1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* |
3 | * The ARCv2 backend of Just-In-Time compiler for eBPF bytecode. |
4 | * |
5 | * Copyright (c) 2024 Synopsys Inc. |
6 | * Author: Shahab Vahedi <shahab@synopsys.com> |
7 | */ |
8 | #include <linux/bug.h> |
9 | #include "bpf_jit.h" |
10 | |
11 | /* ARC core registers. */ |
12 | enum { |
13 | ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5, |
14 | ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11, |
15 | ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17, |
16 | ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23, |
17 | ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK, |
18 | ARC_R_30, ARC_R_BLINK, |
19 | /* |
20 | * Having ARC_R_IMM encoded as source register means there is an |
21 | * immediate that must be interpreted from the next 4 bytes. If |
22 | * encoded as the destination register though, it implies that the |
23 | * output of the operation is not assigned to any register. The |
24 | * latter is helpful if we only care about updating the CPU status |
25 | * flags. |
26 | */ |
27 | ARC_R_IMM = 62 |
28 | }; |
29 | |
30 | /* |
31 | * Remarks about the rationale behind the chosen mapping: |
32 | * |
33 | * - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to |
34 | * argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last |
35 | * argument register in the ABI. Therefore BPF_REG_5, as the fifth |
36 | * argument, must be pushed onto the stack. This is a must for calling |
37 | * in-kernel functions. |
38 | * |
39 | * - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0) |
40 | * for 64-bit results. However, because they're already used for BPF_REG_1, |
41 | * the next available scratch registers, r8 and r9, are the best candidates |
42 | * for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result |
43 | * is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to |
44 | * (r1,r0). |
45 | * It is worth mentioning that scratch registers are the best choice for |
46 | * BPF_REG_0, because it is very popular in BPF instruction encoding. |
47 | * |
48 | * - JIT_REG_TMP is an artifact needed to translate some BPF instructions. |
49 | * Its life span is one single BPF instruction. Since during the |
50 | * analyze_reg_usage(), it is not known if temporary registers are used, |
51 | * it is mapped to ARC's scratch registers: r10 and r11. Therefore, they |
52 | * don't matter in analysing phase and don't need saving. This temporary |
53 | * register is added as yet another index in the bpf2arc array, so it will |
54 | * unfold like the rest of registers during the code generation process. |
55 | * |
56 | * - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from |
57 | * (r15,r14) register pair. The (r13,r12) is not a good choice, because |
58 | * in ARCv2 ABI, r12 is not a callee-saved register and this can cause |
59 | * problem when calling an in-kernel function. Theoretically, the mapping |
60 | * could start from (r14,r13), but it is not a conventional ARCv2 register |
61 | * pair. To have a future proof design, I opted for this arrangement. |
62 | * If/when we decide to add ARCv2 instructions that do use register pairs, |
63 | * the mapping, hopefully, doesn't need to be revisited. |
64 | */ |
65 | static const u8 bpf2arc[][2] = { |
66 | /* Return value from in-kernel function, and exit value from eBPF */ |
67 | [BPF_REG_0] = {ARC_R_8, ARC_R_9}, |
68 | /* Arguments from eBPF program to in-kernel function */ |
69 | [BPF_REG_1] = {ARC_R_0, ARC_R_1}, |
70 | [BPF_REG_2] = {ARC_R_2, ARC_R_3}, |
71 | [BPF_REG_3] = {ARC_R_4, ARC_R_5}, |
72 | [BPF_REG_4] = {ARC_R_6, ARC_R_7}, |
73 | /* Remaining arguments, to be passed on the stack per 32-bit ABI */ |
74 | [BPF_REG_5] = {ARC_R_22, ARC_R_23}, |
75 | /* Callee-saved registers that in-kernel function will preserve */ |
76 | [BPF_REG_6] = {ARC_R_14, ARC_R_15}, |
77 | [BPF_REG_7] = {ARC_R_16, ARC_R_17}, |
78 | [BPF_REG_8] = {ARC_R_18, ARC_R_19}, |
79 | [BPF_REG_9] = {ARC_R_20, ARC_R_21}, |
80 | /* Read-only frame pointer to access the eBPF stack. 32-bit only. */ |
81 | [BPF_REG_FP] = {ARC_R_FP, }, |
82 | /* Register for blinding constants */ |
83 | [BPF_REG_AX] = {ARC_R_24, ARC_R_25}, |
84 | /* Temporary registers for internal use */ |
85 | [JIT_REG_TMP] = {ARC_R_10, ARC_R_11} |
86 | }; |
87 | |
88 | #define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13 |
89 | #define ARC_CALLEE_SAVED_REG_LAST ARC_R_25 |
90 | |
91 | #define REG_LO(r) (bpf2arc[(r)][0]) |
92 | #define REG_HI(r) (bpf2arc[(r)][1]) |
93 | |
94 | /* |
95 | * To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which, |
96 | * the stack needs to be restored by ARG5_SIZE. |
97 | */ |
98 | #define ARG5_SIZE 8 |
99 | |
100 | /* Instruction lengths in bytes. */ |
101 | enum { |
102 | INSN_len_normal = 4, /* Normal instructions length. */ |
103 | INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */ |
104 | }; |
105 | |
106 | /* ZZ defines the size of operation in encodings that it is used. */ |
107 | enum { |
108 | ZZ_1_byte = 1, |
109 | ZZ_2_byte = 2, |
110 | ZZ_4_byte = 0, |
111 | ZZ_8_byte = 3 |
112 | }; |
113 | |
114 | /* |
115 | * AA is mostly about address write back mode. It determines if the |
116 | * address in question should be updated before usage or after: |
117 | * addr += offset; data = *addr; |
118 | * data = *addr; addr += offset; |
119 | * |
120 | * In "scaling" mode, the effective address will become the sum |
121 | * of "address" + "index"*"size". The "size" is specified by the |
122 | * "ZZ" field. There is no write back when AA is set for scaling: |
123 | * data = *(addr + offset<<zz) |
124 | */ |
125 | enum { |
126 | AA_none = 0, |
127 | AA_pre = 1, /* in assembly known as "a/aw". */ |
128 | AA_post = 2, /* in assembly known as "ab". */ |
129 | AA_scale = 3 /* in assembly known as "as". */ |
130 | }; |
131 | |
132 | /* X flag determines the mode of extension. */ |
133 | enum { |
134 | X_zero = 0, |
135 | X_sign = 1 |
136 | }; |
137 | |
138 | /* Condition codes. */ |
139 | enum { |
140 | CC_always = 0, /* condition is true all the time */ |
141 | CC_equal = 1, /* if status32.z flag is set */ |
142 | CC_unequal = 2, /* if status32.z flag is clear */ |
143 | CC_positive = 3, /* if status32.n flag is clear */ |
144 | CC_negative = 4, /* if status32.n flag is set */ |
145 | CC_less_u = 5, /* less than (unsigned) */ |
146 | CC_less_eq_u = 14, /* less than or equal (unsigned) */ |
147 | CC_great_eq_u = 6, /* greater than or equal (unsigned) */ |
148 | CC_great_u = 13, /* greater than (unsigned) */ |
149 | CC_less_s = 11, /* less than (signed) */ |
150 | CC_less_eq_s = 12, /* less than or equal (signed) */ |
151 | CC_great_eq_s = 10, /* greater than or equal (signed) */ |
152 | CC_great_s = 9 /* greater than (signed) */ |
153 | }; |
154 | |
155 | #define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0) |
156 | #define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100) |
157 | #define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800) |
158 | #define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000) |
159 | #define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000) |
160 | |
161 | /* Operands in most of the encodings. */ |
162 | #define OP_A(x) ((x) & 0x03f) |
163 | #define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9)) |
164 | #define OP_C(x) (((x) & 0x03f) << 6) |
165 | #define OP_IMM (OP_C(ARC_R_IMM)) |
166 | #define COND(x) (OP_A((x) & 31)) |
167 | #define FLAG(x) (((x) & 1) << 15) |
168 | |
169 | /* |
170 | * The 4-byte encoding of "mov b,c": |
171 | * |
172 | * 0010_0bbb 0000_1010 0BBB_cccc cc00_0000 |
173 | * |
174 | * b: BBBbbb destination register |
175 | * c: cccccc source register |
176 | */ |
177 | #define OPC_MOV 0x200a0000 |
178 | |
179 | /* |
180 | * The 4-byte encoding of "mov b,s12" (used for moving small immediates): |
181 | * |
182 | * 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS |
183 | * |
184 | * b: BBBbbb destination register |
185 | * s: SSSSSSssssss source immediate (signed) |
186 | */ |
187 | #define OPC_MOVI 0x208a0000 |
188 | #define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6)) |
189 | |
190 | /* |
191 | * The 4-byte encoding of "mov[.qq] b,u6", used for conditional |
192 | * moving of even smaller immediates: |
193 | * |
194 | * 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq |
195 | * |
196 | * qq: qqqqq condition code |
197 | * i: If set, c is considered a 6-bit immediate, else a reg. |
198 | * |
199 | * b: BBBbbb destination register |
200 | * c: cccccc source |
201 | */ |
202 | #define OPC_MOV_CC 0x20ca0000 |
203 | #define MOV_CC_I BIT(5) |
204 | #define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I) |
205 | |
206 | /* |
207 | * The 4-byte encoding of "sexb b,c" (8-bit sign extension): |
208 | * |
209 | * 0010_0bbb 0010_1111 0BBB_cccc cc00_0101 |
210 | * |
211 | * b: BBBbbb destination register |
212 | * c: cccccc source register |
213 | */ |
214 | #define OPC_SEXB 0x202f0005 |
215 | |
216 | /* |
217 | * The 4-byte encoding of "sexh b,c" (16-bit sign extension): |
218 | * |
219 | * 0010_0bbb 0010_1111 0BBB_cccc cc00_0110 |
220 | * |
221 | * b: BBBbbb destination register |
222 | * c: cccccc source register |
223 | */ |
224 | #define OPC_SEXH 0x202f0006 |
225 | |
226 | /* |
227 | * The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]": |
228 | * |
229 | * 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc |
230 | * |
231 | * zz: size mode |
232 | * aa: address write back mode |
233 | * x: extension mode |
234 | * |
235 | * s9: S_ssss_ssss 9-bit signed number |
236 | * b: BBBbbb source reg for address |
237 | * c: cccccc destination register |
238 | */ |
239 | #define OPC_LOAD 0x10000000 |
240 | #define LOAD_X(x) ((x) << 6) |
241 | #define LOAD_ZZ(x) ((x) << 7) |
242 | #define LOAD_AA(x) ((x) << 9) |
243 | #define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7)) |
244 | #define LOAD_C(x) ((x) & 0x03f) |
245 | /* Unsigned and signed loads. */ |
246 | #define OPC_LDU (OPC_LOAD | LOAD_X(X_zero)) |
247 | #define OPC_LDS (OPC_LOAD | LOAD_X(X_sign)) |
248 | /* 32-bit load. */ |
249 | #define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte)) |
250 | /* "pop reg" is merely a "ld.ab reg,[sp,4]". */ |
251 | #define OPC_POP \ |
252 | (OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP)) |
253 | |
254 | /* |
255 | * The 4-byte encoding of "st[zz][.aa] c,[b,s9]": |
256 | * |
257 | * 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0 |
258 | * |
259 | * zz: zz size mode |
260 | * aa: aa address write back mode |
261 | * |
262 | * s9: S_ssss_ssss 9-bit signed number |
263 | * b: BBBbbb source reg for address |
264 | * c: cccccc source reg to be stored |
265 | */ |
266 | #define OPC_STORE 0x18000000 |
267 | #define STORE_ZZ(x) ((x) << 1) |
268 | #define STORE_AA(x) ((x) << 3) |
269 | #define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7)) |
270 | /* 32-bit store. */ |
271 | #define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte)) |
272 | /* "push reg" is merely a "st.aw reg,[sp,-4]". */ |
273 | #define OPC_PUSH \ |
274 | (OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP)) |
275 | |
276 | /* |
277 | * The 4-byte encoding of "add a,b,c": |
278 | * |
279 | * 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa |
280 | * |
281 | * f: indicates if flags (carry, etc.) should be updated |
282 | * i: If set, c is considered a 6-bit immediate, else a reg. |
283 | * |
284 | * a: aaaaaa result |
285 | * b: BBBbbb the 1st input operand |
286 | * c: cccccc the 2nd input operand |
287 | */ |
288 | #define OPC_ADD 0x20000000 |
289 | /* Addition with updating the pertinent flags in "status32" register. */ |
290 | #define OPC_ADDF (OPC_ADD | FLAG(1)) |
291 | #define ADDI BIT(22) |
292 | #define ADDI_U6(x) OP_C(x) |
293 | #define OPC_ADDI (OPC_ADD | ADDI) |
294 | #define OPC_ADDIF (OPC_ADDI | FLAG(1)) |
295 | #define OPC_ADD_I (OPC_ADD | OP_IMM) |
296 | |
297 | /* |
298 | * The 4-byte encoding of "adc a,b,c" (addition with carry): |
299 | * |
300 | * 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa |
301 | * |
302 | * i: if set, c is considered a 6-bit immediate, else a reg. |
303 | * |
304 | * a: aaaaaa result |
305 | * b: BBBbbb the 1st input operand |
306 | * c: cccccc the 2nd input operand |
307 | */ |
308 | #define OPC_ADC 0x20010000 |
309 | #define ADCI BIT(22) |
310 | #define ADCI_U6(x) OP_C(x) |
311 | #define OPC_ADCI (OPC_ADC | ADCI) |
312 | |
313 | /* |
314 | * The 4-byte encoding of "sub a,b,c": |
315 | * |
316 | * 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa |
317 | * |
318 | * f: indicates if flags (carry, etc.) should be updated |
319 | * i: if set, c is considered a 6-bit immediate, else a reg. |
320 | * |
321 | * a: aaaaaa result |
322 | * b: BBBbbb the 1st input operand |
323 | * c: cccccc the 2nd input operand |
324 | */ |
325 | #define OPC_SUB 0x20020000 |
326 | /* Subtraction with updating the pertinent flags in "status32" register. */ |
327 | #define OPC_SUBF (OPC_SUB | FLAG(1)) |
328 | #define SUBI BIT(22) |
329 | #define SUBI_U6(x) OP_C(x) |
330 | #define OPC_SUBI (OPC_SUB | SUBI) |
331 | #define OPC_SUB_I (OPC_SUB | OP_IMM) |
332 | |
333 | /* |
334 | * The 4-byte encoding of "sbc a,b,c" (subtraction with carry): |
335 | * |
336 | * 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa |
337 | * |
338 | * f: indicates if flags (carry, etc.) should be updated |
339 | * |
340 | * a: aaaaaa result |
341 | * b: BBBbbb the 1st input operand |
342 | * c: cccccc the 2nd input operand |
343 | */ |
344 | #define OPC_SBC 0x20030000 |
345 | |
346 | /* |
347 | * The 4-byte encoding of "cmp[.qq] b,c": |
348 | * |
349 | * 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq |
350 | * |
351 | * qq: qqqqq condition code |
352 | * |
353 | * b: BBBbbb the 1st operand |
354 | * c: cccccc the 2nd operand |
355 | */ |
356 | #define OPC_CMP 0x20cc8000 |
357 | |
358 | /* |
359 | * The 4-byte encoding of "neg a,b": |
360 | * |
361 | * 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa |
362 | * |
363 | * a: aaaaaa result |
364 | * b: BBBbbb input |
365 | */ |
366 | #define OPC_NEG 0x204e0000 |
367 | |
368 | /* |
369 | * The 4-byte encoding of "mpy a,b,c". |
370 | * mpy is the signed 32-bit multiplication with the lower 32-bit |
371 | * of the product as the result. |
372 | * |
373 | * 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa |
374 | * |
375 | * a: aaaaaa result |
376 | * b: BBBbbb the 1st input operand |
377 | * c: cccccc the 2nd input operand |
378 | */ |
379 | #define OPC_MPY 0x201a0000 |
380 | #define OPC_MPYI (OPC_MPY | OP_IMM) |
381 | |
382 | /* |
383 | * The 4-byte encoding of "mpydu a,b,c". |
384 | * mpydu is the unsigned 32-bit multiplication with the lower 32-bit of |
385 | * the product in register "a" and the higher 32-bit in register "a+1". |
386 | * |
387 | * 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa |
388 | * |
389 | * a: aaaaaa 64-bit result in registers (R_a+1,R_a) |
390 | * b: BBBbbb the 1st input operand |
391 | * c: cccccc the 2nd input operand |
392 | */ |
393 | #define OPC_MPYDU 0x28190000 |
394 | #define OPC_MPYDUI (OPC_MPYDU | OP_IMM) |
395 | |
396 | /* |
397 | * The 4-byte encoding of "divu a,b,c" (unsigned division): |
398 | * |
399 | * 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa |
400 | * |
401 | * a: aaaaaa result (quotient) |
402 | * b: BBBbbb the 1st input operand |
403 | * c: cccccc the 2nd input operand (divisor) |
404 | */ |
405 | #define OPC_DIVU 0x28050000 |
406 | #define OPC_DIVUI (OPC_DIVU | OP_IMM) |
407 | |
408 | /* |
409 | * The 4-byte encoding of "div a,b,c" (signed division): |
410 | * |
411 | * 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa |
412 | * |
413 | * a: aaaaaa result (quotient) |
414 | * b: BBBbbb the 1st input operand |
415 | * c: cccccc the 2nd input operand (divisor) |
416 | */ |
417 | #define OPC_DIVS 0x28040000 |
418 | #define OPC_DIVSI (OPC_DIVS | OP_IMM) |
419 | |
420 | /* |
421 | * The 4-byte encoding of "remu a,b,c" (unsigned remainder): |
422 | * |
423 | * 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa |
424 | * |
425 | * a: aaaaaa result (remainder) |
426 | * b: BBBbbb the 1st input operand |
427 | * c: cccccc the 2nd input operand (divisor) |
428 | */ |
429 | #define OPC_REMU 0x28090000 |
430 | #define OPC_REMUI (OPC_REMU | OP_IMM) |
431 | |
432 | /* |
433 | * The 4-byte encoding of "rem a,b,c" (signed remainder): |
434 | * |
435 | * 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa |
436 | * |
437 | * a: aaaaaa result (remainder) |
438 | * b: BBBbbb the 1st input operand |
439 | * c: cccccc the 2nd input operand (divisor) |
440 | */ |
441 | #define OPC_REMS 0x28080000 |
442 | #define OPC_REMSI (OPC_REMS | OP_IMM) |
443 | |
444 | /* |
445 | * The 4-byte encoding of "and a,b,c": |
446 | * |
447 | * 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa |
448 | * |
449 | * f: indicates if zero and negative flags should be updated |
450 | * |
451 | * a: aaaaaa result |
452 | * b: BBBbbb the 1st input operand |
453 | * c: cccccc the 2nd input operand |
454 | */ |
455 | #define OPC_AND 0x20040000 |
456 | #define OPC_ANDI (OPC_AND | OP_IMM) |
457 | |
458 | /* |
459 | * The 4-byte encoding of "tst[.qq] b,c". |
460 | * Checks if the two input operands have any bit set at the same |
461 | * position. |
462 | * |
463 | * 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq |
464 | * |
465 | * qq: qqqqq condition code |
466 | * |
467 | * b: BBBbbb the 1st input operand |
468 | * c: cccccc the 2nd input operand |
469 | */ |
470 | #define OPC_TST 0x20cb8000 |
471 | |
472 | /* |
473 | * The 4-byte encoding of "or a,b,c": |
474 | * |
475 | * 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa |
476 | * |
477 | * a: aaaaaa result |
478 | * b: BBBbbb the 1st input operand |
479 | * c: cccccc the 2nd input operand |
480 | */ |
481 | #define OPC_OR 0x20050000 |
482 | #define OPC_ORI (OPC_OR | OP_IMM) |
483 | |
484 | /* |
485 | * The 4-byte encoding of "xor a,b,c": |
486 | * |
487 | * 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa |
488 | * |
489 | * a: aaaaaa result |
490 | * b: BBBbbb the 1st input operand |
491 | * c: cccccc the 2nd input operand |
492 | */ |
493 | #define OPC_XOR 0x20070000 |
494 | #define OPC_XORI (OPC_XOR | OP_IMM) |
495 | |
496 | /* |
497 | * The 4-byte encoding of "not b,c": |
498 | * |
499 | * 0010_0bbb 0010_1111 0BBB_cccc cc00_1010 |
500 | * |
501 | * b: BBBbbb result |
502 | * c: cccccc input |
503 | */ |
504 | #define OPC_NOT 0x202f000a |
505 | |
506 | /* |
507 | * The 4-byte encoding of "btst b,u6": |
508 | * |
509 | * 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000 |
510 | * |
511 | * b: BBBbbb input number to check |
512 | * u6: uuuuuu 6-bit unsigned number specifying bit position to check |
513 | */ |
514 | #define OPC_BTSTU6 0x20518000 |
515 | #define BTST_U6(x) (OP_C((x) & 63)) |
516 | |
517 | /* |
518 | * The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left): |
519 | * |
520 | * 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa |
521 | * |
522 | * i: if set, c is considered a 5-bit immediate, else a reg. |
523 | * |
524 | * b: BBBbbb result and the first operand (number to be shifted) |
525 | * c: cccccc amount to be shifted |
526 | */ |
527 | #define OPC_ASL 0x28000000 |
528 | #define ASL_I BIT(22) |
529 | #define ASLI_U6(x) OP_C((x) & 31) |
530 | #define OPC_ASLI (OPC_ASL | ASL_I) |
531 | |
532 | /* |
533 | * The 4-byte encoding of "asr a,b,c" (arithmetic shift right): |
534 | * |
535 | * 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa |
536 | * |
537 | * i: if set, c is considered a 6-bit immediate, else a reg. |
538 | * |
539 | * a: aaaaaa result |
540 | * b: BBBbbb first input: number to be shifted |
541 | * c: cccccc second input: amount to be shifted |
542 | */ |
543 | #define OPC_ASR 0x28020000 |
544 | #define ASR_I ASL_I |
545 | #define ASRI_U6(x) ASLI_U6(x) |
546 | #define OPC_ASRI (OPC_ASR | ASR_I) |
547 | |
548 | /* |
549 | * The 4-byte encoding of "lsr a,b,c" (logical shift right): |
550 | * |
551 | * 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa |
552 | * |
553 | * i: if set, c is considered a 6-bit immediate, else a reg. |
554 | * |
555 | * a: aaaaaa result |
556 | * b: BBBbbb first input: number to be shifted |
557 | * c: cccccc second input: amount to be shifted |
558 | */ |
559 | #define OPC_LSR 0x28010000 |
560 | #define LSR_I ASL_I |
561 | #define LSRI_U6(x) ASLI_U6(x) |
562 | #define OPC_LSRI (OPC_LSR | LSR_I) |
563 | |
564 | /* |
565 | * The 4-byte encoding of "swape b,c": |
566 | * |
567 | * 0010_1bbb 0010_1111 0bbb_cccc cc00_1001 |
568 | * |
569 | * b: BBBbbb destination register |
570 | * c: cccccc source register |
571 | */ |
572 | #define OPC_SWAPE 0x282f0009 |
573 | |
574 | /* |
575 | * Encoding for jump to an address in register: |
576 | * j reg_c |
577 | * |
578 | * 0010_0000 1110_0000 0000_cccc cc00_0000 |
579 | * |
580 | * c: cccccc register holding the destination address |
581 | */ |
582 | #define OPC_JMP 0x20e00000 |
583 | /* Jump to "branch-and-link" register, which effectively is a "return". */ |
584 | #define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK)) |
585 | |
586 | /* |
587 | * Encoding for jump-and-link to an address in register: |
588 | * jl reg_c |
589 | * |
590 | * 0010_0000 0010_0010 0000_cccc cc00_0000 |
591 | * |
592 | * c: cccccc register holding the destination address |
593 | */ |
594 | #define OPC_JL 0x20220000 |
595 | |
596 | /* |
597 | * Encoding for (conditional) branch to an offset from the current location |
598 | * that is word aligned: (PC & 0xffff_fffc) + s21 |
599 | * B[qq] s21 |
600 | * |
601 | * 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq |
602 | * |
603 | * qq: qqqqq condition code |
604 | * s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed) |
605 | * |
606 | * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore, |
607 | * it should be a multiple of 2. Hence, there is an implied '0' bit at its |
608 | * LSB: S_SSSS SSSS_Ssss ssss_sss0 |
609 | */ |
610 | #define OPC_BCC 0x00000000 |
611 | #define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5)) |
612 | |
613 | /* |
614 | * Encoding for unconditional branch to an offset from the current location |
615 | * that is word aligned: (PC & 0xffff_fffc) + s25 |
616 | * B s25 |
617 | * |
618 | * 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT |
619 | * |
620 | * s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed) |
621 | * |
622 | * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore, |
623 | * it should be a multiple of 2. Hence, there is an implied '0' bit at its |
624 | * LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0 |
625 | */ |
626 | #define OPC_B 0x00010000 |
627 | #define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d)) |
628 | |
629 | static inline void emit_2_bytes(u8 *buf, u16 bytes) |
630 | { |
631 | *((u16 *)buf) = bytes; |
632 | } |
633 | |
634 | static inline void emit_4_bytes(u8 *buf, u32 bytes) |
635 | { |
636 | emit_2_bytes(buf, bytes: bytes >> 16); |
637 | emit_2_bytes(buf: buf + 2, bytes: bytes & 0xffff); |
638 | } |
639 | |
640 | static inline u8 bpf_to_arc_size(u8 size) |
641 | { |
642 | switch (size) { |
643 | case BPF_B: |
644 | return ZZ_1_byte; |
645 | case BPF_H: |
646 | return ZZ_2_byte; |
647 | case BPF_W: |
648 | return ZZ_4_byte; |
649 | case BPF_DW: |
650 | return ZZ_8_byte; |
651 | default: |
652 | return ZZ_4_byte; |
653 | } |
654 | } |
655 | |
656 | /************** Encoders (Deal with ARC regs) ************/ |
657 | |
658 | /* Move an immediate to register with a 4-byte instruction. */ |
659 | static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm) |
660 | { |
661 | const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm); |
662 | |
663 | if (buf) |
664 | emit_4_bytes(buf, bytes: insn); |
665 | return INSN_len_normal; |
666 | } |
667 | |
668 | /* rd <- rs */ |
669 | static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs) |
670 | { |
671 | const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs); |
672 | |
673 | if (buf) |
674 | emit_4_bytes(buf, bytes: insn); |
675 | return INSN_len_normal; |
676 | } |
677 | |
678 | /* The emitted code may have different sizes based on "imm". */ |
679 | static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm) |
680 | { |
681 | const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM; |
682 | |
683 | if (IN_S12_RANGE(imm)) |
684 | return arc_movi_r(buf, reg: rd, imm); |
685 | |
686 | if (buf) { |
687 | emit_4_bytes(buf, bytes: insn); |
688 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
689 | } |
690 | return INSN_len_normal + INSN_len_imm; |
691 | } |
692 | |
693 | /* The emitted code will always have the same size (8). */ |
694 | static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm) |
695 | { |
696 | const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM; |
697 | |
698 | if (buf) { |
699 | emit_4_bytes(buf, bytes: insn); |
700 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
701 | } |
702 | return INSN_len_normal + INSN_len_imm; |
703 | } |
704 | |
705 | /* Conditional move. */ |
706 | static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs) |
707 | { |
708 | const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc); |
709 | |
710 | if (buf) |
711 | emit_4_bytes(buf, bytes: insn); |
712 | return INSN_len_normal; |
713 | } |
714 | |
715 | /* Conditional move of a small immediate to rd. */ |
716 | static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm) |
717 | { |
718 | const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc); |
719 | |
720 | if (buf) |
721 | emit_4_bytes(buf, bytes: insn); |
722 | return INSN_len_normal; |
723 | } |
724 | |
725 | /* Sign extension from a byte. */ |
726 | static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs) |
727 | { |
728 | const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs); |
729 | |
730 | if (buf) |
731 | emit_4_bytes(buf, bytes: insn); |
732 | return INSN_len_normal; |
733 | } |
734 | |
735 | /* Sign extension from two bytes. */ |
736 | static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs) |
737 | { |
738 | const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs); |
739 | |
740 | if (buf) |
741 | emit_4_bytes(buf, bytes: insn); |
742 | return INSN_len_normal; |
743 | } |
744 | |
745 | /* st reg, [reg_mem, off] */ |
746 | static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
747 | { |
748 | const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) | |
749 | OP_B(reg_mem) | STORE_S9(off); |
750 | |
751 | if (buf) |
752 | emit_4_bytes(buf, bytes: insn); |
753 | return INSN_len_normal; |
754 | } |
755 | |
756 | /* st.aw reg, [sp, -4] */ |
757 | static u8 arc_push_r(u8 *buf, u8 reg) |
758 | { |
759 | const u32 insn = OPC_PUSH | OP_C(reg); |
760 | |
761 | if (buf) |
762 | emit_4_bytes(buf, bytes: insn); |
763 | return INSN_len_normal; |
764 | } |
765 | |
766 | /* ld reg, [reg_mem, off] (unsigned) */ |
767 | static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
768 | { |
769 | const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) | |
770 | OP_B(reg_mem) | LOAD_S9(off); |
771 | |
772 | if (buf) |
773 | emit_4_bytes(buf, bytes: insn); |
774 | return INSN_len_normal; |
775 | } |
776 | |
777 | /* ld.x reg, [reg_mem, off] (sign extend) */ |
778 | static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
779 | { |
780 | const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) | |
781 | OP_B(reg_mem) | LOAD_S9(off); |
782 | |
783 | if (buf) |
784 | emit_4_bytes(buf, bytes: insn); |
785 | return INSN_len_normal; |
786 | } |
787 | |
788 | /* ld.ab reg,[sp,4] */ |
789 | static u8 arc_pop_r(u8 *buf, u8 reg) |
790 | { |
791 | const u32 insn = OPC_POP | LOAD_C(reg); |
792 | |
793 | if (buf) |
794 | emit_4_bytes(buf, bytes: insn); |
795 | return INSN_len_normal; |
796 | } |
797 | |
798 | /* add Ra,Ra,Rc */ |
799 | static u8 arc_add_r(u8 *buf, u8 ra, u8 rc) |
800 | { |
801 | const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc); |
802 | |
803 | if (buf) |
804 | emit_4_bytes(buf, bytes: insn); |
805 | return INSN_len_normal; |
806 | } |
807 | |
808 | /* add.f Ra,Ra,Rc */ |
809 | static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc) |
810 | { |
811 | const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc); |
812 | |
813 | if (buf) |
814 | emit_4_bytes(buf, bytes: insn); |
815 | return INSN_len_normal; |
816 | } |
817 | |
818 | /* add.f Ra,Ra,u6 */ |
819 | static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6) |
820 | { |
821 | const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6); |
822 | |
823 | if (buf) |
824 | emit_4_bytes(buf, bytes: insn); |
825 | return INSN_len_normal; |
826 | } |
827 | |
828 | /* add Ra,Ra,u6 */ |
829 | static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6) |
830 | { |
831 | const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6); |
832 | |
833 | if (buf) |
834 | emit_4_bytes(buf, bytes: insn); |
835 | return INSN_len_normal; |
836 | } |
837 | |
838 | /* add Ra,Rb,imm */ |
839 | static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm) |
840 | { |
841 | const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb); |
842 | |
843 | if (buf) { |
844 | emit_4_bytes(buf, bytes: insn); |
845 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
846 | } |
847 | return INSN_len_normal + INSN_len_imm; |
848 | } |
849 | |
850 | /* adc Ra,Ra,Rc */ |
851 | static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc) |
852 | { |
853 | const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc); |
854 | |
855 | if (buf) |
856 | emit_4_bytes(buf, bytes: insn); |
857 | return INSN_len_normal; |
858 | } |
859 | |
860 | /* adc Ra,Ra,u6 */ |
861 | static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6) |
862 | { |
863 | const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6); |
864 | |
865 | if (buf) |
866 | emit_4_bytes(buf, bytes: insn); |
867 | return INSN_len_normal; |
868 | } |
869 | |
870 | /* sub Ra,Ra,Rc */ |
871 | static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc) |
872 | { |
873 | const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc); |
874 | |
875 | if (buf) |
876 | emit_4_bytes(buf, bytes: insn); |
877 | return INSN_len_normal; |
878 | } |
879 | |
880 | /* sub.f Ra,Ra,Rc */ |
881 | static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc) |
882 | { |
883 | const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc); |
884 | |
885 | if (buf) |
886 | emit_4_bytes(buf, bytes: insn); |
887 | return INSN_len_normal; |
888 | } |
889 | |
890 | /* sub Ra,Ra,u6 */ |
891 | static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6) |
892 | { |
893 | const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6); |
894 | |
895 | if (buf) |
896 | emit_4_bytes(buf, bytes: insn); |
897 | return INSN_len_normal; |
898 | } |
899 | |
900 | /* sub Ra,Ra,imm */ |
901 | static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm) |
902 | { |
903 | const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra); |
904 | |
905 | if (buf) { |
906 | emit_4_bytes(buf, bytes: insn); |
907 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
908 | } |
909 | return INSN_len_normal + INSN_len_imm; |
910 | } |
911 | |
912 | /* sbc Ra,Ra,Rc */ |
913 | static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc) |
914 | { |
915 | const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc); |
916 | |
917 | if (buf) |
918 | emit_4_bytes(buf, bytes: insn); |
919 | return INSN_len_normal; |
920 | } |
921 | |
922 | /* cmp Rb,Rc */ |
923 | static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc) |
924 | { |
925 | const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc); |
926 | |
927 | if (buf) |
928 | emit_4_bytes(buf, bytes: insn); |
929 | return INSN_len_normal; |
930 | } |
931 | |
932 | /* |
933 | * cmp.z Rb,Rc |
934 | * |
935 | * This "cmp.z" variant of compare instruction is used on lower |
936 | * 32-bits of register pairs after "cmp"ing their upper parts. If the |
937 | * upper parts are equal (z), then this one will proceed to check the |
938 | * rest. |
939 | */ |
940 | static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc) |
941 | { |
942 | const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal; |
943 | |
944 | if (buf) |
945 | emit_4_bytes(buf, bytes: insn); |
946 | return INSN_len_normal; |
947 | } |
948 | |
949 | /* neg Ra,Rb */ |
950 | static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb) |
951 | { |
952 | const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb); |
953 | |
954 | if (buf) |
955 | emit_4_bytes(buf, bytes: insn); |
956 | return INSN_len_normal; |
957 | } |
958 | |
959 | /* mpy Ra,Rb,Rc */ |
960 | static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc) |
961 | { |
962 | const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc); |
963 | |
964 | if (buf) |
965 | emit_4_bytes(buf, bytes: insn); |
966 | return INSN_len_normal; |
967 | } |
968 | |
969 | /* mpy Ra,Rb,imm */ |
970 | static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm) |
971 | { |
972 | const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb); |
973 | |
974 | if (buf) { |
975 | emit_4_bytes(buf, bytes: insn); |
976 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
977 | } |
978 | return INSN_len_normal + INSN_len_imm; |
979 | } |
980 | |
981 | /* mpydu Ra,Ra,Rc */ |
982 | static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc) |
983 | { |
984 | const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc); |
985 | |
986 | if (buf) |
987 | emit_4_bytes(buf, bytes: insn); |
988 | return INSN_len_normal; |
989 | } |
990 | |
991 | /* mpydu Ra,Ra,imm */ |
992 | static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm) |
993 | { |
994 | const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra); |
995 | |
996 | if (buf) { |
997 | emit_4_bytes(buf, bytes: insn); |
998 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
999 | } |
1000 | return INSN_len_normal + INSN_len_imm; |
1001 | } |
1002 | |
1003 | /* divu Rd,Rd,Rs */ |
1004 | static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs) |
1005 | { |
1006 | const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs); |
1007 | |
1008 | if (buf) |
1009 | emit_4_bytes(buf, bytes: insn); |
1010 | return INSN_len_normal; |
1011 | } |
1012 | |
1013 | /* divu Rd,Rd,imm */ |
1014 | static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm) |
1015 | { |
1016 | const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd); |
1017 | |
1018 | if (buf) { |
1019 | emit_4_bytes(buf, bytes: insn); |
1020 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
1021 | } |
1022 | return INSN_len_normal + INSN_len_imm; |
1023 | } |
1024 | |
1025 | /* div Rd,Rd,Rs */ |
1026 | static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs) |
1027 | { |
1028 | const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs); |
1029 | |
1030 | if (buf) |
1031 | emit_4_bytes(buf, bytes: insn); |
1032 | return INSN_len_normal; |
1033 | } |
1034 | |
1035 | /* div Rd,Rd,imm */ |
1036 | static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm) |
1037 | { |
1038 | const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd); |
1039 | |
1040 | if (buf) { |
1041 | emit_4_bytes(buf, bytes: insn); |
1042 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
1043 | } |
1044 | return INSN_len_normal + INSN_len_imm; |
1045 | } |
1046 | |
1047 | /* remu Rd,Rd,Rs */ |
1048 | static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs) |
1049 | { |
1050 | const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs); |
1051 | |
1052 | if (buf) |
1053 | emit_4_bytes(buf, bytes: insn); |
1054 | return INSN_len_normal; |
1055 | } |
1056 | |
1057 | /* remu Rd,Rd,imm */ |
1058 | static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm) |
1059 | { |
1060 | const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd); |
1061 | |
1062 | if (buf) { |
1063 | emit_4_bytes(buf, bytes: insn); |
1064 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
1065 | } |
1066 | return INSN_len_normal + INSN_len_imm; |
1067 | } |
1068 | |
1069 | /* rem Rd,Rd,Rs */ |
1070 | static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs) |
1071 | { |
1072 | const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs); |
1073 | |
1074 | if (buf) |
1075 | emit_4_bytes(buf, bytes: insn); |
1076 | return INSN_len_normal; |
1077 | } |
1078 | |
1079 | /* rem Rd,Rd,imm */ |
1080 | static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm) |
1081 | { |
1082 | const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd); |
1083 | |
1084 | if (buf) { |
1085 | emit_4_bytes(buf, bytes: insn); |
1086 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
1087 | } |
1088 | return INSN_len_normal + INSN_len_imm; |
1089 | } |
1090 | |
1091 | /* and Rd,Rd,Rs */ |
1092 | static u8 arc_and_r(u8 *buf, u8 rd, u8 rs) |
1093 | { |
1094 | const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs); |
1095 | |
1096 | if (buf) |
1097 | emit_4_bytes(buf, bytes: insn); |
1098 | return INSN_len_normal; |
1099 | } |
1100 | |
1101 | /* and Rd,Rd,limm */ |
1102 | static u8 arc_and_i(u8 *buf, u8 rd, s32 imm) |
1103 | { |
1104 | const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd); |
1105 | |
1106 | if (buf) { |
1107 | emit_4_bytes(buf, bytes: insn); |
1108 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
1109 | } |
1110 | return INSN_len_normal + INSN_len_imm; |
1111 | } |
1112 | |
1113 | /* tst Rd,Rs */ |
1114 | static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs) |
1115 | { |
1116 | const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs); |
1117 | |
1118 | if (buf) |
1119 | emit_4_bytes(buf, bytes: insn); |
1120 | return INSN_len_normal; |
1121 | } |
1122 | |
1123 | /* |
1124 | * This particular version, "tst.z ...", is meant to be used after a |
1125 | * "tst" on the low 32-bit of register pairs. If that "tst" is not |
1126 | * zero, then we don't need to test the upper 32-bits lest it sets |
1127 | * the zero flag. |
1128 | */ |
1129 | static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs) |
1130 | { |
1131 | const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal; |
1132 | |
1133 | if (buf) |
1134 | emit_4_bytes(buf, bytes: insn); |
1135 | return INSN_len_normal; |
1136 | } |
1137 | |
1138 | static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
1139 | { |
1140 | const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
1141 | |
1142 | if (buf) |
1143 | emit_4_bytes(buf, bytes: insn); |
1144 | return INSN_len_normal; |
1145 | } |
1146 | |
1147 | static u8 arc_or_i(u8 *buf, u8 rd, s32 imm) |
1148 | { |
1149 | const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd); |
1150 | |
1151 | if (buf) { |
1152 | emit_4_bytes(buf, bytes: insn); |
1153 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
1154 | } |
1155 | return INSN_len_normal + INSN_len_imm; |
1156 | } |
1157 | |
1158 | static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs) |
1159 | { |
1160 | const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs); |
1161 | |
1162 | if (buf) |
1163 | emit_4_bytes(buf, bytes: insn); |
1164 | return INSN_len_normal; |
1165 | } |
1166 | |
1167 | static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm) |
1168 | { |
1169 | const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd); |
1170 | |
1171 | if (buf) { |
1172 | emit_4_bytes(buf, bytes: insn); |
1173 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
1174 | } |
1175 | return INSN_len_normal + INSN_len_imm; |
1176 | } |
1177 | |
1178 | static u8 arc_not_r(u8 *buf, u8 rd, u8 rs) |
1179 | { |
1180 | const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs); |
1181 | |
1182 | if (buf) |
1183 | emit_4_bytes(buf, bytes: insn); |
1184 | return INSN_len_normal; |
1185 | } |
1186 | |
1187 | static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm) |
1188 | { |
1189 | const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm); |
1190 | |
1191 | if (buf) |
1192 | emit_4_bytes(buf, bytes: insn); |
1193 | return INSN_len_normal; |
1194 | } |
1195 | |
1196 | static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
1197 | { |
1198 | const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
1199 | |
1200 | if (buf) |
1201 | emit_4_bytes(buf, bytes: insn); |
1202 | return INSN_len_normal; |
1203 | } |
1204 | |
1205 | static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
1206 | { |
1207 | const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm); |
1208 | |
1209 | if (buf) |
1210 | emit_4_bytes(buf, bytes: insn); |
1211 | return INSN_len_normal; |
1212 | } |
1213 | |
1214 | static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
1215 | { |
1216 | const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
1217 | |
1218 | if (buf) |
1219 | emit_4_bytes(buf, bytes: insn); |
1220 | return INSN_len_normal; |
1221 | } |
1222 | |
1223 | static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
1224 | { |
1225 | const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm); |
1226 | |
1227 | if (buf) |
1228 | emit_4_bytes(buf, bytes: insn); |
1229 | return INSN_len_normal; |
1230 | } |
1231 | |
1232 | static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
1233 | { |
1234 | const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
1235 | |
1236 | if (buf) |
1237 | emit_4_bytes(buf, bytes: insn); |
1238 | return INSN_len_normal; |
1239 | } |
1240 | |
1241 | static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
1242 | { |
1243 | const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm); |
1244 | |
1245 | if (buf) |
1246 | emit_4_bytes(buf, bytes: insn); |
1247 | return INSN_len_normal; |
1248 | } |
1249 | |
1250 | static u8 arc_swape_r(u8 *buf, u8 r) |
1251 | { |
1252 | const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r); |
1253 | |
1254 | if (buf) |
1255 | emit_4_bytes(buf, bytes: insn); |
1256 | return INSN_len_normal; |
1257 | } |
1258 | |
1259 | static u8 arc_jmp_return(u8 *buf) |
1260 | { |
1261 | if (buf) |
1262 | emit_4_bytes(buf, OPC_J_BLINK); |
1263 | return INSN_len_normal; |
1264 | } |
1265 | |
1266 | static u8 arc_jl(u8 *buf, u8 reg) |
1267 | { |
1268 | const u32 insn = OPC_JL | OP_C(reg); |
1269 | |
1270 | if (buf) |
1271 | emit_4_bytes(buf, bytes: insn); |
1272 | return INSN_len_normal; |
1273 | } |
1274 | |
1275 | /* |
1276 | * Conditional jump to an address that is max 21 bits away (signed). |
1277 | * |
1278 | * b<cc> s21 |
1279 | */ |
1280 | static u8 arc_bcc(u8 *buf, u8 cc, int offset) |
1281 | { |
1282 | const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc); |
1283 | |
1284 | if (buf) |
1285 | emit_4_bytes(buf, bytes: insn); |
1286 | return INSN_len_normal; |
1287 | } |
1288 | |
1289 | /* |
1290 | * Unconditional jump to an address that is max 25 bits away (signed). |
1291 | * |
1292 | * b s25 |
1293 | */ |
1294 | static u8 arc_b(u8 *buf, s32 offset) |
1295 | { |
1296 | const u32 insn = OPC_B | B_S25(offset); |
1297 | |
1298 | if (buf) |
1299 | emit_4_bytes(buf, bytes: insn); |
1300 | return INSN_len_normal; |
1301 | } |
1302 | |
1303 | /************* Packers (Deal with BPF_REGs) **************/ |
1304 | |
1305 | u8 zext(u8 *buf, u8 rd) |
1306 | { |
1307 | if (rd != BPF_REG_FP) |
1308 | return arc_movi_r(buf, REG_HI(rd), imm: 0); |
1309 | else |
1310 | return 0; |
1311 | } |
1312 | |
1313 | u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext) |
1314 | { |
1315 | u8 len = 0; |
1316 | |
1317 | if (sign_ext) { |
1318 | if (sign_ext == 8) |
1319 | len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs)); |
1320 | else if (sign_ext == 16) |
1321 | len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs)); |
1322 | else if (sign_ext == 32 && rd != rs) |
1323 | len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
1324 | |
1325 | return len; |
1326 | } |
1327 | |
1328 | /* Unsigned move. */ |
1329 | |
1330 | if (rd != rs) |
1331 | len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
1332 | |
1333 | return len; |
1334 | } |
1335 | |
1336 | u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm) |
1337 | { |
1338 | return arc_mov_i(buf, REG_LO(reg), imm); |
1339 | } |
1340 | |
1341 | u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext) |
1342 | { |
1343 | u8 len = 0; |
1344 | |
1345 | if (sign_ext) { |
1346 | /* First handle the low 32-bit part. */ |
1347 | len = mov_r32(buf, rd, rs, sign_ext); |
1348 | |
1349 | /* Now propagate the sign bit of LO to HI. */ |
1350 | if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) { |
1351 | len += arc_asri_r(BUF(buf, len), |
1352 | REG_HI(rd), REG_LO(rd), imm: 31); |
1353 | } |
1354 | |
1355 | return len; |
1356 | } |
1357 | |
1358 | /* Unsigned move. */ |
1359 | |
1360 | if (rd == rs) |
1361 | return 0; |
1362 | |
1363 | len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
1364 | |
1365 | if (rs != BPF_REG_FP) |
1366 | len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
1367 | /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
1368 | else |
1369 | len += arc_movi_r(BUF(buf, len), REG_HI(rd), imm: 0); |
1370 | |
1371 | return len; |
1372 | } |
1373 | |
1374 | /* Sign extend the 32-bit immediate into 64-bit register pair. */ |
1375 | u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm) |
1376 | { |
1377 | u8 len = 0; |
1378 | |
1379 | len = arc_mov_i(buf, REG_LO(reg), imm); |
1380 | |
1381 | /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
1382 | if (reg != BPF_REG_FP) { |
1383 | if (imm >= 0) |
1384 | len += arc_movi_r(BUF(buf, len), REG_HI(reg), imm: 0); |
1385 | else |
1386 | len += arc_movi_r(BUF(buf, len), REG_HI(reg), imm: -1); |
1387 | } |
1388 | |
1389 | return len; |
1390 | } |
1391 | |
1392 | /* |
1393 | * This is merely used for translation of "LD R, IMM64" instructions |
1394 | * of the BPF. These sort of instructions are sometimes used for |
1395 | * relocations. If during the normal pass, the relocation value is |
1396 | * not known, the BPF instruction may look something like: |
1397 | * |
1398 | * LD R <- 0x0000_0001_0000_0001 |
1399 | * |
1400 | * Which will nicely translate to two 4-byte ARC instructions: |
1401 | * |
1402 | * mov R_lo, 1 # imm is small enough to be s12 |
1403 | * mov R_hi, 1 # same |
1404 | * |
1405 | * However, during the extra pass, the IMM64 will have changed |
1406 | * to the resolved address and looks something like: |
1407 | * |
1408 | * LD R <- 0x0000_0000_1234_5678 |
1409 | * |
1410 | * Now, the translated code will require 12 bytes: |
1411 | * |
1412 | * mov R_lo, 0x12345678 # this is an 8-byte instruction |
1413 | * mov R_hi, 0 # still 4 bytes |
1414 | * |
1415 | * Which in practice will result in overwriting the following |
1416 | * instruction. To avoid such cases, we will always emit codes |
1417 | * with fixed sizes. |
1418 | */ |
1419 | u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi) |
1420 | { |
1421 | u8 len; |
1422 | |
1423 | len = arc_mov_i_fixed(buf, REG_LO(reg), imm: lo); |
1424 | len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), imm: hi); |
1425 | |
1426 | return len; |
1427 | } |
1428 | |
1429 | /* |
1430 | * If the "off"set is too big (doesn't encode as S9) for: |
1431 | * |
1432 | * {ld,st} r, [rm, off] |
1433 | * |
1434 | * Then emit: |
1435 | * |
1436 | * add r10, REG_LO(rm), off |
1437 | * |
1438 | * and make sure that r10 becomes the effective address: |
1439 | * |
1440 | * {ld,st} r, [r10, 0] |
1441 | */ |
1442 | static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size, |
1443 | u8 rm, u8 *arc_reg_mem) |
1444 | { |
1445 | u8 len = 0; |
1446 | *arc_reg_mem = REG_LO(rm); |
1447 | |
1448 | if (!IN_S9_RANGE(*off) || |
1449 | (size == BPF_DW && !IN_S9_RANGE(*off + 4))) { |
1450 | len += arc_add_i(BUF(buf, len), |
1451 | REG_LO(JIT_REG_TMP), REG_LO(rm), imm: (u32)(*off)); |
1452 | *arc_reg_mem = REG_LO(JIT_REG_TMP); |
1453 | *off = 0; |
1454 | } |
1455 | |
1456 | return len; |
1457 | } |
1458 | |
1459 | /* store rs, [rd, off] */ |
1460 | u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size) |
1461 | { |
1462 | u8 len, arc_reg_mem; |
1463 | |
1464 | len = adjust_mem_access(buf, off: &off, size, rm: rd, arc_reg_mem: &arc_reg_mem); |
1465 | |
1466 | if (size == BPF_DW) { |
1467 | len += arc_st_r(BUF(buf, len), REG_LO(rs), reg_mem: arc_reg_mem, |
1468 | off, zz: ZZ_4_byte); |
1469 | len += arc_st_r(BUF(buf, len), REG_HI(rs), reg_mem: arc_reg_mem, |
1470 | off: off + 4, zz: ZZ_4_byte); |
1471 | } else { |
1472 | u8 zz = bpf_to_arc_size(size); |
1473 | |
1474 | len += arc_st_r(BUF(buf, len), REG_LO(rs), reg_mem: arc_reg_mem, |
1475 | off, zz); |
1476 | } |
1477 | |
1478 | return len; |
1479 | } |
1480 | |
1481 | /* |
1482 | * For {8,16,32}-bit stores: |
1483 | * mov r21, imm |
1484 | * st r21, [...] |
1485 | * For 64-bit stores: |
1486 | * mov r21, imm |
1487 | * st r21, [...] |
1488 | * mov r21, {0,-1} |
1489 | * st r21, [...+4] |
1490 | */ |
1491 | u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size) |
1492 | { |
1493 | u8 len, arc_reg_mem; |
1494 | /* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */ |
1495 | const u8 arc_rs = REG_HI(JIT_REG_TMP); |
1496 | |
1497 | len = adjust_mem_access(buf, off: &off, size, rm: rd, arc_reg_mem: &arc_reg_mem); |
1498 | |
1499 | if (size == BPF_DW) { |
1500 | len += arc_mov_i(BUF(buf, len), rd: arc_rs, imm); |
1501 | len += arc_st_r(BUF(buf, len), reg: arc_rs, reg_mem: arc_reg_mem, |
1502 | off, zz: ZZ_4_byte); |
1503 | imm = (imm >= 0 ? 0 : -1); |
1504 | len += arc_mov_i(BUF(buf, len), rd: arc_rs, imm); |
1505 | len += arc_st_r(BUF(buf, len), reg: arc_rs, reg_mem: arc_reg_mem, |
1506 | off: off + 4, zz: ZZ_4_byte); |
1507 | } else { |
1508 | u8 zz = bpf_to_arc_size(size); |
1509 | |
1510 | len += arc_mov_i(BUF(buf, len), rd: arc_rs, imm); |
1511 | len += arc_st_r(BUF(buf, len), reg: arc_rs, reg_mem: arc_reg_mem, off, zz); |
1512 | } |
1513 | |
1514 | return len; |
1515 | } |
1516 | |
1517 | /* |
1518 | * For the calling convention of a little endian machine, the LO part |
1519 | * must be on top of the stack. |
1520 | */ |
1521 | static u8 push_r64(u8 *buf, u8 reg) |
1522 | { |
1523 | u8 len = 0; |
1524 | |
1525 | #ifdef __LITTLE_ENDIAN |
1526 | /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
1527 | if (reg != BPF_REG_FP) |
1528 | len += arc_push_r(BUF(buf, len), REG_HI(reg)); |
1529 | len += arc_push_r(BUF(buf, len), REG_LO(reg)); |
1530 | #else |
1531 | len += arc_push_r(BUF(buf, len), REG_LO(reg)); |
1532 | if (reg != BPF_REG_FP) |
1533 | len += arc_push_r(BUF(buf, len), REG_HI(reg)); |
1534 | #endif |
1535 | |
1536 | return len; |
1537 | } |
1538 | |
1539 | /* load rd, [rs, off] */ |
1540 | u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext) |
1541 | { |
1542 | u8 len, arc_reg_mem; |
1543 | |
1544 | len = adjust_mem_access(buf, off: &off, size, rm: rs, arc_reg_mem: &arc_reg_mem); |
1545 | |
1546 | if (size == BPF_B || size == BPF_H || size == BPF_W) { |
1547 | const u8 zz = bpf_to_arc_size(size); |
1548 | |
1549 | /* Use LD.X only if the data size is less than 32-bit. */ |
1550 | if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) { |
1551 | len += arc_ldx_r(BUF(buf, len), REG_LO(rd), |
1552 | reg_mem: arc_reg_mem, off, zz); |
1553 | } else { |
1554 | len += arc_ld_r(BUF(buf, len), REG_LO(rd), |
1555 | reg_mem: arc_reg_mem, off, zz); |
1556 | } |
1557 | |
1558 | if (sign_ext) { |
1559 | /* Propagate the sign bit to the higher reg. */ |
1560 | len += arc_asri_r(BUF(buf, len), |
1561 | REG_HI(rd), REG_LO(rd), imm: 31); |
1562 | } else { |
1563 | len += arc_movi_r(BUF(buf, len), REG_HI(rd), imm: 0); |
1564 | } |
1565 | } else if (size == BPF_DW) { |
1566 | /* |
1567 | * We are about to issue 2 consecutive loads: |
1568 | * |
1569 | * ld rx, [rb, off+0] |
1570 | * ld ry, [rb, off+4] |
1571 | * |
1572 | * If "rx" and "rb" are the same registers, then the order |
1573 | * should change to guarantee that "rb" remains intact |
1574 | * during these 2 operations: |
1575 | * |
1576 | * ld ry, [rb, off+4] |
1577 | * ld rx, [rb, off+0] |
1578 | */ |
1579 | if (REG_LO(rd) != arc_reg_mem) { |
1580 | len += arc_ld_r(BUF(buf, len), REG_LO(rd), reg_mem: arc_reg_mem, |
1581 | off, zz: ZZ_4_byte); |
1582 | len += arc_ld_r(BUF(buf, len), REG_HI(rd), reg_mem: arc_reg_mem, |
1583 | off: off + 4, zz: ZZ_4_byte); |
1584 | } else { |
1585 | len += arc_ld_r(BUF(buf, len), REG_HI(rd), reg_mem: arc_reg_mem, |
1586 | off: off + 4, zz: ZZ_4_byte); |
1587 | len += arc_ld_r(BUF(buf, len), REG_LO(rd), reg_mem: arc_reg_mem, |
1588 | off, zz: ZZ_4_byte); |
1589 | } |
1590 | } |
1591 | |
1592 | return len; |
1593 | } |
1594 | |
1595 | u8 add_r32(u8 *buf, u8 rd, u8 rs) |
1596 | { |
1597 | return arc_add_r(buf, REG_LO(rd), REG_LO(rs)); |
1598 | } |
1599 | |
1600 | u8 add_r32_i32(u8 *buf, u8 rd, s32 imm) |
1601 | { |
1602 | if (IN_U6_RANGE(imm)) |
1603 | return arc_addi_r(buf, REG_LO(rd), u6: imm); |
1604 | else |
1605 | return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm); |
1606 | } |
1607 | |
1608 | u8 add_r64(u8 *buf, u8 rd, u8 rs) |
1609 | { |
1610 | u8 len; |
1611 | |
1612 | len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs)); |
1613 | len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
1614 | return len; |
1615 | } |
1616 | |
1617 | u8 add_r64_i32(u8 *buf, u8 rd, s32 imm) |
1618 | { |
1619 | u8 len; |
1620 | |
1621 | if (IN_U6_RANGE(imm)) { |
1622 | len = arc_addif_r(buf, REG_LO(rd), u6: imm); |
1623 | len += arc_adci_r(BUF(buf, len), REG_HI(rd), u6: 0); |
1624 | } else { |
1625 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
1626 | len += add_r64(BUF(buf, len), rd, JIT_REG_TMP); |
1627 | } |
1628 | return len; |
1629 | } |
1630 | |
1631 | u8 sub_r32(u8 *buf, u8 rd, u8 rs) |
1632 | { |
1633 | return arc_sub_r(buf, REG_LO(rd), REG_LO(rs)); |
1634 | } |
1635 | |
1636 | u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm) |
1637 | { |
1638 | if (IN_U6_RANGE(imm)) |
1639 | return arc_subi_r(buf, REG_LO(rd), u6: imm); |
1640 | else |
1641 | return arc_sub_i(buf, REG_LO(rd), imm); |
1642 | } |
1643 | |
1644 | u8 sub_r64(u8 *buf, u8 rd, u8 rs) |
1645 | { |
1646 | u8 len; |
1647 | |
1648 | len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs)); |
1649 | len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
1650 | return len; |
1651 | } |
1652 | |
1653 | u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm) |
1654 | { |
1655 | u8 len; |
1656 | |
1657 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
1658 | len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP); |
1659 | return len; |
1660 | } |
1661 | |
1662 | static u8 cmp_r32(u8 *buf, u8 rd, u8 rs) |
1663 | { |
1664 | return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs)); |
1665 | } |
1666 | |
1667 | u8 neg_r32(u8 *buf, u8 r) |
1668 | { |
1669 | return arc_neg_r(buf, REG_LO(r), REG_LO(r)); |
1670 | } |
1671 | |
1672 | /* In a two's complement system, -r is (~r + 1). */ |
1673 | u8 neg_r64(u8 *buf, u8 r) |
1674 | { |
1675 | u8 len; |
1676 | |
1677 | len = arc_not_r(buf, REG_LO(r), REG_LO(r)); |
1678 | len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r)); |
1679 | len += add_r64_i32(BUF(buf, len), rd: r, imm: 1); |
1680 | return len; |
1681 | } |
1682 | |
1683 | u8 mul_r32(u8 *buf, u8 rd, u8 rs) |
1684 | { |
1685 | return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
1686 | } |
1687 | |
1688 | u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm) |
1689 | { |
1690 | return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm); |
1691 | } |
1692 | |
1693 | /* |
1694 | * MUL B, C |
1695 | * -------- |
1696 | * mpy t0, B_hi, C_lo |
1697 | * mpy t1, B_lo, C_hi |
1698 | * mpydu B_lo, B_lo, C_lo |
1699 | * add B_hi, B_hi, t0 |
1700 | * add B_hi, B_hi, t1 |
1701 | */ |
1702 | u8 mul_r64(u8 *buf, u8 rd, u8 rs) |
1703 | { |
1704 | const u8 t0 = REG_LO(JIT_REG_TMP); |
1705 | const u8 t1 = REG_HI(JIT_REG_TMP); |
1706 | const u8 C_lo = REG_LO(rs); |
1707 | const u8 C_hi = REG_HI(rs); |
1708 | const u8 B_lo = REG_LO(rd); |
1709 | const u8 B_hi = REG_HI(rd); |
1710 | u8 len; |
1711 | |
1712 | len = arc_mpy_r(buf, ra: t0, rb: B_hi, rc: C_lo); |
1713 | len += arc_mpy_r(BUF(buf, len), ra: t1, rb: B_lo, rc: C_hi); |
1714 | len += arc_mpydu_r(BUF(buf, len), ra: B_lo, rc: C_lo); |
1715 | len += arc_add_r(BUF(buf, len), ra: B_hi, rc: t0); |
1716 | len += arc_add_r(BUF(buf, len), ra: B_hi, rc: t1); |
1717 | |
1718 | return len; |
1719 | } |
1720 | |
1721 | /* |
1722 | * MUL B, imm |
1723 | * ---------- |
1724 | * |
1725 | * To get a 64-bit result from a signed 64x32 multiplication: |
1726 | * |
1727 | * B_hi B_lo * |
1728 | * sign imm |
1729 | * ----------------------------- |
1730 | * HI(B_lo*imm) LO(B_lo*imm) + |
1731 | * B_hi*imm + |
1732 | * B_lo*sign |
1733 | * ----------------------------- |
1734 | * res_hi res_lo |
1735 | * |
1736 | * mpy t1, B_lo, sign(imm) |
1737 | * mpy t0, B_hi, imm |
1738 | * mpydu B_lo, B_lo, imm |
1739 | * add B_hi, B_hi, t0 |
1740 | * add B_hi, B_hi, t1 |
1741 | * |
1742 | * Note: We can't use signed double multiplication, "mpyd", instead of an |
1743 | * unsigned version, "mpydu", and then get rid of the sign adjustments |
1744 | * calculated in "t1". The signed multiplication, "mpyd", will consider |
1745 | * both operands, "B_lo" and "imm", as signed inputs. However, for this |
1746 | * 64x32 multiplication, "B_lo" must be treated as an unsigned number. |
1747 | */ |
1748 | u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm) |
1749 | { |
1750 | const u8 t0 = REG_LO(JIT_REG_TMP); |
1751 | const u8 t1 = REG_HI(JIT_REG_TMP); |
1752 | const u8 B_lo = REG_LO(rd); |
1753 | const u8 B_hi = REG_HI(rd); |
1754 | u8 len = 0; |
1755 | |
1756 | if (imm == 1) |
1757 | return 0; |
1758 | |
1759 | /* Is the sign-extension of the immediate "-1"? */ |
1760 | if (imm < 0) |
1761 | len += arc_neg_r(BUF(buf, len), ra: t1, rb: B_lo); |
1762 | |
1763 | len += arc_mpy_i(BUF(buf, len), ra: t0, rb: B_hi, imm); |
1764 | len += arc_mpydu_i(BUF(buf, len), ra: B_lo, imm); |
1765 | len += arc_add_r(BUF(buf, len), ra: B_hi, rc: t0); |
1766 | |
1767 | /* Add the "sign*B_lo" part, if necessary. */ |
1768 | if (imm < 0) |
1769 | len += arc_add_r(BUF(buf, len), ra: B_hi, rc: t1); |
1770 | |
1771 | return len; |
1772 | } |
1773 | |
1774 | u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext) |
1775 | { |
1776 | if (sign_ext) |
1777 | return arc_divs_r(buf, REG_LO(rd), REG_LO(rs)); |
1778 | else |
1779 | return arc_divu_r(buf, REG_LO(rd), REG_LO(rs)); |
1780 | } |
1781 | |
1782 | u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext) |
1783 | { |
1784 | if (imm == 0) |
1785 | return 0; |
1786 | |
1787 | if (sign_ext) |
1788 | return arc_divs_i(buf, REG_LO(rd), imm); |
1789 | else |
1790 | return arc_divu_i(buf, REG_LO(rd), imm); |
1791 | } |
1792 | |
1793 | u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext) |
1794 | { |
1795 | if (sign_ext) |
1796 | return arc_rems_r(buf, REG_LO(rd), REG_LO(rs)); |
1797 | else |
1798 | return arc_remu_r(buf, REG_LO(rd), REG_LO(rs)); |
1799 | } |
1800 | |
1801 | u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext) |
1802 | { |
1803 | if (imm == 0) |
1804 | return 0; |
1805 | |
1806 | if (sign_ext) |
1807 | return arc_rems_i(buf, REG_LO(rd), imm); |
1808 | else |
1809 | return arc_remu_i(buf, REG_LO(rd), imm); |
1810 | } |
1811 | |
1812 | u8 and_r32(u8 *buf, u8 rd, u8 rs) |
1813 | { |
1814 | return arc_and_r(buf, REG_LO(rd), REG_LO(rs)); |
1815 | } |
1816 | |
1817 | u8 and_r32_i32(u8 *buf, u8 rd, s32 imm) |
1818 | { |
1819 | return arc_and_i(buf, REG_LO(rd), imm); |
1820 | } |
1821 | |
1822 | u8 and_r64(u8 *buf, u8 rd, u8 rs) |
1823 | { |
1824 | u8 len; |
1825 | |
1826 | len = arc_and_r(buf, REG_LO(rd), REG_LO(rs)); |
1827 | len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
1828 | return len; |
1829 | } |
1830 | |
1831 | u8 and_r64_i32(u8 *buf, u8 rd, s32 imm) |
1832 | { |
1833 | u8 len; |
1834 | |
1835 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
1836 | len += and_r64(BUF(buf, len), rd, JIT_REG_TMP); |
1837 | return len; |
1838 | } |
1839 | |
1840 | static u8 tst_r32(u8 *buf, u8 rd, u8 rs) |
1841 | { |
1842 | return arc_tst_r(buf, REG_LO(rd), REG_LO(rs)); |
1843 | } |
1844 | |
1845 | u8 or_r32(u8 *buf, u8 rd, u8 rs) |
1846 | { |
1847 | return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
1848 | } |
1849 | |
1850 | u8 or_r32_i32(u8 *buf, u8 rd, s32 imm) |
1851 | { |
1852 | return arc_or_i(buf, REG_LO(rd), imm); |
1853 | } |
1854 | |
1855 | u8 or_r64(u8 *buf, u8 rd, u8 rs) |
1856 | { |
1857 | u8 len; |
1858 | |
1859 | len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
1860 | len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs)); |
1861 | return len; |
1862 | } |
1863 | |
1864 | u8 or_r64_i32(u8 *buf, u8 rd, s32 imm) |
1865 | { |
1866 | u8 len; |
1867 | |
1868 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
1869 | len += or_r64(BUF(buf, len), rd, JIT_REG_TMP); |
1870 | return len; |
1871 | } |
1872 | |
1873 | u8 xor_r32(u8 *buf, u8 rd, u8 rs) |
1874 | { |
1875 | return arc_xor_r(buf, REG_LO(rd), REG_LO(rs)); |
1876 | } |
1877 | |
1878 | u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm) |
1879 | { |
1880 | return arc_xor_i(buf, REG_LO(rd), imm); |
1881 | } |
1882 | |
1883 | u8 xor_r64(u8 *buf, u8 rd, u8 rs) |
1884 | { |
1885 | u8 len; |
1886 | |
1887 | len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs)); |
1888 | len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
1889 | return len; |
1890 | } |
1891 | |
1892 | u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm) |
1893 | { |
1894 | u8 len; |
1895 | |
1896 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
1897 | len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP); |
1898 | return len; |
1899 | } |
1900 | |
1901 | /* "asl a,b,c" --> "a = (b << (c & 31))". */ |
1902 | u8 lsh_r32(u8 *buf, u8 rd, u8 rs) |
1903 | { |
1904 | return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
1905 | } |
1906 | |
1907 | u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
1908 | { |
1909 | return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm); |
1910 | } |
1911 | |
1912 | /* |
1913 | * algorithm |
1914 | * --------- |
1915 | * if (n <= 32) |
1916 | * to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width. |
1917 | * lo <<= n |
1918 | * hi <<= n |
1919 | * hi |= to_hi |
1920 | * else |
1921 | * hi = lo << (n-32) |
1922 | * lo = 0 |
1923 | * |
1924 | * assembly translation for "LSH B, C" |
1925 | * (heavily influenced by ARC gcc) |
1926 | * ----------------------------------- |
1927 | * not t0, C_lo # The first 3 lines are almost the same as: |
1928 | * lsr t1, B_lo, 1 # neg t0, C_lo |
1929 | * lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi" |
1930 | * mov t0, C_lo* # with one important difference. In "neg" |
1931 | * asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while |
1932 | * asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead, |
1933 | * or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically |
1934 | * btst t0, 5 # setting it to 0 when C_lo=0. |
1935 | * mov.ne B_hi, B_lo** |
1936 | * mov.ne B_lo, 0 |
1937 | * |
1938 | * *The "mov t0, C_lo" is necessary to cover the cases that C is the same |
1939 | * register as B. |
1940 | * |
1941 | * **ARC performs a shift in this manner: B <<= (C & 31) |
1942 | * For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and |
1943 | * "B << (n-32)" yield the same results. e.g. the results of "B << 35" and |
1944 | * "B << 3" are the same. |
1945 | * |
1946 | * The behaviour is undefined for n >= 64. |
1947 | */ |
1948 | u8 lsh_r64(u8 *buf, u8 rd, u8 rs) |
1949 | { |
1950 | const u8 t0 = REG_LO(JIT_REG_TMP); |
1951 | const u8 t1 = REG_HI(JIT_REG_TMP); |
1952 | const u8 C_lo = REG_LO(rs); |
1953 | const u8 B_lo = REG_LO(rd); |
1954 | const u8 B_hi = REG_HI(rd); |
1955 | u8 len; |
1956 | |
1957 | len = arc_not_r(buf, rd: t0, rs: C_lo); |
1958 | len += arc_lsri_r(BUF(buf, len), rd: t1, rs: B_lo, imm: 1); |
1959 | len += arc_lsr_r(BUF(buf, len), rd: t1, rs1: t1, rs2: t0); |
1960 | len += arc_mov_r(BUF(buf, len), rd: t0, rs: C_lo); |
1961 | len += arc_asl_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
1962 | len += arc_asl_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t0); |
1963 | len += arc_or_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t1); |
1964 | len += arc_btst_i(BUF(buf, len), rs: t0, imm: 5); |
1965 | len += arc_mov_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_hi, rs: B_lo); |
1966 | len += arc_movu_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_lo, imm: 0); |
1967 | |
1968 | return len; |
1969 | } |
1970 | |
1971 | /* |
1972 | * if (n < 32) |
1973 | * to_hi = B_lo >> 32-n # extract upper n bits |
1974 | * lo <<= n |
1975 | * hi <<=n |
1976 | * hi |= to_hi |
1977 | * else if (n < 64) |
1978 | * hi = lo << n-32 |
1979 | * lo = 0 |
1980 | */ |
1981 | u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
1982 | { |
1983 | const u8 t0 = REG_LO(JIT_REG_TMP); |
1984 | const u8 B_lo = REG_LO(rd); |
1985 | const u8 B_hi = REG_HI(rd); |
1986 | const u8 n = (u8)imm; |
1987 | u8 len = 0; |
1988 | |
1989 | if (n == 0) { |
1990 | return 0; |
1991 | } else if (n <= 31) { |
1992 | len = arc_lsri_r(buf, rd: t0, rs: B_lo, imm: 32 - n); |
1993 | len += arc_asli_r(BUF(buf, len), rd: B_lo, rs: B_lo, imm: n); |
1994 | len += arc_asli_r(BUF(buf, len), rd: B_hi, rs: B_hi, imm: n); |
1995 | len += arc_or_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t0); |
1996 | } else if (n <= 63) { |
1997 | len = arc_asli_r(buf, rd: B_hi, rs: B_lo, imm: n - 32); |
1998 | len += arc_movi_r(BUF(buf, len), reg: B_lo, imm: 0); |
1999 | } |
2000 | /* n >= 64 is undefined behaviour. */ |
2001 | |
2002 | return len; |
2003 | } |
2004 | |
2005 | /* "lsr a,b,c" --> "a = (b >> (c & 31))". */ |
2006 | u8 rsh_r32(u8 *buf, u8 rd, u8 rs) |
2007 | { |
2008 | return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
2009 | } |
2010 | |
2011 | u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
2012 | { |
2013 | return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm); |
2014 | } |
2015 | |
2016 | /* |
2017 | * For better commentary, see lsh_r64(). |
2018 | * |
2019 | * algorithm |
2020 | * --------- |
2021 | * if (n <= 32) |
2022 | * to_lo = hi << (32-n) |
2023 | * hi >>= n |
2024 | * lo >>= n |
2025 | * lo |= to_lo |
2026 | * else |
2027 | * lo = hi >> (n-32) |
2028 | * hi = 0 |
2029 | * |
2030 | * RSH B,C |
2031 | * ---------- |
2032 | * not t0, C_lo |
2033 | * asl t1, B_hi, 1 |
2034 | * asl t1, t1, t0 |
2035 | * mov t0, C_lo |
2036 | * lsr B_hi, B_hi, t0 |
2037 | * lsr B_lo, B_lo, t0 |
2038 | * or B_lo, B_lo, t1 |
2039 | * btst t0, 5 |
2040 | * mov.ne B_lo, B_hi |
2041 | * mov.ne B_hi, 0 |
2042 | */ |
2043 | u8 rsh_r64(u8 *buf, u8 rd, u8 rs) |
2044 | { |
2045 | const u8 t0 = REG_LO(JIT_REG_TMP); |
2046 | const u8 t1 = REG_HI(JIT_REG_TMP); |
2047 | const u8 C_lo = REG_LO(rs); |
2048 | const u8 B_lo = REG_LO(rd); |
2049 | const u8 B_hi = REG_HI(rd); |
2050 | u8 len; |
2051 | |
2052 | len = arc_not_r(buf, rd: t0, rs: C_lo); |
2053 | len += arc_asli_r(BUF(buf, len), rd: t1, rs: B_hi, imm: 1); |
2054 | len += arc_asl_r(BUF(buf, len), rd: t1, rs1: t1, rs2: t0); |
2055 | len += arc_mov_r(BUF(buf, len), rd: t0, rs: C_lo); |
2056 | len += arc_lsr_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t0); |
2057 | len += arc_lsr_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
2058 | len += arc_or_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t1); |
2059 | len += arc_btst_i(BUF(buf, len), rs: t0, imm: 5); |
2060 | len += arc_mov_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_lo, rs: B_hi); |
2061 | len += arc_movu_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_hi, imm: 0); |
2062 | |
2063 | return len; |
2064 | } |
2065 | |
2066 | /* |
2067 | * if (n < 32) |
2068 | * to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s |
2069 | * lo >>=n |
2070 | * hi >>=n |
2071 | * hi |= to_lo |
2072 | * else if (n < 64) |
2073 | * lo = hi >> n-32 |
2074 | * hi = 0 |
2075 | */ |
2076 | u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
2077 | { |
2078 | const u8 t0 = REG_LO(JIT_REG_TMP); |
2079 | const u8 B_lo = REG_LO(rd); |
2080 | const u8 B_hi = REG_HI(rd); |
2081 | const u8 n = (u8)imm; |
2082 | u8 len = 0; |
2083 | |
2084 | if (n == 0) { |
2085 | return 0; |
2086 | } else if (n <= 31) { |
2087 | len = arc_asli_r(buf, rd: t0, rs: B_hi, imm: 32 - n); |
2088 | len += arc_lsri_r(BUF(buf, len), rd: B_lo, rs: B_lo, imm: n); |
2089 | len += arc_lsri_r(BUF(buf, len), rd: B_hi, rs: B_hi, imm: n); |
2090 | len += arc_or_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
2091 | } else if (n <= 63) { |
2092 | len = arc_lsri_r(buf, rd: B_lo, rs: B_hi, imm: n - 32); |
2093 | len += arc_movi_r(BUF(buf, len), reg: B_hi, imm: 0); |
2094 | } |
2095 | /* n >= 64 is undefined behaviour. */ |
2096 | |
2097 | return len; |
2098 | } |
2099 | |
2100 | /* "asr a,b,c" --> "a = (b s>> (c & 31))". */ |
2101 | u8 arsh_r32(u8 *buf, u8 rd, u8 rs) |
2102 | { |
2103 | return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
2104 | } |
2105 | |
2106 | u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
2107 | { |
2108 | return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm); |
2109 | } |
2110 | |
2111 | /* |
2112 | * For comparison, see rsh_r64(). |
2113 | * |
2114 | * algorithm |
2115 | * --------- |
2116 | * if (n <= 32) |
2117 | * to_lo = hi << (32-n) |
2118 | * hi s>>= n |
2119 | * lo >>= n |
2120 | * lo |= to_lo |
2121 | * else |
2122 | * hi_sign = hi s>>31 |
2123 | * lo = hi s>> (n-32) |
2124 | * hi = hi_sign |
2125 | * |
2126 | * ARSH B,C |
2127 | * ---------- |
2128 | * not t0, C_lo |
2129 | * asl t1, B_hi, 1 |
2130 | * asl t1, t1, t0 |
2131 | * mov t0, C_lo |
2132 | * asr B_hi, B_hi, t0 |
2133 | * lsr B_lo, B_lo, t0 |
2134 | * or B_lo, B_lo, t1 |
2135 | * btst t0, 5 |
2136 | * asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign |
2137 | * mov.ne B_lo, B_hi |
2138 | * mov.ne B_hi, t0 |
2139 | */ |
2140 | u8 arsh_r64(u8 *buf, u8 rd, u8 rs) |
2141 | { |
2142 | const u8 t0 = REG_LO(JIT_REG_TMP); |
2143 | const u8 t1 = REG_HI(JIT_REG_TMP); |
2144 | const u8 C_lo = REG_LO(rs); |
2145 | const u8 B_lo = REG_LO(rd); |
2146 | const u8 B_hi = REG_HI(rd); |
2147 | u8 len; |
2148 | |
2149 | len = arc_not_r(buf, rd: t0, rs: C_lo); |
2150 | len += arc_asli_r(BUF(buf, len), rd: t1, rs: B_hi, imm: 1); |
2151 | len += arc_asl_r(BUF(buf, len), rd: t1, rs1: t1, rs2: t0); |
2152 | len += arc_mov_r(BUF(buf, len), rd: t0, rs: C_lo); |
2153 | len += arc_asr_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t0); |
2154 | len += arc_lsr_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
2155 | len += arc_or_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t1); |
2156 | len += arc_btst_i(BUF(buf, len), rs: t0, imm: 5); |
2157 | len += arc_asri_r(BUF(buf, len), rd: t0, rs: B_hi, imm: 31); |
2158 | len += arc_mov_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_lo, rs: B_hi); |
2159 | len += arc_mov_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_hi, rs: t0); |
2160 | |
2161 | return len; |
2162 | } |
2163 | |
2164 | /* |
2165 | * if (n < 32) |
2166 | * to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s |
2167 | * lo >>=n |
2168 | * hi s>>=n |
2169 | * hi |= to_lo |
2170 | * else if (n < 64) |
2171 | * lo = hi s>> n-32 |
2172 | * hi = (lo[msb] ? -1 : 0) |
2173 | */ |
2174 | u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
2175 | { |
2176 | const u8 t0 = REG_LO(JIT_REG_TMP); |
2177 | const u8 B_lo = REG_LO(rd); |
2178 | const u8 B_hi = REG_HI(rd); |
2179 | const u8 n = (u8)imm; |
2180 | u8 len = 0; |
2181 | |
2182 | if (n == 0) { |
2183 | return 0; |
2184 | } else if (n <= 31) { |
2185 | len = arc_asli_r(buf, rd: t0, rs: B_hi, imm: 32 - n); |
2186 | len += arc_lsri_r(BUF(buf, len), rd: B_lo, rs: B_lo, imm: n); |
2187 | len += arc_asri_r(BUF(buf, len), rd: B_hi, rs: B_hi, imm: n); |
2188 | len += arc_or_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
2189 | } else if (n <= 63) { |
2190 | len = arc_asri_r(buf, rd: B_lo, rs: B_hi, imm: n - 32); |
2191 | len += arc_movi_r(BUF(buf, len), reg: B_hi, imm: -1); |
2192 | len += arc_btst_i(BUF(buf, len), rs: B_lo, imm: 31); |
2193 | len += arc_movu_cc_r(BUF(buf, len), cc: CC_equal, rd: B_hi, imm: 0); |
2194 | } |
2195 | /* n >= 64 is undefined behaviour. */ |
2196 | |
2197 | return len; |
2198 | } |
2199 | |
2200 | u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext) |
2201 | { |
2202 | u8 len = 0; |
2203 | #ifdef __BIG_ENDIAN |
2204 | const u8 host_endian = BPF_FROM_BE; |
2205 | #else |
2206 | const u8 host_endian = BPF_FROM_LE; |
2207 | #endif |
2208 | if (host_endian != endian || force) { |
2209 | switch (size) { |
2210 | case 16: |
2211 | /* |
2212 | * r = B4B3_B2B1 << 16 --> r = B2B1_0000 |
2213 | * then, swape(r) would become the desired 0000_B1B2 |
2214 | */ |
2215 | len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm: 16); |
2216 | fallthrough; |
2217 | case 32: |
2218 | len += arc_swape_r(BUF(buf, len), REG_LO(rd)); |
2219 | if (do_zext) |
2220 | len += zext(BUF(buf, len), rd); |
2221 | break; |
2222 | case 64: |
2223 | /* |
2224 | * swap "hi" and "lo": |
2225 | * hi ^= lo; |
2226 | * lo ^= hi; |
2227 | * hi ^= lo; |
2228 | * and then swap the bytes in "hi" and "lo". |
2229 | */ |
2230 | len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd)); |
2231 | len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd)); |
2232 | len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd)); |
2233 | len += arc_swape_r(BUF(buf, len), REG_LO(rd)); |
2234 | len += arc_swape_r(BUF(buf, len), REG_HI(rd)); |
2235 | break; |
2236 | default: |
2237 | /* The caller must have handled this. */ |
2238 | break; |
2239 | } |
2240 | } else { |
2241 | /* |
2242 | * If the same endianness, there's not much to do other |
2243 | * than zeroing out the upper bytes based on the "size". |
2244 | */ |
2245 | switch (size) { |
2246 | case 16: |
2247 | len = arc_and_i(buf, REG_LO(rd), imm: 0xffff); |
2248 | fallthrough; |
2249 | case 32: |
2250 | if (do_zext) |
2251 | len += zext(BUF(buf, len), rd); |
2252 | break; |
2253 | case 64: |
2254 | break; |
2255 | default: |
2256 | /* The caller must have handled this. */ |
2257 | break; |
2258 | } |
2259 | } |
2260 | |
2261 | return len; |
2262 | } |
2263 | |
2264 | /* |
2265 | * To create a frame, all that is needed is: |
2266 | * |
2267 | * push fp |
2268 | * mov fp, sp |
2269 | * sub sp, <frame_size> |
2270 | * |
2271 | * "push fp" is taken care of separately while saving the clobbered registers. |
2272 | * All that remains is copying SP value to FP and shrinking SP's address space |
2273 | * for any possible function call to come. |
2274 | */ |
2275 | static inline u8 frame_create(u8 *buf, u16 size) |
2276 | { |
2277 | u8 len; |
2278 | |
2279 | len = arc_mov_r(buf, rd: ARC_R_FP, rs: ARC_R_SP); |
2280 | if (IN_U6_RANGE(size)) |
2281 | len += arc_subi_r(BUF(buf, len), ra: ARC_R_SP, u6: size); |
2282 | else |
2283 | len += arc_sub_i(BUF(buf, len), ra: ARC_R_SP, imm: size); |
2284 | return len; |
2285 | } |
2286 | |
2287 | /* |
2288 | * mov sp, fp |
2289 | * |
2290 | * The value of SP upon entering was copied to FP. |
2291 | */ |
2292 | static inline u8 frame_restore(u8 *buf) |
2293 | { |
2294 | return arc_mov_r(buf, rd: ARC_R_SP, rs: ARC_R_FP); |
2295 | } |
2296 | |
2297 | /* |
2298 | * Going from a JITed code to the native caller: |
2299 | * |
2300 | * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8 |
2301 | * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9 |
2302 | */ |
2303 | static u8 bpf_to_arc_return(u8 *buf) |
2304 | { |
2305 | u8 len; |
2306 | |
2307 | len = arc_mov_r(buf, rd: ARC_R_0, REG_LO(BPF_REG_0)); |
2308 | len += arc_mov_r(BUF(buf, len), rd: ARC_R_1, REG_HI(BPF_REG_0)); |
2309 | return len; |
2310 | } |
2311 | |
2312 | /* |
2313 | * Coming back from an external (in-kernel) function to the JITed code: |
2314 | * |
2315 | * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0 |
2316 | * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1 |
2317 | */ |
2318 | u8 arc_to_bpf_return(u8 *buf) |
2319 | { |
2320 | u8 len; |
2321 | |
2322 | len = arc_mov_r(buf, REG_LO(BPF_REG_0), rs: ARC_R_0); |
2323 | len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), rs: ARC_R_1); |
2324 | return len; |
2325 | } |
2326 | |
2327 | /* |
2328 | * This translation leads to: |
2329 | * |
2330 | * mov r10, addr # always an 8-byte instruction |
2331 | * jl [r10] |
2332 | * |
2333 | * The length of the "mov" must be fixed (8), otherwise it may diverge |
2334 | * during the normal and extra passes: |
2335 | * |
2336 | * normal pass extra pass |
2337 | * |
2338 | * 180: mov r10,0 | 180: mov r10,0x700578d8 |
2339 | * 184: jl [r10] | 188: jl [r10] |
2340 | * 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0 |
2341 | * 18c: adc r17,r17,0 | |
2342 | * |
2343 | * In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8" |
2344 | * has led to an increase in the length of the "mov" instruction. |
2345 | * Inadvertently, that caused the loss of the "add.f" instruction. |
2346 | */ |
2347 | static u8 jump_and_link(u8 *buf, u32 addr) |
2348 | { |
2349 | u8 len; |
2350 | |
2351 | len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), imm: addr); |
2352 | len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP)); |
2353 | return len; |
2354 | } |
2355 | |
2356 | /* |
2357 | * This function determines which ARC registers must be saved and restored. |
2358 | * It does so by looking into: |
2359 | * |
2360 | * "bpf_reg": The clobbered (destination) BPF register |
2361 | * "is_call": Indicator if the current instruction is a call |
2362 | * |
2363 | * When a register of interest is clobbered, its corresponding bit position |
2364 | * in return value, "usage", is set to true. |
2365 | */ |
2366 | u32 mask_for_used_regs(u8 bpf_reg, bool is_call) |
2367 | { |
2368 | u32 usage = 0; |
2369 | |
2370 | /* BPF registers that must be saved. */ |
2371 | if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) { |
2372 | usage |= BIT(REG_LO(bpf_reg)); |
2373 | usage |= BIT(REG_HI(bpf_reg)); |
2374 | /* |
2375 | * Using the frame pointer register implies that it should |
2376 | * be saved and reinitialised with the current frame data. |
2377 | */ |
2378 | } else if (bpf_reg == BPF_REG_FP) { |
2379 | usage |= BIT(REG_LO(BPF_REG_FP)); |
2380 | /* Could there be some ARC registers that must to be saved? */ |
2381 | } else { |
2382 | if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST && |
2383 | REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST) |
2384 | usage |= BIT(REG_LO(bpf_reg)); |
2385 | |
2386 | if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST && |
2387 | REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST) |
2388 | usage |= BIT(REG_HI(bpf_reg)); |
2389 | } |
2390 | |
2391 | /* A "call" indicates that ARC's "blink" reg must be saved. */ |
2392 | usage |= is_call ? BIT(ARC_R_BLINK) : 0; |
2393 | |
2394 | return usage; |
2395 | } |
2396 | |
2397 | /* |
2398 | * push blink # if blink is marked as clobbered |
2399 | * push r[0-n] # if r[i] is marked as clobbered |
2400 | * push fp # if fp is marked as clobbered |
2401 | * mov fp, sp # if frame_size > 0 (clobbers fp) |
2402 | * sub sp, <frame_size> # same as above |
2403 | */ |
2404 | u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size) |
2405 | { |
2406 | u8 len = 0; |
2407 | u32 gp_regs = 0; |
2408 | |
2409 | /* Deal with blink first. */ |
2410 | if (usage & BIT(ARC_R_BLINK)) |
2411 | len += arc_push_r(BUF(buf, len), reg: ARC_R_BLINK); |
2412 | |
2413 | gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP)); |
2414 | while (gp_regs) { |
2415 | u8 reg = __builtin_ffs(gp_regs) - 1; |
2416 | |
2417 | len += arc_push_r(BUF(buf, len), reg); |
2418 | gp_regs &= ~BIT(reg); |
2419 | } |
2420 | |
2421 | /* Deal with fp last. */ |
2422 | if ((usage & BIT(ARC_R_FP)) || frame_size > 0) |
2423 | len += arc_push_r(BUF(buf, len), reg: ARC_R_FP); |
2424 | |
2425 | if (frame_size > 0) |
2426 | len += frame_create(BUF(buf, len), size: frame_size); |
2427 | |
2428 | #ifdef ARC_BPF_JIT_DEBUG |
2429 | if ((usage & BIT(ARC_R_FP)) && frame_size == 0) { |
2430 | pr_err("FP is being saved while there is no frame." ); |
2431 | BUG(); |
2432 | } |
2433 | #endif |
2434 | |
2435 | return len; |
2436 | } |
2437 | |
2438 | /* |
2439 | * mov sp, fp # if frame_size > 0 |
2440 | * pop fp # if fp is marked as clobbered |
2441 | * pop r[n-0] # if r[i] is marked as clobbered |
2442 | * pop blink # if blink is marked as clobbered |
2443 | * mov r0, r8 # always: ABI_return <- BPF_return |
2444 | * mov r1, r9 # continuation of above |
2445 | * j [blink] # always |
2446 | * |
2447 | * "fp being marked as clobbered" and "frame_size > 0" are the two sides of |
2448 | * the same coin. |
2449 | */ |
2450 | u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size) |
2451 | { |
2452 | u32 len = 0; |
2453 | u32 gp_regs = 0; |
2454 | |
2455 | #ifdef ARC_BPF_JIT_DEBUG |
2456 | if ((usage & BIT(ARC_R_FP)) && frame_size == 0) { |
2457 | pr_err("FP is being saved while there is no frame." ); |
2458 | BUG(); |
2459 | } |
2460 | #endif |
2461 | |
2462 | if (frame_size > 0) |
2463 | len += frame_restore(BUF(buf, len)); |
2464 | |
2465 | /* Deal with fp first. */ |
2466 | if ((usage & BIT(ARC_R_FP)) || frame_size > 0) |
2467 | len += arc_pop_r(BUF(buf, len), reg: ARC_R_FP); |
2468 | |
2469 | gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP)); |
2470 | while (gp_regs) { |
2471 | /* "usage" is 32-bit, each bit indicating an ARC register. */ |
2472 | u8 reg = 31 - __builtin_clz(gp_regs); |
2473 | |
2474 | len += arc_pop_r(BUF(buf, len), reg); |
2475 | gp_regs &= ~BIT(reg); |
2476 | } |
2477 | |
2478 | /* Deal with blink last. */ |
2479 | if (usage & BIT(ARC_R_BLINK)) |
2480 | len += arc_pop_r(BUF(buf, len), reg: ARC_R_BLINK); |
2481 | |
2482 | /* Wrap up the return value and jump back to the caller. */ |
2483 | len += bpf_to_arc_return(BUF(buf, len)); |
2484 | len += arc_jmp_return(BUF(buf, len)); |
2485 | |
2486 | return len; |
2487 | } |
2488 | |
2489 | /* |
2490 | * For details on the algorithm, see the comments of "gen_jcc_64()". |
2491 | * |
2492 | * This data structure is holding information for jump translations. |
2493 | * |
2494 | * jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs |
2495 | * cond: The condition that the ARC branch instruction must use |
2496 | * |
2497 | * e.g.: |
2498 | * |
2499 | * BPF_JGE R1, R0, @target |
2500 | * ------------------------ |
2501 | * | |
2502 | * v |
2503 | * 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn |
2504 | * 0x1004: bhi @target # first jump (branch higher) |
2505 | * 0x1008: blo @end # second jump acting as a skip (end is 0x1014) |
2506 | * 0x100C: cmp r2, r0 # the lower 32 bits are evaluated |
2507 | * 0x1010: bhs @target # third jump (branch higher or same) |
2508 | * 0x1014: ... |
2509 | * |
2510 | * The jit_off(set) of the "bhi" is 4 bytes. |
2511 | * The cond(ition) for the "bhi" is "CC_great_u". |
2512 | * |
2513 | * The jit_off(set) is necessary for calculating the exact displacement |
2514 | * to the "target" address: |
2515 | * |
2516 | * jit_address + jit_off(set) - @target |
2517 | * 0x1000 + 4 - @target |
2518 | */ |
2519 | #define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */ |
2520 | #define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */ |
2521 | #define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */ |
2522 | static const struct { |
2523 | /* |
2524 | * "jit_off" is common between all "jmp[]" and is coupled with |
2525 | * "cond" of each "jmp[]" instance. e.g.: |
2526 | * |
2527 | * arcv2_64_jccs.jit_off[1] |
2528 | * arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1] |
2529 | * |
2530 | * Are indicating that the second jump in JITed code of "UGT" |
2531 | * is at offset "jit_off[1]" while its condition is "cond[1]". |
2532 | */ |
2533 | u8 jit_off[JCC64_NR_OF_JMPS]; |
2534 | |
2535 | struct { |
2536 | u8 cond[JCC64_NR_OF_JMPS]; |
2537 | } jmp[ARC_CC_SLE + 1]; |
2538 | } arcv2_64_jccs = { |
2539 | .jit_off = { |
2540 | INSN_len_normal * 1, |
2541 | INSN_len_normal * 2, |
2542 | INSN_len_normal * 4 |
2543 | }, |
2544 | /* |
2545 | * cmp rd_hi, rs_hi |
2546 | * bhi @target # 1: u> |
2547 | * blo @end # 2: u< |
2548 | * cmp rd_lo, rs_lo |
2549 | * bhi @target # 3: u> |
2550 | * end: |
2551 | */ |
2552 | .jmp[ARC_CC_UGT] = { |
2553 | .cond = {CC_great_u, CC_less_u, CC_great_u} |
2554 | }, |
2555 | /* |
2556 | * cmp rd_hi, rs_hi |
2557 | * bhi @target # 1: u> |
2558 | * blo @end # 2: u< |
2559 | * cmp rd_lo, rs_lo |
2560 | * bhs @target # 3: u>= |
2561 | * end: |
2562 | */ |
2563 | .jmp[ARC_CC_UGE] = { |
2564 | .cond = {CC_great_u, CC_less_u, CC_great_eq_u} |
2565 | }, |
2566 | /* |
2567 | * cmp rd_hi, rs_hi |
2568 | * blo @target # 1: u< |
2569 | * bhi @end # 2: u> |
2570 | * cmp rd_lo, rs_lo |
2571 | * blo @target # 3: u< |
2572 | * end: |
2573 | */ |
2574 | .jmp[ARC_CC_ULT] = { |
2575 | .cond = {CC_less_u, CC_great_u, CC_less_u} |
2576 | }, |
2577 | /* |
2578 | * cmp rd_hi, rs_hi |
2579 | * blo @target # 1: u< |
2580 | * bhi @end # 2: u> |
2581 | * cmp rd_lo, rs_lo |
2582 | * bls @target # 3: u<= |
2583 | * end: |
2584 | */ |
2585 | .jmp[ARC_CC_ULE] = { |
2586 | .cond = {CC_less_u, CC_great_u, CC_less_eq_u} |
2587 | }, |
2588 | /* |
2589 | * cmp rd_hi, rs_hi |
2590 | * bgt @target # 1: s> |
2591 | * blt @end # 2: s< |
2592 | * cmp rd_lo, rs_lo |
2593 | * bhi @target # 3: u> |
2594 | * end: |
2595 | */ |
2596 | .jmp[ARC_CC_SGT] = { |
2597 | .cond = {CC_great_s, CC_less_s, CC_great_u} |
2598 | }, |
2599 | /* |
2600 | * cmp rd_hi, rs_hi |
2601 | * bgt @target # 1: s> |
2602 | * blt @end # 2: s< |
2603 | * cmp rd_lo, rs_lo |
2604 | * bhs @target # 3: u>= |
2605 | * end: |
2606 | */ |
2607 | .jmp[ARC_CC_SGE] = { |
2608 | .cond = {CC_great_s, CC_less_s, CC_great_eq_u} |
2609 | }, |
2610 | /* |
2611 | * cmp rd_hi, rs_hi |
2612 | * blt @target # 1: s< |
2613 | * bgt @end # 2: s> |
2614 | * cmp rd_lo, rs_lo |
2615 | * blo @target # 3: u< |
2616 | * end: |
2617 | */ |
2618 | .jmp[ARC_CC_SLT] = { |
2619 | .cond = {CC_less_s, CC_great_s, CC_less_u} |
2620 | }, |
2621 | /* |
2622 | * cmp rd_hi, rs_hi |
2623 | * blt @target # 1: s< |
2624 | * bgt @end # 2: s> |
2625 | * cmp rd_lo, rs_lo |
2626 | * bls @target # 3: u<= |
2627 | * end: |
2628 | */ |
2629 | .jmp[ARC_CC_SLE] = { |
2630 | .cond = {CC_less_s, CC_great_s, CC_less_eq_u} |
2631 | } |
2632 | }; |
2633 | |
2634 | /* |
2635 | * The displacement (offset) for ARC's "b"ranch instruction is the distance |
2636 | * from the aligned version of _current_ instruction (PCL) to the target |
2637 | * instruction: |
2638 | * |
2639 | * DISP = TARGET - PCL # PCL is the word aligned PC |
2640 | */ |
2641 | static inline s32 get_displacement(u32 curr_off, u32 targ_off) |
2642 | { |
2643 | return (s32)(targ_off - (curr_off & ~3L)); |
2644 | } |
2645 | |
2646 | /* |
2647 | * "disp"lacement should be: |
2648 | * |
2649 | * 1. 16-bit aligned. |
2650 | * 2. fit in S25, because no "condition code" is supposed to be encoded. |
2651 | */ |
2652 | static inline bool is_valid_far_disp(s32 disp) |
2653 | { |
2654 | return (!(disp & 1) && IN_S25_RANGE(disp)); |
2655 | } |
2656 | |
2657 | /* |
2658 | * "disp"lacement should be: |
2659 | * |
2660 | * 1. 16-bit aligned. |
2661 | * 2. fit in S21, because "condition code" is supposed to be encoded too. |
2662 | */ |
2663 | static inline bool is_valid_near_disp(s32 disp) |
2664 | { |
2665 | return (!(disp & 1) && IN_S21_RANGE(disp)); |
2666 | } |
2667 | |
2668 | /* |
2669 | * cmp rd_hi, rs_hi |
2670 | * cmp.z rd_lo, rs_lo |
2671 | * b{eq,ne} @target |
2672 | * | | |
2673 | * | `--> "eq" param is false (JNE) |
2674 | * `-----> "eq" param is true (JEQ) |
2675 | */ |
2676 | static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq, |
2677 | u32 curr_off, u32 targ_off) |
2678 | { |
2679 | s32 disp; |
2680 | u8 len = 0; |
2681 | |
2682 | len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
2683 | len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
2684 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
2685 | len += arc_bcc(BUF(buf, len), cc: eq ? CC_equal : CC_unequal, offset: disp); |
2686 | |
2687 | return len; |
2688 | } |
2689 | |
2690 | /* |
2691 | * tst rd_hi, rs_hi |
2692 | * tst.z rd_lo, rs_lo |
2693 | * bne @target |
2694 | */ |
2695 | static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off) |
2696 | { |
2697 | u8 len = 0; |
2698 | s32 disp; |
2699 | |
2700 | len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
2701 | len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
2702 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
2703 | len += arc_bcc(BUF(buf, len), cc: CC_unequal, offset: disp); |
2704 | |
2705 | return len; |
2706 | } |
2707 | |
2708 | /* |
2709 | * Verify if all the jumps for a JITed jcc64 operation are valid, |
2710 | * by consulting the data stored at "arcv2_64_jccs". |
2711 | */ |
2712 | static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond) |
2713 | { |
2714 | size_t i; |
2715 | |
2716 | if (cond >= ARC_CC_LAST) |
2717 | return false; |
2718 | |
2719 | for (i = 0; i < JCC64_NR_OF_JMPS; i++) { |
2720 | u32 from, to; |
2721 | |
2722 | from = curr_off + arcv2_64_jccs.jit_off[i]; |
2723 | /* for the 2nd jump, we jump to the end of block. */ |
2724 | if (i != JCC64_SKIP_JMP) |
2725 | to = targ_off; |
2726 | else |
2727 | to = from + (JCC64_INSNS_TO_END * INSN_len_normal); |
2728 | /* There is a "cc" in the instruction, so a "near" jump. */ |
2729 | if (!is_valid_near_disp(disp: get_displacement(curr_off: from, targ_off: to))) |
2730 | return false; |
2731 | } |
2732 | |
2733 | return true; |
2734 | } |
2735 | |
2736 | /* Can the jump from "curr_off" to "targ_off" actually happen? */ |
2737 | bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond) |
2738 | { |
2739 | s32 disp; |
2740 | |
2741 | switch (cond) { |
2742 | case ARC_CC_UGT: |
2743 | case ARC_CC_UGE: |
2744 | case ARC_CC_ULT: |
2745 | case ARC_CC_ULE: |
2746 | case ARC_CC_SGT: |
2747 | case ARC_CC_SGE: |
2748 | case ARC_CC_SLT: |
2749 | case ARC_CC_SLE: |
2750 | return check_jcc_64(curr_off, targ_off, cond); |
2751 | case ARC_CC_EQ: |
2752 | case ARC_CC_NE: |
2753 | case ARC_CC_SET: |
2754 | /* |
2755 | * The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the |
2756 | * 3rd instruction. See comments of "gen_j{set,_eq}_64()". |
2757 | */ |
2758 | curr_off += 2 * INSN_len_normal; |
2759 | disp = get_displacement(curr_off, targ_off); |
2760 | /* There is a "cc" field in the issued instruction. */ |
2761 | return is_valid_near_disp(disp); |
2762 | case ARC_CC_AL: |
2763 | disp = get_displacement(curr_off, targ_off); |
2764 | return is_valid_far_disp(disp); |
2765 | default: |
2766 | return false; |
2767 | } |
2768 | } |
2769 | |
2770 | /* |
2771 | * The template for the 64-bit jumps with the following BPF conditions |
2772 | * |
2773 | * u< u<= u> u>= s< s<= s> s>= |
2774 | * |
2775 | * Looks like below: |
2776 | * |
2777 | * cmp rd_hi, rs_hi |
2778 | * b<c1> @target |
2779 | * b<c2> @end |
2780 | * cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal |
2781 | * b<c3> @target |
2782 | * end: |
2783 | * |
2784 | * "c1" is the condition that JIT is handling minus the equality part. |
2785 | * For instance if we have to translate an "unsigned greater or equal", |
2786 | * then "c1" will be "unsigned greater". We won't know about equality |
2787 | * until all 64-bits of data (higeher and lower registers) are processed. |
2788 | * |
2789 | * "c2" is the counter logic of "c1". For instance, if "c1" is originated |
2790 | * from "s>", then "c2" would be "s<". Notice that equality doesn't play |
2791 | * a role here either, because the lower 32 bits are not processed yet. |
2792 | * |
2793 | * "c3" is the unsigned version of "c1", no matter if the BPF condition |
2794 | * was signed or unsigned. An unsigned version is necessary, because the |
2795 | * MSB of the lower 32 bits does not reflect a sign in the whole 64-bit |
2796 | * scheme. Otherwise, 64-bit comparisons like |
2797 | * (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000) |
2798 | * would yield an incorrect result. Finally, if there is an equality |
2799 | * check in the BPF condition, it will be reflected in "c3". |
2800 | * |
2801 | * You can find all the instances of this template where the |
2802 | * "arcv2_64_jccs" is getting initialised. |
2803 | */ |
2804 | static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond, |
2805 | u32 curr_off, u32 targ_off) |
2806 | { |
2807 | s32 disp; |
2808 | u32 end_off; |
2809 | const u8 *cc = arcv2_64_jccs.jmp[cond].cond; |
2810 | u8 len = 0; |
2811 | |
2812 | /* cmp rd_hi, rs_hi */ |
2813 | len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs)); |
2814 | |
2815 | /* b<c1> @target */ |
2816 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
2817 | len += arc_bcc(BUF(buf, len), cc: cc[0], offset: disp); |
2818 | |
2819 | /* b<c2> @end */ |
2820 | end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal); |
2821 | disp = get_displacement(curr_off: curr_off + len, targ_off: end_off); |
2822 | len += arc_bcc(BUF(buf, len), cc: cc[1], offset: disp); |
2823 | |
2824 | /* cmp rd_lo, rs_lo */ |
2825 | len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
2826 | |
2827 | /* b<c3> @target */ |
2828 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
2829 | len += arc_bcc(BUF(buf, len), cc: cc[2], offset: disp); |
2830 | |
2831 | return len; |
2832 | } |
2833 | |
2834 | /* |
2835 | * This function only applies the necessary logic to make the proper |
2836 | * translations. All the sanity checks must have already been done |
2837 | * by calling the check_jmp_64(). |
2838 | */ |
2839 | u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off) |
2840 | { |
2841 | u8 len = 0; |
2842 | bool eq = false; |
2843 | s32 disp; |
2844 | |
2845 | switch (cond) { |
2846 | case ARC_CC_AL: |
2847 | disp = get_displacement(curr_off, targ_off); |
2848 | len = arc_b(buf, offset: disp); |
2849 | break; |
2850 | case ARC_CC_UGT: |
2851 | case ARC_CC_UGE: |
2852 | case ARC_CC_ULT: |
2853 | case ARC_CC_ULE: |
2854 | case ARC_CC_SGT: |
2855 | case ARC_CC_SGE: |
2856 | case ARC_CC_SLT: |
2857 | case ARC_CC_SLE: |
2858 | len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off); |
2859 | break; |
2860 | case ARC_CC_EQ: |
2861 | eq = true; |
2862 | fallthrough; |
2863 | case ARC_CC_NE: |
2864 | len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off); |
2865 | break; |
2866 | case ARC_CC_SET: |
2867 | len = gen_jset_64(buf, rd, rs, curr_off, targ_off); |
2868 | break; |
2869 | default: |
2870 | #ifdef ARC_BPF_JIT_DEBUG |
2871 | pr_err("64-bit jump condition is not known." ); |
2872 | BUG(); |
2873 | #endif |
2874 | } |
2875 | return len; |
2876 | } |
2877 | |
2878 | /* |
2879 | * The condition codes to use when generating JIT instructions |
2880 | * for 32-bit jumps. |
2881 | * |
2882 | * The "ARC_CC_AL" index is not really used by the code, but it |
2883 | * is here for the sake of completeness. |
2884 | * |
2885 | * The "ARC_CC_SET" becomes "CC_unequal" because of the "tst" |
2886 | * instruction that precedes the conditional branch. |
2887 | */ |
2888 | static const u8 arcv2_32_jmps[ARC_CC_LAST] = { |
2889 | [ARC_CC_UGT] = CC_great_u, |
2890 | [ARC_CC_UGE] = CC_great_eq_u, |
2891 | [ARC_CC_ULT] = CC_less_u, |
2892 | [ARC_CC_ULE] = CC_less_eq_u, |
2893 | [ARC_CC_SGT] = CC_great_s, |
2894 | [ARC_CC_SGE] = CC_great_eq_s, |
2895 | [ARC_CC_SLT] = CC_less_s, |
2896 | [ARC_CC_SLE] = CC_less_eq_s, |
2897 | [ARC_CC_AL] = CC_always, |
2898 | [ARC_CC_EQ] = CC_equal, |
2899 | [ARC_CC_NE] = CC_unequal, |
2900 | [ARC_CC_SET] = CC_unequal |
2901 | }; |
2902 | |
2903 | /* Can the jump from "curr_off" to "targ_off" actually happen? */ |
2904 | bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond) |
2905 | { |
2906 | u8 addendum; |
2907 | s32 disp; |
2908 | |
2909 | if (cond >= ARC_CC_LAST) |
2910 | return false; |
2911 | |
2912 | /* |
2913 | * The unconditional jump happens immediately, while the rest |
2914 | * are either preceded by a "cmp" or "tst" instruction. |
2915 | */ |
2916 | addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal; |
2917 | disp = get_displacement(curr_off: curr_off + addendum, targ_off); |
2918 | |
2919 | if (cond == ARC_CC_AL) |
2920 | return is_valid_far_disp(disp); |
2921 | else |
2922 | return is_valid_near_disp(disp); |
2923 | } |
2924 | |
2925 | /* |
2926 | * The JITed code for 32-bit (conditional) branches: |
2927 | * |
2928 | * ARC_CC_AL @target |
2929 | * b @jit_targ_addr |
2930 | * |
2931 | * ARC_CC_SET rd, rs, @target |
2932 | * tst rd, rs |
2933 | * bnz @jit_targ_addr |
2934 | * |
2935 | * ARC_CC_xx rd, rs, @target |
2936 | * cmp rd, rs |
2937 | * b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx] |
2938 | */ |
2939 | u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off) |
2940 | { |
2941 | s32 disp; |
2942 | u8 len = 0; |
2943 | |
2944 | /* |
2945 | * Although this must have already been checked by "check_jmp_32()", |
2946 | * we're not going to risk accessing "arcv2_32_jmps" array without |
2947 | * the boundary check. |
2948 | */ |
2949 | if (cond >= ARC_CC_LAST) { |
2950 | #ifdef ARC_BPF_JIT_DEBUG |
2951 | pr_err("32-bit jump condition is not known." ); |
2952 | BUG(); |
2953 | #endif |
2954 | return 0; |
2955 | } |
2956 | |
2957 | /* If there is a "condition", issue the "cmp" or "tst" first. */ |
2958 | if (cond != ARC_CC_AL) { |
2959 | if (cond == ARC_CC_SET) |
2960 | len = tst_r32(buf, rd, rs); |
2961 | else |
2962 | len = cmp_r32(buf, rd, rs); |
2963 | /* |
2964 | * The issued instruction affects the "disp"lacement as |
2965 | * it alters the "curr_off" by its "len"gth. The "curr_off" |
2966 | * should always point to the jump instruction. |
2967 | */ |
2968 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
2969 | len += arc_bcc(BUF(buf, len), cc: arcv2_32_jmps[cond], offset: disp); |
2970 | } else { |
2971 | /* The straight forward unconditional jump. */ |
2972 | disp = get_displacement(curr_off, targ_off); |
2973 | len = arc_b(buf, offset: disp); |
2974 | } |
2975 | |
2976 | return len; |
2977 | } |
2978 | |
2979 | /* |
2980 | * Generate code for functions calls. There can be two types of calls: |
2981 | * |
2982 | * - Calling another BPF function |
2983 | * - Calling an in-kernel function which is compiled by ARC gcc |
2984 | * |
2985 | * In the later case, we must comply to ARCv2 ABI and handle arguments |
2986 | * and return values accordingly. |
2987 | */ |
2988 | u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func) |
2989 | { |
2990 | u8 len = 0; |
2991 | |
2992 | /* |
2993 | * In case of an in-kernel function call, always push the 5th |
2994 | * argument onto the stack, because that's where the ABI dictates |
2995 | * it should be found. If the callee doesn't really use it, no harm |
2996 | * is done. The stack is readjusted either way after the call. |
2997 | */ |
2998 | if (external_func) |
2999 | len += push_r64(BUF(buf, len), reg: BPF_REG_5); |
3000 | |
3001 | len += jump_and_link(BUF(buf, len), addr: func_addr); |
3002 | |
3003 | if (external_func) |
3004 | len += arc_add_i(BUF(buf, len), ra: ARC_R_SP, rb: ARC_R_SP, ARG5_SIZE); |
3005 | |
3006 | return len; |
3007 | } |
3008 | |