnan () || lh.known_isinf ()) |
| 612 | { |
| 613 | r.set_nan (type); |
| 614 | return true; |
| 615 | } |
| 616 | unsigned bulps = targetm.libm_function_max_error (m_cfn, TYPE_MODE (type), |
| 617 | true); |
| 618 | if (bulps == ~0U) |
| 619 | r.set_varying (type); |
| 620 | else if (bulps == 0) |
| 621 | r.set (type, dconstm1, dconst1); |
| 622 | else |
| 623 | { |
| 624 | REAL_VALUE_TYPE boundmin, boundmax; |
| 625 | boundmax = dconst1; |
| 626 | while (bulps--) |
| 627 | frange_nextafter (TYPE_MODE (type), boundmax, dconstinf); |
| 628 | real_arithmetic (&boundmin, NEGATE_EXPR, &boundmax, NULL); |
| 629 | r.set (type, boundmin, boundmax); |
| 630 | } |
| 631 | if (!lh.maybe_isnan () && !lh.maybe_isinf ()) |
| 632 | r.clear_nan (); |
| 633 | |
| 634 | unsigned ulps |
| 635 | = targetm.libm_function_max_error (m_cfn, TYPE_MODE (type), false); |
| 636 | if (ulps == ~0U) |
| 637 | return true; |
| 638 | REAL_VALUE_TYPE lb = lh.lower_bound (); |
| 639 | REAL_VALUE_TYPE ub = lh.upper_bound (); |
| 640 | REAL_VALUE_TYPE diff; |
| 641 | real_arithmetic (&diff, MINUS_EXPR, &ub, &lb); |
| 642 | if (!real_isfinite (&diff)) |
| 643 | return true; |
| 644 | REAL_VALUE_TYPE pi = dconst_pi (); |
| 645 | REAL_VALUE_TYPE pix2; |
| 646 | real_arithmetic (&pix2, PLUS_EXPR, &pi, &pi); |
| 647 | // We can only try to narrow the range further if ub-lb < 2*pi. |
| 648 | if (!real_less (&diff, &pix2)) |
| 649 | return true; |
| 650 | REAL_VALUE_TYPE lb_lo, lb_hi, ub_lo, ub_hi; |
| 651 | REAL_VALUE_TYPE lb_deriv_lo, lb_deriv_hi, ub_deriv_lo, ub_deriv_hi; |
| 652 | if (!frange_mpfr_arg1 (res_low: &lb_lo, res_high: &lb_hi, |
| 653 | func: m_cfn == CFN_SIN ? mpfr_sin : mpfr_cos, arg: lb, |
| 654 | type, ulps) |
| 655 | || !frange_mpfr_arg1 (res_low: &ub_lo, res_high: &ub_hi, |
| 656 | func: m_cfn == CFN_SIN ? mpfr_sin : mpfr_cos, arg: ub, |
| 657 | type, ulps) |
| 658 | || !frange_mpfr_arg1 (res_low: &lb_deriv_lo, res_high: &lb_deriv_hi, |
| 659 | func: m_cfn == CFN_SIN ? mpfr_cos : mpfr_sin, arg: lb, |
| 660 | type, ulps: 0) |
| 661 | || !frange_mpfr_arg1 (res_low: &ub_deriv_lo, res_high: &ub_deriv_hi, |
| 662 | func: m_cfn == CFN_SIN ? mpfr_cos : mpfr_sin, arg: ub, |
| 663 | type, ulps: 0)) |
| 664 | return true; |
| 665 | if (m_cfn == CFN_COS) |
| 666 | { |
| 667 | // Derivative of cos is -sin, so negate. |
| 668 | lb_deriv_lo.sign ^= 1; |
| 669 | lb_deriv_hi.sign ^= 1; |
| 670 | ub_deriv_lo.sign ^= 1; |
| 671 | ub_deriv_hi.sign ^= 1; |
| 672 | } |
| 673 | |
| 674 | if (real_less (&lb_lo, &ub_lo)) |
| 675 | lb = lb_lo; |
| 676 | else |
| 677 | lb = ub_lo; |
| 678 | if (real_less (&lb_hi, &ub_hi)) |
| 679 | ub = ub_hi; |
| 680 | else |
| 681 | ub = lb_hi; |
| 682 | |
| 683 | // The range between the function result on the boundaries may need |
| 684 | // to be extended to +1 (+Inf) or -1 (-Inf) or both depending on the |
| 685 | // derivative or length of the argument range (diff). |
| 686 | |
| 687 | // First handle special case, where the derivative has different signs, |
| 688 | // so the bound must be roughly -1 or +1. |
| 689 | if (real_isneg (&lb_deriv_lo) != real_isneg (&lb_deriv_hi)) |
| 690 | { |
| 691 | if (real_isneg (&lb_lo)) |
| 692 | lb = dconstninf; |
| 693 | else |
| 694 | ub = dconstinf; |
| 695 | } |
| 696 | if (real_isneg (&ub_deriv_lo) != real_isneg (&ub_deriv_hi)) |
| 697 | { |
| 698 | if (real_isneg (&ub_lo)) |
| 699 | lb = dconstninf; |
| 700 | else |
| 701 | ub = dconstinf; |
| 702 | } |
| 703 | |
| 704 | // If derivative at lower_bound and upper_bound have the same sign, |
| 705 | // the function grows or declines on the whole range if diff < pi, so |
| 706 | // [lb, ub] is correct, and if diff >= pi the result range must include |
| 707 | // both the minimum and maximum. |
| 708 | if (real_isneg (&lb_deriv_lo) == real_isneg (&ub_deriv_lo)) |
| 709 | { |
| 710 | if (!real_less (&diff, &pi)) |
| 711 | return true; |
| 712 | } |
| 713 | // If function declines at lower_bound and grows at upper_bound, |
| 714 | // the result range must include the minimum, so set lb to -Inf. |
| 715 | else if (real_isneg (&lb_deriv_lo)) |
| 716 | lb = dconstninf; |
| 717 | // If function grows at lower_bound and declines at upper_bound, |
| 718 | // the result range must include the maximum, so set ub to +Inf. |
| 719 | else |
| 720 | ub = dconstinf; |
| 721 | frange r2; |
| 722 | r2.set (type, lb, ub); |
| 723 | r2.flush_denormals_to_zero (); |
| 724 | r.intersect (r2); |
| 725 | return true; |
| 726 | } |
| 727 | virtual bool op1_range (frange &r, tree type, |
| 728 | const frange &lhs, const frange &, |
| 729 | relation_trio) const final override |
| 730 | { |
| 731 | if (lhs.undefined_p ()) |
| 732 | return false; |
| 733 | |
| 734 | // A known NAN means the input is [-INF,-INF][+INF,+INF] U +-NAN, |
| 735 | // which we can't currently represent. |
| 736 | if (lhs.known_isnan ()) |
| 737 | { |
| 738 | r.set_varying (type); |
| 739 | return true; |
| 740 | } |
| 741 | |
| 742 | // Results outside of [-1.0, +1.0] are impossible. |
| 743 | unsigned bulps |
| 744 | = targetm.libm_function_max_error (m_cfn, TYPE_MODE (type), true); |
| 745 | if (bulps != ~0U) |
| 746 | { |
| 747 | const REAL_VALUE_TYPE &lb = lhs.lower_bound (); |
| 748 | const REAL_VALUE_TYPE &ub = lhs.upper_bound (); |
| 749 | REAL_VALUE_TYPE m1 = dconstm1; |
| 750 | REAL_VALUE_TYPE p1 = dconst1; |
| 751 | while (bulps--) |
| 752 | { |
| 753 | frange_nextafter (TYPE_MODE (type), m1, dconstninf); |
| 754 | frange_nextafter (TYPE_MODE (type), p1, dconstinf); |
| 755 | } |
| 756 | if (real_less (&ub, &m1) || real_less (&p1, &lb)) |
| 757 | { |
| 758 | if (!lhs.maybe_isnan ()) |
| 759 | r.set_undefined (); |
| 760 | else |
| 761 | /* If lhs could be NAN and finite result is impossible, |
| 762 | the range is like lhs.known_isnan () above, |
| 763 | [-INF,-INF][+INF,+INF] U +-NAN. */ |
| 764 | r.set_varying (type); |
| 765 | return true; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | if (!lhs.maybe_isnan ()) |
| 770 | { |
| 771 | // If NAN is not valid result, the input cannot include either |
| 772 | // a NAN nor a +-INF. |
| 773 | REAL_VALUE_TYPE lb = real_min_representable (type); |
| 774 | REAL_VALUE_TYPE ub = real_max_representable (type); |
| 775 | r.set (type, lb, ub, nan_state (false, false)); |
| 776 | } |
| 777 | else |
| 778 | r.set_varying (type); |
| 779 | return true; |
| 780 | } |
| 781 | private: |
| 782 | combined_fn m_cfn; |
| 783 | } op_cfn_sin (CFN_SIN), op_cfn_cos (CFN_COS); |
| 784 | |
| 785 | // Implement range operator for CFN_BUILT_IN_TOUPPER and CFN_BUILT_IN_TOLOWER. |
| 786 | class cfn_toupper_tolower : public range_operator |
| 787 | { |
| 788 | public: |
| 789 | using range_operator::fold_range; |
| 790 | cfn_toupper_tolower (bool toupper) { m_toupper = toupper; } |
| 791 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 792 | const irange &, relation_trio) const; |
| 793 | private: |
| 794 | bool get_letter_range (tree type, irange &lowers, irange &uppers) const; |
| 795 | bool m_toupper; |
| 796 | } op_cfn_toupper (true), op_cfn_tolower (false); |
| 797 | |
| 798 | // Return TRUE if we recognize the target character set and return the |
| 799 | // range for lower case and upper case letters. |
| 800 | |
| 801 | bool |
| 802 | cfn_toupper_tolower::get_letter_range (tree type, irange &lowers, |
| 803 | irange &uppers) const |
| 804 | { |
| 805 | // ASCII |
| 806 | int a = lang_hooks.to_target_charset ('a'); |
| 807 | int z = lang_hooks.to_target_charset ('z'); |
| 808 | int A = lang_hooks.to_target_charset ('A'); |
| 809 | int Z = lang_hooks.to_target_charset ('Z'); |
| 810 | |
| 811 | if ((z - a == 25) && (Z - A == 25)) |
| 812 | { |
| 813 | lowers = int_range<2> (type, |
| 814 | wi::shwi (val: a, TYPE_PRECISION (type)), |
| 815 | wi::shwi (val: z, TYPE_PRECISION (type))); |
| 816 | uppers = int_range<2> (type, |
| 817 | wi::shwi (val: A, TYPE_PRECISION (type)), |
| 818 | wi::shwi (val: Z, TYPE_PRECISION (type))); |
| 819 | return true; |
| 820 | } |
| 821 | // Unknown character set. |
| 822 | return false; |
| 823 | } |
| 824 | |
| 825 | bool |
| 826 | cfn_toupper_tolower::fold_range (irange &r, tree type, const irange &lh, |
| 827 | const irange &, relation_trio) const |
| 828 | { |
| 829 | int_range<3> lowers; |
| 830 | int_range<3> uppers; |
| 831 | if (!get_letter_range (type, lowers, uppers)) |
| 832 | return false; |
| 833 | |
| 834 | r = lh; |
| 835 | if (m_toupper) |
| 836 | { |
| 837 | // Return the range passed in without any lower case characters, |
| 838 | // but including all the upper case ones. |
| 839 | lowers.invert (); |
| 840 | r.intersect (lowers); |
| 841 | r.union_ (uppers); |
| 842 | } |
| 843 | else |
| 844 | { |
| 845 | // Return the range passed in without any lower case characters, |
| 846 | // but including all the upper case ones. |
| 847 | uppers.invert (); |
| 848 | r.intersect (uppers); |
| 849 | r.union_ (lowers); |
| 850 | } |
| 851 | return true; |
| 852 | } |
| 853 | |
| 854 | // Implement range operator for CFN_BUILT_IN_FFS. |
| 855 | class cfn_ffs : public range_operator |
| 856 | { |
| 857 | public: |
| 858 | using range_operator::fold_range; |
| 859 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 860 | const irange &, relation_trio) const |
| 861 | { |
| 862 | if (lh.undefined_p ()) |
| 863 | return false; |
| 864 | // __builtin_ffs* and __builtin_popcount* return [0, prec]. |
| 865 | int prec = TYPE_PRECISION (lh.type ()); |
| 866 | // If arg is non-zero, then ffs or popcount are non-zero. |
| 867 | int mini = range_includes_zero_p (vr: lh) ? 0 : 1; |
| 868 | int maxi = prec; |
| 869 | |
| 870 | // If some high bits are known to be zero, decrease the maximum. |
| 871 | int_range_max tmp = lh; |
| 872 | if (TYPE_SIGN (tmp.type ()) == SIGNED) |
| 873 | range_cast (r&: tmp, type: unsigned_type_for (tmp.type ())); |
| 874 | wide_int max = tmp.upper_bound (); |
| 875 | maxi = wi::floor_log2 (max) + 1; |
| 876 | r.set (type, |
| 877 | wi::shwi (val: mini, TYPE_PRECISION (type)), |
| 878 | wi::shwi (val: maxi, TYPE_PRECISION (type))); |
| 879 | return true; |
| 880 | } |
| 881 | } op_cfn_ffs; |
| 882 | |
| 883 | // Implement range operator for CFN_BUILT_IN_POPCOUNT. |
| 884 | class cfn_popcount : public cfn_ffs |
| 885 | { |
| 886 | public: |
| 887 | using range_operator::fold_range; |
| 888 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 889 | const irange &rh, relation_trio rel) const |
| 890 | { |
| 891 | if (lh.undefined_p ()) |
| 892 | return false; |
| 893 | unsigned prec = TYPE_PRECISION (type); |
| 894 | irange_bitmask bm = lh.get_bitmask (); |
| 895 | wide_int nz = bm.get_nonzero_bits (); |
| 896 | wide_int high = wi::shwi (val: wi::popcount (nz), precision: prec); |
| 897 | // Calculating the popcount of a singleton is trivial. |
| 898 | if (lh.singleton_p ()) |
| 899 | { |
| 900 | r.set (type, high, high); |
| 901 | return true; |
| 902 | } |
| 903 | if (cfn_ffs::fold_range (r, type, lh, rh, rel)) |
| 904 | { |
| 905 | wide_int known_ones = ~bm.mask () & bm.value (); |
| 906 | wide_int low = wi::shwi (val: wi::popcount (known_ones), precision: prec); |
| 907 | int_range<2> tmp (type, low, high); |
| 908 | r.intersect (tmp); |
| 909 | return true; |
| 910 | } |
| 911 | return false; |
| 912 | } |
| 913 | } op_cfn_popcount; |
| 914 | |
| 915 | // Implement range operator for CFN_BUILT_IN_CLZ |
| 916 | class cfn_clz : public range_operator |
| 917 | { |
| 918 | public: |
| 919 | cfn_clz (bool internal) { m_gimple_call_internal_p = internal; } |
| 920 | using range_operator::fold_range; |
| 921 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 922 | const irange &rh, relation_trio) const; |
| 923 | private: |
| 924 | bool m_gimple_call_internal_p; |
| 925 | } op_cfn_clz (false), op_cfn_clz_internal (true); |
| 926 | |
| 927 | bool |
| 928 | cfn_clz::fold_range (irange &r, tree type, const irange &lh, |
| 929 | const irange &rh, relation_trio) const |
| 930 | { |
| 931 | // __builtin_c[lt]z* return [0, prec-1], except when the |
| 932 | // argument is 0, but that is undefined behavior. |
| 933 | // |
| 934 | // For __builtin_c[lt]z* consider argument of 0 always undefined |
| 935 | // behavior, for internal fns likewise, unless it has 2 arguments, |
| 936 | // then the second argument is the value at zero. |
| 937 | if (lh.undefined_p ()) |
| 938 | return false; |
| 939 | int prec = TYPE_PRECISION (lh.type ()); |
| 940 | int mini = 0; |
| 941 | int maxi = prec - 1; |
| 942 | if (m_gimple_call_internal_p) |
| 943 | { |
| 944 | // Handle only the two common values. |
| 945 | if (rh.lower_bound () == -1) |
| 946 | mini = -1; |
| 947 | else if (rh.lower_bound () == prec) |
| 948 | maxi = prec; |
| 949 | else |
| 950 | // Magic value to give up, unless we can prove arg is non-zero. |
| 951 | mini = -2; |
| 952 | } |
| 953 | |
| 954 | // From clz of minimum we can compute result maximum. |
| 955 | if (wi::gt_p (x: lh.lower_bound (), y: 0, TYPE_SIGN (lh.type ()))) |
| 956 | { |
| 957 | maxi = prec - 1 - wi::floor_log2 (lh.lower_bound ()); |
| 958 | if (mini < 0) |
| 959 | mini = 0; |
| 960 | } |
| 961 | else if (!range_includes_zero_p (vr: lh)) |
| 962 | { |
| 963 | mini = 0; |
| 964 | maxi = prec - 1; |
| 965 | } |
| 966 | if (mini == -2) |
| 967 | return false; |
| 968 | // From clz of maximum we can compute result minimum. |
| 969 | wide_int max = lh.upper_bound (); |
| 970 | int newmini = prec - 1 - wi::floor_log2 (max); |
| 971 | if (max == 0) |
| 972 | { |
| 973 | // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec, |
| 974 | // return [prec, prec] or [-1, -1], otherwise ignore the range. |
| 975 | if (maxi == prec) |
| 976 | mini = prec; |
| 977 | else if (mini == -1) |
| 978 | maxi = -1; |
| 979 | } |
| 980 | else if (mini >= 0) |
| 981 | mini = newmini; |
| 982 | |
| 983 | if (mini == -2) |
| 984 | return false; |
| 985 | r.set (type, |
| 986 | wi::shwi (val: mini, TYPE_PRECISION (type)), |
| 987 | wi::shwi (val: maxi, TYPE_PRECISION (type))); |
| 988 | return true; |
| 989 | } |
| 990 | |
| 991 | // Implement range operator for CFN_BUILT_IN_CTZ |
| 992 | class cfn_ctz : public range_operator |
| 993 | { |
| 994 | public: |
| 995 | cfn_ctz (bool internal) { m_gimple_call_internal_p = internal; } |
| 996 | using range_operator::fold_range; |
| 997 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 998 | const irange &rh, relation_trio) const; |
| 999 | private: |
| 1000 | bool m_gimple_call_internal_p; |
| 1001 | } op_cfn_ctz (false), op_cfn_ctz_internal (true); |
| 1002 | |
| 1003 | bool |
| 1004 | cfn_ctz::fold_range (irange &r, tree type, const irange &lh, |
| 1005 | const irange &rh, relation_trio) const |
| 1006 | { |
| 1007 | if (lh.undefined_p ()) |
| 1008 | return false; |
| 1009 | int prec = TYPE_PRECISION (lh.type ()); |
| 1010 | int mini = 0; |
| 1011 | int maxi = prec - 1; |
| 1012 | |
| 1013 | if (m_gimple_call_internal_p) |
| 1014 | { |
| 1015 | // Handle only the two common values. |
| 1016 | if (rh.lower_bound () == -1) |
| 1017 | mini = -1; |
| 1018 | else if (rh.lower_bound () == prec) |
| 1019 | maxi = prec; |
| 1020 | else |
| 1021 | // Magic value to give up, unless we can prove arg is non-zero. |
| 1022 | mini = -2; |
| 1023 | } |
| 1024 | // If arg is non-zero, then use [0, prec - 1]. |
| 1025 | if (!range_includes_zero_p (vr: lh)) |
| 1026 | { |
| 1027 | mini = 0; |
| 1028 | maxi = prec - 1; |
| 1029 | } |
| 1030 | // If some high bits are known to be zero, we can decrease |
| 1031 | // the maximum. |
| 1032 | wide_int max = lh.upper_bound (); |
| 1033 | if (max == 0) |
| 1034 | { |
| 1035 | // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO |
| 1036 | // is 2 with value -1 or prec, return [-1, -1] or [prec, prec]. |
| 1037 | // Otherwise ignore the range. |
| 1038 | if (mini == -1) |
| 1039 | maxi = -1; |
| 1040 | else if (maxi == prec) |
| 1041 | mini = prec; |
| 1042 | } |
| 1043 | // If value at zero is prec and 0 is in the range, we can't lower |
| 1044 | // the upper bound. We could create two separate ranges though, |
| 1045 | // [0,floor_log2(max)][prec,prec] though. |
| 1046 | else if (maxi != prec) |
| 1047 | maxi = wi::floor_log2 (max); |
| 1048 | |
| 1049 | if (mini == -2) |
| 1050 | return false; |
| 1051 | r.set (type, |
| 1052 | wi::shwi (val: mini, TYPE_PRECISION (type)), |
| 1053 | wi::shwi (val: maxi, TYPE_PRECISION (type))); |
| 1054 | return true; |
| 1055 | } |
| 1056 | |
| 1057 | |
| 1058 | // Implement range operator for CFN_BUILT_IN_ |
| 1059 | class cfn_clrsb : public range_operator |
| 1060 | { |
| 1061 | public: |
| 1062 | using range_operator::fold_range; |
| 1063 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 1064 | const irange &, relation_trio) const |
| 1065 | { |
| 1066 | if (lh.undefined_p ()) |
| 1067 | return false; |
| 1068 | int prec = TYPE_PRECISION (lh.type ()); |
| 1069 | r.set (type, |
| 1070 | wi::zero (TYPE_PRECISION (type)), |
| 1071 | wi::shwi (val: prec - 1, TYPE_PRECISION (type))); |
| 1072 | return true; |
| 1073 | } |
| 1074 | } op_cfn_clrsb; |
| 1075 | |
| 1076 | |
| 1077 | // Implement range operator for CFN_BUILT_IN_ |
| 1078 | class cfn_ubsan : public range_operator |
| 1079 | { |
| 1080 | public: |
| 1081 | cfn_ubsan (enum tree_code code) { m_code = code; } |
| 1082 | using range_operator::fold_range; |
| 1083 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 1084 | const irange &rh, relation_trio rel) const |
| 1085 | { |
| 1086 | bool saved_flag_wrapv = flag_wrapv; |
| 1087 | // Pretend the arithmetic is wrapping. If there is any overflow, |
| 1088 | // we'll complain, but will actually do wrapping operation. |
| 1089 | flag_wrapv = 1; |
| 1090 | bool result = range_op_handler (m_code).fold_range (r, type, lh, rh, rel); |
| 1091 | flag_wrapv = saved_flag_wrapv; |
| 1092 | |
| 1093 | // If for both arguments vrp_valueize returned non-NULL, this should |
| 1094 | // have been already folded and if not, it wasn't folded because of |
| 1095 | // overflow. Avoid removing the UBSAN_CHECK_* calls in that case. |
| 1096 | if (result && r.singleton_p ()) |
| 1097 | r.set_varying (type); |
| 1098 | return result; |
| 1099 | } |
| 1100 | private: |
| 1101 | enum tree_code m_code; |
| 1102 | }; |
| 1103 | |
| 1104 | cfn_ubsan op_cfn_ubsan_add (PLUS_EXPR); |
| 1105 | cfn_ubsan op_cfn_ubsan_sub (MINUS_EXPR); |
| 1106 | cfn_ubsan op_cfn_ubsan_mul (MULT_EXPR); |
| 1107 | |
| 1108 | |
| 1109 | // Implement range operator for CFN_BUILT_IN_STRLEN |
| 1110 | class cfn_strlen : public range_operator |
| 1111 | { |
| 1112 | public: |
| 1113 | using range_operator::fold_range; |
| 1114 | virtual bool fold_range (irange &r, tree type, const prange &, |
| 1115 | const irange &, relation_trio) const |
| 1116 | { |
| 1117 | wide_int max = irange_val_max (ptrdiff_type_node); |
| 1118 | // To account for the terminating NULL, the maximum length |
| 1119 | // is one less than the maximum array size, which in turn |
| 1120 | // is one less than PTRDIFF_MAX (or SIZE_MAX where it's |
| 1121 | // smaller than the former type). |
| 1122 | // FIXME: Use max_object_size() - 1 here. |
| 1123 | r.set (type, wi::zero (TYPE_PRECISION (type)), max - 2); |
| 1124 | return true; |
| 1125 | } |
| 1126 | } op_cfn_strlen; |
| 1127 | |
| 1128 | |
| 1129 | // Implement range operator for CFN_BUILT_IN_GOACC_DIM |
| 1130 | class cfn_goacc_dim : public range_operator |
| 1131 | { |
| 1132 | public: |
| 1133 | cfn_goacc_dim (bool is_pos) { m_is_pos = is_pos; } |
| 1134 | using range_operator::fold_range; |
| 1135 | virtual bool fold_range (irange &r, tree type, const irange &lh, |
| 1136 | const irange &, relation_trio) const |
| 1137 | { |
| 1138 | tree axis_tree; |
| 1139 | if (!lh.singleton_p (result: &axis_tree)) |
| 1140 | return false; |
| 1141 | HOST_WIDE_INT axis = TREE_INT_CST_LOW (axis_tree); |
| 1142 | int size = oacc_get_fn_dim_size (fn: current_function_decl, axis); |
| 1143 | if (!size) |
| 1144 | // If it's dynamic, the backend might know a hardware limitation. |
| 1145 | size = targetm.goacc.dim_limit (axis); |
| 1146 | |
| 1147 | r.set (type, |
| 1148 | wi::shwi (val: m_is_pos ? 0 : 1, TYPE_PRECISION (type)), |
| 1149 | size |
| 1150 | ? wi::shwi (val: size - m_is_pos, TYPE_PRECISION (type)) |
| 1151 | : irange_val_max (type)); |
| 1152 | return true; |
| 1153 | } |
| 1154 | private: |
| 1155 | bool m_is_pos; |
| 1156 | } op_cfn_goacc_dim_size (false), op_cfn_goacc_dim_pos (true); |
| 1157 | |
| 1158 | // Implement range operator for CFN_BUILT_IN_ISINF |
| 1159 | class cfn_isinf : public range_operator |
| 1160 | { |
| 1161 | public: |
| 1162 | using range_operator::fold_range; |
| 1163 | using range_operator::op1_range; |
| 1164 | virtual bool fold_range (irange &r, tree type, const frange &op1, |
| 1165 | const irange &, relation_trio) const override |
| 1166 | { |
| 1167 | if (op1.undefined_p ()) |
| 1168 | return false; |
| 1169 | |
| 1170 | if (op1.known_isinf ()) |
| 1171 | { |
| 1172 | wide_int one = wi::one (TYPE_PRECISION (type)); |
| 1173 | r.set (type, one, one); |
| 1174 | return true; |
| 1175 | } |
| 1176 | |
| 1177 | if (op1.known_isnan () |
| 1178 | || (!real_isinf (&op1.lower_bound ()) |
| 1179 | && !real_isinf (&op1.upper_bound ()))) |
| 1180 | { |
| 1181 | r.set_zero (type); |
| 1182 | return true; |
| 1183 | } |
| 1184 | |
| 1185 | r.set_varying (type); |
| 1186 | return true; |
| 1187 | } |
| 1188 | virtual bool op1_range (frange &r, tree type, const irange &lhs, |
| 1189 | const frange &, relation_trio) const override |
| 1190 | { |
| 1191 | if (lhs.undefined_p ()) |
| 1192 | return false; |
| 1193 | |
| 1194 | if (lhs.zero_p ()) |
| 1195 | { |
| 1196 | nan_state nan (true); |
| 1197 | r.set (type, real_min_representable (type), |
| 1198 | real_max_representable (type), nan); |
| 1199 | return true; |
| 1200 | } |
| 1201 | |
| 1202 | if (!range_includes_zero_p (vr: lhs)) |
| 1203 | { |
| 1204 | // The range is [-INF,-INF][+INF,+INF], but it can't be represented. |
| 1205 | // Set range to [-INF,+INF] |
| 1206 | r.set_varying (type); |
| 1207 | r.clear_nan (); |
| 1208 | return true; |
| 1209 | } |
| 1210 | |
| 1211 | r.set_varying (type); |
| 1212 | return true; |
| 1213 | } |
| 1214 | } op_cfn_isinf; |
| 1215 | |
| 1216 | //Implement range operator for CFN_BUILT_IN_ISFINITE |
| 1217 | class cfn_isfinite : public range_operator |
| 1218 | { |
| 1219 | public: |
| 1220 | using range_operator::fold_range; |
| 1221 | using range_operator::op1_range; |
| 1222 | virtual bool fold_range (irange &r, tree type, const frange &op1, |
| 1223 | const irange &, relation_trio) const override |
| 1224 | { |
| 1225 | if (op1.undefined_p ()) |
| 1226 | return false; |
| 1227 | |
| 1228 | if (op1.known_isfinite ()) |
| 1229 | { |
| 1230 | wide_int one = wi::one (TYPE_PRECISION (type)); |
| 1231 | r.set (type, one, one); |
| 1232 | return true; |
| 1233 | } |
| 1234 | |
| 1235 | if (op1.known_isnan () |
| 1236 | || op1.known_isinf ()) |
| 1237 | { |
| 1238 | r.set_zero (type); |
| 1239 | return true; |
| 1240 | } |
| 1241 | |
| 1242 | r.set_varying (type); |
| 1243 | return true; |
| 1244 | } |
| 1245 | virtual bool op1_range (frange &r, tree type, const irange &lhs, |
| 1246 | const frange &, relation_trio) const override |
| 1247 | { |
| 1248 | if (lhs.undefined_p ()) |
| 1249 | return false; |
| 1250 | |
| 1251 | if (lhs.zero_p ()) |
| 1252 | { |
| 1253 | // The range is [-INF,-INF][+INF,+INF] NAN, but it can't be represented. |
| 1254 | // Set range to varying |
| 1255 | r.set_varying (type); |
| 1256 | return true; |
| 1257 | } |
| 1258 | |
| 1259 | if (!range_includes_zero_p (vr: lhs)) |
| 1260 | { |
| 1261 | nan_state nan (false); |
| 1262 | r.set (type, real_min_representable (type), |
| 1263 | real_max_representable (type), nan); |
| 1264 | return true; |
| 1265 | } |
| 1266 | |
| 1267 | r.set_varying (type); |
| 1268 | return true; |
| 1269 | } |
| 1270 | } op_cfn_isfinite; |
| 1271 | |
| 1272 | //Implement range operator for CFN_BUILT_IN_ISNORMAL |
| 1273 | class cfn_isnormal : public range_operator |
| 1274 | { |
| 1275 | public: |
| 1276 | using range_operator::fold_range; |
| 1277 | using range_operator::op1_range; |
| 1278 | virtual bool fold_range (irange &r, tree type, const frange &op1, |
| 1279 | const irange &, relation_trio) const override |
| 1280 | { |
| 1281 | if (op1.undefined_p ()) |
| 1282 | return false; |
| 1283 | |
| 1284 | if (op1.known_isnormal ()) |
| 1285 | { |
| 1286 | wide_int one = wi::one (TYPE_PRECISION (type)); |
| 1287 | r.set (type, one, one); |
| 1288 | return true; |
| 1289 | } |
| 1290 | |
| 1291 | if (op1.known_isnan () |
| 1292 | || op1.known_isinf () |
| 1293 | || op1.known_isdenormal_or_zero ()) |
| 1294 | { |
| 1295 | r.set_zero (type); |
| 1296 | return true; |
| 1297 | } |
| 1298 | |
| 1299 | r.set_varying (type); |
| 1300 | return true; |
| 1301 | } |
| 1302 | virtual bool op1_range (frange &r, tree type, const irange &lhs, |
| 1303 | const frange &, relation_trio) const override |
| 1304 | { |
| 1305 | if (lhs.undefined_p ()) |
| 1306 | return false; |
| 1307 | |
| 1308 | if (lhs.zero_p ()) |
| 1309 | { |
| 1310 | r.set_varying (type); |
| 1311 | return true; |
| 1312 | } |
| 1313 | |
| 1314 | if (!range_includes_zero_p (vr: lhs)) |
| 1315 | { |
| 1316 | nan_state nan (false); |
| 1317 | r.set (type, real_min_representable (type), |
| 1318 | real_max_representable (type), nan); |
| 1319 | return true; |
| 1320 | } |
| 1321 | |
| 1322 | r.set_varying (type); |
| 1323 | return true; |
| 1324 | } |
| 1325 | } op_cfn_isnormal; |
| 1326 | |
| 1327 | // Implement range operator for CFN_BUILT_IN_ |
| 1328 | class cfn_parity : public range_operator |
| 1329 | { |
| 1330 | public: |
| 1331 | using range_operator::fold_range; |
| 1332 | virtual bool fold_range (irange &r, tree type, const irange &, |
| 1333 | const irange &, relation_trio) const |
| 1334 | { |
| 1335 | r = range_true_and_false (type); |
| 1336 | return true; |
| 1337 | } |
| 1338 | } op_cfn_parity; |
| 1339 | |
| 1340 | // Set up a gimple_range_op_handler for any nonstandard function which can be |
| 1341 | // supported via range-ops. |
| 1342 | |
| 1343 | void |
| 1344 | gimple_range_op_handler::maybe_non_standard () |
| 1345 | { |
| 1346 | range_op_handler signed_op (OP_WIDEN_MULT_SIGNED); |
| 1347 | gcc_checking_assert (signed_op); |
| 1348 | range_op_handler unsigned_op (OP_WIDEN_MULT_UNSIGNED); |
| 1349 | gcc_checking_assert (unsigned_op); |
| 1350 | |
| 1351 | if (gimple_code (g: m_stmt) == GIMPLE_ASSIGN) |
| 1352 | switch (gimple_assign_rhs_code (gs: m_stmt)) |
| 1353 | { |
| 1354 | case WIDEN_MULT_EXPR: |
| 1355 | { |
| 1356 | m_op1 = gimple_assign_rhs1 (gs: m_stmt); |
| 1357 | m_op2 = gimple_assign_rhs2 (gs: m_stmt); |
| 1358 | tree ret = gimple_assign_lhs (gs: m_stmt); |
| 1359 | bool signed1 = TYPE_SIGN (TREE_TYPE (m_op1)) == SIGNED; |
| 1360 | bool signed2 = TYPE_SIGN (TREE_TYPE (m_op2)) == SIGNED; |
| 1361 | bool signed_ret = TYPE_SIGN (TREE_TYPE (ret)) == SIGNED; |
| 1362 | |
| 1363 | /* Normally these operands should all have the same sign, but |
| 1364 | some passes and violate this by taking mismatched sign args. At |
| 1365 | the moment the only one that's possible is mismatch inputs and |
| 1366 | unsigned output. Once ranger supports signs for the operands we |
| 1367 | can properly fix it, for now only accept the case we can do |
| 1368 | correctly. */ |
| 1369 | if ((signed1 ^ signed2) && signed_ret) |
| 1370 | return; |
| 1371 | |
| 1372 | if (signed2 && !signed1) |
| 1373 | std::swap (a&: m_op1, b&: m_op2); |
| 1374 | |
| 1375 | if (signed1 || signed2) |
| 1376 | m_operator = signed_op.range_op (); |
| 1377 | else |
| 1378 | m_operator = unsigned_op.range_op (); |
| 1379 | break; |
| 1380 | } |
| 1381 | default: |
| 1382 | break; |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | // Set up a gimple_range_op_handler for any built in function which can be |
| 1387 | // supported via range-ops. |
| 1388 | |
| 1389 | void |
| 1390 | gimple_range_op_handler::maybe_builtin_call () |
| 1391 | { |
| 1392 | gcc_checking_assert (is_a <gcall *> (m_stmt)); |
| 1393 | |
| 1394 | gcall *call = as_a <gcall *> (p: m_stmt); |
| 1395 | combined_fn func = gimple_call_combined_fn (call); |
| 1396 | if (func == CFN_LAST) |
| 1397 | return; |
| 1398 | tree type = gimple_range_type (s: call); |
| 1399 | if (!type) |
| 1400 | return; |
| 1401 | if (!value_range::supports_type_p (type)) |
| 1402 | return; |
| 1403 | |
| 1404 | switch (func) |
| 1405 | { |
| 1406 | case CFN_BUILT_IN_CONSTANT_P: |
| 1407 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1408 | if (irange::supports_p (TREE_TYPE (m_op1))) |
| 1409 | m_operator = &op_cfn_constant_p; |
| 1410 | else if (frange::supports_p (TREE_TYPE (m_op1))) |
| 1411 | m_operator = &op_cfn_constant_float_p; |
| 1412 | break; |
| 1413 | |
| 1414 | CASE_FLT_FN (CFN_BUILT_IN_SIGNBIT): |
| 1415 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1416 | m_operator = &op_cfn_signbit; |
| 1417 | break; |
| 1418 | |
| 1419 | CASE_FLT_FN (BUILT_IN_ISINF): |
| 1420 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1421 | m_operator = &op_cfn_isinf; |
| 1422 | break; |
| 1423 | |
| 1424 | case CFN_BUILT_IN_ISFINITE: |
| 1425 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1426 | m_operator = &op_cfn_isfinite; |
| 1427 | break; |
| 1428 | |
| 1429 | case CFN_BUILT_IN_ISNORMAL: |
| 1430 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1431 | m_operator = &op_cfn_isnormal; |
| 1432 | break; |
| 1433 | |
| 1434 | CASE_CFN_COPYSIGN_ALL: |
| 1435 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1436 | m_op2 = gimple_call_arg (gs: call, index: 1); |
| 1437 | m_operator = &op_cfn_copysign; |
| 1438 | break; |
| 1439 | |
| 1440 | CASE_CFN_SQRT: |
| 1441 | CASE_CFN_SQRT_FN: |
| 1442 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1443 | m_operator = &op_cfn_sqrt; |
| 1444 | break; |
| 1445 | |
| 1446 | CASE_CFN_SIN: |
| 1447 | CASE_CFN_SIN_FN: |
| 1448 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1449 | m_operator = &op_cfn_sin; |
| 1450 | break; |
| 1451 | |
| 1452 | CASE_CFN_COS: |
| 1453 | CASE_CFN_COS_FN: |
| 1454 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1455 | m_operator = &op_cfn_cos; |
| 1456 | break; |
| 1457 | |
| 1458 | case CFN_BUILT_IN_TOUPPER: |
| 1459 | case CFN_BUILT_IN_TOLOWER: |
| 1460 | // Only proceed If the argument is compatible with the LHS. |
| 1461 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1462 | if (range_compatible_p (type1: type, TREE_TYPE (m_op1))) |
| 1463 | m_operator = (func == CFN_BUILT_IN_TOLOWER) ? &op_cfn_tolower |
| 1464 | : &op_cfn_toupper; |
| 1465 | break; |
| 1466 | |
| 1467 | CASE_CFN_FFS: |
| 1468 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1469 | m_operator = &op_cfn_ffs; |
| 1470 | break; |
| 1471 | |
| 1472 | CASE_CFN_POPCOUNT: |
| 1473 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1474 | m_operator = &op_cfn_popcount; |
| 1475 | break; |
| 1476 | |
| 1477 | CASE_CFN_CLZ: |
| 1478 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1479 | if (gimple_call_internal_p (gs: call) |
| 1480 | && gimple_call_num_args (gs: call) == 2) |
| 1481 | { |
| 1482 | m_op2 = gimple_call_arg (gs: call, index: 1); |
| 1483 | m_operator = &op_cfn_clz_internal; |
| 1484 | } |
| 1485 | else |
| 1486 | m_operator = &op_cfn_clz; |
| 1487 | break; |
| 1488 | |
| 1489 | CASE_CFN_CTZ: |
| 1490 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1491 | if (gimple_call_internal_p (gs: call) |
| 1492 | && gimple_call_num_args (gs: call) == 2) |
| 1493 | { |
| 1494 | m_op2 = gimple_call_arg (gs: call, index: 1); |
| 1495 | m_operator = &op_cfn_ctz_internal; |
| 1496 | } |
| 1497 | else |
| 1498 | m_operator = &op_cfn_ctz; |
| 1499 | break; |
| 1500 | |
| 1501 | CASE_CFN_CLRSB: |
| 1502 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1503 | m_operator = &op_cfn_clrsb; |
| 1504 | break; |
| 1505 | |
| 1506 | case CFN_UBSAN_CHECK_ADD: |
| 1507 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1508 | m_op2 = gimple_call_arg (gs: call, index: 1); |
| 1509 | m_operator = &op_cfn_ubsan_add; |
| 1510 | break; |
| 1511 | |
| 1512 | case CFN_UBSAN_CHECK_SUB: |
| 1513 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1514 | m_op2 = gimple_call_arg (gs: call, index: 1); |
| 1515 | m_operator = &op_cfn_ubsan_sub; |
| 1516 | break; |
| 1517 | |
| 1518 | case CFN_UBSAN_CHECK_MUL: |
| 1519 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1520 | m_op2 = gimple_call_arg (gs: call, index: 1); |
| 1521 | m_operator = &op_cfn_ubsan_mul; |
| 1522 | break; |
| 1523 | |
| 1524 | case CFN_BUILT_IN_STRLEN: |
| 1525 | { |
| 1526 | tree lhs = gimple_call_lhs (gs: call); |
| 1527 | if (lhs && ptrdiff_type_node && (TYPE_PRECISION (ptrdiff_type_node) |
| 1528 | == TYPE_PRECISION (TREE_TYPE (lhs)))) |
| 1529 | { |
| 1530 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1531 | m_operator = &op_cfn_strlen; |
| 1532 | } |
| 1533 | break; |
| 1534 | } |
| 1535 | |
| 1536 | // Optimizing these two internal functions helps the loop |
| 1537 | // optimizer eliminate outer comparisons. Size is [1,N] |
| 1538 | // and pos is [0,N-1]. |
| 1539 | case CFN_GOACC_DIM_SIZE: |
| 1540 | // This call will ensure all the asserts are triggered. |
| 1541 | oacc_get_ifn_dim_arg (stmt: call); |
| 1542 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1543 | m_operator = &op_cfn_goacc_dim_size; |
| 1544 | break; |
| 1545 | |
| 1546 | case CFN_GOACC_DIM_POS: |
| 1547 | // This call will ensure all the asserts are triggered. |
| 1548 | oacc_get_ifn_dim_arg (stmt: call); |
| 1549 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1550 | m_operator = &op_cfn_goacc_dim_pos; |
| 1551 | break; |
| 1552 | |
| 1553 | CASE_CFN_PARITY: |
| 1554 | m_operator = &op_cfn_parity; |
| 1555 | break; |
| 1556 | |
| 1557 | default: |
| 1558 | { |
| 1559 | unsigned arg; |
| 1560 | if (gimple_call_fnspec (stmt: call).returns_arg (arg_no: &arg) && arg == 0) |
| 1561 | { |
| 1562 | m_op1 = gimple_call_arg (gs: call, index: 0); |
| 1563 | m_operator = &op_cfn_pass_through_arg1; |
| 1564 | } |
| 1565 | break; |
| 1566 | } |
| 1567 | } |
| 1568 | } |
| 1569 | |