| 1 | /* Operations with very long integers. -*- C++ -*- |
| 2 | Copyright (C) 2012-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it |
| 7 | under the terms of the GNU General Public License as published by the |
| 8 | Free Software Foundation; either version 3, or (at your option) any |
| 9 | later version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT |
| 12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with GCC; see the file COPYING3. If not see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #ifndef WIDE_INT_H |
| 21 | #define WIDE_INT_H |
| 22 | |
| 23 | /* wide-int.[cc|h] implements a class that efficiently performs |
| 24 | mathematical operations on finite precision integers. wide_ints |
| 25 | are designed to be transient - they are not for long term storage |
| 26 | of values. There is tight integration between wide_ints and the |
| 27 | other longer storage GCC representations (rtl and tree). |
| 28 | |
| 29 | The actual precision of a wide_int depends on the flavor. There |
| 30 | are three predefined flavors: |
| 31 | |
| 32 | 1) wide_int (the default). This flavor does the math in the |
| 33 | precision of its input arguments. It is assumed (and checked) |
| 34 | that the precisions of the operands and results are consistent. |
| 35 | This is the most efficient flavor. It is not possible to examine |
| 36 | bits above the precision that has been specified. Because of |
| 37 | this, the default flavor has semantics that are simple to |
| 38 | understand and in general model the underlying hardware that the |
| 39 | compiler is targetted for. |
| 40 | |
| 41 | This flavor must be used at the RTL level of gcc because there |
| 42 | is, in general, not enough information in the RTL representation |
| 43 | to extend a value beyond the precision specified in the mode. |
| 44 | |
| 45 | This flavor should also be used at the TREE and GIMPLE levels of |
| 46 | the compiler except for the circumstances described in the |
| 47 | descriptions of the other two flavors. |
| 48 | |
| 49 | The default wide_int representation does not contain any |
| 50 | information inherent about signedness of the represented value, |
| 51 | so it can be used to represent both signed and unsigned numbers. |
| 52 | For operations where the results depend on signedness (full width |
| 53 | multiply, division, shifts, comparisons, and operations that need |
| 54 | overflow detected), the signedness must be specified separately. |
| 55 | |
| 56 | For precisions up to WIDE_INT_MAX_INL_PRECISION, it uses an inline |
| 57 | buffer in the type, for larger precisions up to WIDEST_INT_MAX_PRECISION |
| 58 | it uses a pointer to heap allocated buffer. |
| 59 | |
| 60 | 2) offset_int. This is a fixed-precision integer that can hold |
| 61 | any address offset, measured in either bits or bytes, with at |
| 62 | least one extra sign bit. At the moment the maximum address |
| 63 | size GCC supports is 64 bits. With 8-bit bytes and an extra |
| 64 | sign bit, offset_int therefore needs to have at least 68 bits |
| 65 | of precision. We round this up to 128 bits for efficiency. |
| 66 | Values of type T are converted to this precision by sign- or |
| 67 | zero-extending them based on the signedness of T. |
| 68 | |
| 69 | The extra sign bit means that offset_int is effectively a signed |
| 70 | 128-bit integer, i.e. it behaves like int128_t. |
| 71 | |
| 72 | Since the values are logically signed, there is no need to |
| 73 | distinguish between signed and unsigned operations. Sign-sensitive |
| 74 | comparison operators <, <=, > and >= are therefore supported. |
| 75 | Shift operators << and >> are also supported, with >> being |
| 76 | an _arithmetic_ right shift. |
| 77 | |
| 78 | [ Note that, even though offset_int is effectively int128_t, |
| 79 | it can still be useful to use unsigned comparisons like |
| 80 | wi::leu_p (a, b) as a more efficient short-hand for |
| 81 | "a >= 0 && a <= b". ] |
| 82 | |
| 83 | 3) widest_int. This representation is an approximation of |
| 84 | infinite precision math. However, it is not really infinite |
| 85 | precision math as in the GMP library. It is really finite |
| 86 | precision math where the precision is WIDEST_INT_MAX_PRECISION. |
| 87 | |
| 88 | Like offset_int, widest_int is wider than all the values that |
| 89 | it needs to represent, so the integers are logically signed. |
| 90 | Sign-sensitive comparison operators <, <=, > and >= are supported, |
| 91 | as are << and >>. |
| 92 | |
| 93 | There are several places in the GCC where this should/must be used: |
| 94 | |
| 95 | * Code that does induction variable optimizations. This code |
| 96 | works with induction variables of many different types at the |
| 97 | same time. Because of this, it ends up doing many different |
| 98 | calculations where the operands are not compatible types. The |
| 99 | widest_int makes this easy, because it provides a field where |
| 100 | nothing is lost when converting from any variable, |
| 101 | |
| 102 | * There are a small number of passes that currently use the |
| 103 | widest_int that should use the default. These should be |
| 104 | changed. |
| 105 | |
| 106 | There are surprising features of offset_int and widest_int |
| 107 | that the users should be careful about: |
| 108 | |
| 109 | 1) Shifts and rotations are just weird. You have to specify a |
| 110 | precision in which the shift or rotate is to happen in. The bits |
| 111 | above this precision are zeroed. While this is what you |
| 112 | want, it is clearly non obvious. |
| 113 | |
| 114 | 2) Larger precision math sometimes does not produce the same |
| 115 | answer as would be expected for doing the math at the proper |
| 116 | precision. In particular, a multiply followed by a divide will |
| 117 | produce a different answer if the first product is larger than |
| 118 | what can be represented in the input precision. |
| 119 | |
| 120 | The offset_int and the widest_int flavors are more expensive |
| 121 | than the default wide int, so in addition to the caveats with these |
| 122 | two, the default is the prefered representation. |
| 123 | |
| 124 | All three flavors of wide_int are represented as a vector of |
| 125 | HOST_WIDE_INTs. The default and widest_int vectors contain enough elements |
| 126 | to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only |
| 127 | enough elements to hold ADDR_MAX_PRECISION bits. The values are stored |
| 128 | in the vector with the least significant HOST_BITS_PER_WIDE_INT bits |
| 129 | in element 0. |
| 130 | |
| 131 | The default wide_int contains three fields: the vector (VAL), |
| 132 | the precision and a length (LEN). The length is the number of HWIs |
| 133 | needed to represent the value. widest_int and offset_int have a |
| 134 | constant precision that cannot be changed, so they only store the |
| 135 | VAL and LEN fields. |
| 136 | |
| 137 | Since most integers used in a compiler are small values, it is |
| 138 | generally profitable to use a representation of the value that is |
| 139 | as small as possible. LEN is used to indicate the number of |
| 140 | elements of the vector that are in use. The numbers are stored as |
| 141 | sign extended numbers as a means of compression. Leading |
| 142 | HOST_WIDE_INTs that contain strings of either -1 or 0 are removed |
| 143 | as long as they can be reconstructed from the top bit that is being |
| 144 | represented. |
| 145 | |
| 146 | The precision and length of a wide_int are always greater than 0. |
| 147 | Any bits in a wide_int above the precision are sign-extended from the |
| 148 | most significant bit. For example, a 4-bit value 0x8 is represented as |
| 149 | VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer |
| 150 | constants to be represented with undefined bits above the precision. |
| 151 | This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN, |
| 152 | so that the INTEGER_CST representation can be used both in TYPE_PRECISION |
| 153 | and in wider precisions. |
| 154 | |
| 155 | There are constructors to create the various forms of wide_int from |
| 156 | trees, rtl and constants. For trees the options are: |
| 157 | |
| 158 | tree t = ...; |
| 159 | wi::to_wide (t) // Treat T as a wide_int |
| 160 | wi::to_offset (t) // Treat T as an offset_int |
| 161 | wi::to_widest (t) // Treat T as a widest_int |
| 162 | |
| 163 | All three are light-weight accessors that should have no overhead |
| 164 | in release builds. If it is useful for readability reasons to |
| 165 | store the result in a temporary variable, the preferred method is: |
| 166 | |
| 167 | wi::tree_to_wide_ref twide = wi::to_wide (t); |
| 168 | wi::tree_to_offset_ref toffset = wi::to_offset (t); |
| 169 | wi::tree_to_widest_ref twidest = wi::to_widest (t); |
| 170 | |
| 171 | To make an rtx into a wide_int, you have to pair it with a mode. |
| 172 | The canonical way to do this is with rtx_mode_t as in: |
| 173 | |
| 174 | rtx r = ... |
| 175 | wide_int x = rtx_mode_t (r, mode); |
| 176 | |
| 177 | Similarly, a wide_int can only be constructed from a host value if |
| 178 | the target precision is given explicitly, such as in: |
| 179 | |
| 180 | wide_int x = wi::shwi (c, prec); // sign-extend C if necessary |
| 181 | wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary |
| 182 | |
| 183 | However, offset_int and widest_int have an inherent precision and so |
| 184 | can be initialized directly from a host value: |
| 185 | |
| 186 | offset_int x = (int) c; // sign-extend C |
| 187 | widest_int x = (unsigned int) c; // zero-extend C |
| 188 | |
| 189 | It is also possible to do arithmetic directly on rtx_mode_ts and |
| 190 | constants. For example: |
| 191 | |
| 192 | wi::add (r1, r2); // add equal-sized rtx_mode_ts r1 and r2 |
| 193 | wi::add (r1, 1); // add 1 to rtx_mode_t r1 |
| 194 | wi::lshift (1, 100); // 1 << 100 as a widest_int |
| 195 | |
| 196 | Many binary operations place restrictions on the combinations of inputs, |
| 197 | using the following rules: |
| 198 | |
| 199 | - {rtx, wide_int} op {rtx, wide_int} -> wide_int |
| 200 | The inputs must be the same precision. The result is a wide_int |
| 201 | of the same precision |
| 202 | |
| 203 | - {rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int |
| 204 | (un)signed HOST_WIDE_INT op {rtx, wide_int} -> wide_int |
| 205 | The HOST_WIDE_INT is extended or truncated to the precision of |
| 206 | the other input. The result is a wide_int of the same precision |
| 207 | as that input. |
| 208 | |
| 209 | - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int |
| 210 | The inputs are extended to widest_int precision and produce a |
| 211 | widest_int result. |
| 212 | |
| 213 | - offset_int op offset_int -> offset_int |
| 214 | offset_int op (un)signed HOST_WIDE_INT -> offset_int |
| 215 | (un)signed HOST_WIDE_INT op offset_int -> offset_int |
| 216 | |
| 217 | - widest_int op widest_int -> widest_int |
| 218 | widest_int op (un)signed HOST_WIDE_INT -> widest_int |
| 219 | (un)signed HOST_WIDE_INT op widest_int -> widest_int |
| 220 | |
| 221 | Other combinations like: |
| 222 | |
| 223 | - widest_int op offset_int and |
| 224 | - wide_int op offset_int |
| 225 | |
| 226 | are not allowed. The inputs should instead be extended or truncated |
| 227 | so that they match. |
| 228 | |
| 229 | The inputs to comparison functions like wi::eq_p and wi::lts_p |
| 230 | follow the same compatibility rules, although their return types |
| 231 | are different. Unary functions on X produce the same result as |
| 232 | a binary operation X + X. Shift functions X op Y also produce |
| 233 | the same result as X + X; the precision of the shift amount Y |
| 234 | can be arbitrarily different from X. */ |
| 235 | |
| 236 | /* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very |
| 237 | early examination of the target's mode file. The WIDE_INT_MAX_INL_ELTS |
| 238 | can accomodate at least 1 more bit so that unsigned numbers of that |
| 239 | mode can be represented as a signed value. Note that it is still |
| 240 | possible to create fixed_wide_ints that have precisions greater than |
| 241 | MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a |
| 242 | double-width multiplication result, for example. */ |
| 243 | #define WIDE_INT_MAX_INL_ELTS \ |
| 244 | ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) \ |
| 245 | / HOST_BITS_PER_WIDE_INT) |
| 246 | |
| 247 | #define WIDE_INT_MAX_INL_PRECISION \ |
| 248 | (WIDE_INT_MAX_INL_ELTS * HOST_BITS_PER_WIDE_INT) |
| 249 | |
| 250 | /* Precision of wide_int and largest _BitInt precision + 1 we can |
| 251 | support. */ |
| 252 | #define WIDE_INT_MAX_ELTS 1024 |
| 253 | #define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT) |
| 254 | |
| 255 | /* Precision of widest_int. */ |
| 256 | #define WIDEST_INT_MAX_ELTS 2048 |
| 257 | #define WIDEST_INT_MAX_PRECISION (WIDEST_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT) |
| 258 | |
| 259 | STATIC_ASSERT (WIDE_INT_MAX_INL_ELTS < WIDE_INT_MAX_ELTS); |
| 260 | |
| 261 | /* This is the max size of any pointer on any machine. It does not |
| 262 | seem to be as easy to sniff this out of the machine description as |
| 263 | it is for MAX_BITSIZE_MODE_ANY_INT since targets may support |
| 264 | multiple address sizes and may have different address sizes for |
| 265 | different address spaces. However, currently the largest pointer |
| 266 | on any platform is 64 bits. When that changes, then it is likely |
| 267 | that a target hook should be defined so that targets can make this |
| 268 | value larger for those targets. */ |
| 269 | #define ADDR_MAX_BITSIZE 64 |
| 270 | |
| 271 | /* This is the internal precision used when doing any address |
| 272 | arithmetic. The '4' is really 3 + 1. Three of the bits are for |
| 273 | the number of extra bits needed to do bit addresses and the other bit |
| 274 | is to allow everything to be signed without loosing any precision. |
| 275 | Then everything is rounded up to the next HWI for efficiency. */ |
| 276 | #define ADDR_MAX_PRECISION \ |
| 277 | ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \ |
| 278 | & ~(HOST_BITS_PER_WIDE_INT - 1)) |
| 279 | |
| 280 | /* The number of HWIs needed to store an offset_int. */ |
| 281 | #define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT) |
| 282 | |
| 283 | /* The max number of HWIs needed to store a wide_int of PRECISION. */ |
| 284 | #define WIDE_INT_MAX_HWIS(PRECISION) \ |
| 285 | ((PRECISION + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) |
| 286 | |
| 287 | /* The type of result produced by a binary operation on types T1 and T2. |
| 288 | Defined purely for brevity. */ |
| 289 | #define WI_BINARY_RESULT(T1, T2) \ |
| 290 | typename wi::binary_traits <T1, T2>::result_type |
| 291 | |
| 292 | /* Likewise for binary operators, which excludes the case in which neither |
| 293 | T1 nor T2 is a wide-int-based type. */ |
| 294 | #define WI_BINARY_OPERATOR_RESULT(T1, T2) \ |
| 295 | typename wi::binary_traits <T1, T2>::operator_result |
| 296 | |
| 297 | /* The type of result produced by T1 << T2. Leads to substitution failure |
| 298 | if the operation isn't supported. Defined purely for brevity. */ |
| 299 | #define WI_SIGNED_SHIFT_RESULT(T1, T2) \ |
| 300 | typename wi::binary_traits <T1, T2>::signed_shift_result_type |
| 301 | |
| 302 | /* The type of result produced by a sign-agnostic binary predicate on |
| 303 | types T1 and T2. This is bool if wide-int operations make sense for |
| 304 | T1 and T2 and leads to substitution failure otherwise. */ |
| 305 | #define WI_BINARY_PREDICATE_RESULT(T1, T2) \ |
| 306 | typename wi::binary_traits <T1, T2>::predicate_result |
| 307 | |
| 308 | /* The type of result produced by a signed binary predicate on types T1 and T2. |
| 309 | This is bool if signed comparisons make sense for T1 and T2 and leads to |
| 310 | substitution failure otherwise. */ |
| 311 | #define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \ |
| 312 | typename wi::binary_traits <T1, T2>::signed_predicate_result |
| 313 | |
| 314 | /* The type of result produced by a unary operation on type T. */ |
| 315 | #define WI_UNARY_RESULT(T) \ |
| 316 | typename wi::binary_traits <T, T>::result_type |
| 317 | |
| 318 | /* Define a variable RESULT to hold the result of a binary operation on |
| 319 | X and Y, which have types T1 and T2 respectively. Define VAL to |
| 320 | point to the blocks of RESULT. Once the user of the macro has |
| 321 | filled in VAL, it should call RESULT.set_len to set the number |
| 322 | of initialized blocks. */ |
| 323 | #define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \ |
| 324 | WI_BINARY_RESULT (T1, T2) RESULT = \ |
| 325 | wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \ |
| 326 | HOST_WIDE_INT *VAL = RESULT.write_val (0) |
| 327 | |
| 328 | /* Similar for the result of a unary operation on X, which has type T. */ |
| 329 | #define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \ |
| 330 | WI_UNARY_RESULT (T) RESULT = \ |
| 331 | wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \ |
| 332 | HOST_WIDE_INT *VAL = RESULT.write_val (0) |
| 333 | |
| 334 | template <typename T> class generic_wide_int; |
| 335 | template <int N> class fixed_wide_int_storage; |
| 336 | class wide_int_storage; |
| 337 | template <int N> class widest_int_storage; |
| 338 | |
| 339 | /* An N-bit integer. Until we can use typedef templates, use this instead. */ |
| 340 | #define FIXED_WIDE_INT(N) \ |
| 341 | generic_wide_int < fixed_wide_int_storage <N> > |
| 342 | |
| 343 | typedef generic_wide_int <wide_int_storage> wide_int; |
| 344 | typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int; |
| 345 | typedef generic_wide_int <widest_int_storage <WIDEST_INT_MAX_PRECISION> > widest_int; |
| 346 | typedef generic_wide_int <widest_int_storage <WIDEST_INT_MAX_PRECISION * 2> > widest2_int; |
| 347 | |
| 348 | /* wi::storage_ref can be a reference to a primitive type, |
| 349 | so this is the conservatively-correct setting. */ |
| 350 | template <bool SE, bool HDP = true> |
| 351 | class wide_int_ref_storage; |
| 352 | |
| 353 | typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref; |
| 354 | |
| 355 | /* This can be used instead of wide_int_ref if the referenced value is |
| 356 | known to have type T. It carries across properties of T's representation, |
| 357 | such as whether excess upper bits in a HWI are defined, and can therefore |
| 358 | help avoid redundant work. |
| 359 | |
| 360 | The macro could be replaced with a template typedef, once we're able |
| 361 | to use those. */ |
| 362 | #define WIDE_INT_REF_FOR(T) \ |
| 363 | generic_wide_int \ |
| 364 | <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended, \ |
| 365 | wi::int_traits <T>::host_dependent_precision> > |
| 366 | |
| 367 | namespace wi |
| 368 | { |
| 369 | /* Operations that calculate overflow do so even for |
| 370 | TYPE_OVERFLOW_WRAPS types. For example, adding 1 to +MAX_INT in |
| 371 | an unsigned int is 0 and does not overflow in C/C++, but wi::add |
| 372 | will set the overflow argument in case it's needed for further |
| 373 | analysis. |
| 374 | |
| 375 | For operations that require overflow, these are the different |
| 376 | types of overflow. */ |
| 377 | enum overflow_type { |
| 378 | OVF_NONE = 0, |
| 379 | OVF_UNDERFLOW = -1, |
| 380 | OVF_OVERFLOW = 1, |
| 381 | /* There was an overflow, but we are unsure whether it was an |
| 382 | overflow or an underflow. */ |
| 383 | OVF_UNKNOWN = 2 |
| 384 | }; |
| 385 | |
| 386 | /* Classifies an integer based on its precision. */ |
| 387 | enum precision_type { |
| 388 | /* The integer has both a precision and defined signedness. This allows |
| 389 | the integer to be converted to any width, since we know whether to fill |
| 390 | any extra bits with zeros or signs. */ |
| 391 | FLEXIBLE_PRECISION, |
| 392 | |
| 393 | /* The integer has a variable precision but no defined signedness. */ |
| 394 | VAR_PRECISION, |
| 395 | |
| 396 | /* The integer has a constant precision (known at GCC compile time), |
| 397 | is signed and all elements are in inline buffer. */ |
| 398 | INL_CONST_PRECISION, |
| 399 | |
| 400 | /* Like INL_CONST_PRECISION, but elements can be heap allocated for |
| 401 | larger lengths. */ |
| 402 | CONST_PRECISION |
| 403 | }; |
| 404 | |
| 405 | /* This class, which has no default implementation, is expected to |
| 406 | provide the following members: |
| 407 | |
| 408 | static const enum precision_type precision_type; |
| 409 | Classifies the type of T. |
| 410 | |
| 411 | static const unsigned int precision; |
| 412 | Only defined if precision_type == INL_CONST_PRECISION or |
| 413 | precision_type == CONST_PRECISION. Specifies the |
| 414 | precision of all integers of type T. |
| 415 | |
| 416 | static const bool host_dependent_precision; |
| 417 | True if the precision of T depends (or can depend) on the host. |
| 418 | |
| 419 | static unsigned int get_precision (const T &x) |
| 420 | Return the number of bits in X. |
| 421 | |
| 422 | static wi::storage_ref *decompose (HOST_WIDE_INT *scratch, |
| 423 | unsigned int precision, const T &x) |
| 424 | Decompose X as a PRECISION-bit integer, returning the associated |
| 425 | wi::storage_ref. SCRATCH is available as scratch space if needed. |
| 426 | The routine should assert that PRECISION is acceptable. */ |
| 427 | template <typename T> struct int_traits; |
| 428 | |
| 429 | /* This class provides a single type, result_type, which specifies the |
| 430 | type of integer produced by a binary operation whose inputs have |
| 431 | types T1 and T2. The definition should be symmetric. */ |
| 432 | template <typename T1, typename T2, |
| 433 | enum precision_type P1 = int_traits <T1>::precision_type, |
| 434 | enum precision_type P2 = int_traits <T2>::precision_type> |
| 435 | struct binary_traits; |
| 436 | |
| 437 | /* Specify the result type for each supported combination of binary |
| 438 | inputs. Note that INL_CONST_PRECISION, CONST_PRECISION and |
| 439 | VAR_PRECISION cannot be mixed, in order to give stronger type |
| 440 | checking. When both inputs are INL_CONST_PRECISION or both are |
| 441 | CONST_PRECISION, they must have the same precision. */ |
| 442 | template <typename T1, typename T2> |
| 443 | struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION> |
| 444 | { |
| 445 | typedef widest_int result_type; |
| 446 | /* Don't define operators for this combination. */ |
| 447 | }; |
| 448 | |
| 449 | template <typename T1, typename T2> |
| 450 | struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION> |
| 451 | { |
| 452 | typedef wide_int result_type; |
| 453 | typedef result_type operator_result; |
| 454 | typedef bool predicate_result; |
| 455 | }; |
| 456 | |
| 457 | template <typename T1, typename T2> |
| 458 | struct binary_traits <T1, T2, FLEXIBLE_PRECISION, INL_CONST_PRECISION> |
| 459 | { |
| 460 | /* Spelled out explicitly (rather than through FIXED_WIDE_INT) |
| 461 | so as not to confuse gengtype. */ |
| 462 | typedef generic_wide_int < fixed_wide_int_storage |
| 463 | <int_traits <T2>::precision> > result_type; |
| 464 | typedef result_type operator_result; |
| 465 | typedef bool predicate_result; |
| 466 | typedef result_type signed_shift_result_type; |
| 467 | typedef bool signed_predicate_result; |
| 468 | }; |
| 469 | |
| 470 | template <typename T1, typename T2> |
| 471 | struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION> |
| 472 | { |
| 473 | typedef generic_wide_int < widest_int_storage |
| 474 | <int_traits <T2>::precision> > result_type; |
| 475 | typedef result_type operator_result; |
| 476 | typedef bool predicate_result; |
| 477 | typedef result_type signed_shift_result_type; |
| 478 | typedef bool signed_predicate_result; |
| 479 | }; |
| 480 | |
| 481 | template <typename T1, typename T2> |
| 482 | struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION> |
| 483 | { |
| 484 | typedef wide_int result_type; |
| 485 | typedef result_type operator_result; |
| 486 | typedef bool predicate_result; |
| 487 | }; |
| 488 | |
| 489 | template <typename T1, typename T2> |
| 490 | struct binary_traits <T1, T2, INL_CONST_PRECISION, FLEXIBLE_PRECISION> |
| 491 | { |
| 492 | /* Spelled out explicitly (rather than through FIXED_WIDE_INT) |
| 493 | so as not to confuse gengtype. */ |
| 494 | typedef generic_wide_int < fixed_wide_int_storage |
| 495 | <int_traits <T1>::precision> > result_type; |
| 496 | typedef result_type operator_result; |
| 497 | typedef bool predicate_result; |
| 498 | typedef result_type signed_shift_result_type; |
| 499 | typedef bool signed_predicate_result; |
| 500 | }; |
| 501 | |
| 502 | template <typename T1, typename T2> |
| 503 | struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION> |
| 504 | { |
| 505 | typedef generic_wide_int < widest_int_storage |
| 506 | <int_traits <T1>::precision> > result_type; |
| 507 | typedef result_type operator_result; |
| 508 | typedef bool predicate_result; |
| 509 | typedef result_type signed_shift_result_type; |
| 510 | typedef bool signed_predicate_result; |
| 511 | }; |
| 512 | |
| 513 | template <typename T1, typename T2> |
| 514 | struct binary_traits <T1, T2, INL_CONST_PRECISION, INL_CONST_PRECISION> |
| 515 | { |
| 516 | STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision); |
| 517 | /* Spelled out explicitly (rather than through FIXED_WIDE_INT) |
| 518 | so as not to confuse gengtype. */ |
| 519 | typedef generic_wide_int < fixed_wide_int_storage |
| 520 | <int_traits <T1>::precision> > result_type; |
| 521 | typedef result_type operator_result; |
| 522 | typedef bool predicate_result; |
| 523 | typedef result_type signed_shift_result_type; |
| 524 | typedef bool signed_predicate_result; |
| 525 | }; |
| 526 | |
| 527 | template <typename T1, typename T2> |
| 528 | struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION> |
| 529 | { |
| 530 | STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision); |
| 531 | typedef generic_wide_int < widest_int_storage |
| 532 | <int_traits <T1>::precision> > result_type; |
| 533 | typedef result_type operator_result; |
| 534 | typedef bool predicate_result; |
| 535 | typedef result_type signed_shift_result_type; |
| 536 | typedef bool signed_predicate_result; |
| 537 | }; |
| 538 | |
| 539 | template <typename T1, typename T2> |
| 540 | struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION> |
| 541 | { |
| 542 | typedef wide_int result_type; |
| 543 | typedef result_type operator_result; |
| 544 | typedef bool predicate_result; |
| 545 | }; |
| 546 | } |
| 547 | |
| 548 | /* Public functions for querying and operating on integers. */ |
| 549 | namespace wi |
| 550 | { |
| 551 | template <typename T> |
| 552 | unsigned int get_precision (const T &); |
| 553 | |
| 554 | template <typename T1, typename T2> |
| 555 | unsigned int get_binary_precision (const T1 &, const T2 &); |
| 556 | |
| 557 | template <typename T1, typename T2> |
| 558 | void copy (T1 &, const T2 &); |
| 559 | |
| 560 | #define UNARY_PREDICATE \ |
| 561 | template <typename T> bool |
| 562 | #define UNARY_FUNCTION \ |
| 563 | template <typename T> WI_UNARY_RESULT (T) |
| 564 | #define BINARY_PREDICATE \ |
| 565 | template <typename T1, typename T2> bool |
| 566 | #define BINARY_FUNCTION \ |
| 567 | template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2) |
| 568 | #define SHIFT_FUNCTION \ |
| 569 | template <typename T1, typename T2> WI_UNARY_RESULT (T1) |
| 570 | |
| 571 | UNARY_PREDICATE fits_shwi_p (const T &); |
| 572 | UNARY_PREDICATE fits_uhwi_p (const T &); |
| 573 | UNARY_PREDICATE neg_p (const T &, signop = SIGNED); |
| 574 | |
| 575 | template <typename T> |
| 576 | HOST_WIDE_INT sign_mask (const T &); |
| 577 | |
| 578 | BINARY_PREDICATE eq_p (const T1 &, const T2 &); |
| 579 | BINARY_PREDICATE ne_p (const T1 &, const T2 &); |
| 580 | BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop); |
| 581 | BINARY_PREDICATE lts_p (const T1 &, const T2 &); |
| 582 | BINARY_PREDICATE ltu_p (const T1 &, const T2 &); |
| 583 | BINARY_PREDICATE le_p (const T1 &, const T2 &, signop); |
| 584 | BINARY_PREDICATE les_p (const T1 &, const T2 &); |
| 585 | BINARY_PREDICATE leu_p (const T1 &, const T2 &); |
| 586 | BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop); |
| 587 | BINARY_PREDICATE gts_p (const T1 &, const T2 &); |
| 588 | BINARY_PREDICATE gtu_p (const T1 &, const T2 &); |
| 589 | BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop); |
| 590 | BINARY_PREDICATE ges_p (const T1 &, const T2 &); |
| 591 | BINARY_PREDICATE geu_p (const T1 &, const T2 &); |
| 592 | |
| 593 | template <typename T1, typename T2> |
| 594 | int cmp (const T1 &, const T2 &, signop); |
| 595 | |
| 596 | template <typename T1, typename T2> |
| 597 | int cmps (const T1 &, const T2 &); |
| 598 | |
| 599 | template <typename T1, typename T2> |
| 600 | int cmpu (const T1 &, const T2 &); |
| 601 | |
| 602 | UNARY_FUNCTION bit_not (const T &); |
| 603 | UNARY_FUNCTION neg (const T &); |
| 604 | UNARY_FUNCTION neg (const T &, overflow_type *); |
| 605 | UNARY_FUNCTION abs (const T &); |
| 606 | UNARY_FUNCTION ext (const T &, unsigned int, signop); |
| 607 | UNARY_FUNCTION sext (const T &, unsigned int); |
| 608 | UNARY_FUNCTION zext (const T &, unsigned int); |
| 609 | UNARY_FUNCTION set_bit (const T &, unsigned int); |
| 610 | UNARY_FUNCTION bswap (const T &); |
| 611 | UNARY_FUNCTION bitreverse (const T &); |
| 612 | |
| 613 | BINARY_FUNCTION min (const T1 &, const T2 &, signop); |
| 614 | BINARY_FUNCTION smin (const T1 &, const T2 &); |
| 615 | BINARY_FUNCTION umin (const T1 &, const T2 &); |
| 616 | BINARY_FUNCTION max (const T1 &, const T2 &, signop); |
| 617 | BINARY_FUNCTION smax (const T1 &, const T2 &); |
| 618 | BINARY_FUNCTION umax (const T1 &, const T2 &); |
| 619 | |
| 620 | BINARY_FUNCTION bit_and (const T1 &, const T2 &); |
| 621 | BINARY_FUNCTION bit_and_not (const T1 &, const T2 &); |
| 622 | BINARY_FUNCTION bit_or (const T1 &, const T2 &); |
| 623 | BINARY_FUNCTION bit_or_not (const T1 &, const T2 &); |
| 624 | BINARY_FUNCTION bit_xor (const T1 &, const T2 &); |
| 625 | BINARY_FUNCTION add (const T1 &, const T2 &); |
| 626 | BINARY_FUNCTION add (const T1 &, const T2 &, signop, overflow_type *); |
| 627 | BINARY_FUNCTION sub (const T1 &, const T2 &); |
| 628 | BINARY_FUNCTION sub (const T1 &, const T2 &, signop, overflow_type *); |
| 629 | BINARY_FUNCTION mul (const T1 &, const T2 &); |
| 630 | BINARY_FUNCTION mul (const T1 &, const T2 &, signop, overflow_type *); |
| 631 | BINARY_FUNCTION smul (const T1 &, const T2 &, overflow_type *); |
| 632 | BINARY_FUNCTION umul (const T1 &, const T2 &, overflow_type *); |
| 633 | BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop); |
| 634 | BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop, |
| 635 | overflow_type * = 0); |
| 636 | BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &); |
| 637 | BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &); |
| 638 | BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop, |
| 639 | overflow_type * = 0); |
| 640 | BINARY_FUNCTION udiv_floor (const T1 &, const T2 &); |
| 641 | BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &); |
| 642 | BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop, |
| 643 | overflow_type * = 0); |
| 644 | BINARY_FUNCTION udiv_ceil (const T1 &, const T2 &); |
| 645 | BINARY_FUNCTION div_round (const T1 &, const T2 &, signop, |
| 646 | overflow_type * = 0); |
| 647 | BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop, |
| 648 | WI_BINARY_RESULT (T1, T2) *); |
| 649 | BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED); |
| 650 | BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop, |
| 651 | overflow_type * = 0); |
| 652 | BINARY_FUNCTION smod_trunc (const T1 &, const T2 &); |
| 653 | BINARY_FUNCTION umod_trunc (const T1 &, const T2 &); |
| 654 | BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop, |
| 655 | overflow_type * = 0); |
| 656 | BINARY_FUNCTION umod_floor (const T1 &, const T2 &); |
| 657 | BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop, |
| 658 | overflow_type * = 0); |
| 659 | BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop, |
| 660 | overflow_type * = 0); |
| 661 | |
| 662 | template <typename T1, typename T2> |
| 663 | bool multiple_of_p (const T1 &, const T2 &, signop); |
| 664 | |
| 665 | template <typename T1, typename T2> |
| 666 | bool multiple_of_p (const T1 &, const T2 &, signop, |
| 667 | WI_BINARY_RESULT (T1, T2) *); |
| 668 | |
| 669 | SHIFT_FUNCTION lshift (const T1 &, const T2 &); |
| 670 | SHIFT_FUNCTION lrshift (const T1 &, const T2 &); |
| 671 | SHIFT_FUNCTION arshift (const T1 &, const T2 &); |
| 672 | SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn); |
| 673 | SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0); |
| 674 | SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0); |
| 675 | |
| 676 | #undef SHIFT_FUNCTION |
| 677 | #undef BINARY_PREDICATE |
| 678 | #undef BINARY_FUNCTION |
| 679 | #undef UNARY_PREDICATE |
| 680 | #undef UNARY_FUNCTION |
| 681 | |
| 682 | bool only_sign_bit_p (const wide_int_ref &, unsigned int); |
| 683 | bool only_sign_bit_p (const wide_int_ref &); |
| 684 | int clz (const wide_int_ref &); |
| 685 | int clrsb (const wide_int_ref &); |
| 686 | int ctz (const wide_int_ref &); |
| 687 | int exact_log2 (const wide_int_ref &); |
| 688 | int floor_log2 (const wide_int_ref &); |
| 689 | int ffs (const wide_int_ref &); |
| 690 | int popcount (const wide_int_ref &); |
| 691 | int parity (const wide_int_ref &); |
| 692 | |
| 693 | template <typename T> |
| 694 | unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int); |
| 695 | |
| 696 | template <typename T> |
| 697 | unsigned int min_precision (const T &, signop); |
| 698 | |
| 699 | static inline void accumulate_overflow (overflow_type &, overflow_type); |
| 700 | } |
| 701 | |
| 702 | namespace wi |
| 703 | { |
| 704 | /* Contains the components of a decomposed integer for easy, direct |
| 705 | access. */ |
| 706 | class storage_ref |
| 707 | { |
| 708 | public: |
| 709 | storage_ref () {} |
| 710 | storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int); |
| 711 | |
| 712 | const HOST_WIDE_INT *val; |
| 713 | unsigned int len; |
| 714 | unsigned int precision; |
| 715 | |
| 716 | /* Provide enough trappings for this class to act as storage for |
| 717 | generic_wide_int. */ |
| 718 | unsigned int get_len () const; |
| 719 | unsigned int get_precision () const; |
| 720 | const HOST_WIDE_INT *get_val () const; |
| 721 | }; |
| 722 | } |
| 723 | |
| 724 | inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in, |
| 725 | unsigned int len_in, |
| 726 | unsigned int precision_in) |
| 727 | : val (val_in), len (len_in), precision (precision_in) |
| 728 | { |
| 729 | } |
| 730 | |
| 731 | inline unsigned int |
| 732 | wi::storage_ref::get_len () const |
| 733 | { |
| 734 | return len; |
| 735 | } |
| 736 | |
| 737 | inline unsigned int |
| 738 | wi::storage_ref::get_precision () const |
| 739 | { |
| 740 | return precision; |
| 741 | } |
| 742 | |
| 743 | inline const HOST_WIDE_INT * |
| 744 | wi::storage_ref::get_val () const |
| 745 | { |
| 746 | return val; |
| 747 | } |
| 748 | |
| 749 | /* This class defines an integer type using the storage provided by the |
| 750 | template argument. The storage class must provide the following |
| 751 | functions: |
| 752 | |
| 753 | unsigned int get_precision () const |
| 754 | Return the number of bits in the integer. |
| 755 | |
| 756 | HOST_WIDE_INT *get_val () const |
| 757 | Return a pointer to the array of blocks that encodes the integer. |
| 758 | |
| 759 | unsigned int get_len () const |
| 760 | Return the number of blocks in get_val (). If this is smaller |
| 761 | than the number of blocks implied by get_precision (), the |
| 762 | remaining blocks are sign extensions of block get_len () - 1. |
| 763 | |
| 764 | Although not required by generic_wide_int itself, writable storage |
| 765 | classes can also provide the following functions: |
| 766 | |
| 767 | HOST_WIDE_INT *write_val (unsigned int) |
| 768 | Get a modifiable version of get_val (). The argument should be |
| 769 | upper estimation for LEN (ignored by all storages but |
| 770 | widest_int_storage). |
| 771 | |
| 772 | unsigned int set_len (unsigned int len) |
| 773 | Set the value returned by get_len () to LEN. */ |
| 774 | template <typename storage> |
| 775 | class GTY(()) generic_wide_int : public storage |
| 776 | { |
| 777 | public: |
| 778 | generic_wide_int (); |
| 779 | |
| 780 | template <typename T> |
| 781 | generic_wide_int (const T &); |
| 782 | |
| 783 | template <typename T> |
| 784 | generic_wide_int (const T &, unsigned int); |
| 785 | |
| 786 | /* Conversions. */ |
| 787 | HOST_WIDE_INT to_shwi (unsigned int) const; |
| 788 | HOST_WIDE_INT to_shwi () const; |
| 789 | unsigned HOST_WIDE_INT to_uhwi (unsigned int) const; |
| 790 | unsigned HOST_WIDE_INT to_uhwi () const; |
| 791 | HOST_WIDE_INT to_short_addr () const; |
| 792 | |
| 793 | /* Public accessors for the interior of a wide int. */ |
| 794 | HOST_WIDE_INT sign_mask () const; |
| 795 | HOST_WIDE_INT elt (unsigned int) const; |
| 796 | HOST_WIDE_INT sext_elt (unsigned int) const; |
| 797 | unsigned HOST_WIDE_INT ulow () const; |
| 798 | unsigned HOST_WIDE_INT uhigh () const; |
| 799 | HOST_WIDE_INT slow () const; |
| 800 | HOST_WIDE_INT shigh () const; |
| 801 | |
| 802 | template <typename T> |
| 803 | generic_wide_int &operator = (const T &); |
| 804 | |
| 805 | #define ASSIGNMENT_OPERATOR(OP, F) \ |
| 806 | template <typename T> \ |
| 807 | generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); } |
| 808 | |
| 809 | /* Restrict these to cases where the shift operator is defined. */ |
| 810 | #define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \ |
| 811 | template <typename T> \ |
| 812 | generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); } |
| 813 | |
| 814 | #define INCDEC_OPERATOR(OP, DELTA) \ |
| 815 | generic_wide_int &OP () { *this += DELTA; return *this; } |
| 816 | |
| 817 | ASSIGNMENT_OPERATOR (operator &=, bit_and) |
| 818 | ASSIGNMENT_OPERATOR (operator |=, bit_or) |
| 819 | ASSIGNMENT_OPERATOR (operator ^=, bit_xor) |
| 820 | ASSIGNMENT_OPERATOR (operator +=, add) |
| 821 | ASSIGNMENT_OPERATOR (operator -=, sub) |
| 822 | ASSIGNMENT_OPERATOR (operator *=, mul) |
| 823 | ASSIGNMENT_OPERATOR (operator <<=, lshift) |
| 824 | SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>) |
| 825 | INCDEC_OPERATOR (operator ++, 1) |
| 826 | INCDEC_OPERATOR (operator --, -1) |
| 827 | |
| 828 | #undef SHIFT_ASSIGNMENT_OPERATOR |
| 829 | #undef ASSIGNMENT_OPERATOR |
| 830 | #undef INCDEC_OPERATOR |
| 831 | |
| 832 | /* Debugging functions. */ |
| 833 | void dump () const; |
| 834 | |
| 835 | static const bool is_sign_extended |
| 836 | = wi::int_traits <generic_wide_int <storage> >::is_sign_extended; |
| 837 | static const bool needs_write_val_arg |
| 838 | = wi::int_traits <generic_wide_int <storage> >::needs_write_val_arg; |
| 839 | }; |
| 840 | |
| 841 | template <typename storage> |
| 842 | inline generic_wide_int <storage>::generic_wide_int () {} |
| 843 | |
| 844 | template <typename storage> |
| 845 | template <typename T> |
| 846 | inline generic_wide_int <storage>::generic_wide_int (const T &x) |
| 847 | : storage (x) |
| 848 | { |
| 849 | } |
| 850 | |
| 851 | template <typename storage> |
| 852 | template <typename T> |
| 853 | inline generic_wide_int <storage>::generic_wide_int (const T &x, |
| 854 | unsigned int precision) |
| 855 | : storage (x, precision) |
| 856 | { |
| 857 | } |
| 858 | |
| 859 | /* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION. |
| 860 | If THIS does not fit in PRECISION, the information is lost. */ |
| 861 | template <typename storage> |
| 862 | inline HOST_WIDE_INT |
| 863 | generic_wide_int <storage>::to_shwi (unsigned int precision) const |
| 864 | { |
| 865 | if (precision < HOST_BITS_PER_WIDE_INT) |
| 866 | return sext_hwi (this->get_val ()[0], precision); |
| 867 | else |
| 868 | return this->get_val ()[0]; |
| 869 | } |
| 870 | |
| 871 | /* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */ |
| 872 | template <typename storage> |
| 873 | inline HOST_WIDE_INT |
| 874 | generic_wide_int <storage>::to_shwi () const |
| 875 | { |
| 876 | if (is_sign_extended) |
| 877 | return this->get_val ()[0]; |
| 878 | else |
| 879 | return to_shwi (this->get_precision ()); |
| 880 | } |
| 881 | |
| 882 | /* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from |
| 883 | PRECISION. If THIS does not fit in PRECISION, the information |
| 884 | is lost. */ |
| 885 | template <typename storage> |
| 886 | inline unsigned HOST_WIDE_INT |
| 887 | generic_wide_int <storage>::to_uhwi (unsigned int precision) const |
| 888 | { |
| 889 | if (precision < HOST_BITS_PER_WIDE_INT) |
| 890 | return zext_hwi (this->get_val ()[0], precision); |
| 891 | else |
| 892 | return this->get_val ()[0]; |
| 893 | } |
| 894 | |
| 895 | /* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */ |
| 896 | template <typename storage> |
| 897 | inline unsigned HOST_WIDE_INT |
| 898 | generic_wide_int <storage>::to_uhwi () const |
| 899 | { |
| 900 | return to_uhwi (this->get_precision ()); |
| 901 | } |
| 902 | |
| 903 | /* TODO: The compiler is half converted from using HOST_WIDE_INT to |
| 904 | represent addresses to using offset_int to represent addresses. |
| 905 | We use to_short_addr at the interface from new code to old, |
| 906 | unconverted code. */ |
| 907 | template <typename storage> |
| 908 | inline HOST_WIDE_INT |
| 909 | generic_wide_int <storage>::to_short_addr () const |
| 910 | { |
| 911 | return this->get_val ()[0]; |
| 912 | } |
| 913 | |
| 914 | /* Return the implicit value of blocks above get_len (). */ |
| 915 | template <typename storage> |
| 916 | inline HOST_WIDE_INT |
| 917 | generic_wide_int <storage>::sign_mask () const |
| 918 | { |
| 919 | unsigned int len = this->get_len (); |
| 920 | gcc_assert (len > 0); |
| 921 | |
| 922 | unsigned HOST_WIDE_INT high = this->get_val ()[len - 1]; |
| 923 | if (!is_sign_extended) |
| 924 | { |
| 925 | unsigned int precision = this->get_precision (); |
| 926 | int excess = len * HOST_BITS_PER_WIDE_INT - precision; |
| 927 | if (excess > 0) |
| 928 | high <<= excess; |
| 929 | } |
| 930 | return (HOST_WIDE_INT) (high) < 0 ? -1 : 0; |
| 931 | } |
| 932 | |
| 933 | /* Return the signed value of the least-significant explicitly-encoded |
| 934 | block. */ |
| 935 | template <typename storage> |
| 936 | inline HOST_WIDE_INT |
| 937 | generic_wide_int <storage>::slow () const |
| 938 | { |
| 939 | return this->get_val ()[0]; |
| 940 | } |
| 941 | |
| 942 | /* Return the signed value of the most-significant explicitly-encoded |
| 943 | block. */ |
| 944 | template <typename storage> |
| 945 | inline HOST_WIDE_INT |
| 946 | generic_wide_int <storage>::shigh () const |
| 947 | { |
| 948 | return this->get_val ()[this->get_len () - 1]; |
| 949 | } |
| 950 | |
| 951 | /* Return the unsigned value of the least-significant |
| 952 | explicitly-encoded block. */ |
| 953 | template <typename storage> |
| 954 | inline unsigned HOST_WIDE_INT |
| 955 | generic_wide_int <storage>::ulow () const |
| 956 | { |
| 957 | return this->get_val ()[0]; |
| 958 | } |
| 959 | |
| 960 | /* Return the unsigned value of the most-significant |
| 961 | explicitly-encoded block. */ |
| 962 | template <typename storage> |
| 963 | inline unsigned HOST_WIDE_INT |
| 964 | generic_wide_int <storage>::uhigh () const |
| 965 | { |
| 966 | return this->get_val ()[this->get_len () - 1]; |
| 967 | } |
| 968 | |
| 969 | /* Return block I, which might be implicitly or explicit encoded. */ |
| 970 | template <typename storage> |
| 971 | inline HOST_WIDE_INT |
| 972 | generic_wide_int <storage>::elt (unsigned int i) const |
| 973 | { |
| 974 | if (i >= this->get_len ()) |
| 975 | return sign_mask (); |
| 976 | else |
| 977 | return this->get_val ()[i]; |
| 978 | } |
| 979 | |
| 980 | /* Like elt, but sign-extend beyond the upper bit, instead of returning |
| 981 | the raw encoding. */ |
| 982 | template <typename storage> |
| 983 | inline HOST_WIDE_INT |
| 984 | generic_wide_int <storage>::sext_elt (unsigned int i) const |
| 985 | { |
| 986 | HOST_WIDE_INT elt_i = elt (i); |
| 987 | if (!is_sign_extended) |
| 988 | { |
| 989 | unsigned int precision = this->get_precision (); |
| 990 | unsigned int lsb = i * HOST_BITS_PER_WIDE_INT; |
| 991 | if (precision - lsb < HOST_BITS_PER_WIDE_INT) |
| 992 | elt_i = sext_hwi (src: elt_i, prec: precision - lsb); |
| 993 | } |
| 994 | return elt_i; |
| 995 | } |
| 996 | |
| 997 | template <typename storage> |
| 998 | template <typename T> |
| 999 | inline generic_wide_int <storage> & |
| 1000 | generic_wide_int <storage>::operator = (const T &x) |
| 1001 | { |
| 1002 | storage::operator = (x); |
| 1003 | return *this; |
| 1004 | } |
| 1005 | |
| 1006 | /* Dump the contents of the integer to stderr, for debugging. */ |
| 1007 | template <typename storage> |
| 1008 | void |
| 1009 | generic_wide_int <storage>::dump () const |
| 1010 | { |
| 1011 | unsigned int len = this->get_len (); |
| 1012 | const HOST_WIDE_INT *val = this->get_val (); |
| 1013 | unsigned int precision = this->get_precision (); |
| 1014 | fprintf (stderr, format: "[" ); |
| 1015 | if (len * HOST_BITS_PER_WIDE_INT < precision) |
| 1016 | fprintf (stderr, format: "...," ); |
| 1017 | for (unsigned int i = 0; i < len - 1; ++i) |
| 1018 | fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "," , val[len - 1 - i]); |
| 1019 | fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n" , |
| 1020 | val[0], precision); |
| 1021 | } |
| 1022 | |
| 1023 | namespace wi |
| 1024 | { |
| 1025 | template <typename storage> |
| 1026 | struct int_traits < generic_wide_int <storage> > |
| 1027 | : public wi::int_traits <storage> |
| 1028 | { |
| 1029 | static unsigned int get_precision (const generic_wide_int <storage> &); |
| 1030 | static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, |
| 1031 | const generic_wide_int <storage> &); |
| 1032 | }; |
| 1033 | } |
| 1034 | |
| 1035 | template <typename storage> |
| 1036 | inline unsigned int |
| 1037 | wi::int_traits < generic_wide_int <storage> >:: |
| 1038 | get_precision (const generic_wide_int <storage> &x) |
| 1039 | { |
| 1040 | return x.get_precision (); |
| 1041 | } |
| 1042 | |
| 1043 | template <typename storage> |
| 1044 | inline wi::storage_ref |
| 1045 | wi::int_traits < generic_wide_int <storage> >:: |
| 1046 | decompose (HOST_WIDE_INT *, unsigned int precision, |
| 1047 | const generic_wide_int <storage> &x) |
| 1048 | { |
| 1049 | gcc_checking_assert (precision == x.get_precision ()); |
| 1050 | return wi::storage_ref (x.get_val (), x.get_len (), precision); |
| 1051 | } |
| 1052 | |
| 1053 | /* Provide the storage for a wide_int_ref. This acts like a read-only |
| 1054 | wide_int, with the optimization that VAL is normally a pointer to |
| 1055 | another integer's storage, so that no array copy is needed. */ |
| 1056 | template <bool SE, bool HDP> |
| 1057 | class wide_int_ref_storage : public wi::storage_ref |
| 1058 | { |
| 1059 | private: |
| 1060 | /* Scratch space that can be used when decomposing the original integer. |
| 1061 | It must live as long as this object. */ |
| 1062 | HOST_WIDE_INT scratch[2]; |
| 1063 | |
| 1064 | public: |
| 1065 | wide_int_ref_storage () {} |
| 1066 | |
| 1067 | wide_int_ref_storage (const wi::storage_ref &); |
| 1068 | |
| 1069 | template <typename T> |
| 1070 | wide_int_ref_storage (const T &); |
| 1071 | |
| 1072 | template <typename T> |
| 1073 | wide_int_ref_storage (const T &, unsigned int); |
| 1074 | }; |
| 1075 | |
| 1076 | /* Create a reference from an existing reference. */ |
| 1077 | template <bool SE, bool HDP> |
| 1078 | inline wide_int_ref_storage <SE, HDP>:: |
| 1079 | wide_int_ref_storage (const wi::storage_ref &x) |
| 1080 | : storage_ref (x) |
| 1081 | {} |
| 1082 | |
| 1083 | /* Create a reference to integer X in its natural precision. Note |
| 1084 | that the natural precision is host-dependent for primitive |
| 1085 | types. */ |
| 1086 | template <bool SE, bool HDP> |
| 1087 | template <typename T> |
| 1088 | inline wide_int_ref_storage <SE, HDP>::wide_int_ref_storage (const T &x) |
| 1089 | : storage_ref (wi::int_traits <T>::decompose (scratch, |
| 1090 | wi::get_precision (x), x)) |
| 1091 | { |
| 1092 | } |
| 1093 | |
| 1094 | /* Create a reference to integer X in precision PRECISION. */ |
| 1095 | template <bool SE, bool HDP> |
| 1096 | template <typename T> |
| 1097 | inline wide_int_ref_storage <SE, HDP>:: |
| 1098 | wide_int_ref_storage (const T &x, unsigned int precision) |
| 1099 | : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x)) |
| 1100 | { |
| 1101 | } |
| 1102 | |
| 1103 | namespace wi |
| 1104 | { |
| 1105 | template <bool SE, bool HDP> |
| 1106 | struct int_traits <wide_int_ref_storage <SE, HDP> > |
| 1107 | { |
| 1108 | static const enum precision_type precision_type = VAR_PRECISION; |
| 1109 | static const bool host_dependent_precision = HDP; |
| 1110 | static const bool is_sign_extended = SE; |
| 1111 | static const bool needs_write_val_arg = false; |
| 1112 | }; |
| 1113 | } |
| 1114 | |
| 1115 | namespace wi |
| 1116 | { |
| 1117 | unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 1118 | unsigned int, unsigned int, unsigned int, |
| 1119 | signop sgn); |
| 1120 | unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 1121 | unsigned int, unsigned int, bool = true); |
| 1122 | } |
| 1123 | |
| 1124 | /* The storage used by wide_int. */ |
| 1125 | class GTY(()) wide_int_storage |
| 1126 | { |
| 1127 | private: |
| 1128 | union |
| 1129 | { |
| 1130 | HOST_WIDE_INT val[WIDE_INT_MAX_INL_ELTS]; |
| 1131 | HOST_WIDE_INT *valp; |
| 1132 | } GTY((skip)) u; |
| 1133 | unsigned int len; |
| 1134 | unsigned int precision; |
| 1135 | |
| 1136 | public: |
| 1137 | wide_int_storage (); |
| 1138 | template <typename T> |
| 1139 | wide_int_storage (const T &); |
| 1140 | wide_int_storage (const wide_int_storage &); |
| 1141 | ~wide_int_storage (); |
| 1142 | |
| 1143 | /* The standard generic_wide_int storage methods. */ |
| 1144 | unsigned int get_precision () const; |
| 1145 | const HOST_WIDE_INT *get_val () const; |
| 1146 | unsigned int get_len () const; |
| 1147 | HOST_WIDE_INT *write_val (unsigned int); |
| 1148 | void set_len (unsigned int, bool = false); |
| 1149 | |
| 1150 | wide_int_storage &operator = (const wide_int_storage &); |
| 1151 | template <typename T> |
| 1152 | wide_int_storage &operator = (const T &); |
| 1153 | |
| 1154 | static wide_int from (const wide_int_ref &, unsigned int, signop); |
| 1155 | static wide_int from_array (const HOST_WIDE_INT *, unsigned int, |
| 1156 | unsigned int, bool = true); |
| 1157 | static wide_int create (unsigned int); |
| 1158 | }; |
| 1159 | |
| 1160 | namespace wi |
| 1161 | { |
| 1162 | template <> |
| 1163 | struct int_traits <wide_int_storage> |
| 1164 | { |
| 1165 | static const enum precision_type precision_type = VAR_PRECISION; |
| 1166 | /* Guaranteed by a static assert in the wide_int_storage constructor. */ |
| 1167 | static const bool host_dependent_precision = false; |
| 1168 | static const bool is_sign_extended = true; |
| 1169 | static const bool needs_write_val_arg = false; |
| 1170 | template <typename T1, typename T2> |
| 1171 | static wide_int get_binary_result (const T1 &, const T2 &); |
| 1172 | template <typename T1, typename T2> |
| 1173 | static unsigned int get_binary_precision (const T1 &, const T2 &); |
| 1174 | }; |
| 1175 | } |
| 1176 | |
| 1177 | inline wide_int_storage::wide_int_storage () : precision (0) {} |
| 1178 | |
| 1179 | /* Initialize the storage from integer X, in its natural precision. |
| 1180 | Note that we do not allow integers with host-dependent precision |
| 1181 | to become wide_ints; wide_ints must always be logically independent |
| 1182 | of the host. */ |
| 1183 | template <typename T> |
| 1184 | inline wide_int_storage::wide_int_storage (const T &x) |
| 1185 | { |
| 1186 | STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); |
| 1187 | STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); |
| 1188 | STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::INL_CONST_PRECISION); |
| 1189 | WIDE_INT_REF_FOR (T) xi (x); |
| 1190 | precision = xi.precision; |
| 1191 | if (UNLIKELY (precision > WIDE_INT_MAX_INL_PRECISION)) |
| 1192 | u.valp = XNEWVEC (HOST_WIDE_INT, CEIL (precision, HOST_BITS_PER_WIDE_INT)); |
| 1193 | wi::copy (*this, xi); |
| 1194 | } |
| 1195 | |
| 1196 | inline wide_int_storage::wide_int_storage (const wide_int_storage &x) |
| 1197 | { |
| 1198 | memcpy (dest: this, src: &x, n: sizeof (wide_int_storage)); |
| 1199 | if (UNLIKELY (x.precision > WIDE_INT_MAX_INL_PRECISION)) |
| 1200 | { |
| 1201 | u.valp = XNEWVEC (HOST_WIDE_INT, CEIL (precision, HOST_BITS_PER_WIDE_INT)); |
| 1202 | memcpy (dest: u.valp, src: x.u.valp, n: len * sizeof (HOST_WIDE_INT)); |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | inline wide_int_storage::~wide_int_storage () |
| 1207 | { |
| 1208 | if (UNLIKELY (precision > WIDE_INT_MAX_INL_PRECISION)) |
| 1209 | XDELETEVEC (u.valp); |
| 1210 | } |
| 1211 | |
| 1212 | inline wide_int_storage& |
| 1213 | wide_int_storage::operator = (const wide_int_storage &x) |
| 1214 | { |
| 1215 | if (UNLIKELY (precision > WIDE_INT_MAX_INL_PRECISION)) |
| 1216 | { |
| 1217 | if (this == &x) |
| 1218 | return *this; |
| 1219 | XDELETEVEC (u.valp); |
| 1220 | } |
| 1221 | memcpy (dest: this, src: &x, n: sizeof (wide_int_storage)); |
| 1222 | if (UNLIKELY (x.precision > WIDE_INT_MAX_INL_PRECISION)) |
| 1223 | { |
| 1224 | u.valp = XNEWVEC (HOST_WIDE_INT, CEIL (x.precision, HOST_BITS_PER_WIDE_INT)); |
| 1225 | memcpy (dest: u.valp, src: x.u.valp, n: len * sizeof (HOST_WIDE_INT)); |
| 1226 | } |
| 1227 | return *this; |
| 1228 | } |
| 1229 | |
| 1230 | template <typename T> |
| 1231 | inline wide_int_storage& |
| 1232 | wide_int_storage::operator = (const T &x) |
| 1233 | { |
| 1234 | STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); |
| 1235 | STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); |
| 1236 | STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::INL_CONST_PRECISION); |
| 1237 | WIDE_INT_REF_FOR (T) xi (x); |
| 1238 | if (UNLIKELY (precision != xi.precision)) |
| 1239 | { |
| 1240 | if (UNLIKELY (precision > WIDE_INT_MAX_INL_PRECISION)) |
| 1241 | XDELETEVEC (u.valp); |
| 1242 | precision = xi.precision; |
| 1243 | if (UNLIKELY (precision > WIDE_INT_MAX_INL_PRECISION)) |
| 1244 | u.valp = XNEWVEC (HOST_WIDE_INT, |
| 1245 | CEIL (precision, HOST_BITS_PER_WIDE_INT)); |
| 1246 | } |
| 1247 | wi::copy (*this, xi); |
| 1248 | return *this; |
| 1249 | } |
| 1250 | |
| 1251 | inline unsigned int |
| 1252 | wide_int_storage::get_precision () const |
| 1253 | { |
| 1254 | return precision; |
| 1255 | } |
| 1256 | |
| 1257 | inline const HOST_WIDE_INT * |
| 1258 | wide_int_storage::get_val () const |
| 1259 | { |
| 1260 | return UNLIKELY (precision > WIDE_INT_MAX_INL_PRECISION) ? u.valp : u.val; |
| 1261 | } |
| 1262 | |
| 1263 | inline unsigned int |
| 1264 | wide_int_storage::get_len () const |
| 1265 | { |
| 1266 | return len; |
| 1267 | } |
| 1268 | |
| 1269 | inline HOST_WIDE_INT * |
| 1270 | wide_int_storage::write_val (unsigned int) |
| 1271 | { |
| 1272 | return UNLIKELY (precision > WIDE_INT_MAX_INL_PRECISION) ? u.valp : u.val; |
| 1273 | } |
| 1274 | |
| 1275 | inline void |
| 1276 | wide_int_storage::set_len (unsigned int l, bool is_sign_extended) |
| 1277 | { |
| 1278 | len = l; |
| 1279 | if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision) |
| 1280 | { |
| 1281 | HOST_WIDE_INT &v = write_val (len)[len - 1]; |
| 1282 | v = sext_hwi (src: v, prec: precision % HOST_BITS_PER_WIDE_INT); |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | /* Treat X as having signedness SGN and convert it to a PRECISION-bit |
| 1287 | number. */ |
| 1288 | inline wide_int |
| 1289 | wide_int_storage::from (const wide_int_ref &x, unsigned int precision, |
| 1290 | signop sgn) |
| 1291 | { |
| 1292 | wide_int result = wide_int::create (precision); |
| 1293 | result.set_len (l: wi::force_to_size (result.write_val (x.len), x.val, x.len, |
| 1294 | x.precision, precision, sgn)); |
| 1295 | return result; |
| 1296 | } |
| 1297 | |
| 1298 | /* Create a wide_int from the explicit block encoding given by VAL and |
| 1299 | LEN. PRECISION is the precision of the integer. NEED_CANON_P is |
| 1300 | true if the encoding may have redundant trailing blocks. */ |
| 1301 | inline wide_int |
| 1302 | wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len, |
| 1303 | unsigned int precision, bool need_canon_p) |
| 1304 | { |
| 1305 | wide_int result = wide_int::create (precision); |
| 1306 | result.set_len (l: wi::from_array (result.write_val (len), val, len, precision, |
| 1307 | need_canon_p)); |
| 1308 | return result; |
| 1309 | } |
| 1310 | |
| 1311 | /* Return an uninitialized wide_int with precision PRECISION. */ |
| 1312 | inline wide_int |
| 1313 | wide_int_storage::create (unsigned int precision) |
| 1314 | { |
| 1315 | wide_int x; |
| 1316 | x.precision = precision; |
| 1317 | if (UNLIKELY (precision > WIDE_INT_MAX_INL_PRECISION)) |
| 1318 | x.u.valp = XNEWVEC (HOST_WIDE_INT, |
| 1319 | CEIL (precision, HOST_BITS_PER_WIDE_INT)); |
| 1320 | return x; |
| 1321 | } |
| 1322 | |
| 1323 | template <typename T1, typename T2> |
| 1324 | inline wide_int |
| 1325 | wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y) |
| 1326 | { |
| 1327 | /* This shouldn't be used for two flexible-precision inputs. */ |
| 1328 | STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION |
| 1329 | || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION); |
| 1330 | if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION) |
| 1331 | return wide_int::create (precision: wi::get_precision (y)); |
| 1332 | else |
| 1333 | return wide_int::create (precision: wi::get_precision (x)); |
| 1334 | } |
| 1335 | |
| 1336 | template <typename T1, typename T2> |
| 1337 | inline unsigned int |
| 1338 | wi::int_traits <wide_int_storage>::get_binary_precision (const T1 &x, |
| 1339 | const T2 &y) |
| 1340 | { |
| 1341 | /* This shouldn't be used for two flexible-precision inputs. */ |
| 1342 | STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION |
| 1343 | || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION); |
| 1344 | if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION) |
| 1345 | return wi::get_precision (y); |
| 1346 | else |
| 1347 | return wi::get_precision (x); |
| 1348 | } |
| 1349 | |
| 1350 | /* The storage used by FIXED_WIDE_INT (N). */ |
| 1351 | template <int N> |
| 1352 | class GTY(()) fixed_wide_int_storage |
| 1353 | { |
| 1354 | private: |
| 1355 | HOST_WIDE_INT val[WIDE_INT_MAX_HWIS (N)]; |
| 1356 | unsigned int len; |
| 1357 | |
| 1358 | public: |
| 1359 | fixed_wide_int_storage () = default; |
| 1360 | template <typename T> |
| 1361 | fixed_wide_int_storage (const T &); |
| 1362 | |
| 1363 | /* The standard generic_wide_int storage methods. */ |
| 1364 | unsigned int get_precision () const; |
| 1365 | const HOST_WIDE_INT *get_val () const; |
| 1366 | unsigned int get_len () const; |
| 1367 | HOST_WIDE_INT *write_val (unsigned int); |
| 1368 | void set_len (unsigned int, bool = false); |
| 1369 | |
| 1370 | static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop); |
| 1371 | static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int, |
| 1372 | bool = true); |
| 1373 | }; |
| 1374 | |
| 1375 | namespace wi |
| 1376 | { |
| 1377 | template <int N> |
| 1378 | struct int_traits < fixed_wide_int_storage <N> > |
| 1379 | { |
| 1380 | static const enum precision_type precision_type = INL_CONST_PRECISION; |
| 1381 | static const bool host_dependent_precision = false; |
| 1382 | static const bool is_sign_extended = true; |
| 1383 | static const bool needs_write_val_arg = false; |
| 1384 | static const unsigned int precision = N; |
| 1385 | template <typename T1, typename T2> |
| 1386 | static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &); |
| 1387 | template <typename T1, typename T2> |
| 1388 | static unsigned int get_binary_precision (const T1 &, const T2 &); |
| 1389 | }; |
| 1390 | } |
| 1391 | |
| 1392 | /* Initialize the storage from integer X, in precision N. */ |
| 1393 | template <int N> |
| 1394 | template <typename T> |
| 1395 | inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x) |
| 1396 | { |
| 1397 | /* Check for type compatibility. We don't want to initialize a |
| 1398 | fixed-width integer from something like a wide_int. */ |
| 1399 | WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED; |
| 1400 | wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N)); |
| 1401 | } |
| 1402 | |
| 1403 | template <int N> |
| 1404 | inline unsigned int |
| 1405 | fixed_wide_int_storage <N>::get_precision () const |
| 1406 | { |
| 1407 | return N; |
| 1408 | } |
| 1409 | |
| 1410 | template <int N> |
| 1411 | inline const HOST_WIDE_INT * |
| 1412 | fixed_wide_int_storage <N>::get_val () const |
| 1413 | { |
| 1414 | return val; |
| 1415 | } |
| 1416 | |
| 1417 | template <int N> |
| 1418 | inline unsigned int |
| 1419 | fixed_wide_int_storage <N>::get_len () const |
| 1420 | { |
| 1421 | return len; |
| 1422 | } |
| 1423 | |
| 1424 | template <int N> |
| 1425 | inline HOST_WIDE_INT * |
| 1426 | fixed_wide_int_storage <N>::write_val (unsigned int) |
| 1427 | { |
| 1428 | return val; |
| 1429 | } |
| 1430 | |
| 1431 | template <int N> |
| 1432 | inline void |
| 1433 | fixed_wide_int_storage <N>::set_len (unsigned int l, bool) |
| 1434 | { |
| 1435 | len = l; |
| 1436 | /* There are no excess bits in val[len - 1]. */ |
| 1437 | STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0); |
| 1438 | } |
| 1439 | |
| 1440 | /* Treat X as having signedness SGN and convert it to an N-bit number. */ |
| 1441 | template <int N> |
| 1442 | inline FIXED_WIDE_INT (N) |
| 1443 | fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn) |
| 1444 | { |
| 1445 | FIXED_WIDE_INT (N) result; |
| 1446 | result.set_len (wi::force_to_size (result.write_val (x.len), x.val, x.len, |
| 1447 | x.precision, N, sgn)); |
| 1448 | return result; |
| 1449 | } |
| 1450 | |
| 1451 | /* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by |
| 1452 | VAL and LEN. NEED_CANON_P is true if the encoding may have redundant |
| 1453 | trailing blocks. */ |
| 1454 | template <int N> |
| 1455 | inline FIXED_WIDE_INT (N) |
| 1456 | fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val, |
| 1457 | unsigned int len, |
| 1458 | bool need_canon_p) |
| 1459 | { |
| 1460 | FIXED_WIDE_INT (N) result; |
| 1461 | result.set_len (wi::from_array (result.write_val (len), val, len, |
| 1462 | N, need_canon_p)); |
| 1463 | return result; |
| 1464 | } |
| 1465 | |
| 1466 | template <int N> |
| 1467 | template <typename T1, typename T2> |
| 1468 | inline FIXED_WIDE_INT (N) |
| 1469 | wi::int_traits < fixed_wide_int_storage <N> >:: |
| 1470 | get_binary_result (const T1 &, const T2 &) |
| 1471 | { |
| 1472 | return FIXED_WIDE_INT (N) (); |
| 1473 | } |
| 1474 | |
| 1475 | template <int N> |
| 1476 | template <typename T1, typename T2> |
| 1477 | inline unsigned int |
| 1478 | wi::int_traits < fixed_wide_int_storage <N> >:: |
| 1479 | get_binary_precision (const T1 &, const T2 &) |
| 1480 | { |
| 1481 | return N; |
| 1482 | } |
| 1483 | |
| 1484 | #define WIDEST_INT(N) generic_wide_int < widest_int_storage <N> > |
| 1485 | |
| 1486 | /* The storage used by widest_int. */ |
| 1487 | template <int N> |
| 1488 | class GTY(()) widest_int_storage |
| 1489 | { |
| 1490 | private: |
| 1491 | union |
| 1492 | { |
| 1493 | HOST_WIDE_INT val[WIDE_INT_MAX_INL_ELTS]; |
| 1494 | HOST_WIDE_INT *valp; |
| 1495 | } GTY((skip)) u; |
| 1496 | unsigned int len; |
| 1497 | |
| 1498 | public: |
| 1499 | widest_int_storage (); |
| 1500 | widest_int_storage (const widest_int_storage &); |
| 1501 | template <typename T> |
| 1502 | widest_int_storage (const T &); |
| 1503 | ~widest_int_storage (); |
| 1504 | widest_int_storage &operator = (const widest_int_storage &); |
| 1505 | template <typename T> |
| 1506 | inline widest_int_storage& operator = (const T &); |
| 1507 | |
| 1508 | /* The standard generic_wide_int storage methods. */ |
| 1509 | unsigned int get_precision () const; |
| 1510 | const HOST_WIDE_INT *get_val () const; |
| 1511 | unsigned int get_len () const; |
| 1512 | HOST_WIDE_INT *write_val (unsigned int); |
| 1513 | void set_len (unsigned int, bool = false); |
| 1514 | |
| 1515 | static WIDEST_INT (N) from (const wide_int_ref &, signop); |
| 1516 | static WIDEST_INT (N) from_array (const HOST_WIDE_INT *, unsigned int, |
| 1517 | bool = true); |
| 1518 | }; |
| 1519 | |
| 1520 | namespace wi |
| 1521 | { |
| 1522 | template <int N> |
| 1523 | struct int_traits < widest_int_storage <N> > |
| 1524 | { |
| 1525 | static const enum precision_type precision_type = CONST_PRECISION; |
| 1526 | static const bool host_dependent_precision = false; |
| 1527 | static const bool is_sign_extended = true; |
| 1528 | static const bool needs_write_val_arg = true; |
| 1529 | static const unsigned int precision = N; |
| 1530 | template <typename T1, typename T2> |
| 1531 | static WIDEST_INT (N) get_binary_result (const T1 &, const T2 &); |
| 1532 | template <typename T1, typename T2> |
| 1533 | static unsigned int get_binary_precision (const T1 &, const T2 &); |
| 1534 | }; |
| 1535 | } |
| 1536 | |
| 1537 | template <int N> |
| 1538 | inline widest_int_storage <N>::widest_int_storage () : len (0) {} |
| 1539 | |
| 1540 | /* Initialize the storage from integer X, in precision N. */ |
| 1541 | template <int N> |
| 1542 | template <typename T> |
| 1543 | inline widest_int_storage <N>::widest_int_storage (const T &x) : len (0) |
| 1544 | { |
| 1545 | /* Check for type compatibility. We don't want to initialize a |
| 1546 | widest integer from something like a wide_int. */ |
| 1547 | WI_BINARY_RESULT (T, WIDEST_INT (N)) *assertion ATTRIBUTE_UNUSED; |
| 1548 | wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N)); |
| 1549 | } |
| 1550 | |
| 1551 | template <int N> |
| 1552 | inline |
| 1553 | widest_int_storage <N>::widest_int_storage (const widest_int_storage &x) |
| 1554 | { |
| 1555 | memcpy (this, &x, sizeof (widest_int_storage)); |
| 1556 | if (UNLIKELY (len > WIDE_INT_MAX_INL_ELTS)) |
| 1557 | { |
| 1558 | u.valp = XNEWVEC (HOST_WIDE_INT, len); |
| 1559 | memcpy (u.valp, x.u.valp, len * sizeof (HOST_WIDE_INT)); |
| 1560 | } |
| 1561 | } |
| 1562 | |
| 1563 | template <int N> |
| 1564 | inline widest_int_storage <N>::~widest_int_storage () |
| 1565 | { |
| 1566 | if (UNLIKELY (len > WIDE_INT_MAX_INL_ELTS)) |
| 1567 | XDELETEVEC (u.valp); |
| 1568 | } |
| 1569 | |
| 1570 | template <int N> |
| 1571 | inline widest_int_storage <N>& |
| 1572 | widest_int_storage <N>::operator = (const widest_int_storage &x) |
| 1573 | { |
| 1574 | if (UNLIKELY (len > WIDE_INT_MAX_INL_ELTS)) |
| 1575 | { |
| 1576 | if (this == &x) |
| 1577 | return *this; |
| 1578 | XDELETEVEC (u.valp); |
| 1579 | } |
| 1580 | memcpy (this, &x, sizeof (widest_int_storage)); |
| 1581 | if (UNLIKELY (len > WIDE_INT_MAX_INL_ELTS)) |
| 1582 | { |
| 1583 | u.valp = XNEWVEC (HOST_WIDE_INT, len); |
| 1584 | memcpy (u.valp, x.u.valp, len * sizeof (HOST_WIDE_INT)); |
| 1585 | } |
| 1586 | return *this; |
| 1587 | } |
| 1588 | |
| 1589 | template <int N> |
| 1590 | template <typename T> |
| 1591 | inline widest_int_storage <N>& |
| 1592 | widest_int_storage <N>::operator = (const T &x) |
| 1593 | { |
| 1594 | /* Check for type compatibility. We don't want to assign a |
| 1595 | widest integer from something like a wide_int. */ |
| 1596 | WI_BINARY_RESULT (T, WIDEST_INT (N)) *assertion ATTRIBUTE_UNUSED; |
| 1597 | if (UNLIKELY (len > WIDE_INT_MAX_INL_ELTS)) |
| 1598 | XDELETEVEC (u.valp); |
| 1599 | len = 0; |
| 1600 | wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N)); |
| 1601 | return *this; |
| 1602 | } |
| 1603 | |
| 1604 | template <int N> |
| 1605 | inline unsigned int |
| 1606 | widest_int_storage <N>::get_precision () const |
| 1607 | { |
| 1608 | return N; |
| 1609 | } |
| 1610 | |
| 1611 | template <int N> |
| 1612 | inline const HOST_WIDE_INT * |
| 1613 | widest_int_storage <N>::get_val () const |
| 1614 | { |
| 1615 | return UNLIKELY (len > WIDE_INT_MAX_INL_ELTS) ? u.valp : u.val; |
| 1616 | } |
| 1617 | |
| 1618 | template <int N> |
| 1619 | inline unsigned int |
| 1620 | widest_int_storage <N>::get_len () const |
| 1621 | { |
| 1622 | return len; |
| 1623 | } |
| 1624 | |
| 1625 | template <int N> |
| 1626 | inline HOST_WIDE_INT * |
| 1627 | widest_int_storage <N>::write_val (unsigned int l) |
| 1628 | { |
| 1629 | if (UNLIKELY (len > WIDE_INT_MAX_INL_ELTS)) |
| 1630 | XDELETEVEC (u.valp); |
| 1631 | len = l; |
| 1632 | if (UNLIKELY (l > WIDE_INT_MAX_INL_ELTS)) |
| 1633 | { |
| 1634 | u.valp = XNEWVEC (HOST_WIDE_INT, l); |
| 1635 | return u.valp; |
| 1636 | } |
| 1637 | else if (CHECKING_P && l < WIDE_INT_MAX_INL_ELTS) |
| 1638 | u.val[l] = HOST_WIDE_INT_UC (0xbaaaaaaddeadbeef); |
| 1639 | return u.val; |
| 1640 | } |
| 1641 | |
| 1642 | template <int N> |
| 1643 | inline void |
| 1644 | widest_int_storage <N>::set_len (unsigned int l, bool) |
| 1645 | { |
| 1646 | gcc_checking_assert (l <= len); |
| 1647 | if (UNLIKELY (len > WIDE_INT_MAX_INL_ELTS) |
| 1648 | && l <= WIDE_INT_MAX_INL_ELTS) |
| 1649 | { |
| 1650 | HOST_WIDE_INT *valp = u.valp; |
| 1651 | memcpy (u.val, valp, l * sizeof (u.val[0])); |
| 1652 | XDELETEVEC (valp); |
| 1653 | } |
| 1654 | else if (len && len < WIDE_INT_MAX_INL_ELTS) |
| 1655 | gcc_checking_assert ((unsigned HOST_WIDE_INT) u.val[len] |
| 1656 | == HOST_WIDE_INT_UC (0xbaaaaaaddeadbeef)); |
| 1657 | len = l; |
| 1658 | /* There are no excess bits in val[len - 1]. */ |
| 1659 | STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0); |
| 1660 | } |
| 1661 | |
| 1662 | /* Treat X as having signedness SGN and convert it to an N-bit number. */ |
| 1663 | template <int N> |
| 1664 | inline WIDEST_INT (N) |
| 1665 | widest_int_storage <N>::from (const wide_int_ref &x, signop sgn) |
| 1666 | { |
| 1667 | WIDEST_INT (N) result; |
| 1668 | unsigned int exp_len = x.len; |
| 1669 | unsigned int prec = result.get_precision (); |
| 1670 | if (sgn == UNSIGNED && prec > x.precision && x.val[x.len - 1] < 0) |
| 1671 | exp_len = CEIL (x.precision, HOST_BITS_PER_WIDE_INT) + 1; |
| 1672 | result.set_len (wi::force_to_size (result.write_val (exp_len), x.val, x.len, |
| 1673 | x.precision, prec, sgn)); |
| 1674 | return result; |
| 1675 | } |
| 1676 | |
| 1677 | /* Create a WIDEST_INT (N) from the explicit block encoding given by |
| 1678 | VAL and LEN. NEED_CANON_P is true if the encoding may have redundant |
| 1679 | trailing blocks. */ |
| 1680 | template <int N> |
| 1681 | inline WIDEST_INT (N) |
| 1682 | widest_int_storage <N>::from_array (const HOST_WIDE_INT *val, |
| 1683 | unsigned int len, |
| 1684 | bool need_canon_p) |
| 1685 | { |
| 1686 | WIDEST_INT (N) result; |
| 1687 | result.set_len (wi::from_array (result.write_val (len), val, len, |
| 1688 | result.get_precision (), need_canon_p)); |
| 1689 | return result; |
| 1690 | } |
| 1691 | |
| 1692 | template <int N> |
| 1693 | template <typename T1, typename T2> |
| 1694 | inline WIDEST_INT (N) |
| 1695 | wi::int_traits < widest_int_storage <N> >:: |
| 1696 | get_binary_result (const T1 &, const T2 &) |
| 1697 | { |
| 1698 | return WIDEST_INT (N) (); |
| 1699 | } |
| 1700 | |
| 1701 | template <int N> |
| 1702 | template <typename T1, typename T2> |
| 1703 | inline unsigned int |
| 1704 | wi::int_traits < widest_int_storage <N> >:: |
| 1705 | get_binary_precision (const T1 &, const T2 &) |
| 1706 | { |
| 1707 | return N; |
| 1708 | } |
| 1709 | |
| 1710 | /* A reference to one element of a trailing_wide_ints structure. */ |
| 1711 | class trailing_wide_int_storage |
| 1712 | { |
| 1713 | private: |
| 1714 | /* The precision of the integer, which is a fixed property of the |
| 1715 | parent trailing_wide_ints. */ |
| 1716 | unsigned int m_precision; |
| 1717 | |
| 1718 | /* A pointer to the length field. */ |
| 1719 | unsigned short *m_len; |
| 1720 | |
| 1721 | /* A pointer to the HWI array. There are enough elements to hold all |
| 1722 | values of precision M_PRECISION. */ |
| 1723 | HOST_WIDE_INT *m_val; |
| 1724 | |
| 1725 | public: |
| 1726 | trailing_wide_int_storage (unsigned int, unsigned short *, HOST_WIDE_INT *); |
| 1727 | |
| 1728 | /* The standard generic_wide_int storage methods. */ |
| 1729 | unsigned int get_len () const; |
| 1730 | unsigned int get_precision () const; |
| 1731 | const HOST_WIDE_INT *get_val () const; |
| 1732 | HOST_WIDE_INT *write_val (unsigned int); |
| 1733 | void set_len (unsigned int, bool = false); |
| 1734 | |
| 1735 | template <typename T> |
| 1736 | trailing_wide_int_storage &operator = (const T &); |
| 1737 | }; |
| 1738 | |
| 1739 | typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int; |
| 1740 | |
| 1741 | /* trailing_wide_int behaves like a wide_int. */ |
| 1742 | namespace wi |
| 1743 | { |
| 1744 | template <> |
| 1745 | struct int_traits <trailing_wide_int_storage> |
| 1746 | : public int_traits <wide_int_storage> {}; |
| 1747 | } |
| 1748 | |
| 1749 | /* A variable-length array of wide_int-like objects that can be put |
| 1750 | at the end of a variable-sized structure. The number of objects is |
| 1751 | at most N and can be set at runtime by using set_precision(). |
| 1752 | |
| 1753 | Use extra_size to calculate how many bytes beyond the |
| 1754 | sizeof need to be allocated. Use set_precision to initialize the |
| 1755 | structure. */ |
| 1756 | template <int N> |
| 1757 | struct GTY((user)) trailing_wide_ints |
| 1758 | { |
| 1759 | private: |
| 1760 | /* The shared precision of each number. */ |
| 1761 | unsigned short m_precision; |
| 1762 | |
| 1763 | /* The shared maximum length of each number. */ |
| 1764 | unsigned short m_max_len; |
| 1765 | |
| 1766 | /* The number of elements. */ |
| 1767 | unsigned char m_num_elements; |
| 1768 | |
| 1769 | /* The current length of each number. */ |
| 1770 | unsigned short m_len[N]; |
| 1771 | |
| 1772 | /* The variable-length part of the structure, which always contains |
| 1773 | at least one HWI. Element I starts at index I * M_MAX_LEN. */ |
| 1774 | HOST_WIDE_INT m_val[1]; |
| 1775 | |
| 1776 | public: |
| 1777 | typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference; |
| 1778 | |
| 1779 | void set_precision (unsigned int precision, unsigned int num_elements = N); |
| 1780 | unsigned int get_precision () const { return m_precision; } |
| 1781 | unsigned int num_elements () const { return m_num_elements; } |
| 1782 | trailing_wide_int operator [] (unsigned int); |
| 1783 | const_reference operator [] (unsigned int) const; |
| 1784 | static size_t extra_size (unsigned int precision, |
| 1785 | unsigned int num_elements = N); |
| 1786 | size_t () const { return extra_size (m_precision, |
| 1787 | m_num_elements); } |
| 1788 | }; |
| 1789 | |
| 1790 | inline trailing_wide_int_storage:: |
| 1791 | trailing_wide_int_storage (unsigned int precision, unsigned short *len, |
| 1792 | HOST_WIDE_INT *val) |
| 1793 | : m_precision (precision), m_len (len), m_val (val) |
| 1794 | { |
| 1795 | } |
| 1796 | |
| 1797 | inline unsigned int |
| 1798 | trailing_wide_int_storage::get_len () const |
| 1799 | { |
| 1800 | return *m_len; |
| 1801 | } |
| 1802 | |
| 1803 | inline unsigned int |
| 1804 | trailing_wide_int_storage::get_precision () const |
| 1805 | { |
| 1806 | return m_precision; |
| 1807 | } |
| 1808 | |
| 1809 | inline const HOST_WIDE_INT * |
| 1810 | trailing_wide_int_storage::get_val () const |
| 1811 | { |
| 1812 | return m_val; |
| 1813 | } |
| 1814 | |
| 1815 | inline HOST_WIDE_INT * |
| 1816 | trailing_wide_int_storage::write_val (unsigned int) |
| 1817 | { |
| 1818 | return m_val; |
| 1819 | } |
| 1820 | |
| 1821 | inline void |
| 1822 | trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended) |
| 1823 | { |
| 1824 | *m_len = len; |
| 1825 | if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision) |
| 1826 | m_val[len - 1] = sext_hwi (src: m_val[len - 1], |
| 1827 | prec: m_precision % HOST_BITS_PER_WIDE_INT); |
| 1828 | } |
| 1829 | |
| 1830 | template <typename T> |
| 1831 | inline trailing_wide_int_storage & |
| 1832 | trailing_wide_int_storage::operator = (const T &x) |
| 1833 | { |
| 1834 | WIDE_INT_REF_FOR (T) xi (x, m_precision); |
| 1835 | wi::copy (*this, xi); |
| 1836 | return *this; |
| 1837 | } |
| 1838 | |
| 1839 | /* Initialize the structure and record that all elements have precision |
| 1840 | PRECISION. NUM_ELEMENTS can be no more than N. */ |
| 1841 | template <int N> |
| 1842 | inline void |
| 1843 | trailing_wide_ints <N>::set_precision (unsigned int precision, |
| 1844 | unsigned int num_elements) |
| 1845 | { |
| 1846 | gcc_checking_assert (num_elements <= N); |
| 1847 | m_num_elements = num_elements; |
| 1848 | m_precision = precision; |
| 1849 | m_max_len = WIDE_INT_MAX_HWIS (precision); |
| 1850 | } |
| 1851 | |
| 1852 | /* Return a reference to element INDEX. */ |
| 1853 | template <int N> |
| 1854 | inline trailing_wide_int |
| 1855 | trailing_wide_ints <N>::operator [] (unsigned int index) |
| 1856 | { |
| 1857 | return trailing_wide_int_storage (m_precision, &m_len[index], |
| 1858 | &m_val[index * m_max_len]); |
| 1859 | } |
| 1860 | |
| 1861 | template <int N> |
| 1862 | inline typename trailing_wide_ints <N>::const_reference |
| 1863 | trailing_wide_ints <N>::operator [] (unsigned int index) const |
| 1864 | { |
| 1865 | return wi::storage_ref (&m_val[index * m_max_len], |
| 1866 | m_len[index], m_precision); |
| 1867 | } |
| 1868 | |
| 1869 | /* Return how many extra bytes need to be added to the end of the |
| 1870 | structure in order to handle NUM_ELEMENTS wide_ints of precision |
| 1871 | PRECISION. NUM_ELEMENTS is the number of elements, and defaults |
| 1872 | to N. */ |
| 1873 | template <int N> |
| 1874 | inline size_t |
| 1875 | trailing_wide_ints <N>:: (unsigned int precision, |
| 1876 | unsigned int num_elements) |
| 1877 | { |
| 1878 | unsigned int max_len = WIDE_INT_MAX_HWIS (precision); |
| 1879 | gcc_checking_assert (num_elements <= N); |
| 1880 | return (num_elements * max_len - 1) * sizeof (HOST_WIDE_INT); |
| 1881 | } |
| 1882 | |
| 1883 | /* This macro is used in structures that end with a trailing_wide_ints field |
| 1884 | called FIELD. It declares get_NAME() and set_NAME() methods to access |
| 1885 | element I of FIELD. */ |
| 1886 | #define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \ |
| 1887 | trailing_wide_int get_##NAME () { return FIELD[I]; } \ |
| 1888 | template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; } |
| 1889 | |
| 1890 | namespace wi |
| 1891 | { |
| 1892 | /* Implementation of int_traits for primitive integer types like "int". */ |
| 1893 | template <typename T, bool signed_p> |
| 1894 | struct primitive_int_traits |
| 1895 | { |
| 1896 | static const enum precision_type precision_type = FLEXIBLE_PRECISION; |
| 1897 | static const bool host_dependent_precision = true; |
| 1898 | static const bool is_sign_extended = true; |
| 1899 | static const bool needs_write_val_arg = false; |
| 1900 | static unsigned int get_precision (T); |
| 1901 | static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T); |
| 1902 | }; |
| 1903 | } |
| 1904 | |
| 1905 | template <typename T, bool signed_p> |
| 1906 | inline unsigned int |
| 1907 | wi::primitive_int_traits <T, signed_p>::get_precision (T) |
| 1908 | { |
| 1909 | return sizeof (T) * CHAR_BIT; |
| 1910 | } |
| 1911 | |
| 1912 | template <typename T, bool signed_p> |
| 1913 | inline wi::storage_ref |
| 1914 | wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch, |
| 1915 | unsigned int precision, T x) |
| 1916 | { |
| 1917 | scratch[0] = x; |
| 1918 | if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT) |
| 1919 | return wi::storage_ref (scratch, 1, precision); |
| 1920 | scratch[1] = 0; |
| 1921 | return wi::storage_ref (scratch, 2, precision); |
| 1922 | } |
| 1923 | |
| 1924 | /* Allow primitive C types to be used in wi:: routines. */ |
| 1925 | namespace wi |
| 1926 | { |
| 1927 | template <> |
| 1928 | struct int_traits <unsigned char> |
| 1929 | : public primitive_int_traits <unsigned char, false> {}; |
| 1930 | |
| 1931 | template <> |
| 1932 | struct int_traits <unsigned short> |
| 1933 | : public primitive_int_traits <unsigned short, false> {}; |
| 1934 | |
| 1935 | template <> |
| 1936 | struct int_traits <int> |
| 1937 | : public primitive_int_traits <int, true> {}; |
| 1938 | |
| 1939 | template <> |
| 1940 | struct int_traits <unsigned int> |
| 1941 | : public primitive_int_traits <unsigned int, false> {}; |
| 1942 | |
| 1943 | template <> |
| 1944 | struct int_traits <long> |
| 1945 | : public primitive_int_traits <long, true> {}; |
| 1946 | |
| 1947 | template <> |
| 1948 | struct int_traits <unsigned long> |
| 1949 | : public primitive_int_traits <unsigned long, false> {}; |
| 1950 | |
| 1951 | #if defined HAVE_LONG_LONG |
| 1952 | template <> |
| 1953 | struct int_traits <long long> |
| 1954 | : public primitive_int_traits <long long, true> {}; |
| 1955 | |
| 1956 | template <> |
| 1957 | struct int_traits <unsigned long long> |
| 1958 | : public primitive_int_traits <unsigned long long, false> {}; |
| 1959 | #endif |
| 1960 | } |
| 1961 | |
| 1962 | namespace wi |
| 1963 | { |
| 1964 | /* Stores HWI-sized integer VAL, treating it as having signedness SGN |
| 1965 | and precision PRECISION. */ |
| 1966 | class hwi_with_prec |
| 1967 | { |
| 1968 | public: |
| 1969 | hwi_with_prec () {} |
| 1970 | hwi_with_prec (HOST_WIDE_INT, unsigned int, signop); |
| 1971 | HOST_WIDE_INT val; |
| 1972 | unsigned int precision; |
| 1973 | signop sgn; |
| 1974 | }; |
| 1975 | |
| 1976 | hwi_with_prec shwi (HOST_WIDE_INT, unsigned int); |
| 1977 | hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int); |
| 1978 | |
| 1979 | hwi_with_prec minus_one (unsigned int); |
| 1980 | hwi_with_prec zero (unsigned int); |
| 1981 | hwi_with_prec one (unsigned int); |
| 1982 | hwi_with_prec two (unsigned int); |
| 1983 | } |
| 1984 | |
| 1985 | inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p, |
| 1986 | signop s) |
| 1987 | : precision (p), sgn (s) |
| 1988 | { |
| 1989 | if (precision < HOST_BITS_PER_WIDE_INT) |
| 1990 | val = sext_hwi (src: v, prec: precision); |
| 1991 | else |
| 1992 | val = v; |
| 1993 | } |
| 1994 | |
| 1995 | /* Return a signed integer that has value VAL and precision PRECISION. */ |
| 1996 | inline wi::hwi_with_prec |
| 1997 | wi::shwi (HOST_WIDE_INT val, unsigned int precision) |
| 1998 | { |
| 1999 | return hwi_with_prec (val, precision, SIGNED); |
| 2000 | } |
| 2001 | |
| 2002 | /* Return an unsigned integer that has value VAL and precision PRECISION. */ |
| 2003 | inline wi::hwi_with_prec |
| 2004 | wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision) |
| 2005 | { |
| 2006 | return hwi_with_prec (val, precision, UNSIGNED); |
| 2007 | } |
| 2008 | |
| 2009 | /* Return a wide int of -1 with precision PRECISION. */ |
| 2010 | inline wi::hwi_with_prec |
| 2011 | wi::minus_one (unsigned int precision) |
| 2012 | { |
| 2013 | return wi::shwi (val: -1, precision); |
| 2014 | } |
| 2015 | |
| 2016 | /* Return a wide int of 0 with precision PRECISION. */ |
| 2017 | inline wi::hwi_with_prec |
| 2018 | wi::zero (unsigned int precision) |
| 2019 | { |
| 2020 | return wi::shwi (val: 0, precision); |
| 2021 | } |
| 2022 | |
| 2023 | /* Return a wide int of 1 with precision PRECISION. */ |
| 2024 | inline wi::hwi_with_prec |
| 2025 | wi::one (unsigned int precision) |
| 2026 | { |
| 2027 | return wi::shwi (val: 1, precision); |
| 2028 | } |
| 2029 | |
| 2030 | /* Return a wide int of 2 with precision PRECISION. */ |
| 2031 | inline wi::hwi_with_prec |
| 2032 | wi::two (unsigned int precision) |
| 2033 | { |
| 2034 | return wi::shwi (val: 2, precision); |
| 2035 | } |
| 2036 | |
| 2037 | namespace wi |
| 2038 | { |
| 2039 | /* ints_for<T>::zero (X) returns a zero that, when asssigned to a T, |
| 2040 | gives that T the same precision as X. */ |
| 2041 | template<typename T, precision_type = int_traits<T>::precision_type> |
| 2042 | struct ints_for |
| 2043 | { |
| 2044 | static int zero (const T &) { return 0; } |
| 2045 | }; |
| 2046 | |
| 2047 | template<typename T> |
| 2048 | struct ints_for<T, VAR_PRECISION> |
| 2049 | { |
| 2050 | static hwi_with_prec zero (const T &); |
| 2051 | }; |
| 2052 | } |
| 2053 | |
| 2054 | template<typename T> |
| 2055 | inline wi::hwi_with_prec |
| 2056 | wi::ints_for<T, wi::VAR_PRECISION>::zero (const T &x) |
| 2057 | { |
| 2058 | return wi::zero (precision: wi::get_precision (x)); |
| 2059 | } |
| 2060 | |
| 2061 | namespace wi |
| 2062 | { |
| 2063 | template <> |
| 2064 | struct int_traits <wi::hwi_with_prec> |
| 2065 | { |
| 2066 | static const enum precision_type precision_type = VAR_PRECISION; |
| 2067 | /* hwi_with_prec has an explicitly-given precision, rather than the |
| 2068 | precision of HOST_WIDE_INT. */ |
| 2069 | static const bool host_dependent_precision = false; |
| 2070 | static const bool is_sign_extended = true; |
| 2071 | static const bool needs_write_val_arg = false; |
| 2072 | static unsigned int get_precision (const wi::hwi_with_prec &); |
| 2073 | static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, |
| 2074 | const wi::hwi_with_prec &); |
| 2075 | }; |
| 2076 | } |
| 2077 | |
| 2078 | inline unsigned int |
| 2079 | wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x) |
| 2080 | { |
| 2081 | return x.precision; |
| 2082 | } |
| 2083 | |
| 2084 | inline wi::storage_ref |
| 2085 | wi::int_traits <wi::hwi_with_prec>:: |
| 2086 | decompose (HOST_WIDE_INT *scratch, unsigned int precision, |
| 2087 | const wi::hwi_with_prec &x) |
| 2088 | { |
| 2089 | gcc_checking_assert (precision == x.precision); |
| 2090 | scratch[0] = x.val; |
| 2091 | if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT) |
| 2092 | return wi::storage_ref (scratch, 1, precision); |
| 2093 | scratch[1] = 0; |
| 2094 | return wi::storage_ref (scratch, 2, precision); |
| 2095 | } |
| 2096 | |
| 2097 | /* Private functions for handling large cases out of line. They take |
| 2098 | individual length and array parameters because that is cheaper for |
| 2099 | the inline caller than constructing an object on the stack and |
| 2100 | passing a reference to it. (Although many callers use wide_int_refs, |
| 2101 | we generally want those to be removed by SRA.) */ |
| 2102 | namespace wi |
| 2103 | { |
| 2104 | bool eq_p_large (const HOST_WIDE_INT *, unsigned int, |
| 2105 | const HOST_WIDE_INT *, unsigned int, unsigned int); |
| 2106 | bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, |
| 2107 | const HOST_WIDE_INT *, unsigned int); |
| 2108 | bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, |
| 2109 | const HOST_WIDE_INT *, unsigned int); |
| 2110 | int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int, |
| 2111 | const HOST_WIDE_INT *, unsigned int); |
| 2112 | int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int, |
| 2113 | const HOST_WIDE_INT *, unsigned int); |
| 2114 | unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2115 | unsigned int, unsigned int, unsigned int); |
| 2116 | unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2117 | unsigned int, unsigned int, unsigned int); |
| 2118 | unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2119 | unsigned int, unsigned int, unsigned int); |
| 2120 | unsigned int bswap_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2121 | unsigned int, unsigned int); |
| 2122 | unsigned int bitreverse_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2123 | unsigned int, unsigned int); |
| 2124 | |
| 2125 | unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2126 | unsigned int, unsigned int, unsigned int); |
| 2127 | unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2128 | unsigned int, unsigned int, unsigned int, |
| 2129 | unsigned int); |
| 2130 | unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2131 | unsigned int, unsigned int, unsigned int, |
| 2132 | unsigned int); |
| 2133 | unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| 2134 | const HOST_WIDE_INT *, unsigned int, unsigned int); |
| 2135 | unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2136 | unsigned int, const HOST_WIDE_INT *, |
| 2137 | unsigned int, unsigned int); |
| 2138 | unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| 2139 | const HOST_WIDE_INT *, unsigned int, unsigned int); |
| 2140 | unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2141 | unsigned int, const HOST_WIDE_INT *, |
| 2142 | unsigned int, unsigned int); |
| 2143 | unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| 2144 | const HOST_WIDE_INT *, unsigned int, unsigned int); |
| 2145 | unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| 2146 | const HOST_WIDE_INT *, unsigned int, unsigned int, |
| 2147 | signop, overflow_type *); |
| 2148 | unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| 2149 | const HOST_WIDE_INT *, unsigned int, unsigned int, |
| 2150 | signop, overflow_type *); |
| 2151 | unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2152 | unsigned int, const HOST_WIDE_INT *, |
| 2153 | unsigned int, unsigned int, signop, |
| 2154 | overflow_type *, bool); |
| 2155 | unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *, |
| 2156 | HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 2157 | unsigned int, unsigned int, |
| 2158 | const HOST_WIDE_INT *, |
| 2159 | unsigned int, unsigned int, |
| 2160 | signop, overflow_type *); |
| 2161 | } |
| 2162 | |
| 2163 | /* Return the number of bits that integer X can hold. */ |
| 2164 | template <typename T> |
| 2165 | inline unsigned int |
| 2166 | wi::get_precision (const T &x) |
| 2167 | { |
| 2168 | return wi::int_traits <T>::get_precision (x); |
| 2169 | } |
| 2170 | |
| 2171 | /* Return the number of bits that the result of a binary operation can |
| 2172 | hold when the input operands are X and Y. */ |
| 2173 | template <typename T1, typename T2> |
| 2174 | inline unsigned int |
| 2175 | wi::get_binary_precision (const T1 &x, const T2 &y) |
| 2176 | { |
| 2177 | using res_traits = wi::int_traits <WI_BINARY_RESULT (T1, T2)>; |
| 2178 | return res_traits::get_binary_precision (x, y); |
| 2179 | } |
| 2180 | |
| 2181 | /* Copy the contents of Y to X, but keeping X's current precision. */ |
| 2182 | template <typename T1, typename T2> |
| 2183 | inline void |
| 2184 | wi::copy (T1 &x, const T2 &y) |
| 2185 | { |
| 2186 | unsigned int len = y.get_len (); |
| 2187 | HOST_WIDE_INT *xval = x.write_val (len); |
| 2188 | const HOST_WIDE_INT *yval = y.get_val (); |
| 2189 | unsigned int i = 0; |
| 2190 | do |
| 2191 | xval[i] = yval[i]; |
| 2192 | while (++i < len); |
| 2193 | /* For widest_int write_val is called with an exact value, not |
| 2194 | upper bound for len, so nothing is needed further. */ |
| 2195 | if (!wi::int_traits <T1>::needs_write_val_arg) |
| 2196 | x.set_len (len, y.is_sign_extended); |
| 2197 | } |
| 2198 | |
| 2199 | /* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */ |
| 2200 | template <typename T> |
| 2201 | inline bool |
| 2202 | wi::fits_shwi_p (const T &x) |
| 2203 | { |
| 2204 | WIDE_INT_REF_FOR (T) xi (x); |
| 2205 | return xi.len == 1; |
| 2206 | } |
| 2207 | |
| 2208 | /* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of |
| 2209 | precision. */ |
| 2210 | template <typename T> |
| 2211 | inline bool |
| 2212 | wi::fits_uhwi_p (const T &x) |
| 2213 | { |
| 2214 | WIDE_INT_REF_FOR (T) xi (x); |
| 2215 | if (xi.precision <= HOST_BITS_PER_WIDE_INT) |
| 2216 | return true; |
| 2217 | if (xi.len == 1) |
| 2218 | return xi.slow () >= 0; |
| 2219 | return xi.len == 2 && xi.uhigh () == 0; |
| 2220 | } |
| 2221 | |
| 2222 | /* Return true if X is negative based on the interpretation of SGN. |
| 2223 | For UNSIGNED, this is always false. */ |
| 2224 | template <typename T> |
| 2225 | inline bool |
| 2226 | wi::neg_p (const T &x, signop sgn) |
| 2227 | { |
| 2228 | WIDE_INT_REF_FOR (T) xi (x); |
| 2229 | if (sgn == UNSIGNED) |
| 2230 | return false; |
| 2231 | return xi.sign_mask () < 0; |
| 2232 | } |
| 2233 | |
| 2234 | /* Return -1 if the top bit of X is set and 0 if the top bit is clear. */ |
| 2235 | template <typename T> |
| 2236 | inline HOST_WIDE_INT |
| 2237 | wi::sign_mask (const T &x) |
| 2238 | { |
| 2239 | WIDE_INT_REF_FOR (T) xi (x); |
| 2240 | return xi.sign_mask (); |
| 2241 | } |
| 2242 | |
| 2243 | /* Return true if X == Y. X and Y must be binary-compatible. */ |
| 2244 | template <typename T1, typename T2> |
| 2245 | inline bool |
| 2246 | wi::eq_p (const T1 &x, const T2 &y) |
| 2247 | { |
| 2248 | unsigned int precision = get_binary_precision (x, y); |
| 2249 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2250 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2251 | if (xi.is_sign_extended && yi.is_sign_extended) |
| 2252 | { |
| 2253 | /* This case reduces to array equality. */ |
| 2254 | if (xi.len != yi.len) |
| 2255 | return false; |
| 2256 | unsigned int i = 0; |
| 2257 | do |
| 2258 | if (xi.val[i] != yi.val[i]) |
| 2259 | return false; |
| 2260 | while (++i != xi.len); |
| 2261 | return true; |
| 2262 | } |
| 2263 | if (LIKELY (yi.len == 1)) |
| 2264 | { |
| 2265 | /* XI is only equal to YI if it too has a single HWI. */ |
| 2266 | if (xi.len != 1) |
| 2267 | return false; |
| 2268 | /* Excess bits in xi.val[0] will be signs or zeros, so comparisons |
| 2269 | with 0 are simple. */ |
| 2270 | if (STATIC_CONSTANT_P (yi.val[0] == 0)) |
| 2271 | return xi.val[0] == 0; |
| 2272 | /* Otherwise flush out any excess bits first. */ |
| 2273 | unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0]; |
| 2274 | int excess = HOST_BITS_PER_WIDE_INT - precision; |
| 2275 | if (excess > 0) |
| 2276 | diff <<= excess; |
| 2277 | return diff == 0; |
| 2278 | } |
| 2279 | return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision); |
| 2280 | } |
| 2281 | |
| 2282 | /* Return true if X != Y. X and Y must be binary-compatible. */ |
| 2283 | template <typename T1, typename T2> |
| 2284 | inline bool |
| 2285 | wi::ne_p (const T1 &x, const T2 &y) |
| 2286 | { |
| 2287 | return !eq_p (x, y); |
| 2288 | } |
| 2289 | |
| 2290 | /* Return true if X < Y when both are treated as signed values. */ |
| 2291 | template <typename T1, typename T2> |
| 2292 | inline bool |
| 2293 | wi::lts_p (const T1 &x, const T2 &y) |
| 2294 | { |
| 2295 | unsigned int precision = get_binary_precision (x, y); |
| 2296 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2297 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2298 | /* We optimize x < y, where y is 64 or fewer bits. */ |
| 2299 | if (wi::fits_shwi_p (yi)) |
| 2300 | { |
| 2301 | /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */ |
| 2302 | if (STATIC_CONSTANT_P (yi.val[0] == 0)) |
| 2303 | return neg_p (xi); |
| 2304 | /* If x fits directly into a shwi, we can compare directly. */ |
| 2305 | if (wi::fits_shwi_p (xi)) |
| 2306 | return xi.to_shwi () < yi.to_shwi (); |
| 2307 | /* If x doesn't fit and is negative, then it must be more |
| 2308 | negative than any value in y, and hence smaller than y. */ |
| 2309 | if (neg_p (xi)) |
| 2310 | return true; |
| 2311 | /* If x is positive, then it must be larger than any value in y, |
| 2312 | and hence greater than y. */ |
| 2313 | return false; |
| 2314 | } |
| 2315 | /* Optimize the opposite case, if it can be detected at compile time. */ |
| 2316 | if (STATIC_CONSTANT_P (xi.len == 1)) |
| 2317 | /* If YI is negative it is lower than the least HWI. |
| 2318 | If YI is positive it is greater than the greatest HWI. */ |
| 2319 | return !neg_p (yi); |
| 2320 | return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len); |
| 2321 | } |
| 2322 | |
| 2323 | /* Return true if X < Y when both are treated as unsigned values. */ |
| 2324 | template <typename T1, typename T2> |
| 2325 | inline bool |
| 2326 | wi::ltu_p (const T1 &x, const T2 &y) |
| 2327 | { |
| 2328 | unsigned int precision = get_binary_precision (x, y); |
| 2329 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2330 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2331 | /* Optimize comparisons with constants. */ |
| 2332 | if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) |
| 2333 | return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0]; |
| 2334 | if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) |
| 2335 | return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0]; |
| 2336 | /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended |
| 2337 | for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both |
| 2338 | values does not change the result. */ |
| 2339 | if (LIKELY (xi.len + yi.len == 2)) |
| 2340 | { |
| 2341 | unsigned HOST_WIDE_INT xl = xi.to_uhwi (); |
| 2342 | unsigned HOST_WIDE_INT yl = yi.to_uhwi (); |
| 2343 | return xl < yl; |
| 2344 | } |
| 2345 | return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len); |
| 2346 | } |
| 2347 | |
| 2348 | /* Return true if X < Y. Signedness of X and Y is indicated by SGN. */ |
| 2349 | template <typename T1, typename T2> |
| 2350 | inline bool |
| 2351 | wi::lt_p (const T1 &x, const T2 &y, signop sgn) |
| 2352 | { |
| 2353 | if (sgn == SIGNED) |
| 2354 | return lts_p (x, y); |
| 2355 | else |
| 2356 | return ltu_p (x, y); |
| 2357 | } |
| 2358 | |
| 2359 | /* Return true if X <= Y when both are treated as signed values. */ |
| 2360 | template <typename T1, typename T2> |
| 2361 | inline bool |
| 2362 | wi::les_p (const T1 &x, const T2 &y) |
| 2363 | { |
| 2364 | return !lts_p (y, x); |
| 2365 | } |
| 2366 | |
| 2367 | /* Return true if X <= Y when both are treated as unsigned values. */ |
| 2368 | template <typename T1, typename T2> |
| 2369 | inline bool |
| 2370 | wi::leu_p (const T1 &x, const T2 &y) |
| 2371 | { |
| 2372 | return !ltu_p (y, x); |
| 2373 | } |
| 2374 | |
| 2375 | /* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */ |
| 2376 | template <typename T1, typename T2> |
| 2377 | inline bool |
| 2378 | wi::le_p (const T1 &x, const T2 &y, signop sgn) |
| 2379 | { |
| 2380 | if (sgn == SIGNED) |
| 2381 | return les_p (x, y); |
| 2382 | else |
| 2383 | return leu_p (x, y); |
| 2384 | } |
| 2385 | |
| 2386 | /* Return true if X > Y when both are treated as signed values. */ |
| 2387 | template <typename T1, typename T2> |
| 2388 | inline bool |
| 2389 | wi::gts_p (const T1 &x, const T2 &y) |
| 2390 | { |
| 2391 | return lts_p (y, x); |
| 2392 | } |
| 2393 | |
| 2394 | /* Return true if X > Y when both are treated as unsigned values. */ |
| 2395 | template <typename T1, typename T2> |
| 2396 | inline bool |
| 2397 | wi::gtu_p (const T1 &x, const T2 &y) |
| 2398 | { |
| 2399 | return ltu_p (y, x); |
| 2400 | } |
| 2401 | |
| 2402 | /* Return true if X > Y. Signedness of X and Y is indicated by SGN. */ |
| 2403 | template <typename T1, typename T2> |
| 2404 | inline bool |
| 2405 | wi::gt_p (const T1 &x, const T2 &y, signop sgn) |
| 2406 | { |
| 2407 | if (sgn == SIGNED) |
| 2408 | return gts_p (x, y); |
| 2409 | else |
| 2410 | return gtu_p (x, y); |
| 2411 | } |
| 2412 | |
| 2413 | /* Return true if X >= Y when both are treated as signed values. */ |
| 2414 | template <typename T1, typename T2> |
| 2415 | inline bool |
| 2416 | wi::ges_p (const T1 &x, const T2 &y) |
| 2417 | { |
| 2418 | return !lts_p (x, y); |
| 2419 | } |
| 2420 | |
| 2421 | /* Return true if X >= Y when both are treated as unsigned values. */ |
| 2422 | template <typename T1, typename T2> |
| 2423 | inline bool |
| 2424 | wi::geu_p (const T1 &x, const T2 &y) |
| 2425 | { |
| 2426 | return !ltu_p (x, y); |
| 2427 | } |
| 2428 | |
| 2429 | /* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */ |
| 2430 | template <typename T1, typename T2> |
| 2431 | inline bool |
| 2432 | wi::ge_p (const T1 &x, const T2 &y, signop sgn) |
| 2433 | { |
| 2434 | if (sgn == SIGNED) |
| 2435 | return ges_p (x, y); |
| 2436 | else |
| 2437 | return geu_p (x, y); |
| 2438 | } |
| 2439 | |
| 2440 | /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y |
| 2441 | as signed values. */ |
| 2442 | template <typename T1, typename T2> |
| 2443 | inline int |
| 2444 | wi::cmps (const T1 &x, const T2 &y) |
| 2445 | { |
| 2446 | unsigned int precision = get_binary_precision (x, y); |
| 2447 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2448 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2449 | if (wi::fits_shwi_p (yi)) |
| 2450 | { |
| 2451 | /* Special case for comparisons with 0. */ |
| 2452 | if (STATIC_CONSTANT_P (yi.val[0] == 0)) |
| 2453 | return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0); |
| 2454 | /* If x fits into a signed HWI, we can compare directly. */ |
| 2455 | if (wi::fits_shwi_p (xi)) |
| 2456 | { |
| 2457 | HOST_WIDE_INT xl = xi.to_shwi (); |
| 2458 | HOST_WIDE_INT yl = yi.to_shwi (); |
| 2459 | return xl < yl ? -1 : xl > yl; |
| 2460 | } |
| 2461 | /* If x doesn't fit and is negative, then it must be more |
| 2462 | negative than any signed HWI, and hence smaller than y. */ |
| 2463 | if (neg_p (xi)) |
| 2464 | return -1; |
| 2465 | /* If x is positive, then it must be larger than any signed HWI, |
| 2466 | and hence greater than y. */ |
| 2467 | return 1; |
| 2468 | } |
| 2469 | /* Optimize the opposite case, if it can be detected at compile time. */ |
| 2470 | if (STATIC_CONSTANT_P (xi.len == 1)) |
| 2471 | /* If YI is negative it is lower than the least HWI. |
| 2472 | If YI is positive it is greater than the greatest HWI. */ |
| 2473 | return neg_p (yi) ? 1 : -1; |
| 2474 | return cmps_large (xi.val, xi.len, precision, yi.val, yi.len); |
| 2475 | } |
| 2476 | |
| 2477 | /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y |
| 2478 | as unsigned values. */ |
| 2479 | template <typename T1, typename T2> |
| 2480 | inline int |
| 2481 | wi::cmpu (const T1 &x, const T2 &y) |
| 2482 | { |
| 2483 | unsigned int precision = get_binary_precision (x, y); |
| 2484 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2485 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2486 | /* Optimize comparisons with constants. */ |
| 2487 | if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) |
| 2488 | { |
| 2489 | /* If XI doesn't fit in a HWI then it must be larger than YI. */ |
| 2490 | if (xi.len != 1) |
| 2491 | return 1; |
| 2492 | /* Otherwise compare directly. */ |
| 2493 | unsigned HOST_WIDE_INT xl = xi.to_uhwi (); |
| 2494 | unsigned HOST_WIDE_INT yl = yi.val[0]; |
| 2495 | return xl < yl ? -1 : xl > yl; |
| 2496 | } |
| 2497 | if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) |
| 2498 | { |
| 2499 | /* If YI doesn't fit in a HWI then it must be larger than XI. */ |
| 2500 | if (yi.len != 1) |
| 2501 | return -1; |
| 2502 | /* Otherwise compare directly. */ |
| 2503 | unsigned HOST_WIDE_INT xl = xi.val[0]; |
| 2504 | unsigned HOST_WIDE_INT yl = yi.to_uhwi (); |
| 2505 | return xl < yl ? -1 : xl > yl; |
| 2506 | } |
| 2507 | /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended |
| 2508 | for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both |
| 2509 | values does not change the result. */ |
| 2510 | if (LIKELY (xi.len + yi.len == 2)) |
| 2511 | { |
| 2512 | unsigned HOST_WIDE_INT xl = xi.to_uhwi (); |
| 2513 | unsigned HOST_WIDE_INT yl = yi.to_uhwi (); |
| 2514 | return xl < yl ? -1 : xl > yl; |
| 2515 | } |
| 2516 | return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len); |
| 2517 | } |
| 2518 | |
| 2519 | /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of |
| 2520 | X and Y indicated by SGN. */ |
| 2521 | template <typename T1, typename T2> |
| 2522 | inline int |
| 2523 | wi::cmp (const T1 &x, const T2 &y, signop sgn) |
| 2524 | { |
| 2525 | if (sgn == SIGNED) |
| 2526 | return cmps (x, y); |
| 2527 | else |
| 2528 | return cmpu (x, y); |
| 2529 | } |
| 2530 | |
| 2531 | /* Return ~x. */ |
| 2532 | template <typename T> |
| 2533 | inline WI_UNARY_RESULT (T) |
| 2534 | wi::bit_not (const T &x) |
| 2535 | { |
| 2536 | WI_UNARY_RESULT_VAR (result, val, T, x); |
| 2537 | WIDE_INT_REF_FOR (T) xi (x, get_precision (result)); |
| 2538 | if (result.needs_write_val_arg) |
| 2539 | val = result.write_val (xi.len); |
| 2540 | for (unsigned int i = 0; i < xi.len; ++i) |
| 2541 | val[i] = ~xi.val[i]; |
| 2542 | result.set_len (xi.len); |
| 2543 | return result; |
| 2544 | } |
| 2545 | |
| 2546 | /* Return -x. */ |
| 2547 | template <typename T> |
| 2548 | inline WI_UNARY_RESULT (T) |
| 2549 | wi::neg (const T &x) |
| 2550 | { |
| 2551 | return sub (0, x); |
| 2552 | } |
| 2553 | |
| 2554 | /* Return -x. Indicate in *OVERFLOW if performing the negation would |
| 2555 | cause an overflow. */ |
| 2556 | template <typename T> |
| 2557 | inline WI_UNARY_RESULT (T) |
| 2558 | wi::neg (const T &x, overflow_type *overflow) |
| 2559 | { |
| 2560 | *overflow = only_sign_bit_p (x) ? OVF_OVERFLOW : OVF_NONE; |
| 2561 | return sub (0, x); |
| 2562 | } |
| 2563 | |
| 2564 | /* Return the absolute value of x. */ |
| 2565 | template <typename T> |
| 2566 | inline WI_UNARY_RESULT (T) |
| 2567 | wi::abs (const T &x) |
| 2568 | { |
| 2569 | return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x); |
| 2570 | } |
| 2571 | |
| 2572 | /* Return the result of sign-extending the low OFFSET bits of X. */ |
| 2573 | template <typename T> |
| 2574 | inline WI_UNARY_RESULT (T) |
| 2575 | wi::sext (const T &x, unsigned int offset) |
| 2576 | { |
| 2577 | WI_UNARY_RESULT_VAR (result, val, T, x); |
| 2578 | unsigned int precision = get_precision (result); |
| 2579 | WIDE_INT_REF_FOR (T) xi (x, precision); |
| 2580 | |
| 2581 | if (result.needs_write_val_arg) |
| 2582 | val = result.write_val (MAX (xi.len, |
| 2583 | CEIL (offset, HOST_BITS_PER_WIDE_INT))); |
| 2584 | if (offset <= HOST_BITS_PER_WIDE_INT) |
| 2585 | { |
| 2586 | val[0] = sext_hwi (xi.ulow (), offset); |
| 2587 | result.set_len (1, true); |
| 2588 | } |
| 2589 | else |
| 2590 | result.set_len (sext_large (val, xi.val, xi.len, precision, offset)); |
| 2591 | return result; |
| 2592 | } |
| 2593 | |
| 2594 | /* Return the result of zero-extending the low OFFSET bits of X. */ |
| 2595 | template <typename T> |
| 2596 | inline WI_UNARY_RESULT (T) |
| 2597 | wi::zext (const T &x, unsigned int offset) |
| 2598 | { |
| 2599 | WI_UNARY_RESULT_VAR (result, val, T, x); |
| 2600 | unsigned int precision = get_precision (result); |
| 2601 | WIDE_INT_REF_FOR (T) xi (x, precision); |
| 2602 | |
| 2603 | /* This is not just an optimization, it is actually required to |
| 2604 | maintain canonization. */ |
| 2605 | if (offset >= precision) |
| 2606 | { |
| 2607 | wi::copy (result, xi); |
| 2608 | return result; |
| 2609 | } |
| 2610 | |
| 2611 | if (result.needs_write_val_arg) |
| 2612 | val = result.write_val (MAX (xi.len, |
| 2613 | offset / HOST_BITS_PER_WIDE_INT + 1)); |
| 2614 | /* In these cases we know that at least the top bit will be clear, |
| 2615 | so no sign extension is necessary. */ |
| 2616 | if (offset < HOST_BITS_PER_WIDE_INT) |
| 2617 | { |
| 2618 | val[0] = zext_hwi (xi.ulow (), offset); |
| 2619 | result.set_len (1, true); |
| 2620 | } |
| 2621 | else |
| 2622 | result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true); |
| 2623 | return result; |
| 2624 | } |
| 2625 | |
| 2626 | /* Return the result of extending the low OFFSET bits of X according to |
| 2627 | signedness SGN. */ |
| 2628 | template <typename T> |
| 2629 | inline WI_UNARY_RESULT (T) |
| 2630 | wi::ext (const T &x, unsigned int offset, signop sgn) |
| 2631 | { |
| 2632 | return sgn == SIGNED ? sext (x, offset) : zext (x, offset); |
| 2633 | } |
| 2634 | |
| 2635 | /* Return an integer that represents X | (1 << bit). */ |
| 2636 | template <typename T> |
| 2637 | inline WI_UNARY_RESULT (T) |
| 2638 | wi::set_bit (const T &x, unsigned int bit) |
| 2639 | { |
| 2640 | WI_UNARY_RESULT_VAR (result, val, T, x); |
| 2641 | unsigned int precision = get_precision (result); |
| 2642 | WIDE_INT_REF_FOR (T) xi (x, precision); |
| 2643 | if (result.needs_write_val_arg) |
| 2644 | val = result.write_val (MAX (xi.len, |
| 2645 | bit / HOST_BITS_PER_WIDE_INT + 1)); |
| 2646 | if (precision <= HOST_BITS_PER_WIDE_INT) |
| 2647 | { |
| 2648 | val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit); |
| 2649 | result.set_len (1); |
| 2650 | } |
| 2651 | else |
| 2652 | result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit)); |
| 2653 | return result; |
| 2654 | } |
| 2655 | |
| 2656 | /* Byte swap the integer X. |
| 2657 | ??? This always swaps 8-bit octets, regardless of BITS_PER_UNIT. |
| 2658 | This function requires X's precision to be a multiple of 16 bits, |
| 2659 | so care needs to be taken for targets where BITS_PER_UNIT != 8. */ |
| 2660 | template <typename T> |
| 2661 | inline WI_UNARY_RESULT (T) |
| 2662 | wi::bswap (const T &x) |
| 2663 | { |
| 2664 | WI_UNARY_RESULT_VAR (result, val, T, x); |
| 2665 | unsigned int precision = get_precision (result); |
| 2666 | WIDE_INT_REF_FOR (T) xi (x, precision); |
| 2667 | static_assert (!result.needs_write_val_arg, |
| 2668 | "bswap on widest_int makes no sense" ); |
| 2669 | result.set_len (bswap_large (val, xi.val, xi.len, precision)); |
| 2670 | return result; |
| 2671 | } |
| 2672 | |
| 2673 | /* Bitreverse the integer X. */ |
| 2674 | template <typename T> |
| 2675 | inline WI_UNARY_RESULT (T) |
| 2676 | wi::bitreverse (const T &x) |
| 2677 | { |
| 2678 | WI_UNARY_RESULT_VAR (result, val, T, x); |
| 2679 | unsigned int precision = get_precision (result); |
| 2680 | WIDE_INT_REF_FOR (T) xi (x, precision); |
| 2681 | static_assert (!result.needs_write_val_arg, |
| 2682 | "bitreverse on widest_int makes no sense" ); |
| 2683 | result.set_len (bitreverse_large (val, xi.val, xi.len, precision)); |
| 2684 | return result; |
| 2685 | } |
| 2686 | |
| 2687 | /* Return the mininum of X and Y, treating them both as having |
| 2688 | signedness SGN. */ |
| 2689 | template <typename T1, typename T2> |
| 2690 | inline WI_BINARY_RESULT (T1, T2) |
| 2691 | wi::min (const T1 &x, const T2 &y, signop sgn) |
| 2692 | { |
| 2693 | WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); |
| 2694 | unsigned int precision = get_precision (result); |
| 2695 | if (wi::le_p (x, y, sgn)) |
| 2696 | wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); |
| 2697 | else |
| 2698 | wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); |
| 2699 | return result; |
| 2700 | } |
| 2701 | |
| 2702 | /* Return the minimum of X and Y, treating both as signed values. */ |
| 2703 | template <typename T1, typename T2> |
| 2704 | inline WI_BINARY_RESULT (T1, T2) |
| 2705 | wi::smin (const T1 &x, const T2 &y) |
| 2706 | { |
| 2707 | return wi::min (x, y, SIGNED); |
| 2708 | } |
| 2709 | |
| 2710 | /* Return the minimum of X and Y, treating both as unsigned values. */ |
| 2711 | template <typename T1, typename T2> |
| 2712 | inline WI_BINARY_RESULT (T1, T2) |
| 2713 | wi::umin (const T1 &x, const T2 &y) |
| 2714 | { |
| 2715 | return wi::min (x, y, UNSIGNED); |
| 2716 | } |
| 2717 | |
| 2718 | /* Return the maxinum of X and Y, treating them both as having |
| 2719 | signedness SGN. */ |
| 2720 | template <typename T1, typename T2> |
| 2721 | inline WI_BINARY_RESULT (T1, T2) |
| 2722 | wi::max (const T1 &x, const T2 &y, signop sgn) |
| 2723 | { |
| 2724 | WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); |
| 2725 | unsigned int precision = get_precision (result); |
| 2726 | if (wi::ge_p (x, y, sgn)) |
| 2727 | wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); |
| 2728 | else |
| 2729 | wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); |
| 2730 | return result; |
| 2731 | } |
| 2732 | |
| 2733 | /* Return the maximum of X and Y, treating both as signed values. */ |
| 2734 | template <typename T1, typename T2> |
| 2735 | inline WI_BINARY_RESULT (T1, T2) |
| 2736 | wi::smax (const T1 &x, const T2 &y) |
| 2737 | { |
| 2738 | return wi::max (x, y, SIGNED); |
| 2739 | } |
| 2740 | |
| 2741 | /* Return the maximum of X and Y, treating both as unsigned values. */ |
| 2742 | template <typename T1, typename T2> |
| 2743 | inline WI_BINARY_RESULT (T1, T2) |
| 2744 | wi::umax (const T1 &x, const T2 &y) |
| 2745 | { |
| 2746 | return wi::max (x, y, UNSIGNED); |
| 2747 | } |
| 2748 | |
| 2749 | /* Return X & Y. */ |
| 2750 | template <typename T1, typename T2> |
| 2751 | inline WI_BINARY_RESULT (T1, T2) |
| 2752 | wi::bit_and (const T1 &x, const T2 &y) |
| 2753 | { |
| 2754 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 2755 | unsigned int precision = get_precision (result); |
| 2756 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2757 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2758 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| 2759 | if (result.needs_write_val_arg) |
| 2760 | val = result.write_val (MAX (xi.len, yi.len)); |
| 2761 | if (LIKELY (xi.len + yi.len == 2)) |
| 2762 | { |
| 2763 | val[0] = xi.ulow () & yi.ulow (); |
| 2764 | result.set_len (1, is_sign_extended); |
| 2765 | } |
| 2766 | else |
| 2767 | result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len, |
| 2768 | precision), is_sign_extended); |
| 2769 | return result; |
| 2770 | } |
| 2771 | |
| 2772 | /* Return X & ~Y. */ |
| 2773 | template <typename T1, typename T2> |
| 2774 | inline WI_BINARY_RESULT (T1, T2) |
| 2775 | wi::bit_and_not (const T1 &x, const T2 &y) |
| 2776 | { |
| 2777 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 2778 | unsigned int precision = get_precision (result); |
| 2779 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2780 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2781 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| 2782 | if (result.needs_write_val_arg) |
| 2783 | val = result.write_val (MAX (xi.len, yi.len)); |
| 2784 | if (LIKELY (xi.len + yi.len == 2)) |
| 2785 | { |
| 2786 | val[0] = xi.ulow () & ~yi.ulow (); |
| 2787 | result.set_len (1, is_sign_extended); |
| 2788 | } |
| 2789 | else |
| 2790 | result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len, |
| 2791 | precision), is_sign_extended); |
| 2792 | return result; |
| 2793 | } |
| 2794 | |
| 2795 | /* Return X | Y. */ |
| 2796 | template <typename T1, typename T2> |
| 2797 | inline WI_BINARY_RESULT (T1, T2) |
| 2798 | wi::bit_or (const T1 &x, const T2 &y) |
| 2799 | { |
| 2800 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 2801 | unsigned int precision = get_precision (result); |
| 2802 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2803 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2804 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| 2805 | if (result.needs_write_val_arg) |
| 2806 | val = result.write_val (MAX (xi.len, yi.len)); |
| 2807 | if (LIKELY (xi.len + yi.len == 2)) |
| 2808 | { |
| 2809 | val[0] = xi.ulow () | yi.ulow (); |
| 2810 | result.set_len (1, is_sign_extended); |
| 2811 | } |
| 2812 | else |
| 2813 | result.set_len (or_large (val, xi.val, xi.len, |
| 2814 | yi.val, yi.len, precision), is_sign_extended); |
| 2815 | return result; |
| 2816 | } |
| 2817 | |
| 2818 | /* Return X | ~Y. */ |
| 2819 | template <typename T1, typename T2> |
| 2820 | inline WI_BINARY_RESULT (T1, T2) |
| 2821 | wi::bit_or_not (const T1 &x, const T2 &y) |
| 2822 | { |
| 2823 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 2824 | unsigned int precision = get_precision (result); |
| 2825 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2826 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2827 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| 2828 | if (result.needs_write_val_arg) |
| 2829 | val = result.write_val (MAX (xi.len, yi.len)); |
| 2830 | if (LIKELY (xi.len + yi.len == 2)) |
| 2831 | { |
| 2832 | val[0] = xi.ulow () | ~yi.ulow (); |
| 2833 | result.set_len (1, is_sign_extended); |
| 2834 | } |
| 2835 | else |
| 2836 | result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len, |
| 2837 | precision), is_sign_extended); |
| 2838 | return result; |
| 2839 | } |
| 2840 | |
| 2841 | /* Return X ^ Y. */ |
| 2842 | template <typename T1, typename T2> |
| 2843 | inline WI_BINARY_RESULT (T1, T2) |
| 2844 | wi::bit_xor (const T1 &x, const T2 &y) |
| 2845 | { |
| 2846 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 2847 | unsigned int precision = get_precision (result); |
| 2848 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2849 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2850 | bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| 2851 | if (result.needs_write_val_arg) |
| 2852 | val = result.write_val (MAX (xi.len, yi.len)); |
| 2853 | if (LIKELY (xi.len + yi.len == 2)) |
| 2854 | { |
| 2855 | val[0] = xi.ulow () ^ yi.ulow (); |
| 2856 | result.set_len (1, is_sign_extended); |
| 2857 | } |
| 2858 | else |
| 2859 | result.set_len (xor_large (val, xi.val, xi.len, |
| 2860 | yi.val, yi.len, precision), is_sign_extended); |
| 2861 | return result; |
| 2862 | } |
| 2863 | |
| 2864 | /* Return X + Y. */ |
| 2865 | template <typename T1, typename T2> |
| 2866 | inline WI_BINARY_RESULT (T1, T2) |
| 2867 | wi::add (const T1 &x, const T2 &y) |
| 2868 | { |
| 2869 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 2870 | unsigned int precision = get_precision (result); |
| 2871 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2872 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2873 | if (result.needs_write_val_arg) |
| 2874 | val = result.write_val (MAX (xi.len, yi.len) + 1); |
| 2875 | if (precision <= HOST_BITS_PER_WIDE_INT) |
| 2876 | { |
| 2877 | val[0] = xi.ulow () + yi.ulow (); |
| 2878 | result.set_len (1); |
| 2879 | } |
| 2880 | /* If the precision is known at compile time to be greater than |
| 2881 | HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case |
| 2882 | knowing that (a) all bits in those HWIs are significant and |
| 2883 | (b) the result has room for at least two HWIs. This provides |
| 2884 | a fast path for things like offset_int and widest_int. |
| 2885 | |
| 2886 | The STATIC_CONSTANT_P test prevents this path from being |
| 2887 | used for wide_ints. wide_ints with precisions greater than |
| 2888 | HOST_BITS_PER_WIDE_INT are relatively rare and there's not much |
| 2889 | point handling them inline. */ |
| 2890 | else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) |
| 2891 | && LIKELY (xi.len + yi.len == 2)) |
| 2892 | { |
| 2893 | unsigned HOST_WIDE_INT xl = xi.ulow (); |
| 2894 | unsigned HOST_WIDE_INT yl = yi.ulow (); |
| 2895 | unsigned HOST_WIDE_INT resultl = xl + yl; |
| 2896 | val[0] = resultl; |
| 2897 | val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; |
| 2898 | result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl)) |
| 2899 | >> (HOST_BITS_PER_WIDE_INT - 1))); |
| 2900 | } |
| 2901 | else |
| 2902 | result.set_len (add_large (val, xi.val, xi.len, |
| 2903 | yi.val, yi.len, precision, |
| 2904 | UNSIGNED, 0)); |
| 2905 | return result; |
| 2906 | } |
| 2907 | |
| 2908 | /* Return X + Y. Treat X and Y as having the signednes given by SGN |
| 2909 | and indicate in *OVERFLOW whether the operation overflowed. */ |
| 2910 | template <typename T1, typename T2> |
| 2911 | inline WI_BINARY_RESULT (T1, T2) |
| 2912 | wi::add (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 2913 | { |
| 2914 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 2915 | unsigned int precision = get_precision (result); |
| 2916 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2917 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2918 | if (result.needs_write_val_arg) |
| 2919 | val = result.write_val (MAX (xi.len, yi.len) + 1); |
| 2920 | if (precision <= HOST_BITS_PER_WIDE_INT) |
| 2921 | { |
| 2922 | unsigned HOST_WIDE_INT xl = xi.ulow (); |
| 2923 | unsigned HOST_WIDE_INT yl = yi.ulow (); |
| 2924 | unsigned HOST_WIDE_INT resultl = xl + yl; |
| 2925 | if (sgn == SIGNED) |
| 2926 | { |
| 2927 | if ((((resultl ^ xl) & (resultl ^ yl)) |
| 2928 | >> (precision - 1)) & 1) |
| 2929 | { |
| 2930 | if (xl > resultl) |
| 2931 | *overflow = OVF_UNDERFLOW; |
| 2932 | else if (xl < resultl) |
| 2933 | *overflow = OVF_OVERFLOW; |
| 2934 | else |
| 2935 | *overflow = OVF_NONE; |
| 2936 | } |
| 2937 | else |
| 2938 | *overflow = OVF_NONE; |
| 2939 | } |
| 2940 | else |
| 2941 | *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) |
| 2942 | < (xl << (HOST_BITS_PER_WIDE_INT - precision))) |
| 2943 | ? OVF_OVERFLOW : OVF_NONE; |
| 2944 | val[0] = resultl; |
| 2945 | result.set_len (1); |
| 2946 | } |
| 2947 | else |
| 2948 | result.set_len (add_large (val, xi.val, xi.len, |
| 2949 | yi.val, yi.len, precision, |
| 2950 | sgn, overflow)); |
| 2951 | return result; |
| 2952 | } |
| 2953 | |
| 2954 | /* Return X - Y. */ |
| 2955 | template <typename T1, typename T2> |
| 2956 | inline WI_BINARY_RESULT (T1, T2) |
| 2957 | wi::sub (const T1 &x, const T2 &y) |
| 2958 | { |
| 2959 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 2960 | unsigned int precision = get_precision (result); |
| 2961 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 2962 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 2963 | if (result.needs_write_val_arg) |
| 2964 | val = result.write_val (MAX (xi.len, yi.len) + 1); |
| 2965 | if (precision <= HOST_BITS_PER_WIDE_INT) |
| 2966 | { |
| 2967 | val[0] = xi.ulow () - yi.ulow (); |
| 2968 | result.set_len (1); |
| 2969 | } |
| 2970 | /* If the precision is known at compile time to be greater than |
| 2971 | HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case |
| 2972 | knowing that (a) all bits in those HWIs are significant and |
| 2973 | (b) the result has room for at least two HWIs. This provides |
| 2974 | a fast path for things like offset_int and widest_int. |
| 2975 | |
| 2976 | The STATIC_CONSTANT_P test prevents this path from being |
| 2977 | used for wide_ints. wide_ints with precisions greater than |
| 2978 | HOST_BITS_PER_WIDE_INT are relatively rare and there's not much |
| 2979 | point handling them inline. */ |
| 2980 | else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) |
| 2981 | && LIKELY (xi.len + yi.len == 2)) |
| 2982 | { |
| 2983 | unsigned HOST_WIDE_INT xl = xi.ulow (); |
| 2984 | unsigned HOST_WIDE_INT yl = yi.ulow (); |
| 2985 | unsigned HOST_WIDE_INT resultl = xl - yl; |
| 2986 | val[0] = resultl; |
| 2987 | val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; |
| 2988 | result.set_len (1 + (((resultl ^ xl) & (xl ^ yl)) |
| 2989 | >> (HOST_BITS_PER_WIDE_INT - 1))); |
| 2990 | } |
| 2991 | else |
| 2992 | result.set_len (sub_large (val, xi.val, xi.len, |
| 2993 | yi.val, yi.len, precision, |
| 2994 | UNSIGNED, 0)); |
| 2995 | return result; |
| 2996 | } |
| 2997 | |
| 2998 | /* Return X - Y. Treat X and Y as having the signednes given by SGN |
| 2999 | and indicate in *OVERFLOW whether the operation overflowed. */ |
| 3000 | template <typename T1, typename T2> |
| 3001 | inline WI_BINARY_RESULT (T1, T2) |
| 3002 | wi::sub (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3003 | { |
| 3004 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 3005 | unsigned int precision = get_precision (result); |
| 3006 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3007 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 3008 | if (result.needs_write_val_arg) |
| 3009 | val = result.write_val (MAX (xi.len, yi.len) + 1); |
| 3010 | if (precision <= HOST_BITS_PER_WIDE_INT) |
| 3011 | { |
| 3012 | unsigned HOST_WIDE_INT xl = xi.ulow (); |
| 3013 | unsigned HOST_WIDE_INT yl = yi.ulow (); |
| 3014 | unsigned HOST_WIDE_INT resultl = xl - yl; |
| 3015 | if (sgn == SIGNED) |
| 3016 | { |
| 3017 | if ((((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1) |
| 3018 | { |
| 3019 | if (xl > yl) |
| 3020 | *overflow = OVF_UNDERFLOW; |
| 3021 | else if (xl < yl) |
| 3022 | *overflow = OVF_OVERFLOW; |
| 3023 | else |
| 3024 | *overflow = OVF_NONE; |
| 3025 | } |
| 3026 | else |
| 3027 | *overflow = OVF_NONE; |
| 3028 | } |
| 3029 | else |
| 3030 | *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) |
| 3031 | > (xl << (HOST_BITS_PER_WIDE_INT - precision))) |
| 3032 | ? OVF_UNDERFLOW : OVF_NONE; |
| 3033 | val[0] = resultl; |
| 3034 | result.set_len (1); |
| 3035 | } |
| 3036 | else |
| 3037 | result.set_len (sub_large (val, xi.val, xi.len, |
| 3038 | yi.val, yi.len, precision, |
| 3039 | sgn, overflow)); |
| 3040 | return result; |
| 3041 | } |
| 3042 | |
| 3043 | /* Return X * Y. */ |
| 3044 | template <typename T1, typename T2> |
| 3045 | inline WI_BINARY_RESULT (T1, T2) |
| 3046 | wi::mul (const T1 &x, const T2 &y) |
| 3047 | { |
| 3048 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 3049 | unsigned int precision = get_precision (result); |
| 3050 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3051 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 3052 | if (result.needs_write_val_arg) |
| 3053 | val = result.write_val (xi.len + yi.len + 2); |
| 3054 | if (precision <= HOST_BITS_PER_WIDE_INT) |
| 3055 | { |
| 3056 | val[0] = xi.ulow () * yi.ulow (); |
| 3057 | result.set_len (1); |
| 3058 | } |
| 3059 | else |
| 3060 | result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len, |
| 3061 | precision, UNSIGNED, 0, false)); |
| 3062 | return result; |
| 3063 | } |
| 3064 | |
| 3065 | /* Return X * Y. Treat X and Y as having the signednes given by SGN |
| 3066 | and indicate in *OVERFLOW whether the operation overflowed. */ |
| 3067 | template <typename T1, typename T2> |
| 3068 | inline WI_BINARY_RESULT (T1, T2) |
| 3069 | wi::mul (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3070 | { |
| 3071 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 3072 | unsigned int precision = get_precision (result); |
| 3073 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3074 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 3075 | if (result.needs_write_val_arg) |
| 3076 | val = result.write_val (xi.len + yi.len + 2); |
| 3077 | result.set_len (mul_internal (val, xi.val, xi.len, |
| 3078 | yi.val, yi.len, precision, |
| 3079 | sgn, overflow, false)); |
| 3080 | return result; |
| 3081 | } |
| 3082 | |
| 3083 | /* Return X * Y, treating both X and Y as signed values. Indicate in |
| 3084 | *OVERFLOW whether the operation overflowed. */ |
| 3085 | template <typename T1, typename T2> |
| 3086 | inline WI_BINARY_RESULT (T1, T2) |
| 3087 | wi::smul (const T1 &x, const T2 &y, overflow_type *overflow) |
| 3088 | { |
| 3089 | return mul (x, y, SIGNED, overflow); |
| 3090 | } |
| 3091 | |
| 3092 | /* Return X * Y, treating both X and Y as unsigned values. Indicate in |
| 3093 | *OVERFLOW if the result overflows. */ |
| 3094 | template <typename T1, typename T2> |
| 3095 | inline WI_BINARY_RESULT (T1, T2) |
| 3096 | wi::umul (const T1 &x, const T2 &y, overflow_type *overflow) |
| 3097 | { |
| 3098 | return mul (x, y, UNSIGNED, overflow); |
| 3099 | } |
| 3100 | |
| 3101 | /* Perform a widening multiplication of X and Y, extending the values |
| 3102 | according to SGN, and return the high part of the result. */ |
| 3103 | template <typename T1, typename T2> |
| 3104 | inline WI_BINARY_RESULT (T1, T2) |
| 3105 | wi::mul_high (const T1 &x, const T2 &y, signop sgn) |
| 3106 | { |
| 3107 | WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| 3108 | unsigned int precision = get_precision (result); |
| 3109 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3110 | WIDE_INT_REF_FOR (T2) yi (y, precision); |
| 3111 | static_assert (!result.needs_write_val_arg, |
| 3112 | "mul_high on widest_int doesn't make sense" ); |
| 3113 | result.set_len (mul_internal (val, xi.val, xi.len, |
| 3114 | yi.val, yi.len, precision, |
| 3115 | sgn, 0, true)); |
| 3116 | return result; |
| 3117 | } |
| 3118 | |
| 3119 | /* Return X / Y, rouding towards 0. Treat X and Y as having the |
| 3120 | signedness given by SGN. Indicate in *OVERFLOW if the result |
| 3121 | overflows. */ |
| 3122 | template <typename T1, typename T2> |
| 3123 | inline WI_BINARY_RESULT (T1, T2) |
| 3124 | wi::div_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3125 | { |
| 3126 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| 3127 | unsigned int precision = get_precision (quotient); |
| 3128 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3129 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3130 | |
| 3131 | if (quotient.needs_write_val_arg) |
| 3132 | quotient_val = quotient.write_val ((sgn == UNSIGNED |
| 3133 | && xi.val[xi.len - 1] < 0) |
| 3134 | ? CEIL (precision, |
| 3135 | HOST_BITS_PER_WIDE_INT) + 1 |
| 3136 | : xi.len + 1); |
| 3137 | quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len, |
| 3138 | precision, |
| 3139 | yi.val, yi.len, yi.precision, |
| 3140 | sgn, overflow)); |
| 3141 | return quotient; |
| 3142 | } |
| 3143 | |
| 3144 | /* Return X / Y, rouding towards 0. Treat X and Y as signed values. */ |
| 3145 | template <typename T1, typename T2> |
| 3146 | inline WI_BINARY_RESULT (T1, T2) |
| 3147 | wi::sdiv_trunc (const T1 &x, const T2 &y) |
| 3148 | { |
| 3149 | return div_trunc (x, y, SIGNED); |
| 3150 | } |
| 3151 | |
| 3152 | /* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */ |
| 3153 | template <typename T1, typename T2> |
| 3154 | inline WI_BINARY_RESULT (T1, T2) |
| 3155 | wi::udiv_trunc (const T1 &x, const T2 &y) |
| 3156 | { |
| 3157 | return div_trunc (x, y, UNSIGNED); |
| 3158 | } |
| 3159 | |
| 3160 | /* Return X / Y, rouding towards -inf. Treat X and Y as having the |
| 3161 | signedness given by SGN. Indicate in *OVERFLOW if the result |
| 3162 | overflows. */ |
| 3163 | template <typename T1, typename T2> |
| 3164 | inline WI_BINARY_RESULT (T1, T2) |
| 3165 | wi::div_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3166 | { |
| 3167 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| 3168 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| 3169 | unsigned int precision = get_precision (quotient); |
| 3170 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3171 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3172 | |
| 3173 | unsigned int remainder_len; |
| 3174 | if (quotient.needs_write_val_arg) |
| 3175 | { |
| 3176 | unsigned int est_len; |
| 3177 | if (sgn == UNSIGNED && xi.val[xi.len - 1] < 0) |
| 3178 | est_len = CEIL (precision, HOST_BITS_PER_WIDE_INT) + 1; |
| 3179 | else |
| 3180 | est_len = xi.len + 1; |
| 3181 | quotient_val = quotient.write_val (est_len); |
| 3182 | remainder_val = remainder.write_val (est_len); |
| 3183 | } |
| 3184 | quotient.set_len (divmod_internal (quotient_val, |
| 3185 | &remainder_len, remainder_val, |
| 3186 | xi.val, xi.len, precision, |
| 3187 | yi.val, yi.len, yi.precision, sgn, |
| 3188 | overflow)); |
| 3189 | remainder.set_len (remainder_len); |
| 3190 | if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) |
| 3191 | return quotient - 1; |
| 3192 | return quotient; |
| 3193 | } |
| 3194 | |
| 3195 | /* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */ |
| 3196 | template <typename T1, typename T2> |
| 3197 | inline WI_BINARY_RESULT (T1, T2) |
| 3198 | wi::sdiv_floor (const T1 &x, const T2 &y) |
| 3199 | { |
| 3200 | return div_floor (x, y, SIGNED); |
| 3201 | } |
| 3202 | |
| 3203 | /* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */ |
| 3204 | /* ??? Why do we have both this and udiv_trunc. Aren't they the same? */ |
| 3205 | template <typename T1, typename T2> |
| 3206 | inline WI_BINARY_RESULT (T1, T2) |
| 3207 | wi::udiv_floor (const T1 &x, const T2 &y) |
| 3208 | { |
| 3209 | return div_floor (x, y, UNSIGNED); |
| 3210 | } |
| 3211 | |
| 3212 | /* Return X / Y, rouding towards +inf. Treat X and Y as having the |
| 3213 | signedness given by SGN. Indicate in *OVERFLOW if the result |
| 3214 | overflows. */ |
| 3215 | template <typename T1, typename T2> |
| 3216 | inline WI_BINARY_RESULT (T1, T2) |
| 3217 | wi::div_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3218 | { |
| 3219 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| 3220 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| 3221 | unsigned int precision = get_precision (quotient); |
| 3222 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3223 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3224 | |
| 3225 | unsigned int remainder_len; |
| 3226 | if (quotient.needs_write_val_arg) |
| 3227 | { |
| 3228 | unsigned int est_len; |
| 3229 | if (sgn == UNSIGNED && xi.val[xi.len - 1] < 0) |
| 3230 | est_len = CEIL (precision, HOST_BITS_PER_WIDE_INT) + 1; |
| 3231 | else |
| 3232 | est_len = xi.len + 1; |
| 3233 | quotient_val = quotient.write_val (est_len); |
| 3234 | remainder_val = remainder.write_val (est_len); |
| 3235 | } |
| 3236 | quotient.set_len (divmod_internal (quotient_val, |
| 3237 | &remainder_len, remainder_val, |
| 3238 | xi.val, xi.len, precision, |
| 3239 | yi.val, yi.len, yi.precision, sgn, |
| 3240 | overflow)); |
| 3241 | remainder.set_len (remainder_len); |
| 3242 | if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) |
| 3243 | return quotient + 1; |
| 3244 | return quotient; |
| 3245 | } |
| 3246 | |
| 3247 | /* Return X / Y, rouding towards +inf. Treat X and Y as unsigned values. */ |
| 3248 | template <typename T1, typename T2> |
| 3249 | inline WI_BINARY_RESULT (T1, T2) |
| 3250 | wi::udiv_ceil (const T1 &x, const T2 &y) |
| 3251 | { |
| 3252 | return div_ceil (x, y, UNSIGNED); |
| 3253 | } |
| 3254 | |
| 3255 | /* Return X / Y, rouding towards nearest with ties away from zero. |
| 3256 | Treat X and Y as having the signedness given by SGN. Indicate |
| 3257 | in *OVERFLOW if the result overflows. */ |
| 3258 | template <typename T1, typename T2> |
| 3259 | inline WI_BINARY_RESULT (T1, T2) |
| 3260 | wi::div_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3261 | { |
| 3262 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| 3263 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| 3264 | unsigned int precision = get_precision (quotient); |
| 3265 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3266 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3267 | |
| 3268 | unsigned int remainder_len; |
| 3269 | if (quotient.needs_write_val_arg) |
| 3270 | { |
| 3271 | unsigned int est_len; |
| 3272 | if (sgn == UNSIGNED && xi.val[xi.len - 1] < 0) |
| 3273 | est_len = CEIL (precision, HOST_BITS_PER_WIDE_INT) + 1; |
| 3274 | else |
| 3275 | est_len = xi.len + 1; |
| 3276 | quotient_val = quotient.write_val (est_len); |
| 3277 | remainder_val = remainder.write_val (est_len); |
| 3278 | } |
| 3279 | quotient.set_len (divmod_internal (quotient_val, |
| 3280 | &remainder_len, remainder_val, |
| 3281 | xi.val, xi.len, precision, |
| 3282 | yi.val, yi.len, yi.precision, sgn, |
| 3283 | overflow)); |
| 3284 | remainder.set_len (remainder_len); |
| 3285 | |
| 3286 | if (remainder != 0) |
| 3287 | { |
| 3288 | if (sgn == SIGNED) |
| 3289 | { |
| 3290 | WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder); |
| 3291 | if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder))) |
| 3292 | { |
| 3293 | if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) |
| 3294 | return quotient - 1; |
| 3295 | else |
| 3296 | return quotient + 1; |
| 3297 | } |
| 3298 | } |
| 3299 | else |
| 3300 | { |
| 3301 | if (wi::geu_p (remainder, wi::sub (y, remainder))) |
| 3302 | return quotient + 1; |
| 3303 | } |
| 3304 | } |
| 3305 | return quotient; |
| 3306 | } |
| 3307 | |
| 3308 | /* Return X / Y, rouding towards 0. Treat X and Y as having the |
| 3309 | signedness given by SGN. Store the remainder in *REMAINDER_PTR. */ |
| 3310 | template <typename T1, typename T2> |
| 3311 | inline WI_BINARY_RESULT (T1, T2) |
| 3312 | wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn, |
| 3313 | WI_BINARY_RESULT (T1, T2) *remainder_ptr) |
| 3314 | { |
| 3315 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| 3316 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| 3317 | unsigned int precision = get_precision (quotient); |
| 3318 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3319 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3320 | |
| 3321 | unsigned int remainder_len; |
| 3322 | if (quotient.needs_write_val_arg) |
| 3323 | { |
| 3324 | unsigned int est_len; |
| 3325 | if (sgn == UNSIGNED && xi.val[xi.len - 1] < 0) |
| 3326 | est_len = CEIL (precision, HOST_BITS_PER_WIDE_INT) + 1; |
| 3327 | else |
| 3328 | est_len = xi.len + 1; |
| 3329 | quotient_val = quotient.write_val (est_len); |
| 3330 | remainder_val = remainder.write_val (est_len); |
| 3331 | } |
| 3332 | quotient.set_len (divmod_internal (quotient_val, |
| 3333 | &remainder_len, remainder_val, |
| 3334 | xi.val, xi.len, precision, |
| 3335 | yi.val, yi.len, yi.precision, sgn, 0)); |
| 3336 | remainder.set_len (remainder_len); |
| 3337 | |
| 3338 | *remainder_ptr = remainder; |
| 3339 | return quotient; |
| 3340 | } |
| 3341 | |
| 3342 | /* Compute the greatest common divisor of two numbers A and B using |
| 3343 | Euclid's algorithm. */ |
| 3344 | template <typename T1, typename T2> |
| 3345 | inline WI_BINARY_RESULT (T1, T2) |
| 3346 | wi::gcd (const T1 &a, const T2 &b, signop sgn) |
| 3347 | { |
| 3348 | T1 x, y, z; |
| 3349 | |
| 3350 | x = wi::abs (a); |
| 3351 | y = wi::abs (b); |
| 3352 | |
| 3353 | while (gt_p (x, 0, sgn)) |
| 3354 | { |
| 3355 | z = mod_trunc (y, x, sgn); |
| 3356 | y = x; |
| 3357 | x = z; |
| 3358 | } |
| 3359 | |
| 3360 | return y; |
| 3361 | } |
| 3362 | |
| 3363 | /* Compute X / Y, rouding towards 0, and return the remainder. |
| 3364 | Treat X and Y as having the signedness given by SGN. Indicate |
| 3365 | in *OVERFLOW if the division overflows. */ |
| 3366 | template <typename T1, typename T2> |
| 3367 | inline WI_BINARY_RESULT (T1, T2) |
| 3368 | wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3369 | { |
| 3370 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| 3371 | unsigned int precision = get_precision (remainder); |
| 3372 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3373 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3374 | |
| 3375 | unsigned int remainder_len; |
| 3376 | if (remainder.needs_write_val_arg) |
| 3377 | remainder_val = remainder.write_val ((sgn == UNSIGNED |
| 3378 | && xi.val[xi.len - 1] < 0) |
| 3379 | ? CEIL (precision, |
| 3380 | HOST_BITS_PER_WIDE_INT) + 1 |
| 3381 | : xi.len + 1); |
| 3382 | divmod_internal (0, &remainder_len, remainder_val, |
| 3383 | xi.val, xi.len, precision, |
| 3384 | yi.val, yi.len, yi.precision, sgn, overflow); |
| 3385 | remainder.set_len (remainder_len); |
| 3386 | |
| 3387 | return remainder; |
| 3388 | } |
| 3389 | |
| 3390 | /* Compute X / Y, rouding towards 0, and return the remainder. |
| 3391 | Treat X and Y as signed values. */ |
| 3392 | template <typename T1, typename T2> |
| 3393 | inline WI_BINARY_RESULT (T1, T2) |
| 3394 | wi::smod_trunc (const T1 &x, const T2 &y) |
| 3395 | { |
| 3396 | return mod_trunc (x, y, SIGNED); |
| 3397 | } |
| 3398 | |
| 3399 | /* Compute X / Y, rouding towards 0, and return the remainder. |
| 3400 | Treat X and Y as unsigned values. */ |
| 3401 | template <typename T1, typename T2> |
| 3402 | inline WI_BINARY_RESULT (T1, T2) |
| 3403 | wi::umod_trunc (const T1 &x, const T2 &y) |
| 3404 | { |
| 3405 | return mod_trunc (x, y, UNSIGNED); |
| 3406 | } |
| 3407 | |
| 3408 | /* Compute X / Y, rouding towards -inf, and return the remainder. |
| 3409 | Treat X and Y as having the signedness given by SGN. Indicate |
| 3410 | in *OVERFLOW if the division overflows. */ |
| 3411 | template <typename T1, typename T2> |
| 3412 | inline WI_BINARY_RESULT (T1, T2) |
| 3413 | wi::mod_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3414 | { |
| 3415 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| 3416 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| 3417 | unsigned int precision = get_precision (quotient); |
| 3418 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3419 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3420 | |
| 3421 | unsigned int remainder_len; |
| 3422 | if (quotient.needs_write_val_arg) |
| 3423 | { |
| 3424 | unsigned int est_len; |
| 3425 | if (sgn == UNSIGNED && xi.val[xi.len - 1] < 0) |
| 3426 | est_len = CEIL (precision, HOST_BITS_PER_WIDE_INT) + 1; |
| 3427 | else |
| 3428 | est_len = xi.len + 1; |
| 3429 | quotient_val = quotient.write_val (est_len); |
| 3430 | remainder_val = remainder.write_val (est_len); |
| 3431 | } |
| 3432 | quotient.set_len (divmod_internal (quotient_val, |
| 3433 | &remainder_len, remainder_val, |
| 3434 | xi.val, xi.len, precision, |
| 3435 | yi.val, yi.len, yi.precision, sgn, |
| 3436 | overflow)); |
| 3437 | remainder.set_len (remainder_len); |
| 3438 | |
| 3439 | if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) |
| 3440 | return remainder + y; |
| 3441 | return remainder; |
| 3442 | } |
| 3443 | |
| 3444 | /* Compute X / Y, rouding towards -inf, and return the remainder. |
| 3445 | Treat X and Y as unsigned values. */ |
| 3446 | /* ??? Why do we have both this and umod_trunc. Aren't they the same? */ |
| 3447 | template <typename T1, typename T2> |
| 3448 | inline WI_BINARY_RESULT (T1, T2) |
| 3449 | wi::umod_floor (const T1 &x, const T2 &y) |
| 3450 | { |
| 3451 | return mod_floor (x, y, UNSIGNED); |
| 3452 | } |
| 3453 | |
| 3454 | /* Compute X / Y, rouding towards +inf, and return the remainder. |
| 3455 | Treat X and Y as having the signedness given by SGN. Indicate |
| 3456 | in *OVERFLOW if the division overflows. */ |
| 3457 | template <typename T1, typename T2> |
| 3458 | inline WI_BINARY_RESULT (T1, T2) |
| 3459 | wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3460 | { |
| 3461 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| 3462 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| 3463 | unsigned int precision = get_precision (quotient); |
| 3464 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3465 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3466 | |
| 3467 | unsigned int remainder_len; |
| 3468 | if (quotient.needs_write_val_arg) |
| 3469 | { |
| 3470 | unsigned int est_len; |
| 3471 | if (sgn == UNSIGNED && xi.val[xi.len - 1] < 0) |
| 3472 | est_len = CEIL (precision, HOST_BITS_PER_WIDE_INT) + 1; |
| 3473 | else |
| 3474 | est_len = xi.len + 1; |
| 3475 | quotient_val = quotient.write_val (est_len); |
| 3476 | remainder_val = remainder.write_val (est_len); |
| 3477 | } |
| 3478 | quotient.set_len (divmod_internal (quotient_val, |
| 3479 | &remainder_len, remainder_val, |
| 3480 | xi.val, xi.len, precision, |
| 3481 | yi.val, yi.len, yi.precision, sgn, |
| 3482 | overflow)); |
| 3483 | remainder.set_len (remainder_len); |
| 3484 | |
| 3485 | if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) |
| 3486 | return remainder - y; |
| 3487 | return remainder; |
| 3488 | } |
| 3489 | |
| 3490 | /* Compute X / Y, rouding towards nearest with ties away from zero, |
| 3491 | and return the remainder. Treat X and Y as having the signedness |
| 3492 | given by SGN. Indicate in *OVERFLOW if the division overflows. */ |
| 3493 | template <typename T1, typename T2> |
| 3494 | inline WI_BINARY_RESULT (T1, T2) |
| 3495 | wi::mod_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow) |
| 3496 | { |
| 3497 | WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| 3498 | WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| 3499 | unsigned int precision = get_precision (quotient); |
| 3500 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3501 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3502 | |
| 3503 | unsigned int remainder_len; |
| 3504 | if (quotient.needs_write_val_arg) |
| 3505 | { |
| 3506 | unsigned int est_len; |
| 3507 | if (sgn == UNSIGNED && xi.val[xi.len - 1] < 0) |
| 3508 | est_len = CEIL (precision, HOST_BITS_PER_WIDE_INT) + 1; |
| 3509 | else |
| 3510 | est_len = xi.len + 1; |
| 3511 | quotient_val = quotient.write_val (est_len); |
| 3512 | remainder_val = remainder.write_val (est_len); |
| 3513 | } |
| 3514 | quotient.set_len (divmod_internal (quotient_val, |
| 3515 | &remainder_len, remainder_val, |
| 3516 | xi.val, xi.len, precision, |
| 3517 | yi.val, yi.len, yi.precision, sgn, |
| 3518 | overflow)); |
| 3519 | remainder.set_len (remainder_len); |
| 3520 | |
| 3521 | if (remainder != 0) |
| 3522 | { |
| 3523 | if (sgn == SIGNED) |
| 3524 | { |
| 3525 | WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder); |
| 3526 | if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder))) |
| 3527 | { |
| 3528 | if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) |
| 3529 | return remainder + y; |
| 3530 | else |
| 3531 | return remainder - y; |
| 3532 | } |
| 3533 | } |
| 3534 | else |
| 3535 | { |
| 3536 | if (wi::geu_p (remainder, wi::sub (y, remainder))) |
| 3537 | return remainder - y; |
| 3538 | } |
| 3539 | } |
| 3540 | return remainder; |
| 3541 | } |
| 3542 | |
| 3543 | /* Return true if X is a multiple of Y. Treat X and Y as having the |
| 3544 | signedness given by SGN. */ |
| 3545 | template <typename T1, typename T2> |
| 3546 | inline bool |
| 3547 | wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn) |
| 3548 | { |
| 3549 | return wi::mod_trunc (x, y, sgn) == 0; |
| 3550 | } |
| 3551 | |
| 3552 | /* Return true if X is a multiple of Y, storing X / Y in *RES if so. |
| 3553 | Treat X and Y as having the signedness given by SGN. */ |
| 3554 | template <typename T1, typename T2> |
| 3555 | inline bool |
| 3556 | wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn, |
| 3557 | WI_BINARY_RESULT (T1, T2) *res) |
| 3558 | { |
| 3559 | WI_BINARY_RESULT (T1, T2) remainder; |
| 3560 | WI_BINARY_RESULT (T1, T2) quotient |
| 3561 | = divmod_trunc (x, y, sgn, &remainder); |
| 3562 | if (remainder == 0) |
| 3563 | { |
| 3564 | *res = quotient; |
| 3565 | return true; |
| 3566 | } |
| 3567 | return false; |
| 3568 | } |
| 3569 | |
| 3570 | /* Return X << Y. Return 0 if Y is greater than or equal to |
| 3571 | the precision of X. */ |
| 3572 | template <typename T1, typename T2> |
| 3573 | inline WI_UNARY_RESULT (T1) |
| 3574 | wi::lshift (const T1 &x, const T2 &y) |
| 3575 | { |
| 3576 | WI_UNARY_RESULT_VAR (result, val, T1, x); |
| 3577 | unsigned int precision = get_precision (result); |
| 3578 | WIDE_INT_REF_FOR (T1) xi (x, precision); |
| 3579 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3580 | /* Handle the simple cases quickly. */ |
| 3581 | if (geu_p (yi, precision)) |
| 3582 | { |
| 3583 | if (result.needs_write_val_arg) |
| 3584 | val = result.write_val (1); |
| 3585 | val[0] = 0; |
| 3586 | result.set_len (1); |
| 3587 | } |
| 3588 | else |
| 3589 | { |
| 3590 | unsigned int shift = yi.to_uhwi (); |
| 3591 | if (result.needs_write_val_arg) |
| 3592 | val = result.write_val (xi.len + shift / HOST_BITS_PER_WIDE_INT + 1); |
| 3593 | /* For fixed-precision integers like offset_int and widest_int, |
| 3594 | handle the case where the shift value is constant and the |
| 3595 | result is a single nonnegative HWI (meaning that we don't |
| 3596 | need to worry about val[1]). This is particularly common |
| 3597 | for converting a byte count to a bit count. |
| 3598 | |
| 3599 | For variable-precision integers like wide_int, handle HWI |
| 3600 | and sub-HWI integers inline. */ |
| 3601 | if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) |
| 3602 | ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1) |
| 3603 | && xi.len == 1 |
| 3604 | && IN_RANGE (xi.val[0], 0, HOST_WIDE_INT_MAX >> shift)) |
| 3605 | : precision <= HOST_BITS_PER_WIDE_INT) |
| 3606 | { |
| 3607 | val[0] = xi.ulow () << shift; |
| 3608 | result.set_len (1); |
| 3609 | } |
| 3610 | else |
| 3611 | result.set_len (lshift_large (val, xi.val, xi.len, |
| 3612 | precision, shift)); |
| 3613 | } |
| 3614 | return result; |
| 3615 | } |
| 3616 | |
| 3617 | /* Return X >> Y, using a logical shift. Return 0 if Y is greater than |
| 3618 | or equal to the precision of X. */ |
| 3619 | template <typename T1, typename T2> |
| 3620 | inline WI_UNARY_RESULT (T1) |
| 3621 | wi::lrshift (const T1 &x, const T2 &y) |
| 3622 | { |
| 3623 | WI_UNARY_RESULT_VAR (result, val, T1, x); |
| 3624 | /* Do things in the precision of the input rather than the output, |
| 3625 | since the result can be no larger than that. */ |
| 3626 | WIDE_INT_REF_FOR (T1) xi (x); |
| 3627 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3628 | /* Handle the simple cases quickly. */ |
| 3629 | if (geu_p (yi, xi.precision)) |
| 3630 | { |
| 3631 | if (result.needs_write_val_arg) |
| 3632 | val = result.write_val (1); |
| 3633 | val[0] = 0; |
| 3634 | result.set_len (1); |
| 3635 | } |
| 3636 | else |
| 3637 | { |
| 3638 | unsigned int shift = yi.to_uhwi (); |
| 3639 | if (result.needs_write_val_arg) |
| 3640 | { |
| 3641 | unsigned int est_len = xi.len; |
| 3642 | if (xi.val[xi.len - 1] < 0 && shift) |
| 3643 | /* Logical right shift of sign-extended value might need a very |
| 3644 | large precision e.g. for widest_int. */ |
| 3645 | est_len = CEIL (xi.precision - shift, HOST_BITS_PER_WIDE_INT) + 1; |
| 3646 | val = result.write_val (est_len); |
| 3647 | } |
| 3648 | /* For fixed-precision integers like offset_int and widest_int, |
| 3649 | handle the case where the shift value is constant and the |
| 3650 | shifted value is a single nonnegative HWI (meaning that all |
| 3651 | bits above the HWI are zero). This is particularly common |
| 3652 | for converting a bit count to a byte count. |
| 3653 | |
| 3654 | For variable-precision integers like wide_int, handle HWI |
| 3655 | and sub-HWI integers inline. */ |
| 3656 | if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) |
| 3657 | ? (shift < HOST_BITS_PER_WIDE_INT |
| 3658 | && xi.len == 1 |
| 3659 | && xi.val[0] >= 0) |
| 3660 | : xi.precision <= HOST_BITS_PER_WIDE_INT) |
| 3661 | { |
| 3662 | val[0] = xi.to_uhwi () >> shift; |
| 3663 | result.set_len (1); |
| 3664 | } |
| 3665 | else |
| 3666 | result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision, |
| 3667 | get_precision (result), shift)); |
| 3668 | } |
| 3669 | return result; |
| 3670 | } |
| 3671 | |
| 3672 | /* Return X >> Y, using an arithmetic shift. Return a sign mask if |
| 3673 | Y is greater than or equal to the precision of X. */ |
| 3674 | template <typename T1, typename T2> |
| 3675 | inline WI_UNARY_RESULT (T1) |
| 3676 | wi::arshift (const T1 &x, const T2 &y) |
| 3677 | { |
| 3678 | WI_UNARY_RESULT_VAR (result, val, T1, x); |
| 3679 | /* Do things in the precision of the input rather than the output, |
| 3680 | since the result can be no larger than that. */ |
| 3681 | WIDE_INT_REF_FOR (T1) xi (x); |
| 3682 | WIDE_INT_REF_FOR (T2) yi (y); |
| 3683 | if (result.needs_write_val_arg) |
| 3684 | val = result.write_val (xi.len); |
| 3685 | /* Handle the simple cases quickly. */ |
| 3686 | if (geu_p (yi, xi.precision)) |
| 3687 | { |
| 3688 | val[0] = sign_mask (x); |
| 3689 | result.set_len (1); |
| 3690 | } |
| 3691 | else |
| 3692 | { |
| 3693 | unsigned int shift = yi.to_uhwi (); |
| 3694 | if (xi.precision <= HOST_BITS_PER_WIDE_INT) |
| 3695 | { |
| 3696 | val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift); |
| 3697 | result.set_len (1, true); |
| 3698 | } |
| 3699 | else |
| 3700 | result.set_len (arshift_large (val, xi.val, xi.len, xi.precision, |
| 3701 | get_precision (result), shift)); |
| 3702 | } |
| 3703 | return result; |
| 3704 | } |
| 3705 | |
| 3706 | /* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a |
| 3707 | logical shift otherwise. */ |
| 3708 | template <typename T1, typename T2> |
| 3709 | inline WI_UNARY_RESULT (T1) |
| 3710 | wi::rshift (const T1 &x, const T2 &y, signop sgn) |
| 3711 | { |
| 3712 | if (sgn == UNSIGNED) |
| 3713 | return lrshift (x, y); |
| 3714 | else |
| 3715 | return arshift (x, y); |
| 3716 | } |
| 3717 | |
| 3718 | /* Return the result of rotating the low WIDTH bits of X left by Y |
| 3719 | bits and zero-extending the result. Use a full-width rotate if |
| 3720 | WIDTH is zero. */ |
| 3721 | template <typename T1, typename T2> |
| 3722 | WI_UNARY_RESULT (T1) |
| 3723 | wi::lrotate (const T1 &x, const T2 &y, unsigned int width) |
| 3724 | { |
| 3725 | unsigned int precision = get_binary_precision (x, x); |
| 3726 | if (width == 0) |
| 3727 | width = precision; |
| 3728 | WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width); |
| 3729 | WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod); |
| 3730 | WI_UNARY_RESULT (T1) right |
| 3731 | = wi::lrshift (width != precision ? wi::zext (x, width) : x, |
| 3732 | wi::sub (width, ymod)); |
| 3733 | if (width != precision) |
| 3734 | return wi::zext (left, width) | right; |
| 3735 | return left | right; |
| 3736 | } |
| 3737 | |
| 3738 | /* Return the result of rotating the low WIDTH bits of X right by Y |
| 3739 | bits and zero-extending the result. Use a full-width rotate if |
| 3740 | WIDTH is zero. */ |
| 3741 | template <typename T1, typename T2> |
| 3742 | WI_UNARY_RESULT (T1) |
| 3743 | wi::rrotate (const T1 &x, const T2 &y, unsigned int width) |
| 3744 | { |
| 3745 | unsigned int precision = get_binary_precision (x, x); |
| 3746 | if (width == 0) |
| 3747 | width = precision; |
| 3748 | WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width); |
| 3749 | WI_UNARY_RESULT (T1) right |
| 3750 | = wi::lrshift (width != precision ? wi::zext (x, width) : x, ymod); |
| 3751 | WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod)); |
| 3752 | if (width != precision) |
| 3753 | return wi::zext (left, width) | right; |
| 3754 | return left | right; |
| 3755 | } |
| 3756 | |
| 3757 | /* Return 0 if the number of 1s in X is even and 1 if the number of 1s |
| 3758 | is odd. */ |
| 3759 | inline int |
| 3760 | wi::parity (const wide_int_ref &x) |
| 3761 | { |
| 3762 | return popcount (x) & 1; |
| 3763 | } |
| 3764 | |
| 3765 | /* Extract WIDTH bits from X, starting at BITPOS. */ |
| 3766 | template <typename T> |
| 3767 | inline unsigned HOST_WIDE_INT |
| 3768 | wi:: (const T &x, unsigned int bitpos, unsigned int width) |
| 3769 | { |
| 3770 | unsigned precision = get_precision (x); |
| 3771 | if (precision < bitpos + width) |
| 3772 | precision = bitpos + width; |
| 3773 | WIDE_INT_REF_FOR (T) xi (x, precision); |
| 3774 | |
| 3775 | /* Handle this rare case after the above, so that we assert about |
| 3776 | bogus BITPOS values. */ |
| 3777 | if (width == 0) |
| 3778 | return 0; |
| 3779 | |
| 3780 | unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT; |
| 3781 | unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT; |
| 3782 | unsigned HOST_WIDE_INT res = xi.elt (start); |
| 3783 | res >>= shift; |
| 3784 | if (shift + width > HOST_BITS_PER_WIDE_INT) |
| 3785 | { |
| 3786 | unsigned HOST_WIDE_INT upper = xi.elt (start + 1); |
| 3787 | res |= upper << (-shift % HOST_BITS_PER_WIDE_INT); |
| 3788 | } |
| 3789 | return zext_hwi (src: res, prec: width); |
| 3790 | } |
| 3791 | |
| 3792 | /* Return the minimum precision needed to store X with sign SGN. */ |
| 3793 | template <typename T> |
| 3794 | inline unsigned int |
| 3795 | wi::min_precision (const T &x, signop sgn) |
| 3796 | { |
| 3797 | if (sgn == SIGNED) |
| 3798 | return get_precision (x) - clrsb (x); |
| 3799 | else |
| 3800 | return get_precision (x) - clz (x); |
| 3801 | } |
| 3802 | |
| 3803 | #define SIGNED_BINARY_PREDICATE(OP, F) \ |
| 3804 | template <typename T1, typename T2> \ |
| 3805 | inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \ |
| 3806 | OP (const T1 &x, const T2 &y) \ |
| 3807 | { \ |
| 3808 | return wi::F (x, y); \ |
| 3809 | } |
| 3810 | |
| 3811 | SIGNED_BINARY_PREDICATE (operator <, lts_p) |
| 3812 | SIGNED_BINARY_PREDICATE (operator <=, les_p) |
| 3813 | SIGNED_BINARY_PREDICATE (operator >, gts_p) |
| 3814 | SIGNED_BINARY_PREDICATE (operator >=, ges_p) |
| 3815 | |
| 3816 | #undef SIGNED_BINARY_PREDICATE |
| 3817 | |
| 3818 | #define UNARY_OPERATOR(OP, F) \ |
| 3819 | template<typename T> \ |
| 3820 | WI_UNARY_RESULT (generic_wide_int<T>) \ |
| 3821 | OP (const generic_wide_int<T> &x) \ |
| 3822 | { \ |
| 3823 | return wi::F (x); \ |
| 3824 | } |
| 3825 | |
| 3826 | #define BINARY_PREDICATE(OP, F) \ |
| 3827 | template<typename T1, typename T2> \ |
| 3828 | WI_BINARY_PREDICATE_RESULT (T1, T2) \ |
| 3829 | OP (const T1 &x, const T2 &y) \ |
| 3830 | { \ |
| 3831 | return wi::F (x, y); \ |
| 3832 | } |
| 3833 | |
| 3834 | #define BINARY_OPERATOR(OP, F) \ |
| 3835 | template<typename T1, typename T2> \ |
| 3836 | WI_BINARY_OPERATOR_RESULT (T1, T2) \ |
| 3837 | OP (const T1 &x, const T2 &y) \ |
| 3838 | { \ |
| 3839 | return wi::F (x, y); \ |
| 3840 | } |
| 3841 | |
| 3842 | #define SHIFT_OPERATOR(OP, F) \ |
| 3843 | template<typename T1, typename T2> \ |
| 3844 | WI_BINARY_OPERATOR_RESULT (T1, T1) \ |
| 3845 | OP (const T1 &x, const T2 &y) \ |
| 3846 | { \ |
| 3847 | return wi::F (x, y); \ |
| 3848 | } |
| 3849 | |
| 3850 | UNARY_OPERATOR (operator ~, bit_not) |
| 3851 | UNARY_OPERATOR (operator -, neg) |
| 3852 | BINARY_PREDICATE (operator ==, eq_p) |
| 3853 | BINARY_PREDICATE (operator !=, ne_p) |
| 3854 | BINARY_OPERATOR (operator &, bit_and) |
| 3855 | BINARY_OPERATOR (operator |, bit_or) |
| 3856 | BINARY_OPERATOR (operator ^, bit_xor) |
| 3857 | BINARY_OPERATOR (operator +, add) |
| 3858 | BINARY_OPERATOR (operator -, sub) |
| 3859 | BINARY_OPERATOR (operator *, mul) |
| 3860 | SHIFT_OPERATOR (operator <<, lshift) |
| 3861 | |
| 3862 | #undef UNARY_OPERATOR |
| 3863 | #undef BINARY_PREDICATE |
| 3864 | #undef BINARY_OPERATOR |
| 3865 | #undef SHIFT_OPERATOR |
| 3866 | |
| 3867 | template <typename T1, typename T2> |
| 3868 | inline WI_SIGNED_SHIFT_RESULT (T1, T2) |
| 3869 | operator >> (const T1 &x, const T2 &y) |
| 3870 | { |
| 3871 | return wi::arshift (x, y); |
| 3872 | } |
| 3873 | |
| 3874 | template <typename T1, typename T2> |
| 3875 | inline WI_SIGNED_SHIFT_RESULT (T1, T2) |
| 3876 | operator / (const T1 &x, const T2 &y) |
| 3877 | { |
| 3878 | return wi::sdiv_trunc (x, y); |
| 3879 | } |
| 3880 | |
| 3881 | template <typename T1, typename T2> |
| 3882 | inline WI_SIGNED_SHIFT_RESULT (T1, T2) |
| 3883 | operator % (const T1 &x, const T2 &y) |
| 3884 | { |
| 3885 | return wi::smod_trunc (x, y); |
| 3886 | } |
| 3887 | |
| 3888 | void gt_ggc_mx (generic_wide_int <wide_int_storage> *) = delete; |
| 3889 | void gt_pch_nx (generic_wide_int <wide_int_storage> *) = delete; |
| 3890 | void gt_pch_nx (generic_wide_int <wide_int_storage> *, |
| 3891 | gt_pointer_operator, void *) = delete; |
| 3892 | |
| 3893 | template<int N> |
| 3894 | void |
| 3895 | gt_ggc_mx (generic_wide_int <fixed_wide_int_storage <N> > *) |
| 3896 | { |
| 3897 | } |
| 3898 | |
| 3899 | template<int N> |
| 3900 | void |
| 3901 | gt_pch_nx (generic_wide_int <fixed_wide_int_storage <N> > *) |
| 3902 | { |
| 3903 | } |
| 3904 | |
| 3905 | template<int N> |
| 3906 | void |
| 3907 | gt_pch_nx (generic_wide_int <fixed_wide_int_storage <N> > *, |
| 3908 | gt_pointer_operator, void *) |
| 3909 | { |
| 3910 | } |
| 3911 | |
| 3912 | template<int N> |
| 3913 | void gt_ggc_mx (generic_wide_int <widest_int_storage <N> > *) = delete; |
| 3914 | |
| 3915 | template<int N> |
| 3916 | void gt_pch_nx (generic_wide_int <widest_int_storage <N> > *) = delete; |
| 3917 | |
| 3918 | template<int N> |
| 3919 | void gt_pch_nx (generic_wide_int <widest_int_storage <N> > *, |
| 3920 | gt_pointer_operator, void *) = delete; |
| 3921 | |
| 3922 | template<int N> |
| 3923 | void |
| 3924 | gt_ggc_mx (trailing_wide_ints <N> *) |
| 3925 | { |
| 3926 | } |
| 3927 | |
| 3928 | template<int N> |
| 3929 | void |
| 3930 | gt_pch_nx (trailing_wide_ints <N> *) |
| 3931 | { |
| 3932 | } |
| 3933 | |
| 3934 | template<int N> |
| 3935 | void |
| 3936 | gt_pch_nx (trailing_wide_ints <N> *, gt_pointer_operator, void *) |
| 3937 | { |
| 3938 | } |
| 3939 | |
| 3940 | namespace wi |
| 3941 | { |
| 3942 | /* Used for overloaded functions in which the only other acceptable |
| 3943 | scalar type is a pointer. It stops a plain 0 from being treated |
| 3944 | as a null pointer. */ |
| 3945 | struct never_used1 {}; |
| 3946 | struct never_used2 {}; |
| 3947 | |
| 3948 | wide_int min_value (unsigned int, signop); |
| 3949 | wide_int min_value (never_used1 *); |
| 3950 | wide_int min_value (never_used2 *); |
| 3951 | wide_int max_value (unsigned int, signop); |
| 3952 | wide_int max_value (never_used1 *); |
| 3953 | wide_int max_value (never_used2 *); |
| 3954 | |
| 3955 | /* FIXME: this is target dependent, so should be elsewhere. |
| 3956 | It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */ |
| 3957 | wide_int from_buffer (const unsigned char *, unsigned int); |
| 3958 | |
| 3959 | #ifndef GENERATOR_FILE |
| 3960 | void to_mpz (const wide_int_ref &, mpz_t, signop); |
| 3961 | #endif |
| 3962 | |
| 3963 | wide_int mask (unsigned int, bool, unsigned int); |
| 3964 | wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int); |
| 3965 | wide_int set_bit_in_zero (unsigned int, unsigned int); |
| 3966 | wide_int insert (const wide_int &x, const wide_int &y, unsigned int, |
| 3967 | unsigned int); |
| 3968 | wide_int round_down_for_mask (const wide_int &, const wide_int &); |
| 3969 | wide_int round_up_for_mask (const wide_int &, const wide_int &); |
| 3970 | |
| 3971 | wide_int mod_inv (const wide_int &a, const wide_int &b); |
| 3972 | |
| 3973 | template <typename T> |
| 3974 | T mask (unsigned int, bool); |
| 3975 | |
| 3976 | template <typename T> |
| 3977 | T shifted_mask (unsigned int, unsigned int, bool); |
| 3978 | |
| 3979 | template <typename T> |
| 3980 | T set_bit_in_zero (unsigned int); |
| 3981 | |
| 3982 | unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int); |
| 3983 | unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int, |
| 3984 | bool, unsigned int); |
| 3985 | unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| 3986 | unsigned int, unsigned int, bool); |
| 3987 | } |
| 3988 | |
| 3989 | /* Return a PRECISION-bit integer in which the low WIDTH bits are set |
| 3990 | and the other bits are clear, or the inverse if NEGATE_P. */ |
| 3991 | inline wide_int |
| 3992 | wi::mask (unsigned int width, bool negate_p, unsigned int precision) |
| 3993 | { |
| 3994 | wide_int result = wide_int::create (precision); |
| 3995 | result.set_len (l: mask (result.write_val (0), width, negate_p, precision)); |
| 3996 | return result; |
| 3997 | } |
| 3998 | |
| 3999 | /* Return a PRECISION-bit integer in which the low START bits are clear, |
| 4000 | the next WIDTH bits are set, and the other bits are clear, |
| 4001 | or the inverse if NEGATE_P. */ |
| 4002 | inline wide_int |
| 4003 | wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p, |
| 4004 | unsigned int precision) |
| 4005 | { |
| 4006 | wide_int result = wide_int::create (precision); |
| 4007 | result.set_len (l: shifted_mask (result.write_val (0), start, width, negate_p, |
| 4008 | precision)); |
| 4009 | return result; |
| 4010 | } |
| 4011 | |
| 4012 | /* Return a PRECISION-bit integer in which bit BIT is set and all the |
| 4013 | others are clear. */ |
| 4014 | inline wide_int |
| 4015 | wi::set_bit_in_zero (unsigned int bit, unsigned int precision) |
| 4016 | { |
| 4017 | return shifted_mask (start: bit, width: 1, negate_p: false, precision); |
| 4018 | } |
| 4019 | |
| 4020 | /* Return an integer of type T in which the low WIDTH bits are set |
| 4021 | and the other bits are clear, or the inverse if NEGATE_P. */ |
| 4022 | template <typename T> |
| 4023 | inline T |
| 4024 | wi::mask (unsigned int width, bool negate_p) |
| 4025 | { |
| 4026 | STATIC_ASSERT (wi::int_traits<T>::precision); |
| 4027 | T result; |
| 4028 | result.set_len (mask (result.write_val (width / HOST_BITS_PER_WIDE_INT + 1), |
| 4029 | width, negate_p, wi::int_traits <T>::precision)); |
| 4030 | return result; |
| 4031 | } |
| 4032 | |
| 4033 | /* Return an integer of type T in which the low START bits are clear, |
| 4034 | the next WIDTH bits are set, and the other bits are clear, or the |
| 4035 | inverse if NEGATE_P. */ |
| 4036 | template <typename T> |
| 4037 | inline T |
| 4038 | wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p) |
| 4039 | { |
| 4040 | STATIC_ASSERT (wi::int_traits<T>::precision); |
| 4041 | T result; |
| 4042 | unsigned int prec = wi::int_traits <T>::precision; |
| 4043 | unsigned int est_len |
| 4044 | = result.needs_write_val_arg |
| 4045 | ? ((start + (width > prec - start ? prec - start : width)) |
| 4046 | / HOST_BITS_PER_WIDE_INT + 1) : 0; |
| 4047 | result.set_len (shifted_mask (result.write_val (est_len), start, width, |
| 4048 | negate_p, prec)); |
| 4049 | return result; |
| 4050 | } |
| 4051 | |
| 4052 | /* Return an integer of type T in which bit BIT is set and all the |
| 4053 | others are clear. */ |
| 4054 | template <typename T> |
| 4055 | inline T |
| 4056 | wi::set_bit_in_zero (unsigned int bit) |
| 4057 | { |
| 4058 | return shifted_mask <T> (bit, 1, false); |
| 4059 | } |
| 4060 | |
| 4061 | /* Accumulate a set of overflows into OVERFLOW. */ |
| 4062 | |
| 4063 | inline void |
| 4064 | wi::accumulate_overflow (wi::overflow_type &overflow, |
| 4065 | wi::overflow_type suboverflow) |
| 4066 | { |
| 4067 | if (!suboverflow) |
| 4068 | return; |
| 4069 | if (!overflow) |
| 4070 | overflow = suboverflow; |
| 4071 | else if (overflow != suboverflow) |
| 4072 | overflow = wi::OVF_UNKNOWN; |
| 4073 | } |
| 4074 | |
| 4075 | #endif /* WIDE_INT_H */ |
| 4076 | |