1// SPDX-License-Identifier: GPL-2.0
2/* pci_sabre.c: Sabre specific PCI controller support.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/types.h>
11#include <linux/pci.h>
12#include <linux/init.h>
13#include <linux/export.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/of.h>
17#include <linux/of_platform.h>
18#include <linux/platform_device.h>
19#include <linux/property.h>
20
21#include <asm/apb.h>
22#include <asm/iommu.h>
23#include <asm/irq.h>
24#include <asm/prom.h>
25#include <asm/upa.h>
26
27#include "pci_impl.h"
28#include "iommu_common.h"
29#include "psycho_common.h"
30
31#define DRIVER_NAME "sabre"
32#define PFX DRIVER_NAME ": "
33
34/* SABRE PCI controller register offsets and definitions. */
35#define SABRE_UE_AFSR 0x0030UL
36#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
37#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
38#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
39#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
40#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
41#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
42#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
43#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
44#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
45#define SABRE_UECE_AFAR 0x0038UL
46#define SABRE_CE_AFSR 0x0040UL
47#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
48#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
49#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
50#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
51#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
52#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
53#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
54#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
55#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
56#define SABRE_IOMMU_CONTROL 0x0200UL
57#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
58#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
59#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
60#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
61#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
62#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
63#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
64#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
65#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
66#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
67#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
68#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
69#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
70#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
71#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
72#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
73#define SABRE_IOMMU_TSBBASE 0x0208UL
74#define SABRE_IOMMU_FLUSH 0x0210UL
75#define SABRE_IMAP_A_SLOT0 0x0c00UL
76#define SABRE_IMAP_B_SLOT0 0x0c20UL
77#define SABRE_IMAP_SCSI 0x1000UL
78#define SABRE_IMAP_ETH 0x1008UL
79#define SABRE_IMAP_BPP 0x1010UL
80#define SABRE_IMAP_AU_REC 0x1018UL
81#define SABRE_IMAP_AU_PLAY 0x1020UL
82#define SABRE_IMAP_PFAIL 0x1028UL
83#define SABRE_IMAP_KMS 0x1030UL
84#define SABRE_IMAP_FLPY 0x1038UL
85#define SABRE_IMAP_SHW 0x1040UL
86#define SABRE_IMAP_KBD 0x1048UL
87#define SABRE_IMAP_MS 0x1050UL
88#define SABRE_IMAP_SER 0x1058UL
89#define SABRE_IMAP_UE 0x1070UL
90#define SABRE_IMAP_CE 0x1078UL
91#define SABRE_IMAP_PCIERR 0x1080UL
92#define SABRE_IMAP_GFX 0x1098UL
93#define SABRE_IMAP_EUPA 0x10a0UL
94#define SABRE_ICLR_A_SLOT0 0x1400UL
95#define SABRE_ICLR_B_SLOT0 0x1480UL
96#define SABRE_ICLR_SCSI 0x1800UL
97#define SABRE_ICLR_ETH 0x1808UL
98#define SABRE_ICLR_BPP 0x1810UL
99#define SABRE_ICLR_AU_REC 0x1818UL
100#define SABRE_ICLR_AU_PLAY 0x1820UL
101#define SABRE_ICLR_PFAIL 0x1828UL
102#define SABRE_ICLR_KMS 0x1830UL
103#define SABRE_ICLR_FLPY 0x1838UL
104#define SABRE_ICLR_SHW 0x1840UL
105#define SABRE_ICLR_KBD 0x1848UL
106#define SABRE_ICLR_MS 0x1850UL
107#define SABRE_ICLR_SER 0x1858UL
108#define SABRE_ICLR_UE 0x1870UL
109#define SABRE_ICLR_CE 0x1878UL
110#define SABRE_ICLR_PCIERR 0x1880UL
111#define SABRE_WRSYNC 0x1c20UL
112#define SABRE_PCICTRL 0x2000UL
113#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
114#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
115#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
116#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
117#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
118#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
119#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
120#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
121#define SABRE_PIOAFSR 0x2010UL
122#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
123#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
124#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
125#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
126#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
127#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
128#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
129#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
130#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
131#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
132#define SABRE_PIOAFAR 0x2018UL
133#define SABRE_PCIDIAG 0x2020UL
134#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
135#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
136#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
137#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
138#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
139#define SABRE_PCITASR 0x2028UL
140#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
141#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
142#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
143#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
144#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
145#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
146#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
147#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
148#define SABRE_PIOBUF_DIAG 0x5000UL
149#define SABRE_DMABUF_DIAGLO 0x5100UL
150#define SABRE_DMABUF_DIAGHI 0x51c0UL
151#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
152#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
153#define SABRE_IOMMU_VADIAG 0xa400UL
154#define SABRE_IOMMU_TCDIAG 0xa408UL
155#define SABRE_IOMMU_TAG 0xa580UL
156#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
157#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
158#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
159#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
160#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
161#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
162#define SABRE_IOMMU_DATA 0xa600UL
163#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
164#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
165#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
166#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
167#define SABRE_PCI_IRQSTATE 0xa800UL
168#define SABRE_OBIO_IRQSTATE 0xa808UL
169#define SABRE_FFBCFG 0xf000UL
170#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
171#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
172#define SABRE_MCCTRL0 0xf010UL
173#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
174#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
175#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
176#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
177#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
178#define SABRE_MCCTRL1 0xf018UL
179#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
180#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
181#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
182#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
183#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
184#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
185#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
186#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
187#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
188#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
189#define SABRE_RESETCTRL 0xf020UL
190
191#define SABRE_CONFIGSPACE 0x001000000UL
192#define SABRE_IOSPACE 0x002000000UL
193#define SABRE_IOSPACE_SIZE 0x000ffffffUL
194#define SABRE_MEMSPACE 0x100000000UL
195#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
196
197static int hummingbird_p;
198static struct pci_bus *sabre_root_bus;
199
200static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
201{
202 struct pci_pbm_info *pbm = dev_id;
203 unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
204 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
205 unsigned long afsr, afar, error_bits;
206 int reported;
207
208 /* Latch uncorrectable error status. */
209 afar = upa_readq(afar_reg);
210 afsr = upa_readq(afsr_reg);
211
212 /* Clear the primary/secondary error status bits. */
213 error_bits = afsr &
214 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
215 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
216 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
217 if (!error_bits)
218 return IRQ_NONE;
219 upa_writeq(error_bits, afsr_reg);
220
221 /* Log the error. */
222 printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
223 pbm->name,
224 ((error_bits & SABRE_UEAFSR_PDRD) ?
225 "DMA Read" :
226 ((error_bits & SABRE_UEAFSR_PDWR) ?
227 "DMA Write" : "???")),
228 ((error_bits & SABRE_UEAFSR_PDTE) ?
229 ":Translation Error" : ""));
230 printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
231 pbm->name,
232 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
233 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
234 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
235 printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
236 printk("%s: UE Secondary errors [", pbm->name);
237 reported = 0;
238 if (afsr & SABRE_UEAFSR_SDRD) {
239 reported++;
240 printk("(DMA Read)");
241 }
242 if (afsr & SABRE_UEAFSR_SDWR) {
243 reported++;
244 printk("(DMA Write)");
245 }
246 if (afsr & SABRE_UEAFSR_SDTE) {
247 reported++;
248 printk("(Translation Error)");
249 }
250 if (!reported)
251 printk("(none)");
252 printk("]\n");
253
254 /* Interrogate IOMMU for error status. */
255 psycho_check_iommu_error(pbm, afsr, afar, type: UE_ERR);
256
257 return IRQ_HANDLED;
258}
259
260static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
261{
262 struct pci_pbm_info *pbm = dev_id;
263 unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
264 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
265 unsigned long afsr, afar, error_bits;
266 int reported;
267
268 /* Latch error status. */
269 afar = upa_readq(afar_reg);
270 afsr = upa_readq(afsr_reg);
271
272 /* Clear primary/secondary error status bits. */
273 error_bits = afsr &
274 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
275 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
276 if (!error_bits)
277 return IRQ_NONE;
278 upa_writeq(error_bits, afsr_reg);
279
280 /* Log the error. */
281 printk("%s: Correctable Error, primary error type[%s]\n",
282 pbm->name,
283 ((error_bits & SABRE_CEAFSR_PDRD) ?
284 "DMA Read" :
285 ((error_bits & SABRE_CEAFSR_PDWR) ?
286 "DMA Write" : "???")));
287
288 /* XXX Use syndrome and afar to print out module string just like
289 * XXX UDB CE trap handler does... -DaveM
290 */
291 printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
292 "was_block(%d)\n",
293 pbm->name,
294 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
295 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
296 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
297 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
298 printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
299 printk("%s: CE Secondary errors [", pbm->name);
300 reported = 0;
301 if (afsr & SABRE_CEAFSR_SDRD) {
302 reported++;
303 printk("(DMA Read)");
304 }
305 if (afsr & SABRE_CEAFSR_SDWR) {
306 reported++;
307 printk("(DMA Write)");
308 }
309 if (!reported)
310 printk("(none)");
311 printk("]\n");
312
313 return IRQ_HANDLED;
314}
315
316static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
317{
318 struct device_node *dp = pbm->op->dev.of_node;
319 struct platform_device *op;
320 unsigned long base = pbm->controller_regs;
321 u64 tmp;
322 int err;
323
324 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
325 dp = dp->parent;
326
327 op = of_find_device_by_node(np: dp);
328 if (!op)
329 return;
330
331 /* Sabre/Hummingbird IRQ property layout is:
332 * 0: PCI ERR
333 * 1: UE ERR
334 * 2: CE ERR
335 * 3: POWER FAIL
336 */
337 if (op->archdata.num_irqs < 4)
338 return;
339
340 /* We clear the error bits in the appropriate AFSR before
341 * registering the handler so that we don't get spurious
342 * interrupts.
343 */
344 upa_writeq((SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
345 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
346 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE),
347 base + SABRE_UE_AFSR);
348
349 err = request_irq(irq: op->archdata.irqs[1], handler: sabre_ue_intr, flags: 0, name: "SABRE_UE", dev: pbm);
350 if (err)
351 printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
352 pbm->name, err);
353
354 upa_writeq((SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
355 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR),
356 base + SABRE_CE_AFSR);
357
358
359 err = request_irq(irq: op->archdata.irqs[2], handler: sabre_ce_intr, flags: 0, name: "SABRE_CE", dev: pbm);
360 if (err)
361 printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
362 pbm->name, err);
363 err = request_irq(irq: op->archdata.irqs[0], handler: psycho_pcierr_intr, flags: 0,
364 name: "SABRE_PCIERR", dev: pbm);
365 if (err)
366 printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
367 pbm->name, err);
368
369 tmp = upa_readq(base + SABRE_PCICTRL);
370 tmp |= SABRE_PCICTRL_ERREN;
371 upa_writeq(tmp, base + SABRE_PCICTRL);
372}
373
374static void apb_init(struct pci_bus *sabre_bus)
375{
376 struct pci_dev *pdev;
377
378 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
379 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
380 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
381 u16 word16;
382
383 pci_read_config_word(dev: pdev, PCI_COMMAND, val: &word16);
384 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
385 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
386 PCI_COMMAND_IO;
387 pci_write_config_word(dev: pdev, PCI_COMMAND, val: word16);
388
389 /* Status register bits are "write 1 to clear". */
390 pci_write_config_word(dev: pdev, PCI_STATUS, val: 0xffff);
391 pci_write_config_word(dev: pdev, PCI_SEC_STATUS, val: 0xffff);
392
393 /* Use a primary/seconday latency timer value
394 * of 64.
395 */
396 pci_write_config_byte(dev: pdev, PCI_LATENCY_TIMER, val: 64);
397 pci_write_config_byte(dev: pdev, PCI_SEC_LATENCY_TIMER, val: 64);
398
399 /* Enable reporting/forwarding of master aborts,
400 * parity, and SERR.
401 */
402 pci_write_config_byte(dev: pdev, PCI_BRIDGE_CONTROL,
403 val: (PCI_BRIDGE_CTL_PARITY |
404 PCI_BRIDGE_CTL_SERR |
405 PCI_BRIDGE_CTL_MASTER_ABORT));
406 }
407 }
408}
409
410static void sabre_scan_bus(struct pci_pbm_info *pbm, struct device *parent)
411{
412 static int once;
413
414 /* The APB bridge speaks to the Sabre host PCI bridge
415 * at 66Mhz, but the front side of APB runs at 33Mhz
416 * for both segments.
417 *
418 * Hummingbird systems do not use APB, so they run
419 * at 66MHZ.
420 */
421 if (hummingbird_p)
422 pbm->is_66mhz_capable = 1;
423 else
424 pbm->is_66mhz_capable = 0;
425
426 /* This driver has not been verified to handle
427 * multiple SABREs yet, so trap this.
428 *
429 * Also note that the SABRE host bridge is hardwired
430 * to live at bus 0.
431 */
432 if (once != 0) {
433 printk(KERN_ERR PFX "Multiple controllers unsupported.\n");
434 return;
435 }
436 once++;
437
438 pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
439 if (!pbm->pci_bus)
440 return;
441
442 sabre_root_bus = pbm->pci_bus;
443
444 apb_init(sabre_bus: pbm->pci_bus);
445
446 sabre_register_error_handlers(pbm);
447}
448
449static void sabre_pbm_init(struct pci_pbm_info *pbm,
450 struct platform_device *op)
451{
452 psycho_pbm_init_common(pbm, op, chip_name: "SABRE", PBM_CHIP_TYPE_SABRE);
453 pbm->pci_afsr = pbm->controller_regs + SABRE_PIOAFSR;
454 pbm->pci_afar = pbm->controller_regs + SABRE_PIOAFAR;
455 pbm->pci_csr = pbm->controller_regs + SABRE_PCICTRL;
456 sabre_scan_bus(pbm, parent: &op->dev);
457}
458
459static const struct of_device_id sabre_match[];
460static int sabre_probe(struct platform_device *op)
461{
462 const struct linux_prom64_registers *pr_regs;
463 struct device_node *dp = op->dev.of_node;
464 struct pci_pbm_info *pbm;
465 u32 upa_portid, dma_mask;
466 struct iommu *iommu;
467 int tsbsize, err;
468 const u32 *vdma;
469 u64 clear_irq;
470
471 hummingbird_p = (uintptr_t)device_get_match_data(dev: &op->dev);
472 if (!hummingbird_p) {
473 struct device_node *cpu_dp;
474
475 /* Of course, Sun has to encode things a thousand
476 * different ways, inconsistently.
477 */
478 for_each_node_by_type(cpu_dp, "cpu") {
479 if (of_node_name_eq(np: cpu_dp, name: "SUNW,UltraSPARC-IIe"))
480 hummingbird_p = 1;
481 }
482 }
483
484 err = -ENOMEM;
485 pbm = kzalloc(size: sizeof(*pbm), GFP_KERNEL);
486 if (!pbm) {
487 printk(KERN_ERR PFX "Cannot allocate pci_pbm_info.\n");
488 goto out_err;
489 }
490
491 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
492 if (!iommu) {
493 printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n");
494 goto out_free_controller;
495 }
496
497 pbm->iommu = iommu;
498
499 upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
500
501 pbm->portid = upa_portid;
502
503 /*
504 * Map in SABRE register set and report the presence of this SABRE.
505 */
506
507 pr_regs = of_get_property(node: dp, name: "reg", NULL);
508 err = -ENODEV;
509 if (!pr_regs) {
510 printk(KERN_ERR PFX "No reg property\n");
511 goto out_free_iommu;
512 }
513
514 /*
515 * First REG in property is base of entire SABRE register space.
516 */
517 pbm->controller_regs = pr_regs[0].phys_addr;
518
519 /* Clear interrupts */
520
521 /* PCI first */
522 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
523 upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
524
525 /* Then OBIO */
526 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
527 upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
528
529 /* Error interrupts are enabled later after the bus scan. */
530 upa_writeq((SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
531 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN),
532 pbm->controller_regs + SABRE_PCICTRL);
533
534 /* Now map in PCI config space for entire SABRE. */
535 pbm->config_space = pbm->controller_regs + SABRE_CONFIGSPACE;
536
537 vdma = of_get_property(node: dp, name: "virtual-dma", NULL);
538 if (!vdma) {
539 printk(KERN_ERR PFX "No virtual-dma property\n");
540 goto out_free_iommu;
541 }
542
543 dma_mask = vdma[0];
544 switch(vdma[1]) {
545 case 0x20000000:
546 dma_mask |= 0x1fffffff;
547 tsbsize = 64;
548 break;
549 case 0x40000000:
550 dma_mask |= 0x3fffffff;
551 tsbsize = 128;
552 break;
553
554 case 0x80000000:
555 dma_mask |= 0x7fffffff;
556 tsbsize = 128;
557 break;
558 default:
559 printk(KERN_ERR PFX "Strange virtual-dma size.\n");
560 goto out_free_iommu;
561 }
562
563 err = psycho_iommu_init(pbm, tsbsize, dvma_offset: vdma[0], dma_mask, SABRE_WRSYNC);
564 if (err)
565 goto out_free_iommu;
566
567 /*
568 * Look for APB underneath.
569 */
570 sabre_pbm_init(pbm, op);
571
572 pbm->next = pci_pbm_root;
573 pci_pbm_root = pbm;
574
575 dev_set_drvdata(dev: &op->dev, data: pbm);
576
577 return 0;
578
579out_free_iommu:
580 kfree(objp: pbm->iommu);
581
582out_free_controller:
583 kfree(objp: pbm);
584
585out_err:
586 return err;
587}
588
589static const struct of_device_id sabre_match[] = {
590 {
591 .name = "pci",
592 .compatible = "pci108e,a001",
593 .data = (void *) 1,
594 },
595 {
596 .name = "pci",
597 .compatible = "pci108e,a000",
598 },
599 {},
600};
601
602static struct platform_driver sabre_driver = {
603 .driver = {
604 .name = DRIVER_NAME,
605 .of_match_table = sabre_match,
606 },
607 .probe = sabre_probe,
608};
609
610static int __init sabre_init(void)
611{
612 return platform_driver_register(&sabre_driver);
613}
614
615subsys_initcall(sabre_init);
616

source code of linux/arch/sparc/kernel/pci_sabre.c