1// SPDX-License-Identifier: GPL-2.0-or-later
2/* hw_ops.c - query/set operations on active SPU context.
3 *
4 * Copyright (C) IBM 2005
5 * Author: Mark Nutter <mnutter@us.ibm.com>
6 */
7
8#include <linux/errno.h>
9#include <linux/sched.h>
10#include <linux/kernel.h>
11#include <linux/mm.h>
12#include <linux/poll.h>
13#include <linux/smp.h>
14#include <linux/stddef.h>
15#include <linux/unistd.h>
16
17#include <asm/io.h>
18#include <asm/spu.h>
19#include <asm/spu_priv1.h>
20#include <asm/spu_csa.h>
21#include <asm/mmu_context.h>
22#include "spufs.h"
23
24static int spu_hw_mbox_read(struct spu_context *ctx, u32 * data)
25{
26 struct spu *spu = ctx->spu;
27 struct spu_problem __iomem *prob = spu->problem;
28 u32 mbox_stat;
29 int ret = 0;
30
31 spin_lock_irq(lock: &spu->register_lock);
32 mbox_stat = in_be32(&prob->mb_stat_R);
33 if (mbox_stat & 0x0000ff) {
34 *data = in_be32(&prob->pu_mb_R);
35 ret = 4;
36 }
37 spin_unlock_irq(lock: &spu->register_lock);
38 return ret;
39}
40
41static u32 spu_hw_mbox_stat_read(struct spu_context *ctx)
42{
43 return in_be32(&ctx->spu->problem->mb_stat_R);
44}
45
46static __poll_t spu_hw_mbox_stat_poll(struct spu_context *ctx, __poll_t events)
47{
48 struct spu *spu = ctx->spu;
49 __poll_t ret = 0;
50 u32 stat;
51
52 spin_lock_irq(lock: &spu->register_lock);
53 stat = in_be32(&spu->problem->mb_stat_R);
54
55 /* if the requested event is there, return the poll
56 mask, otherwise enable the interrupt to get notified,
57 but first mark any pending interrupts as done so
58 we don't get woken up unnecessarily */
59
60 if (events & (EPOLLIN | EPOLLRDNORM)) {
61 if (stat & 0xff0000)
62 ret |= EPOLLIN | EPOLLRDNORM;
63 else {
64 spu_int_stat_clear(spu, 2, CLASS2_MAILBOX_INTR);
65 spu_int_mask_or(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
66 }
67 }
68 if (events & (EPOLLOUT | EPOLLWRNORM)) {
69 if (stat & 0x00ff00)
70 ret = EPOLLOUT | EPOLLWRNORM;
71 else {
72 spu_int_stat_clear(spu, 2,
73 CLASS2_MAILBOX_THRESHOLD_INTR);
74 spu_int_mask_or(spu, 2,
75 CLASS2_ENABLE_MAILBOX_THRESHOLD_INTR);
76 }
77 }
78 spin_unlock_irq(lock: &spu->register_lock);
79 return ret;
80}
81
82static int spu_hw_ibox_read(struct spu_context *ctx, u32 * data)
83{
84 struct spu *spu = ctx->spu;
85 struct spu_problem __iomem *prob = spu->problem;
86 struct spu_priv2 __iomem *priv2 = spu->priv2;
87 int ret;
88
89 spin_lock_irq(lock: &spu->register_lock);
90 if (in_be32(&prob->mb_stat_R) & 0xff0000) {
91 /* read the first available word */
92 *data = in_be64(&priv2->puint_mb_R);
93 ret = 4;
94 } else {
95 /* make sure we get woken up by the interrupt */
96 spu_int_mask_or(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
97 ret = 0;
98 }
99 spin_unlock_irq(lock: &spu->register_lock);
100 return ret;
101}
102
103static int spu_hw_wbox_write(struct spu_context *ctx, u32 data)
104{
105 struct spu *spu = ctx->spu;
106 struct spu_problem __iomem *prob = spu->problem;
107 int ret;
108
109 spin_lock_irq(lock: &spu->register_lock);
110 if (in_be32(&prob->mb_stat_R) & 0x00ff00) {
111 /* we have space to write wbox_data to */
112 out_be32(&prob->spu_mb_W, data);
113 ret = 4;
114 } else {
115 /* make sure we get woken up by the interrupt when space
116 becomes available */
117 spu_int_mask_or(spu, 2, CLASS2_ENABLE_MAILBOX_THRESHOLD_INTR);
118 ret = 0;
119 }
120 spin_unlock_irq(lock: &spu->register_lock);
121 return ret;
122}
123
124static void spu_hw_signal1_write(struct spu_context *ctx, u32 data)
125{
126 out_be32(&ctx->spu->problem->signal_notify1, data);
127}
128
129static void spu_hw_signal2_write(struct spu_context *ctx, u32 data)
130{
131 out_be32(&ctx->spu->problem->signal_notify2, data);
132}
133
134static void spu_hw_signal1_type_set(struct spu_context *ctx, u64 val)
135{
136 struct spu *spu = ctx->spu;
137 struct spu_priv2 __iomem *priv2 = spu->priv2;
138 u64 tmp;
139
140 spin_lock_irq(lock: &spu->register_lock);
141 tmp = in_be64(&priv2->spu_cfg_RW);
142 if (val)
143 tmp |= 1;
144 else
145 tmp &= ~1;
146 out_be64(&priv2->spu_cfg_RW, tmp);
147 spin_unlock_irq(lock: &spu->register_lock);
148}
149
150static u64 spu_hw_signal1_type_get(struct spu_context *ctx)
151{
152 return ((in_be64(&ctx->spu->priv2->spu_cfg_RW) & 1) != 0);
153}
154
155static void spu_hw_signal2_type_set(struct spu_context *ctx, u64 val)
156{
157 struct spu *spu = ctx->spu;
158 struct spu_priv2 __iomem *priv2 = spu->priv2;
159 u64 tmp;
160
161 spin_lock_irq(lock: &spu->register_lock);
162 tmp = in_be64(&priv2->spu_cfg_RW);
163 if (val)
164 tmp |= 2;
165 else
166 tmp &= ~2;
167 out_be64(&priv2->spu_cfg_RW, tmp);
168 spin_unlock_irq(lock: &spu->register_lock);
169}
170
171static u64 spu_hw_signal2_type_get(struct spu_context *ctx)
172{
173 return ((in_be64(&ctx->spu->priv2->spu_cfg_RW) & 2) != 0);
174}
175
176static u32 spu_hw_npc_read(struct spu_context *ctx)
177{
178 return in_be32(&ctx->spu->problem->spu_npc_RW);
179}
180
181static void spu_hw_npc_write(struct spu_context *ctx, u32 val)
182{
183 out_be32(&ctx->spu->problem->spu_npc_RW, val);
184}
185
186static u32 spu_hw_status_read(struct spu_context *ctx)
187{
188 return in_be32(&ctx->spu->problem->spu_status_R);
189}
190
191static char *spu_hw_get_ls(struct spu_context *ctx)
192{
193 return ctx->spu->local_store;
194}
195
196static void spu_hw_privcntl_write(struct spu_context *ctx, u64 val)
197{
198 out_be64(&ctx->spu->priv2->spu_privcntl_RW, val);
199}
200
201static u32 spu_hw_runcntl_read(struct spu_context *ctx)
202{
203 return in_be32(&ctx->spu->problem->spu_runcntl_RW);
204}
205
206static void spu_hw_runcntl_write(struct spu_context *ctx, u32 val)
207{
208 spin_lock_irq(lock: &ctx->spu->register_lock);
209 if (val & SPU_RUNCNTL_ISOLATE)
210 spu_hw_privcntl_write(ctx,
211 val: SPU_PRIVCNT_LOAD_REQUEST_ENABLE_MASK);
212 out_be32(&ctx->spu->problem->spu_runcntl_RW, val);
213 spin_unlock_irq(lock: &ctx->spu->register_lock);
214}
215
216static void spu_hw_runcntl_stop(struct spu_context *ctx)
217{
218 spin_lock_irq(lock: &ctx->spu->register_lock);
219 out_be32(&ctx->spu->problem->spu_runcntl_RW, SPU_RUNCNTL_STOP);
220 while (in_be32(&ctx->spu->problem->spu_status_R) & SPU_STATUS_RUNNING)
221 cpu_relax();
222 spin_unlock_irq(lock: &ctx->spu->register_lock);
223}
224
225static void spu_hw_master_start(struct spu_context *ctx)
226{
227 struct spu *spu = ctx->spu;
228 u64 sr1;
229
230 spin_lock_irq(lock: &spu->register_lock);
231 sr1 = spu_mfc_sr1_get(spu) | MFC_STATE1_MASTER_RUN_CONTROL_MASK;
232 spu_mfc_sr1_set(spu, sr1);
233 spin_unlock_irq(lock: &spu->register_lock);
234}
235
236static void spu_hw_master_stop(struct spu_context *ctx)
237{
238 struct spu *spu = ctx->spu;
239 u64 sr1;
240
241 spin_lock_irq(lock: &spu->register_lock);
242 sr1 = spu_mfc_sr1_get(spu) & ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
243 spu_mfc_sr1_set(spu, sr1);
244 spin_unlock_irq(lock: &spu->register_lock);
245}
246
247static int spu_hw_set_mfc_query(struct spu_context * ctx, u32 mask, u32 mode)
248{
249 struct spu_problem __iomem *prob = ctx->spu->problem;
250 int ret;
251
252 spin_lock_irq(lock: &ctx->spu->register_lock);
253 ret = -EAGAIN;
254 if (in_be32(&prob->dma_querytype_RW))
255 goto out;
256 ret = 0;
257 out_be32(&prob->dma_querymask_RW, mask);
258 out_be32(&prob->dma_querytype_RW, mode);
259out:
260 spin_unlock_irq(lock: &ctx->spu->register_lock);
261 return ret;
262}
263
264static u32 spu_hw_read_mfc_tagstatus(struct spu_context * ctx)
265{
266 return in_be32(&ctx->spu->problem->dma_tagstatus_R);
267}
268
269static u32 spu_hw_get_mfc_free_elements(struct spu_context *ctx)
270{
271 return in_be32(&ctx->spu->problem->dma_qstatus_R);
272}
273
274static int spu_hw_send_mfc_command(struct spu_context *ctx,
275 struct mfc_dma_command *cmd)
276{
277 u32 status;
278 struct spu_problem __iomem *prob = ctx->spu->problem;
279
280 spin_lock_irq(lock: &ctx->spu->register_lock);
281 out_be32(&prob->mfc_lsa_W, cmd->lsa);
282 out_be64(&prob->mfc_ea_W, cmd->ea);
283 out_be32(&prob->mfc_union_W.by32.mfc_size_tag32,
284 cmd->size << 16 | cmd->tag);
285 out_be32(&prob->mfc_union_W.by32.mfc_class_cmd32,
286 cmd->class << 16 | cmd->cmd);
287 status = in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
288 spin_unlock_irq(lock: &ctx->spu->register_lock);
289
290 switch (status & 0xffff) {
291 case 0:
292 return 0;
293 case 2:
294 return -EAGAIN;
295 default:
296 return -EINVAL;
297 }
298}
299
300static void spu_hw_restart_dma(struct spu_context *ctx)
301{
302 struct spu_priv2 __iomem *priv2 = ctx->spu->priv2;
303
304 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &ctx->spu->flags))
305 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
306}
307
308struct spu_context_ops spu_hw_ops = {
309 .mbox_read = spu_hw_mbox_read,
310 .mbox_stat_read = spu_hw_mbox_stat_read,
311 .mbox_stat_poll = spu_hw_mbox_stat_poll,
312 .ibox_read = spu_hw_ibox_read,
313 .wbox_write = spu_hw_wbox_write,
314 .signal1_write = spu_hw_signal1_write,
315 .signal2_write = spu_hw_signal2_write,
316 .signal1_type_set = spu_hw_signal1_type_set,
317 .signal1_type_get = spu_hw_signal1_type_get,
318 .signal2_type_set = spu_hw_signal2_type_set,
319 .signal2_type_get = spu_hw_signal2_type_get,
320 .npc_read = spu_hw_npc_read,
321 .npc_write = spu_hw_npc_write,
322 .status_read = spu_hw_status_read,
323 .get_ls = spu_hw_get_ls,
324 .privcntl_write = spu_hw_privcntl_write,
325 .runcntl_read = spu_hw_runcntl_read,
326 .runcntl_write = spu_hw_runcntl_write,
327 .runcntl_stop = spu_hw_runcntl_stop,
328 .master_start = spu_hw_master_start,
329 .master_stop = spu_hw_master_stop,
330 .set_mfc_query = spu_hw_set_mfc_query,
331 .read_mfc_tagstatus = spu_hw_read_mfc_tagstatus,
332 .get_mfc_free_elements = spu_hw_get_mfc_free_elements,
333 .send_mfc_command = spu_hw_send_mfc_command,
334 .restart_dma = spu_hw_restart_dma,
335};
336

source code of linux/arch/powerpc/platforms/cell/spufs/hw_ops.c