1 | /////////////////////////////////////////////////////////////////////////// |
2 | // |
3 | // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas |
4 | // Digital Ltd. LLC |
5 | // |
6 | // All rights reserved. |
7 | // |
8 | // Redistribution and use in source and binary forms, with or without |
9 | // modification, are permitted provided that the following conditions are |
10 | // met: |
11 | // * Redistributions of source code must retain the above copyright |
12 | // notice, this list of conditions and the following disclaimer. |
13 | // * Redistributions in binary form must reproduce the above |
14 | // copyright notice, this list of conditions and the following disclaimer |
15 | // in the documentation and/or other materials provided with the |
16 | // distribution. |
17 | // * Neither the name of Industrial Light & Magic nor the names of |
18 | // its contributors may be used to endorse or promote products derived |
19 | // from this software without specific prior written permission. |
20 | // |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | // |
33 | /////////////////////////////////////////////////////////////////////////// |
34 | |
35 | |
36 | |
37 | #ifndef INCLUDED_IMATHMATRIX_H |
38 | #define INCLUDED_IMATHMATRIX_H |
39 | |
40 | //---------------------------------------------------------------- |
41 | // |
42 | // 2D (3x3) and 3D (4x4) transformation matrix templates. |
43 | // |
44 | //---------------------------------------------------------------- |
45 | |
46 | #include "ImathPlatform.h" |
47 | #include "ImathFun.h" |
48 | #include "ImathExc.h" |
49 | #include "ImathVec.h" |
50 | #include "ImathShear.h" |
51 | #include "ImathNamespace.h" |
52 | |
53 | #include <cstring> |
54 | #include <iostream> |
55 | #include <iomanip> |
56 | #include <string.h> |
57 | |
58 | #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER |
59 | // suppress exception specification warnings |
60 | #pragma warning(disable:4290) |
61 | #endif |
62 | |
63 | |
64 | IMATH_INTERNAL_NAMESPACE_HEADER_ENTER |
65 | |
66 | enum Uninitialized {UNINITIALIZED}; |
67 | |
68 | |
69 | template <class T> class Matrix22 |
70 | { |
71 | public: |
72 | |
73 | //------------------- |
74 | // Access to elements |
75 | //------------------- |
76 | |
77 | T x[2][2]; |
78 | |
79 | T * operator [] (int i); |
80 | const T * operator [] (int i) const; |
81 | |
82 | |
83 | //------------- |
84 | // Constructors |
85 | //------------- |
86 | |
87 | Matrix22 (Uninitialized) {} |
88 | |
89 | Matrix22 (); |
90 | // 1 0 |
91 | // 0 1 |
92 | |
93 | Matrix22 (T a); |
94 | // a a |
95 | // a a |
96 | |
97 | Matrix22 (const T a[2][2]); |
98 | // a[0][0] a[0][1] |
99 | // a[1][0] a[1][1] |
100 | |
101 | Matrix22 (T a, T b, T c, T d); |
102 | |
103 | // a b |
104 | // c d |
105 | |
106 | |
107 | //-------------------------------- |
108 | // Copy constructor and assignment |
109 | //-------------------------------- |
110 | |
111 | Matrix22 (const Matrix22 &v); |
112 | template <class S> explicit Matrix22 (const Matrix22<S> &v); |
113 | |
114 | const Matrix22 & operator = (const Matrix22 &v); |
115 | const Matrix22 & operator = (T a); |
116 | |
117 | |
118 | //------------ |
119 | // Destructor |
120 | //------------ |
121 | |
122 | ~Matrix22 () = default; |
123 | |
124 | //---------------------- |
125 | // Compatibility with Sb |
126 | //---------------------- |
127 | |
128 | T * getValue (); |
129 | const T * getValue () const; |
130 | |
131 | template <class S> |
132 | void getValue (Matrix22<S> &v) const; |
133 | template <class S> |
134 | Matrix22 & setValue (const Matrix22<S> &v); |
135 | |
136 | template <class S> |
137 | Matrix22 & setTheMatrix (const Matrix22<S> &v); |
138 | |
139 | |
140 | //--------- |
141 | // Identity |
142 | //--------- |
143 | |
144 | void makeIdentity(); |
145 | |
146 | |
147 | //--------- |
148 | // Equality |
149 | //--------- |
150 | |
151 | bool operator == (const Matrix22 &v) const; |
152 | bool operator != (const Matrix22 &v) const; |
153 | |
154 | //----------------------------------------------------------------------- |
155 | // Compare two matrices and test if they are "approximately equal": |
156 | // |
157 | // equalWithAbsError (m, e) |
158 | // |
159 | // Returns true if the coefficients of this and m are the same with |
160 | // an absolute error of no more than e, i.e., for all i, j |
161 | // |
162 | // abs (this[i][j] - m[i][j]) <= e |
163 | // |
164 | // equalWithRelError (m, e) |
165 | // |
166 | // Returns true if the coefficients of this and m are the same with |
167 | // a relative error of no more than e, i.e., for all i, j |
168 | // |
169 | // abs (this[i] - v[i][j]) <= e * abs (this[i][j]) |
170 | //----------------------------------------------------------------------- |
171 | |
172 | bool equalWithAbsError (const Matrix22<T> &v, T e) const; |
173 | bool equalWithRelError (const Matrix22<T> &v, T e) const; |
174 | |
175 | |
176 | //------------------------ |
177 | // Component-wise addition |
178 | //------------------------ |
179 | |
180 | const Matrix22 & operator += (const Matrix22 &v); |
181 | const Matrix22 & operator += (T a); |
182 | Matrix22 operator + (const Matrix22 &v) const; |
183 | |
184 | |
185 | //--------------------------- |
186 | // Component-wise subtraction |
187 | //--------------------------- |
188 | |
189 | const Matrix22 & operator -= (const Matrix22 &v); |
190 | const Matrix22 & operator -= (T a); |
191 | Matrix22 operator - (const Matrix22 &v) const; |
192 | |
193 | |
194 | //------------------------------------ |
195 | // Component-wise multiplication by -1 |
196 | //------------------------------------ |
197 | |
198 | Matrix22 operator - () const; |
199 | const Matrix22 & negate (); |
200 | |
201 | |
202 | //------------------------------ |
203 | // Component-wise multiplication |
204 | //------------------------------ |
205 | |
206 | const Matrix22 & operator *= (T a); |
207 | Matrix22 operator * (T a) const; |
208 | |
209 | |
210 | //----------------------------------- |
211 | // Matrix-times-matrix multiplication |
212 | //----------------------------------- |
213 | |
214 | const Matrix22 & operator *= (const Matrix22 &v); |
215 | Matrix22 operator * (const Matrix22 &v) const; |
216 | |
217 | |
218 | //----------------------------------------------------------------- |
219 | // Vector-times-matrix multiplication; see also the "operator *" |
220 | // functions defined below. |
221 | // |
222 | // m.multDirMatrix(src,dst) multiplies src by the matrix m. |
223 | //----------------------------------------------------------------- |
224 | |
225 | template <class S> |
226 | void multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const; |
227 | |
228 | |
229 | //------------------------ |
230 | // Component-wise division |
231 | //------------------------ |
232 | |
233 | const Matrix22 & operator /= (T a); |
234 | Matrix22 operator / (T a) const; |
235 | |
236 | |
237 | //------------------ |
238 | // Transposed matrix |
239 | //------------------ |
240 | |
241 | const Matrix22 & transpose (); |
242 | Matrix22 transposed () const; |
243 | |
244 | |
245 | //------------------------------------------------------------ |
246 | // Inverse matrix: If singExc is false, inverting a singular |
247 | // matrix produces an identity matrix. If singExc is true, |
248 | // inverting a singular matrix throws a SingMatrixExc. |
249 | // |
250 | // inverse() and invert() invert matrices using determinants. |
251 | // |
252 | //------------------------------------------------------------ |
253 | |
254 | const Matrix22 & invert (bool singExc = false); |
255 | |
256 | Matrix22<T> inverse (bool singExc = false) const; |
257 | |
258 | //------------ |
259 | // Determinant |
260 | //------------ |
261 | |
262 | T determinant() const; |
263 | |
264 | //----------------------------------------- |
265 | // Set matrix to rotation by r (in radians) |
266 | //----------------------------------------- |
267 | |
268 | template <class S> |
269 | const Matrix22 & setRotation (S r); |
270 | |
271 | |
272 | //----------------------------- |
273 | // Rotate the given matrix by r |
274 | //----------------------------- |
275 | |
276 | template <class S> |
277 | const Matrix22 & rotate (S r); |
278 | |
279 | |
280 | //-------------------------------------------- |
281 | // Set matrix to scale by given uniform factor |
282 | //-------------------------------------------- |
283 | |
284 | const Matrix22 & setScale (T s); |
285 | |
286 | |
287 | //------------------------------------ |
288 | // Set matrix to scale by given vector |
289 | //------------------------------------ |
290 | |
291 | template <class S> |
292 | const Matrix22 & setScale (const Vec2<S> &s); |
293 | |
294 | |
295 | //---------------------- |
296 | // Scale the matrix by s |
297 | //---------------------- |
298 | |
299 | template <class S> |
300 | const Matrix22 & scale (const Vec2<S> &s); |
301 | |
302 | |
303 | //-------------------------------------------------------- |
304 | // Number of the row and column dimensions, since |
305 | // Matrix22 is a square matrix. |
306 | //-------------------------------------------------------- |
307 | |
308 | static unsigned int dimensions() {return 2;} |
309 | |
310 | |
311 | //------------------------------------------------- |
312 | // Limitations of type T (see also class limits<T>) |
313 | //------------------------------------------------- |
314 | |
315 | static T baseTypeMin() {return limits<T>::min();} |
316 | static T baseTypeMax() {return limits<T>::max();} |
317 | static T baseTypeSmallest() {return limits<T>::smallest();} |
318 | static T baseTypeEpsilon() {return limits<T>::epsilon();} |
319 | |
320 | typedef T BaseType; |
321 | typedef Vec2<T> BaseVecType; |
322 | |
323 | private: |
324 | |
325 | template <typename R, typename S> |
326 | struct isSameType |
327 | { |
328 | enum {value = 0}; |
329 | }; |
330 | |
331 | template <typename R> |
332 | struct isSameType<R, R> |
333 | { |
334 | enum {value = 1}; |
335 | }; |
336 | }; |
337 | |
338 | |
339 | template <class T> class Matrix33 |
340 | { |
341 | public: |
342 | |
343 | //------------------- |
344 | // Access to elements |
345 | //------------------- |
346 | |
347 | T x[3][3]; |
348 | |
349 | T * operator [] (int i); |
350 | const T * operator [] (int i) const; |
351 | |
352 | |
353 | //------------- |
354 | // Constructors |
355 | //------------- |
356 | |
357 | Matrix33 (Uninitialized) {} |
358 | |
359 | Matrix33 (); |
360 | // 1 0 0 |
361 | // 0 1 0 |
362 | // 0 0 1 |
363 | |
364 | Matrix33 (T a); |
365 | // a a a |
366 | // a a a |
367 | // a a a |
368 | |
369 | Matrix33 (const T a[3][3]); |
370 | // a[0][0] a[0][1] a[0][2] |
371 | // a[1][0] a[1][1] a[1][2] |
372 | // a[2][0] a[2][1] a[2][2] |
373 | |
374 | Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i); |
375 | |
376 | // a b c |
377 | // d e f |
378 | // g h i |
379 | |
380 | |
381 | //-------------------------------- |
382 | // Copy constructor and assignment |
383 | //-------------------------------- |
384 | |
385 | Matrix33 (const Matrix33 &v); |
386 | template <class S> explicit Matrix33 (const Matrix33<S> &v); |
387 | |
388 | const Matrix33 & operator = (const Matrix33 &v); |
389 | const Matrix33 & operator = (T a); |
390 | |
391 | |
392 | //------------ |
393 | // Destructor |
394 | //------------ |
395 | |
396 | ~Matrix33 () = default; |
397 | |
398 | //---------------------- |
399 | // Compatibility with Sb |
400 | //---------------------- |
401 | |
402 | T * getValue (); |
403 | const T * getValue () const; |
404 | |
405 | template <class S> |
406 | void getValue (Matrix33<S> &v) const; |
407 | template <class S> |
408 | Matrix33 & setValue (const Matrix33<S> &v); |
409 | |
410 | template <class S> |
411 | Matrix33 & setTheMatrix (const Matrix33<S> &v); |
412 | |
413 | |
414 | //--------- |
415 | // Identity |
416 | //--------- |
417 | |
418 | void makeIdentity(); |
419 | |
420 | |
421 | //--------- |
422 | // Equality |
423 | //--------- |
424 | |
425 | bool operator == (const Matrix33 &v) const; |
426 | bool operator != (const Matrix33 &v) const; |
427 | |
428 | //----------------------------------------------------------------------- |
429 | // Compare two matrices and test if they are "approximately equal": |
430 | // |
431 | // equalWithAbsError (m, e) |
432 | // |
433 | // Returns true if the coefficients of this and m are the same with |
434 | // an absolute error of no more than e, i.e., for all i, j |
435 | // |
436 | // abs (this[i][j] - m[i][j]) <= e |
437 | // |
438 | // equalWithRelError (m, e) |
439 | // |
440 | // Returns true if the coefficients of this and m are the same with |
441 | // a relative error of no more than e, i.e., for all i, j |
442 | // |
443 | // abs (this[i] - v[i][j]) <= e * abs (this[i][j]) |
444 | //----------------------------------------------------------------------- |
445 | |
446 | bool equalWithAbsError (const Matrix33<T> &v, T e) const; |
447 | bool equalWithRelError (const Matrix33<T> &v, T e) const; |
448 | |
449 | |
450 | //------------------------ |
451 | // Component-wise addition |
452 | //------------------------ |
453 | |
454 | const Matrix33 & operator += (const Matrix33 &v); |
455 | const Matrix33 & operator += (T a); |
456 | Matrix33 operator + (const Matrix33 &v) const; |
457 | |
458 | |
459 | //--------------------------- |
460 | // Component-wise subtraction |
461 | //--------------------------- |
462 | |
463 | const Matrix33 & operator -= (const Matrix33 &v); |
464 | const Matrix33 & operator -= (T a); |
465 | Matrix33 operator - (const Matrix33 &v) const; |
466 | |
467 | |
468 | //------------------------------------ |
469 | // Component-wise multiplication by -1 |
470 | //------------------------------------ |
471 | |
472 | Matrix33 operator - () const; |
473 | const Matrix33 & negate (); |
474 | |
475 | |
476 | //------------------------------ |
477 | // Component-wise multiplication |
478 | //------------------------------ |
479 | |
480 | const Matrix33 & operator *= (T a); |
481 | Matrix33 operator * (T a) const; |
482 | |
483 | |
484 | //----------------------------------- |
485 | // Matrix-times-matrix multiplication |
486 | //----------------------------------- |
487 | |
488 | const Matrix33 & operator *= (const Matrix33 &v); |
489 | Matrix33 operator * (const Matrix33 &v) const; |
490 | |
491 | |
492 | //----------------------------------------------------------------- |
493 | // Vector-times-matrix multiplication; see also the "operator *" |
494 | // functions defined below. |
495 | // |
496 | // m.multVecMatrix(src,dst) implements a homogeneous transformation |
497 | // by computing Vec3 (src.x, src.y, 1) * m and dividing by the |
498 | // result's third element. |
499 | // |
500 | // m.multDirMatrix(src,dst) multiplies src by the upper left 2x2 |
501 | // submatrix, ignoring the rest of matrix m. |
502 | //----------------------------------------------------------------- |
503 | |
504 | template <class S> |
505 | void multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const; |
506 | |
507 | template <class S> |
508 | void multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const; |
509 | |
510 | |
511 | //------------------------ |
512 | // Component-wise division |
513 | //------------------------ |
514 | |
515 | const Matrix33 & operator /= (T a); |
516 | Matrix33 operator / (T a) const; |
517 | |
518 | |
519 | //------------------ |
520 | // Transposed matrix |
521 | //------------------ |
522 | |
523 | const Matrix33 & transpose (); |
524 | Matrix33 transposed () const; |
525 | |
526 | |
527 | //------------------------------------------------------------ |
528 | // Inverse matrix: If singExc is false, inverting a singular |
529 | // matrix produces an identity matrix. If singExc is true, |
530 | // inverting a singular matrix throws a SingMatrixExc. |
531 | // |
532 | // inverse() and invert() invert matrices using determinants; |
533 | // gjInverse() and gjInvert() use the Gauss-Jordan method. |
534 | // |
535 | // inverse() and invert() are significantly faster than |
536 | // gjInverse() and gjInvert(), but the results may be slightly |
537 | // less accurate. |
538 | // |
539 | //------------------------------------------------------------ |
540 | |
541 | const Matrix33 & invert (bool singExc = false); |
542 | |
543 | Matrix33<T> inverse (bool singExc = false) const; |
544 | |
545 | const Matrix33 & gjInvert (bool singExc = false); |
546 | |
547 | Matrix33<T> gjInverse (bool singExc = false) const; |
548 | |
549 | |
550 | //------------------------------------------------ |
551 | // Calculate the matrix minor of the (r,c) element |
552 | //------------------------------------------------ |
553 | |
554 | T minorOf (const int r, const int c) const; |
555 | |
556 | //--------------------------------------------------- |
557 | // Build a minor using the specified rows and columns |
558 | //--------------------------------------------------- |
559 | |
560 | T fastMinor (const int r0, const int r1, |
561 | const int c0, const int c1) const; |
562 | |
563 | //------------ |
564 | // Determinant |
565 | //------------ |
566 | |
567 | T determinant() const; |
568 | |
569 | //----------------------------------------- |
570 | // Set matrix to rotation by r (in radians) |
571 | //----------------------------------------- |
572 | |
573 | template <class S> |
574 | const Matrix33 & setRotation (S r); |
575 | |
576 | |
577 | //----------------------------- |
578 | // Rotate the given matrix by r |
579 | //----------------------------- |
580 | |
581 | template <class S> |
582 | const Matrix33 & rotate (S r); |
583 | |
584 | |
585 | //-------------------------------------------- |
586 | // Set matrix to scale by given uniform factor |
587 | //-------------------------------------------- |
588 | |
589 | const Matrix33 & setScale (T s); |
590 | |
591 | |
592 | //------------------------------------ |
593 | // Set matrix to scale by given vector |
594 | //------------------------------------ |
595 | |
596 | template <class S> |
597 | const Matrix33 & setScale (const Vec2<S> &s); |
598 | |
599 | |
600 | //---------------------- |
601 | // Scale the matrix by s |
602 | //---------------------- |
603 | |
604 | template <class S> |
605 | const Matrix33 & scale (const Vec2<S> &s); |
606 | |
607 | |
608 | //------------------------------------------ |
609 | // Set matrix to translation by given vector |
610 | //------------------------------------------ |
611 | |
612 | template <class S> |
613 | const Matrix33 & setTranslation (const Vec2<S> &t); |
614 | |
615 | |
616 | //----------------------------- |
617 | // Return translation component |
618 | //----------------------------- |
619 | |
620 | Vec2<T> translation () const; |
621 | |
622 | |
623 | //-------------------------- |
624 | // Translate the matrix by t |
625 | //-------------------------- |
626 | |
627 | template <class S> |
628 | const Matrix33 & translate (const Vec2<S> &t); |
629 | |
630 | |
631 | //----------------------------------------------------------- |
632 | // Set matrix to shear x for each y coord. by given factor xy |
633 | //----------------------------------------------------------- |
634 | |
635 | template <class S> |
636 | const Matrix33 & setShear (const S &h); |
637 | |
638 | |
639 | //------------------------------------------------------------- |
640 | // Set matrix to shear x for each y coord. by given factor h[0] |
641 | // and to shear y for each x coord. by given factor h[1] |
642 | //------------------------------------------------------------- |
643 | |
644 | template <class S> |
645 | const Matrix33 & setShear (const Vec2<S> &h); |
646 | |
647 | |
648 | //----------------------------------------------------------- |
649 | // Shear the matrix in x for each y coord. by given factor xy |
650 | //----------------------------------------------------------- |
651 | |
652 | template <class S> |
653 | const Matrix33 & shear (const S &xy); |
654 | |
655 | |
656 | //----------------------------------------------------------- |
657 | // Shear the matrix in x for each y coord. by given factor xy |
658 | // and shear y for each x coord. by given factor yx |
659 | //----------------------------------------------------------- |
660 | |
661 | template <class S> |
662 | const Matrix33 & shear (const Vec2<S> &h); |
663 | |
664 | |
665 | //-------------------------------------------------------- |
666 | // Number of the row and column dimensions, since |
667 | // Matrix33 is a square matrix. |
668 | //-------------------------------------------------------- |
669 | |
670 | static unsigned int dimensions() {return 3;} |
671 | |
672 | |
673 | //------------------------------------------------- |
674 | // Limitations of type T (see also class limits<T>) |
675 | //------------------------------------------------- |
676 | |
677 | static T baseTypeMin() {return limits<T>::min();} |
678 | static T baseTypeMax() {return limits<T>::max();} |
679 | static T baseTypeSmallest() {return limits<T>::smallest();} |
680 | static T baseTypeEpsilon() {return limits<T>::epsilon();} |
681 | |
682 | typedef T BaseType; |
683 | typedef Vec3<T> BaseVecType; |
684 | |
685 | private: |
686 | |
687 | template <typename R, typename S> |
688 | struct isSameType |
689 | { |
690 | enum {value = 0}; |
691 | }; |
692 | |
693 | template <typename R> |
694 | struct isSameType<R, R> |
695 | { |
696 | enum {value = 1}; |
697 | }; |
698 | }; |
699 | |
700 | |
701 | template <class T> class Matrix44 |
702 | { |
703 | public: |
704 | |
705 | //------------------- |
706 | // Access to elements |
707 | //------------------- |
708 | |
709 | T x[4][4]; |
710 | |
711 | T * operator [] (int i); |
712 | const T * operator [] (int i) const; |
713 | |
714 | |
715 | //------------- |
716 | // Constructors |
717 | //------------- |
718 | |
719 | Matrix44 (Uninitialized) {} |
720 | |
721 | Matrix44 (); |
722 | // 1 0 0 0 |
723 | // 0 1 0 0 |
724 | // 0 0 1 0 |
725 | // 0 0 0 1 |
726 | |
727 | Matrix44 (T a); |
728 | // a a a a |
729 | // a a a a |
730 | // a a a a |
731 | // a a a a |
732 | |
733 | Matrix44 (const T a[4][4]) ; |
734 | // a[0][0] a[0][1] a[0][2] a[0][3] |
735 | // a[1][0] a[1][1] a[1][2] a[1][3] |
736 | // a[2][0] a[2][1] a[2][2] a[2][3] |
737 | // a[3][0] a[3][1] a[3][2] a[3][3] |
738 | |
739 | Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h, |
740 | T i, T j, T k, T l, T m, T n, T o, T p); |
741 | |
742 | // a b c d |
743 | // e f g h |
744 | // i j k l |
745 | // m n o p |
746 | |
747 | Matrix44 (Matrix33<T> r, Vec3<T> t); |
748 | // r r r 0 |
749 | // r r r 0 |
750 | // r r r 0 |
751 | // t t t 1 |
752 | |
753 | //------------ |
754 | // Destructor |
755 | //------------ |
756 | |
757 | ~Matrix44 () = default; |
758 | |
759 | //-------------------------------- |
760 | // Copy constructor and assignment |
761 | //-------------------------------- |
762 | |
763 | Matrix44 (const Matrix44 &v); |
764 | template <class S> explicit Matrix44 (const Matrix44<S> &v); |
765 | |
766 | const Matrix44 & operator = (const Matrix44 &v); |
767 | const Matrix44 & operator = (T a); |
768 | |
769 | |
770 | //---------------------- |
771 | // Compatibility with Sb |
772 | //---------------------- |
773 | |
774 | T * getValue (); |
775 | const T * getValue () const; |
776 | |
777 | template <class S> |
778 | void getValue (Matrix44<S> &v) const; |
779 | template <class S> |
780 | Matrix44 & setValue (const Matrix44<S> &v); |
781 | |
782 | template <class S> |
783 | Matrix44 & setTheMatrix (const Matrix44<S> &v); |
784 | |
785 | //--------- |
786 | // Identity |
787 | //--------- |
788 | |
789 | void makeIdentity(); |
790 | |
791 | |
792 | //--------- |
793 | // Equality |
794 | //--------- |
795 | |
796 | bool operator == (const Matrix44 &v) const; |
797 | bool operator != (const Matrix44 &v) const; |
798 | |
799 | //----------------------------------------------------------------------- |
800 | // Compare two matrices and test if they are "approximately equal": |
801 | // |
802 | // equalWithAbsError (m, e) |
803 | // |
804 | // Returns true if the coefficients of this and m are the same with |
805 | // an absolute error of no more than e, i.e., for all i, j |
806 | // |
807 | // abs (this[i][j] - m[i][j]) <= e |
808 | // |
809 | // equalWithRelError (m, e) |
810 | // |
811 | // Returns true if the coefficients of this and m are the same with |
812 | // a relative error of no more than e, i.e., for all i, j |
813 | // |
814 | // abs (this[i] - v[i][j]) <= e * abs (this[i][j]) |
815 | //----------------------------------------------------------------------- |
816 | |
817 | bool equalWithAbsError (const Matrix44<T> &v, T e) const; |
818 | bool equalWithRelError (const Matrix44<T> &v, T e) const; |
819 | |
820 | |
821 | //------------------------ |
822 | // Component-wise addition |
823 | //------------------------ |
824 | |
825 | const Matrix44 & operator += (const Matrix44 &v); |
826 | const Matrix44 & operator += (T a); |
827 | Matrix44 operator + (const Matrix44 &v) const; |
828 | |
829 | |
830 | //--------------------------- |
831 | // Component-wise subtraction |
832 | //--------------------------- |
833 | |
834 | const Matrix44 & operator -= (const Matrix44 &v); |
835 | const Matrix44 & operator -= (T a); |
836 | Matrix44 operator - (const Matrix44 &v) const; |
837 | |
838 | |
839 | //------------------------------------ |
840 | // Component-wise multiplication by -1 |
841 | //------------------------------------ |
842 | |
843 | Matrix44 operator - () const; |
844 | const Matrix44 & negate (); |
845 | |
846 | |
847 | //------------------------------ |
848 | // Component-wise multiplication |
849 | //------------------------------ |
850 | |
851 | const Matrix44 & operator *= (T a); |
852 | Matrix44 operator * (T a) const; |
853 | |
854 | |
855 | //----------------------------------- |
856 | // Matrix-times-matrix multiplication |
857 | //----------------------------------- |
858 | |
859 | const Matrix44 & operator *= (const Matrix44 &v); |
860 | Matrix44 operator * (const Matrix44 &v) const; |
861 | |
862 | static void multiply (const Matrix44 &a, // assumes that |
863 | const Matrix44 &b, // &a != &c and |
864 | Matrix44 &c); // &b != &c. |
865 | |
866 | |
867 | //----------------------------------------------------------------- |
868 | // Vector-times-matrix multiplication; see also the "operator *" |
869 | // functions defined below. |
870 | // |
871 | // m.multVecMatrix(src,dst) implements a homogeneous transformation |
872 | // by computing Vec4 (src.x, src.y, src.z, 1) * m and dividing by |
873 | // the result's third element. |
874 | // |
875 | // m.multDirMatrix(src,dst) multiplies src by the upper left 3x3 |
876 | // submatrix, ignoring the rest of matrix m. |
877 | //----------------------------------------------------------------- |
878 | |
879 | template <class S> |
880 | void multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const; |
881 | |
882 | template <class S> |
883 | void multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const; |
884 | |
885 | |
886 | //------------------------ |
887 | // Component-wise division |
888 | //------------------------ |
889 | |
890 | const Matrix44 & operator /= (T a); |
891 | Matrix44 operator / (T a) const; |
892 | |
893 | |
894 | //------------------ |
895 | // Transposed matrix |
896 | //------------------ |
897 | |
898 | const Matrix44 & transpose (); |
899 | Matrix44 transposed () const; |
900 | |
901 | |
902 | //------------------------------------------------------------ |
903 | // Inverse matrix: If singExc is false, inverting a singular |
904 | // matrix produces an identity matrix. If singExc is true, |
905 | // inverting a singular matrix throws a SingMatrixExc. |
906 | // |
907 | // inverse() and invert() invert matrices using determinants; |
908 | // gjInverse() and gjInvert() use the Gauss-Jordan method. |
909 | // |
910 | // inverse() and invert() are significantly faster than |
911 | // gjInverse() and gjInvert(), but the results may be slightly |
912 | // less accurate. |
913 | // |
914 | //------------------------------------------------------------ |
915 | |
916 | const Matrix44 & invert (bool singExc = false); |
917 | |
918 | Matrix44<T> inverse (bool singExc = false) const; |
919 | |
920 | const Matrix44 & gjInvert (bool singExc = false); |
921 | |
922 | Matrix44<T> gjInverse (bool singExc = false) const; |
923 | |
924 | |
925 | //------------------------------------------------ |
926 | // Calculate the matrix minor of the (r,c) element |
927 | //------------------------------------------------ |
928 | |
929 | T minorOf (const int r, const int c) const; |
930 | |
931 | //--------------------------------------------------- |
932 | // Build a minor using the specified rows and columns |
933 | //--------------------------------------------------- |
934 | |
935 | T fastMinor (const int r0, const int r1, const int r2, |
936 | const int c0, const int c1, const int c2) const; |
937 | |
938 | //------------ |
939 | // Determinant |
940 | //------------ |
941 | |
942 | T determinant() const; |
943 | |
944 | //-------------------------------------------------------- |
945 | // Set matrix to rotation by XYZ euler angles (in radians) |
946 | //-------------------------------------------------------- |
947 | |
948 | template <class S> |
949 | const Matrix44 & setEulerAngles (const Vec3<S>& r); |
950 | |
951 | |
952 | //-------------------------------------------------------- |
953 | // Set matrix to rotation around given axis by given angle |
954 | //-------------------------------------------------------- |
955 | |
956 | template <class S> |
957 | const Matrix44 & setAxisAngle (const Vec3<S>& ax, S ang); |
958 | |
959 | |
960 | //------------------------------------------- |
961 | // Rotate the matrix by XYZ euler angles in r |
962 | //------------------------------------------- |
963 | |
964 | template <class S> |
965 | const Matrix44 & rotate (const Vec3<S> &r); |
966 | |
967 | |
968 | //-------------------------------------------- |
969 | // Set matrix to scale by given uniform factor |
970 | //-------------------------------------------- |
971 | |
972 | const Matrix44 & setScale (T s); |
973 | |
974 | |
975 | //------------------------------------ |
976 | // Set matrix to scale by given vector |
977 | //------------------------------------ |
978 | |
979 | template <class S> |
980 | const Matrix44 & setScale (const Vec3<S> &s); |
981 | |
982 | |
983 | //---------------------- |
984 | // Scale the matrix by s |
985 | //---------------------- |
986 | |
987 | template <class S> |
988 | const Matrix44 & scale (const Vec3<S> &s); |
989 | |
990 | |
991 | //------------------------------------------ |
992 | // Set matrix to translation by given vector |
993 | //------------------------------------------ |
994 | |
995 | template <class S> |
996 | const Matrix44 & setTranslation (const Vec3<S> &t); |
997 | |
998 | |
999 | //----------------------------- |
1000 | // Return translation component |
1001 | //----------------------------- |
1002 | |
1003 | const Vec3<T> translation () const; |
1004 | |
1005 | |
1006 | //-------------------------- |
1007 | // Translate the matrix by t |
1008 | //-------------------------- |
1009 | |
1010 | template <class S> |
1011 | const Matrix44 & translate (const Vec3<S> &t); |
1012 | |
1013 | |
1014 | //------------------------------------------------------------- |
1015 | // Set matrix to shear by given vector h. The resulting matrix |
1016 | // will shear x for each y coord. by a factor of h[0] ; |
1017 | // will shear x for each z coord. by a factor of h[1] ; |
1018 | // will shear y for each z coord. by a factor of h[2] . |
1019 | //------------------------------------------------------------- |
1020 | |
1021 | template <class S> |
1022 | const Matrix44 & setShear (const Vec3<S> &h); |
1023 | |
1024 | |
1025 | //------------------------------------------------------------ |
1026 | // Set matrix to shear by given factors. The resulting matrix |
1027 | // will shear x for each y coord. by a factor of h.xy ; |
1028 | // will shear x for each z coord. by a factor of h.xz ; |
1029 | // will shear y for each z coord. by a factor of h.yz ; |
1030 | // will shear y for each x coord. by a factor of h.yx ; |
1031 | // will shear z for each x coord. by a factor of h.zx ; |
1032 | // will shear z for each y coord. by a factor of h.zy . |
1033 | //------------------------------------------------------------ |
1034 | |
1035 | template <class S> |
1036 | const Matrix44 & setShear (const Shear6<S> &h); |
1037 | |
1038 | |
1039 | //-------------------------------------------------------- |
1040 | // Shear the matrix by given vector. The composed matrix |
1041 | // will be <shear> * <this>, where the shear matrix ... |
1042 | // will shear x for each y coord. by a factor of h[0] ; |
1043 | // will shear x for each z coord. by a factor of h[1] ; |
1044 | // will shear y for each z coord. by a factor of h[2] . |
1045 | //-------------------------------------------------------- |
1046 | |
1047 | template <class S> |
1048 | const Matrix44 & shear (const Vec3<S> &h); |
1049 | |
1050 | //-------------------------------------------------------- |
1051 | // Number of the row and column dimensions, since |
1052 | // Matrix44 is a square matrix. |
1053 | //-------------------------------------------------------- |
1054 | |
1055 | static unsigned int dimensions() {return 4;} |
1056 | |
1057 | |
1058 | //------------------------------------------------------------ |
1059 | // Shear the matrix by the given factors. The composed matrix |
1060 | // will be <shear> * <this>, where the shear matrix ... |
1061 | // will shear x for each y coord. by a factor of h.xy ; |
1062 | // will shear x for each z coord. by a factor of h.xz ; |
1063 | // will shear y for each z coord. by a factor of h.yz ; |
1064 | // will shear y for each x coord. by a factor of h.yx ; |
1065 | // will shear z for each x coord. by a factor of h.zx ; |
1066 | // will shear z for each y coord. by a factor of h.zy . |
1067 | //------------------------------------------------------------ |
1068 | |
1069 | template <class S> |
1070 | const Matrix44 & shear (const Shear6<S> &h); |
1071 | |
1072 | |
1073 | //------------------------------------------------- |
1074 | // Limitations of type T (see also class limits<T>) |
1075 | //------------------------------------------------- |
1076 | |
1077 | static T baseTypeMin() {return limits<T>::min();} |
1078 | static T baseTypeMax() {return limits<T>::max();} |
1079 | static T baseTypeSmallest() {return limits<T>::smallest();} |
1080 | static T baseTypeEpsilon() {return limits<T>::epsilon();} |
1081 | |
1082 | typedef T BaseType; |
1083 | typedef Vec4<T> BaseVecType; |
1084 | |
1085 | private: |
1086 | |
1087 | template <typename R, typename S> |
1088 | struct isSameType |
1089 | { |
1090 | enum {value = 0}; |
1091 | }; |
1092 | |
1093 | template <typename R> |
1094 | struct isSameType<R, R> |
1095 | { |
1096 | enum {value = 1}; |
1097 | }; |
1098 | }; |
1099 | |
1100 | |
1101 | //-------------- |
1102 | // Stream output |
1103 | //-------------- |
1104 | |
1105 | template <class T> |
1106 | std::ostream & operator << (std::ostream & s, const Matrix22<T> &m); |
1107 | |
1108 | template <class T> |
1109 | std::ostream & operator << (std::ostream & s, const Matrix33<T> &m); |
1110 | |
1111 | template <class T> |
1112 | std::ostream & operator << (std::ostream & s, const Matrix44<T> &m); |
1113 | |
1114 | |
1115 | //--------------------------------------------- |
1116 | // Vector-times-matrix multiplication operators |
1117 | //--------------------------------------------- |
1118 | |
1119 | |
1120 | template <class S, class T> |
1121 | const Vec2<S> & operator *= (Vec2<S> &v, const Matrix22<T> &m); |
1122 | |
1123 | template <class S, class T> |
1124 | Vec2<S> operator * (const Vec2<S> &v, const Matrix22<T> &m); |
1125 | |
1126 | template <class S, class T> |
1127 | const Vec2<S> & operator *= (Vec2<S> &v, const Matrix33<T> &m); |
1128 | |
1129 | template <class S, class T> |
1130 | Vec2<S> operator * (const Vec2<S> &v, const Matrix33<T> &m); |
1131 | |
1132 | template <class S, class T> |
1133 | const Vec3<S> & operator *= (Vec3<S> &v, const Matrix33<T> &m); |
1134 | |
1135 | template <class S, class T> |
1136 | Vec3<S> operator * (const Vec3<S> &v, const Matrix33<T> &m); |
1137 | |
1138 | template <class S, class T> |
1139 | const Vec3<S> & operator *= (Vec3<S> &v, const Matrix44<T> &m); |
1140 | |
1141 | template <class S, class T> |
1142 | Vec3<S> operator * (const Vec3<S> &v, const Matrix44<T> &m); |
1143 | |
1144 | template <class S, class T> |
1145 | const Vec4<S> & operator *= (Vec4<S> &v, const Matrix44<T> &m); |
1146 | |
1147 | template <class S, class T> |
1148 | Vec4<S> operator * (const Vec4<S> &v, const Matrix44<T> &m); |
1149 | |
1150 | //------------------------- |
1151 | // Typedefs for convenience |
1152 | //------------------------- |
1153 | |
1154 | typedef Matrix22 <float> M22f; |
1155 | typedef Matrix22 <double> M22d; |
1156 | typedef Matrix33 <float> M33f; |
1157 | typedef Matrix33 <double> M33d; |
1158 | typedef Matrix44 <float> M44f; |
1159 | typedef Matrix44 <double> M44d; |
1160 | |
1161 | |
1162 | //--------------------------- |
1163 | // Implementation of Matrix22 |
1164 | //--------------------------- |
1165 | |
1166 | template <class T> |
1167 | inline T * |
1168 | Matrix22<T>::operator [] (int i) |
1169 | { |
1170 | return x[i]; |
1171 | } |
1172 | |
1173 | template <class T> |
1174 | inline const T * |
1175 | Matrix22<T>::operator [] (int i) const |
1176 | { |
1177 | return x[i]; |
1178 | } |
1179 | |
1180 | template <class T> |
1181 | inline |
1182 | Matrix22<T>::Matrix22 () |
1183 | { |
1184 | x[0][0] = 1; |
1185 | x[0][1] = 0; |
1186 | x[1][0] = 0; |
1187 | x[1][1] = 1; |
1188 | } |
1189 | |
1190 | template <class T> |
1191 | inline |
1192 | Matrix22<T>::Matrix22 (T a) |
1193 | { |
1194 | x[0][0] = a; |
1195 | x[0][1] = a; |
1196 | x[1][0] = a; |
1197 | x[1][1] = a; |
1198 | } |
1199 | |
1200 | template <class T> |
1201 | inline |
1202 | Matrix22<T>::Matrix22 (const T a[2][2]) |
1203 | { |
1204 | memcpy (x, a, sizeof (x)); |
1205 | } |
1206 | |
1207 | template <class T> |
1208 | inline |
1209 | Matrix22<T>::Matrix22 (T a, T b, T c, T d) |
1210 | { |
1211 | x[0][0] = a; |
1212 | x[0][1] = b; |
1213 | x[1][0] = c; |
1214 | x[1][1] = d; |
1215 | } |
1216 | |
1217 | template <class T> |
1218 | inline |
1219 | Matrix22<T>::Matrix22 (const Matrix22 &v) |
1220 | { |
1221 | memcpy (x, v.x, sizeof (x)); |
1222 | } |
1223 | |
1224 | template <class T> |
1225 | template <class S> |
1226 | inline |
1227 | Matrix22<T>::Matrix22 (const Matrix22<S> &v) |
1228 | { |
1229 | x[0][0] = T (v.x[0][0]); |
1230 | x[0][1] = T (v.x[0][1]); |
1231 | x[1][0] = T (v.x[1][0]); |
1232 | x[1][1] = T (v.x[1][1]); |
1233 | } |
1234 | |
1235 | template <class T> |
1236 | inline const Matrix22<T> & |
1237 | Matrix22<T>::operator = (const Matrix22 &v) |
1238 | { |
1239 | memcpy (x, v.x, sizeof (x)); |
1240 | return *this; |
1241 | } |
1242 | |
1243 | template <class T> |
1244 | inline const Matrix22<T> & |
1245 | Matrix22<T>::operator = (T a) |
1246 | { |
1247 | x[0][0] = a; |
1248 | x[0][1] = a; |
1249 | x[1][0] = a; |
1250 | x[1][1] = a; |
1251 | return *this; |
1252 | } |
1253 | |
1254 | template <class T> |
1255 | inline T * |
1256 | Matrix22<T>::getValue () |
1257 | { |
1258 | return (T *) &x[0][0]; |
1259 | } |
1260 | |
1261 | template <class T> |
1262 | inline const T * |
1263 | Matrix22<T>::getValue () const |
1264 | { |
1265 | return (const T *) &x[0][0]; |
1266 | } |
1267 | |
1268 | template <class T> |
1269 | template <class S> |
1270 | inline void |
1271 | Matrix22<T>::getValue (Matrix22<S> &v) const |
1272 | { |
1273 | if (isSameType<S,T>::value) |
1274 | { |
1275 | memcpy (v.x, x, sizeof (x)); |
1276 | } |
1277 | else |
1278 | { |
1279 | v.x[0][0] = x[0][0]; |
1280 | v.x[0][1] = x[0][1]; |
1281 | v.x[1][0] = x[1][0]; |
1282 | v.x[1][1] = x[1][1]; |
1283 | } |
1284 | } |
1285 | |
1286 | template <class T> |
1287 | template <class S> |
1288 | inline Matrix22<T> & |
1289 | Matrix22<T>::setValue (const Matrix22<S> &v) |
1290 | { |
1291 | if (isSameType<S,T>::value) |
1292 | { |
1293 | memcpy (x, v.x, sizeof (x)); |
1294 | } |
1295 | else |
1296 | { |
1297 | x[0][0] = v.x[0][0]; |
1298 | x[0][1] = v.x[0][1]; |
1299 | x[1][0] = v.x[1][0]; |
1300 | x[1][1] = v.x[1][1]; |
1301 | } |
1302 | |
1303 | return *this; |
1304 | } |
1305 | |
1306 | template <class T> |
1307 | template <class S> |
1308 | inline Matrix22<T> & |
1309 | Matrix22<T>::setTheMatrix (const Matrix22<S> &v) |
1310 | { |
1311 | if (isSameType<S,T>::value) |
1312 | { |
1313 | memcpy (x, v.x, sizeof (x)); |
1314 | } |
1315 | else |
1316 | { |
1317 | x[0][0] = v.x[0][0]; |
1318 | x[0][1] = v.x[0][1]; |
1319 | x[1][0] = v.x[1][0]; |
1320 | x[1][1] = v.x[1][1]; |
1321 | } |
1322 | |
1323 | return *this; |
1324 | } |
1325 | |
1326 | template <class T> |
1327 | inline void |
1328 | Matrix22<T>::makeIdentity() |
1329 | { |
1330 | x[0][0] = 1; |
1331 | x[0][1] = 0; |
1332 | x[1][0] = 0; |
1333 | x[1][1] = 1; |
1334 | } |
1335 | |
1336 | template <class T> |
1337 | bool |
1338 | Matrix22<T>::operator == (const Matrix22 &v) const |
1339 | { |
1340 | return x[0][0] == v.x[0][0] && |
1341 | x[0][1] == v.x[0][1] && |
1342 | x[1][0] == v.x[1][0] && |
1343 | x[1][1] == v.x[1][1]; |
1344 | } |
1345 | |
1346 | template <class T> |
1347 | bool |
1348 | Matrix22<T>::operator != (const Matrix22 &v) const |
1349 | { |
1350 | return x[0][0] != v.x[0][0] || |
1351 | x[0][1] != v.x[0][1] || |
1352 | x[1][0] != v.x[1][0] || |
1353 | x[1][1] != v.x[1][1]; |
1354 | } |
1355 | |
1356 | template <class T> |
1357 | bool |
1358 | Matrix22<T>::equalWithAbsError (const Matrix22<T> &m, T e) const |
1359 | { |
1360 | for (int i = 0; i < 2; i++) |
1361 | for (int j = 0; j < 2; j++) |
1362 | if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e)) |
1363 | return false; |
1364 | |
1365 | return true; |
1366 | } |
1367 | |
1368 | template <class T> |
1369 | bool |
1370 | Matrix22<T>::equalWithRelError (const Matrix22<T> &m, T e) const |
1371 | { |
1372 | for (int i = 0; i < 2; i++) |
1373 | for (int j = 0; j < 2; j++) |
1374 | if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e)) |
1375 | return false; |
1376 | |
1377 | return true; |
1378 | } |
1379 | |
1380 | template <class T> |
1381 | const Matrix22<T> & |
1382 | Matrix22<T>::operator += (const Matrix22<T> &v) |
1383 | { |
1384 | x[0][0] += v.x[0][0]; |
1385 | x[0][1] += v.x[0][1]; |
1386 | x[1][0] += v.x[1][0]; |
1387 | x[1][1] += v.x[1][1]; |
1388 | |
1389 | return *this; |
1390 | } |
1391 | |
1392 | template <class T> |
1393 | const Matrix22<T> & |
1394 | Matrix22<T>::operator += (T a) |
1395 | { |
1396 | x[0][0] += a; |
1397 | x[0][1] += a; |
1398 | x[1][0] += a; |
1399 | x[1][1] += a; |
1400 | |
1401 | return *this; |
1402 | } |
1403 | |
1404 | template <class T> |
1405 | Matrix22<T> |
1406 | Matrix22<T>::operator + (const Matrix22<T> &v) const |
1407 | { |
1408 | return Matrix22 (x[0][0] + v.x[0][0], |
1409 | x[0][1] + v.x[0][1], |
1410 | x[1][0] + v.x[1][0], |
1411 | x[1][1] + v.x[1][1]); |
1412 | } |
1413 | |
1414 | template <class T> |
1415 | const Matrix22<T> & |
1416 | Matrix22<T>::operator -= (const Matrix22<T> &v) |
1417 | { |
1418 | x[0][0] -= v.x[0][0]; |
1419 | x[0][1] -= v.x[0][1]; |
1420 | x[1][0] -= v.x[1][0]; |
1421 | x[1][1] -= v.x[1][1]; |
1422 | |
1423 | return *this; |
1424 | } |
1425 | |
1426 | template <class T> |
1427 | const Matrix22<T> & |
1428 | Matrix22<T>::operator -= (T a) |
1429 | { |
1430 | x[0][0] -= a; |
1431 | x[0][1] -= a; |
1432 | x[1][0] -= a; |
1433 | x[1][1] -= a; |
1434 | |
1435 | return *this; |
1436 | } |
1437 | |
1438 | template <class T> |
1439 | Matrix22<T> |
1440 | Matrix22<T>::operator - (const Matrix22<T> &v) const |
1441 | { |
1442 | return Matrix22 (x[0][0] - v.x[0][0], |
1443 | x[0][1] - v.x[0][1], |
1444 | x[1][0] - v.x[1][0], |
1445 | x[1][1] - v.x[1][1]); |
1446 | } |
1447 | |
1448 | template <class T> |
1449 | Matrix22<T> |
1450 | Matrix22<T>::operator - () const |
1451 | { |
1452 | return Matrix22 (-x[0][0], |
1453 | -x[0][1], |
1454 | -x[1][0], |
1455 | -x[1][1]); |
1456 | } |
1457 | |
1458 | template <class T> |
1459 | const Matrix22<T> & |
1460 | Matrix22<T>::negate () |
1461 | { |
1462 | x[0][0] = -x[0][0]; |
1463 | x[0][1] = -x[0][1]; |
1464 | x[1][0] = -x[1][0]; |
1465 | x[1][1] = -x[1][1]; |
1466 | |
1467 | return *this; |
1468 | } |
1469 | |
1470 | template <class T> |
1471 | const Matrix22<T> & |
1472 | Matrix22<T>::operator *= (T a) |
1473 | { |
1474 | x[0][0] *= a; |
1475 | x[0][1] *= a; |
1476 | x[1][0] *= a; |
1477 | x[1][1] *= a; |
1478 | |
1479 | return *this; |
1480 | } |
1481 | |
1482 | template <class T> |
1483 | Matrix22<T> |
1484 | Matrix22<T>::operator * (T a) const |
1485 | { |
1486 | return Matrix22 (x[0][0] * a, |
1487 | x[0][1] * a, |
1488 | x[1][0] * a, |
1489 | x[1][1] * a); |
1490 | } |
1491 | |
1492 | template <class T> |
1493 | inline Matrix22<T> |
1494 | operator * (T a, const Matrix22<T> &v) |
1495 | { |
1496 | return v * a; |
1497 | } |
1498 | |
1499 | template <class T> |
1500 | const Matrix22<T> & |
1501 | Matrix22<T>::operator *= (const Matrix22<T> &v) |
1502 | { |
1503 | Matrix22 tmp (T (0)); |
1504 | |
1505 | for (int i = 0; i < 2; i++) |
1506 | for (int j = 0; j < 2; j++) |
1507 | for (int k = 0; k < 2; k++) |
1508 | tmp.x[i][j] += x[i][k] * v.x[k][j]; |
1509 | |
1510 | *this = tmp; |
1511 | return *this; |
1512 | } |
1513 | |
1514 | template <class T> |
1515 | Matrix22<T> |
1516 | Matrix22<T>::operator * (const Matrix22<T> &v) const |
1517 | { |
1518 | Matrix22 tmp (T (0)); |
1519 | |
1520 | for (int i = 0; i < 2; i++) |
1521 | for (int j = 0; j < 2; j++) |
1522 | for (int k = 0; k < 2; k++) |
1523 | tmp.x[i][j] += x[i][k] * v.x[k][j]; |
1524 | |
1525 | return tmp; |
1526 | } |
1527 | |
1528 | template <class T> |
1529 | template <class S> |
1530 | void |
1531 | Matrix22<T>::multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const |
1532 | { |
1533 | S a, b; |
1534 | |
1535 | a = src[0] * x[0][0] + src[1] * x[1][0]; |
1536 | b = src[0] * x[0][1] + src[1] * x[1][1]; |
1537 | |
1538 | dst.x = a; |
1539 | dst.y = b; |
1540 | } |
1541 | |
1542 | template <class T> |
1543 | const Matrix22<T> & |
1544 | Matrix22<T>::operator /= (T a) |
1545 | { |
1546 | x[0][0] /= a; |
1547 | x[0][1] /= a; |
1548 | x[1][0] /= a; |
1549 | x[1][1] /= a; |
1550 | |
1551 | return *this; |
1552 | } |
1553 | |
1554 | template <class T> |
1555 | Matrix22<T> |
1556 | Matrix22<T>::operator / (T a) const |
1557 | { |
1558 | return Matrix22 (x[0][0] / a, |
1559 | x[0][1] / a, |
1560 | x[1][0] / a, |
1561 | x[1][1] / a); |
1562 | } |
1563 | |
1564 | template <class T> |
1565 | const Matrix22<T> & |
1566 | Matrix22<T>::transpose () |
1567 | { |
1568 | Matrix22 tmp (x[0][0], |
1569 | x[1][0], |
1570 | x[0][1], |
1571 | x[1][1]); |
1572 | *this = tmp; |
1573 | return *this; |
1574 | } |
1575 | |
1576 | template <class T> |
1577 | Matrix22<T> |
1578 | Matrix22<T>::transposed () const |
1579 | { |
1580 | return Matrix22 (x[0][0], |
1581 | x[1][0], |
1582 | x[0][1], |
1583 | x[1][1]); |
1584 | } |
1585 | |
1586 | template <class T> |
1587 | const Matrix22<T> & |
1588 | Matrix22<T>::invert (bool singExc) |
1589 | { |
1590 | *this = inverse (singExc); |
1591 | return *this; |
1592 | } |
1593 | |
1594 | template <class T> |
1595 | Matrix22<T> |
1596 | Matrix22<T>::inverse (bool singExc) const |
1597 | { |
1598 | Matrix22 s ( x[1][1], -x[0][1], |
1599 | -x[1][0], x[0][0]); |
1600 | |
1601 | T r = x[0][0] * x[1][1] - x[1][0] * x[0][1]; |
1602 | |
1603 | if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1) |
1604 | { |
1605 | for (int i = 0; i < 2; ++i) |
1606 | { |
1607 | for (int j = 0; j < 2; ++j) |
1608 | { |
1609 | s[i][j] /= r; |
1610 | } |
1611 | } |
1612 | } |
1613 | else |
1614 | { |
1615 | T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest(); |
1616 | |
1617 | for (int i = 0; i < 2; ++i) |
1618 | { |
1619 | for (int j = 0; j < 2; ++j) |
1620 | { |
1621 | if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j])) |
1622 | { |
1623 | s[i][j] /= r; |
1624 | } |
1625 | else |
1626 | { |
1627 | if (singExc) |
1628 | throw SingMatrixExc ("Cannot invert " |
1629 | "singular matrix." ); |
1630 | return Matrix22(); |
1631 | } |
1632 | } |
1633 | } |
1634 | } |
1635 | return s; |
1636 | } |
1637 | |
1638 | template <class T> |
1639 | inline T |
1640 | Matrix22<T>::determinant () const |
1641 | { |
1642 | return x[0][0] * x[1][1] - x[1][0] * x[0][1]; |
1643 | } |
1644 | |
1645 | template <class T> |
1646 | template <class S> |
1647 | const Matrix22<T> & |
1648 | Matrix22<T>::setRotation (S r) |
1649 | { |
1650 | S cos_r, sin_r; |
1651 | |
1652 | cos_r = Math<T>::cos (r); |
1653 | sin_r = Math<T>::sin (r); |
1654 | |
1655 | x[0][0] = cos_r; |
1656 | x[0][1] = sin_r; |
1657 | |
1658 | x[1][0] = -sin_r; |
1659 | x[1][1] = cos_r; |
1660 | |
1661 | return *this; |
1662 | } |
1663 | |
1664 | template <class T> |
1665 | template <class S> |
1666 | const Matrix22<T> & |
1667 | Matrix22<T>::rotate (S r) |
1668 | { |
1669 | *this *= Matrix22<T>().setRotation (r); |
1670 | return *this; |
1671 | } |
1672 | |
1673 | template <class T> |
1674 | const Matrix22<T> & |
1675 | Matrix22<T>::setScale (T s) |
1676 | { |
1677 | x[0][0] = s; |
1678 | x[0][1] = static_cast<T>(0); |
1679 | x[1][0] = static_cast<T>(0); |
1680 | x[1][1] = s; |
1681 | |
1682 | return *this; |
1683 | } |
1684 | |
1685 | template <class T> |
1686 | template <class S> |
1687 | const Matrix22<T> & |
1688 | Matrix22<T>::setScale (const Vec2<S> &s) |
1689 | { |
1690 | x[0][0] = s[0]; |
1691 | x[0][1] = static_cast<T>(0); |
1692 | x[1][0] = static_cast<T>(0); |
1693 | x[1][1] = s[1]; |
1694 | |
1695 | return *this; |
1696 | } |
1697 | |
1698 | template <class T> |
1699 | template <class S> |
1700 | const Matrix22<T> & |
1701 | Matrix22<T>::scale (const Vec2<S> &s) |
1702 | { |
1703 | x[0][0] *= s[0]; |
1704 | x[0][1] *= s[0]; |
1705 | |
1706 | x[1][0] *= s[1]; |
1707 | x[1][1] *= s[1]; |
1708 | |
1709 | return *this; |
1710 | } |
1711 | |
1712 | |
1713 | //--------------------------- |
1714 | // Implementation of Matrix33 |
1715 | //--------------------------- |
1716 | |
1717 | template <class T> |
1718 | inline T * |
1719 | Matrix33<T>::operator [] (int i) |
1720 | { |
1721 | return x[i]; |
1722 | } |
1723 | |
1724 | template <class T> |
1725 | inline const T * |
1726 | Matrix33<T>::operator [] (int i) const |
1727 | { |
1728 | return x[i]; |
1729 | } |
1730 | |
1731 | template <class T> |
1732 | inline |
1733 | Matrix33<T>::Matrix33 () |
1734 | { |
1735 | memset (x, 0, sizeof (x)); |
1736 | x[0][0] = 1; |
1737 | x[1][1] = 1; |
1738 | x[2][2] = 1; |
1739 | } |
1740 | |
1741 | template <class T> |
1742 | inline |
1743 | Matrix33<T>::Matrix33 (T a) |
1744 | { |
1745 | x[0][0] = a; |
1746 | x[0][1] = a; |
1747 | x[0][2] = a; |
1748 | x[1][0] = a; |
1749 | x[1][1] = a; |
1750 | x[1][2] = a; |
1751 | x[2][0] = a; |
1752 | x[2][1] = a; |
1753 | x[2][2] = a; |
1754 | } |
1755 | |
1756 | template <class T> |
1757 | inline |
1758 | Matrix33<T>::Matrix33 (const T a[3][3]) |
1759 | { |
1760 | memcpy (x, a, sizeof (x)); |
1761 | } |
1762 | |
1763 | template <class T> |
1764 | inline |
1765 | Matrix33<T>::Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i) |
1766 | { |
1767 | x[0][0] = a; |
1768 | x[0][1] = b; |
1769 | x[0][2] = c; |
1770 | x[1][0] = d; |
1771 | x[1][1] = e; |
1772 | x[1][2] = f; |
1773 | x[2][0] = g; |
1774 | x[2][1] = h; |
1775 | x[2][2] = i; |
1776 | } |
1777 | |
1778 | template <class T> |
1779 | inline |
1780 | Matrix33<T>::Matrix33 (const Matrix33 &v) |
1781 | { |
1782 | memcpy (x, v.x, sizeof (x)); |
1783 | } |
1784 | |
1785 | template <class T> |
1786 | template <class S> |
1787 | inline |
1788 | Matrix33<T>::Matrix33 (const Matrix33<S> &v) |
1789 | { |
1790 | x[0][0] = T (v.x[0][0]); |
1791 | x[0][1] = T (v.x[0][1]); |
1792 | x[0][2] = T (v.x[0][2]); |
1793 | x[1][0] = T (v.x[1][0]); |
1794 | x[1][1] = T (v.x[1][1]); |
1795 | x[1][2] = T (v.x[1][2]); |
1796 | x[2][0] = T (v.x[2][0]); |
1797 | x[2][1] = T (v.x[2][1]); |
1798 | x[2][2] = T (v.x[2][2]); |
1799 | } |
1800 | |
1801 | template <class T> |
1802 | inline const Matrix33<T> & |
1803 | Matrix33<T>::operator = (const Matrix33 &v) |
1804 | { |
1805 | memcpy (x, v.x, sizeof (x)); |
1806 | return *this; |
1807 | } |
1808 | |
1809 | template <class T> |
1810 | inline const Matrix33<T> & |
1811 | Matrix33<T>::operator = (T a) |
1812 | { |
1813 | x[0][0] = a; |
1814 | x[0][1] = a; |
1815 | x[0][2] = a; |
1816 | x[1][0] = a; |
1817 | x[1][1] = a; |
1818 | x[1][2] = a; |
1819 | x[2][0] = a; |
1820 | x[2][1] = a; |
1821 | x[2][2] = a; |
1822 | return *this; |
1823 | } |
1824 | |
1825 | template <class T> |
1826 | inline T * |
1827 | Matrix33<T>::getValue () |
1828 | { |
1829 | return (T *) &x[0][0]; |
1830 | } |
1831 | |
1832 | template <class T> |
1833 | inline const T * |
1834 | Matrix33<T>::getValue () const |
1835 | { |
1836 | return (const T *) &x[0][0]; |
1837 | } |
1838 | |
1839 | template <class T> |
1840 | template <class S> |
1841 | inline void |
1842 | Matrix33<T>::getValue (Matrix33<S> &v) const |
1843 | { |
1844 | if (isSameType<S,T>::value) |
1845 | { |
1846 | memcpy (v.x, x, sizeof (x)); |
1847 | } |
1848 | else |
1849 | { |
1850 | v.x[0][0] = x[0][0]; |
1851 | v.x[0][1] = x[0][1]; |
1852 | v.x[0][2] = x[0][2]; |
1853 | v.x[1][0] = x[1][0]; |
1854 | v.x[1][1] = x[1][1]; |
1855 | v.x[1][2] = x[1][2]; |
1856 | v.x[2][0] = x[2][0]; |
1857 | v.x[2][1] = x[2][1]; |
1858 | v.x[2][2] = x[2][2]; |
1859 | } |
1860 | } |
1861 | |
1862 | template <class T> |
1863 | template <class S> |
1864 | inline Matrix33<T> & |
1865 | Matrix33<T>::setValue (const Matrix33<S> &v) |
1866 | { |
1867 | if (isSameType<S,T>::value) |
1868 | { |
1869 | memcpy (x, v.x, sizeof (x)); |
1870 | } |
1871 | else |
1872 | { |
1873 | x[0][0] = v.x[0][0]; |
1874 | x[0][1] = v.x[0][1]; |
1875 | x[0][2] = v.x[0][2]; |
1876 | x[1][0] = v.x[1][0]; |
1877 | x[1][1] = v.x[1][1]; |
1878 | x[1][2] = v.x[1][2]; |
1879 | x[2][0] = v.x[2][0]; |
1880 | x[2][1] = v.x[2][1]; |
1881 | x[2][2] = v.x[2][2]; |
1882 | } |
1883 | |
1884 | return *this; |
1885 | } |
1886 | |
1887 | template <class T> |
1888 | template <class S> |
1889 | inline Matrix33<T> & |
1890 | Matrix33<T>::setTheMatrix (const Matrix33<S> &v) |
1891 | { |
1892 | if (isSameType<S,T>::value) |
1893 | { |
1894 | memcpy (x, v.x, sizeof (x)); |
1895 | } |
1896 | else |
1897 | { |
1898 | x[0][0] = v.x[0][0]; |
1899 | x[0][1] = v.x[0][1]; |
1900 | x[0][2] = v.x[0][2]; |
1901 | x[1][0] = v.x[1][0]; |
1902 | x[1][1] = v.x[1][1]; |
1903 | x[1][2] = v.x[1][2]; |
1904 | x[2][0] = v.x[2][0]; |
1905 | x[2][1] = v.x[2][1]; |
1906 | x[2][2] = v.x[2][2]; |
1907 | } |
1908 | |
1909 | return *this; |
1910 | } |
1911 | |
1912 | template <class T> |
1913 | inline void |
1914 | Matrix33<T>::makeIdentity() |
1915 | { |
1916 | memset (x, 0, sizeof (x)); |
1917 | x[0][0] = 1; |
1918 | x[1][1] = 1; |
1919 | x[2][2] = 1; |
1920 | } |
1921 | |
1922 | template <class T> |
1923 | bool |
1924 | Matrix33<T>::operator == (const Matrix33 &v) const |
1925 | { |
1926 | return x[0][0] == v.x[0][0] && |
1927 | x[0][1] == v.x[0][1] && |
1928 | x[0][2] == v.x[0][2] && |
1929 | x[1][0] == v.x[1][0] && |
1930 | x[1][1] == v.x[1][1] && |
1931 | x[1][2] == v.x[1][2] && |
1932 | x[2][0] == v.x[2][0] && |
1933 | x[2][1] == v.x[2][1] && |
1934 | x[2][2] == v.x[2][2]; |
1935 | } |
1936 | |
1937 | template <class T> |
1938 | bool |
1939 | Matrix33<T>::operator != (const Matrix33 &v) const |
1940 | { |
1941 | return x[0][0] != v.x[0][0] || |
1942 | x[0][1] != v.x[0][1] || |
1943 | x[0][2] != v.x[0][2] || |
1944 | x[1][0] != v.x[1][0] || |
1945 | x[1][1] != v.x[1][1] || |
1946 | x[1][2] != v.x[1][2] || |
1947 | x[2][0] != v.x[2][0] || |
1948 | x[2][1] != v.x[2][1] || |
1949 | x[2][2] != v.x[2][2]; |
1950 | } |
1951 | |
1952 | template <class T> |
1953 | bool |
1954 | Matrix33<T>::equalWithAbsError (const Matrix33<T> &m, T e) const |
1955 | { |
1956 | for (int i = 0; i < 3; i++) |
1957 | for (int j = 0; j < 3; j++) |
1958 | if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e)) |
1959 | return false; |
1960 | |
1961 | return true; |
1962 | } |
1963 | |
1964 | template <class T> |
1965 | bool |
1966 | Matrix33<T>::equalWithRelError (const Matrix33<T> &m, T e) const |
1967 | { |
1968 | for (int i = 0; i < 3; i++) |
1969 | for (int j = 0; j < 3; j++) |
1970 | if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e)) |
1971 | return false; |
1972 | |
1973 | return true; |
1974 | } |
1975 | |
1976 | template <class T> |
1977 | const Matrix33<T> & |
1978 | Matrix33<T>::operator += (const Matrix33<T> &v) |
1979 | { |
1980 | x[0][0] += v.x[0][0]; |
1981 | x[0][1] += v.x[0][1]; |
1982 | x[0][2] += v.x[0][2]; |
1983 | x[1][0] += v.x[1][0]; |
1984 | x[1][1] += v.x[1][1]; |
1985 | x[1][2] += v.x[1][2]; |
1986 | x[2][0] += v.x[2][0]; |
1987 | x[2][1] += v.x[2][1]; |
1988 | x[2][2] += v.x[2][2]; |
1989 | |
1990 | return *this; |
1991 | } |
1992 | |
1993 | template <class T> |
1994 | const Matrix33<T> & |
1995 | Matrix33<T>::operator += (T a) |
1996 | { |
1997 | x[0][0] += a; |
1998 | x[0][1] += a; |
1999 | x[0][2] += a; |
2000 | x[1][0] += a; |
2001 | x[1][1] += a; |
2002 | x[1][2] += a; |
2003 | x[2][0] += a; |
2004 | x[2][1] += a; |
2005 | x[2][2] += a; |
2006 | |
2007 | return *this; |
2008 | } |
2009 | |
2010 | template <class T> |
2011 | Matrix33<T> |
2012 | Matrix33<T>::operator + (const Matrix33<T> &v) const |
2013 | { |
2014 | return Matrix33 (x[0][0] + v.x[0][0], |
2015 | x[0][1] + v.x[0][1], |
2016 | x[0][2] + v.x[0][2], |
2017 | x[1][0] + v.x[1][0], |
2018 | x[1][1] + v.x[1][1], |
2019 | x[1][2] + v.x[1][2], |
2020 | x[2][0] + v.x[2][0], |
2021 | x[2][1] + v.x[2][1], |
2022 | x[2][2] + v.x[2][2]); |
2023 | } |
2024 | |
2025 | template <class T> |
2026 | const Matrix33<T> & |
2027 | Matrix33<T>::operator -= (const Matrix33<T> &v) |
2028 | { |
2029 | x[0][0] -= v.x[0][0]; |
2030 | x[0][1] -= v.x[0][1]; |
2031 | x[0][2] -= v.x[0][2]; |
2032 | x[1][0] -= v.x[1][0]; |
2033 | x[1][1] -= v.x[1][1]; |
2034 | x[1][2] -= v.x[1][2]; |
2035 | x[2][0] -= v.x[2][0]; |
2036 | x[2][1] -= v.x[2][1]; |
2037 | x[2][2] -= v.x[2][2]; |
2038 | |
2039 | return *this; |
2040 | } |
2041 | |
2042 | template <class T> |
2043 | const Matrix33<T> & |
2044 | Matrix33<T>::operator -= (T a) |
2045 | { |
2046 | x[0][0] -= a; |
2047 | x[0][1] -= a; |
2048 | x[0][2] -= a; |
2049 | x[1][0] -= a; |
2050 | x[1][1] -= a; |
2051 | x[1][2] -= a; |
2052 | x[2][0] -= a; |
2053 | x[2][1] -= a; |
2054 | x[2][2] -= a; |
2055 | |
2056 | return *this; |
2057 | } |
2058 | |
2059 | template <class T> |
2060 | Matrix33<T> |
2061 | Matrix33<T>::operator - (const Matrix33<T> &v) const |
2062 | { |
2063 | return Matrix33 (x[0][0] - v.x[0][0], |
2064 | x[0][1] - v.x[0][1], |
2065 | x[0][2] - v.x[0][2], |
2066 | x[1][0] - v.x[1][0], |
2067 | x[1][1] - v.x[1][1], |
2068 | x[1][2] - v.x[1][2], |
2069 | x[2][0] - v.x[2][0], |
2070 | x[2][1] - v.x[2][1], |
2071 | x[2][2] - v.x[2][2]); |
2072 | } |
2073 | |
2074 | template <class T> |
2075 | Matrix33<T> |
2076 | Matrix33<T>::operator - () const |
2077 | { |
2078 | return Matrix33 (-x[0][0], |
2079 | -x[0][1], |
2080 | -x[0][2], |
2081 | -x[1][0], |
2082 | -x[1][1], |
2083 | -x[1][2], |
2084 | -x[2][0], |
2085 | -x[2][1], |
2086 | -x[2][2]); |
2087 | } |
2088 | |
2089 | template <class T> |
2090 | const Matrix33<T> & |
2091 | Matrix33<T>::negate () |
2092 | { |
2093 | x[0][0] = -x[0][0]; |
2094 | x[0][1] = -x[0][1]; |
2095 | x[0][2] = -x[0][2]; |
2096 | x[1][0] = -x[1][0]; |
2097 | x[1][1] = -x[1][1]; |
2098 | x[1][2] = -x[1][2]; |
2099 | x[2][0] = -x[2][0]; |
2100 | x[2][1] = -x[2][1]; |
2101 | x[2][2] = -x[2][2]; |
2102 | |
2103 | return *this; |
2104 | } |
2105 | |
2106 | template <class T> |
2107 | const Matrix33<T> & |
2108 | Matrix33<T>::operator *= (T a) |
2109 | { |
2110 | x[0][0] *= a; |
2111 | x[0][1] *= a; |
2112 | x[0][2] *= a; |
2113 | x[1][0] *= a; |
2114 | x[1][1] *= a; |
2115 | x[1][2] *= a; |
2116 | x[2][0] *= a; |
2117 | x[2][1] *= a; |
2118 | x[2][2] *= a; |
2119 | |
2120 | return *this; |
2121 | } |
2122 | |
2123 | template <class T> |
2124 | Matrix33<T> |
2125 | Matrix33<T>::operator * (T a) const |
2126 | { |
2127 | return Matrix33 (x[0][0] * a, |
2128 | x[0][1] * a, |
2129 | x[0][2] * a, |
2130 | x[1][0] * a, |
2131 | x[1][1] * a, |
2132 | x[1][2] * a, |
2133 | x[2][0] * a, |
2134 | x[2][1] * a, |
2135 | x[2][2] * a); |
2136 | } |
2137 | |
2138 | template <class T> |
2139 | inline Matrix33<T> |
2140 | operator * (T a, const Matrix33<T> &v) |
2141 | { |
2142 | return v * a; |
2143 | } |
2144 | |
2145 | template <class T> |
2146 | const Matrix33<T> & |
2147 | Matrix33<T>::operator *= (const Matrix33<T> &v) |
2148 | { |
2149 | Matrix33 tmp (T (0)); |
2150 | |
2151 | for (int i = 0; i < 3; i++) |
2152 | for (int j = 0; j < 3; j++) |
2153 | for (int k = 0; k < 3; k++) |
2154 | tmp.x[i][j] += x[i][k] * v.x[k][j]; |
2155 | |
2156 | *this = tmp; |
2157 | return *this; |
2158 | } |
2159 | |
2160 | template <class T> |
2161 | Matrix33<T> |
2162 | Matrix33<T>::operator * (const Matrix33<T> &v) const |
2163 | { |
2164 | Matrix33 tmp (T (0)); |
2165 | |
2166 | for (int i = 0; i < 3; i++) |
2167 | for (int j = 0; j < 3; j++) |
2168 | for (int k = 0; k < 3; k++) |
2169 | tmp.x[i][j] += x[i][k] * v.x[k][j]; |
2170 | |
2171 | return tmp; |
2172 | } |
2173 | |
2174 | template <class T> |
2175 | template <class S> |
2176 | void |
2177 | Matrix33<T>::multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const |
2178 | { |
2179 | S a, b, w; |
2180 | |
2181 | a = src[0] * x[0][0] + src[1] * x[1][0] + x[2][0]; |
2182 | b = src[0] * x[0][1] + src[1] * x[1][1] + x[2][1]; |
2183 | w = src[0] * x[0][2] + src[1] * x[1][2] + x[2][2]; |
2184 | |
2185 | dst.x = a / w; |
2186 | dst.y = b / w; |
2187 | } |
2188 | |
2189 | template <class T> |
2190 | template <class S> |
2191 | void |
2192 | Matrix33<T>::multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const |
2193 | { |
2194 | S a, b; |
2195 | |
2196 | a = src[0] * x[0][0] + src[1] * x[1][0]; |
2197 | b = src[0] * x[0][1] + src[1] * x[1][1]; |
2198 | |
2199 | dst.x = a; |
2200 | dst.y = b; |
2201 | } |
2202 | |
2203 | template <class T> |
2204 | const Matrix33<T> & |
2205 | Matrix33<T>::operator /= (T a) |
2206 | { |
2207 | x[0][0] /= a; |
2208 | x[0][1] /= a; |
2209 | x[0][2] /= a; |
2210 | x[1][0] /= a; |
2211 | x[1][1] /= a; |
2212 | x[1][2] /= a; |
2213 | x[2][0] /= a; |
2214 | x[2][1] /= a; |
2215 | x[2][2] /= a; |
2216 | |
2217 | return *this; |
2218 | } |
2219 | |
2220 | template <class T> |
2221 | Matrix33<T> |
2222 | Matrix33<T>::operator / (T a) const |
2223 | { |
2224 | return Matrix33 (x[0][0] / a, |
2225 | x[0][1] / a, |
2226 | x[0][2] / a, |
2227 | x[1][0] / a, |
2228 | x[1][1] / a, |
2229 | x[1][2] / a, |
2230 | x[2][0] / a, |
2231 | x[2][1] / a, |
2232 | x[2][2] / a); |
2233 | } |
2234 | |
2235 | template <class T> |
2236 | const Matrix33<T> & |
2237 | Matrix33<T>::transpose () |
2238 | { |
2239 | Matrix33 tmp (x[0][0], |
2240 | x[1][0], |
2241 | x[2][0], |
2242 | x[0][1], |
2243 | x[1][1], |
2244 | x[2][1], |
2245 | x[0][2], |
2246 | x[1][2], |
2247 | x[2][2]); |
2248 | *this = tmp; |
2249 | return *this; |
2250 | } |
2251 | |
2252 | template <class T> |
2253 | Matrix33<T> |
2254 | Matrix33<T>::transposed () const |
2255 | { |
2256 | return Matrix33 (x[0][0], |
2257 | x[1][0], |
2258 | x[2][0], |
2259 | x[0][1], |
2260 | x[1][1], |
2261 | x[2][1], |
2262 | x[0][2], |
2263 | x[1][2], |
2264 | x[2][2]); |
2265 | } |
2266 | |
2267 | template <class T> |
2268 | const Matrix33<T> & |
2269 | Matrix33<T>::gjInvert (bool singExc) |
2270 | { |
2271 | *this = gjInverse (singExc); |
2272 | return *this; |
2273 | } |
2274 | |
2275 | template <class T> |
2276 | Matrix33<T> |
2277 | Matrix33<T>::gjInverse (bool singExc) const |
2278 | { |
2279 | int i, j, k; |
2280 | Matrix33 s; |
2281 | Matrix33 t (*this); |
2282 | |
2283 | // Forward elimination |
2284 | |
2285 | for (i = 0; i < 2 ; i++) |
2286 | { |
2287 | int pivot = i; |
2288 | |
2289 | T pivotsize = t[i][i]; |
2290 | |
2291 | if (pivotsize < 0) |
2292 | pivotsize = -pivotsize; |
2293 | |
2294 | for (j = i + 1; j < 3; j++) |
2295 | { |
2296 | T tmp = t[j][i]; |
2297 | |
2298 | if (tmp < 0) |
2299 | tmp = -tmp; |
2300 | |
2301 | if (tmp > pivotsize) |
2302 | { |
2303 | pivot = j; |
2304 | pivotsize = tmp; |
2305 | } |
2306 | } |
2307 | |
2308 | if (pivotsize == 0) |
2309 | { |
2310 | if (singExc) |
2311 | throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix." ); |
2312 | |
2313 | return Matrix33(); |
2314 | } |
2315 | |
2316 | if (pivot != i) |
2317 | { |
2318 | for (j = 0; j < 3; j++) |
2319 | { |
2320 | T tmp; |
2321 | |
2322 | tmp = t[i][j]; |
2323 | t[i][j] = t[pivot][j]; |
2324 | t[pivot][j] = tmp; |
2325 | |
2326 | tmp = s[i][j]; |
2327 | s[i][j] = s[pivot][j]; |
2328 | s[pivot][j] = tmp; |
2329 | } |
2330 | } |
2331 | |
2332 | for (j = i + 1; j < 3; j++) |
2333 | { |
2334 | T f = t[j][i] / t[i][i]; |
2335 | |
2336 | for (k = 0; k < 3; k++) |
2337 | { |
2338 | t[j][k] -= f * t[i][k]; |
2339 | s[j][k] -= f * s[i][k]; |
2340 | } |
2341 | } |
2342 | } |
2343 | |
2344 | // Backward substitution |
2345 | |
2346 | for (i = 2; i >= 0; --i) |
2347 | { |
2348 | T f; |
2349 | |
2350 | if ((f = t[i][i]) == 0) |
2351 | { |
2352 | if (singExc) |
2353 | throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix." ); |
2354 | |
2355 | return Matrix33(); |
2356 | } |
2357 | |
2358 | for (j = 0; j < 3; j++) |
2359 | { |
2360 | t[i][j] /= f; |
2361 | s[i][j] /= f; |
2362 | } |
2363 | |
2364 | for (j = 0; j < i; j++) |
2365 | { |
2366 | f = t[j][i]; |
2367 | |
2368 | for (k = 0; k < 3; k++) |
2369 | { |
2370 | t[j][k] -= f * t[i][k]; |
2371 | s[j][k] -= f * s[i][k]; |
2372 | } |
2373 | } |
2374 | } |
2375 | |
2376 | return s; |
2377 | } |
2378 | |
2379 | template <class T> |
2380 | const Matrix33<T> & |
2381 | Matrix33<T>::invert (bool singExc) |
2382 | { |
2383 | *this = inverse (singExc); |
2384 | return *this; |
2385 | } |
2386 | |
2387 | template <class T> |
2388 | Matrix33<T> |
2389 | Matrix33<T>::inverse (bool singExc) const |
2390 | { |
2391 | if (x[0][2] != 0 || x[1][2] != 0 || x[2][2] != 1) |
2392 | { |
2393 | Matrix33 s (x[1][1] * x[2][2] - x[2][1] * x[1][2], |
2394 | x[2][1] * x[0][2] - x[0][1] * x[2][2], |
2395 | x[0][1] * x[1][2] - x[1][1] * x[0][2], |
2396 | |
2397 | x[2][0] * x[1][2] - x[1][0] * x[2][2], |
2398 | x[0][0] * x[2][2] - x[2][0] * x[0][2], |
2399 | x[1][0] * x[0][2] - x[0][0] * x[1][2], |
2400 | |
2401 | x[1][0] * x[2][1] - x[2][0] * x[1][1], |
2402 | x[2][0] * x[0][1] - x[0][0] * x[2][1], |
2403 | x[0][0] * x[1][1] - x[1][0] * x[0][1]); |
2404 | |
2405 | T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0]; |
2406 | |
2407 | if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1) |
2408 | { |
2409 | for (int i = 0; i < 3; ++i) |
2410 | { |
2411 | for (int j = 0; j < 3; ++j) |
2412 | { |
2413 | s[i][j] /= r; |
2414 | } |
2415 | } |
2416 | } |
2417 | else |
2418 | { |
2419 | T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest(); |
2420 | |
2421 | for (int i = 0; i < 3; ++i) |
2422 | { |
2423 | for (int j = 0; j < 3; ++j) |
2424 | { |
2425 | if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j])) |
2426 | { |
2427 | s[i][j] /= r; |
2428 | } |
2429 | else |
2430 | { |
2431 | if (singExc) |
2432 | throw SingMatrixExc ("Cannot invert " |
2433 | "singular matrix." ); |
2434 | return Matrix33(); |
2435 | } |
2436 | } |
2437 | } |
2438 | } |
2439 | |
2440 | return s; |
2441 | } |
2442 | else |
2443 | { |
2444 | Matrix33 s ( x[1][1], |
2445 | -x[0][1], |
2446 | 0, |
2447 | |
2448 | -x[1][0], |
2449 | x[0][0], |
2450 | 0, |
2451 | |
2452 | 0, |
2453 | 0, |
2454 | 1); |
2455 | |
2456 | T r = x[0][0] * x[1][1] - x[1][0] * x[0][1]; |
2457 | |
2458 | if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1) |
2459 | { |
2460 | for (int i = 0; i < 2; ++i) |
2461 | { |
2462 | for (int j = 0; j < 2; ++j) |
2463 | { |
2464 | s[i][j] /= r; |
2465 | } |
2466 | } |
2467 | } |
2468 | else |
2469 | { |
2470 | T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest(); |
2471 | |
2472 | for (int i = 0; i < 2; ++i) |
2473 | { |
2474 | for (int j = 0; j < 2; ++j) |
2475 | { |
2476 | if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j])) |
2477 | { |
2478 | s[i][j] /= r; |
2479 | } |
2480 | else |
2481 | { |
2482 | if (singExc) |
2483 | throw SingMatrixExc ("Cannot invert " |
2484 | "singular matrix." ); |
2485 | return Matrix33(); |
2486 | } |
2487 | } |
2488 | } |
2489 | } |
2490 | |
2491 | s[2][0] = -x[2][0] * s[0][0] - x[2][1] * s[1][0]; |
2492 | s[2][1] = -x[2][0] * s[0][1] - x[2][1] * s[1][1]; |
2493 | |
2494 | return s; |
2495 | } |
2496 | } |
2497 | |
2498 | template <class T> |
2499 | inline T |
2500 | Matrix33<T>::minorOf (const int r, const int c) const |
2501 | { |
2502 | int r0 = 0 + (r < 1 ? 1 : 0); |
2503 | int r1 = 1 + (r < 2 ? 1 : 0); |
2504 | int c0 = 0 + (c < 1 ? 1 : 0); |
2505 | int c1 = 1 + (c < 2 ? 1 : 0); |
2506 | |
2507 | return x[r0][c0]*x[r1][c1] - x[r1][c0]*x[r0][c1]; |
2508 | } |
2509 | |
2510 | template <class T> |
2511 | inline T |
2512 | Matrix33<T>::fastMinor( const int r0, const int r1, |
2513 | const int c0, const int c1) const |
2514 | { |
2515 | return x[r0][c0]*x[r1][c1] - x[r0][c1]*x[r1][c0]; |
2516 | } |
2517 | |
2518 | template <class T> |
2519 | inline T |
2520 | Matrix33<T>::determinant () const |
2521 | { |
2522 | return x[0][0]*(x[1][1]*x[2][2] - x[1][2]*x[2][1]) + |
2523 | x[0][1]*(x[1][2]*x[2][0] - x[1][0]*x[2][2]) + |
2524 | x[0][2]*(x[1][0]*x[2][1] - x[1][1]*x[2][0]); |
2525 | } |
2526 | |
2527 | template <class T> |
2528 | template <class S> |
2529 | const Matrix33<T> & |
2530 | Matrix33<T>::setRotation (S r) |
2531 | { |
2532 | S cos_r, sin_r; |
2533 | |
2534 | cos_r = Math<T>::cos (r); |
2535 | sin_r = Math<T>::sin (r); |
2536 | |
2537 | x[0][0] = cos_r; |
2538 | x[0][1] = sin_r; |
2539 | x[0][2] = 0; |
2540 | |
2541 | x[1][0] = -sin_r; |
2542 | x[1][1] = cos_r; |
2543 | x[1][2] = 0; |
2544 | |
2545 | x[2][0] = 0; |
2546 | x[2][1] = 0; |
2547 | x[2][2] = 1; |
2548 | |
2549 | return *this; |
2550 | } |
2551 | |
2552 | template <class T> |
2553 | template <class S> |
2554 | const Matrix33<T> & |
2555 | Matrix33<T>::rotate (S r) |
2556 | { |
2557 | *this *= Matrix33<T>().setRotation (r); |
2558 | return *this; |
2559 | } |
2560 | |
2561 | template <class T> |
2562 | const Matrix33<T> & |
2563 | Matrix33<T>::setScale (T s) |
2564 | { |
2565 | memset (x, 0, sizeof (x)); |
2566 | x[0][0] = s; |
2567 | x[1][1] = s; |
2568 | x[2][2] = 1; |
2569 | |
2570 | return *this; |
2571 | } |
2572 | |
2573 | template <class T> |
2574 | template <class S> |
2575 | const Matrix33<T> & |
2576 | Matrix33<T>::setScale (const Vec2<S> &s) |
2577 | { |
2578 | memset (x, 0, sizeof (x)); |
2579 | x[0][0] = s[0]; |
2580 | x[1][1] = s[1]; |
2581 | x[2][2] = 1; |
2582 | |
2583 | return *this; |
2584 | } |
2585 | |
2586 | template <class T> |
2587 | template <class S> |
2588 | const Matrix33<T> & |
2589 | Matrix33<T>::scale (const Vec2<S> &s) |
2590 | { |
2591 | x[0][0] *= s[0]; |
2592 | x[0][1] *= s[0]; |
2593 | x[0][2] *= s[0]; |
2594 | |
2595 | x[1][0] *= s[1]; |
2596 | x[1][1] *= s[1]; |
2597 | x[1][2] *= s[1]; |
2598 | |
2599 | return *this; |
2600 | } |
2601 | |
2602 | template <class T> |
2603 | template <class S> |
2604 | const Matrix33<T> & |
2605 | Matrix33<T>::setTranslation (const Vec2<S> &t) |
2606 | { |
2607 | x[0][0] = 1; |
2608 | x[0][1] = 0; |
2609 | x[0][2] = 0; |
2610 | |
2611 | x[1][0] = 0; |
2612 | x[1][1] = 1; |
2613 | x[1][2] = 0; |
2614 | |
2615 | x[2][0] = t[0]; |
2616 | x[2][1] = t[1]; |
2617 | x[2][2] = 1; |
2618 | |
2619 | return *this; |
2620 | } |
2621 | |
2622 | template <class T> |
2623 | inline Vec2<T> |
2624 | Matrix33<T>::translation () const |
2625 | { |
2626 | return Vec2<T> (x[2][0], x[2][1]); |
2627 | } |
2628 | |
2629 | template <class T> |
2630 | template <class S> |
2631 | const Matrix33<T> & |
2632 | Matrix33<T>::translate (const Vec2<S> &t) |
2633 | { |
2634 | x[2][0] += t[0] * x[0][0] + t[1] * x[1][0]; |
2635 | x[2][1] += t[0] * x[0][1] + t[1] * x[1][1]; |
2636 | x[2][2] += t[0] * x[0][2] + t[1] * x[1][2]; |
2637 | |
2638 | return *this; |
2639 | } |
2640 | |
2641 | template <class T> |
2642 | template <class S> |
2643 | const Matrix33<T> & |
2644 | Matrix33<T>::setShear (const S &xy) |
2645 | { |
2646 | x[0][0] = 1; |
2647 | x[0][1] = 0; |
2648 | x[0][2] = 0; |
2649 | |
2650 | x[1][0] = xy; |
2651 | x[1][1] = 1; |
2652 | x[1][2] = 0; |
2653 | |
2654 | x[2][0] = 0; |
2655 | x[2][1] = 0; |
2656 | x[2][2] = 1; |
2657 | |
2658 | return *this; |
2659 | } |
2660 | |
2661 | template <class T> |
2662 | template <class S> |
2663 | const Matrix33<T> & |
2664 | Matrix33<T>::setShear (const Vec2<S> &h) |
2665 | { |
2666 | x[0][0] = 1; |
2667 | x[0][1] = h[1]; |
2668 | x[0][2] = 0; |
2669 | |
2670 | x[1][0] = h[0]; |
2671 | x[1][1] = 1; |
2672 | x[1][2] = 0; |
2673 | |
2674 | x[2][0] = 0; |
2675 | x[2][1] = 0; |
2676 | x[2][2] = 1; |
2677 | |
2678 | return *this; |
2679 | } |
2680 | |
2681 | template <class T> |
2682 | template <class S> |
2683 | const Matrix33<T> & |
2684 | Matrix33<T>::shear (const S &xy) |
2685 | { |
2686 | // |
2687 | // In this case, we don't need a temp. copy of the matrix |
2688 | // because we never use a value on the RHS after we've |
2689 | // changed it on the LHS. |
2690 | // |
2691 | |
2692 | x[1][0] += xy * x[0][0]; |
2693 | x[1][1] += xy * x[0][1]; |
2694 | x[1][2] += xy * x[0][2]; |
2695 | |
2696 | return *this; |
2697 | } |
2698 | |
2699 | template <class T> |
2700 | template <class S> |
2701 | const Matrix33<T> & |
2702 | Matrix33<T>::shear (const Vec2<S> &h) |
2703 | { |
2704 | Matrix33<T> P (*this); |
2705 | |
2706 | x[0][0] = P[0][0] + h[1] * P[1][0]; |
2707 | x[0][1] = P[0][1] + h[1] * P[1][1]; |
2708 | x[0][2] = P[0][2] + h[1] * P[1][2]; |
2709 | |
2710 | x[1][0] = P[1][0] + h[0] * P[0][0]; |
2711 | x[1][1] = P[1][1] + h[0] * P[0][1]; |
2712 | x[1][2] = P[1][2] + h[0] * P[0][2]; |
2713 | |
2714 | return *this; |
2715 | } |
2716 | |
2717 | |
2718 | //--------------------------- |
2719 | // Implementation of Matrix44 |
2720 | //--------------------------- |
2721 | |
2722 | template <class T> |
2723 | inline T * |
2724 | Matrix44<T>::operator [] (int i) |
2725 | { |
2726 | return x[i]; |
2727 | } |
2728 | |
2729 | template <class T> |
2730 | inline const T * |
2731 | Matrix44<T>::operator [] (int i) const |
2732 | { |
2733 | return x[i]; |
2734 | } |
2735 | |
2736 | template <class T> |
2737 | inline |
2738 | Matrix44<T>::Matrix44 () |
2739 | { |
2740 | memset (x, 0, sizeof (x)); |
2741 | x[0][0] = 1; |
2742 | x[1][1] = 1; |
2743 | x[2][2] = 1; |
2744 | x[3][3] = 1; |
2745 | } |
2746 | |
2747 | template <class T> |
2748 | inline |
2749 | Matrix44<T>::Matrix44 (T a) |
2750 | { |
2751 | x[0][0] = a; |
2752 | x[0][1] = a; |
2753 | x[0][2] = a; |
2754 | x[0][3] = a; |
2755 | x[1][0] = a; |
2756 | x[1][1] = a; |
2757 | x[1][2] = a; |
2758 | x[1][3] = a; |
2759 | x[2][0] = a; |
2760 | x[2][1] = a; |
2761 | x[2][2] = a; |
2762 | x[2][3] = a; |
2763 | x[3][0] = a; |
2764 | x[3][1] = a; |
2765 | x[3][2] = a; |
2766 | x[3][3] = a; |
2767 | } |
2768 | |
2769 | template <class T> |
2770 | inline |
2771 | Matrix44<T>::Matrix44 (const T a[4][4]) |
2772 | { |
2773 | memcpy (x, a, sizeof (x)); |
2774 | } |
2775 | |
2776 | template <class T> |
2777 | inline |
2778 | Matrix44<T>::Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h, |
2779 | T i, T j, T k, T l, T m, T n, T o, T p) |
2780 | { |
2781 | x[0][0] = a; |
2782 | x[0][1] = b; |
2783 | x[0][2] = c; |
2784 | x[0][3] = d; |
2785 | x[1][0] = e; |
2786 | x[1][1] = f; |
2787 | x[1][2] = g; |
2788 | x[1][3] = h; |
2789 | x[2][0] = i; |
2790 | x[2][1] = j; |
2791 | x[2][2] = k; |
2792 | x[2][3] = l; |
2793 | x[3][0] = m; |
2794 | x[3][1] = n; |
2795 | x[3][2] = o; |
2796 | x[3][3] = p; |
2797 | } |
2798 | |
2799 | |
2800 | template <class T> |
2801 | inline |
2802 | Matrix44<T>::Matrix44 (Matrix33<T> r, Vec3<T> t) |
2803 | { |
2804 | x[0][0] = r[0][0]; |
2805 | x[0][1] = r[0][1]; |
2806 | x[0][2] = r[0][2]; |
2807 | x[0][3] = 0; |
2808 | x[1][0] = r[1][0]; |
2809 | x[1][1] = r[1][1]; |
2810 | x[1][2] = r[1][2]; |
2811 | x[1][3] = 0; |
2812 | x[2][0] = r[2][0]; |
2813 | x[2][1] = r[2][1]; |
2814 | x[2][2] = r[2][2]; |
2815 | x[2][3] = 0; |
2816 | x[3][0] = t[0]; |
2817 | x[3][1] = t[1]; |
2818 | x[3][2] = t[2]; |
2819 | x[3][3] = 1; |
2820 | } |
2821 | |
2822 | template <class T> |
2823 | inline |
2824 | Matrix44<T>::Matrix44 (const Matrix44 &v) |
2825 | { |
2826 | x[0][0] = v.x[0][0]; |
2827 | x[0][1] = v.x[0][1]; |
2828 | x[0][2] = v.x[0][2]; |
2829 | x[0][3] = v.x[0][3]; |
2830 | x[1][0] = v.x[1][0]; |
2831 | x[1][1] = v.x[1][1]; |
2832 | x[1][2] = v.x[1][2]; |
2833 | x[1][3] = v.x[1][3]; |
2834 | x[2][0] = v.x[2][0]; |
2835 | x[2][1] = v.x[2][1]; |
2836 | x[2][2] = v.x[2][2]; |
2837 | x[2][3] = v.x[2][3]; |
2838 | x[3][0] = v.x[3][0]; |
2839 | x[3][1] = v.x[3][1]; |
2840 | x[3][2] = v.x[3][2]; |
2841 | x[3][3] = v.x[3][3]; |
2842 | } |
2843 | |
2844 | template <class T> |
2845 | template <class S> |
2846 | inline |
2847 | Matrix44<T>::Matrix44 (const Matrix44<S> &v) |
2848 | { |
2849 | x[0][0] = T (v.x[0][0]); |
2850 | x[0][1] = T (v.x[0][1]); |
2851 | x[0][2] = T (v.x[0][2]); |
2852 | x[0][3] = T (v.x[0][3]); |
2853 | x[1][0] = T (v.x[1][0]); |
2854 | x[1][1] = T (v.x[1][1]); |
2855 | x[1][2] = T (v.x[1][2]); |
2856 | x[1][3] = T (v.x[1][3]); |
2857 | x[2][0] = T (v.x[2][0]); |
2858 | x[2][1] = T (v.x[2][1]); |
2859 | x[2][2] = T (v.x[2][2]); |
2860 | x[2][3] = T (v.x[2][3]); |
2861 | x[3][0] = T (v.x[3][0]); |
2862 | x[3][1] = T (v.x[3][1]); |
2863 | x[3][2] = T (v.x[3][2]); |
2864 | x[3][3] = T (v.x[3][3]); |
2865 | } |
2866 | |
2867 | template <class T> |
2868 | inline const Matrix44<T> & |
2869 | Matrix44<T>::operator = (const Matrix44 &v) |
2870 | { |
2871 | x[0][0] = v.x[0][0]; |
2872 | x[0][1] = v.x[0][1]; |
2873 | x[0][2] = v.x[0][2]; |
2874 | x[0][3] = v.x[0][3]; |
2875 | x[1][0] = v.x[1][0]; |
2876 | x[1][1] = v.x[1][1]; |
2877 | x[1][2] = v.x[1][2]; |
2878 | x[1][3] = v.x[1][3]; |
2879 | x[2][0] = v.x[2][0]; |
2880 | x[2][1] = v.x[2][1]; |
2881 | x[2][2] = v.x[2][2]; |
2882 | x[2][3] = v.x[2][3]; |
2883 | x[3][0] = v.x[3][0]; |
2884 | x[3][1] = v.x[3][1]; |
2885 | x[3][2] = v.x[3][2]; |
2886 | x[3][3] = v.x[3][3]; |
2887 | return *this; |
2888 | } |
2889 | |
2890 | template <class T> |
2891 | inline const Matrix44<T> & |
2892 | Matrix44<T>::operator = (T a) |
2893 | { |
2894 | x[0][0] = a; |
2895 | x[0][1] = a; |
2896 | x[0][2] = a; |
2897 | x[0][3] = a; |
2898 | x[1][0] = a; |
2899 | x[1][1] = a; |
2900 | x[1][2] = a; |
2901 | x[1][3] = a; |
2902 | x[2][0] = a; |
2903 | x[2][1] = a; |
2904 | x[2][2] = a; |
2905 | x[2][3] = a; |
2906 | x[3][0] = a; |
2907 | x[3][1] = a; |
2908 | x[3][2] = a; |
2909 | x[3][3] = a; |
2910 | return *this; |
2911 | } |
2912 | |
2913 | template <class T> |
2914 | inline T * |
2915 | Matrix44<T>::getValue () |
2916 | { |
2917 | return (T *) &x[0][0]; |
2918 | } |
2919 | |
2920 | template <class T> |
2921 | inline const T * |
2922 | Matrix44<T>::getValue () const |
2923 | { |
2924 | return (const T *) &x[0][0]; |
2925 | } |
2926 | |
2927 | template <class T> |
2928 | template <class S> |
2929 | inline void |
2930 | Matrix44<T>::getValue (Matrix44<S> &v) const |
2931 | { |
2932 | if (isSameType<S,T>::value) |
2933 | { |
2934 | memcpy (v.x, x, sizeof (x)); |
2935 | } |
2936 | else |
2937 | { |
2938 | v.x[0][0] = x[0][0]; |
2939 | v.x[0][1] = x[0][1]; |
2940 | v.x[0][2] = x[0][2]; |
2941 | v.x[0][3] = x[0][3]; |
2942 | v.x[1][0] = x[1][0]; |
2943 | v.x[1][1] = x[1][1]; |
2944 | v.x[1][2] = x[1][2]; |
2945 | v.x[1][3] = x[1][3]; |
2946 | v.x[2][0] = x[2][0]; |
2947 | v.x[2][1] = x[2][1]; |
2948 | v.x[2][2] = x[2][2]; |
2949 | v.x[2][3] = x[2][3]; |
2950 | v.x[3][0] = x[3][0]; |
2951 | v.x[3][1] = x[3][1]; |
2952 | v.x[3][2] = x[3][2]; |
2953 | v.x[3][3] = x[3][3]; |
2954 | } |
2955 | } |
2956 | |
2957 | template <class T> |
2958 | template <class S> |
2959 | inline Matrix44<T> & |
2960 | Matrix44<T>::setValue (const Matrix44<S> &v) |
2961 | { |
2962 | if (isSameType<S,T>::value) |
2963 | { |
2964 | memcpy (x, v.x, sizeof (x)); |
2965 | } |
2966 | else |
2967 | { |
2968 | x[0][0] = v.x[0][0]; |
2969 | x[0][1] = v.x[0][1]; |
2970 | x[0][2] = v.x[0][2]; |
2971 | x[0][3] = v.x[0][3]; |
2972 | x[1][0] = v.x[1][0]; |
2973 | x[1][1] = v.x[1][1]; |
2974 | x[1][2] = v.x[1][2]; |
2975 | x[1][3] = v.x[1][3]; |
2976 | x[2][0] = v.x[2][0]; |
2977 | x[2][1] = v.x[2][1]; |
2978 | x[2][2] = v.x[2][2]; |
2979 | x[2][3] = v.x[2][3]; |
2980 | x[3][0] = v.x[3][0]; |
2981 | x[3][1] = v.x[3][1]; |
2982 | x[3][2] = v.x[3][2]; |
2983 | x[3][3] = v.x[3][3]; |
2984 | } |
2985 | |
2986 | return *this; |
2987 | } |
2988 | |
2989 | template <class T> |
2990 | template <class S> |
2991 | inline Matrix44<T> & |
2992 | Matrix44<T>::setTheMatrix (const Matrix44<S> &v) |
2993 | { |
2994 | if (isSameType<S,T>::value) |
2995 | { |
2996 | memcpy (x, v.x, sizeof (x)); |
2997 | } |
2998 | else |
2999 | { |
3000 | x[0][0] = v.x[0][0]; |
3001 | x[0][1] = v.x[0][1]; |
3002 | x[0][2] = v.x[0][2]; |
3003 | x[0][3] = v.x[0][3]; |
3004 | x[1][0] = v.x[1][0]; |
3005 | x[1][1] = v.x[1][1]; |
3006 | x[1][2] = v.x[1][2]; |
3007 | x[1][3] = v.x[1][3]; |
3008 | x[2][0] = v.x[2][0]; |
3009 | x[2][1] = v.x[2][1]; |
3010 | x[2][2] = v.x[2][2]; |
3011 | x[2][3] = v.x[2][3]; |
3012 | x[3][0] = v.x[3][0]; |
3013 | x[3][1] = v.x[3][1]; |
3014 | x[3][2] = v.x[3][2]; |
3015 | x[3][3] = v.x[3][3]; |
3016 | } |
3017 | |
3018 | return *this; |
3019 | } |
3020 | |
3021 | template <class T> |
3022 | inline void |
3023 | Matrix44<T>::makeIdentity() |
3024 | { |
3025 | memset (x, 0, sizeof (x)); |
3026 | x[0][0] = 1; |
3027 | x[1][1] = 1; |
3028 | x[2][2] = 1; |
3029 | x[3][3] = 1; |
3030 | } |
3031 | |
3032 | template <class T> |
3033 | bool |
3034 | Matrix44<T>::operator == (const Matrix44 &v) const |
3035 | { |
3036 | return x[0][0] == v.x[0][0] && |
3037 | x[0][1] == v.x[0][1] && |
3038 | x[0][2] == v.x[0][2] && |
3039 | x[0][3] == v.x[0][3] && |
3040 | x[1][0] == v.x[1][0] && |
3041 | x[1][1] == v.x[1][1] && |
3042 | x[1][2] == v.x[1][2] && |
3043 | x[1][3] == v.x[1][3] && |
3044 | x[2][0] == v.x[2][0] && |
3045 | x[2][1] == v.x[2][1] && |
3046 | x[2][2] == v.x[2][2] && |
3047 | x[2][3] == v.x[2][3] && |
3048 | x[3][0] == v.x[3][0] && |
3049 | x[3][1] == v.x[3][1] && |
3050 | x[3][2] == v.x[3][2] && |
3051 | x[3][3] == v.x[3][3]; |
3052 | } |
3053 | |
3054 | template <class T> |
3055 | bool |
3056 | Matrix44<T>::operator != (const Matrix44 &v) const |
3057 | { |
3058 | return x[0][0] != v.x[0][0] || |
3059 | x[0][1] != v.x[0][1] || |
3060 | x[0][2] != v.x[0][2] || |
3061 | x[0][3] != v.x[0][3] || |
3062 | x[1][0] != v.x[1][0] || |
3063 | x[1][1] != v.x[1][1] || |
3064 | x[1][2] != v.x[1][2] || |
3065 | x[1][3] != v.x[1][3] || |
3066 | x[2][0] != v.x[2][0] || |
3067 | x[2][1] != v.x[2][1] || |
3068 | x[2][2] != v.x[2][2] || |
3069 | x[2][3] != v.x[2][3] || |
3070 | x[3][0] != v.x[3][0] || |
3071 | x[3][1] != v.x[3][1] || |
3072 | x[3][2] != v.x[3][2] || |
3073 | x[3][3] != v.x[3][3]; |
3074 | } |
3075 | |
3076 | template <class T> |
3077 | bool |
3078 | Matrix44<T>::equalWithAbsError (const Matrix44<T> &m, T e) const |
3079 | { |
3080 | for (int i = 0; i < 4; i++) |
3081 | for (int j = 0; j < 4; j++) |
3082 | if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e)) |
3083 | return false; |
3084 | |
3085 | return true; |
3086 | } |
3087 | |
3088 | template <class T> |
3089 | bool |
3090 | Matrix44<T>::equalWithRelError (const Matrix44<T> &m, T e) const |
3091 | { |
3092 | for (int i = 0; i < 4; i++) |
3093 | for (int j = 0; j < 4; j++) |
3094 | if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e)) |
3095 | return false; |
3096 | |
3097 | return true; |
3098 | } |
3099 | |
3100 | template <class T> |
3101 | const Matrix44<T> & |
3102 | Matrix44<T>::operator += (const Matrix44<T> &v) |
3103 | { |
3104 | x[0][0] += v.x[0][0]; |
3105 | x[0][1] += v.x[0][1]; |
3106 | x[0][2] += v.x[0][2]; |
3107 | x[0][3] += v.x[0][3]; |
3108 | x[1][0] += v.x[1][0]; |
3109 | x[1][1] += v.x[1][1]; |
3110 | x[1][2] += v.x[1][2]; |
3111 | x[1][3] += v.x[1][3]; |
3112 | x[2][0] += v.x[2][0]; |
3113 | x[2][1] += v.x[2][1]; |
3114 | x[2][2] += v.x[2][2]; |
3115 | x[2][3] += v.x[2][3]; |
3116 | x[3][0] += v.x[3][0]; |
3117 | x[3][1] += v.x[3][1]; |
3118 | x[3][2] += v.x[3][2]; |
3119 | x[3][3] += v.x[3][3]; |
3120 | |
3121 | return *this; |
3122 | } |
3123 | |
3124 | template <class T> |
3125 | const Matrix44<T> & |
3126 | Matrix44<T>::operator += (T a) |
3127 | { |
3128 | x[0][0] += a; |
3129 | x[0][1] += a; |
3130 | x[0][2] += a; |
3131 | x[0][3] += a; |
3132 | x[1][0] += a; |
3133 | x[1][1] += a; |
3134 | x[1][2] += a; |
3135 | x[1][3] += a; |
3136 | x[2][0] += a; |
3137 | x[2][1] += a; |
3138 | x[2][2] += a; |
3139 | x[2][3] += a; |
3140 | x[3][0] += a; |
3141 | x[3][1] += a; |
3142 | x[3][2] += a; |
3143 | x[3][3] += a; |
3144 | |
3145 | return *this; |
3146 | } |
3147 | |
3148 | template <class T> |
3149 | Matrix44<T> |
3150 | Matrix44<T>::operator + (const Matrix44<T> &v) const |
3151 | { |
3152 | return Matrix44 (x[0][0] + v.x[0][0], |
3153 | x[0][1] + v.x[0][1], |
3154 | x[0][2] + v.x[0][2], |
3155 | x[0][3] + v.x[0][3], |
3156 | x[1][0] + v.x[1][0], |
3157 | x[1][1] + v.x[1][1], |
3158 | x[1][2] + v.x[1][2], |
3159 | x[1][3] + v.x[1][3], |
3160 | x[2][0] + v.x[2][0], |
3161 | x[2][1] + v.x[2][1], |
3162 | x[2][2] + v.x[2][2], |
3163 | x[2][3] + v.x[2][3], |
3164 | x[3][0] + v.x[3][0], |
3165 | x[3][1] + v.x[3][1], |
3166 | x[3][2] + v.x[3][2], |
3167 | x[3][3] + v.x[3][3]); |
3168 | } |
3169 | |
3170 | template <class T> |
3171 | const Matrix44<T> & |
3172 | Matrix44<T>::operator -= (const Matrix44<T> &v) |
3173 | { |
3174 | x[0][0] -= v.x[0][0]; |
3175 | x[0][1] -= v.x[0][1]; |
3176 | x[0][2] -= v.x[0][2]; |
3177 | x[0][3] -= v.x[0][3]; |
3178 | x[1][0] -= v.x[1][0]; |
3179 | x[1][1] -= v.x[1][1]; |
3180 | x[1][2] -= v.x[1][2]; |
3181 | x[1][3] -= v.x[1][3]; |
3182 | x[2][0] -= v.x[2][0]; |
3183 | x[2][1] -= v.x[2][1]; |
3184 | x[2][2] -= v.x[2][2]; |
3185 | x[2][3] -= v.x[2][3]; |
3186 | x[3][0] -= v.x[3][0]; |
3187 | x[3][1] -= v.x[3][1]; |
3188 | x[3][2] -= v.x[3][2]; |
3189 | x[3][3] -= v.x[3][3]; |
3190 | |
3191 | return *this; |
3192 | } |
3193 | |
3194 | template <class T> |
3195 | const Matrix44<T> & |
3196 | Matrix44<T>::operator -= (T a) |
3197 | { |
3198 | x[0][0] -= a; |
3199 | x[0][1] -= a; |
3200 | x[0][2] -= a; |
3201 | x[0][3] -= a; |
3202 | x[1][0] -= a; |
3203 | x[1][1] -= a; |
3204 | x[1][2] -= a; |
3205 | x[1][3] -= a; |
3206 | x[2][0] -= a; |
3207 | x[2][1] -= a; |
3208 | x[2][2] -= a; |
3209 | x[2][3] -= a; |
3210 | x[3][0] -= a; |
3211 | x[3][1] -= a; |
3212 | x[3][2] -= a; |
3213 | x[3][3] -= a; |
3214 | |
3215 | return *this; |
3216 | } |
3217 | |
3218 | template <class T> |
3219 | Matrix44<T> |
3220 | Matrix44<T>::operator - (const Matrix44<T> &v) const |
3221 | { |
3222 | return Matrix44 (x[0][0] - v.x[0][0], |
3223 | x[0][1] - v.x[0][1], |
3224 | x[0][2] - v.x[0][2], |
3225 | x[0][3] - v.x[0][3], |
3226 | x[1][0] - v.x[1][0], |
3227 | x[1][1] - v.x[1][1], |
3228 | x[1][2] - v.x[1][2], |
3229 | x[1][3] - v.x[1][3], |
3230 | x[2][0] - v.x[2][0], |
3231 | x[2][1] - v.x[2][1], |
3232 | x[2][2] - v.x[2][2], |
3233 | x[2][3] - v.x[2][3], |
3234 | x[3][0] - v.x[3][0], |
3235 | x[3][1] - v.x[3][1], |
3236 | x[3][2] - v.x[3][2], |
3237 | x[3][3] - v.x[3][3]); |
3238 | } |
3239 | |
3240 | template <class T> |
3241 | Matrix44<T> |
3242 | Matrix44<T>::operator - () const |
3243 | { |
3244 | return Matrix44 (-x[0][0], |
3245 | -x[0][1], |
3246 | -x[0][2], |
3247 | -x[0][3], |
3248 | -x[1][0], |
3249 | -x[1][1], |
3250 | -x[1][2], |
3251 | -x[1][3], |
3252 | -x[2][0], |
3253 | -x[2][1], |
3254 | -x[2][2], |
3255 | -x[2][3], |
3256 | -x[3][0], |
3257 | -x[3][1], |
3258 | -x[3][2], |
3259 | -x[3][3]); |
3260 | } |
3261 | |
3262 | template <class T> |
3263 | const Matrix44<T> & |
3264 | Matrix44<T>::negate () |
3265 | { |
3266 | x[0][0] = -x[0][0]; |
3267 | x[0][1] = -x[0][1]; |
3268 | x[0][2] = -x[0][2]; |
3269 | x[0][3] = -x[0][3]; |
3270 | x[1][0] = -x[1][0]; |
3271 | x[1][1] = -x[1][1]; |
3272 | x[1][2] = -x[1][2]; |
3273 | x[1][3] = -x[1][3]; |
3274 | x[2][0] = -x[2][0]; |
3275 | x[2][1] = -x[2][1]; |
3276 | x[2][2] = -x[2][2]; |
3277 | x[2][3] = -x[2][3]; |
3278 | x[3][0] = -x[3][0]; |
3279 | x[3][1] = -x[3][1]; |
3280 | x[3][2] = -x[3][2]; |
3281 | x[3][3] = -x[3][3]; |
3282 | |
3283 | return *this; |
3284 | } |
3285 | |
3286 | template <class T> |
3287 | const Matrix44<T> & |
3288 | Matrix44<T>::operator *= (T a) |
3289 | { |
3290 | x[0][0] *= a; |
3291 | x[0][1] *= a; |
3292 | x[0][2] *= a; |
3293 | x[0][3] *= a; |
3294 | x[1][0] *= a; |
3295 | x[1][1] *= a; |
3296 | x[1][2] *= a; |
3297 | x[1][3] *= a; |
3298 | x[2][0] *= a; |
3299 | x[2][1] *= a; |
3300 | x[2][2] *= a; |
3301 | x[2][3] *= a; |
3302 | x[3][0] *= a; |
3303 | x[3][1] *= a; |
3304 | x[3][2] *= a; |
3305 | x[3][3] *= a; |
3306 | |
3307 | return *this; |
3308 | } |
3309 | |
3310 | template <class T> |
3311 | Matrix44<T> |
3312 | Matrix44<T>::operator * (T a) const |
3313 | { |
3314 | return Matrix44 (x[0][0] * a, |
3315 | x[0][1] * a, |
3316 | x[0][2] * a, |
3317 | x[0][3] * a, |
3318 | x[1][0] * a, |
3319 | x[1][1] * a, |
3320 | x[1][2] * a, |
3321 | x[1][3] * a, |
3322 | x[2][0] * a, |
3323 | x[2][1] * a, |
3324 | x[2][2] * a, |
3325 | x[2][3] * a, |
3326 | x[3][0] * a, |
3327 | x[3][1] * a, |
3328 | x[3][2] * a, |
3329 | x[3][3] * a); |
3330 | } |
3331 | |
3332 | template <class T> |
3333 | inline Matrix44<T> |
3334 | operator * (T a, const Matrix44<T> &v) |
3335 | { |
3336 | return v * a; |
3337 | } |
3338 | |
3339 | template <class T> |
3340 | inline const Matrix44<T> & |
3341 | Matrix44<T>::operator *= (const Matrix44<T> &v) |
3342 | { |
3343 | Matrix44 tmp (T (0)); |
3344 | |
3345 | multiply (a: *this, b: v, c&: tmp); |
3346 | *this = tmp; |
3347 | return *this; |
3348 | } |
3349 | |
3350 | template <class T> |
3351 | inline Matrix44<T> |
3352 | Matrix44<T>::operator * (const Matrix44<T> &v) const |
3353 | { |
3354 | Matrix44 tmp (T (0)); |
3355 | |
3356 | multiply (a: *this, b: v, c&: tmp); |
3357 | return tmp; |
3358 | } |
3359 | |
3360 | template <class T> |
3361 | void |
3362 | Matrix44<T>::multiply (const Matrix44<T> &a, |
3363 | const Matrix44<T> &b, |
3364 | Matrix44<T> &c) |
3365 | { |
3366 | const T * IMATH_RESTRICT ap = &a.x[0][0]; |
3367 | const T * IMATH_RESTRICT bp = &b.x[0][0]; |
3368 | T * IMATH_RESTRICT cp = &c.x[0][0]; |
3369 | |
3370 | T a0, a1, a2, a3; |
3371 | |
3372 | a0 = ap[0]; |
3373 | a1 = ap[1]; |
3374 | a2 = ap[2]; |
3375 | a3 = ap[3]; |
3376 | |
3377 | cp[0] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; |
3378 | cp[1] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; |
3379 | cp[2] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; |
3380 | cp[3] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; |
3381 | |
3382 | a0 = ap[4]; |
3383 | a1 = ap[5]; |
3384 | a2 = ap[6]; |
3385 | a3 = ap[7]; |
3386 | |
3387 | cp[4] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; |
3388 | cp[5] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; |
3389 | cp[6] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; |
3390 | cp[7] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; |
3391 | |
3392 | a0 = ap[8]; |
3393 | a1 = ap[9]; |
3394 | a2 = ap[10]; |
3395 | a3 = ap[11]; |
3396 | |
3397 | cp[8] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; |
3398 | cp[9] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; |
3399 | cp[10] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; |
3400 | cp[11] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; |
3401 | |
3402 | a0 = ap[12]; |
3403 | a1 = ap[13]; |
3404 | a2 = ap[14]; |
3405 | a3 = ap[15]; |
3406 | |
3407 | cp[12] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; |
3408 | cp[13] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; |
3409 | cp[14] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; |
3410 | cp[15] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; |
3411 | } |
3412 | |
3413 | template <class T> template <class S> |
3414 | void |
3415 | Matrix44<T>::multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const |
3416 | { |
3417 | S a, b, c, w; |
3418 | |
3419 | a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0] + x[3][0]; |
3420 | b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1] + x[3][1]; |
3421 | c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2] + x[3][2]; |
3422 | w = src[0] * x[0][3] + src[1] * x[1][3] + src[2] * x[2][3] + x[3][3]; |
3423 | |
3424 | dst.x = a / w; |
3425 | dst.y = b / w; |
3426 | dst.z = c / w; |
3427 | } |
3428 | |
3429 | template <class T> template <class S> |
3430 | void |
3431 | Matrix44<T>::multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const |
3432 | { |
3433 | S a, b, c; |
3434 | |
3435 | a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0]; |
3436 | b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1]; |
3437 | c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2]; |
3438 | |
3439 | dst.x = a; |
3440 | dst.y = b; |
3441 | dst.z = c; |
3442 | } |
3443 | |
3444 | template <class T> |
3445 | const Matrix44<T> & |
3446 | Matrix44<T>::operator /= (T a) |
3447 | { |
3448 | x[0][0] /= a; |
3449 | x[0][1] /= a; |
3450 | x[0][2] /= a; |
3451 | x[0][3] /= a; |
3452 | x[1][0] /= a; |
3453 | x[1][1] /= a; |
3454 | x[1][2] /= a; |
3455 | x[1][3] /= a; |
3456 | x[2][0] /= a; |
3457 | x[2][1] /= a; |
3458 | x[2][2] /= a; |
3459 | x[2][3] /= a; |
3460 | x[3][0] /= a; |
3461 | x[3][1] /= a; |
3462 | x[3][2] /= a; |
3463 | x[3][3] /= a; |
3464 | |
3465 | return *this; |
3466 | } |
3467 | |
3468 | template <class T> |
3469 | Matrix44<T> |
3470 | Matrix44<T>::operator / (T a) const |
3471 | { |
3472 | return Matrix44 (x[0][0] / a, |
3473 | x[0][1] / a, |
3474 | x[0][2] / a, |
3475 | x[0][3] / a, |
3476 | x[1][0] / a, |
3477 | x[1][1] / a, |
3478 | x[1][2] / a, |
3479 | x[1][3] / a, |
3480 | x[2][0] / a, |
3481 | x[2][1] / a, |
3482 | x[2][2] / a, |
3483 | x[2][3] / a, |
3484 | x[3][0] / a, |
3485 | x[3][1] / a, |
3486 | x[3][2] / a, |
3487 | x[3][3] / a); |
3488 | } |
3489 | |
3490 | template <class T> |
3491 | const Matrix44<T> & |
3492 | Matrix44<T>::transpose () |
3493 | { |
3494 | Matrix44 tmp (x[0][0], |
3495 | x[1][0], |
3496 | x[2][0], |
3497 | x[3][0], |
3498 | x[0][1], |
3499 | x[1][1], |
3500 | x[2][1], |
3501 | x[3][1], |
3502 | x[0][2], |
3503 | x[1][2], |
3504 | x[2][2], |
3505 | x[3][2], |
3506 | x[0][3], |
3507 | x[1][3], |
3508 | x[2][3], |
3509 | x[3][3]); |
3510 | *this = tmp; |
3511 | return *this; |
3512 | } |
3513 | |
3514 | template <class T> |
3515 | Matrix44<T> |
3516 | Matrix44<T>::transposed () const |
3517 | { |
3518 | return Matrix44 (x[0][0], |
3519 | x[1][0], |
3520 | x[2][0], |
3521 | x[3][0], |
3522 | x[0][1], |
3523 | x[1][1], |
3524 | x[2][1], |
3525 | x[3][1], |
3526 | x[0][2], |
3527 | x[1][2], |
3528 | x[2][2], |
3529 | x[3][2], |
3530 | x[0][3], |
3531 | x[1][3], |
3532 | x[2][3], |
3533 | x[3][3]); |
3534 | } |
3535 | |
3536 | template <class T> |
3537 | const Matrix44<T> & |
3538 | Matrix44<T>::gjInvert (bool singExc) |
3539 | { |
3540 | *this = gjInverse (singExc); |
3541 | return *this; |
3542 | } |
3543 | |
3544 | template <class T> |
3545 | Matrix44<T> |
3546 | Matrix44<T>::gjInverse (bool singExc) const |
3547 | { |
3548 | int i, j, k; |
3549 | Matrix44 s; |
3550 | Matrix44 t (*this); |
3551 | |
3552 | // Forward elimination |
3553 | |
3554 | for (i = 0; i < 3 ; i++) |
3555 | { |
3556 | int pivot = i; |
3557 | |
3558 | T pivotsize = t[i][i]; |
3559 | |
3560 | if (pivotsize < 0) |
3561 | pivotsize = -pivotsize; |
3562 | |
3563 | for (j = i + 1; j < 4; j++) |
3564 | { |
3565 | T tmp = t[j][i]; |
3566 | |
3567 | if (tmp < 0) |
3568 | tmp = -tmp; |
3569 | |
3570 | if (tmp > pivotsize) |
3571 | { |
3572 | pivot = j; |
3573 | pivotsize = tmp; |
3574 | } |
3575 | } |
3576 | |
3577 | if (pivotsize == 0) |
3578 | { |
3579 | if (singExc) |
3580 | throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix." ); |
3581 | |
3582 | return Matrix44(); |
3583 | } |
3584 | |
3585 | if (pivot != i) |
3586 | { |
3587 | for (j = 0; j < 4; j++) |
3588 | { |
3589 | T tmp; |
3590 | |
3591 | tmp = t[i][j]; |
3592 | t[i][j] = t[pivot][j]; |
3593 | t[pivot][j] = tmp; |
3594 | |
3595 | tmp = s[i][j]; |
3596 | s[i][j] = s[pivot][j]; |
3597 | s[pivot][j] = tmp; |
3598 | } |
3599 | } |
3600 | |
3601 | for (j = i + 1; j < 4; j++) |
3602 | { |
3603 | T f = t[j][i] / t[i][i]; |
3604 | |
3605 | for (k = 0; k < 4; k++) |
3606 | { |
3607 | t[j][k] -= f * t[i][k]; |
3608 | s[j][k] -= f * s[i][k]; |
3609 | } |
3610 | } |
3611 | } |
3612 | |
3613 | // Backward substitution |
3614 | |
3615 | for (i = 3; i >= 0; --i) |
3616 | { |
3617 | T f; |
3618 | |
3619 | if ((f = t[i][i]) == 0) |
3620 | { |
3621 | if (singExc) |
3622 | throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix." ); |
3623 | |
3624 | return Matrix44(); |
3625 | } |
3626 | |
3627 | for (j = 0; j < 4; j++) |
3628 | { |
3629 | t[i][j] /= f; |
3630 | s[i][j] /= f; |
3631 | } |
3632 | |
3633 | for (j = 0; j < i; j++) |
3634 | { |
3635 | f = t[j][i]; |
3636 | |
3637 | for (k = 0; k < 4; k++) |
3638 | { |
3639 | t[j][k] -= f * t[i][k]; |
3640 | s[j][k] -= f * s[i][k]; |
3641 | } |
3642 | } |
3643 | } |
3644 | |
3645 | return s; |
3646 | } |
3647 | |
3648 | template <class T> |
3649 | const Matrix44<T> & |
3650 | Matrix44<T>::invert (bool singExc) |
3651 | { |
3652 | *this = inverse (singExc); |
3653 | return *this; |
3654 | } |
3655 | |
3656 | template <class T> |
3657 | Matrix44<T> |
3658 | Matrix44<T>::inverse (bool singExc) const |
3659 | { |
3660 | if (x[0][3] != 0 || x[1][3] != 0 || x[2][3] != 0 || x[3][3] != 1) |
3661 | return gjInverse(singExc); |
3662 | |
3663 | Matrix44 s (x[1][1] * x[2][2] - x[2][1] * x[1][2], |
3664 | x[2][1] * x[0][2] - x[0][1] * x[2][2], |
3665 | x[0][1] * x[1][2] - x[1][1] * x[0][2], |
3666 | 0, |
3667 | |
3668 | x[2][0] * x[1][2] - x[1][0] * x[2][2], |
3669 | x[0][0] * x[2][2] - x[2][0] * x[0][2], |
3670 | x[1][0] * x[0][2] - x[0][0] * x[1][2], |
3671 | 0, |
3672 | |
3673 | x[1][0] * x[2][1] - x[2][0] * x[1][1], |
3674 | x[2][0] * x[0][1] - x[0][0] * x[2][1], |
3675 | x[0][0] * x[1][1] - x[1][0] * x[0][1], |
3676 | 0, |
3677 | |
3678 | 0, |
3679 | 0, |
3680 | 0, |
3681 | 1); |
3682 | |
3683 | T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0]; |
3684 | |
3685 | if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1) |
3686 | { |
3687 | for (int i = 0; i < 3; ++i) |
3688 | { |
3689 | for (int j = 0; j < 3; ++j) |
3690 | { |
3691 | s[i][j] /= r; |
3692 | } |
3693 | } |
3694 | } |
3695 | else |
3696 | { |
3697 | T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest(); |
3698 | |
3699 | for (int i = 0; i < 3; ++i) |
3700 | { |
3701 | for (int j = 0; j < 3; ++j) |
3702 | { |
3703 | if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j])) |
3704 | { |
3705 | s[i][j] /= r; |
3706 | } |
3707 | else |
3708 | { |
3709 | if (singExc) |
3710 | throw SingMatrixExc ("Cannot invert singular matrix." ); |
3711 | |
3712 | return Matrix44(); |
3713 | } |
3714 | } |
3715 | } |
3716 | } |
3717 | |
3718 | s[3][0] = -x[3][0] * s[0][0] - x[3][1] * s[1][0] - x[3][2] * s[2][0]; |
3719 | s[3][1] = -x[3][0] * s[0][1] - x[3][1] * s[1][1] - x[3][2] * s[2][1]; |
3720 | s[3][2] = -x[3][0] * s[0][2] - x[3][1] * s[1][2] - x[3][2] * s[2][2]; |
3721 | |
3722 | return s; |
3723 | } |
3724 | |
3725 | template <class T> |
3726 | inline T |
3727 | Matrix44<T>::fastMinor( const int r0, const int r1, const int r2, |
3728 | const int c0, const int c1, const int c2) const |
3729 | { |
3730 | return x[r0][c0] * (x[r1][c1]*x[r2][c2] - x[r1][c2]*x[r2][c1]) |
3731 | + x[r0][c1] * (x[r1][c2]*x[r2][c0] - x[r1][c0]*x[r2][c2]) |
3732 | + x[r0][c2] * (x[r1][c0]*x[r2][c1] - x[r1][c1]*x[r2][c0]); |
3733 | } |
3734 | |
3735 | template <class T> |
3736 | inline T |
3737 | Matrix44<T>::minorOf (const int r, const int c) const |
3738 | { |
3739 | int r0 = 0 + (r < 1 ? 1 : 0); |
3740 | int r1 = 1 + (r < 2 ? 1 : 0); |
3741 | int r2 = 2 + (r < 3 ? 1 : 0); |
3742 | int c0 = 0 + (c < 1 ? 1 : 0); |
3743 | int c1 = 1 + (c < 2 ? 1 : 0); |
3744 | int c2 = 2 + (c < 3 ? 1 : 0); |
3745 | |
3746 | Matrix33<T> working (x[r0][c0],x[r1][c0],x[r2][c0], |
3747 | x[r0][c1],x[r1][c1],x[r2][c1], |
3748 | x[r0][c2],x[r1][c2],x[r2][c2]); |
3749 | |
3750 | return working.determinant(); |
3751 | } |
3752 | |
3753 | template <class T> |
3754 | inline T |
3755 | Matrix44<T>::determinant () const |
3756 | { |
3757 | T sum = (T)0; |
3758 | |
3759 | if (x[0][3] != 0.) sum -= x[0][3] * fastMinor(r0: 1,r1: 2,r2: 3,c0: 0,c1: 1,c2: 2); |
3760 | if (x[1][3] != 0.) sum += x[1][3] * fastMinor(r0: 0,r1: 2,r2: 3,c0: 0,c1: 1,c2: 2); |
3761 | if (x[2][3] != 0.) sum -= x[2][3] * fastMinor(r0: 0,r1: 1,r2: 3,c0: 0,c1: 1,c2: 2); |
3762 | if (x[3][3] != 0.) sum += x[3][3] * fastMinor(r0: 0,r1: 1,r2: 2,c0: 0,c1: 1,c2: 2); |
3763 | |
3764 | return sum; |
3765 | } |
3766 | |
3767 | template <class T> |
3768 | template <class S> |
3769 | const Matrix44<T> & |
3770 | Matrix44<T>::setEulerAngles (const Vec3<S>& r) |
3771 | { |
3772 | S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx; |
3773 | |
3774 | cos_rz = Math<T>::cos (r[2]); |
3775 | cos_ry = Math<T>::cos (r[1]); |
3776 | cos_rx = Math<T>::cos (r[0]); |
3777 | |
3778 | sin_rz = Math<T>::sin (r[2]); |
3779 | sin_ry = Math<T>::sin (r[1]); |
3780 | sin_rx = Math<T>::sin (r[0]); |
3781 | |
3782 | x[0][0] = cos_rz * cos_ry; |
3783 | x[0][1] = sin_rz * cos_ry; |
3784 | x[0][2] = -sin_ry; |
3785 | x[0][3] = 0; |
3786 | |
3787 | x[1][0] = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx; |
3788 | x[1][1] = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx; |
3789 | x[1][2] = cos_ry * sin_rx; |
3790 | x[1][3] = 0; |
3791 | |
3792 | x[2][0] = sin_rz * sin_rx + cos_rz * sin_ry * cos_rx; |
3793 | x[2][1] = -cos_rz * sin_rx + sin_rz * sin_ry * cos_rx; |
3794 | x[2][2] = cos_ry * cos_rx; |
3795 | x[2][3] = 0; |
3796 | |
3797 | x[3][0] = 0; |
3798 | x[3][1] = 0; |
3799 | x[3][2] = 0; |
3800 | x[3][3] = 1; |
3801 | |
3802 | return *this; |
3803 | } |
3804 | |
3805 | template <class T> |
3806 | template <class S> |
3807 | const Matrix44<T> & |
3808 | Matrix44<T>::setAxisAngle (const Vec3<S>& axis, S angle) |
3809 | { |
3810 | Vec3<S> unit (axis.normalized()); |
3811 | S sine = Math<T>::sin (angle); |
3812 | S cosine = Math<T>::cos (angle); |
3813 | |
3814 | x[0][0] = unit[0] * unit[0] * (1 - cosine) + cosine; |
3815 | x[0][1] = unit[0] * unit[1] * (1 - cosine) + unit[2] * sine; |
3816 | x[0][2] = unit[0] * unit[2] * (1 - cosine) - unit[1] * sine; |
3817 | x[0][3] = 0; |
3818 | |
3819 | x[1][0] = unit[0] * unit[1] * (1 - cosine) - unit[2] * sine; |
3820 | x[1][1] = unit[1] * unit[1] * (1 - cosine) + cosine; |
3821 | x[1][2] = unit[1] * unit[2] * (1 - cosine) + unit[0] * sine; |
3822 | x[1][3] = 0; |
3823 | |
3824 | x[2][0] = unit[0] * unit[2] * (1 - cosine) + unit[1] * sine; |
3825 | x[2][1] = unit[1] * unit[2] * (1 - cosine) - unit[0] * sine; |
3826 | x[2][2] = unit[2] * unit[2] * (1 - cosine) + cosine; |
3827 | x[2][3] = 0; |
3828 | |
3829 | x[3][0] = 0; |
3830 | x[3][1] = 0; |
3831 | x[3][2] = 0; |
3832 | x[3][3] = 1; |
3833 | |
3834 | return *this; |
3835 | } |
3836 | |
3837 | template <class T> |
3838 | template <class S> |
3839 | const Matrix44<T> & |
3840 | Matrix44<T>::rotate (const Vec3<S> &r) |
3841 | { |
3842 | S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx; |
3843 | S m00, m01, m02; |
3844 | S m10, m11, m12; |
3845 | S m20, m21, m22; |
3846 | |
3847 | cos_rz = Math<S>::cos (r[2]); |
3848 | cos_ry = Math<S>::cos (r[1]); |
3849 | cos_rx = Math<S>::cos (r[0]); |
3850 | |
3851 | sin_rz = Math<S>::sin (r[2]); |
3852 | sin_ry = Math<S>::sin (r[1]); |
3853 | sin_rx = Math<S>::sin (r[0]); |
3854 | |
3855 | m00 = cos_rz * cos_ry; |
3856 | m01 = sin_rz * cos_ry; |
3857 | m02 = -sin_ry; |
3858 | m10 = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx; |
3859 | m11 = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx; |
3860 | m12 = cos_ry * sin_rx; |
3861 | m20 = -sin_rz * -sin_rx + cos_rz * sin_ry * cos_rx; |
3862 | m21 = cos_rz * -sin_rx + sin_rz * sin_ry * cos_rx; |
3863 | m22 = cos_ry * cos_rx; |
3864 | |
3865 | Matrix44<T> P (*this); |
3866 | |
3867 | x[0][0] = P[0][0] * m00 + P[1][0] * m01 + P[2][0] * m02; |
3868 | x[0][1] = P[0][1] * m00 + P[1][1] * m01 + P[2][1] * m02; |
3869 | x[0][2] = P[0][2] * m00 + P[1][2] * m01 + P[2][2] * m02; |
3870 | x[0][3] = P[0][3] * m00 + P[1][3] * m01 + P[2][3] * m02; |
3871 | |
3872 | x[1][0] = P[0][0] * m10 + P[1][0] * m11 + P[2][0] * m12; |
3873 | x[1][1] = P[0][1] * m10 + P[1][1] * m11 + P[2][1] * m12; |
3874 | x[1][2] = P[0][2] * m10 + P[1][2] * m11 + P[2][2] * m12; |
3875 | x[1][3] = P[0][3] * m10 + P[1][3] * m11 + P[2][3] * m12; |
3876 | |
3877 | x[2][0] = P[0][0] * m20 + P[1][0] * m21 + P[2][0] * m22; |
3878 | x[2][1] = P[0][1] * m20 + P[1][1] * m21 + P[2][1] * m22; |
3879 | x[2][2] = P[0][2] * m20 + P[1][2] * m21 + P[2][2] * m22; |
3880 | x[2][3] = P[0][3] * m20 + P[1][3] * m21 + P[2][3] * m22; |
3881 | |
3882 | return *this; |
3883 | } |
3884 | |
3885 | template <class T> |
3886 | const Matrix44<T> & |
3887 | Matrix44<T>::setScale (T s) |
3888 | { |
3889 | memset (x, 0, sizeof (x)); |
3890 | x[0][0] = s; |
3891 | x[1][1] = s; |
3892 | x[2][2] = s; |
3893 | x[3][3] = 1; |
3894 | |
3895 | return *this; |
3896 | } |
3897 | |
3898 | template <class T> |
3899 | template <class S> |
3900 | const Matrix44<T> & |
3901 | Matrix44<T>::setScale (const Vec3<S> &s) |
3902 | { |
3903 | memset (x, 0, sizeof (x)); |
3904 | x[0][0] = s[0]; |
3905 | x[1][1] = s[1]; |
3906 | x[2][2] = s[2]; |
3907 | x[3][3] = 1; |
3908 | |
3909 | return *this; |
3910 | } |
3911 | |
3912 | template <class T> |
3913 | template <class S> |
3914 | const Matrix44<T> & |
3915 | Matrix44<T>::scale (const Vec3<S> &s) |
3916 | { |
3917 | x[0][0] *= s[0]; |
3918 | x[0][1] *= s[0]; |
3919 | x[0][2] *= s[0]; |
3920 | x[0][3] *= s[0]; |
3921 | |
3922 | x[1][0] *= s[1]; |
3923 | x[1][1] *= s[1]; |
3924 | x[1][2] *= s[1]; |
3925 | x[1][3] *= s[1]; |
3926 | |
3927 | x[2][0] *= s[2]; |
3928 | x[2][1] *= s[2]; |
3929 | x[2][2] *= s[2]; |
3930 | x[2][3] *= s[2]; |
3931 | |
3932 | return *this; |
3933 | } |
3934 | |
3935 | template <class T> |
3936 | template <class S> |
3937 | const Matrix44<T> & |
3938 | Matrix44<T>::setTranslation (const Vec3<S> &t) |
3939 | { |
3940 | x[0][0] = 1; |
3941 | x[0][1] = 0; |
3942 | x[0][2] = 0; |
3943 | x[0][3] = 0; |
3944 | |
3945 | x[1][0] = 0; |
3946 | x[1][1] = 1; |
3947 | x[1][2] = 0; |
3948 | x[1][3] = 0; |
3949 | |
3950 | x[2][0] = 0; |
3951 | x[2][1] = 0; |
3952 | x[2][2] = 1; |
3953 | x[2][3] = 0; |
3954 | |
3955 | x[3][0] = t[0]; |
3956 | x[3][1] = t[1]; |
3957 | x[3][2] = t[2]; |
3958 | x[3][3] = 1; |
3959 | |
3960 | return *this; |
3961 | } |
3962 | |
3963 | template <class T> |
3964 | inline const Vec3<T> |
3965 | Matrix44<T>::translation () const |
3966 | { |
3967 | return Vec3<T> (x[3][0], x[3][1], x[3][2]); |
3968 | } |
3969 | |
3970 | template <class T> |
3971 | template <class S> |
3972 | const Matrix44<T> & |
3973 | Matrix44<T>::translate (const Vec3<S> &t) |
3974 | { |
3975 | x[3][0] += t[0] * x[0][0] + t[1] * x[1][0] + t[2] * x[2][0]; |
3976 | x[3][1] += t[0] * x[0][1] + t[1] * x[1][1] + t[2] * x[2][1]; |
3977 | x[3][2] += t[0] * x[0][2] + t[1] * x[1][2] + t[2] * x[2][2]; |
3978 | x[3][3] += t[0] * x[0][3] + t[1] * x[1][3] + t[2] * x[2][3]; |
3979 | |
3980 | return *this; |
3981 | } |
3982 | |
3983 | template <class T> |
3984 | template <class S> |
3985 | const Matrix44<T> & |
3986 | Matrix44<T>::setShear (const Vec3<S> &h) |
3987 | { |
3988 | x[0][0] = 1; |
3989 | x[0][1] = 0; |
3990 | x[0][2] = 0; |
3991 | x[0][3] = 0; |
3992 | |
3993 | x[1][0] = h[0]; |
3994 | x[1][1] = 1; |
3995 | x[1][2] = 0; |
3996 | x[1][3] = 0; |
3997 | |
3998 | x[2][0] = h[1]; |
3999 | x[2][1] = h[2]; |
4000 | x[2][2] = 1; |
4001 | x[2][3] = 0; |
4002 | |
4003 | x[3][0] = 0; |
4004 | x[3][1] = 0; |
4005 | x[3][2] = 0; |
4006 | x[3][3] = 1; |
4007 | |
4008 | return *this; |
4009 | } |
4010 | |
4011 | template <class T> |
4012 | template <class S> |
4013 | const Matrix44<T> & |
4014 | Matrix44<T>::setShear (const Shear6<S> &h) |
4015 | { |
4016 | x[0][0] = 1; |
4017 | x[0][1] = h.yx; |
4018 | x[0][2] = h.zx; |
4019 | x[0][3] = 0; |
4020 | |
4021 | x[1][0] = h.xy; |
4022 | x[1][1] = 1; |
4023 | x[1][2] = h.zy; |
4024 | x[1][3] = 0; |
4025 | |
4026 | x[2][0] = h.xz; |
4027 | x[2][1] = h.yz; |
4028 | x[2][2] = 1; |
4029 | x[2][3] = 0; |
4030 | |
4031 | x[3][0] = 0; |
4032 | x[3][1] = 0; |
4033 | x[3][2] = 0; |
4034 | x[3][3] = 1; |
4035 | |
4036 | return *this; |
4037 | } |
4038 | |
4039 | template <class T> |
4040 | template <class S> |
4041 | const Matrix44<T> & |
4042 | Matrix44<T>::shear (const Vec3<S> &h) |
4043 | { |
4044 | // |
4045 | // In this case, we don't need a temp. copy of the matrix |
4046 | // because we never use a value on the RHS after we've |
4047 | // changed it on the LHS. |
4048 | // |
4049 | |
4050 | for (int i=0; i < 4; i++) |
4051 | { |
4052 | x[2][i] += h[1] * x[0][i] + h[2] * x[1][i]; |
4053 | x[1][i] += h[0] * x[0][i]; |
4054 | } |
4055 | |
4056 | return *this; |
4057 | } |
4058 | |
4059 | template <class T> |
4060 | template <class S> |
4061 | const Matrix44<T> & |
4062 | Matrix44<T>::shear (const Shear6<S> &h) |
4063 | { |
4064 | Matrix44<T> P (*this); |
4065 | |
4066 | for (int i=0; i < 4; i++) |
4067 | { |
4068 | x[0][i] = P[0][i] + h.yx * P[1][i] + h.zx * P[2][i]; |
4069 | x[1][i] = h.xy * P[0][i] + P[1][i] + h.zy * P[2][i]; |
4070 | x[2][i] = h.xz * P[0][i] + h.yz * P[1][i] + P[2][i]; |
4071 | } |
4072 | |
4073 | return *this; |
4074 | } |
4075 | |
4076 | |
4077 | //-------------------------------- |
4078 | // Implementation of stream output |
4079 | //-------------------------------- |
4080 | |
4081 | template <class T> |
4082 | std::ostream & |
4083 | operator << (std::ostream &s, const Matrix22<T> &m) |
4084 | { |
4085 | std::ios_base::fmtflags oldFlags = s.flags(); |
4086 | int width; |
4087 | |
4088 | if (s.flags() & std::ios_base::fixed) |
4089 | { |
4090 | s.setf (std::ios_base::showpoint); |
4091 | width = static_cast<int>(s.precision()) + 5; |
4092 | } |
4093 | else |
4094 | { |
4095 | s.setf (std::ios_base::scientific); |
4096 | s.setf (std::ios_base::showpoint); |
4097 | width = static_cast<int>(s.precision()) + 8; |
4098 | } |
4099 | |
4100 | s << "(" << std::setw (width) << m[0][0] << |
4101 | " " << std::setw (width) << m[0][1] << "\n" << |
4102 | |
4103 | " " << std::setw (width) << m[1][0] << |
4104 | " " << std::setw (width) << m[1][1] << ")\n" ; |
4105 | |
4106 | s.flags (fmtfl: oldFlags); |
4107 | return s; |
4108 | } |
4109 | |
4110 | template <class T> |
4111 | std::ostream & |
4112 | operator << (std::ostream &s, const Matrix33<T> &m) |
4113 | { |
4114 | std::ios_base::fmtflags oldFlags = s.flags(); |
4115 | int width; |
4116 | |
4117 | if (s.flags() & std::ios_base::fixed) |
4118 | { |
4119 | s.setf (std::ios_base::showpoint); |
4120 | width = static_cast<int>(s.precision()) + 5; |
4121 | } |
4122 | else |
4123 | { |
4124 | s.setf (std::ios_base::scientific); |
4125 | s.setf (std::ios_base::showpoint); |
4126 | width = static_cast<int>(s.precision()) + 8; |
4127 | } |
4128 | |
4129 | s << "(" << std::setw (width) << m[0][0] << |
4130 | " " << std::setw (width) << m[0][1] << |
4131 | " " << std::setw (width) << m[0][2] << "\n" << |
4132 | |
4133 | " " << std::setw (width) << m[1][0] << |
4134 | " " << std::setw (width) << m[1][1] << |
4135 | " " << std::setw (width) << m[1][2] << "\n" << |
4136 | |
4137 | " " << std::setw (width) << m[2][0] << |
4138 | " " << std::setw (width) << m[2][1] << |
4139 | " " << std::setw (width) << m[2][2] << ")\n" ; |
4140 | |
4141 | s.flags (fmtfl: oldFlags); |
4142 | return s; |
4143 | } |
4144 | |
4145 | template <class T> |
4146 | std::ostream & |
4147 | operator << (std::ostream &s, const Matrix44<T> &m) |
4148 | { |
4149 | std::ios_base::fmtflags oldFlags = s.flags(); |
4150 | int width; |
4151 | |
4152 | if (s.flags() & std::ios_base::fixed) |
4153 | { |
4154 | s.setf (std::ios_base::showpoint); |
4155 | width = static_cast<int>(s.precision()) + 5; |
4156 | } |
4157 | else |
4158 | { |
4159 | s.setf (std::ios_base::scientific); |
4160 | s.setf (std::ios_base::showpoint); |
4161 | width = static_cast<int>(s.precision()) + 8; |
4162 | } |
4163 | |
4164 | s << "(" << std::setw (width) << m[0][0] << |
4165 | " " << std::setw (width) << m[0][1] << |
4166 | " " << std::setw (width) << m[0][2] << |
4167 | " " << std::setw (width) << m[0][3] << "\n" << |
4168 | |
4169 | " " << std::setw (width) << m[1][0] << |
4170 | " " << std::setw (width) << m[1][1] << |
4171 | " " << std::setw (width) << m[1][2] << |
4172 | " " << std::setw (width) << m[1][3] << "\n" << |
4173 | |
4174 | " " << std::setw (width) << m[2][0] << |
4175 | " " << std::setw (width) << m[2][1] << |
4176 | " " << std::setw (width) << m[2][2] << |
4177 | " " << std::setw (width) << m[2][3] << "\n" << |
4178 | |
4179 | " " << std::setw (width) << m[3][0] << |
4180 | " " << std::setw (width) << m[3][1] << |
4181 | " " << std::setw (width) << m[3][2] << |
4182 | " " << std::setw (width) << m[3][3] << ")\n" ; |
4183 | |
4184 | s.flags (fmtfl: oldFlags); |
4185 | return s; |
4186 | } |
4187 | |
4188 | |
4189 | //--------------------------------------------------------------- |
4190 | // Implementation of vector-times-matrix multiplication operators |
4191 | //--------------------------------------------------------------- |
4192 | |
4193 | template <class S, class T> |
4194 | inline const Vec2<S> & |
4195 | operator *= (Vec2<S> &v, const Matrix22<T> &m) |
4196 | { |
4197 | S x = S(v.x * m[0][0] + v.y * m[1][0]); |
4198 | S y = S(v.x * m[0][1] + v.y * m[1][1]); |
4199 | |
4200 | v.x = x; |
4201 | v.y = y; |
4202 | |
4203 | return v; |
4204 | } |
4205 | |
4206 | template <class S, class T> |
4207 | inline Vec2<S> |
4208 | operator * (const Vec2<S> &v, const Matrix22<T> &m) |
4209 | { |
4210 | S x = S(v.x * m[0][0] + v.y * m[1][0]); |
4211 | S y = S(v.x * m[0][1] + v.y * m[1][1]); |
4212 | |
4213 | return Vec2<S> (x, y); |
4214 | } |
4215 | |
4216 | template <class S, class T> |
4217 | inline const Vec2<S> & |
4218 | operator *= (Vec2<S> &v, const Matrix33<T> &m) |
4219 | { |
4220 | S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]); |
4221 | S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]); |
4222 | S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]); |
4223 | |
4224 | v.x = x / w; |
4225 | v.y = y / w; |
4226 | |
4227 | return v; |
4228 | } |
4229 | |
4230 | template <class S, class T> |
4231 | inline Vec2<S> |
4232 | operator * (const Vec2<S> &v, const Matrix33<T> &m) |
4233 | { |
4234 | S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]); |
4235 | S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]); |
4236 | S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]); |
4237 | |
4238 | return Vec2<S> (x / w, y / w); |
4239 | } |
4240 | |
4241 | |
4242 | template <class S, class T> |
4243 | inline const Vec3<S> & |
4244 | operator *= (Vec3<S> &v, const Matrix33<T> &m) |
4245 | { |
4246 | S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]); |
4247 | S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]); |
4248 | S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]); |
4249 | |
4250 | v.x = x; |
4251 | v.y = y; |
4252 | v.z = z; |
4253 | |
4254 | return v; |
4255 | } |
4256 | |
4257 | template <class S, class T> |
4258 | inline Vec3<S> |
4259 | operator * (const Vec3<S> &v, const Matrix33<T> &m) |
4260 | { |
4261 | S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]); |
4262 | S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]); |
4263 | S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]); |
4264 | |
4265 | return Vec3<S> (x, y, z); |
4266 | } |
4267 | |
4268 | |
4269 | template <class S, class T> |
4270 | inline const Vec3<S> & |
4271 | operator *= (Vec3<S> &v, const Matrix44<T> &m) |
4272 | { |
4273 | S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]); |
4274 | S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]); |
4275 | S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]); |
4276 | S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]); |
4277 | |
4278 | v.x = x / w; |
4279 | v.y = y / w; |
4280 | v.z = z / w; |
4281 | |
4282 | return v; |
4283 | } |
4284 | |
4285 | template <class S, class T> |
4286 | inline Vec3<S> |
4287 | operator * (const Vec3<S> &v, const Matrix44<T> &m) |
4288 | { |
4289 | S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]); |
4290 | S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]); |
4291 | S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]); |
4292 | S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]); |
4293 | |
4294 | return Vec3<S> (x / w, y / w, z / w); |
4295 | } |
4296 | |
4297 | |
4298 | template <class S, class T> |
4299 | inline const Vec4<S> & |
4300 | operator *= (Vec4<S> &v, const Matrix44<T> &m) |
4301 | { |
4302 | S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]); |
4303 | S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]); |
4304 | S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]); |
4305 | S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]); |
4306 | |
4307 | v.x = x; |
4308 | v.y = y; |
4309 | v.z = z; |
4310 | v.w = w; |
4311 | |
4312 | return v; |
4313 | } |
4314 | |
4315 | template <class S, class T> |
4316 | inline Vec4<S> |
4317 | operator * (const Vec4<S> &v, const Matrix44<T> &m) |
4318 | { |
4319 | S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]); |
4320 | S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]); |
4321 | S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]); |
4322 | S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]); |
4323 | |
4324 | return Vec4<S> (x, y, z, w); |
4325 | } |
4326 | |
4327 | IMATH_INTERNAL_NAMESPACE_HEADER_EXIT |
4328 | |
4329 | #endif // INCLUDED_IMATHMATRIX_H |
4330 | |