1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 1991,1992 Linus Torvalds
4 *
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
6 *
7 * Stack layout while running C code:
8 * ptrace needs to have all registers on the stack.
9 * If the order here is changed, it needs to be
10 * updated in fork.c:copy_process(), signal.c:do_signal(),
11 * ptrace.c and ptrace.h
12 *
13 * 0(%esp) - %ebx
14 * 4(%esp) - %ecx
15 * 8(%esp) - %edx
16 * C(%esp) - %esi
17 * 10(%esp) - %edi
18 * 14(%esp) - %ebp
19 * 18(%esp) - %eax
20 * 1C(%esp) - %ds
21 * 20(%esp) - %es
22 * 24(%esp) - %fs
23 * 28(%esp) - unused -- was %gs on old stackprotector kernels
24 * 2C(%esp) - orig_eax
25 * 30(%esp) - %eip
26 * 34(%esp) - %cs
27 * 38(%esp) - %eflags
28 * 3C(%esp) - %oldesp
29 * 40(%esp) - %oldss
30 */
31
32#include <linux/linkage.h>
33#include <linux/err.h>
34#include <asm/thread_info.h>
35#include <asm/irqflags.h>
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
39#include <asm/percpu.h>
40#include <asm/processor-flags.h>
41#include <asm/irq_vectors.h>
42#include <asm/cpufeatures.h>
43#include <asm/alternative.h>
44#include <asm/asm.h>
45#include <asm/smap.h>
46#include <asm/frame.h>
47#include <asm/trapnr.h>
48#include <asm/nospec-branch.h>
49
50#include "calling.h"
51
52 .section .entry.text, "ax"
53
54#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
55
56/* Unconditionally switch to user cr3 */
57.macro SWITCH_TO_USER_CR3 scratch_reg:req
58 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
59
60 movl %cr3, \scratch_reg
61 orl $PTI_SWITCH_MASK, \scratch_reg
62 movl \scratch_reg, %cr3
63.Lend_\@:
64.endm
65
66.macro BUG_IF_WRONG_CR3 no_user_check=0
67#ifdef CONFIG_DEBUG_ENTRY
68 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
69 .if \no_user_check == 0
70 /* coming from usermode? */
71 testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
72 jz .Lend_\@
73 .endif
74 /* On user-cr3? */
75 movl %cr3, %eax
76 testl $PTI_SWITCH_MASK, %eax
77 jnz .Lend_\@
78 /* From userspace with kernel cr3 - BUG */
79 ud2
80.Lend_\@:
81#endif
82.endm
83
84/*
85 * Switch to kernel cr3 if not already loaded and return current cr3 in
86 * \scratch_reg
87 */
88.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
89 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
90 movl %cr3, \scratch_reg
91 /* Test if we are already on kernel CR3 */
92 testl $PTI_SWITCH_MASK, \scratch_reg
93 jz .Lend_\@
94 andl $(~PTI_SWITCH_MASK), \scratch_reg
95 movl \scratch_reg, %cr3
96 /* Return original CR3 in \scratch_reg */
97 orl $PTI_SWITCH_MASK, \scratch_reg
98.Lend_\@:
99.endm
100
101#define CS_FROM_ENTRY_STACK (1 << 31)
102#define CS_FROM_USER_CR3 (1 << 30)
103#define CS_FROM_KERNEL (1 << 29)
104#define CS_FROM_ESPFIX (1 << 28)
105
106.macro FIXUP_FRAME
107 /*
108 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
109 * Clear them in case hardware didn't do this for us.
110 */
111 andl $0x0000ffff, 4*4(%esp)
112
113#ifdef CONFIG_VM86
114 testl $X86_EFLAGS_VM, 5*4(%esp)
115 jnz .Lfrom_usermode_no_fixup_\@
116#endif
117 testl $USER_SEGMENT_RPL_MASK, 4*4(%esp)
118 jnz .Lfrom_usermode_no_fixup_\@
119
120 orl $CS_FROM_KERNEL, 4*4(%esp)
121
122 /*
123 * When we're here from kernel mode; the (exception) stack looks like:
124 *
125 * 6*4(%esp) - <previous context>
126 * 5*4(%esp) - flags
127 * 4*4(%esp) - cs
128 * 3*4(%esp) - ip
129 * 2*4(%esp) - orig_eax
130 * 1*4(%esp) - gs / function
131 * 0*4(%esp) - fs
132 *
133 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
134 * is complete and in particular regs->sp is correct. This gives us
135 * the original 6 entries as gap:
136 *
137 * 14*4(%esp) - <previous context>
138 * 13*4(%esp) - gap / flags
139 * 12*4(%esp) - gap / cs
140 * 11*4(%esp) - gap / ip
141 * 10*4(%esp) - gap / orig_eax
142 * 9*4(%esp) - gap / gs / function
143 * 8*4(%esp) - gap / fs
144 * 7*4(%esp) - ss
145 * 6*4(%esp) - sp
146 * 5*4(%esp) - flags
147 * 4*4(%esp) - cs
148 * 3*4(%esp) - ip
149 * 2*4(%esp) - orig_eax
150 * 1*4(%esp) - gs / function
151 * 0*4(%esp) - fs
152 */
153
154 pushl %ss # ss
155 pushl %esp # sp (points at ss)
156 addl $7*4, (%esp) # point sp back at the previous context
157 pushl 7*4(%esp) # flags
158 pushl 7*4(%esp) # cs
159 pushl 7*4(%esp) # ip
160 pushl 7*4(%esp) # orig_eax
161 pushl 7*4(%esp) # gs / function
162 pushl 7*4(%esp) # fs
163.Lfrom_usermode_no_fixup_\@:
164.endm
165
166.macro IRET_FRAME
167 /*
168 * We're called with %ds, %es, %fs, and %gs from the interrupted
169 * frame, so we shouldn't use them. Also, we may be in ESPFIX
170 * mode and therefore have a nonzero SS base and an offset ESP,
171 * so any attempt to access the stack needs to use SS. (except for
172 * accesses through %esp, which automatically use SS.)
173 */
174 testl $CS_FROM_KERNEL, 1*4(%esp)
175 jz .Lfinished_frame_\@
176
177 /*
178 * Reconstruct the 3 entry IRET frame right after the (modified)
179 * regs->sp without lowering %esp in between, such that an NMI in the
180 * middle doesn't scribble our stack.
181 */
182 pushl %eax
183 pushl %ecx
184 movl 5*4(%esp), %eax # (modified) regs->sp
185
186 movl 4*4(%esp), %ecx # flags
187 movl %ecx, %ss:-1*4(%eax)
188
189 movl 3*4(%esp), %ecx # cs
190 andl $0x0000ffff, %ecx
191 movl %ecx, %ss:-2*4(%eax)
192
193 movl 2*4(%esp), %ecx # ip
194 movl %ecx, %ss:-3*4(%eax)
195
196 movl 1*4(%esp), %ecx # eax
197 movl %ecx, %ss:-4*4(%eax)
198
199 popl %ecx
200 lea -4*4(%eax), %esp
201 popl %eax
202.Lfinished_frame_\@:
203.endm
204
205.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
206 cld
207.if \skip_gs == 0
208 pushl $0
209.endif
210 pushl %fs
211
212 pushl %eax
213 movl $(__KERNEL_PERCPU), %eax
214 movl %eax, %fs
215.if \unwind_espfix > 0
216 UNWIND_ESPFIX_STACK
217.endif
218 popl %eax
219
220 FIXUP_FRAME
221 pushl %es
222 pushl %ds
223 pushl \pt_regs_ax
224 pushl %ebp
225 pushl %edi
226 pushl %esi
227 pushl %edx
228 pushl %ecx
229 pushl %ebx
230 movl $(__USER_DS), %edx
231 movl %edx, %ds
232 movl %edx, %es
233 /* Switch to kernel stack if necessary */
234.if \switch_stacks > 0
235 SWITCH_TO_KERNEL_STACK
236.endif
237.endm
238
239.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
240 SAVE_ALL unwind_espfix=\unwind_espfix
241
242 BUG_IF_WRONG_CR3
243
244 /*
245 * Now switch the CR3 when PTI is enabled.
246 *
247 * We can enter with either user or kernel cr3, the code will
248 * store the old cr3 in \cr3_reg and switches to the kernel cr3
249 * if necessary.
250 */
251 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
252
253.Lend_\@:
254.endm
255
256.macro RESTORE_INT_REGS
257 popl %ebx
258 popl %ecx
259 popl %edx
260 popl %esi
261 popl %edi
262 popl %ebp
263 popl %eax
264.endm
265
266.macro RESTORE_REGS pop=0
267 RESTORE_INT_REGS
2681: popl %ds
2692: popl %es
2703: popl %fs
2714: addl $(4 + \pop), %esp /* pop the unused "gs" slot */
272 IRET_FRAME
273
274 /*
275 * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
276 * ASM the registers are known and we can trivially hard-code them.
277 */
278 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
279 _ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
280 _ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
281.endm
282
283.macro RESTORE_ALL_NMI cr3_reg:req pop=0
284 /*
285 * Now switch the CR3 when PTI is enabled.
286 *
287 * We enter with kernel cr3 and switch the cr3 to the value
288 * stored on \cr3_reg, which is either a user or a kernel cr3.
289 */
290 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
291
292 testl $PTI_SWITCH_MASK, \cr3_reg
293 jz .Lswitched_\@
294
295 /* User cr3 in \cr3_reg - write it to hardware cr3 */
296 movl \cr3_reg, %cr3
297
298.Lswitched_\@:
299
300 BUG_IF_WRONG_CR3
301
302 RESTORE_REGS pop=\pop
303.endm
304
305.macro CHECK_AND_APPLY_ESPFIX
306#ifdef CONFIG_X86_ESPFIX32
307#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
308#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page + GDT_ESPFIX_OFFSET)
309
310 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
311
312 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
313 /*
314 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
315 * are returning to the kernel.
316 * See comments in process.c:copy_thread() for details.
317 */
318 movb PT_OLDSS(%esp), %ah
319 movb PT_CS(%esp), %al
320 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
321 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
322 jne .Lend_\@ # returning to user-space with LDT SS
323
324 /*
325 * Setup and switch to ESPFIX stack
326 *
327 * We're returning to userspace with a 16 bit stack. The CPU will not
328 * restore the high word of ESP for us on executing iret... This is an
329 * "official" bug of all the x86-compatible CPUs, which we can work
330 * around to make dosemu and wine happy. We do this by preloading the
331 * high word of ESP with the high word of the userspace ESP while
332 * compensating for the offset by changing to the ESPFIX segment with
333 * a base address that matches for the difference.
334 */
335 mov %esp, %edx /* load kernel esp */
336 mov PT_OLDESP(%esp), %eax /* load userspace esp */
337 mov %dx, %ax /* eax: new kernel esp */
338 sub %eax, %edx /* offset (low word is 0) */
339 shr $16, %edx
340 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
341 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
342 pushl $__ESPFIX_SS
343 pushl %eax /* new kernel esp */
344 /*
345 * Disable interrupts, but do not irqtrace this section: we
346 * will soon execute iret and the tracer was already set to
347 * the irqstate after the IRET:
348 */
349 cli
350 lss (%esp), %esp /* switch to espfix segment */
351.Lend_\@:
352#endif /* CONFIG_X86_ESPFIX32 */
353.endm
354
355/*
356 * Called with pt_regs fully populated and kernel segments loaded,
357 * so we can access PER_CPU and use the integer registers.
358 *
359 * We need to be very careful here with the %esp switch, because an NMI
360 * can happen everywhere. If the NMI handler finds itself on the
361 * entry-stack, it will overwrite the task-stack and everything we
362 * copied there. So allocate the stack-frame on the task-stack and
363 * switch to it before we do any copying.
364 */
365
366.macro SWITCH_TO_KERNEL_STACK
367
368 BUG_IF_WRONG_CR3
369
370 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
371
372 /*
373 * %eax now contains the entry cr3 and we carry it forward in
374 * that register for the time this macro runs
375 */
376
377 /* Are we on the entry stack? Bail out if not! */
378 movl PER_CPU_VAR(cpu_entry_area), %ecx
379 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
380 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
381 cmpl $SIZEOF_entry_stack, %ecx
382 jae .Lend_\@
383
384 /* Load stack pointer into %esi and %edi */
385 movl %esp, %esi
386 movl %esi, %edi
387
388 /* Move %edi to the top of the entry stack */
389 andl $(MASK_entry_stack), %edi
390 addl $(SIZEOF_entry_stack), %edi
391
392 /* Load top of task-stack into %edi */
393 movl TSS_entry2task_stack(%edi), %edi
394
395 /* Special case - entry from kernel mode via entry stack */
396#ifdef CONFIG_VM86
397 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
398 movb PT_CS(%esp), %cl
399 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
400#else
401 movl PT_CS(%esp), %ecx
402 andl $SEGMENT_RPL_MASK, %ecx
403#endif
404 cmpl $USER_RPL, %ecx
405 jb .Lentry_from_kernel_\@
406
407 /* Bytes to copy */
408 movl $PTREGS_SIZE, %ecx
409
410#ifdef CONFIG_VM86
411 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
412 jz .Lcopy_pt_regs_\@
413
414 /*
415 * Stack-frame contains 4 additional segment registers when
416 * coming from VM86 mode
417 */
418 addl $(4 * 4), %ecx
419
420#endif
421.Lcopy_pt_regs_\@:
422
423 /* Allocate frame on task-stack */
424 subl %ecx, %edi
425
426 /* Switch to task-stack */
427 movl %edi, %esp
428
429 /*
430 * We are now on the task-stack and can safely copy over the
431 * stack-frame
432 */
433 shrl $2, %ecx
434 cld
435 rep movsl
436
437 jmp .Lend_\@
438
439.Lentry_from_kernel_\@:
440
441 /*
442 * This handles the case when we enter the kernel from
443 * kernel-mode and %esp points to the entry-stack. When this
444 * happens we need to switch to the task-stack to run C code,
445 * but switch back to the entry-stack again when we approach
446 * iret and return to the interrupted code-path. This usually
447 * happens when we hit an exception while restoring user-space
448 * segment registers on the way back to user-space or when the
449 * sysenter handler runs with eflags.tf set.
450 *
451 * When we switch to the task-stack here, we can't trust the
452 * contents of the entry-stack anymore, as the exception handler
453 * might be scheduled out or moved to another CPU. Therefore we
454 * copy the complete entry-stack to the task-stack and set a
455 * marker in the iret-frame (bit 31 of the CS dword) to detect
456 * what we've done on the iret path.
457 *
458 * On the iret path we copy everything back and switch to the
459 * entry-stack, so that the interrupted kernel code-path
460 * continues on the same stack it was interrupted with.
461 *
462 * Be aware that an NMI can happen anytime in this code.
463 *
464 * %esi: Entry-Stack pointer (same as %esp)
465 * %edi: Top of the task stack
466 * %eax: CR3 on kernel entry
467 */
468
469 /* Calculate number of bytes on the entry stack in %ecx */
470 movl %esi, %ecx
471
472 /* %ecx to the top of entry-stack */
473 andl $(MASK_entry_stack), %ecx
474 addl $(SIZEOF_entry_stack), %ecx
475
476 /* Number of bytes on the entry stack to %ecx */
477 sub %esi, %ecx
478
479 /* Mark stackframe as coming from entry stack */
480 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
481
482 /*
483 * Test the cr3 used to enter the kernel and add a marker
484 * so that we can switch back to it before iret.
485 */
486 testl $PTI_SWITCH_MASK, %eax
487 jz .Lcopy_pt_regs_\@
488 orl $CS_FROM_USER_CR3, PT_CS(%esp)
489
490 /*
491 * %esi and %edi are unchanged, %ecx contains the number of
492 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
493 * the stack-frame on task-stack and copy everything over
494 */
495 jmp .Lcopy_pt_regs_\@
496
497.Lend_\@:
498.endm
499
500/*
501 * Switch back from the kernel stack to the entry stack.
502 *
503 * The %esp register must point to pt_regs on the task stack. It will
504 * first calculate the size of the stack-frame to copy, depending on
505 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
506 * to copy the contents of the stack over to the entry stack.
507 *
508 * We must be very careful here, as we can't trust the contents of the
509 * task-stack once we switched to the entry-stack. When an NMI happens
510 * while on the entry-stack, the NMI handler will switch back to the top
511 * of the task stack, overwriting our stack-frame we are about to copy.
512 * Therefore we switch the stack only after everything is copied over.
513 */
514.macro SWITCH_TO_ENTRY_STACK
515
516 /* Bytes to copy */
517 movl $PTREGS_SIZE, %ecx
518
519#ifdef CONFIG_VM86
520 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
521 jz .Lcopy_pt_regs_\@
522
523 /* Additional 4 registers to copy when returning to VM86 mode */
524 addl $(4 * 4), %ecx
525
526.Lcopy_pt_regs_\@:
527#endif
528
529 /* Initialize source and destination for movsl */
530 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
531 subl %ecx, %edi
532 movl %esp, %esi
533
534 /* Save future stack pointer in %ebx */
535 movl %edi, %ebx
536
537 /* Copy over the stack-frame */
538 shrl $2, %ecx
539 cld
540 rep movsl
541
542 /*
543 * Switch to entry-stack - needs to happen after everything is
544 * copied because the NMI handler will overwrite the task-stack
545 * when on entry-stack
546 */
547 movl %ebx, %esp
548
549.Lend_\@:
550.endm
551
552/*
553 * This macro handles the case when we return to kernel-mode on the iret
554 * path and have to switch back to the entry stack and/or user-cr3
555 *
556 * See the comments below the .Lentry_from_kernel_\@ label in the
557 * SWITCH_TO_KERNEL_STACK macro for more details.
558 */
559.macro PARANOID_EXIT_TO_KERNEL_MODE
560
561 /*
562 * Test if we entered the kernel with the entry-stack. Most
563 * likely we did not, because this code only runs on the
564 * return-to-kernel path.
565 */
566 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
567 jz .Lend_\@
568
569 /* Unlikely slow-path */
570
571 /* Clear marker from stack-frame */
572 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
573
574 /* Copy the remaining task-stack contents to entry-stack */
575 movl %esp, %esi
576 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
577
578 /* Bytes on the task-stack to ecx */
579 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
580 subl %esi, %ecx
581
582 /* Allocate stack-frame on entry-stack */
583 subl %ecx, %edi
584
585 /*
586 * Save future stack-pointer, we must not switch until the
587 * copy is done, otherwise the NMI handler could destroy the
588 * contents of the task-stack we are about to copy.
589 */
590 movl %edi, %ebx
591
592 /* Do the copy */
593 shrl $2, %ecx
594 cld
595 rep movsl
596
597 /* Safe to switch to entry-stack now */
598 movl %ebx, %esp
599
600 /*
601 * We came from entry-stack and need to check if we also need to
602 * switch back to user cr3.
603 */
604 testl $CS_FROM_USER_CR3, PT_CS(%esp)
605 jz .Lend_\@
606
607 /* Clear marker from stack-frame */
608 andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
609
610 SWITCH_TO_USER_CR3 scratch_reg=%eax
611
612.Lend_\@:
613.endm
614
615/**
616 * idtentry - Macro to generate entry stubs for simple IDT entries
617 * @vector: Vector number
618 * @asmsym: ASM symbol for the entry point
619 * @cfunc: C function to be called
620 * @has_error_code: Hardware pushed error code on stack
621 */
622.macro idtentry vector asmsym cfunc has_error_code:req
623SYM_CODE_START(\asmsym)
624 ASM_CLAC
625 cld
626
627 .if \has_error_code == 0
628 pushl $0 /* Clear the error code */
629 .endif
630
631 /* Push the C-function address into the GS slot */
632 pushl $\cfunc
633 /* Invoke the common exception entry */
634 jmp handle_exception
635SYM_CODE_END(\asmsym)
636.endm
637
638.macro idtentry_irq vector cfunc
639 .p2align CONFIG_X86_L1_CACHE_SHIFT
640SYM_CODE_START_LOCAL(asm_\cfunc)
641 ASM_CLAC
642 SAVE_ALL switch_stacks=1
643 ENCODE_FRAME_POINTER
644 movl %esp, %eax
645 movl PT_ORIG_EAX(%esp), %edx /* get the vector from stack */
646 movl $-1, PT_ORIG_EAX(%esp) /* no syscall to restart */
647 call \cfunc
648 jmp handle_exception_return
649SYM_CODE_END(asm_\cfunc)
650.endm
651
652/*
653 * Include the defines which emit the idt entries which are shared
654 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
655 * so the stacktrace boundary checks work.
656 */
657 .align 16
658 .globl __irqentry_text_start
659__irqentry_text_start:
660
661#include <asm/idtentry.h>
662
663 .align 16
664 .globl __irqentry_text_end
665__irqentry_text_end:
666
667/*
668 * %eax: prev task
669 * %edx: next task
670 */
671.pushsection .text, "ax"
672SYM_CODE_START(__switch_to_asm)
673 /*
674 * Save callee-saved registers
675 * This must match the order in struct inactive_task_frame
676 */
677 pushl %ebp
678 pushl %ebx
679 pushl %edi
680 pushl %esi
681 /*
682 * Flags are saved to prevent AC leakage. This could go
683 * away if objtool would have 32bit support to verify
684 * the STAC/CLAC correctness.
685 */
686 pushfl
687
688 /* switch stack */
689 movl %esp, TASK_threadsp(%eax)
690 movl TASK_threadsp(%edx), %esp
691
692#ifdef CONFIG_STACKPROTECTOR
693 movl TASK_stack_canary(%edx), %ebx
694 movl %ebx, PER_CPU_VAR(__stack_chk_guard)
695#endif
696
697 /*
698 * When switching from a shallower to a deeper call stack
699 * the RSB may either underflow or use entries populated
700 * with userspace addresses. On CPUs where those concerns
701 * exist, overwrite the RSB with entries which capture
702 * speculative execution to prevent attack.
703 */
704 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
705
706 /* Restore flags or the incoming task to restore AC state. */
707 popfl
708 /* restore callee-saved registers */
709 popl %esi
710 popl %edi
711 popl %ebx
712 popl %ebp
713
714 jmp __switch_to
715SYM_CODE_END(__switch_to_asm)
716.popsection
717
718/*
719 * A newly forked process directly context switches into this address.
720 *
721 * eax: prev task we switched from
722 * ebx: kernel thread func (NULL for user thread)
723 * edi: kernel thread arg
724 */
725.pushsection .text, "ax"
726SYM_CODE_START(ret_from_fork_asm)
727 movl %esp, %edx /* regs */
728
729 /* return address for the stack unwinder */
730 pushl $.Lsyscall_32_done
731
732 FRAME_BEGIN
733 /* prev already in EAX */
734 movl %ebx, %ecx /* fn */
735 pushl %edi /* fn_arg */
736 call ret_from_fork
737 addl $4, %esp
738 FRAME_END
739
740 RET
741SYM_CODE_END(ret_from_fork_asm)
742.popsection
743
744SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
745/*
746 * All code from here through __end_SYSENTER_singlestep_region is subject
747 * to being single-stepped if a user program sets TF and executes SYSENTER.
748 * There is absolutely nothing that we can do to prevent this from happening
749 * (thanks Intel!). To keep our handling of this situation as simple as
750 * possible, we handle TF just like AC and NT, except that our #DB handler
751 * will ignore all of the single-step traps generated in this range.
752 */
753
754/*
755 * 32-bit SYSENTER entry.
756 *
757 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
758 * if X86_FEATURE_SEP is available. This is the preferred system call
759 * entry on 32-bit systems.
760 *
761 * The SYSENTER instruction, in principle, should *only* occur in the
762 * vDSO. In practice, a small number of Android devices were shipped
763 * with a copy of Bionic that inlined a SYSENTER instruction. This
764 * never happened in any of Google's Bionic versions -- it only happened
765 * in a narrow range of Intel-provided versions.
766 *
767 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
768 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
769 * SYSENTER does not save anything on the stack,
770 * and does not save old EIP (!!!), ESP, or EFLAGS.
771 *
772 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
773 * user and/or vm86 state), we explicitly disable the SYSENTER
774 * instruction in vm86 mode by reprogramming the MSRs.
775 *
776 * Arguments:
777 * eax system call number
778 * ebx arg1
779 * ecx arg2
780 * edx arg3
781 * esi arg4
782 * edi arg5
783 * ebp user stack
784 * 0(%ebp) arg6
785 */
786SYM_FUNC_START(entry_SYSENTER_32)
787 /*
788 * On entry-stack with all userspace-regs live - save and
789 * restore eflags and %eax to use it as scratch-reg for the cr3
790 * switch.
791 */
792 pushfl
793 pushl %eax
794 BUG_IF_WRONG_CR3 no_user_check=1
795 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
796 popl %eax
797 popfl
798
799 /* Stack empty again, switch to task stack */
800 movl TSS_entry2task_stack(%esp), %esp
801
802.Lsysenter_past_esp:
803 pushl $__USER_DS /* pt_regs->ss */
804 pushl $0 /* pt_regs->sp (placeholder) */
805 pushfl /* pt_regs->flags (except IF = 0) */
806 pushl $__USER_CS /* pt_regs->cs */
807 pushl $0 /* pt_regs->ip = 0 (placeholder) */
808 pushl %eax /* pt_regs->orig_ax */
809 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
810
811 /*
812 * SYSENTER doesn't filter flags, so we need to clear NT, AC
813 * and TF ourselves. To save a few cycles, we can check whether
814 * either was set instead of doing an unconditional popfq.
815 * This needs to happen before enabling interrupts so that
816 * we don't get preempted with NT set.
817 *
818 * If TF is set, we will single-step all the way to here -- do_debug
819 * will ignore all the traps. (Yes, this is slow, but so is
820 * single-stepping in general. This allows us to avoid having
821 * a more complicated code to handle the case where a user program
822 * forces us to single-step through the SYSENTER entry code.)
823 *
824 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
825 * out-of-line as an optimization: NT is unlikely to be set in the
826 * majority of the cases and instead of polluting the I$ unnecessarily,
827 * we're keeping that code behind a branch which will predict as
828 * not-taken and therefore its instructions won't be fetched.
829 */
830 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
831 jnz .Lsysenter_fix_flags
832.Lsysenter_flags_fixed:
833
834 movl %esp, %eax
835 call do_SYSENTER_32
836 testb %al, %al
837 jz .Lsyscall_32_done
838
839 STACKLEAK_ERASE
840
841 /* Opportunistic SYSEXIT */
842
843 /*
844 * Setup entry stack - we keep the pointer in %eax and do the
845 * switch after almost all user-state is restored.
846 */
847
848 /* Load entry stack pointer and allocate frame for eflags/eax */
849 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
850 subl $(2*4), %eax
851
852 /* Copy eflags and eax to entry stack */
853 movl PT_EFLAGS(%esp), %edi
854 movl PT_EAX(%esp), %esi
855 movl %edi, (%eax)
856 movl %esi, 4(%eax)
857
858 /* Restore user registers and segments */
859 movl PT_EIP(%esp), %edx /* pt_regs->ip */
860 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
8611: mov PT_FS(%esp), %fs
862
863 popl %ebx /* pt_regs->bx */
864 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
865 popl %esi /* pt_regs->si */
866 popl %edi /* pt_regs->di */
867 popl %ebp /* pt_regs->bp */
868
869 /* Switch to entry stack */
870 movl %eax, %esp
871
872 /* Now ready to switch the cr3 */
873 SWITCH_TO_USER_CR3 scratch_reg=%eax
874
875 /*
876 * Restore all flags except IF. (We restore IF separately because
877 * STI gives a one-instruction window in which we won't be interrupted,
878 * whereas POPF does not.)
879 */
880 btrl $X86_EFLAGS_IF_BIT, (%esp)
881 BUG_IF_WRONG_CR3 no_user_check=1
882 popfl
883 popl %eax
884 CLEAR_CPU_BUFFERS
885
886 /*
887 * Return back to the vDSO, which will pop ecx and edx.
888 * Don't bother with DS and ES (they already contain __USER_DS).
889 */
890 sti
891 sysexit
892
8932: movl $0, PT_FS(%esp)
894 jmp 1b
895 _ASM_EXTABLE(1b, 2b)
896
897.Lsysenter_fix_flags:
898 pushl $X86_EFLAGS_FIXED
899 popfl
900 jmp .Lsysenter_flags_fixed
901SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
902SYM_FUNC_END(entry_SYSENTER_32)
903
904/*
905 * 32-bit legacy system call entry.
906 *
907 * 32-bit x86 Linux system calls traditionally used the INT $0x80
908 * instruction. INT $0x80 lands here.
909 *
910 * This entry point can be used by any 32-bit perform system calls.
911 * Instances of INT $0x80 can be found inline in various programs and
912 * libraries. It is also used by the vDSO's __kernel_vsyscall
913 * fallback for hardware that doesn't support a faster entry method.
914 * Restarted 32-bit system calls also fall back to INT $0x80
915 * regardless of what instruction was originally used to do the system
916 * call. (64-bit programs can use INT $0x80 as well, but they can
917 * only run on 64-bit kernels and therefore land in
918 * entry_INT80_compat.)
919 *
920 * This is considered a slow path. It is not used by most libc
921 * implementations on modern hardware except during process startup.
922 *
923 * Arguments:
924 * eax system call number
925 * ebx arg1
926 * ecx arg2
927 * edx arg3
928 * esi arg4
929 * edi arg5
930 * ebp arg6
931 */
932SYM_FUNC_START(entry_INT80_32)
933 ASM_CLAC
934 pushl %eax /* pt_regs->orig_ax */
935
936 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
937
938 movl %esp, %eax
939 call do_int80_syscall_32
940.Lsyscall_32_done:
941 STACKLEAK_ERASE
942
943restore_all_switch_stack:
944 SWITCH_TO_ENTRY_STACK
945 CHECK_AND_APPLY_ESPFIX
946
947 /* Switch back to user CR3 */
948 SWITCH_TO_USER_CR3 scratch_reg=%eax
949
950 BUG_IF_WRONG_CR3
951
952 /* Restore user state */
953 RESTORE_REGS pop=4 # skip orig_eax/error_code
954 CLEAR_CPU_BUFFERS
955.Lirq_return:
956 /*
957 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
958 * when returning from IPI handler and when returning from
959 * scheduler to user-space.
960 */
961 iret
962
963.Lasm_iret_error:
964 pushl $0 # no error code
965 pushl $iret_error
966
967#ifdef CONFIG_DEBUG_ENTRY
968 /*
969 * The stack-frame here is the one that iret faulted on, so its a
970 * return-to-user frame. We are on kernel-cr3 because we come here from
971 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
972 * as the checker expects it.
973 */
974 pushl %eax
975 SWITCH_TO_USER_CR3 scratch_reg=%eax
976 popl %eax
977#endif
978
979 jmp handle_exception
980
981 _ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
982SYM_FUNC_END(entry_INT80_32)
983
984.macro FIXUP_ESPFIX_STACK
985/*
986 * Switch back for ESPFIX stack to the normal zerobased stack
987 *
988 * We can't call C functions using the ESPFIX stack. This code reads
989 * the high word of the segment base from the GDT and swiches to the
990 * normal stack and adjusts ESP with the matching offset.
991 *
992 * We might be on user CR3 here, so percpu data is not mapped and we can't
993 * access the GDT through the percpu segment. Instead, use SGDT to find
994 * the cpu_entry_area alias of the GDT.
995 */
996#ifdef CONFIG_X86_ESPFIX32
997 /* fixup the stack */
998 pushl %ecx
999 subl $2*4, %esp
1000 sgdt (%esp)
1001 movl 2(%esp), %ecx /* GDT address */
1002 /*
1003 * Careful: ECX is a linear pointer, so we need to force base
1004 * zero. %cs is the only known-linear segment we have right now.
1005 */
1006 mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */
1007 mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */
1008 shl $16, %eax
1009 addl $2*4, %esp
1010 popl %ecx
1011 addl %esp, %eax /* the adjusted stack pointer */
1012 pushl $__KERNEL_DS
1013 pushl %eax
1014 lss (%esp), %esp /* switch to the normal stack segment */
1015#endif
1016.endm
1017
1018.macro UNWIND_ESPFIX_STACK
1019 /* It's safe to clobber %eax, all other regs need to be preserved */
1020#ifdef CONFIG_X86_ESPFIX32
1021 movl %ss, %eax
1022 /* see if on espfix stack */
1023 cmpw $__ESPFIX_SS, %ax
1024 jne .Lno_fixup_\@
1025 /* switch to normal stack */
1026 FIXUP_ESPFIX_STACK
1027.Lno_fixup_\@:
1028#endif
1029.endm
1030
1031SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1032 /* the function address is in %gs's slot on the stack */
1033 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1034 ENCODE_FRAME_POINTER
1035
1036 movl PT_GS(%esp), %edi # get the function address
1037
1038 /* fixup orig %eax */
1039 movl PT_ORIG_EAX(%esp), %edx # get the error code
1040 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1041
1042 movl %esp, %eax # pt_regs pointer
1043 CALL_NOSPEC edi
1044
1045handle_exception_return:
1046#ifdef CONFIG_VM86
1047 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
1048 movb PT_CS(%esp), %al
1049 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1050#else
1051 /*
1052 * We can be coming here from child spawned by kernel_thread().
1053 */
1054 movl PT_CS(%esp), %eax
1055 andl $SEGMENT_RPL_MASK, %eax
1056#endif
1057 cmpl $USER_RPL, %eax # returning to v8086 or userspace ?
1058 jnb ret_to_user
1059
1060 PARANOID_EXIT_TO_KERNEL_MODE
1061 BUG_IF_WRONG_CR3
1062 RESTORE_REGS 4
1063 jmp .Lirq_return
1064
1065ret_to_user:
1066 movl %esp, %eax
1067 jmp restore_all_switch_stack
1068SYM_CODE_END(handle_exception)
1069
1070SYM_CODE_START(asm_exc_double_fault)
10711:
1072 /*
1073 * This is a task gate handler, not an interrupt gate handler.
1074 * The error code is on the stack, but the stack is otherwise
1075 * empty. Interrupts are off. Our state is sane with the following
1076 * exceptions:
1077 *
1078 * - CR0.TS is set. "TS" literally means "task switched".
1079 * - EFLAGS.NT is set because we're a "nested task".
1080 * - The doublefault TSS has back_link set and has been marked busy.
1081 * - TR points to the doublefault TSS and the normal TSS is busy.
1082 * - CR3 is the normal kernel PGD. This would be delightful, except
1083 * that the CPU didn't bother to save the old CR3 anywhere. This
1084 * would make it very awkward to return back to the context we came
1085 * from.
1086 *
1087 * The rest of EFLAGS is sanitized for us, so we don't need to
1088 * worry about AC or DF.
1089 *
1090 * Don't even bother popping the error code. It's always zero,
1091 * and ignoring it makes us a bit more robust against buggy
1092 * hypervisor task gate implementations.
1093 *
1094 * We will manually undo the task switch instead of doing a
1095 * task-switching IRET.
1096 */
1097
1098 clts /* clear CR0.TS */
1099 pushl $X86_EFLAGS_FIXED
1100 popfl /* clear EFLAGS.NT */
1101
1102 call doublefault_shim
1103
1104 /* We don't support returning, so we have no IRET here. */
11051:
1106 hlt
1107 jmp 1b
1108SYM_CODE_END(asm_exc_double_fault)
1109
1110/*
1111 * NMI is doubly nasty. It can happen on the first instruction of
1112 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1113 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1114 * switched stacks. We handle both conditions by simply checking whether we
1115 * interrupted kernel code running on the SYSENTER stack.
1116 */
1117SYM_CODE_START(asm_exc_nmi)
1118 ASM_CLAC
1119
1120#ifdef CONFIG_X86_ESPFIX32
1121 /*
1122 * ESPFIX_SS is only ever set on the return to user path
1123 * after we've switched to the entry stack.
1124 */
1125 pushl %eax
1126 movl %ss, %eax
1127 cmpw $__ESPFIX_SS, %ax
1128 popl %eax
1129 je .Lnmi_espfix_stack
1130#endif
1131
1132 pushl %eax # pt_regs->orig_ax
1133 SAVE_ALL_NMI cr3_reg=%edi
1134 ENCODE_FRAME_POINTER
1135 xorl %edx, %edx # zero error code
1136 movl %esp, %eax # pt_regs pointer
1137
1138 /* Are we currently on the SYSENTER stack? */
1139 movl PER_CPU_VAR(cpu_entry_area), %ecx
1140 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1141 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
1142 cmpl $SIZEOF_entry_stack, %ecx
1143 jb .Lnmi_from_sysenter_stack
1144
1145 /* Not on SYSENTER stack. */
1146 call exc_nmi
1147 CLEAR_CPU_BUFFERS
1148 jmp .Lnmi_return
1149
1150.Lnmi_from_sysenter_stack:
1151 /*
1152 * We're on the SYSENTER stack. Switch off. No one (not even debug)
1153 * is using the thread stack right now, so it's safe for us to use it.
1154 */
1155 movl %esp, %ebx
1156 movl PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp
1157 call exc_nmi
1158 movl %ebx, %esp
1159
1160.Lnmi_return:
1161#ifdef CONFIG_X86_ESPFIX32
1162 testl $CS_FROM_ESPFIX, PT_CS(%esp)
1163 jnz .Lnmi_from_espfix
1164#endif
1165
1166 CHECK_AND_APPLY_ESPFIX
1167 RESTORE_ALL_NMI cr3_reg=%edi pop=4
1168 jmp .Lirq_return
1169
1170#ifdef CONFIG_X86_ESPFIX32
1171.Lnmi_espfix_stack:
1172 /*
1173 * Create the pointer to LSS back
1174 */
1175 pushl %ss
1176 pushl %esp
1177 addl $4, (%esp)
1178
1179 /* Copy the (short) IRET frame */
1180 pushl 4*4(%esp) # flags
1181 pushl 4*4(%esp) # cs
1182 pushl 4*4(%esp) # ip
1183
1184 pushl %eax # orig_ax
1185
1186 SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1187 ENCODE_FRAME_POINTER
1188
1189 /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1190 xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1191
1192 xorl %edx, %edx # zero error code
1193 movl %esp, %eax # pt_regs pointer
1194 jmp .Lnmi_from_sysenter_stack
1195
1196.Lnmi_from_espfix:
1197 RESTORE_ALL_NMI cr3_reg=%edi
1198 /*
1199 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1200 * fix up the gap and long frame:
1201 *
1202 * 3 - original frame (exception)
1203 * 2 - ESPFIX block (above)
1204 * 6 - gap (FIXUP_FRAME)
1205 * 5 - long frame (FIXUP_FRAME)
1206 * 1 - orig_ax
1207 */
1208 lss (1+5+6)*4(%esp), %esp # back to espfix stack
1209 jmp .Lirq_return
1210#endif
1211SYM_CODE_END(asm_exc_nmi)
1212
1213.pushsection .text, "ax"
1214SYM_CODE_START(rewind_stack_and_make_dead)
1215 /* Prevent any naive code from trying to unwind to our caller. */
1216 xorl %ebp, %ebp
1217
1218 movl PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi
1219 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1220
1221 call make_task_dead
12221: jmp 1b
1223SYM_CODE_END(rewind_stack_and_make_dead)
1224.popsection
1225

source code of linux/arch/x86/entry/entry_32.S