| 1 | /////////////////////////////////////////////////////////////////////////// |
| 2 | // |
| 3 | // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas |
| 4 | // Digital Ltd. LLC |
| 5 | // |
| 6 | // All rights reserved. |
| 7 | // |
| 8 | // Redistribution and use in source and binary forms, with or without |
| 9 | // modification, are permitted provided that the following conditions are |
| 10 | // met: |
| 11 | // * Redistributions of source code must retain the above copyright |
| 12 | // notice, this list of conditions and the following disclaimer. |
| 13 | // * Redistributions in binary form must reproduce the above |
| 14 | // copyright notice, this list of conditions and the following disclaimer |
| 15 | // in the documentation and/or other materials provided with the |
| 16 | // distribution. |
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
| 18 | // its contributors may be used to endorse or promote products derived |
| 19 | // from this software without specific prior written permission. |
| 20 | // |
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 | // |
| 33 | /////////////////////////////////////////////////////////////////////////// |
| 34 | |
| 35 | |
| 36 | #ifndef INCLUDED_IMF_ENVMAP_H |
| 37 | #define INCLUDED_IMF_ENVMAP_H |
| 38 | |
| 39 | //----------------------------------------------------------------------------- |
| 40 | // |
| 41 | // Environment maps |
| 42 | // |
| 43 | // Environment maps define a mapping from 3D directions to 2D |
| 44 | // pixel space locations. Environment maps are typically used |
| 45 | // in 3D rendering, for effects such as quickly approximating |
| 46 | // how shiny surfaces reflect their environment. |
| 47 | // |
| 48 | // Environment maps can be stored in scanline-based or in tiled |
| 49 | // OpenEXR files. The fact that an image is an environment map |
| 50 | // is indicated by the presence of an EnvmapAttribute whose name |
| 51 | // is "envmap". (Convenience functions to access this attribute |
| 52 | // are defined in header file ImfStandardAttributes.h.) |
| 53 | // The attribute's value defines the mapping from 3D directions |
| 54 | // to 2D pixel space locations. |
| 55 | // |
| 56 | // This header file defines the set of possible EnvmapAttribute |
| 57 | // values. |
| 58 | // |
| 59 | // For each possible EnvmapAttribute value, this header file also |
| 60 | // defines a set of convienience functions to convert between 3D |
| 61 | // directions and 2D pixel locations. |
| 62 | // |
| 63 | // Most of the convenience functions defined below require a |
| 64 | // dataWindow parameter. For scanline-based images, and for |
| 65 | // tiled images with level mode ONE_LEVEL, the dataWindow |
| 66 | // parameter should be set to the image's data window, as |
| 67 | // defined in the image header. For tiled images with level |
| 68 | // mode MIPMAP_LEVELS or RIPMAP_LEVELS, the data window of the |
| 69 | // image level that is being accessed should be used instead. |
| 70 | // (See the dataWindowForLevel() methods in ImfTiledInputFile.h |
| 71 | // and ImfTiledOutputFile.h.) |
| 72 | // |
| 73 | //----------------------------------------------------------------------------- |
| 74 | |
| 75 | #include "ImathBox.h" |
| 76 | #include "ImfNamespace.h" |
| 77 | #include "ImfExport.h" |
| 78 | |
| 79 | |
| 80 | OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_ENTER |
| 81 | |
| 82 | //-------------------------------- |
| 83 | // Supported environment map types |
| 84 | //-------------------------------- |
| 85 | |
| 86 | enum Envmap |
| 87 | { |
| 88 | ENVMAP_LATLONG = 0, // Latitude-longitude environment map |
| 89 | ENVMAP_CUBE = 1, // Cube map |
| 90 | |
| 91 | NUM_ENVMAPTYPES // Number of different environment map types |
| 92 | }; |
| 93 | |
| 94 | |
| 95 | //------------------------------------------------------------------------- |
| 96 | // Latitude-Longitude Map: |
| 97 | // |
| 98 | // The environment is projected onto the image using polar coordinates |
| 99 | // (latitude and longitude). A pixel's x coordinate corresponds to |
| 100 | // its longitude, and the y coordinate corresponds to its latitude. |
| 101 | // Pixel (dataWindow.min.x, dataWindow.min.y) has latitude +pi/2 and |
| 102 | // longitude +pi; pixel (dataWindow.max.x, dataWindow.max.y) has |
| 103 | // latitude -pi/2 and longitude -pi. |
| 104 | // |
| 105 | // In 3D space, latitudes -pi/2 and +pi/2 correspond to the negative and |
| 106 | // positive y direction. Latitude 0, longitude 0 points into positive |
| 107 | // z direction; and latitude 0, longitude pi/2 points into positive x |
| 108 | // direction. |
| 109 | // |
| 110 | // The size of the data window should be 2*N by N pixels (width by height), |
| 111 | // where N can be any integer greater than 0. |
| 112 | //------------------------------------------------------------------------- |
| 113 | |
| 114 | namespace LatLongMap |
| 115 | { |
| 116 | //---------------------------------------------------- |
| 117 | // Convert a 3D direction to a 2D vector whose x and y |
| 118 | // components represent the corresponding latitude |
| 119 | // and longitude. |
| 120 | //---------------------------------------------------- |
| 121 | |
| 122 | IMF_EXPORT |
| 123 | IMATH_NAMESPACE::V2f latLong (const IMATH_NAMESPACE::V3f &direction); |
| 124 | |
| 125 | |
| 126 | //-------------------------------------------------------- |
| 127 | // Convert the position of a pixel to a 2D vector whose |
| 128 | // x and y components represent the corresponding latitude |
| 129 | // and longitude. |
| 130 | //-------------------------------------------------------- |
| 131 | |
| 132 | IMF_EXPORT |
| 133 | IMATH_NAMESPACE::V2f latLong (const IMATH_NAMESPACE::Box2i &dataWindow, |
| 134 | const IMATH_NAMESPACE::V2f &pixelPosition); |
| 135 | |
| 136 | |
| 137 | //------------------------------------------------------------- |
| 138 | // Convert a 2D vector, whose x and y components represent |
| 139 | // longitude and latitude, into a corresponding pixel position. |
| 140 | //------------------------------------------------------------- |
| 141 | |
| 142 | IMF_EXPORT |
| 143 | IMATH_NAMESPACE::V2f pixelPosition (const IMATH_NAMESPACE::Box2i &dataWindow, |
| 144 | const IMATH_NAMESPACE::V2f &latLong); |
| 145 | |
| 146 | |
| 147 | //----------------------------------------------------- |
| 148 | // Convert a 3D direction vector into a corresponding |
| 149 | // pixel position. pixelPosition(dw,dir) is equivalent |
| 150 | // to pixelPosition(dw,latLong(dw,dir)). |
| 151 | //----------------------------------------------------- |
| 152 | |
| 153 | IMF_EXPORT |
| 154 | IMATH_NAMESPACE::V2f pixelPosition (const IMATH_NAMESPACE::Box2i &dataWindow, |
| 155 | const IMATH_NAMESPACE::V3f &direction); |
| 156 | |
| 157 | |
| 158 | //-------------------------------------------------------- |
| 159 | // Convert the position of a pixel in a latitude-longitude |
| 160 | // map into a corresponding 3D direction. |
| 161 | //-------------------------------------------------------- |
| 162 | |
| 163 | IMF_EXPORT |
| 164 | IMATH_NAMESPACE::V3f direction (const IMATH_NAMESPACE::Box2i &dataWindow, |
| 165 | const IMATH_NAMESPACE::V2f &pixelPosition); |
| 166 | } |
| 167 | |
| 168 | |
| 169 | //-------------------------------------------------------------- |
| 170 | // Cube Map: |
| 171 | // |
| 172 | // The environment is projected onto the six faces of an |
| 173 | // axis-aligned cube. The cube's faces are then arranged |
| 174 | // in a 2D image as shown below. |
| 175 | // |
| 176 | // 2-----------3 |
| 177 | // / /| |
| 178 | // / / | Y |
| 179 | // / / | | |
| 180 | // 6-----------7 | | |
| 181 | // | | | | |
| 182 | // | | | | |
| 183 | // | 0 | 1 *------- X |
| 184 | // | | / / |
| 185 | // | | / / |
| 186 | // | |/ / |
| 187 | // 4-----------5 Z |
| 188 | // |
| 189 | // dataWindow.min |
| 190 | // / |
| 191 | // / |
| 192 | // +-----------+ |
| 193 | // |3 Y 7| |
| 194 | // | | | |
| 195 | // | | | |
| 196 | // | ---+---Z | +X face |
| 197 | // | | | |
| 198 | // | | | |
| 199 | // |1 5| |
| 200 | // +-----------+ |
| 201 | // |6 Y 2| |
| 202 | // | | | |
| 203 | // | | | |
| 204 | // | Z---+--- | -X face |
| 205 | // | | | |
| 206 | // | | | |
| 207 | // |4 0| |
| 208 | // +-----------+ |
| 209 | // |6 Z 7| |
| 210 | // | | | |
| 211 | // | | | |
| 212 | // | ---+---X | +Y face |
| 213 | // | | | |
| 214 | // | | | |
| 215 | // |2 3| |
| 216 | // +-----------+ |
| 217 | // |0 1| |
| 218 | // | | | |
| 219 | // | | | |
| 220 | // | ---+---X | -Y face |
| 221 | // | | | |
| 222 | // | | | |
| 223 | // |4 Z 5| |
| 224 | // +-----------+ |
| 225 | // |7 Y 6| |
| 226 | // | | | |
| 227 | // | | | |
| 228 | // | X---+--- | +Z face |
| 229 | // | | | |
| 230 | // | | | |
| 231 | // |5 4| |
| 232 | // +-----------+ |
| 233 | // |2 Y 3| |
| 234 | // | | | |
| 235 | // | | | |
| 236 | // | ---+---X | -Z face |
| 237 | // | | | |
| 238 | // | | | |
| 239 | // |0 1| |
| 240 | // +-----------+ |
| 241 | // / |
| 242 | // / |
| 243 | // dataWindow.max |
| 244 | // |
| 245 | // The size of the data window should be N by 6*N pixels |
| 246 | // (width by height), where N can be any integer greater |
| 247 | // than 0. |
| 248 | // |
| 249 | //-------------------------------------------------------------- |
| 250 | |
| 251 | //------------------------------------ |
| 252 | // Names for the six faces of the cube |
| 253 | //------------------------------------ |
| 254 | |
| 255 | enum CubeMapFace |
| 256 | { |
| 257 | CUBEFACE_POS_X, // +X face |
| 258 | CUBEFACE_NEG_X, // -X face |
| 259 | CUBEFACE_POS_Y, // +Y face |
| 260 | CUBEFACE_NEG_Y, // -Y face |
| 261 | CUBEFACE_POS_Z, // +Z face |
| 262 | CUBEFACE_NEG_Z // -Z face |
| 263 | }; |
| 264 | |
| 265 | namespace CubeMap |
| 266 | { |
| 267 | //--------------------------------------------- |
| 268 | // Width and height of a cube's face, in pixels |
| 269 | //--------------------------------------------- |
| 270 | |
| 271 | IMF_EXPORT |
| 272 | int sizeOfFace (const IMATH_NAMESPACE::Box2i &dataWindow); |
| 273 | |
| 274 | |
| 275 | //------------------------------------------ |
| 276 | // Compute the region in the environment map |
| 277 | // that is covered by the specified face. |
| 278 | //------------------------------------------ |
| 279 | |
| 280 | IMF_EXPORT |
| 281 | IMATH_NAMESPACE::Box2i dataWindowForFace (CubeMapFace face, |
| 282 | const IMATH_NAMESPACE::Box2i &dataWindow); |
| 283 | |
| 284 | |
| 285 | //---------------------------------------------------- |
| 286 | // Convert the coordinates of a pixel within a face |
| 287 | // [in the range from (0,0) to (s-1,s-1), where |
| 288 | // s == sizeOfFace(dataWindow)] to pixel coordinates |
| 289 | // in the environment map. |
| 290 | //---------------------------------------------------- |
| 291 | |
| 292 | IMF_EXPORT |
| 293 | IMATH_NAMESPACE::V2f pixelPosition (CubeMapFace face, |
| 294 | const IMATH_NAMESPACE::Box2i &dataWindow, |
| 295 | IMATH_NAMESPACE::V2f positionInFace); |
| 296 | |
| 297 | |
| 298 | //-------------------------------------------------------------- |
| 299 | // Convert a 3D direction into a cube face, and a pixel position |
| 300 | // within that face. |
| 301 | // |
| 302 | // If you have a 3D direction, dir, the following code fragment |
| 303 | // finds the position, pos, of the corresponding pixel in an |
| 304 | // environment map with data window dw: |
| 305 | // |
| 306 | // CubeMapFace f; |
| 307 | // V2f pif, pos; |
| 308 | // |
| 309 | // faceAndPixelPosition (dir, dw, f, pif); |
| 310 | // pos = pixelPosition (f, dw, pif); |
| 311 | // |
| 312 | //-------------------------------------------------------------- |
| 313 | |
| 314 | IMF_EXPORT |
| 315 | void faceAndPixelPosition (const IMATH_NAMESPACE::V3f &direction, |
| 316 | const IMATH_NAMESPACE::Box2i &dataWindow, |
| 317 | CubeMapFace &face, |
| 318 | IMATH_NAMESPACE::V2f &positionInFace); |
| 319 | |
| 320 | |
| 321 | // -------------------------------------------------------- |
| 322 | // Given a cube face and a pixel position within that face, |
| 323 | // compute the corresponding 3D direction. |
| 324 | // -------------------------------------------------------- |
| 325 | |
| 326 | IMF_EXPORT |
| 327 | IMATH_NAMESPACE::V3f direction (CubeMapFace face, |
| 328 | const IMATH_NAMESPACE::Box2i &dataWindow, |
| 329 | const IMATH_NAMESPACE::V2f &positionInFace); |
| 330 | } |
| 331 | |
| 332 | |
| 333 | OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_EXIT |
| 334 | |
| 335 | |
| 336 | #endif |
| 337 | |