| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * The ARCv2 backend of Just-In-Time compiler for eBPF bytecode. |
| 4 | * |
| 5 | * Copyright (c) 2024 Synopsys Inc. |
| 6 | * Author: Shahab Vahedi <shahab@synopsys.com> |
| 7 | */ |
| 8 | #include <linux/bug.h> |
| 9 | #include "bpf_jit.h" |
| 10 | |
| 11 | /* ARC core registers. */ |
| 12 | enum { |
| 13 | ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5, |
| 14 | ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11, |
| 15 | ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17, |
| 16 | ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23, |
| 17 | ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK, |
| 18 | ARC_R_30, ARC_R_BLINK, |
| 19 | /* |
| 20 | * Having ARC_R_IMM encoded as source register means there is an |
| 21 | * immediate that must be interpreted from the next 4 bytes. If |
| 22 | * encoded as the destination register though, it implies that the |
| 23 | * output of the operation is not assigned to any register. The |
| 24 | * latter is helpful if we only care about updating the CPU status |
| 25 | * flags. |
| 26 | */ |
| 27 | ARC_R_IMM = 62 |
| 28 | }; |
| 29 | |
| 30 | /* |
| 31 | * Remarks about the rationale behind the chosen mapping: |
| 32 | * |
| 33 | * - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to |
| 34 | * argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last |
| 35 | * argument register in the ABI. Therefore BPF_REG_5, as the fifth |
| 36 | * argument, must be pushed onto the stack. This is a must for calling |
| 37 | * in-kernel functions. |
| 38 | * |
| 39 | * - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0) |
| 40 | * for 64-bit results. However, because they're already used for BPF_REG_1, |
| 41 | * the next available scratch registers, r8 and r9, are the best candidates |
| 42 | * for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result |
| 43 | * is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to |
| 44 | * (r1,r0). |
| 45 | * It is worth mentioning that scratch registers are the best choice for |
| 46 | * BPF_REG_0, because it is very popular in BPF instruction encoding. |
| 47 | * |
| 48 | * - JIT_REG_TMP is an artifact needed to translate some BPF instructions. |
| 49 | * Its life span is one single BPF instruction. Since during the |
| 50 | * analyze_reg_usage(), it is not known if temporary registers are used, |
| 51 | * it is mapped to ARC's scratch registers: r10 and r11. Therefore, they |
| 52 | * don't matter in analysing phase and don't need saving. This temporary |
| 53 | * register is added as yet another index in the bpf2arc array, so it will |
| 54 | * unfold like the rest of registers during the code generation process. |
| 55 | * |
| 56 | * - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from |
| 57 | * (r15,r14) register pair. The (r13,r12) is not a good choice, because |
| 58 | * in ARCv2 ABI, r12 is not a callee-saved register and this can cause |
| 59 | * problem when calling an in-kernel function. Theoretically, the mapping |
| 60 | * could start from (r14,r13), but it is not a conventional ARCv2 register |
| 61 | * pair. To have a future proof design, I opted for this arrangement. |
| 62 | * If/when we decide to add ARCv2 instructions that do use register pairs, |
| 63 | * the mapping, hopefully, doesn't need to be revisited. |
| 64 | */ |
| 65 | static const u8 bpf2arc[][2] = { |
| 66 | /* Return value from in-kernel function, and exit value from eBPF */ |
| 67 | [BPF_REG_0] = {ARC_R_8, ARC_R_9}, |
| 68 | /* Arguments from eBPF program to in-kernel function */ |
| 69 | [BPF_REG_1] = {ARC_R_0, ARC_R_1}, |
| 70 | [BPF_REG_2] = {ARC_R_2, ARC_R_3}, |
| 71 | [BPF_REG_3] = {ARC_R_4, ARC_R_5}, |
| 72 | [BPF_REG_4] = {ARC_R_6, ARC_R_7}, |
| 73 | /* Remaining arguments, to be passed on the stack per 32-bit ABI */ |
| 74 | [BPF_REG_5] = {ARC_R_22, ARC_R_23}, |
| 75 | /* Callee-saved registers that in-kernel function will preserve */ |
| 76 | [BPF_REG_6] = {ARC_R_14, ARC_R_15}, |
| 77 | [BPF_REG_7] = {ARC_R_16, ARC_R_17}, |
| 78 | [BPF_REG_8] = {ARC_R_18, ARC_R_19}, |
| 79 | [BPF_REG_9] = {ARC_R_20, ARC_R_21}, |
| 80 | /* Read-only frame pointer to access the eBPF stack. 32-bit only. */ |
| 81 | [BPF_REG_FP] = {ARC_R_FP, }, |
| 82 | /* Register for blinding constants */ |
| 83 | [BPF_REG_AX] = {ARC_R_24, ARC_R_25}, |
| 84 | /* Temporary registers for internal use */ |
| 85 | [JIT_REG_TMP] = {ARC_R_10, ARC_R_11} |
| 86 | }; |
| 87 | |
| 88 | #define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13 |
| 89 | #define ARC_CALLEE_SAVED_REG_LAST ARC_R_25 |
| 90 | |
| 91 | #define REG_LO(r) (bpf2arc[(r)][0]) |
| 92 | #define REG_HI(r) (bpf2arc[(r)][1]) |
| 93 | |
| 94 | /* |
| 95 | * To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which, |
| 96 | * the stack needs to be restored by ARG5_SIZE. |
| 97 | */ |
| 98 | #define ARG5_SIZE 8 |
| 99 | |
| 100 | /* Instruction lengths in bytes. */ |
| 101 | enum { |
| 102 | INSN_len_normal = 4, /* Normal instructions length. */ |
| 103 | INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */ |
| 104 | }; |
| 105 | |
| 106 | /* ZZ defines the size of operation in encodings that it is used. */ |
| 107 | enum { |
| 108 | ZZ_1_byte = 1, |
| 109 | ZZ_2_byte = 2, |
| 110 | ZZ_4_byte = 0, |
| 111 | ZZ_8_byte = 3 |
| 112 | }; |
| 113 | |
| 114 | /* |
| 115 | * AA is mostly about address write back mode. It determines if the |
| 116 | * address in question should be updated before usage or after: |
| 117 | * addr += offset; data = *addr; |
| 118 | * data = *addr; addr += offset; |
| 119 | * |
| 120 | * In "scaling" mode, the effective address will become the sum |
| 121 | * of "address" + "index"*"size". The "size" is specified by the |
| 122 | * "ZZ" field. There is no write back when AA is set for scaling: |
| 123 | * data = *(addr + offset<<zz) |
| 124 | */ |
| 125 | enum { |
| 126 | AA_none = 0, |
| 127 | AA_pre = 1, /* in assembly known as "a/aw". */ |
| 128 | AA_post = 2, /* in assembly known as "ab". */ |
| 129 | AA_scale = 3 /* in assembly known as "as". */ |
| 130 | }; |
| 131 | |
| 132 | /* X flag determines the mode of extension. */ |
| 133 | enum { |
| 134 | X_zero = 0, |
| 135 | X_sign = 1 |
| 136 | }; |
| 137 | |
| 138 | /* Condition codes. */ |
| 139 | enum { |
| 140 | CC_always = 0, /* condition is true all the time */ |
| 141 | CC_equal = 1, /* if status32.z flag is set */ |
| 142 | CC_unequal = 2, /* if status32.z flag is clear */ |
| 143 | CC_positive = 3, /* if status32.n flag is clear */ |
| 144 | CC_negative = 4, /* if status32.n flag is set */ |
| 145 | CC_less_u = 5, /* less than (unsigned) */ |
| 146 | CC_less_eq_u = 14, /* less than or equal (unsigned) */ |
| 147 | CC_great_eq_u = 6, /* greater than or equal (unsigned) */ |
| 148 | CC_great_u = 13, /* greater than (unsigned) */ |
| 149 | CC_less_s = 11, /* less than (signed) */ |
| 150 | CC_less_eq_s = 12, /* less than or equal (signed) */ |
| 151 | CC_great_eq_s = 10, /* greater than or equal (signed) */ |
| 152 | CC_great_s = 9 /* greater than (signed) */ |
| 153 | }; |
| 154 | |
| 155 | #define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0) |
| 156 | #define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100) |
| 157 | #define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800) |
| 158 | #define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000) |
| 159 | #define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000) |
| 160 | |
| 161 | /* Operands in most of the encodings. */ |
| 162 | #define OP_A(x) ((x) & 0x03f) |
| 163 | #define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9)) |
| 164 | #define OP_C(x) (((x) & 0x03f) << 6) |
| 165 | #define OP_IMM (OP_C(ARC_R_IMM)) |
| 166 | #define COND(x) (OP_A((x) & 31)) |
| 167 | #define FLAG(x) (((x) & 1) << 15) |
| 168 | |
| 169 | /* |
| 170 | * The 4-byte encoding of "mov b,c": |
| 171 | * |
| 172 | * 0010_0bbb 0000_1010 0BBB_cccc cc00_0000 |
| 173 | * |
| 174 | * b: BBBbbb destination register |
| 175 | * c: cccccc source register |
| 176 | */ |
| 177 | #define OPC_MOV 0x200a0000 |
| 178 | |
| 179 | /* |
| 180 | * The 4-byte encoding of "mov b,s12" (used for moving small immediates): |
| 181 | * |
| 182 | * 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS |
| 183 | * |
| 184 | * b: BBBbbb destination register |
| 185 | * s: SSSSSSssssss source immediate (signed) |
| 186 | */ |
| 187 | #define OPC_MOVI 0x208a0000 |
| 188 | #define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6)) |
| 189 | |
| 190 | /* |
| 191 | * The 4-byte encoding of "mov[.qq] b,u6", used for conditional |
| 192 | * moving of even smaller immediates: |
| 193 | * |
| 194 | * 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq |
| 195 | * |
| 196 | * qq: qqqqq condition code |
| 197 | * i: If set, c is considered a 6-bit immediate, else a reg. |
| 198 | * |
| 199 | * b: BBBbbb destination register |
| 200 | * c: cccccc source |
| 201 | */ |
| 202 | #define OPC_MOV_CC 0x20ca0000 |
| 203 | #define MOV_CC_I BIT(5) |
| 204 | #define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I) |
| 205 | |
| 206 | /* |
| 207 | * The 4-byte encoding of "sexb b,c" (8-bit sign extension): |
| 208 | * |
| 209 | * 0010_0bbb 0010_1111 0BBB_cccc cc00_0101 |
| 210 | * |
| 211 | * b: BBBbbb destination register |
| 212 | * c: cccccc source register |
| 213 | */ |
| 214 | #define OPC_SEXB 0x202f0005 |
| 215 | |
| 216 | /* |
| 217 | * The 4-byte encoding of "sexh b,c" (16-bit sign extension): |
| 218 | * |
| 219 | * 0010_0bbb 0010_1111 0BBB_cccc cc00_0110 |
| 220 | * |
| 221 | * b: BBBbbb destination register |
| 222 | * c: cccccc source register |
| 223 | */ |
| 224 | #define OPC_SEXH 0x202f0006 |
| 225 | |
| 226 | /* |
| 227 | * The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]": |
| 228 | * |
| 229 | * 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc |
| 230 | * |
| 231 | * zz: size mode |
| 232 | * aa: address write back mode |
| 233 | * x: extension mode |
| 234 | * |
| 235 | * s9: S_ssss_ssss 9-bit signed number |
| 236 | * b: BBBbbb source reg for address |
| 237 | * c: cccccc destination register |
| 238 | */ |
| 239 | #define OPC_LOAD 0x10000000 |
| 240 | #define LOAD_X(x) ((x) << 6) |
| 241 | #define LOAD_ZZ(x) ((x) << 7) |
| 242 | #define LOAD_AA(x) ((x) << 9) |
| 243 | #define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7)) |
| 244 | #define LOAD_C(x) ((x) & 0x03f) |
| 245 | /* Unsigned and signed loads. */ |
| 246 | #define OPC_LDU (OPC_LOAD | LOAD_X(X_zero)) |
| 247 | #define OPC_LDS (OPC_LOAD | LOAD_X(X_sign)) |
| 248 | /* 32-bit load. */ |
| 249 | #define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte)) |
| 250 | /* "pop reg" is merely a "ld.ab reg,[sp,4]". */ |
| 251 | #define OPC_POP \ |
| 252 | (OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP)) |
| 253 | |
| 254 | /* |
| 255 | * The 4-byte encoding of "st[zz][.aa] c,[b,s9]": |
| 256 | * |
| 257 | * 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0 |
| 258 | * |
| 259 | * zz: zz size mode |
| 260 | * aa: aa address write back mode |
| 261 | * |
| 262 | * s9: S_ssss_ssss 9-bit signed number |
| 263 | * b: BBBbbb source reg for address |
| 264 | * c: cccccc source reg to be stored |
| 265 | */ |
| 266 | #define OPC_STORE 0x18000000 |
| 267 | #define STORE_ZZ(x) ((x) << 1) |
| 268 | #define STORE_AA(x) ((x) << 3) |
| 269 | #define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7)) |
| 270 | /* 32-bit store. */ |
| 271 | #define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte)) |
| 272 | /* "push reg" is merely a "st.aw reg,[sp,-4]". */ |
| 273 | #define OPC_PUSH \ |
| 274 | (OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP)) |
| 275 | |
| 276 | /* |
| 277 | * The 4-byte encoding of "add a,b,c": |
| 278 | * |
| 279 | * 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa |
| 280 | * |
| 281 | * f: indicates if flags (carry, etc.) should be updated |
| 282 | * i: If set, c is considered a 6-bit immediate, else a reg. |
| 283 | * |
| 284 | * a: aaaaaa result |
| 285 | * b: BBBbbb the 1st input operand |
| 286 | * c: cccccc the 2nd input operand |
| 287 | */ |
| 288 | #define OPC_ADD 0x20000000 |
| 289 | /* Addition with updating the pertinent flags in "status32" register. */ |
| 290 | #define OPC_ADDF (OPC_ADD | FLAG(1)) |
| 291 | #define ADDI BIT(22) |
| 292 | #define ADDI_U6(x) OP_C(x) |
| 293 | #define OPC_ADDI (OPC_ADD | ADDI) |
| 294 | #define OPC_ADDIF (OPC_ADDI | FLAG(1)) |
| 295 | #define OPC_ADD_I (OPC_ADD | OP_IMM) |
| 296 | |
| 297 | /* |
| 298 | * The 4-byte encoding of "adc a,b,c" (addition with carry): |
| 299 | * |
| 300 | * 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa |
| 301 | * |
| 302 | * i: if set, c is considered a 6-bit immediate, else a reg. |
| 303 | * |
| 304 | * a: aaaaaa result |
| 305 | * b: BBBbbb the 1st input operand |
| 306 | * c: cccccc the 2nd input operand |
| 307 | */ |
| 308 | #define OPC_ADC 0x20010000 |
| 309 | #define ADCI BIT(22) |
| 310 | #define ADCI_U6(x) OP_C(x) |
| 311 | #define OPC_ADCI (OPC_ADC | ADCI) |
| 312 | |
| 313 | /* |
| 314 | * The 4-byte encoding of "sub a,b,c": |
| 315 | * |
| 316 | * 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa |
| 317 | * |
| 318 | * f: indicates if flags (carry, etc.) should be updated |
| 319 | * i: if set, c is considered a 6-bit immediate, else a reg. |
| 320 | * |
| 321 | * a: aaaaaa result |
| 322 | * b: BBBbbb the 1st input operand |
| 323 | * c: cccccc the 2nd input operand |
| 324 | */ |
| 325 | #define OPC_SUB 0x20020000 |
| 326 | /* Subtraction with updating the pertinent flags in "status32" register. */ |
| 327 | #define OPC_SUBF (OPC_SUB | FLAG(1)) |
| 328 | #define SUBI BIT(22) |
| 329 | #define SUBI_U6(x) OP_C(x) |
| 330 | #define OPC_SUBI (OPC_SUB | SUBI) |
| 331 | #define OPC_SUB_I (OPC_SUB | OP_IMM) |
| 332 | |
| 333 | /* |
| 334 | * The 4-byte encoding of "sbc a,b,c" (subtraction with carry): |
| 335 | * |
| 336 | * 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa |
| 337 | * |
| 338 | * f: indicates if flags (carry, etc.) should be updated |
| 339 | * |
| 340 | * a: aaaaaa result |
| 341 | * b: BBBbbb the 1st input operand |
| 342 | * c: cccccc the 2nd input operand |
| 343 | */ |
| 344 | #define OPC_SBC 0x20030000 |
| 345 | |
| 346 | /* |
| 347 | * The 4-byte encoding of "cmp[.qq] b,c": |
| 348 | * |
| 349 | * 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq |
| 350 | * |
| 351 | * qq: qqqqq condition code |
| 352 | * |
| 353 | * b: BBBbbb the 1st operand |
| 354 | * c: cccccc the 2nd operand |
| 355 | */ |
| 356 | #define OPC_CMP 0x20cc8000 |
| 357 | |
| 358 | /* |
| 359 | * The 4-byte encoding of "neg a,b": |
| 360 | * |
| 361 | * 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa |
| 362 | * |
| 363 | * a: aaaaaa result |
| 364 | * b: BBBbbb input |
| 365 | */ |
| 366 | #define OPC_NEG 0x204e0000 |
| 367 | |
| 368 | /* |
| 369 | * The 4-byte encoding of "mpy a,b,c". |
| 370 | * mpy is the signed 32-bit multiplication with the lower 32-bit |
| 371 | * of the product as the result. |
| 372 | * |
| 373 | * 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa |
| 374 | * |
| 375 | * a: aaaaaa result |
| 376 | * b: BBBbbb the 1st input operand |
| 377 | * c: cccccc the 2nd input operand |
| 378 | */ |
| 379 | #define OPC_MPY 0x201a0000 |
| 380 | #define OPC_MPYI (OPC_MPY | OP_IMM) |
| 381 | |
| 382 | /* |
| 383 | * The 4-byte encoding of "mpydu a,b,c". |
| 384 | * mpydu is the unsigned 32-bit multiplication with the lower 32-bit of |
| 385 | * the product in register "a" and the higher 32-bit in register "a+1". |
| 386 | * |
| 387 | * 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa |
| 388 | * |
| 389 | * a: aaaaaa 64-bit result in registers (R_a+1,R_a) |
| 390 | * b: BBBbbb the 1st input operand |
| 391 | * c: cccccc the 2nd input operand |
| 392 | */ |
| 393 | #define OPC_MPYDU 0x28190000 |
| 394 | #define OPC_MPYDUI (OPC_MPYDU | OP_IMM) |
| 395 | |
| 396 | /* |
| 397 | * The 4-byte encoding of "divu a,b,c" (unsigned division): |
| 398 | * |
| 399 | * 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa |
| 400 | * |
| 401 | * a: aaaaaa result (quotient) |
| 402 | * b: BBBbbb the 1st input operand |
| 403 | * c: cccccc the 2nd input operand (divisor) |
| 404 | */ |
| 405 | #define OPC_DIVU 0x28050000 |
| 406 | #define OPC_DIVUI (OPC_DIVU | OP_IMM) |
| 407 | |
| 408 | /* |
| 409 | * The 4-byte encoding of "div a,b,c" (signed division): |
| 410 | * |
| 411 | * 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa |
| 412 | * |
| 413 | * a: aaaaaa result (quotient) |
| 414 | * b: BBBbbb the 1st input operand |
| 415 | * c: cccccc the 2nd input operand (divisor) |
| 416 | */ |
| 417 | #define OPC_DIVS 0x28040000 |
| 418 | #define OPC_DIVSI (OPC_DIVS | OP_IMM) |
| 419 | |
| 420 | /* |
| 421 | * The 4-byte encoding of "remu a,b,c" (unsigned remainder): |
| 422 | * |
| 423 | * 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa |
| 424 | * |
| 425 | * a: aaaaaa result (remainder) |
| 426 | * b: BBBbbb the 1st input operand |
| 427 | * c: cccccc the 2nd input operand (divisor) |
| 428 | */ |
| 429 | #define OPC_REMU 0x28090000 |
| 430 | #define OPC_REMUI (OPC_REMU | OP_IMM) |
| 431 | |
| 432 | /* |
| 433 | * The 4-byte encoding of "rem a,b,c" (signed remainder): |
| 434 | * |
| 435 | * 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa |
| 436 | * |
| 437 | * a: aaaaaa result (remainder) |
| 438 | * b: BBBbbb the 1st input operand |
| 439 | * c: cccccc the 2nd input operand (divisor) |
| 440 | */ |
| 441 | #define OPC_REMS 0x28080000 |
| 442 | #define OPC_REMSI (OPC_REMS | OP_IMM) |
| 443 | |
| 444 | /* |
| 445 | * The 4-byte encoding of "and a,b,c": |
| 446 | * |
| 447 | * 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa |
| 448 | * |
| 449 | * f: indicates if zero and negative flags should be updated |
| 450 | * |
| 451 | * a: aaaaaa result |
| 452 | * b: BBBbbb the 1st input operand |
| 453 | * c: cccccc the 2nd input operand |
| 454 | */ |
| 455 | #define OPC_AND 0x20040000 |
| 456 | #define OPC_ANDI (OPC_AND | OP_IMM) |
| 457 | |
| 458 | /* |
| 459 | * The 4-byte encoding of "tst[.qq] b,c". |
| 460 | * Checks if the two input operands have any bit set at the same |
| 461 | * position. |
| 462 | * |
| 463 | * 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq |
| 464 | * |
| 465 | * qq: qqqqq condition code |
| 466 | * |
| 467 | * b: BBBbbb the 1st input operand |
| 468 | * c: cccccc the 2nd input operand |
| 469 | */ |
| 470 | #define OPC_TST 0x20cb8000 |
| 471 | |
| 472 | /* |
| 473 | * The 4-byte encoding of "or a,b,c": |
| 474 | * |
| 475 | * 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa |
| 476 | * |
| 477 | * a: aaaaaa result |
| 478 | * b: BBBbbb the 1st input operand |
| 479 | * c: cccccc the 2nd input operand |
| 480 | */ |
| 481 | #define OPC_OR 0x20050000 |
| 482 | #define OPC_ORI (OPC_OR | OP_IMM) |
| 483 | |
| 484 | /* |
| 485 | * The 4-byte encoding of "xor a,b,c": |
| 486 | * |
| 487 | * 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa |
| 488 | * |
| 489 | * a: aaaaaa result |
| 490 | * b: BBBbbb the 1st input operand |
| 491 | * c: cccccc the 2nd input operand |
| 492 | */ |
| 493 | #define OPC_XOR 0x20070000 |
| 494 | #define OPC_XORI (OPC_XOR | OP_IMM) |
| 495 | |
| 496 | /* |
| 497 | * The 4-byte encoding of "not b,c": |
| 498 | * |
| 499 | * 0010_0bbb 0010_1111 0BBB_cccc cc00_1010 |
| 500 | * |
| 501 | * b: BBBbbb result |
| 502 | * c: cccccc input |
| 503 | */ |
| 504 | #define OPC_NOT 0x202f000a |
| 505 | |
| 506 | /* |
| 507 | * The 4-byte encoding of "btst b,u6": |
| 508 | * |
| 509 | * 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000 |
| 510 | * |
| 511 | * b: BBBbbb input number to check |
| 512 | * u6: uuuuuu 6-bit unsigned number specifying bit position to check |
| 513 | */ |
| 514 | #define OPC_BTSTU6 0x20518000 |
| 515 | #define BTST_U6(x) (OP_C((x) & 63)) |
| 516 | |
| 517 | /* |
| 518 | * The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left): |
| 519 | * |
| 520 | * 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa |
| 521 | * |
| 522 | * i: if set, c is considered a 5-bit immediate, else a reg. |
| 523 | * |
| 524 | * b: BBBbbb result and the first operand (number to be shifted) |
| 525 | * c: cccccc amount to be shifted |
| 526 | */ |
| 527 | #define OPC_ASL 0x28000000 |
| 528 | #define ASL_I BIT(22) |
| 529 | #define ASLI_U6(x) OP_C((x) & 31) |
| 530 | #define OPC_ASLI (OPC_ASL | ASL_I) |
| 531 | |
| 532 | /* |
| 533 | * The 4-byte encoding of "asr a,b,c" (arithmetic shift right): |
| 534 | * |
| 535 | * 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa |
| 536 | * |
| 537 | * i: if set, c is considered a 6-bit immediate, else a reg. |
| 538 | * |
| 539 | * a: aaaaaa result |
| 540 | * b: BBBbbb first input: number to be shifted |
| 541 | * c: cccccc second input: amount to be shifted |
| 542 | */ |
| 543 | #define OPC_ASR 0x28020000 |
| 544 | #define ASR_I ASL_I |
| 545 | #define ASRI_U6(x) ASLI_U6(x) |
| 546 | #define OPC_ASRI (OPC_ASR | ASR_I) |
| 547 | |
| 548 | /* |
| 549 | * The 4-byte encoding of "lsr a,b,c" (logical shift right): |
| 550 | * |
| 551 | * 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa |
| 552 | * |
| 553 | * i: if set, c is considered a 6-bit immediate, else a reg. |
| 554 | * |
| 555 | * a: aaaaaa result |
| 556 | * b: BBBbbb first input: number to be shifted |
| 557 | * c: cccccc second input: amount to be shifted |
| 558 | */ |
| 559 | #define OPC_LSR 0x28010000 |
| 560 | #define LSR_I ASL_I |
| 561 | #define LSRI_U6(x) ASLI_U6(x) |
| 562 | #define OPC_LSRI (OPC_LSR | LSR_I) |
| 563 | |
| 564 | /* |
| 565 | * The 4-byte encoding of "swape b,c": |
| 566 | * |
| 567 | * 0010_1bbb 0010_1111 0bbb_cccc cc00_1001 |
| 568 | * |
| 569 | * b: BBBbbb destination register |
| 570 | * c: cccccc source register |
| 571 | */ |
| 572 | #define OPC_SWAPE 0x282f0009 |
| 573 | |
| 574 | /* |
| 575 | * Encoding for jump to an address in register: |
| 576 | * j reg_c |
| 577 | * |
| 578 | * 0010_0000 1110_0000 0000_cccc cc00_0000 |
| 579 | * |
| 580 | * c: cccccc register holding the destination address |
| 581 | */ |
| 582 | #define OPC_JMP 0x20e00000 |
| 583 | /* Jump to "branch-and-link" register, which effectively is a "return". */ |
| 584 | #define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK)) |
| 585 | |
| 586 | /* |
| 587 | * Encoding for jump-and-link to an address in register: |
| 588 | * jl reg_c |
| 589 | * |
| 590 | * 0010_0000 0010_0010 0000_cccc cc00_0000 |
| 591 | * |
| 592 | * c: cccccc register holding the destination address |
| 593 | */ |
| 594 | #define OPC_JL 0x20220000 |
| 595 | |
| 596 | /* |
| 597 | * Encoding for (conditional) branch to an offset from the current location |
| 598 | * that is word aligned: (PC & 0xffff_fffc) + s21 |
| 599 | * B[qq] s21 |
| 600 | * |
| 601 | * 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq |
| 602 | * |
| 603 | * qq: qqqqq condition code |
| 604 | * s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed) |
| 605 | * |
| 606 | * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore, |
| 607 | * it should be a multiple of 2. Hence, there is an implied '0' bit at its |
| 608 | * LSB: S_SSSS SSSS_Ssss ssss_sss0 |
| 609 | */ |
| 610 | #define OPC_BCC 0x00000000 |
| 611 | #define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5)) |
| 612 | |
| 613 | /* |
| 614 | * Encoding for unconditional branch to an offset from the current location |
| 615 | * that is word aligned: (PC & 0xffff_fffc) + s25 |
| 616 | * B s25 |
| 617 | * |
| 618 | * 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT |
| 619 | * |
| 620 | * s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed) |
| 621 | * |
| 622 | * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore, |
| 623 | * it should be a multiple of 2. Hence, there is an implied '0' bit at its |
| 624 | * LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0 |
| 625 | */ |
| 626 | #define OPC_B 0x00010000 |
| 627 | #define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d)) |
| 628 | |
| 629 | static inline void emit_2_bytes(u8 *buf, u16 bytes) |
| 630 | { |
| 631 | *((u16 *)buf) = bytes; |
| 632 | } |
| 633 | |
| 634 | static inline void emit_4_bytes(u8 *buf, u32 bytes) |
| 635 | { |
| 636 | emit_2_bytes(buf, bytes: bytes >> 16); |
| 637 | emit_2_bytes(buf: buf + 2, bytes: bytes & 0xffff); |
| 638 | } |
| 639 | |
| 640 | static inline u8 bpf_to_arc_size(u8 size) |
| 641 | { |
| 642 | switch (size) { |
| 643 | case BPF_B: |
| 644 | return ZZ_1_byte; |
| 645 | case BPF_H: |
| 646 | return ZZ_2_byte; |
| 647 | case BPF_W: |
| 648 | return ZZ_4_byte; |
| 649 | case BPF_DW: |
| 650 | return ZZ_8_byte; |
| 651 | default: |
| 652 | return ZZ_4_byte; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /************** Encoders (Deal with ARC regs) ************/ |
| 657 | |
| 658 | /* Move an immediate to register with a 4-byte instruction. */ |
| 659 | static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm) |
| 660 | { |
| 661 | const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm); |
| 662 | |
| 663 | if (buf) |
| 664 | emit_4_bytes(buf, bytes: insn); |
| 665 | return INSN_len_normal; |
| 666 | } |
| 667 | |
| 668 | /* rd <- rs */ |
| 669 | static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs) |
| 670 | { |
| 671 | const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs); |
| 672 | |
| 673 | if (buf) |
| 674 | emit_4_bytes(buf, bytes: insn); |
| 675 | return INSN_len_normal; |
| 676 | } |
| 677 | |
| 678 | /* The emitted code may have different sizes based on "imm". */ |
| 679 | static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm) |
| 680 | { |
| 681 | const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM; |
| 682 | |
| 683 | if (IN_S12_RANGE(imm)) |
| 684 | return arc_movi_r(buf, reg: rd, imm); |
| 685 | |
| 686 | if (buf) { |
| 687 | emit_4_bytes(buf, bytes: insn); |
| 688 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 689 | } |
| 690 | return INSN_len_normal + INSN_len_imm; |
| 691 | } |
| 692 | |
| 693 | /* The emitted code will always have the same size (8). */ |
| 694 | static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm) |
| 695 | { |
| 696 | const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM; |
| 697 | |
| 698 | if (buf) { |
| 699 | emit_4_bytes(buf, bytes: insn); |
| 700 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 701 | } |
| 702 | return INSN_len_normal + INSN_len_imm; |
| 703 | } |
| 704 | |
| 705 | /* Conditional move. */ |
| 706 | static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs) |
| 707 | { |
| 708 | const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc); |
| 709 | |
| 710 | if (buf) |
| 711 | emit_4_bytes(buf, bytes: insn); |
| 712 | return INSN_len_normal; |
| 713 | } |
| 714 | |
| 715 | /* Conditional move of a small immediate to rd. */ |
| 716 | static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm) |
| 717 | { |
| 718 | const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc); |
| 719 | |
| 720 | if (buf) |
| 721 | emit_4_bytes(buf, bytes: insn); |
| 722 | return INSN_len_normal; |
| 723 | } |
| 724 | |
| 725 | /* Sign extension from a byte. */ |
| 726 | static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs) |
| 727 | { |
| 728 | const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs); |
| 729 | |
| 730 | if (buf) |
| 731 | emit_4_bytes(buf, bytes: insn); |
| 732 | return INSN_len_normal; |
| 733 | } |
| 734 | |
| 735 | /* Sign extension from two bytes. */ |
| 736 | static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs) |
| 737 | { |
| 738 | const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs); |
| 739 | |
| 740 | if (buf) |
| 741 | emit_4_bytes(buf, bytes: insn); |
| 742 | return INSN_len_normal; |
| 743 | } |
| 744 | |
| 745 | /* st reg, [reg_mem, off] */ |
| 746 | static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
| 747 | { |
| 748 | const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) | |
| 749 | OP_B(reg_mem) | STORE_S9(off); |
| 750 | |
| 751 | if (buf) |
| 752 | emit_4_bytes(buf, bytes: insn); |
| 753 | return INSN_len_normal; |
| 754 | } |
| 755 | |
| 756 | /* st.aw reg, [sp, -4] */ |
| 757 | static u8 arc_push_r(u8 *buf, u8 reg) |
| 758 | { |
| 759 | const u32 insn = OPC_PUSH | OP_C(reg); |
| 760 | |
| 761 | if (buf) |
| 762 | emit_4_bytes(buf, bytes: insn); |
| 763 | return INSN_len_normal; |
| 764 | } |
| 765 | |
| 766 | /* ld reg, [reg_mem, off] (unsigned) */ |
| 767 | static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
| 768 | { |
| 769 | const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) | |
| 770 | OP_B(reg_mem) | LOAD_S9(off); |
| 771 | |
| 772 | if (buf) |
| 773 | emit_4_bytes(buf, bytes: insn); |
| 774 | return INSN_len_normal; |
| 775 | } |
| 776 | |
| 777 | /* ld.x reg, [reg_mem, off] (sign extend) */ |
| 778 | static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
| 779 | { |
| 780 | const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) | |
| 781 | OP_B(reg_mem) | LOAD_S9(off); |
| 782 | |
| 783 | if (buf) |
| 784 | emit_4_bytes(buf, bytes: insn); |
| 785 | return INSN_len_normal; |
| 786 | } |
| 787 | |
| 788 | /* ld.ab reg,[sp,4] */ |
| 789 | static u8 arc_pop_r(u8 *buf, u8 reg) |
| 790 | { |
| 791 | const u32 insn = OPC_POP | LOAD_C(reg); |
| 792 | |
| 793 | if (buf) |
| 794 | emit_4_bytes(buf, bytes: insn); |
| 795 | return INSN_len_normal; |
| 796 | } |
| 797 | |
| 798 | /* add Ra,Ra,Rc */ |
| 799 | static u8 arc_add_r(u8 *buf, u8 ra, u8 rc) |
| 800 | { |
| 801 | const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| 802 | |
| 803 | if (buf) |
| 804 | emit_4_bytes(buf, bytes: insn); |
| 805 | return INSN_len_normal; |
| 806 | } |
| 807 | |
| 808 | /* add.f Ra,Ra,Rc */ |
| 809 | static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc) |
| 810 | { |
| 811 | const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| 812 | |
| 813 | if (buf) |
| 814 | emit_4_bytes(buf, bytes: insn); |
| 815 | return INSN_len_normal; |
| 816 | } |
| 817 | |
| 818 | /* add.f Ra,Ra,u6 */ |
| 819 | static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6) |
| 820 | { |
| 821 | const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6); |
| 822 | |
| 823 | if (buf) |
| 824 | emit_4_bytes(buf, bytes: insn); |
| 825 | return INSN_len_normal; |
| 826 | } |
| 827 | |
| 828 | /* add Ra,Ra,u6 */ |
| 829 | static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6) |
| 830 | { |
| 831 | const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6); |
| 832 | |
| 833 | if (buf) |
| 834 | emit_4_bytes(buf, bytes: insn); |
| 835 | return INSN_len_normal; |
| 836 | } |
| 837 | |
| 838 | /* add Ra,Rb,imm */ |
| 839 | static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm) |
| 840 | { |
| 841 | const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb); |
| 842 | |
| 843 | if (buf) { |
| 844 | emit_4_bytes(buf, bytes: insn); |
| 845 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 846 | } |
| 847 | return INSN_len_normal + INSN_len_imm; |
| 848 | } |
| 849 | |
| 850 | /* adc Ra,Ra,Rc */ |
| 851 | static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc) |
| 852 | { |
| 853 | const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| 854 | |
| 855 | if (buf) |
| 856 | emit_4_bytes(buf, bytes: insn); |
| 857 | return INSN_len_normal; |
| 858 | } |
| 859 | |
| 860 | /* adc Ra,Ra,u6 */ |
| 861 | static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6) |
| 862 | { |
| 863 | const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6); |
| 864 | |
| 865 | if (buf) |
| 866 | emit_4_bytes(buf, bytes: insn); |
| 867 | return INSN_len_normal; |
| 868 | } |
| 869 | |
| 870 | /* sub Ra,Ra,Rc */ |
| 871 | static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc) |
| 872 | { |
| 873 | const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| 874 | |
| 875 | if (buf) |
| 876 | emit_4_bytes(buf, bytes: insn); |
| 877 | return INSN_len_normal; |
| 878 | } |
| 879 | |
| 880 | /* sub.f Ra,Ra,Rc */ |
| 881 | static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc) |
| 882 | { |
| 883 | const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| 884 | |
| 885 | if (buf) |
| 886 | emit_4_bytes(buf, bytes: insn); |
| 887 | return INSN_len_normal; |
| 888 | } |
| 889 | |
| 890 | /* sub Ra,Ra,u6 */ |
| 891 | static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6) |
| 892 | { |
| 893 | const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6); |
| 894 | |
| 895 | if (buf) |
| 896 | emit_4_bytes(buf, bytes: insn); |
| 897 | return INSN_len_normal; |
| 898 | } |
| 899 | |
| 900 | /* sub Ra,Ra,imm */ |
| 901 | static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm) |
| 902 | { |
| 903 | const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra); |
| 904 | |
| 905 | if (buf) { |
| 906 | emit_4_bytes(buf, bytes: insn); |
| 907 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 908 | } |
| 909 | return INSN_len_normal + INSN_len_imm; |
| 910 | } |
| 911 | |
| 912 | /* sbc Ra,Ra,Rc */ |
| 913 | static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc) |
| 914 | { |
| 915 | const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| 916 | |
| 917 | if (buf) |
| 918 | emit_4_bytes(buf, bytes: insn); |
| 919 | return INSN_len_normal; |
| 920 | } |
| 921 | |
| 922 | /* cmp Rb,Rc */ |
| 923 | static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc) |
| 924 | { |
| 925 | const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc); |
| 926 | |
| 927 | if (buf) |
| 928 | emit_4_bytes(buf, bytes: insn); |
| 929 | return INSN_len_normal; |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * cmp.z Rb,Rc |
| 934 | * |
| 935 | * This "cmp.z" variant of compare instruction is used on lower |
| 936 | * 32-bits of register pairs after "cmp"ing their upper parts. If the |
| 937 | * upper parts are equal (z), then this one will proceed to check the |
| 938 | * rest. |
| 939 | */ |
| 940 | static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc) |
| 941 | { |
| 942 | const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal; |
| 943 | |
| 944 | if (buf) |
| 945 | emit_4_bytes(buf, bytes: insn); |
| 946 | return INSN_len_normal; |
| 947 | } |
| 948 | |
| 949 | /* neg Ra,Rb */ |
| 950 | static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb) |
| 951 | { |
| 952 | const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb); |
| 953 | |
| 954 | if (buf) |
| 955 | emit_4_bytes(buf, bytes: insn); |
| 956 | return INSN_len_normal; |
| 957 | } |
| 958 | |
| 959 | /* mpy Ra,Rb,Rc */ |
| 960 | static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc) |
| 961 | { |
| 962 | const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc); |
| 963 | |
| 964 | if (buf) |
| 965 | emit_4_bytes(buf, bytes: insn); |
| 966 | return INSN_len_normal; |
| 967 | } |
| 968 | |
| 969 | /* mpy Ra,Rb,imm */ |
| 970 | static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm) |
| 971 | { |
| 972 | const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb); |
| 973 | |
| 974 | if (buf) { |
| 975 | emit_4_bytes(buf, bytes: insn); |
| 976 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 977 | } |
| 978 | return INSN_len_normal + INSN_len_imm; |
| 979 | } |
| 980 | |
| 981 | /* mpydu Ra,Ra,Rc */ |
| 982 | static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc) |
| 983 | { |
| 984 | const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| 985 | |
| 986 | if (buf) |
| 987 | emit_4_bytes(buf, bytes: insn); |
| 988 | return INSN_len_normal; |
| 989 | } |
| 990 | |
| 991 | /* mpydu Ra,Ra,imm */ |
| 992 | static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm) |
| 993 | { |
| 994 | const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra); |
| 995 | |
| 996 | if (buf) { |
| 997 | emit_4_bytes(buf, bytes: insn); |
| 998 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 999 | } |
| 1000 | return INSN_len_normal + INSN_len_imm; |
| 1001 | } |
| 1002 | |
| 1003 | /* divu Rd,Rd,Rs */ |
| 1004 | static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs) |
| 1005 | { |
| 1006 | const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| 1007 | |
| 1008 | if (buf) |
| 1009 | emit_4_bytes(buf, bytes: insn); |
| 1010 | return INSN_len_normal; |
| 1011 | } |
| 1012 | |
| 1013 | /* divu Rd,Rd,imm */ |
| 1014 | static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm) |
| 1015 | { |
| 1016 | const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd); |
| 1017 | |
| 1018 | if (buf) { |
| 1019 | emit_4_bytes(buf, bytes: insn); |
| 1020 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 1021 | } |
| 1022 | return INSN_len_normal + INSN_len_imm; |
| 1023 | } |
| 1024 | |
| 1025 | /* div Rd,Rd,Rs */ |
| 1026 | static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs) |
| 1027 | { |
| 1028 | const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| 1029 | |
| 1030 | if (buf) |
| 1031 | emit_4_bytes(buf, bytes: insn); |
| 1032 | return INSN_len_normal; |
| 1033 | } |
| 1034 | |
| 1035 | /* div Rd,Rd,imm */ |
| 1036 | static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm) |
| 1037 | { |
| 1038 | const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd); |
| 1039 | |
| 1040 | if (buf) { |
| 1041 | emit_4_bytes(buf, bytes: insn); |
| 1042 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 1043 | } |
| 1044 | return INSN_len_normal + INSN_len_imm; |
| 1045 | } |
| 1046 | |
| 1047 | /* remu Rd,Rd,Rs */ |
| 1048 | static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs) |
| 1049 | { |
| 1050 | const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| 1051 | |
| 1052 | if (buf) |
| 1053 | emit_4_bytes(buf, bytes: insn); |
| 1054 | return INSN_len_normal; |
| 1055 | } |
| 1056 | |
| 1057 | /* remu Rd,Rd,imm */ |
| 1058 | static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm) |
| 1059 | { |
| 1060 | const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd); |
| 1061 | |
| 1062 | if (buf) { |
| 1063 | emit_4_bytes(buf, bytes: insn); |
| 1064 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 1065 | } |
| 1066 | return INSN_len_normal + INSN_len_imm; |
| 1067 | } |
| 1068 | |
| 1069 | /* rem Rd,Rd,Rs */ |
| 1070 | static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs) |
| 1071 | { |
| 1072 | const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| 1073 | |
| 1074 | if (buf) |
| 1075 | emit_4_bytes(buf, bytes: insn); |
| 1076 | return INSN_len_normal; |
| 1077 | } |
| 1078 | |
| 1079 | /* rem Rd,Rd,imm */ |
| 1080 | static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm) |
| 1081 | { |
| 1082 | const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd); |
| 1083 | |
| 1084 | if (buf) { |
| 1085 | emit_4_bytes(buf, bytes: insn); |
| 1086 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 1087 | } |
| 1088 | return INSN_len_normal + INSN_len_imm; |
| 1089 | } |
| 1090 | |
| 1091 | /* and Rd,Rd,Rs */ |
| 1092 | static u8 arc_and_r(u8 *buf, u8 rd, u8 rs) |
| 1093 | { |
| 1094 | const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| 1095 | |
| 1096 | if (buf) |
| 1097 | emit_4_bytes(buf, bytes: insn); |
| 1098 | return INSN_len_normal; |
| 1099 | } |
| 1100 | |
| 1101 | /* and Rd,Rd,limm */ |
| 1102 | static u8 arc_and_i(u8 *buf, u8 rd, s32 imm) |
| 1103 | { |
| 1104 | const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd); |
| 1105 | |
| 1106 | if (buf) { |
| 1107 | emit_4_bytes(buf, bytes: insn); |
| 1108 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 1109 | } |
| 1110 | return INSN_len_normal + INSN_len_imm; |
| 1111 | } |
| 1112 | |
| 1113 | /* tst Rd,Rs */ |
| 1114 | static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs) |
| 1115 | { |
| 1116 | const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs); |
| 1117 | |
| 1118 | if (buf) |
| 1119 | emit_4_bytes(buf, bytes: insn); |
| 1120 | return INSN_len_normal; |
| 1121 | } |
| 1122 | |
| 1123 | /* |
| 1124 | * This particular version, "tst.z ...", is meant to be used after a |
| 1125 | * "tst" on the low 32-bit of register pairs. If that "tst" is not |
| 1126 | * zero, then we don't need to test the upper 32-bits lest it sets |
| 1127 | * the zero flag. |
| 1128 | */ |
| 1129 | static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs) |
| 1130 | { |
| 1131 | const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal; |
| 1132 | |
| 1133 | if (buf) |
| 1134 | emit_4_bytes(buf, bytes: insn); |
| 1135 | return INSN_len_normal; |
| 1136 | } |
| 1137 | |
| 1138 | static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
| 1139 | { |
| 1140 | const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
| 1141 | |
| 1142 | if (buf) |
| 1143 | emit_4_bytes(buf, bytes: insn); |
| 1144 | return INSN_len_normal; |
| 1145 | } |
| 1146 | |
| 1147 | static u8 arc_or_i(u8 *buf, u8 rd, s32 imm) |
| 1148 | { |
| 1149 | const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd); |
| 1150 | |
| 1151 | if (buf) { |
| 1152 | emit_4_bytes(buf, bytes: insn); |
| 1153 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 1154 | } |
| 1155 | return INSN_len_normal + INSN_len_imm; |
| 1156 | } |
| 1157 | |
| 1158 | static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs) |
| 1159 | { |
| 1160 | const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| 1161 | |
| 1162 | if (buf) |
| 1163 | emit_4_bytes(buf, bytes: insn); |
| 1164 | return INSN_len_normal; |
| 1165 | } |
| 1166 | |
| 1167 | static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm) |
| 1168 | { |
| 1169 | const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd); |
| 1170 | |
| 1171 | if (buf) { |
| 1172 | emit_4_bytes(buf, bytes: insn); |
| 1173 | emit_4_bytes(buf: buf + INSN_len_normal, bytes: imm); |
| 1174 | } |
| 1175 | return INSN_len_normal + INSN_len_imm; |
| 1176 | } |
| 1177 | |
| 1178 | static u8 arc_not_r(u8 *buf, u8 rd, u8 rs) |
| 1179 | { |
| 1180 | const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs); |
| 1181 | |
| 1182 | if (buf) |
| 1183 | emit_4_bytes(buf, bytes: insn); |
| 1184 | return INSN_len_normal; |
| 1185 | } |
| 1186 | |
| 1187 | static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm) |
| 1188 | { |
| 1189 | const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm); |
| 1190 | |
| 1191 | if (buf) |
| 1192 | emit_4_bytes(buf, bytes: insn); |
| 1193 | return INSN_len_normal; |
| 1194 | } |
| 1195 | |
| 1196 | static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
| 1197 | { |
| 1198 | const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
| 1199 | |
| 1200 | if (buf) |
| 1201 | emit_4_bytes(buf, bytes: insn); |
| 1202 | return INSN_len_normal; |
| 1203 | } |
| 1204 | |
| 1205 | static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
| 1206 | { |
| 1207 | const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm); |
| 1208 | |
| 1209 | if (buf) |
| 1210 | emit_4_bytes(buf, bytes: insn); |
| 1211 | return INSN_len_normal; |
| 1212 | } |
| 1213 | |
| 1214 | static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
| 1215 | { |
| 1216 | const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
| 1217 | |
| 1218 | if (buf) |
| 1219 | emit_4_bytes(buf, bytes: insn); |
| 1220 | return INSN_len_normal; |
| 1221 | } |
| 1222 | |
| 1223 | static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
| 1224 | { |
| 1225 | const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm); |
| 1226 | |
| 1227 | if (buf) |
| 1228 | emit_4_bytes(buf, bytes: insn); |
| 1229 | return INSN_len_normal; |
| 1230 | } |
| 1231 | |
| 1232 | static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
| 1233 | { |
| 1234 | const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
| 1235 | |
| 1236 | if (buf) |
| 1237 | emit_4_bytes(buf, bytes: insn); |
| 1238 | return INSN_len_normal; |
| 1239 | } |
| 1240 | |
| 1241 | static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
| 1242 | { |
| 1243 | const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm); |
| 1244 | |
| 1245 | if (buf) |
| 1246 | emit_4_bytes(buf, bytes: insn); |
| 1247 | return INSN_len_normal; |
| 1248 | } |
| 1249 | |
| 1250 | static u8 arc_swape_r(u8 *buf, u8 r) |
| 1251 | { |
| 1252 | const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r); |
| 1253 | |
| 1254 | if (buf) |
| 1255 | emit_4_bytes(buf, bytes: insn); |
| 1256 | return INSN_len_normal; |
| 1257 | } |
| 1258 | |
| 1259 | static u8 arc_jmp_return(u8 *buf) |
| 1260 | { |
| 1261 | if (buf) |
| 1262 | emit_4_bytes(buf, OPC_J_BLINK); |
| 1263 | return INSN_len_normal; |
| 1264 | } |
| 1265 | |
| 1266 | static u8 arc_jl(u8 *buf, u8 reg) |
| 1267 | { |
| 1268 | const u32 insn = OPC_JL | OP_C(reg); |
| 1269 | |
| 1270 | if (buf) |
| 1271 | emit_4_bytes(buf, bytes: insn); |
| 1272 | return INSN_len_normal; |
| 1273 | } |
| 1274 | |
| 1275 | /* |
| 1276 | * Conditional jump to an address that is max 21 bits away (signed). |
| 1277 | * |
| 1278 | * b<cc> s21 |
| 1279 | */ |
| 1280 | static u8 arc_bcc(u8 *buf, u8 cc, int offset) |
| 1281 | { |
| 1282 | const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc); |
| 1283 | |
| 1284 | if (buf) |
| 1285 | emit_4_bytes(buf, bytes: insn); |
| 1286 | return INSN_len_normal; |
| 1287 | } |
| 1288 | |
| 1289 | /* |
| 1290 | * Unconditional jump to an address that is max 25 bits away (signed). |
| 1291 | * |
| 1292 | * b s25 |
| 1293 | */ |
| 1294 | static u8 arc_b(u8 *buf, s32 offset) |
| 1295 | { |
| 1296 | const u32 insn = OPC_B | B_S25(offset); |
| 1297 | |
| 1298 | if (buf) |
| 1299 | emit_4_bytes(buf, bytes: insn); |
| 1300 | return INSN_len_normal; |
| 1301 | } |
| 1302 | |
| 1303 | /************* Packers (Deal with BPF_REGs) **************/ |
| 1304 | |
| 1305 | u8 zext(u8 *buf, u8 rd) |
| 1306 | { |
| 1307 | if (rd != BPF_REG_FP) |
| 1308 | return arc_movi_r(buf, REG_HI(rd), imm: 0); |
| 1309 | else |
| 1310 | return 0; |
| 1311 | } |
| 1312 | |
| 1313 | u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext) |
| 1314 | { |
| 1315 | u8 len = 0; |
| 1316 | |
| 1317 | if (sign_ext) { |
| 1318 | if (sign_ext == 8) |
| 1319 | len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1320 | else if (sign_ext == 16) |
| 1321 | len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1322 | else if (sign_ext == 32 && rd != rs) |
| 1323 | len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1324 | |
| 1325 | return len; |
| 1326 | } |
| 1327 | |
| 1328 | /* Unsigned move. */ |
| 1329 | |
| 1330 | if (rd != rs) |
| 1331 | len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1332 | |
| 1333 | return len; |
| 1334 | } |
| 1335 | |
| 1336 | u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm) |
| 1337 | { |
| 1338 | return arc_mov_i(buf, REG_LO(reg), imm); |
| 1339 | } |
| 1340 | |
| 1341 | u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext) |
| 1342 | { |
| 1343 | u8 len = 0; |
| 1344 | |
| 1345 | if (sign_ext) { |
| 1346 | /* First handle the low 32-bit part. */ |
| 1347 | len = mov_r32(buf, rd, rs, sign_ext); |
| 1348 | |
| 1349 | /* Now propagate the sign bit of LO to HI. */ |
| 1350 | if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) { |
| 1351 | len += arc_asri_r(BUF(buf, len), |
| 1352 | REG_HI(rd), REG_LO(rd), imm: 31); |
| 1353 | } |
| 1354 | |
| 1355 | return len; |
| 1356 | } |
| 1357 | |
| 1358 | /* Unsigned move. */ |
| 1359 | |
| 1360 | if (rd == rs) |
| 1361 | return 0; |
| 1362 | |
| 1363 | len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1364 | |
| 1365 | if (rs != BPF_REG_FP) |
| 1366 | len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| 1367 | /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
| 1368 | else |
| 1369 | len += arc_movi_r(BUF(buf, len), REG_HI(rd), imm: 0); |
| 1370 | |
| 1371 | return len; |
| 1372 | } |
| 1373 | |
| 1374 | /* Sign extend the 32-bit immediate into 64-bit register pair. */ |
| 1375 | u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm) |
| 1376 | { |
| 1377 | u8 len = 0; |
| 1378 | |
| 1379 | len = arc_mov_i(buf, REG_LO(reg), imm); |
| 1380 | |
| 1381 | /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
| 1382 | if (reg != BPF_REG_FP) { |
| 1383 | if (imm >= 0) |
| 1384 | len += arc_movi_r(BUF(buf, len), REG_HI(reg), imm: 0); |
| 1385 | else |
| 1386 | len += arc_movi_r(BUF(buf, len), REG_HI(reg), imm: -1); |
| 1387 | } |
| 1388 | |
| 1389 | return len; |
| 1390 | } |
| 1391 | |
| 1392 | /* |
| 1393 | * This is merely used for translation of "LD R, IMM64" instructions |
| 1394 | * of the BPF. These sort of instructions are sometimes used for |
| 1395 | * relocations. If during the normal pass, the relocation value is |
| 1396 | * not known, the BPF instruction may look something like: |
| 1397 | * |
| 1398 | * LD R <- 0x0000_0001_0000_0001 |
| 1399 | * |
| 1400 | * Which will nicely translate to two 4-byte ARC instructions: |
| 1401 | * |
| 1402 | * mov R_lo, 1 # imm is small enough to be s12 |
| 1403 | * mov R_hi, 1 # same |
| 1404 | * |
| 1405 | * However, during the extra pass, the IMM64 will have changed |
| 1406 | * to the resolved address and looks something like: |
| 1407 | * |
| 1408 | * LD R <- 0x0000_0000_1234_5678 |
| 1409 | * |
| 1410 | * Now, the translated code will require 12 bytes: |
| 1411 | * |
| 1412 | * mov R_lo, 0x12345678 # this is an 8-byte instruction |
| 1413 | * mov R_hi, 0 # still 4 bytes |
| 1414 | * |
| 1415 | * Which in practice will result in overwriting the following |
| 1416 | * instruction. To avoid such cases, we will always emit codes |
| 1417 | * with fixed sizes. |
| 1418 | */ |
| 1419 | u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi) |
| 1420 | { |
| 1421 | u8 len; |
| 1422 | |
| 1423 | len = arc_mov_i_fixed(buf, REG_LO(reg), imm: lo); |
| 1424 | len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), imm: hi); |
| 1425 | |
| 1426 | return len; |
| 1427 | } |
| 1428 | |
| 1429 | /* |
| 1430 | * If the "off"set is too big (doesn't encode as S9) for: |
| 1431 | * |
| 1432 | * {ld,st} r, [rm, off] |
| 1433 | * |
| 1434 | * Then emit: |
| 1435 | * |
| 1436 | * add r10, REG_LO(rm), off |
| 1437 | * |
| 1438 | * and make sure that r10 becomes the effective address: |
| 1439 | * |
| 1440 | * {ld,st} r, [r10, 0] |
| 1441 | */ |
| 1442 | static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size, |
| 1443 | u8 rm, u8 *arc_reg_mem) |
| 1444 | { |
| 1445 | u8 len = 0; |
| 1446 | *arc_reg_mem = REG_LO(rm); |
| 1447 | |
| 1448 | if (!IN_S9_RANGE(*off) || |
| 1449 | (size == BPF_DW && !IN_S9_RANGE(*off + 4))) { |
| 1450 | len += arc_add_i(BUF(buf, len), |
| 1451 | REG_LO(JIT_REG_TMP), REG_LO(rm), imm: (u32)(*off)); |
| 1452 | *arc_reg_mem = REG_LO(JIT_REG_TMP); |
| 1453 | *off = 0; |
| 1454 | } |
| 1455 | |
| 1456 | return len; |
| 1457 | } |
| 1458 | |
| 1459 | /* store rs, [rd, off] */ |
| 1460 | u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size) |
| 1461 | { |
| 1462 | u8 len, arc_reg_mem; |
| 1463 | |
| 1464 | len = adjust_mem_access(buf, off: &off, size, rm: rd, arc_reg_mem: &arc_reg_mem); |
| 1465 | |
| 1466 | if (size == BPF_DW) { |
| 1467 | len += arc_st_r(BUF(buf, len), REG_LO(rs), reg_mem: arc_reg_mem, |
| 1468 | off, zz: ZZ_4_byte); |
| 1469 | len += arc_st_r(BUF(buf, len), REG_HI(rs), reg_mem: arc_reg_mem, |
| 1470 | off: off + 4, zz: ZZ_4_byte); |
| 1471 | } else { |
| 1472 | u8 zz = bpf_to_arc_size(size); |
| 1473 | |
| 1474 | len += arc_st_r(BUF(buf, len), REG_LO(rs), reg_mem: arc_reg_mem, |
| 1475 | off, zz); |
| 1476 | } |
| 1477 | |
| 1478 | return len; |
| 1479 | } |
| 1480 | |
| 1481 | /* |
| 1482 | * For {8,16,32}-bit stores: |
| 1483 | * mov r21, imm |
| 1484 | * st r21, [...] |
| 1485 | * For 64-bit stores: |
| 1486 | * mov r21, imm |
| 1487 | * st r21, [...] |
| 1488 | * mov r21, {0,-1} |
| 1489 | * st r21, [...+4] |
| 1490 | */ |
| 1491 | u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size) |
| 1492 | { |
| 1493 | u8 len, arc_reg_mem; |
| 1494 | /* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */ |
| 1495 | const u8 arc_rs = REG_HI(JIT_REG_TMP); |
| 1496 | |
| 1497 | len = adjust_mem_access(buf, off: &off, size, rm: rd, arc_reg_mem: &arc_reg_mem); |
| 1498 | |
| 1499 | if (size == BPF_DW) { |
| 1500 | len += arc_mov_i(BUF(buf, len), rd: arc_rs, imm); |
| 1501 | len += arc_st_r(BUF(buf, len), reg: arc_rs, reg_mem: arc_reg_mem, |
| 1502 | off, zz: ZZ_4_byte); |
| 1503 | imm = (imm >= 0 ? 0 : -1); |
| 1504 | len += arc_mov_i(BUF(buf, len), rd: arc_rs, imm); |
| 1505 | len += arc_st_r(BUF(buf, len), reg: arc_rs, reg_mem: arc_reg_mem, |
| 1506 | off: off + 4, zz: ZZ_4_byte); |
| 1507 | } else { |
| 1508 | u8 zz = bpf_to_arc_size(size); |
| 1509 | |
| 1510 | len += arc_mov_i(BUF(buf, len), rd: arc_rs, imm); |
| 1511 | len += arc_st_r(BUF(buf, len), reg: arc_rs, reg_mem: arc_reg_mem, off, zz); |
| 1512 | } |
| 1513 | |
| 1514 | return len; |
| 1515 | } |
| 1516 | |
| 1517 | /* |
| 1518 | * For the calling convention of a little endian machine, the LO part |
| 1519 | * must be on top of the stack. |
| 1520 | */ |
| 1521 | static u8 push_r64(u8 *buf, u8 reg) |
| 1522 | { |
| 1523 | u8 len = 0; |
| 1524 | |
| 1525 | #ifdef __LITTLE_ENDIAN |
| 1526 | /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
| 1527 | if (reg != BPF_REG_FP) |
| 1528 | len += arc_push_r(BUF(buf, len), REG_HI(reg)); |
| 1529 | len += arc_push_r(BUF(buf, len), REG_LO(reg)); |
| 1530 | #else |
| 1531 | len += arc_push_r(BUF(buf, len), REG_LO(reg)); |
| 1532 | if (reg != BPF_REG_FP) |
| 1533 | len += arc_push_r(BUF(buf, len), REG_HI(reg)); |
| 1534 | #endif |
| 1535 | |
| 1536 | return len; |
| 1537 | } |
| 1538 | |
| 1539 | /* load rd, [rs, off] */ |
| 1540 | u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext) |
| 1541 | { |
| 1542 | u8 len, arc_reg_mem; |
| 1543 | |
| 1544 | len = adjust_mem_access(buf, off: &off, size, rm: rs, arc_reg_mem: &arc_reg_mem); |
| 1545 | |
| 1546 | if (size == BPF_B || size == BPF_H || size == BPF_W) { |
| 1547 | const u8 zz = bpf_to_arc_size(size); |
| 1548 | |
| 1549 | /* Use LD.X only if the data size is less than 32-bit. */ |
| 1550 | if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) { |
| 1551 | len += arc_ldx_r(BUF(buf, len), REG_LO(rd), |
| 1552 | reg_mem: arc_reg_mem, off, zz); |
| 1553 | } else { |
| 1554 | len += arc_ld_r(BUF(buf, len), REG_LO(rd), |
| 1555 | reg_mem: arc_reg_mem, off, zz); |
| 1556 | } |
| 1557 | |
| 1558 | if (sign_ext) { |
| 1559 | /* Propagate the sign bit to the higher reg. */ |
| 1560 | len += arc_asri_r(BUF(buf, len), |
| 1561 | REG_HI(rd), REG_LO(rd), imm: 31); |
| 1562 | } else { |
| 1563 | len += arc_movi_r(BUF(buf, len), REG_HI(rd), imm: 0); |
| 1564 | } |
| 1565 | } else if (size == BPF_DW) { |
| 1566 | /* |
| 1567 | * We are about to issue 2 consecutive loads: |
| 1568 | * |
| 1569 | * ld rx, [rb, off+0] |
| 1570 | * ld ry, [rb, off+4] |
| 1571 | * |
| 1572 | * If "rx" and "rb" are the same registers, then the order |
| 1573 | * should change to guarantee that "rb" remains intact |
| 1574 | * during these 2 operations: |
| 1575 | * |
| 1576 | * ld ry, [rb, off+4] |
| 1577 | * ld rx, [rb, off+0] |
| 1578 | */ |
| 1579 | if (REG_LO(rd) != arc_reg_mem) { |
| 1580 | len += arc_ld_r(BUF(buf, len), REG_LO(rd), reg_mem: arc_reg_mem, |
| 1581 | off, zz: ZZ_4_byte); |
| 1582 | len += arc_ld_r(BUF(buf, len), REG_HI(rd), reg_mem: arc_reg_mem, |
| 1583 | off: off + 4, zz: ZZ_4_byte); |
| 1584 | } else { |
| 1585 | len += arc_ld_r(BUF(buf, len), REG_HI(rd), reg_mem: arc_reg_mem, |
| 1586 | off: off + 4, zz: ZZ_4_byte); |
| 1587 | len += arc_ld_r(BUF(buf, len), REG_LO(rd), reg_mem: arc_reg_mem, |
| 1588 | off, zz: ZZ_4_byte); |
| 1589 | } |
| 1590 | } |
| 1591 | |
| 1592 | return len; |
| 1593 | } |
| 1594 | |
| 1595 | u8 add_r32(u8 *buf, u8 rd, u8 rs) |
| 1596 | { |
| 1597 | return arc_add_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1598 | } |
| 1599 | |
| 1600 | u8 add_r32_i32(u8 *buf, u8 rd, s32 imm) |
| 1601 | { |
| 1602 | if (IN_U6_RANGE(imm)) |
| 1603 | return arc_addi_r(buf, REG_LO(rd), u6: imm); |
| 1604 | else |
| 1605 | return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm); |
| 1606 | } |
| 1607 | |
| 1608 | u8 add_r64(u8 *buf, u8 rd, u8 rs) |
| 1609 | { |
| 1610 | u8 len; |
| 1611 | |
| 1612 | len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1613 | len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| 1614 | return len; |
| 1615 | } |
| 1616 | |
| 1617 | u8 add_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 1618 | { |
| 1619 | u8 len; |
| 1620 | |
| 1621 | if (IN_U6_RANGE(imm)) { |
| 1622 | len = arc_addif_r(buf, REG_LO(rd), u6: imm); |
| 1623 | len += arc_adci_r(BUF(buf, len), REG_HI(rd), u6: 0); |
| 1624 | } else { |
| 1625 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| 1626 | len += add_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| 1627 | } |
| 1628 | return len; |
| 1629 | } |
| 1630 | |
| 1631 | u8 sub_r32(u8 *buf, u8 rd, u8 rs) |
| 1632 | { |
| 1633 | return arc_sub_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1634 | } |
| 1635 | |
| 1636 | u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm) |
| 1637 | { |
| 1638 | if (IN_U6_RANGE(imm)) |
| 1639 | return arc_subi_r(buf, REG_LO(rd), u6: imm); |
| 1640 | else |
| 1641 | return arc_sub_i(buf, REG_LO(rd), imm); |
| 1642 | } |
| 1643 | |
| 1644 | u8 sub_r64(u8 *buf, u8 rd, u8 rs) |
| 1645 | { |
| 1646 | u8 len; |
| 1647 | |
| 1648 | len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1649 | len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| 1650 | return len; |
| 1651 | } |
| 1652 | |
| 1653 | u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 1654 | { |
| 1655 | u8 len; |
| 1656 | |
| 1657 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| 1658 | len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| 1659 | return len; |
| 1660 | } |
| 1661 | |
| 1662 | static u8 cmp_r32(u8 *buf, u8 rd, u8 rs) |
| 1663 | { |
| 1664 | return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1665 | } |
| 1666 | |
| 1667 | u8 neg_r32(u8 *buf, u8 r) |
| 1668 | { |
| 1669 | return arc_neg_r(buf, REG_LO(r), REG_LO(r)); |
| 1670 | } |
| 1671 | |
| 1672 | /* In a two's complement system, -r is (~r + 1). */ |
| 1673 | u8 neg_r64(u8 *buf, u8 r) |
| 1674 | { |
| 1675 | u8 len; |
| 1676 | |
| 1677 | len = arc_not_r(buf, REG_LO(r), REG_LO(r)); |
| 1678 | len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r)); |
| 1679 | len += add_r64_i32(BUF(buf, len), rd: r, imm: 1); |
| 1680 | return len; |
| 1681 | } |
| 1682 | |
| 1683 | u8 mul_r32(u8 *buf, u8 rd, u8 rs) |
| 1684 | { |
| 1685 | return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| 1686 | } |
| 1687 | |
| 1688 | u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm) |
| 1689 | { |
| 1690 | return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm); |
| 1691 | } |
| 1692 | |
| 1693 | /* |
| 1694 | * MUL B, C |
| 1695 | * -------- |
| 1696 | * mpy t0, B_hi, C_lo |
| 1697 | * mpy t1, B_lo, C_hi |
| 1698 | * mpydu B_lo, B_lo, C_lo |
| 1699 | * add B_hi, B_hi, t0 |
| 1700 | * add B_hi, B_hi, t1 |
| 1701 | */ |
| 1702 | u8 mul_r64(u8 *buf, u8 rd, u8 rs) |
| 1703 | { |
| 1704 | const u8 t0 = REG_LO(JIT_REG_TMP); |
| 1705 | const u8 t1 = REG_HI(JIT_REG_TMP); |
| 1706 | const u8 C_lo = REG_LO(rs); |
| 1707 | const u8 C_hi = REG_HI(rs); |
| 1708 | const u8 B_lo = REG_LO(rd); |
| 1709 | const u8 B_hi = REG_HI(rd); |
| 1710 | u8 len; |
| 1711 | |
| 1712 | len = arc_mpy_r(buf, ra: t0, rb: B_hi, rc: C_lo); |
| 1713 | len += arc_mpy_r(BUF(buf, len), ra: t1, rb: B_lo, rc: C_hi); |
| 1714 | len += arc_mpydu_r(BUF(buf, len), ra: B_lo, rc: C_lo); |
| 1715 | len += arc_add_r(BUF(buf, len), ra: B_hi, rc: t0); |
| 1716 | len += arc_add_r(BUF(buf, len), ra: B_hi, rc: t1); |
| 1717 | |
| 1718 | return len; |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * MUL B, imm |
| 1723 | * ---------- |
| 1724 | * |
| 1725 | * To get a 64-bit result from a signed 64x32 multiplication: |
| 1726 | * |
| 1727 | * B_hi B_lo * |
| 1728 | * sign imm |
| 1729 | * ----------------------------- |
| 1730 | * HI(B_lo*imm) LO(B_lo*imm) + |
| 1731 | * B_hi*imm + |
| 1732 | * B_lo*sign |
| 1733 | * ----------------------------- |
| 1734 | * res_hi res_lo |
| 1735 | * |
| 1736 | * mpy t1, B_lo, sign(imm) |
| 1737 | * mpy t0, B_hi, imm |
| 1738 | * mpydu B_lo, B_lo, imm |
| 1739 | * add B_hi, B_hi, t0 |
| 1740 | * add B_hi, B_hi, t1 |
| 1741 | * |
| 1742 | * Note: We can't use signed double multiplication, "mpyd", instead of an |
| 1743 | * unsigned version, "mpydu", and then get rid of the sign adjustments |
| 1744 | * calculated in "t1". The signed multiplication, "mpyd", will consider |
| 1745 | * both operands, "B_lo" and "imm", as signed inputs. However, for this |
| 1746 | * 64x32 multiplication, "B_lo" must be treated as an unsigned number. |
| 1747 | */ |
| 1748 | u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 1749 | { |
| 1750 | const u8 t0 = REG_LO(JIT_REG_TMP); |
| 1751 | const u8 t1 = REG_HI(JIT_REG_TMP); |
| 1752 | const u8 B_lo = REG_LO(rd); |
| 1753 | const u8 B_hi = REG_HI(rd); |
| 1754 | u8 len = 0; |
| 1755 | |
| 1756 | if (imm == 1) |
| 1757 | return 0; |
| 1758 | |
| 1759 | /* Is the sign-extension of the immediate "-1"? */ |
| 1760 | if (imm < 0) |
| 1761 | len += arc_neg_r(BUF(buf, len), ra: t1, rb: B_lo); |
| 1762 | |
| 1763 | len += arc_mpy_i(BUF(buf, len), ra: t0, rb: B_hi, imm); |
| 1764 | len += arc_mpydu_i(BUF(buf, len), ra: B_lo, imm); |
| 1765 | len += arc_add_r(BUF(buf, len), ra: B_hi, rc: t0); |
| 1766 | |
| 1767 | /* Add the "sign*B_lo" part, if necessary. */ |
| 1768 | if (imm < 0) |
| 1769 | len += arc_add_r(BUF(buf, len), ra: B_hi, rc: t1); |
| 1770 | |
| 1771 | return len; |
| 1772 | } |
| 1773 | |
| 1774 | u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext) |
| 1775 | { |
| 1776 | if (sign_ext) |
| 1777 | return arc_divs_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1778 | else |
| 1779 | return arc_divu_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1780 | } |
| 1781 | |
| 1782 | u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext) |
| 1783 | { |
| 1784 | if (imm == 0) |
| 1785 | return 0; |
| 1786 | |
| 1787 | if (sign_ext) |
| 1788 | return arc_divs_i(buf, REG_LO(rd), imm); |
| 1789 | else |
| 1790 | return arc_divu_i(buf, REG_LO(rd), imm); |
| 1791 | } |
| 1792 | |
| 1793 | u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext) |
| 1794 | { |
| 1795 | if (sign_ext) |
| 1796 | return arc_rems_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1797 | else |
| 1798 | return arc_remu_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1799 | } |
| 1800 | |
| 1801 | u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext) |
| 1802 | { |
| 1803 | if (imm == 0) |
| 1804 | return 0; |
| 1805 | |
| 1806 | if (sign_ext) |
| 1807 | return arc_rems_i(buf, REG_LO(rd), imm); |
| 1808 | else |
| 1809 | return arc_remu_i(buf, REG_LO(rd), imm); |
| 1810 | } |
| 1811 | |
| 1812 | u8 and_r32(u8 *buf, u8 rd, u8 rs) |
| 1813 | { |
| 1814 | return arc_and_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1815 | } |
| 1816 | |
| 1817 | u8 and_r32_i32(u8 *buf, u8 rd, s32 imm) |
| 1818 | { |
| 1819 | return arc_and_i(buf, REG_LO(rd), imm); |
| 1820 | } |
| 1821 | |
| 1822 | u8 and_r64(u8 *buf, u8 rd, u8 rs) |
| 1823 | { |
| 1824 | u8 len; |
| 1825 | |
| 1826 | len = arc_and_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1827 | len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| 1828 | return len; |
| 1829 | } |
| 1830 | |
| 1831 | u8 and_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 1832 | { |
| 1833 | u8 len; |
| 1834 | |
| 1835 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| 1836 | len += and_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| 1837 | return len; |
| 1838 | } |
| 1839 | |
| 1840 | static u8 tst_r32(u8 *buf, u8 rd, u8 rs) |
| 1841 | { |
| 1842 | return arc_tst_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1843 | } |
| 1844 | |
| 1845 | u8 or_r32(u8 *buf, u8 rd, u8 rs) |
| 1846 | { |
| 1847 | return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| 1848 | } |
| 1849 | |
| 1850 | u8 or_r32_i32(u8 *buf, u8 rd, s32 imm) |
| 1851 | { |
| 1852 | return arc_or_i(buf, REG_LO(rd), imm); |
| 1853 | } |
| 1854 | |
| 1855 | u8 or_r64(u8 *buf, u8 rd, u8 rs) |
| 1856 | { |
| 1857 | u8 len; |
| 1858 | |
| 1859 | len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| 1860 | len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs)); |
| 1861 | return len; |
| 1862 | } |
| 1863 | |
| 1864 | u8 or_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 1865 | { |
| 1866 | u8 len; |
| 1867 | |
| 1868 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| 1869 | len += or_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| 1870 | return len; |
| 1871 | } |
| 1872 | |
| 1873 | u8 xor_r32(u8 *buf, u8 rd, u8 rs) |
| 1874 | { |
| 1875 | return arc_xor_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1876 | } |
| 1877 | |
| 1878 | u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm) |
| 1879 | { |
| 1880 | return arc_xor_i(buf, REG_LO(rd), imm); |
| 1881 | } |
| 1882 | |
| 1883 | u8 xor_r64(u8 *buf, u8 rd, u8 rs) |
| 1884 | { |
| 1885 | u8 len; |
| 1886 | |
| 1887 | len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs)); |
| 1888 | len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| 1889 | return len; |
| 1890 | } |
| 1891 | |
| 1892 | u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 1893 | { |
| 1894 | u8 len; |
| 1895 | |
| 1896 | len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| 1897 | len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| 1898 | return len; |
| 1899 | } |
| 1900 | |
| 1901 | /* "asl a,b,c" --> "a = (b << (c & 31))". */ |
| 1902 | u8 lsh_r32(u8 *buf, u8 rd, u8 rs) |
| 1903 | { |
| 1904 | return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| 1905 | } |
| 1906 | |
| 1907 | u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
| 1908 | { |
| 1909 | return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm); |
| 1910 | } |
| 1911 | |
| 1912 | /* |
| 1913 | * algorithm |
| 1914 | * --------- |
| 1915 | * if (n <= 32) |
| 1916 | * to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width. |
| 1917 | * lo <<= n |
| 1918 | * hi <<= n |
| 1919 | * hi |= to_hi |
| 1920 | * else |
| 1921 | * hi = lo << (n-32) |
| 1922 | * lo = 0 |
| 1923 | * |
| 1924 | * assembly translation for "LSH B, C" |
| 1925 | * (heavily influenced by ARC gcc) |
| 1926 | * ----------------------------------- |
| 1927 | * not t0, C_lo # The first 3 lines are almost the same as: |
| 1928 | * lsr t1, B_lo, 1 # neg t0, C_lo |
| 1929 | * lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi" |
| 1930 | * mov t0, C_lo* # with one important difference. In "neg" |
| 1931 | * asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while |
| 1932 | * asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead, |
| 1933 | * or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically |
| 1934 | * btst t0, 5 # setting it to 0 when C_lo=0. |
| 1935 | * mov.ne B_hi, B_lo** |
| 1936 | * mov.ne B_lo, 0 |
| 1937 | * |
| 1938 | * *The "mov t0, C_lo" is necessary to cover the cases that C is the same |
| 1939 | * register as B. |
| 1940 | * |
| 1941 | * **ARC performs a shift in this manner: B <<= (C & 31) |
| 1942 | * For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and |
| 1943 | * "B << (n-32)" yield the same results. e.g. the results of "B << 35" and |
| 1944 | * "B << 3" are the same. |
| 1945 | * |
| 1946 | * The behaviour is undefined for n >= 64. |
| 1947 | */ |
| 1948 | u8 lsh_r64(u8 *buf, u8 rd, u8 rs) |
| 1949 | { |
| 1950 | const u8 t0 = REG_LO(JIT_REG_TMP); |
| 1951 | const u8 t1 = REG_HI(JIT_REG_TMP); |
| 1952 | const u8 C_lo = REG_LO(rs); |
| 1953 | const u8 B_lo = REG_LO(rd); |
| 1954 | const u8 B_hi = REG_HI(rd); |
| 1955 | u8 len; |
| 1956 | |
| 1957 | len = arc_not_r(buf, rd: t0, rs: C_lo); |
| 1958 | len += arc_lsri_r(BUF(buf, len), rd: t1, rs: B_lo, imm: 1); |
| 1959 | len += arc_lsr_r(BUF(buf, len), rd: t1, rs1: t1, rs2: t0); |
| 1960 | len += arc_mov_r(BUF(buf, len), rd: t0, rs: C_lo); |
| 1961 | len += arc_asl_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
| 1962 | len += arc_asl_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t0); |
| 1963 | len += arc_or_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t1); |
| 1964 | len += arc_btst_i(BUF(buf, len), rs: t0, imm: 5); |
| 1965 | len += arc_mov_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_hi, rs: B_lo); |
| 1966 | len += arc_movu_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_lo, imm: 0); |
| 1967 | |
| 1968 | return len; |
| 1969 | } |
| 1970 | |
| 1971 | /* |
| 1972 | * if (n < 32) |
| 1973 | * to_hi = B_lo >> 32-n # extract upper n bits |
| 1974 | * lo <<= n |
| 1975 | * hi <<=n |
| 1976 | * hi |= to_hi |
| 1977 | * else if (n < 64) |
| 1978 | * hi = lo << n-32 |
| 1979 | * lo = 0 |
| 1980 | */ |
| 1981 | u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 1982 | { |
| 1983 | const u8 t0 = REG_LO(JIT_REG_TMP); |
| 1984 | const u8 B_lo = REG_LO(rd); |
| 1985 | const u8 B_hi = REG_HI(rd); |
| 1986 | const u8 n = (u8)imm; |
| 1987 | u8 len = 0; |
| 1988 | |
| 1989 | if (n == 0) { |
| 1990 | return 0; |
| 1991 | } else if (n <= 31) { |
| 1992 | len = arc_lsri_r(buf, rd: t0, rs: B_lo, imm: 32 - n); |
| 1993 | len += arc_asli_r(BUF(buf, len), rd: B_lo, rs: B_lo, imm: n); |
| 1994 | len += arc_asli_r(BUF(buf, len), rd: B_hi, rs: B_hi, imm: n); |
| 1995 | len += arc_or_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t0); |
| 1996 | } else if (n <= 63) { |
| 1997 | len = arc_asli_r(buf, rd: B_hi, rs: B_lo, imm: n - 32); |
| 1998 | len += arc_movi_r(BUF(buf, len), reg: B_lo, imm: 0); |
| 1999 | } |
| 2000 | /* n >= 64 is undefined behaviour. */ |
| 2001 | |
| 2002 | return len; |
| 2003 | } |
| 2004 | |
| 2005 | /* "lsr a,b,c" --> "a = (b >> (c & 31))". */ |
| 2006 | u8 rsh_r32(u8 *buf, u8 rd, u8 rs) |
| 2007 | { |
| 2008 | return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| 2009 | } |
| 2010 | |
| 2011 | u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
| 2012 | { |
| 2013 | return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm); |
| 2014 | } |
| 2015 | |
| 2016 | /* |
| 2017 | * For better commentary, see lsh_r64(). |
| 2018 | * |
| 2019 | * algorithm |
| 2020 | * --------- |
| 2021 | * if (n <= 32) |
| 2022 | * to_lo = hi << (32-n) |
| 2023 | * hi >>= n |
| 2024 | * lo >>= n |
| 2025 | * lo |= to_lo |
| 2026 | * else |
| 2027 | * lo = hi >> (n-32) |
| 2028 | * hi = 0 |
| 2029 | * |
| 2030 | * RSH B,C |
| 2031 | * ---------- |
| 2032 | * not t0, C_lo |
| 2033 | * asl t1, B_hi, 1 |
| 2034 | * asl t1, t1, t0 |
| 2035 | * mov t0, C_lo |
| 2036 | * lsr B_hi, B_hi, t0 |
| 2037 | * lsr B_lo, B_lo, t0 |
| 2038 | * or B_lo, B_lo, t1 |
| 2039 | * btst t0, 5 |
| 2040 | * mov.ne B_lo, B_hi |
| 2041 | * mov.ne B_hi, 0 |
| 2042 | */ |
| 2043 | u8 rsh_r64(u8 *buf, u8 rd, u8 rs) |
| 2044 | { |
| 2045 | const u8 t0 = REG_LO(JIT_REG_TMP); |
| 2046 | const u8 t1 = REG_HI(JIT_REG_TMP); |
| 2047 | const u8 C_lo = REG_LO(rs); |
| 2048 | const u8 B_lo = REG_LO(rd); |
| 2049 | const u8 B_hi = REG_HI(rd); |
| 2050 | u8 len; |
| 2051 | |
| 2052 | len = arc_not_r(buf, rd: t0, rs: C_lo); |
| 2053 | len += arc_asli_r(BUF(buf, len), rd: t1, rs: B_hi, imm: 1); |
| 2054 | len += arc_asl_r(BUF(buf, len), rd: t1, rs1: t1, rs2: t0); |
| 2055 | len += arc_mov_r(BUF(buf, len), rd: t0, rs: C_lo); |
| 2056 | len += arc_lsr_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t0); |
| 2057 | len += arc_lsr_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
| 2058 | len += arc_or_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t1); |
| 2059 | len += arc_btst_i(BUF(buf, len), rs: t0, imm: 5); |
| 2060 | len += arc_mov_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_lo, rs: B_hi); |
| 2061 | len += arc_movu_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_hi, imm: 0); |
| 2062 | |
| 2063 | return len; |
| 2064 | } |
| 2065 | |
| 2066 | /* |
| 2067 | * if (n < 32) |
| 2068 | * to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s |
| 2069 | * lo >>=n |
| 2070 | * hi >>=n |
| 2071 | * hi |= to_lo |
| 2072 | * else if (n < 64) |
| 2073 | * lo = hi >> n-32 |
| 2074 | * hi = 0 |
| 2075 | */ |
| 2076 | u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 2077 | { |
| 2078 | const u8 t0 = REG_LO(JIT_REG_TMP); |
| 2079 | const u8 B_lo = REG_LO(rd); |
| 2080 | const u8 B_hi = REG_HI(rd); |
| 2081 | const u8 n = (u8)imm; |
| 2082 | u8 len = 0; |
| 2083 | |
| 2084 | if (n == 0) { |
| 2085 | return 0; |
| 2086 | } else if (n <= 31) { |
| 2087 | len = arc_asli_r(buf, rd: t0, rs: B_hi, imm: 32 - n); |
| 2088 | len += arc_lsri_r(BUF(buf, len), rd: B_lo, rs: B_lo, imm: n); |
| 2089 | len += arc_lsri_r(BUF(buf, len), rd: B_hi, rs: B_hi, imm: n); |
| 2090 | len += arc_or_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
| 2091 | } else if (n <= 63) { |
| 2092 | len = arc_lsri_r(buf, rd: B_lo, rs: B_hi, imm: n - 32); |
| 2093 | len += arc_movi_r(BUF(buf, len), reg: B_hi, imm: 0); |
| 2094 | } |
| 2095 | /* n >= 64 is undefined behaviour. */ |
| 2096 | |
| 2097 | return len; |
| 2098 | } |
| 2099 | |
| 2100 | /* "asr a,b,c" --> "a = (b s>> (c & 31))". */ |
| 2101 | u8 arsh_r32(u8 *buf, u8 rd, u8 rs) |
| 2102 | { |
| 2103 | return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| 2104 | } |
| 2105 | |
| 2106 | u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
| 2107 | { |
| 2108 | return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm); |
| 2109 | } |
| 2110 | |
| 2111 | /* |
| 2112 | * For comparison, see rsh_r64(). |
| 2113 | * |
| 2114 | * algorithm |
| 2115 | * --------- |
| 2116 | * if (n <= 32) |
| 2117 | * to_lo = hi << (32-n) |
| 2118 | * hi s>>= n |
| 2119 | * lo >>= n |
| 2120 | * lo |= to_lo |
| 2121 | * else |
| 2122 | * hi_sign = hi s>>31 |
| 2123 | * lo = hi s>> (n-32) |
| 2124 | * hi = hi_sign |
| 2125 | * |
| 2126 | * ARSH B,C |
| 2127 | * ---------- |
| 2128 | * not t0, C_lo |
| 2129 | * asl t1, B_hi, 1 |
| 2130 | * asl t1, t1, t0 |
| 2131 | * mov t0, C_lo |
| 2132 | * asr B_hi, B_hi, t0 |
| 2133 | * lsr B_lo, B_lo, t0 |
| 2134 | * or B_lo, B_lo, t1 |
| 2135 | * btst t0, 5 |
| 2136 | * asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign |
| 2137 | * mov.ne B_lo, B_hi |
| 2138 | * mov.ne B_hi, t0 |
| 2139 | */ |
| 2140 | u8 arsh_r64(u8 *buf, u8 rd, u8 rs) |
| 2141 | { |
| 2142 | const u8 t0 = REG_LO(JIT_REG_TMP); |
| 2143 | const u8 t1 = REG_HI(JIT_REG_TMP); |
| 2144 | const u8 C_lo = REG_LO(rs); |
| 2145 | const u8 B_lo = REG_LO(rd); |
| 2146 | const u8 B_hi = REG_HI(rd); |
| 2147 | u8 len; |
| 2148 | |
| 2149 | len = arc_not_r(buf, rd: t0, rs: C_lo); |
| 2150 | len += arc_asli_r(BUF(buf, len), rd: t1, rs: B_hi, imm: 1); |
| 2151 | len += arc_asl_r(BUF(buf, len), rd: t1, rs1: t1, rs2: t0); |
| 2152 | len += arc_mov_r(BUF(buf, len), rd: t0, rs: C_lo); |
| 2153 | len += arc_asr_r(BUF(buf, len), rd: B_hi, rs1: B_hi, rs2: t0); |
| 2154 | len += arc_lsr_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
| 2155 | len += arc_or_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t1); |
| 2156 | len += arc_btst_i(BUF(buf, len), rs: t0, imm: 5); |
| 2157 | len += arc_asri_r(BUF(buf, len), rd: t0, rs: B_hi, imm: 31); |
| 2158 | len += arc_mov_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_lo, rs: B_hi); |
| 2159 | len += arc_mov_cc_r(BUF(buf, len), cc: CC_unequal, rd: B_hi, rs: t0); |
| 2160 | |
| 2161 | return len; |
| 2162 | } |
| 2163 | |
| 2164 | /* |
| 2165 | * if (n < 32) |
| 2166 | * to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s |
| 2167 | * lo >>=n |
| 2168 | * hi s>>=n |
| 2169 | * hi |= to_lo |
| 2170 | * else if (n < 64) |
| 2171 | * lo = hi s>> n-32 |
| 2172 | * hi = (lo[msb] ? -1 : 0) |
| 2173 | */ |
| 2174 | u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
| 2175 | { |
| 2176 | const u8 t0 = REG_LO(JIT_REG_TMP); |
| 2177 | const u8 B_lo = REG_LO(rd); |
| 2178 | const u8 B_hi = REG_HI(rd); |
| 2179 | const u8 n = (u8)imm; |
| 2180 | u8 len = 0; |
| 2181 | |
| 2182 | if (n == 0) { |
| 2183 | return 0; |
| 2184 | } else if (n <= 31) { |
| 2185 | len = arc_asli_r(buf, rd: t0, rs: B_hi, imm: 32 - n); |
| 2186 | len += arc_lsri_r(BUF(buf, len), rd: B_lo, rs: B_lo, imm: n); |
| 2187 | len += arc_asri_r(BUF(buf, len), rd: B_hi, rs: B_hi, imm: n); |
| 2188 | len += arc_or_r(BUF(buf, len), rd: B_lo, rs1: B_lo, rs2: t0); |
| 2189 | } else if (n <= 63) { |
| 2190 | len = arc_asri_r(buf, rd: B_lo, rs: B_hi, imm: n - 32); |
| 2191 | len += arc_movi_r(BUF(buf, len), reg: B_hi, imm: -1); |
| 2192 | len += arc_btst_i(BUF(buf, len), rs: B_lo, imm: 31); |
| 2193 | len += arc_movu_cc_r(BUF(buf, len), cc: CC_equal, rd: B_hi, imm: 0); |
| 2194 | } |
| 2195 | /* n >= 64 is undefined behaviour. */ |
| 2196 | |
| 2197 | return len; |
| 2198 | } |
| 2199 | |
| 2200 | u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext) |
| 2201 | { |
| 2202 | u8 len = 0; |
| 2203 | #ifdef __BIG_ENDIAN |
| 2204 | const u8 host_endian = BPF_FROM_BE; |
| 2205 | #else |
| 2206 | const u8 host_endian = BPF_FROM_LE; |
| 2207 | #endif |
| 2208 | if (host_endian != endian || force) { |
| 2209 | switch (size) { |
| 2210 | case 16: |
| 2211 | /* |
| 2212 | * r = B4B3_B2B1 << 16 --> r = B2B1_0000 |
| 2213 | * then, swape(r) would become the desired 0000_B1B2 |
| 2214 | */ |
| 2215 | len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm: 16); |
| 2216 | fallthrough; |
| 2217 | case 32: |
| 2218 | len += arc_swape_r(BUF(buf, len), REG_LO(rd)); |
| 2219 | if (do_zext) |
| 2220 | len += zext(BUF(buf, len), rd); |
| 2221 | break; |
| 2222 | case 64: |
| 2223 | /* |
| 2224 | * swap "hi" and "lo": |
| 2225 | * hi ^= lo; |
| 2226 | * lo ^= hi; |
| 2227 | * hi ^= lo; |
| 2228 | * and then swap the bytes in "hi" and "lo". |
| 2229 | */ |
| 2230 | len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd)); |
| 2231 | len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd)); |
| 2232 | len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd)); |
| 2233 | len += arc_swape_r(BUF(buf, len), REG_LO(rd)); |
| 2234 | len += arc_swape_r(BUF(buf, len), REG_HI(rd)); |
| 2235 | break; |
| 2236 | default: |
| 2237 | /* The caller must have handled this. */ |
| 2238 | break; |
| 2239 | } |
| 2240 | } else { |
| 2241 | /* |
| 2242 | * If the same endianness, there's not much to do other |
| 2243 | * than zeroing out the upper bytes based on the "size". |
| 2244 | */ |
| 2245 | switch (size) { |
| 2246 | case 16: |
| 2247 | len = arc_and_i(buf, REG_LO(rd), imm: 0xffff); |
| 2248 | fallthrough; |
| 2249 | case 32: |
| 2250 | if (do_zext) |
| 2251 | len += zext(BUF(buf, len), rd); |
| 2252 | break; |
| 2253 | case 64: |
| 2254 | break; |
| 2255 | default: |
| 2256 | /* The caller must have handled this. */ |
| 2257 | break; |
| 2258 | } |
| 2259 | } |
| 2260 | |
| 2261 | return len; |
| 2262 | } |
| 2263 | |
| 2264 | /* |
| 2265 | * To create a frame, all that is needed is: |
| 2266 | * |
| 2267 | * push fp |
| 2268 | * mov fp, sp |
| 2269 | * sub sp, <frame_size> |
| 2270 | * |
| 2271 | * "push fp" is taken care of separately while saving the clobbered registers. |
| 2272 | * All that remains is copying SP value to FP and shrinking SP's address space |
| 2273 | * for any possible function call to come. |
| 2274 | */ |
| 2275 | static inline u8 frame_create(u8 *buf, u16 size) |
| 2276 | { |
| 2277 | u8 len; |
| 2278 | |
| 2279 | len = arc_mov_r(buf, rd: ARC_R_FP, rs: ARC_R_SP); |
| 2280 | if (IN_U6_RANGE(size)) |
| 2281 | len += arc_subi_r(BUF(buf, len), ra: ARC_R_SP, u6: size); |
| 2282 | else |
| 2283 | len += arc_sub_i(BUF(buf, len), ra: ARC_R_SP, imm: size); |
| 2284 | return len; |
| 2285 | } |
| 2286 | |
| 2287 | /* |
| 2288 | * mov sp, fp |
| 2289 | * |
| 2290 | * The value of SP upon entering was copied to FP. |
| 2291 | */ |
| 2292 | static inline u8 frame_restore(u8 *buf) |
| 2293 | { |
| 2294 | return arc_mov_r(buf, rd: ARC_R_SP, rs: ARC_R_FP); |
| 2295 | } |
| 2296 | |
| 2297 | /* |
| 2298 | * Going from a JITed code to the native caller: |
| 2299 | * |
| 2300 | * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8 |
| 2301 | * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9 |
| 2302 | */ |
| 2303 | static u8 bpf_to_arc_return(u8 *buf) |
| 2304 | { |
| 2305 | u8 len; |
| 2306 | |
| 2307 | len = arc_mov_r(buf, rd: ARC_R_0, REG_LO(BPF_REG_0)); |
| 2308 | len += arc_mov_r(BUF(buf, len), rd: ARC_R_1, REG_HI(BPF_REG_0)); |
| 2309 | return len; |
| 2310 | } |
| 2311 | |
| 2312 | /* |
| 2313 | * Coming back from an external (in-kernel) function to the JITed code: |
| 2314 | * |
| 2315 | * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0 |
| 2316 | * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1 |
| 2317 | */ |
| 2318 | u8 arc_to_bpf_return(u8 *buf) |
| 2319 | { |
| 2320 | u8 len; |
| 2321 | |
| 2322 | len = arc_mov_r(buf, REG_LO(BPF_REG_0), rs: ARC_R_0); |
| 2323 | len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), rs: ARC_R_1); |
| 2324 | return len; |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * This translation leads to: |
| 2329 | * |
| 2330 | * mov r10, addr # always an 8-byte instruction |
| 2331 | * jl [r10] |
| 2332 | * |
| 2333 | * The length of the "mov" must be fixed (8), otherwise it may diverge |
| 2334 | * during the normal and extra passes: |
| 2335 | * |
| 2336 | * normal pass extra pass |
| 2337 | * |
| 2338 | * 180: mov r10,0 | 180: mov r10,0x700578d8 |
| 2339 | * 184: jl [r10] | 188: jl [r10] |
| 2340 | * 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0 |
| 2341 | * 18c: adc r17,r17,0 | |
| 2342 | * |
| 2343 | * In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8" |
| 2344 | * has led to an increase in the length of the "mov" instruction. |
| 2345 | * Inadvertently, that caused the loss of the "add.f" instruction. |
| 2346 | */ |
| 2347 | static u8 jump_and_link(u8 *buf, u32 addr) |
| 2348 | { |
| 2349 | u8 len; |
| 2350 | |
| 2351 | len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), imm: addr); |
| 2352 | len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP)); |
| 2353 | return len; |
| 2354 | } |
| 2355 | |
| 2356 | /* |
| 2357 | * This function determines which ARC registers must be saved and restored. |
| 2358 | * It does so by looking into: |
| 2359 | * |
| 2360 | * "bpf_reg": The clobbered (destination) BPF register |
| 2361 | * "is_call": Indicator if the current instruction is a call |
| 2362 | * |
| 2363 | * When a register of interest is clobbered, its corresponding bit position |
| 2364 | * in return value, "usage", is set to true. |
| 2365 | */ |
| 2366 | u32 mask_for_used_regs(u8 bpf_reg, bool is_call) |
| 2367 | { |
| 2368 | u32 usage = 0; |
| 2369 | |
| 2370 | /* BPF registers that must be saved. */ |
| 2371 | if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) { |
| 2372 | usage |= BIT(REG_LO(bpf_reg)); |
| 2373 | usage |= BIT(REG_HI(bpf_reg)); |
| 2374 | /* |
| 2375 | * Using the frame pointer register implies that it should |
| 2376 | * be saved and reinitialised with the current frame data. |
| 2377 | */ |
| 2378 | } else if (bpf_reg == BPF_REG_FP) { |
| 2379 | usage |= BIT(REG_LO(BPF_REG_FP)); |
| 2380 | /* Could there be some ARC registers that must to be saved? */ |
| 2381 | } else { |
| 2382 | if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST && |
| 2383 | REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST) |
| 2384 | usage |= BIT(REG_LO(bpf_reg)); |
| 2385 | |
| 2386 | if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST && |
| 2387 | REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST) |
| 2388 | usage |= BIT(REG_HI(bpf_reg)); |
| 2389 | } |
| 2390 | |
| 2391 | /* A "call" indicates that ARC's "blink" reg must be saved. */ |
| 2392 | usage |= is_call ? BIT(ARC_R_BLINK) : 0; |
| 2393 | |
| 2394 | return usage; |
| 2395 | } |
| 2396 | |
| 2397 | /* |
| 2398 | * push blink # if blink is marked as clobbered |
| 2399 | * push r[0-n] # if r[i] is marked as clobbered |
| 2400 | * push fp # if fp is marked as clobbered |
| 2401 | * mov fp, sp # if frame_size > 0 (clobbers fp) |
| 2402 | * sub sp, <frame_size> # same as above |
| 2403 | */ |
| 2404 | u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size) |
| 2405 | { |
| 2406 | u8 len = 0; |
| 2407 | u32 gp_regs = 0; |
| 2408 | |
| 2409 | /* Deal with blink first. */ |
| 2410 | if (usage & BIT(ARC_R_BLINK)) |
| 2411 | len += arc_push_r(BUF(buf, len), reg: ARC_R_BLINK); |
| 2412 | |
| 2413 | gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP)); |
| 2414 | while (gp_regs) { |
| 2415 | u8 reg = __builtin_ffs(gp_regs) - 1; |
| 2416 | |
| 2417 | len += arc_push_r(BUF(buf, len), reg); |
| 2418 | gp_regs &= ~BIT(reg); |
| 2419 | } |
| 2420 | |
| 2421 | /* Deal with fp last. */ |
| 2422 | if ((usage & BIT(ARC_R_FP)) || frame_size > 0) |
| 2423 | len += arc_push_r(BUF(buf, len), reg: ARC_R_FP); |
| 2424 | |
| 2425 | if (frame_size > 0) |
| 2426 | len += frame_create(BUF(buf, len), size: frame_size); |
| 2427 | |
| 2428 | #ifdef ARC_BPF_JIT_DEBUG |
| 2429 | if ((usage & BIT(ARC_R_FP)) && frame_size == 0) { |
| 2430 | pr_err("FP is being saved while there is no frame." ); |
| 2431 | BUG(); |
| 2432 | } |
| 2433 | #endif |
| 2434 | |
| 2435 | return len; |
| 2436 | } |
| 2437 | |
| 2438 | /* |
| 2439 | * mov sp, fp # if frame_size > 0 |
| 2440 | * pop fp # if fp is marked as clobbered |
| 2441 | * pop r[n-0] # if r[i] is marked as clobbered |
| 2442 | * pop blink # if blink is marked as clobbered |
| 2443 | * mov r0, r8 # always: ABI_return <- BPF_return |
| 2444 | * mov r1, r9 # continuation of above |
| 2445 | * j [blink] # always |
| 2446 | * |
| 2447 | * "fp being marked as clobbered" and "frame_size > 0" are the two sides of |
| 2448 | * the same coin. |
| 2449 | */ |
| 2450 | u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size) |
| 2451 | { |
| 2452 | u32 len = 0; |
| 2453 | u32 gp_regs = 0; |
| 2454 | |
| 2455 | #ifdef ARC_BPF_JIT_DEBUG |
| 2456 | if ((usage & BIT(ARC_R_FP)) && frame_size == 0) { |
| 2457 | pr_err("FP is being saved while there is no frame." ); |
| 2458 | BUG(); |
| 2459 | } |
| 2460 | #endif |
| 2461 | |
| 2462 | if (frame_size > 0) |
| 2463 | len += frame_restore(BUF(buf, len)); |
| 2464 | |
| 2465 | /* Deal with fp first. */ |
| 2466 | if ((usage & BIT(ARC_R_FP)) || frame_size > 0) |
| 2467 | len += arc_pop_r(BUF(buf, len), reg: ARC_R_FP); |
| 2468 | |
| 2469 | gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP)); |
| 2470 | while (gp_regs) { |
| 2471 | /* "usage" is 32-bit, each bit indicating an ARC register. */ |
| 2472 | u8 reg = 31 - __builtin_clz(gp_regs); |
| 2473 | |
| 2474 | len += arc_pop_r(BUF(buf, len), reg); |
| 2475 | gp_regs &= ~BIT(reg); |
| 2476 | } |
| 2477 | |
| 2478 | /* Deal with blink last. */ |
| 2479 | if (usage & BIT(ARC_R_BLINK)) |
| 2480 | len += arc_pop_r(BUF(buf, len), reg: ARC_R_BLINK); |
| 2481 | |
| 2482 | /* Wrap up the return value and jump back to the caller. */ |
| 2483 | len += bpf_to_arc_return(BUF(buf, len)); |
| 2484 | len += arc_jmp_return(BUF(buf, len)); |
| 2485 | |
| 2486 | return len; |
| 2487 | } |
| 2488 | |
| 2489 | /* |
| 2490 | * For details on the algorithm, see the comments of "gen_jcc_64()". |
| 2491 | * |
| 2492 | * This data structure is holding information for jump translations. |
| 2493 | * |
| 2494 | * jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs |
| 2495 | * cond: The condition that the ARC branch instruction must use |
| 2496 | * |
| 2497 | * e.g.: |
| 2498 | * |
| 2499 | * BPF_JGE R1, R0, @target |
| 2500 | * ------------------------ |
| 2501 | * | |
| 2502 | * v |
| 2503 | * 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn |
| 2504 | * 0x1004: bhi @target # first jump (branch higher) |
| 2505 | * 0x1008: blo @end # second jump acting as a skip (end is 0x1014) |
| 2506 | * 0x100C: cmp r2, r0 # the lower 32 bits are evaluated |
| 2507 | * 0x1010: bhs @target # third jump (branch higher or same) |
| 2508 | * 0x1014: ... |
| 2509 | * |
| 2510 | * The jit_off(set) of the "bhi" is 4 bytes. |
| 2511 | * The cond(ition) for the "bhi" is "CC_great_u". |
| 2512 | * |
| 2513 | * The jit_off(set) is necessary for calculating the exact displacement |
| 2514 | * to the "target" address: |
| 2515 | * |
| 2516 | * jit_address + jit_off(set) - @target |
| 2517 | * 0x1000 + 4 - @target |
| 2518 | */ |
| 2519 | #define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */ |
| 2520 | #define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */ |
| 2521 | #define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */ |
| 2522 | static const struct { |
| 2523 | /* |
| 2524 | * "jit_off" is common between all "jmp[]" and is coupled with |
| 2525 | * "cond" of each "jmp[]" instance. e.g.: |
| 2526 | * |
| 2527 | * arcv2_64_jccs.jit_off[1] |
| 2528 | * arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1] |
| 2529 | * |
| 2530 | * Are indicating that the second jump in JITed code of "UGT" |
| 2531 | * is at offset "jit_off[1]" while its condition is "cond[1]". |
| 2532 | */ |
| 2533 | u8 jit_off[JCC64_NR_OF_JMPS]; |
| 2534 | |
| 2535 | struct { |
| 2536 | u8 cond[JCC64_NR_OF_JMPS]; |
| 2537 | } jmp[ARC_CC_SLE + 1]; |
| 2538 | } arcv2_64_jccs = { |
| 2539 | .jit_off = { |
| 2540 | INSN_len_normal * 1, |
| 2541 | INSN_len_normal * 2, |
| 2542 | INSN_len_normal * 4 |
| 2543 | }, |
| 2544 | /* |
| 2545 | * cmp rd_hi, rs_hi |
| 2546 | * bhi @target # 1: u> |
| 2547 | * blo @end # 2: u< |
| 2548 | * cmp rd_lo, rs_lo |
| 2549 | * bhi @target # 3: u> |
| 2550 | * end: |
| 2551 | */ |
| 2552 | .jmp[ARC_CC_UGT] = { |
| 2553 | .cond = {CC_great_u, CC_less_u, CC_great_u} |
| 2554 | }, |
| 2555 | /* |
| 2556 | * cmp rd_hi, rs_hi |
| 2557 | * bhi @target # 1: u> |
| 2558 | * blo @end # 2: u< |
| 2559 | * cmp rd_lo, rs_lo |
| 2560 | * bhs @target # 3: u>= |
| 2561 | * end: |
| 2562 | */ |
| 2563 | .jmp[ARC_CC_UGE] = { |
| 2564 | .cond = {CC_great_u, CC_less_u, CC_great_eq_u} |
| 2565 | }, |
| 2566 | /* |
| 2567 | * cmp rd_hi, rs_hi |
| 2568 | * blo @target # 1: u< |
| 2569 | * bhi @end # 2: u> |
| 2570 | * cmp rd_lo, rs_lo |
| 2571 | * blo @target # 3: u< |
| 2572 | * end: |
| 2573 | */ |
| 2574 | .jmp[ARC_CC_ULT] = { |
| 2575 | .cond = {CC_less_u, CC_great_u, CC_less_u} |
| 2576 | }, |
| 2577 | /* |
| 2578 | * cmp rd_hi, rs_hi |
| 2579 | * blo @target # 1: u< |
| 2580 | * bhi @end # 2: u> |
| 2581 | * cmp rd_lo, rs_lo |
| 2582 | * bls @target # 3: u<= |
| 2583 | * end: |
| 2584 | */ |
| 2585 | .jmp[ARC_CC_ULE] = { |
| 2586 | .cond = {CC_less_u, CC_great_u, CC_less_eq_u} |
| 2587 | }, |
| 2588 | /* |
| 2589 | * cmp rd_hi, rs_hi |
| 2590 | * bgt @target # 1: s> |
| 2591 | * blt @end # 2: s< |
| 2592 | * cmp rd_lo, rs_lo |
| 2593 | * bhi @target # 3: u> |
| 2594 | * end: |
| 2595 | */ |
| 2596 | .jmp[ARC_CC_SGT] = { |
| 2597 | .cond = {CC_great_s, CC_less_s, CC_great_u} |
| 2598 | }, |
| 2599 | /* |
| 2600 | * cmp rd_hi, rs_hi |
| 2601 | * bgt @target # 1: s> |
| 2602 | * blt @end # 2: s< |
| 2603 | * cmp rd_lo, rs_lo |
| 2604 | * bhs @target # 3: u>= |
| 2605 | * end: |
| 2606 | */ |
| 2607 | .jmp[ARC_CC_SGE] = { |
| 2608 | .cond = {CC_great_s, CC_less_s, CC_great_eq_u} |
| 2609 | }, |
| 2610 | /* |
| 2611 | * cmp rd_hi, rs_hi |
| 2612 | * blt @target # 1: s< |
| 2613 | * bgt @end # 2: s> |
| 2614 | * cmp rd_lo, rs_lo |
| 2615 | * blo @target # 3: u< |
| 2616 | * end: |
| 2617 | */ |
| 2618 | .jmp[ARC_CC_SLT] = { |
| 2619 | .cond = {CC_less_s, CC_great_s, CC_less_u} |
| 2620 | }, |
| 2621 | /* |
| 2622 | * cmp rd_hi, rs_hi |
| 2623 | * blt @target # 1: s< |
| 2624 | * bgt @end # 2: s> |
| 2625 | * cmp rd_lo, rs_lo |
| 2626 | * bls @target # 3: u<= |
| 2627 | * end: |
| 2628 | */ |
| 2629 | .jmp[ARC_CC_SLE] = { |
| 2630 | .cond = {CC_less_s, CC_great_s, CC_less_eq_u} |
| 2631 | } |
| 2632 | }; |
| 2633 | |
| 2634 | /* |
| 2635 | * The displacement (offset) for ARC's "b"ranch instruction is the distance |
| 2636 | * from the aligned version of _current_ instruction (PCL) to the target |
| 2637 | * instruction: |
| 2638 | * |
| 2639 | * DISP = TARGET - PCL # PCL is the word aligned PC |
| 2640 | */ |
| 2641 | static inline s32 get_displacement(u32 curr_off, u32 targ_off) |
| 2642 | { |
| 2643 | return (s32)(targ_off - (curr_off & ~3L)); |
| 2644 | } |
| 2645 | |
| 2646 | /* |
| 2647 | * "disp"lacement should be: |
| 2648 | * |
| 2649 | * 1. 16-bit aligned. |
| 2650 | * 2. fit in S25, because no "condition code" is supposed to be encoded. |
| 2651 | */ |
| 2652 | static inline bool is_valid_far_disp(s32 disp) |
| 2653 | { |
| 2654 | return (!(disp & 1) && IN_S25_RANGE(disp)); |
| 2655 | } |
| 2656 | |
| 2657 | /* |
| 2658 | * "disp"lacement should be: |
| 2659 | * |
| 2660 | * 1. 16-bit aligned. |
| 2661 | * 2. fit in S21, because "condition code" is supposed to be encoded too. |
| 2662 | */ |
| 2663 | static inline bool is_valid_near_disp(s32 disp) |
| 2664 | { |
| 2665 | return (!(disp & 1) && IN_S21_RANGE(disp)); |
| 2666 | } |
| 2667 | |
| 2668 | /* |
| 2669 | * cmp rd_hi, rs_hi |
| 2670 | * cmp.z rd_lo, rs_lo |
| 2671 | * b{eq,ne} @target |
| 2672 | * | | |
| 2673 | * | `--> "eq" param is false (JNE) |
| 2674 | * `-----> "eq" param is true (JEQ) |
| 2675 | */ |
| 2676 | static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq, |
| 2677 | u32 curr_off, u32 targ_off) |
| 2678 | { |
| 2679 | s32 disp; |
| 2680 | u8 len = 0; |
| 2681 | |
| 2682 | len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| 2683 | len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
| 2684 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
| 2685 | len += arc_bcc(BUF(buf, len), cc: eq ? CC_equal : CC_unequal, offset: disp); |
| 2686 | |
| 2687 | return len; |
| 2688 | } |
| 2689 | |
| 2690 | /* |
| 2691 | * tst rd_hi, rs_hi |
| 2692 | * tst.z rd_lo, rs_lo |
| 2693 | * bne @target |
| 2694 | */ |
| 2695 | static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off) |
| 2696 | { |
| 2697 | u8 len = 0; |
| 2698 | s32 disp; |
| 2699 | |
| 2700 | len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| 2701 | len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
| 2702 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
| 2703 | len += arc_bcc(BUF(buf, len), cc: CC_unequal, offset: disp); |
| 2704 | |
| 2705 | return len; |
| 2706 | } |
| 2707 | |
| 2708 | /* |
| 2709 | * Verify if all the jumps for a JITed jcc64 operation are valid, |
| 2710 | * by consulting the data stored at "arcv2_64_jccs". |
| 2711 | */ |
| 2712 | static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond) |
| 2713 | { |
| 2714 | size_t i; |
| 2715 | |
| 2716 | if (cond >= ARC_CC_LAST) |
| 2717 | return false; |
| 2718 | |
| 2719 | for (i = 0; i < JCC64_NR_OF_JMPS; i++) { |
| 2720 | u32 from, to; |
| 2721 | |
| 2722 | from = curr_off + arcv2_64_jccs.jit_off[i]; |
| 2723 | /* for the 2nd jump, we jump to the end of block. */ |
| 2724 | if (i != JCC64_SKIP_JMP) |
| 2725 | to = targ_off; |
| 2726 | else |
| 2727 | to = from + (JCC64_INSNS_TO_END * INSN_len_normal); |
| 2728 | /* There is a "cc" in the instruction, so a "near" jump. */ |
| 2729 | if (!is_valid_near_disp(disp: get_displacement(curr_off: from, targ_off: to))) |
| 2730 | return false; |
| 2731 | } |
| 2732 | |
| 2733 | return true; |
| 2734 | } |
| 2735 | |
| 2736 | /* Can the jump from "curr_off" to "targ_off" actually happen? */ |
| 2737 | bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond) |
| 2738 | { |
| 2739 | s32 disp; |
| 2740 | |
| 2741 | switch (cond) { |
| 2742 | case ARC_CC_UGT: |
| 2743 | case ARC_CC_UGE: |
| 2744 | case ARC_CC_ULT: |
| 2745 | case ARC_CC_ULE: |
| 2746 | case ARC_CC_SGT: |
| 2747 | case ARC_CC_SGE: |
| 2748 | case ARC_CC_SLT: |
| 2749 | case ARC_CC_SLE: |
| 2750 | return check_jcc_64(curr_off, targ_off, cond); |
| 2751 | case ARC_CC_EQ: |
| 2752 | case ARC_CC_NE: |
| 2753 | case ARC_CC_SET: |
| 2754 | /* |
| 2755 | * The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the |
| 2756 | * 3rd instruction. See comments of "gen_j{set,_eq}_64()". |
| 2757 | */ |
| 2758 | curr_off += 2 * INSN_len_normal; |
| 2759 | disp = get_displacement(curr_off, targ_off); |
| 2760 | /* There is a "cc" field in the issued instruction. */ |
| 2761 | return is_valid_near_disp(disp); |
| 2762 | case ARC_CC_AL: |
| 2763 | disp = get_displacement(curr_off, targ_off); |
| 2764 | return is_valid_far_disp(disp); |
| 2765 | default: |
| 2766 | return false; |
| 2767 | } |
| 2768 | } |
| 2769 | |
| 2770 | /* |
| 2771 | * The template for the 64-bit jumps with the following BPF conditions |
| 2772 | * |
| 2773 | * u< u<= u> u>= s< s<= s> s>= |
| 2774 | * |
| 2775 | * Looks like below: |
| 2776 | * |
| 2777 | * cmp rd_hi, rs_hi |
| 2778 | * b<c1> @target |
| 2779 | * b<c2> @end |
| 2780 | * cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal |
| 2781 | * b<c3> @target |
| 2782 | * end: |
| 2783 | * |
| 2784 | * "c1" is the condition that JIT is handling minus the equality part. |
| 2785 | * For instance if we have to translate an "unsigned greater or equal", |
| 2786 | * then "c1" will be "unsigned greater". We won't know about equality |
| 2787 | * until all 64-bits of data (higeher and lower registers) are processed. |
| 2788 | * |
| 2789 | * "c2" is the counter logic of "c1". For instance, if "c1" is originated |
| 2790 | * from "s>", then "c2" would be "s<". Notice that equality doesn't play |
| 2791 | * a role here either, because the lower 32 bits are not processed yet. |
| 2792 | * |
| 2793 | * "c3" is the unsigned version of "c1", no matter if the BPF condition |
| 2794 | * was signed or unsigned. An unsigned version is necessary, because the |
| 2795 | * MSB of the lower 32 bits does not reflect a sign in the whole 64-bit |
| 2796 | * scheme. Otherwise, 64-bit comparisons like |
| 2797 | * (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000) |
| 2798 | * would yield an incorrect result. Finally, if there is an equality |
| 2799 | * check in the BPF condition, it will be reflected in "c3". |
| 2800 | * |
| 2801 | * You can find all the instances of this template where the |
| 2802 | * "arcv2_64_jccs" is getting initialised. |
| 2803 | */ |
| 2804 | static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond, |
| 2805 | u32 curr_off, u32 targ_off) |
| 2806 | { |
| 2807 | s32 disp; |
| 2808 | u32 end_off; |
| 2809 | const u8 *cc = arcv2_64_jccs.jmp[cond].cond; |
| 2810 | u8 len = 0; |
| 2811 | |
| 2812 | /* cmp rd_hi, rs_hi */ |
| 2813 | len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs)); |
| 2814 | |
| 2815 | /* b<c1> @target */ |
| 2816 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
| 2817 | len += arc_bcc(BUF(buf, len), cc: cc[0], offset: disp); |
| 2818 | |
| 2819 | /* b<c2> @end */ |
| 2820 | end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal); |
| 2821 | disp = get_displacement(curr_off: curr_off + len, targ_off: end_off); |
| 2822 | len += arc_bcc(BUF(buf, len), cc: cc[1], offset: disp); |
| 2823 | |
| 2824 | /* cmp rd_lo, rs_lo */ |
| 2825 | len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
| 2826 | |
| 2827 | /* b<c3> @target */ |
| 2828 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
| 2829 | len += arc_bcc(BUF(buf, len), cc: cc[2], offset: disp); |
| 2830 | |
| 2831 | return len; |
| 2832 | } |
| 2833 | |
| 2834 | /* |
| 2835 | * This function only applies the necessary logic to make the proper |
| 2836 | * translations. All the sanity checks must have already been done |
| 2837 | * by calling the check_jmp_64(). |
| 2838 | */ |
| 2839 | u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off) |
| 2840 | { |
| 2841 | u8 len = 0; |
| 2842 | bool eq = false; |
| 2843 | s32 disp; |
| 2844 | |
| 2845 | switch (cond) { |
| 2846 | case ARC_CC_AL: |
| 2847 | disp = get_displacement(curr_off, targ_off); |
| 2848 | len = arc_b(buf, offset: disp); |
| 2849 | break; |
| 2850 | case ARC_CC_UGT: |
| 2851 | case ARC_CC_UGE: |
| 2852 | case ARC_CC_ULT: |
| 2853 | case ARC_CC_ULE: |
| 2854 | case ARC_CC_SGT: |
| 2855 | case ARC_CC_SGE: |
| 2856 | case ARC_CC_SLT: |
| 2857 | case ARC_CC_SLE: |
| 2858 | len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off); |
| 2859 | break; |
| 2860 | case ARC_CC_EQ: |
| 2861 | eq = true; |
| 2862 | fallthrough; |
| 2863 | case ARC_CC_NE: |
| 2864 | len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off); |
| 2865 | break; |
| 2866 | case ARC_CC_SET: |
| 2867 | len = gen_jset_64(buf, rd, rs, curr_off, targ_off); |
| 2868 | break; |
| 2869 | default: |
| 2870 | #ifdef ARC_BPF_JIT_DEBUG |
| 2871 | pr_err("64-bit jump condition is not known." ); |
| 2872 | BUG(); |
| 2873 | #endif |
| 2874 | } |
| 2875 | return len; |
| 2876 | } |
| 2877 | |
| 2878 | /* |
| 2879 | * The condition codes to use when generating JIT instructions |
| 2880 | * for 32-bit jumps. |
| 2881 | * |
| 2882 | * The "ARC_CC_AL" index is not really used by the code, but it |
| 2883 | * is here for the sake of completeness. |
| 2884 | * |
| 2885 | * The "ARC_CC_SET" becomes "CC_unequal" because of the "tst" |
| 2886 | * instruction that precedes the conditional branch. |
| 2887 | */ |
| 2888 | static const u8 arcv2_32_jmps[ARC_CC_LAST] = { |
| 2889 | [ARC_CC_UGT] = CC_great_u, |
| 2890 | [ARC_CC_UGE] = CC_great_eq_u, |
| 2891 | [ARC_CC_ULT] = CC_less_u, |
| 2892 | [ARC_CC_ULE] = CC_less_eq_u, |
| 2893 | [ARC_CC_SGT] = CC_great_s, |
| 2894 | [ARC_CC_SGE] = CC_great_eq_s, |
| 2895 | [ARC_CC_SLT] = CC_less_s, |
| 2896 | [ARC_CC_SLE] = CC_less_eq_s, |
| 2897 | [ARC_CC_AL] = CC_always, |
| 2898 | [ARC_CC_EQ] = CC_equal, |
| 2899 | [ARC_CC_NE] = CC_unequal, |
| 2900 | [ARC_CC_SET] = CC_unequal |
| 2901 | }; |
| 2902 | |
| 2903 | /* Can the jump from "curr_off" to "targ_off" actually happen? */ |
| 2904 | bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond) |
| 2905 | { |
| 2906 | u8 addendum; |
| 2907 | s32 disp; |
| 2908 | |
| 2909 | if (cond >= ARC_CC_LAST) |
| 2910 | return false; |
| 2911 | |
| 2912 | /* |
| 2913 | * The unconditional jump happens immediately, while the rest |
| 2914 | * are either preceded by a "cmp" or "tst" instruction. |
| 2915 | */ |
| 2916 | addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal; |
| 2917 | disp = get_displacement(curr_off: curr_off + addendum, targ_off); |
| 2918 | |
| 2919 | if (cond == ARC_CC_AL) |
| 2920 | return is_valid_far_disp(disp); |
| 2921 | else |
| 2922 | return is_valid_near_disp(disp); |
| 2923 | } |
| 2924 | |
| 2925 | /* |
| 2926 | * The JITed code for 32-bit (conditional) branches: |
| 2927 | * |
| 2928 | * ARC_CC_AL @target |
| 2929 | * b @jit_targ_addr |
| 2930 | * |
| 2931 | * ARC_CC_SET rd, rs, @target |
| 2932 | * tst rd, rs |
| 2933 | * bnz @jit_targ_addr |
| 2934 | * |
| 2935 | * ARC_CC_xx rd, rs, @target |
| 2936 | * cmp rd, rs |
| 2937 | * b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx] |
| 2938 | */ |
| 2939 | u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off) |
| 2940 | { |
| 2941 | s32 disp; |
| 2942 | u8 len = 0; |
| 2943 | |
| 2944 | /* |
| 2945 | * Although this must have already been checked by "check_jmp_32()", |
| 2946 | * we're not going to risk accessing "arcv2_32_jmps" array without |
| 2947 | * the boundary check. |
| 2948 | */ |
| 2949 | if (cond >= ARC_CC_LAST) { |
| 2950 | #ifdef ARC_BPF_JIT_DEBUG |
| 2951 | pr_err("32-bit jump condition is not known." ); |
| 2952 | BUG(); |
| 2953 | #endif |
| 2954 | return 0; |
| 2955 | } |
| 2956 | |
| 2957 | /* If there is a "condition", issue the "cmp" or "tst" first. */ |
| 2958 | if (cond != ARC_CC_AL) { |
| 2959 | if (cond == ARC_CC_SET) |
| 2960 | len = tst_r32(buf, rd, rs); |
| 2961 | else |
| 2962 | len = cmp_r32(buf, rd, rs); |
| 2963 | /* |
| 2964 | * The issued instruction affects the "disp"lacement as |
| 2965 | * it alters the "curr_off" by its "len"gth. The "curr_off" |
| 2966 | * should always point to the jump instruction. |
| 2967 | */ |
| 2968 | disp = get_displacement(curr_off: curr_off + len, targ_off); |
| 2969 | len += arc_bcc(BUF(buf, len), cc: arcv2_32_jmps[cond], offset: disp); |
| 2970 | } else { |
| 2971 | /* The straight forward unconditional jump. */ |
| 2972 | disp = get_displacement(curr_off, targ_off); |
| 2973 | len = arc_b(buf, offset: disp); |
| 2974 | } |
| 2975 | |
| 2976 | return len; |
| 2977 | } |
| 2978 | |
| 2979 | /* |
| 2980 | * Generate code for functions calls. There can be two types of calls: |
| 2981 | * |
| 2982 | * - Calling another BPF function |
| 2983 | * - Calling an in-kernel function which is compiled by ARC gcc |
| 2984 | * |
| 2985 | * In the later case, we must comply to ARCv2 ABI and handle arguments |
| 2986 | * and return values accordingly. |
| 2987 | */ |
| 2988 | u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func) |
| 2989 | { |
| 2990 | u8 len = 0; |
| 2991 | |
| 2992 | /* |
| 2993 | * In case of an in-kernel function call, always push the 5th |
| 2994 | * argument onto the stack, because that's where the ABI dictates |
| 2995 | * it should be found. If the callee doesn't really use it, no harm |
| 2996 | * is done. The stack is readjusted either way after the call. |
| 2997 | */ |
| 2998 | if (external_func) |
| 2999 | len += push_r64(BUF(buf, len), reg: BPF_REG_5); |
| 3000 | |
| 3001 | len += jump_and_link(BUF(buf, len), addr: func_addr); |
| 3002 | |
| 3003 | if (external_func) |
| 3004 | len += arc_add_i(BUF(buf, len), ra: ARC_R_SP, rb: ARC_R_SP, ARG5_SIZE); |
| 3005 | |
| 3006 | return len; |
| 3007 | } |
| 3008 | |