1 | /* |
2 | * VMAC: Message Authentication Code using Universal Hashing |
3 | * |
4 | * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01 |
5 | * |
6 | * Copyright (c) 2009, Intel Corporation. |
7 | * Copyright (c) 2018, Google Inc. |
8 | * |
9 | * This program is free software; you can redistribute it and/or modify it |
10 | * under the terms and conditions of the GNU General Public License, |
11 | * version 2, as published by the Free Software Foundation. |
12 | * |
13 | * This program is distributed in the hope it will be useful, but WITHOUT |
14 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
15 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
16 | * more details. |
17 | * |
18 | * You should have received a copy of the GNU General Public License along with |
19 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
20 | * Place - Suite 330, Boston, MA 02111-1307 USA. |
21 | */ |
22 | |
23 | /* |
24 | * Derived from: |
25 | * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. |
26 | * This implementation is herby placed in the public domain. |
27 | * The authors offers no warranty. Use at your own risk. |
28 | * Last modified: 17 APR 08, 1700 PDT |
29 | */ |
30 | |
31 | #include <asm/unaligned.h> |
32 | #include <linux/init.h> |
33 | #include <linux/types.h> |
34 | #include <linux/crypto.h> |
35 | #include <linux/module.h> |
36 | #include <linux/scatterlist.h> |
37 | #include <asm/byteorder.h> |
38 | #include <crypto/scatterwalk.h> |
39 | #include <crypto/internal/cipher.h> |
40 | #include <crypto/internal/hash.h> |
41 | |
42 | /* |
43 | * User definable settings. |
44 | */ |
45 | #define VMAC_TAG_LEN 64 |
46 | #define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */ |
47 | #define VMAC_KEY_LEN (VMAC_KEY_SIZE/8) |
48 | #define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/ |
49 | #define VMAC_NONCEBYTES 16 |
50 | |
51 | /* per-transform (per-key) context */ |
52 | struct vmac_tfm_ctx { |
53 | struct crypto_cipher *cipher; |
54 | u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)]; |
55 | u64 polykey[2*VMAC_TAG_LEN/64]; |
56 | u64 l3key[2*VMAC_TAG_LEN/64]; |
57 | }; |
58 | |
59 | /* per-request context */ |
60 | struct vmac_desc_ctx { |
61 | union { |
62 | u8 partial[VMAC_NHBYTES]; /* partial block */ |
63 | __le64 partial_words[VMAC_NHBYTES / 8]; |
64 | }; |
65 | unsigned int partial_size; /* size of the partial block */ |
66 | bool first_block_processed; |
67 | u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */ |
68 | union { |
69 | u8 bytes[VMAC_NONCEBYTES]; |
70 | __be64 pads[VMAC_NONCEBYTES / 8]; |
71 | } nonce; |
72 | unsigned int nonce_size; /* nonce bytes filled so far */ |
73 | }; |
74 | |
75 | /* |
76 | * Constants and masks |
77 | */ |
78 | #define UINT64_C(x) x##ULL |
79 | static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ |
80 | static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ |
81 | static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ |
82 | static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ |
83 | static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ |
84 | |
85 | #define pe64_to_cpup le64_to_cpup /* Prefer little endian */ |
86 | |
87 | #ifdef __LITTLE_ENDIAN |
88 | #define INDEX_HIGH 1 |
89 | #define INDEX_LOW 0 |
90 | #else |
91 | #define INDEX_HIGH 0 |
92 | #define INDEX_LOW 1 |
93 | #endif |
94 | |
95 | /* |
96 | * The following routines are used in this implementation. They are |
97 | * written via macros to simulate zero-overhead call-by-reference. |
98 | * |
99 | * MUL64: 64x64->128-bit multiplication |
100 | * PMUL64: assumes top bits cleared on inputs |
101 | * ADD128: 128x128->128-bit addition |
102 | */ |
103 | |
104 | #define ADD128(rh, rl, ih, il) \ |
105 | do { \ |
106 | u64 _il = (il); \ |
107 | (rl) += (_il); \ |
108 | if ((rl) < (_il)) \ |
109 | (rh)++; \ |
110 | (rh) += (ih); \ |
111 | } while (0) |
112 | |
113 | #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) |
114 | |
115 | #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ |
116 | do { \ |
117 | u64 _i1 = (i1), _i2 = (i2); \ |
118 | u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ |
119 | rh = MUL32(_i1>>32, _i2>>32); \ |
120 | rl = MUL32(_i1, _i2); \ |
121 | ADD128(rh, rl, (m >> 32), (m << 32)); \ |
122 | } while (0) |
123 | |
124 | #define MUL64(rh, rl, i1, i2) \ |
125 | do { \ |
126 | u64 _i1 = (i1), _i2 = (i2); \ |
127 | u64 m1 = MUL32(_i1, _i2>>32); \ |
128 | u64 m2 = MUL32(_i1>>32, _i2); \ |
129 | rh = MUL32(_i1>>32, _i2>>32); \ |
130 | rl = MUL32(_i1, _i2); \ |
131 | ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ |
132 | ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ |
133 | } while (0) |
134 | |
135 | /* |
136 | * For highest performance the L1 NH and L2 polynomial hashes should be |
137 | * carefully implemented to take advantage of one's target architecture. |
138 | * Here these two hash functions are defined multiple time; once for |
139 | * 64-bit architectures, once for 32-bit SSE2 architectures, and once |
140 | * for the rest (32-bit) architectures. |
141 | * For each, nh_16 *must* be defined (works on multiples of 16 bytes). |
142 | * Optionally, nh_vmac_nhbytes can be defined (for multiples of |
143 | * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two |
144 | * NH computations at once). |
145 | */ |
146 | |
147 | #ifdef CONFIG_64BIT |
148 | |
149 | #define nh_16(mp, kp, nw, rh, rl) \ |
150 | do { \ |
151 | int i; u64 th, tl; \ |
152 | rh = rl = 0; \ |
153 | for (i = 0; i < nw; i += 2) { \ |
154 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
155 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
156 | ADD128(rh, rl, th, tl); \ |
157 | } \ |
158 | } while (0) |
159 | |
160 | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ |
161 | do { \ |
162 | int i; u64 th, tl; \ |
163 | rh1 = rl1 = rh = rl = 0; \ |
164 | for (i = 0; i < nw; i += 2) { \ |
165 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
166 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
167 | ADD128(rh, rl, th, tl); \ |
168 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
169 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ |
170 | ADD128(rh1, rl1, th, tl); \ |
171 | } \ |
172 | } while (0) |
173 | |
174 | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ |
175 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ |
176 | do { \ |
177 | int i; u64 th, tl; \ |
178 | rh = rl = 0; \ |
179 | for (i = 0; i < nw; i += 8) { \ |
180 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
181 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
182 | ADD128(rh, rl, th, tl); \ |
183 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
184 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ |
185 | ADD128(rh, rl, th, tl); \ |
186 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
187 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ |
188 | ADD128(rh, rl, th, tl); \ |
189 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
190 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ |
191 | ADD128(rh, rl, th, tl); \ |
192 | } \ |
193 | } while (0) |
194 | |
195 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ |
196 | do { \ |
197 | int i; u64 th, tl; \ |
198 | rh1 = rl1 = rh = rl = 0; \ |
199 | for (i = 0; i < nw; i += 8) { \ |
200 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
201 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
202 | ADD128(rh, rl, th, tl); \ |
203 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
204 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ |
205 | ADD128(rh1, rl1, th, tl); \ |
206 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
207 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ |
208 | ADD128(rh, rl, th, tl); \ |
209 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ |
210 | pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ |
211 | ADD128(rh1, rl1, th, tl); \ |
212 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
213 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ |
214 | ADD128(rh, rl, th, tl); \ |
215 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ |
216 | pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ |
217 | ADD128(rh1, rl1, th, tl); \ |
218 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
219 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ |
220 | ADD128(rh, rl, th, tl); \ |
221 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ |
222 | pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ |
223 | ADD128(rh1, rl1, th, tl); \ |
224 | } \ |
225 | } while (0) |
226 | #endif |
227 | |
228 | #define poly_step(ah, al, kh, kl, mh, ml) \ |
229 | do { \ |
230 | u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ |
231 | /* compute ab*cd, put bd into result registers */ \ |
232 | PMUL64(t3h, t3l, al, kh); \ |
233 | PMUL64(t2h, t2l, ah, kl); \ |
234 | PMUL64(t1h, t1l, ah, 2*kh); \ |
235 | PMUL64(ah, al, al, kl); \ |
236 | /* add 2 * ac to result */ \ |
237 | ADD128(ah, al, t1h, t1l); \ |
238 | /* add together ad + bc */ \ |
239 | ADD128(t2h, t2l, t3h, t3l); \ |
240 | /* now (ah,al), (t2l,2*t2h) need summing */ \ |
241 | /* first add the high registers, carrying into t2h */ \ |
242 | ADD128(t2h, ah, z, t2l); \ |
243 | /* double t2h and add top bit of ah */ \ |
244 | t2h = 2 * t2h + (ah >> 63); \ |
245 | ah &= m63; \ |
246 | /* now add the low registers */ \ |
247 | ADD128(ah, al, mh, ml); \ |
248 | ADD128(ah, al, z, t2h); \ |
249 | } while (0) |
250 | |
251 | #else /* ! CONFIG_64BIT */ |
252 | |
253 | #ifndef nh_16 |
254 | #define nh_16(mp, kp, nw, rh, rl) \ |
255 | do { \ |
256 | u64 t1, t2, m1, m2, t; \ |
257 | int i; \ |
258 | rh = rl = t = 0; \ |
259 | for (i = 0; i < nw; i += 2) { \ |
260 | t1 = pe64_to_cpup(mp+i) + kp[i]; \ |
261 | t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ |
262 | m2 = MUL32(t1 >> 32, t2); \ |
263 | m1 = MUL32(t1, t2 >> 32); \ |
264 | ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ |
265 | MUL32(t1, t2)); \ |
266 | rh += (u64)(u32)(m1 >> 32) \ |
267 | + (u32)(m2 >> 32); \ |
268 | t += (u64)(u32)m1 + (u32)m2; \ |
269 | } \ |
270 | ADD128(rh, rl, (t >> 32), (t << 32)); \ |
271 | } while (0) |
272 | #endif |
273 | |
274 | static void poly_step_func(u64 *ahi, u64 *alo, |
275 | const u64 *kh, const u64 *kl, |
276 | const u64 *mh, const u64 *ml) |
277 | { |
278 | #define a0 (*(((u32 *)alo)+INDEX_LOW)) |
279 | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) |
280 | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) |
281 | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) |
282 | #define k0 (*(((u32 *)kl)+INDEX_LOW)) |
283 | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) |
284 | #define k2 (*(((u32 *)kh)+INDEX_LOW)) |
285 | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) |
286 | |
287 | u64 p, q, t; |
288 | u32 t2; |
289 | |
290 | p = MUL32(a3, k3); |
291 | p += p; |
292 | p += *(u64 *)mh; |
293 | p += MUL32(a0, k2); |
294 | p += MUL32(a1, k1); |
295 | p += MUL32(a2, k0); |
296 | t = (u32)(p); |
297 | p >>= 32; |
298 | p += MUL32(a0, k3); |
299 | p += MUL32(a1, k2); |
300 | p += MUL32(a2, k1); |
301 | p += MUL32(a3, k0); |
302 | t |= ((u64)((u32)p & 0x7fffffff)) << 32; |
303 | p >>= 31; |
304 | p += (u64)(((u32 *)ml)[INDEX_LOW]); |
305 | p += MUL32(a0, k0); |
306 | q = MUL32(a1, k3); |
307 | q += MUL32(a2, k2); |
308 | q += MUL32(a3, k1); |
309 | q += q; |
310 | p += q; |
311 | t2 = (u32)(p); |
312 | p >>= 32; |
313 | p += (u64)(((u32 *)ml)[INDEX_HIGH]); |
314 | p += MUL32(a0, k1); |
315 | p += MUL32(a1, k0); |
316 | q = MUL32(a2, k3); |
317 | q += MUL32(a3, k2); |
318 | q += q; |
319 | p += q; |
320 | *(u64 *)(alo) = (p << 32) | t2; |
321 | p >>= 32; |
322 | *(u64 *)(ahi) = p + t; |
323 | |
324 | #undef a0 |
325 | #undef a1 |
326 | #undef a2 |
327 | #undef a3 |
328 | #undef k0 |
329 | #undef k1 |
330 | #undef k2 |
331 | #undef k3 |
332 | } |
333 | |
334 | #define poly_step(ah, al, kh, kl, mh, ml) \ |
335 | poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) |
336 | |
337 | #endif /* end of specialized NH and poly definitions */ |
338 | |
339 | /* At least nh_16 is defined. Defined others as needed here */ |
340 | #ifndef nh_16_2 |
341 | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ |
342 | do { \ |
343 | nh_16(mp, kp, nw, rh, rl); \ |
344 | nh_16(mp, ((kp)+2), nw, rh2, rl2); \ |
345 | } while (0) |
346 | #endif |
347 | #ifndef nh_vmac_nhbytes |
348 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ |
349 | nh_16(mp, kp, nw, rh, rl) |
350 | #endif |
351 | #ifndef nh_vmac_nhbytes_2 |
352 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ |
353 | do { \ |
354 | nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ |
355 | nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ |
356 | } while (0) |
357 | #endif |
358 | |
359 | static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) |
360 | { |
361 | u64 rh, rl, t, z = 0; |
362 | |
363 | /* fully reduce (p1,p2)+(len,0) mod p127 */ |
364 | t = p1 >> 63; |
365 | p1 &= m63; |
366 | ADD128(p1, p2, len, t); |
367 | /* At this point, (p1,p2) is at most 2^127+(len<<64) */ |
368 | t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); |
369 | ADD128(p1, p2, z, t); |
370 | p1 &= m63; |
371 | |
372 | /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ |
373 | t = p1 + (p2 >> 32); |
374 | t += (t >> 32); |
375 | t += (u32)t > 0xfffffffeu; |
376 | p1 += (t >> 32); |
377 | p2 += (p1 << 32); |
378 | |
379 | /* compute (p1+k1)%p64 and (p2+k2)%p64 */ |
380 | p1 += k1; |
381 | p1 += (0 - (p1 < k1)) & 257; |
382 | p2 += k2; |
383 | p2 += (0 - (p2 < k2)) & 257; |
384 | |
385 | /* compute (p1+k1)*(p2+k2)%p64 */ |
386 | MUL64(rh, rl, p1, p2); |
387 | t = rh >> 56; |
388 | ADD128(t, rl, z, rh); |
389 | rh <<= 8; |
390 | ADD128(t, rl, z, rh); |
391 | t += t << 8; |
392 | rl += t; |
393 | rl += (0 - (rl < t)) & 257; |
394 | rl += (0 - (rl > p64-1)) & 257; |
395 | return rl; |
396 | } |
397 | |
398 | /* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */ |
399 | static void vhash_blocks(const struct vmac_tfm_ctx *tctx, |
400 | struct vmac_desc_ctx *dctx, |
401 | const __le64 *mptr, unsigned int blocks) |
402 | { |
403 | const u64 *kptr = tctx->nhkey; |
404 | const u64 pkh = tctx->polykey[0]; |
405 | const u64 pkl = tctx->polykey[1]; |
406 | u64 ch = dctx->polytmp[0]; |
407 | u64 cl = dctx->polytmp[1]; |
408 | u64 rh, rl; |
409 | |
410 | if (!dctx->first_block_processed) { |
411 | dctx->first_block_processed = true; |
412 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
413 | rh &= m62; |
414 | ADD128(ch, cl, rh, rl); |
415 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
416 | blocks--; |
417 | } |
418 | |
419 | while (blocks--) { |
420 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
421 | rh &= m62; |
422 | poly_step(ch, cl, pkh, pkl, rh, rl); |
423 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
424 | } |
425 | |
426 | dctx->polytmp[0] = ch; |
427 | dctx->polytmp[1] = cl; |
428 | } |
429 | |
430 | static int vmac_setkey(struct crypto_shash *tfm, |
431 | const u8 *key, unsigned int keylen) |
432 | { |
433 | struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm); |
434 | __be64 out[2]; |
435 | u8 in[16] = { 0 }; |
436 | unsigned int i; |
437 | int err; |
438 | |
439 | if (keylen != VMAC_KEY_LEN) |
440 | return -EINVAL; |
441 | |
442 | err = crypto_cipher_setkey(tfm: tctx->cipher, key, keylen); |
443 | if (err) |
444 | return err; |
445 | |
446 | /* Fill nh key */ |
447 | in[0] = 0x80; |
448 | for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) { |
449 | crypto_cipher_encrypt_one(tfm: tctx->cipher, dst: (u8 *)out, src: in); |
450 | tctx->nhkey[i] = be64_to_cpu(out[0]); |
451 | tctx->nhkey[i+1] = be64_to_cpu(out[1]); |
452 | in[15]++; |
453 | } |
454 | |
455 | /* Fill poly key */ |
456 | in[0] = 0xC0; |
457 | in[15] = 0; |
458 | for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) { |
459 | crypto_cipher_encrypt_one(tfm: tctx->cipher, dst: (u8 *)out, src: in); |
460 | tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly; |
461 | tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly; |
462 | in[15]++; |
463 | } |
464 | |
465 | /* Fill ip key */ |
466 | in[0] = 0xE0; |
467 | in[15] = 0; |
468 | for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) { |
469 | do { |
470 | crypto_cipher_encrypt_one(tfm: tctx->cipher, dst: (u8 *)out, src: in); |
471 | tctx->l3key[i] = be64_to_cpu(out[0]); |
472 | tctx->l3key[i+1] = be64_to_cpu(out[1]); |
473 | in[15]++; |
474 | } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64); |
475 | } |
476 | |
477 | return 0; |
478 | } |
479 | |
480 | static int vmac_init(struct shash_desc *desc) |
481 | { |
482 | const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm: desc->tfm); |
483 | struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); |
484 | |
485 | dctx->partial_size = 0; |
486 | dctx->first_block_processed = false; |
487 | memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp)); |
488 | dctx->nonce_size = 0; |
489 | return 0; |
490 | } |
491 | |
492 | static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len) |
493 | { |
494 | const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm: desc->tfm); |
495 | struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); |
496 | unsigned int n; |
497 | |
498 | /* Nonce is passed as first VMAC_NONCEBYTES bytes of data */ |
499 | if (dctx->nonce_size < VMAC_NONCEBYTES) { |
500 | n = min(len, VMAC_NONCEBYTES - dctx->nonce_size); |
501 | memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n); |
502 | dctx->nonce_size += n; |
503 | p += n; |
504 | len -= n; |
505 | } |
506 | |
507 | if (dctx->partial_size) { |
508 | n = min(len, VMAC_NHBYTES - dctx->partial_size); |
509 | memcpy(&dctx->partial[dctx->partial_size], p, n); |
510 | dctx->partial_size += n; |
511 | p += n; |
512 | len -= n; |
513 | if (dctx->partial_size == VMAC_NHBYTES) { |
514 | vhash_blocks(tctx, dctx, mptr: dctx->partial_words, blocks: 1); |
515 | dctx->partial_size = 0; |
516 | } |
517 | } |
518 | |
519 | if (len >= VMAC_NHBYTES) { |
520 | n = round_down(len, VMAC_NHBYTES); |
521 | /* TODO: 'p' may be misaligned here */ |
522 | vhash_blocks(tctx, dctx, mptr: (const __le64 *)p, blocks: n / VMAC_NHBYTES); |
523 | p += n; |
524 | len -= n; |
525 | } |
526 | |
527 | if (len) { |
528 | memcpy(dctx->partial, p, len); |
529 | dctx->partial_size = len; |
530 | } |
531 | |
532 | return 0; |
533 | } |
534 | |
535 | static u64 vhash_final(const struct vmac_tfm_ctx *tctx, |
536 | struct vmac_desc_ctx *dctx) |
537 | { |
538 | unsigned int partial = dctx->partial_size; |
539 | u64 ch = dctx->polytmp[0]; |
540 | u64 cl = dctx->polytmp[1]; |
541 | |
542 | /* L1 and L2-hash the final block if needed */ |
543 | if (partial) { |
544 | /* Zero-pad to next 128-bit boundary */ |
545 | unsigned int n = round_up(partial, 16); |
546 | u64 rh, rl; |
547 | |
548 | memset(&dctx->partial[partial], 0, n - partial); |
549 | nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl); |
550 | rh &= m62; |
551 | if (dctx->first_block_processed) |
552 | poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1], |
553 | rh, rl); |
554 | else |
555 | ADD128(ch, cl, rh, rl); |
556 | } |
557 | |
558 | /* L3-hash the 128-bit output of L2-hash */ |
559 | return l3hash(p1: ch, p2: cl, k1: tctx->l3key[0], k2: tctx->l3key[1], len: partial * 8); |
560 | } |
561 | |
562 | static int vmac_final(struct shash_desc *desc, u8 *out) |
563 | { |
564 | const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm: desc->tfm); |
565 | struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); |
566 | int index; |
567 | u64 hash, pad; |
568 | |
569 | if (dctx->nonce_size != VMAC_NONCEBYTES) |
570 | return -EINVAL; |
571 | |
572 | /* |
573 | * The VMAC specification requires a nonce at least 1 bit shorter than |
574 | * the block cipher's block length, so we actually only accept a 127-bit |
575 | * nonce. We define the unused bit to be the first one and require that |
576 | * it be 0, so the needed prepending of a 0 bit is implicit. |
577 | */ |
578 | if (dctx->nonce.bytes[0] & 0x80) |
579 | return -EINVAL; |
580 | |
581 | /* Finish calculating the VHASH of the message */ |
582 | hash = vhash_final(tctx, dctx); |
583 | |
584 | /* Generate pseudorandom pad by encrypting the nonce */ |
585 | BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8)); |
586 | index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1; |
587 | dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1; |
588 | crypto_cipher_encrypt_one(tfm: tctx->cipher, dst: dctx->nonce.bytes, |
589 | src: dctx->nonce.bytes); |
590 | pad = be64_to_cpu(dctx->nonce.pads[index]); |
591 | |
592 | /* The VMAC is the sum of VHASH and the pseudorandom pad */ |
593 | put_unaligned_be64(val: hash + pad, p: out); |
594 | return 0; |
595 | } |
596 | |
597 | static int vmac_init_tfm(struct crypto_tfm *tfm) |
598 | { |
599 | struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); |
600 | struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst); |
601 | struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm); |
602 | struct crypto_cipher *cipher; |
603 | |
604 | cipher = crypto_spawn_cipher(spawn); |
605 | if (IS_ERR(ptr: cipher)) |
606 | return PTR_ERR(ptr: cipher); |
607 | |
608 | tctx->cipher = cipher; |
609 | return 0; |
610 | } |
611 | |
612 | static void vmac_exit_tfm(struct crypto_tfm *tfm) |
613 | { |
614 | struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm); |
615 | |
616 | crypto_free_cipher(tfm: tctx->cipher); |
617 | } |
618 | |
619 | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) |
620 | { |
621 | struct shash_instance *inst; |
622 | struct crypto_cipher_spawn *spawn; |
623 | struct crypto_alg *alg; |
624 | u32 mask; |
625 | int err; |
626 | |
627 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, mask_ret: &mask); |
628 | if (err) |
629 | return err; |
630 | |
631 | inst = kzalloc(size: sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); |
632 | if (!inst) |
633 | return -ENOMEM; |
634 | spawn = shash_instance_ctx(inst); |
635 | |
636 | err = crypto_grab_cipher(spawn, inst: shash_crypto_instance(inst), |
637 | name: crypto_attr_alg_name(rta: tb[1]), type: 0, mask); |
638 | if (err) |
639 | goto err_free_inst; |
640 | alg = crypto_spawn_cipher_alg(spawn); |
641 | |
642 | err = -EINVAL; |
643 | if (alg->cra_blocksize != VMAC_NONCEBYTES) |
644 | goto err_free_inst; |
645 | |
646 | err = crypto_inst_setname(inst: shash_crypto_instance(inst), name: tmpl->name, alg); |
647 | if (err) |
648 | goto err_free_inst; |
649 | |
650 | inst->alg.base.cra_priority = alg->cra_priority; |
651 | inst->alg.base.cra_blocksize = alg->cra_blocksize; |
652 | |
653 | inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx); |
654 | inst->alg.base.cra_init = vmac_init_tfm; |
655 | inst->alg.base.cra_exit = vmac_exit_tfm; |
656 | |
657 | inst->alg.descsize = sizeof(struct vmac_desc_ctx); |
658 | inst->alg.digestsize = VMAC_TAG_LEN / 8; |
659 | inst->alg.init = vmac_init; |
660 | inst->alg.update = vmac_update; |
661 | inst->alg.final = vmac_final; |
662 | inst->alg.setkey = vmac_setkey; |
663 | |
664 | inst->free = shash_free_singlespawn_instance; |
665 | |
666 | err = shash_register_instance(tmpl, inst); |
667 | if (err) { |
668 | err_free_inst: |
669 | shash_free_singlespawn_instance(inst); |
670 | } |
671 | return err; |
672 | } |
673 | |
674 | static struct crypto_template vmac64_tmpl = { |
675 | .name = "vmac64" , |
676 | .create = vmac_create, |
677 | .module = THIS_MODULE, |
678 | }; |
679 | |
680 | static int __init vmac_module_init(void) |
681 | { |
682 | return crypto_register_template(tmpl: &vmac64_tmpl); |
683 | } |
684 | |
685 | static void __exit vmac_module_exit(void) |
686 | { |
687 | crypto_unregister_template(tmpl: &vmac64_tmpl); |
688 | } |
689 | |
690 | subsys_initcall(vmac_module_init); |
691 | module_exit(vmac_module_exit); |
692 | |
693 | MODULE_LICENSE("GPL" ); |
694 | MODULE_DESCRIPTION("VMAC hash algorithm" ); |
695 | MODULE_ALIAS_CRYPTO("vmac64" ); |
696 | MODULE_IMPORT_NS(CRYPTO_INTERNAL); |
697 | |