1 | /////////////////////////////////////////////////////////////////////////// |
2 | // |
3 | // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas |
4 | // Digital Ltd. LLC |
5 | // |
6 | // All rights reserved. |
7 | // |
8 | // Redistribution and use in source and binary forms, with or without |
9 | // modification, are permitted provided that the following conditions are |
10 | // met: |
11 | // * Redistributions of source code must retain the above copyright |
12 | // notice, this list of conditions and the following disclaimer. |
13 | // * Redistributions in binary form must reproduce the above |
14 | // copyright notice, this list of conditions and the following disclaimer |
15 | // in the documentation and/or other materials provided with the |
16 | // distribution. |
17 | // * Neither the name of Industrial Light & Magic nor the names of |
18 | // its contributors may be used to endorse or promote products derived |
19 | // from this software without specific prior written permission. |
20 | // |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | // |
33 | /////////////////////////////////////////////////////////////////////////// |
34 | |
35 | |
36 | #ifndef INCLUDED_IMF_ENVMAP_H |
37 | #define INCLUDED_IMF_ENVMAP_H |
38 | |
39 | //----------------------------------------------------------------------------- |
40 | // |
41 | // Environment maps |
42 | // |
43 | // Environment maps define a mapping from 3D directions to 2D |
44 | // pixel space locations. Environment maps are typically used |
45 | // in 3D rendering, for effects such as quickly approximating |
46 | // how shiny surfaces reflect their environment. |
47 | // |
48 | // Environment maps can be stored in scanline-based or in tiled |
49 | // OpenEXR files. The fact that an image is an environment map |
50 | // is indicated by the presence of an EnvmapAttribute whose name |
51 | // is "envmap". (Convenience functions to access this attribute |
52 | // are defined in header file ImfStandardAttributes.h.) |
53 | // The attribute's value defines the mapping from 3D directions |
54 | // to 2D pixel space locations. |
55 | // |
56 | // This header file defines the set of possible EnvmapAttribute |
57 | // values. |
58 | // |
59 | // For each possible EnvmapAttribute value, this header file also |
60 | // defines a set of convienience functions to convert between 3D |
61 | // directions and 2D pixel locations. |
62 | // |
63 | // Most of the convenience functions defined below require a |
64 | // dataWindow parameter. For scanline-based images, and for |
65 | // tiled images with level mode ONE_LEVEL, the dataWindow |
66 | // parameter should be set to the image's data window, as |
67 | // defined in the image header. For tiled images with level |
68 | // mode MIPMAP_LEVELS or RIPMAP_LEVELS, the data window of the |
69 | // image level that is being accessed should be used instead. |
70 | // (See the dataWindowForLevel() methods in ImfTiledInputFile.h |
71 | // and ImfTiledOutputFile.h.) |
72 | // |
73 | //----------------------------------------------------------------------------- |
74 | |
75 | #include "ImathBox.h" |
76 | #include "ImfNamespace.h" |
77 | #include "ImfExport.h" |
78 | |
79 | |
80 | OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_ENTER |
81 | |
82 | //-------------------------------- |
83 | // Supported environment map types |
84 | //-------------------------------- |
85 | |
86 | enum Envmap |
87 | { |
88 | ENVMAP_LATLONG = 0, // Latitude-longitude environment map |
89 | ENVMAP_CUBE = 1, // Cube map |
90 | |
91 | NUM_ENVMAPTYPES // Number of different environment map types |
92 | }; |
93 | |
94 | |
95 | //------------------------------------------------------------------------- |
96 | // Latitude-Longitude Map: |
97 | // |
98 | // The environment is projected onto the image using polar coordinates |
99 | // (latitude and longitude). A pixel's x coordinate corresponds to |
100 | // its longitude, and the y coordinate corresponds to its latitude. |
101 | // Pixel (dataWindow.min.x, dataWindow.min.y) has latitude +pi/2 and |
102 | // longitude +pi; pixel (dataWindow.max.x, dataWindow.max.y) has |
103 | // latitude -pi/2 and longitude -pi. |
104 | // |
105 | // In 3D space, latitudes -pi/2 and +pi/2 correspond to the negative and |
106 | // positive y direction. Latitude 0, longitude 0 points into positive |
107 | // z direction; and latitude 0, longitude pi/2 points into positive x |
108 | // direction. |
109 | // |
110 | // The size of the data window should be 2*N by N pixels (width by height), |
111 | // where N can be any integer greater than 0. |
112 | //------------------------------------------------------------------------- |
113 | |
114 | namespace LatLongMap |
115 | { |
116 | //---------------------------------------------------- |
117 | // Convert a 3D direction to a 2D vector whose x and y |
118 | // components represent the corresponding latitude |
119 | // and longitude. |
120 | //---------------------------------------------------- |
121 | |
122 | IMF_EXPORT |
123 | IMATH_NAMESPACE::V2f latLong (const IMATH_NAMESPACE::V3f &direction); |
124 | |
125 | |
126 | //-------------------------------------------------------- |
127 | // Convert the position of a pixel to a 2D vector whose |
128 | // x and y components represent the corresponding latitude |
129 | // and longitude. |
130 | //-------------------------------------------------------- |
131 | |
132 | IMF_EXPORT |
133 | IMATH_NAMESPACE::V2f latLong (const IMATH_NAMESPACE::Box2i &dataWindow, |
134 | const IMATH_NAMESPACE::V2f &pixelPosition); |
135 | |
136 | |
137 | //------------------------------------------------------------- |
138 | // Convert a 2D vector, whose x and y components represent |
139 | // longitude and latitude, into a corresponding pixel position. |
140 | //------------------------------------------------------------- |
141 | |
142 | IMF_EXPORT |
143 | IMATH_NAMESPACE::V2f pixelPosition (const IMATH_NAMESPACE::Box2i &dataWindow, |
144 | const IMATH_NAMESPACE::V2f &latLong); |
145 | |
146 | |
147 | //----------------------------------------------------- |
148 | // Convert a 3D direction vector into a corresponding |
149 | // pixel position. pixelPosition(dw,dir) is equivalent |
150 | // to pixelPosition(dw,latLong(dw,dir)). |
151 | //----------------------------------------------------- |
152 | |
153 | IMF_EXPORT |
154 | IMATH_NAMESPACE::V2f pixelPosition (const IMATH_NAMESPACE::Box2i &dataWindow, |
155 | const IMATH_NAMESPACE::V3f &direction); |
156 | |
157 | |
158 | //-------------------------------------------------------- |
159 | // Convert the position of a pixel in a latitude-longitude |
160 | // map into a corresponding 3D direction. |
161 | //-------------------------------------------------------- |
162 | |
163 | IMF_EXPORT |
164 | IMATH_NAMESPACE::V3f direction (const IMATH_NAMESPACE::Box2i &dataWindow, |
165 | const IMATH_NAMESPACE::V2f &pixelPosition); |
166 | } |
167 | |
168 | |
169 | //-------------------------------------------------------------- |
170 | // Cube Map: |
171 | // |
172 | // The environment is projected onto the six faces of an |
173 | // axis-aligned cube. The cube's faces are then arranged |
174 | // in a 2D image as shown below. |
175 | // |
176 | // 2-----------3 |
177 | // / /| |
178 | // / / | Y |
179 | // / / | | |
180 | // 6-----------7 | | |
181 | // | | | | |
182 | // | | | | |
183 | // | 0 | 1 *------- X |
184 | // | | / / |
185 | // | | / / |
186 | // | |/ / |
187 | // 4-----------5 Z |
188 | // |
189 | // dataWindow.min |
190 | // / |
191 | // / |
192 | // +-----------+ |
193 | // |3 Y 7| |
194 | // | | | |
195 | // | | | |
196 | // | ---+---Z | +X face |
197 | // | | | |
198 | // | | | |
199 | // |1 5| |
200 | // +-----------+ |
201 | // |6 Y 2| |
202 | // | | | |
203 | // | | | |
204 | // | Z---+--- | -X face |
205 | // | | | |
206 | // | | | |
207 | // |4 0| |
208 | // +-----------+ |
209 | // |6 Z 7| |
210 | // | | | |
211 | // | | | |
212 | // | ---+---X | +Y face |
213 | // | | | |
214 | // | | | |
215 | // |2 3| |
216 | // +-----------+ |
217 | // |0 1| |
218 | // | | | |
219 | // | | | |
220 | // | ---+---X | -Y face |
221 | // | | | |
222 | // | | | |
223 | // |4 Z 5| |
224 | // +-----------+ |
225 | // |7 Y 6| |
226 | // | | | |
227 | // | | | |
228 | // | X---+--- | +Z face |
229 | // | | | |
230 | // | | | |
231 | // |5 4| |
232 | // +-----------+ |
233 | // |2 Y 3| |
234 | // | | | |
235 | // | | | |
236 | // | ---+---X | -Z face |
237 | // | | | |
238 | // | | | |
239 | // |0 1| |
240 | // +-----------+ |
241 | // / |
242 | // / |
243 | // dataWindow.max |
244 | // |
245 | // The size of the data window should be N by 6*N pixels |
246 | // (width by height), where N can be any integer greater |
247 | // than 0. |
248 | // |
249 | //-------------------------------------------------------------- |
250 | |
251 | //------------------------------------ |
252 | // Names for the six faces of the cube |
253 | //------------------------------------ |
254 | |
255 | enum CubeMapFace |
256 | { |
257 | CUBEFACE_POS_X, // +X face |
258 | CUBEFACE_NEG_X, // -X face |
259 | CUBEFACE_POS_Y, // +Y face |
260 | CUBEFACE_NEG_Y, // -Y face |
261 | CUBEFACE_POS_Z, // +Z face |
262 | CUBEFACE_NEG_Z // -Z face |
263 | }; |
264 | |
265 | namespace CubeMap |
266 | { |
267 | //--------------------------------------------- |
268 | // Width and height of a cube's face, in pixels |
269 | //--------------------------------------------- |
270 | |
271 | IMF_EXPORT |
272 | int sizeOfFace (const IMATH_NAMESPACE::Box2i &dataWindow); |
273 | |
274 | |
275 | //------------------------------------------ |
276 | // Compute the region in the environment map |
277 | // that is covered by the specified face. |
278 | //------------------------------------------ |
279 | |
280 | IMF_EXPORT |
281 | IMATH_NAMESPACE::Box2i dataWindowForFace (CubeMapFace face, |
282 | const IMATH_NAMESPACE::Box2i &dataWindow); |
283 | |
284 | |
285 | //---------------------------------------------------- |
286 | // Convert the coordinates of a pixel within a face |
287 | // [in the range from (0,0) to (s-1,s-1), where |
288 | // s == sizeOfFace(dataWindow)] to pixel coordinates |
289 | // in the environment map. |
290 | //---------------------------------------------------- |
291 | |
292 | IMF_EXPORT |
293 | IMATH_NAMESPACE::V2f pixelPosition (CubeMapFace face, |
294 | const IMATH_NAMESPACE::Box2i &dataWindow, |
295 | IMATH_NAMESPACE::V2f positionInFace); |
296 | |
297 | |
298 | //-------------------------------------------------------------- |
299 | // Convert a 3D direction into a cube face, and a pixel position |
300 | // within that face. |
301 | // |
302 | // If you have a 3D direction, dir, the following code fragment |
303 | // finds the position, pos, of the corresponding pixel in an |
304 | // environment map with data window dw: |
305 | // |
306 | // CubeMapFace f; |
307 | // V2f pif, pos; |
308 | // |
309 | // faceAndPixelPosition (dir, dw, f, pif); |
310 | // pos = pixelPosition (f, dw, pif); |
311 | // |
312 | //-------------------------------------------------------------- |
313 | |
314 | IMF_EXPORT |
315 | void faceAndPixelPosition (const IMATH_NAMESPACE::V3f &direction, |
316 | const IMATH_NAMESPACE::Box2i &dataWindow, |
317 | CubeMapFace &face, |
318 | IMATH_NAMESPACE::V2f &positionInFace); |
319 | |
320 | |
321 | // -------------------------------------------------------- |
322 | // Given a cube face and a pixel position within that face, |
323 | // compute the corresponding 3D direction. |
324 | // -------------------------------------------------------- |
325 | |
326 | IMF_EXPORT |
327 | IMATH_NAMESPACE::V3f direction (CubeMapFace face, |
328 | const IMATH_NAMESPACE::Box2i &dataWindow, |
329 | const IMATH_NAMESPACE::V2f &positionInFace); |
330 | } |
331 | |
332 | |
333 | OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_EXIT |
334 | |
335 | |
336 | #endif |
337 | |