| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2019, Intel Corporation. |
| 4 | * |
| 5 | * Heterogeneous Memory Attributes Table (HMAT) representation |
| 6 | * |
| 7 | * This program parses and reports the platform's HMAT tables, and registers |
| 8 | * the applicable attributes with the node's interfaces. |
| 9 | */ |
| 10 | |
| 11 | #define pr_fmt(fmt) "acpi/hmat: " fmt |
| 12 | |
| 13 | #include <linux/acpi.h> |
| 14 | #include <linux/bitops.h> |
| 15 | #include <linux/device.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/list.h> |
| 18 | #include <linux/mm.h> |
| 19 | #include <linux/platform_device.h> |
| 20 | #include <linux/list_sort.h> |
| 21 | #include <linux/memregion.h> |
| 22 | #include <linux/memory.h> |
| 23 | #include <linux/mutex.h> |
| 24 | #include <linux/node.h> |
| 25 | #include <linux/sysfs.h> |
| 26 | #include <linux/dax.h> |
| 27 | #include <linux/memory-tiers.h> |
| 28 | |
| 29 | static u8 hmat_revision; |
| 30 | static int hmat_disable __initdata; |
| 31 | |
| 32 | void __init disable_hmat(void) |
| 33 | { |
| 34 | hmat_disable = 1; |
| 35 | } |
| 36 | |
| 37 | static LIST_HEAD(targets); |
| 38 | static LIST_HEAD(initiators); |
| 39 | static LIST_HEAD(localities); |
| 40 | |
| 41 | static DEFINE_MUTEX(target_lock); |
| 42 | |
| 43 | /* |
| 44 | * The defined enum order is used to prioritize attributes to break ties when |
| 45 | * selecting the best performing node. |
| 46 | */ |
| 47 | enum locality_types { |
| 48 | WRITE_LATENCY, |
| 49 | READ_LATENCY, |
| 50 | WRITE_BANDWIDTH, |
| 51 | READ_BANDWIDTH, |
| 52 | }; |
| 53 | |
| 54 | static struct memory_locality *localities_types[4]; |
| 55 | |
| 56 | struct target_cache { |
| 57 | struct list_head node; |
| 58 | struct node_cache_attrs cache_attrs; |
| 59 | }; |
| 60 | |
| 61 | enum { |
| 62 | NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL = ACCESS_COORDINATE_MAX, |
| 63 | NODE_ACCESS_CLASS_GENPORT_SINK_CPU, |
| 64 | NODE_ACCESS_CLASS_MAX, |
| 65 | }; |
| 66 | |
| 67 | struct memory_target { |
| 68 | struct list_head node; |
| 69 | unsigned int memory_pxm; |
| 70 | unsigned int processor_pxm; |
| 71 | struct resource memregions; |
| 72 | struct access_coordinate coord[NODE_ACCESS_CLASS_MAX]; |
| 73 | struct list_head caches; |
| 74 | struct node_cache_attrs cache_attrs; |
| 75 | u8 gen_port_device_handle[ACPI_SRAT_DEVICE_HANDLE_SIZE]; |
| 76 | bool registered; |
| 77 | bool ext_updated; /* externally updated */ |
| 78 | }; |
| 79 | |
| 80 | struct memory_initiator { |
| 81 | struct list_head node; |
| 82 | unsigned int processor_pxm; |
| 83 | bool has_cpu; |
| 84 | }; |
| 85 | |
| 86 | struct memory_locality { |
| 87 | struct list_head node; |
| 88 | struct acpi_hmat_locality *hmat_loc; |
| 89 | }; |
| 90 | |
| 91 | static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm) |
| 92 | { |
| 93 | struct memory_initiator *initiator; |
| 94 | |
| 95 | list_for_each_entry(initiator, &initiators, node) |
| 96 | if (initiator->processor_pxm == cpu_pxm) |
| 97 | return initiator; |
| 98 | return NULL; |
| 99 | } |
| 100 | |
| 101 | static struct memory_target *find_mem_target(unsigned int mem_pxm) |
| 102 | { |
| 103 | struct memory_target *target; |
| 104 | |
| 105 | list_for_each_entry(target, &targets, node) |
| 106 | if (target->memory_pxm == mem_pxm) |
| 107 | return target; |
| 108 | return NULL; |
| 109 | } |
| 110 | |
| 111 | /** |
| 112 | * hmat_get_extended_linear_cache_size - Retrieve the extended linear cache size |
| 113 | * @backing_res: resource from the backing media |
| 114 | * @nid: node id for the memory region |
| 115 | * @cache_size: (Output) size of extended linear cache. |
| 116 | * |
| 117 | * Return: 0 on success. Errno on failure. |
| 118 | * |
| 119 | */ |
| 120 | int hmat_get_extended_linear_cache_size(struct resource *backing_res, int nid, |
| 121 | resource_size_t *cache_size) |
| 122 | { |
| 123 | unsigned int pxm = node_to_pxm(nid); |
| 124 | struct memory_target *target; |
| 125 | struct target_cache *tcache; |
| 126 | struct resource *res; |
| 127 | |
| 128 | target = find_mem_target(mem_pxm: pxm); |
| 129 | if (!target) |
| 130 | return -ENOENT; |
| 131 | |
| 132 | list_for_each_entry(tcache, &target->caches, node) { |
| 133 | if (tcache->cache_attrs.address_mode != |
| 134 | NODE_CACHE_ADDR_MODE_EXTENDED_LINEAR) |
| 135 | continue; |
| 136 | |
| 137 | res = &target->memregions; |
| 138 | if (!resource_contains(r1: res, r2: backing_res)) |
| 139 | continue; |
| 140 | |
| 141 | *cache_size = tcache->cache_attrs.size; |
| 142 | return 0; |
| 143 | } |
| 144 | |
| 145 | *cache_size = 0; |
| 146 | return 0; |
| 147 | } |
| 148 | EXPORT_SYMBOL_NS_GPL(hmat_get_extended_linear_cache_size, "CXL" ); |
| 149 | |
| 150 | static struct memory_target *acpi_find_genport_target(u32 uid) |
| 151 | { |
| 152 | struct memory_target *target; |
| 153 | u32 target_uid; |
| 154 | u8 *uid_ptr; |
| 155 | |
| 156 | list_for_each_entry(target, &targets, node) { |
| 157 | uid_ptr = target->gen_port_device_handle + 8; |
| 158 | target_uid = *(u32 *)uid_ptr; |
| 159 | if (uid == target_uid) |
| 160 | return target; |
| 161 | } |
| 162 | |
| 163 | return NULL; |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * acpi_get_genport_coordinates - Retrieve the access coordinates for a generic port |
| 168 | * @uid: ACPI unique id |
| 169 | * @coord: The access coordinates written back out for the generic port. |
| 170 | * Expect 2 levels array. |
| 171 | * |
| 172 | * Return: 0 on success. Errno on failure. |
| 173 | * |
| 174 | * Only supports device handles that are ACPI. Assume ACPI0016 HID for CXL. |
| 175 | */ |
| 176 | int acpi_get_genport_coordinates(u32 uid, |
| 177 | struct access_coordinate *coord) |
| 178 | { |
| 179 | struct memory_target *target; |
| 180 | |
| 181 | guard(mutex)(T: &target_lock); |
| 182 | target = acpi_find_genport_target(uid); |
| 183 | if (!target) |
| 184 | return -ENOENT; |
| 185 | |
| 186 | coord[ACCESS_COORDINATE_LOCAL] = |
| 187 | target->coord[NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL]; |
| 188 | coord[ACCESS_COORDINATE_CPU] = |
| 189 | target->coord[NODE_ACCESS_CLASS_GENPORT_SINK_CPU]; |
| 190 | |
| 191 | return 0; |
| 192 | } |
| 193 | EXPORT_SYMBOL_NS_GPL(acpi_get_genport_coordinates, "CXL" ); |
| 194 | |
| 195 | static __init void alloc_memory_initiator(unsigned int cpu_pxm) |
| 196 | { |
| 197 | struct memory_initiator *initiator; |
| 198 | |
| 199 | if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE) |
| 200 | return; |
| 201 | |
| 202 | initiator = find_mem_initiator(cpu_pxm); |
| 203 | if (initiator) |
| 204 | return; |
| 205 | |
| 206 | initiator = kzalloc(sizeof(*initiator), GFP_KERNEL); |
| 207 | if (!initiator) |
| 208 | return; |
| 209 | |
| 210 | initiator->processor_pxm = cpu_pxm; |
| 211 | initiator->has_cpu = node_state(node: pxm_to_node(cpu_pxm), state: N_CPU); |
| 212 | list_add_tail(new: &initiator->node, head: &initiators); |
| 213 | } |
| 214 | |
| 215 | static __init struct memory_target *alloc_target(unsigned int mem_pxm) |
| 216 | { |
| 217 | struct memory_target *target; |
| 218 | |
| 219 | target = find_mem_target(mem_pxm); |
| 220 | if (!target) { |
| 221 | target = kzalloc(sizeof(*target), GFP_KERNEL); |
| 222 | if (!target) |
| 223 | return NULL; |
| 224 | target->memory_pxm = mem_pxm; |
| 225 | target->processor_pxm = PXM_INVAL; |
| 226 | target->memregions = (struct resource) { |
| 227 | .name = "ACPI mem" , |
| 228 | .start = 0, |
| 229 | .end = -1, |
| 230 | .flags = IORESOURCE_MEM, |
| 231 | }; |
| 232 | list_add_tail(new: &target->node, head: &targets); |
| 233 | INIT_LIST_HEAD(list: &target->caches); |
| 234 | } |
| 235 | |
| 236 | return target; |
| 237 | } |
| 238 | |
| 239 | static __init void alloc_memory_target(unsigned int mem_pxm, |
| 240 | resource_size_t start, |
| 241 | resource_size_t len) |
| 242 | { |
| 243 | struct memory_target *target; |
| 244 | |
| 245 | target = alloc_target(mem_pxm); |
| 246 | if (!target) |
| 247 | return; |
| 248 | |
| 249 | /* |
| 250 | * There are potentially multiple ranges per PXM, so record each |
| 251 | * in the per-target memregions resource tree. |
| 252 | */ |
| 253 | if (!__request_region(&target->memregions, start, n: len, name: "memory target" , |
| 254 | IORESOURCE_MEM)) |
| 255 | pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n" , |
| 256 | start, start + len, mem_pxm); |
| 257 | } |
| 258 | |
| 259 | static __init void alloc_genport_target(unsigned int mem_pxm, u8 *handle) |
| 260 | { |
| 261 | struct memory_target *target; |
| 262 | |
| 263 | target = alloc_target(mem_pxm); |
| 264 | if (!target) |
| 265 | return; |
| 266 | |
| 267 | memcpy(target->gen_port_device_handle, handle, |
| 268 | ACPI_SRAT_DEVICE_HANDLE_SIZE); |
| 269 | } |
| 270 | |
| 271 | static __init const char *hmat_data_type(u8 type) |
| 272 | { |
| 273 | switch (type) { |
| 274 | case ACPI_HMAT_ACCESS_LATENCY: |
| 275 | return "Access Latency" ; |
| 276 | case ACPI_HMAT_READ_LATENCY: |
| 277 | return "Read Latency" ; |
| 278 | case ACPI_HMAT_WRITE_LATENCY: |
| 279 | return "Write Latency" ; |
| 280 | case ACPI_HMAT_ACCESS_BANDWIDTH: |
| 281 | return "Access Bandwidth" ; |
| 282 | case ACPI_HMAT_READ_BANDWIDTH: |
| 283 | return "Read Bandwidth" ; |
| 284 | case ACPI_HMAT_WRITE_BANDWIDTH: |
| 285 | return "Write Bandwidth" ; |
| 286 | default: |
| 287 | return "Reserved" ; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | static __init const char *hmat_data_type_suffix(u8 type) |
| 292 | { |
| 293 | switch (type) { |
| 294 | case ACPI_HMAT_ACCESS_LATENCY: |
| 295 | case ACPI_HMAT_READ_LATENCY: |
| 296 | case ACPI_HMAT_WRITE_LATENCY: |
| 297 | return " nsec" ; |
| 298 | case ACPI_HMAT_ACCESS_BANDWIDTH: |
| 299 | case ACPI_HMAT_READ_BANDWIDTH: |
| 300 | case ACPI_HMAT_WRITE_BANDWIDTH: |
| 301 | return " MB/s" ; |
| 302 | default: |
| 303 | return "" ; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | static u32 hmat_normalize(u16 entry, u64 base, u8 type) |
| 308 | { |
| 309 | u32 value; |
| 310 | |
| 311 | /* |
| 312 | * Check for invalid and overflow values |
| 313 | */ |
| 314 | if (entry == 0xffff || !entry) |
| 315 | return 0; |
| 316 | else if (base > (UINT_MAX / (entry))) |
| 317 | return 0; |
| 318 | |
| 319 | /* |
| 320 | * Divide by the base unit for version 1, convert latency from |
| 321 | * picosenonds to nanoseconds if revision 2. |
| 322 | */ |
| 323 | value = entry * base; |
| 324 | if (hmat_revision == 1) { |
| 325 | if (value < 10) |
| 326 | return 0; |
| 327 | value = DIV_ROUND_UP(value, 10); |
| 328 | } else if (hmat_revision == 2) { |
| 329 | switch (type) { |
| 330 | case ACPI_HMAT_ACCESS_LATENCY: |
| 331 | case ACPI_HMAT_READ_LATENCY: |
| 332 | case ACPI_HMAT_WRITE_LATENCY: |
| 333 | value = DIV_ROUND_UP(value, 1000); |
| 334 | break; |
| 335 | default: |
| 336 | break; |
| 337 | } |
| 338 | } |
| 339 | return value; |
| 340 | } |
| 341 | |
| 342 | static void hmat_update_target_access(struct memory_target *target, |
| 343 | u8 type, u32 value, int access) |
| 344 | { |
| 345 | switch (type) { |
| 346 | case ACPI_HMAT_ACCESS_LATENCY: |
| 347 | target->coord[access].read_latency = value; |
| 348 | target->coord[access].write_latency = value; |
| 349 | break; |
| 350 | case ACPI_HMAT_READ_LATENCY: |
| 351 | target->coord[access].read_latency = value; |
| 352 | break; |
| 353 | case ACPI_HMAT_WRITE_LATENCY: |
| 354 | target->coord[access].write_latency = value; |
| 355 | break; |
| 356 | case ACPI_HMAT_ACCESS_BANDWIDTH: |
| 357 | target->coord[access].read_bandwidth = value; |
| 358 | target->coord[access].write_bandwidth = value; |
| 359 | break; |
| 360 | case ACPI_HMAT_READ_BANDWIDTH: |
| 361 | target->coord[access].read_bandwidth = value; |
| 362 | break; |
| 363 | case ACPI_HMAT_WRITE_BANDWIDTH: |
| 364 | target->coord[access].write_bandwidth = value; |
| 365 | break; |
| 366 | default: |
| 367 | break; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | int hmat_update_target_coordinates(int nid, struct access_coordinate *coord, |
| 372 | enum access_coordinate_class access) |
| 373 | { |
| 374 | struct memory_target *target; |
| 375 | int pxm; |
| 376 | |
| 377 | if (nid == NUMA_NO_NODE) |
| 378 | return -EINVAL; |
| 379 | |
| 380 | pxm = node_to_pxm(nid); |
| 381 | guard(mutex)(T: &target_lock); |
| 382 | target = find_mem_target(mem_pxm: pxm); |
| 383 | if (!target) |
| 384 | return -ENODEV; |
| 385 | |
| 386 | hmat_update_target_access(target, ACPI_HMAT_READ_LATENCY, |
| 387 | value: coord->read_latency, access); |
| 388 | hmat_update_target_access(target, ACPI_HMAT_WRITE_LATENCY, |
| 389 | value: coord->write_latency, access); |
| 390 | hmat_update_target_access(target, ACPI_HMAT_READ_BANDWIDTH, |
| 391 | value: coord->read_bandwidth, access); |
| 392 | hmat_update_target_access(target, ACPI_HMAT_WRITE_BANDWIDTH, |
| 393 | value: coord->write_bandwidth, access); |
| 394 | target->ext_updated = true; |
| 395 | |
| 396 | return 0; |
| 397 | } |
| 398 | EXPORT_SYMBOL_GPL(hmat_update_target_coordinates); |
| 399 | |
| 400 | static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc) |
| 401 | { |
| 402 | struct memory_locality *loc; |
| 403 | |
| 404 | loc = kzalloc(sizeof(*loc), GFP_KERNEL); |
| 405 | if (!loc) { |
| 406 | pr_notice_once("Failed to allocate HMAT locality\n" ); |
| 407 | return; |
| 408 | } |
| 409 | |
| 410 | loc->hmat_loc = hmat_loc; |
| 411 | list_add_tail(new: &loc->node, head: &localities); |
| 412 | |
| 413 | switch (hmat_loc->data_type) { |
| 414 | case ACPI_HMAT_ACCESS_LATENCY: |
| 415 | localities_types[READ_LATENCY] = loc; |
| 416 | localities_types[WRITE_LATENCY] = loc; |
| 417 | break; |
| 418 | case ACPI_HMAT_READ_LATENCY: |
| 419 | localities_types[READ_LATENCY] = loc; |
| 420 | break; |
| 421 | case ACPI_HMAT_WRITE_LATENCY: |
| 422 | localities_types[WRITE_LATENCY] = loc; |
| 423 | break; |
| 424 | case ACPI_HMAT_ACCESS_BANDWIDTH: |
| 425 | localities_types[READ_BANDWIDTH] = loc; |
| 426 | localities_types[WRITE_BANDWIDTH] = loc; |
| 427 | break; |
| 428 | case ACPI_HMAT_READ_BANDWIDTH: |
| 429 | localities_types[READ_BANDWIDTH] = loc; |
| 430 | break; |
| 431 | case ACPI_HMAT_WRITE_BANDWIDTH: |
| 432 | localities_types[WRITE_BANDWIDTH] = loc; |
| 433 | break; |
| 434 | default: |
| 435 | break; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | static __init void hmat_update_target(unsigned int tgt_pxm, unsigned int init_pxm, |
| 440 | u8 mem_hier, u8 type, u32 value) |
| 441 | { |
| 442 | struct memory_target *target = find_mem_target(mem_pxm: tgt_pxm); |
| 443 | |
| 444 | if (mem_hier != ACPI_HMAT_MEMORY) |
| 445 | return; |
| 446 | |
| 447 | if (target && target->processor_pxm == init_pxm) { |
| 448 | hmat_update_target_access(target, type, value, |
| 449 | access: ACCESS_COORDINATE_LOCAL); |
| 450 | /* If the node has a CPU, update access ACCESS_COORDINATE_CPU */ |
| 451 | if (node_state(node: pxm_to_node(init_pxm), state: N_CPU)) |
| 452 | hmat_update_target_access(target, type, value, |
| 453 | access: ACCESS_COORDINATE_CPU); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | static __init int hmat_parse_locality(union acpi_subtable_headers *, |
| 458 | const unsigned long end) |
| 459 | { |
| 460 | struct acpi_hmat_locality *hmat_loc = (void *)header; |
| 461 | unsigned int init, targ, total_size, ipds, tpds; |
| 462 | u32 *inits, *targs, value; |
| 463 | u16 *entries; |
| 464 | u8 type, mem_hier; |
| 465 | |
| 466 | if (hmat_loc->header.length < sizeof(*hmat_loc)) { |
| 467 | pr_notice("Unexpected locality header length: %u\n" , |
| 468 | hmat_loc->header.length); |
| 469 | return -EINVAL; |
| 470 | } |
| 471 | |
| 472 | type = hmat_loc->data_type; |
| 473 | mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY; |
| 474 | ipds = hmat_loc->number_of_initiator_Pds; |
| 475 | tpds = hmat_loc->number_of_target_Pds; |
| 476 | total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds + |
| 477 | sizeof(*inits) * ipds + sizeof(*targs) * tpds; |
| 478 | if (hmat_loc->header.length < total_size) { |
| 479 | pr_notice("Unexpected locality header length:%u, minimum required:%u\n" , |
| 480 | hmat_loc->header.length, total_size); |
| 481 | return -EINVAL; |
| 482 | } |
| 483 | |
| 484 | pr_debug("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n" , |
| 485 | hmat_loc->flags, hmat_data_type(type), ipds, tpds, |
| 486 | hmat_loc->entry_base_unit); |
| 487 | |
| 488 | inits = (u32 *)(hmat_loc + 1); |
| 489 | targs = inits + ipds; |
| 490 | entries = (u16 *)(targs + tpds); |
| 491 | for (init = 0; init < ipds; init++) { |
| 492 | alloc_memory_initiator(cpu_pxm: inits[init]); |
| 493 | for (targ = 0; targ < tpds; targ++) { |
| 494 | value = hmat_normalize(entry: entries[init * tpds + targ], |
| 495 | base: hmat_loc->entry_base_unit, |
| 496 | type); |
| 497 | pr_debug(" Initiator-Target[%u-%u]:%u%s\n" , |
| 498 | inits[init], targs[targ], value, |
| 499 | hmat_data_type_suffix(type)); |
| 500 | |
| 501 | hmat_update_target(tgt_pxm: targs[targ], init_pxm: inits[init], |
| 502 | mem_hier, type, value); |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | if (mem_hier == ACPI_HMAT_MEMORY) |
| 507 | hmat_add_locality(hmat_loc); |
| 508 | |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | static __init int hmat_parse_cache(union acpi_subtable_headers *, |
| 513 | const unsigned long end) |
| 514 | { |
| 515 | struct acpi_hmat_cache *cache = (void *)header; |
| 516 | struct memory_target *target; |
| 517 | struct target_cache *tcache; |
| 518 | u32 attrs; |
| 519 | |
| 520 | if (cache->header.length < sizeof(*cache)) { |
| 521 | pr_notice("Unexpected cache header length: %u\n" , |
| 522 | cache->header.length); |
| 523 | return -EINVAL; |
| 524 | } |
| 525 | |
| 526 | attrs = cache->cache_attributes; |
| 527 | pr_debug("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n" , |
| 528 | cache->memory_PD, cache->cache_size, attrs, |
| 529 | cache->number_of_SMBIOShandles); |
| 530 | |
| 531 | target = find_mem_target(mem_pxm: cache->memory_PD); |
| 532 | if (!target) |
| 533 | return 0; |
| 534 | |
| 535 | tcache = kzalloc(sizeof(*tcache), GFP_KERNEL); |
| 536 | if (!tcache) { |
| 537 | pr_notice_once("Failed to allocate HMAT cache info\n" ); |
| 538 | return 0; |
| 539 | } |
| 540 | |
| 541 | tcache->cache_attrs.size = cache->cache_size; |
| 542 | tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4; |
| 543 | tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16; |
| 544 | |
| 545 | switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) { |
| 546 | case ACPI_HMAT_CA_DIRECT_MAPPED: |
| 547 | tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP; |
| 548 | /* Extended Linear mode is only valid if cache is direct mapped */ |
| 549 | if (cache->address_mode == ACPI_HMAT_CACHE_MODE_EXTENDED_LINEAR) { |
| 550 | tcache->cache_attrs.address_mode = |
| 551 | NODE_CACHE_ADDR_MODE_EXTENDED_LINEAR; |
| 552 | } |
| 553 | break; |
| 554 | case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING: |
| 555 | tcache->cache_attrs.indexing = NODE_CACHE_INDEXED; |
| 556 | break; |
| 557 | case ACPI_HMAT_CA_NONE: |
| 558 | default: |
| 559 | tcache->cache_attrs.indexing = NODE_CACHE_OTHER; |
| 560 | break; |
| 561 | } |
| 562 | |
| 563 | switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) { |
| 564 | case ACPI_HMAT_CP_WB: |
| 565 | tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK; |
| 566 | break; |
| 567 | case ACPI_HMAT_CP_WT: |
| 568 | tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH; |
| 569 | break; |
| 570 | case ACPI_HMAT_CP_NONE: |
| 571 | default: |
| 572 | tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER; |
| 573 | break; |
| 574 | } |
| 575 | list_add_tail(new: &tcache->node, head: &target->caches); |
| 576 | |
| 577 | return 0; |
| 578 | } |
| 579 | |
| 580 | static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *, |
| 581 | const unsigned long end) |
| 582 | { |
| 583 | struct acpi_hmat_proximity_domain *p = (void *)header; |
| 584 | struct memory_target *target = NULL; |
| 585 | |
| 586 | if (p->header.length != sizeof(*p)) { |
| 587 | pr_notice("Unexpected address range header length: %u\n" , |
| 588 | p->header.length); |
| 589 | return -EINVAL; |
| 590 | } |
| 591 | |
| 592 | if (hmat_revision == 1) |
| 593 | pr_debug("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n" , |
| 594 | p->reserved3, p->reserved4, p->flags, p->processor_PD, |
| 595 | p->memory_PD); |
| 596 | else |
| 597 | pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n" , |
| 598 | p->flags, p->processor_PD, p->memory_PD); |
| 599 | |
| 600 | if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) || |
| 601 | hmat_revision > 1) { |
| 602 | target = find_mem_target(mem_pxm: p->memory_PD); |
| 603 | if (!target) { |
| 604 | pr_debug("Memory Domain missing from SRAT\n" ); |
| 605 | return -EINVAL; |
| 606 | } |
| 607 | } |
| 608 | if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) { |
| 609 | int p_node = pxm_to_node(p->processor_PD); |
| 610 | |
| 611 | if (p_node == NUMA_NO_NODE) { |
| 612 | pr_debug("Invalid Processor Domain\n" ); |
| 613 | return -EINVAL; |
| 614 | } |
| 615 | target->processor_pxm = p->processor_PD; |
| 616 | } |
| 617 | |
| 618 | return 0; |
| 619 | } |
| 620 | |
| 621 | static int __init hmat_parse_subtable(union acpi_subtable_headers *, |
| 622 | const unsigned long end) |
| 623 | { |
| 624 | struct acpi_hmat_structure *hdr = (void *)header; |
| 625 | |
| 626 | if (!hdr) |
| 627 | return -EINVAL; |
| 628 | |
| 629 | switch (hdr->type) { |
| 630 | case ACPI_HMAT_TYPE_PROXIMITY: |
| 631 | return hmat_parse_proximity_domain(header, end); |
| 632 | case ACPI_HMAT_TYPE_LOCALITY: |
| 633 | return hmat_parse_locality(header, end); |
| 634 | case ACPI_HMAT_TYPE_CACHE: |
| 635 | return hmat_parse_cache(header, end); |
| 636 | default: |
| 637 | return -EINVAL; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | static __init int srat_parse_mem_affinity(union acpi_subtable_headers *, |
| 642 | const unsigned long end) |
| 643 | { |
| 644 | struct acpi_srat_mem_affinity *ma = (void *)header; |
| 645 | |
| 646 | if (!ma) |
| 647 | return -EINVAL; |
| 648 | if (!(ma->flags & ACPI_SRAT_MEM_ENABLED)) |
| 649 | return 0; |
| 650 | alloc_memory_target(mem_pxm: ma->proximity_domain, start: ma->base_address, len: ma->length); |
| 651 | return 0; |
| 652 | } |
| 653 | |
| 654 | static __init int srat_parse_genport_affinity(union acpi_subtable_headers *, |
| 655 | const unsigned long end) |
| 656 | { |
| 657 | struct acpi_srat_generic_affinity *ga = (void *)header; |
| 658 | |
| 659 | if (!ga) |
| 660 | return -EINVAL; |
| 661 | |
| 662 | if (!(ga->flags & ACPI_SRAT_GENERIC_AFFINITY_ENABLED)) |
| 663 | return 0; |
| 664 | |
| 665 | /* Skip PCI device_handle for now */ |
| 666 | if (ga->device_handle_type != 0) |
| 667 | return 0; |
| 668 | |
| 669 | alloc_genport_target(mem_pxm: ga->proximity_domain, |
| 670 | handle: (u8 *)ga->device_handle); |
| 671 | |
| 672 | return 0; |
| 673 | } |
| 674 | |
| 675 | static u32 hmat_initiator_perf(struct memory_target *target, |
| 676 | struct memory_initiator *initiator, |
| 677 | struct acpi_hmat_locality *hmat_loc) |
| 678 | { |
| 679 | unsigned int ipds, tpds, i, idx = 0, tdx = 0; |
| 680 | u32 *inits, *targs; |
| 681 | u16 *entries; |
| 682 | |
| 683 | ipds = hmat_loc->number_of_initiator_Pds; |
| 684 | tpds = hmat_loc->number_of_target_Pds; |
| 685 | inits = (u32 *)(hmat_loc + 1); |
| 686 | targs = inits + ipds; |
| 687 | entries = (u16 *)(targs + tpds); |
| 688 | |
| 689 | for (i = 0; i < ipds; i++) { |
| 690 | if (inits[i] == initiator->processor_pxm) { |
| 691 | idx = i; |
| 692 | break; |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | if (i == ipds) |
| 697 | return 0; |
| 698 | |
| 699 | for (i = 0; i < tpds; i++) { |
| 700 | if (targs[i] == target->memory_pxm) { |
| 701 | tdx = i; |
| 702 | break; |
| 703 | } |
| 704 | } |
| 705 | if (i == tpds) |
| 706 | return 0; |
| 707 | |
| 708 | return hmat_normalize(entry: entries[idx * tpds + tdx], |
| 709 | base: hmat_loc->entry_base_unit, |
| 710 | type: hmat_loc->data_type); |
| 711 | } |
| 712 | |
| 713 | static bool hmat_update_best(u8 type, u32 value, u32 *best) |
| 714 | { |
| 715 | bool updated = false; |
| 716 | |
| 717 | if (!value) |
| 718 | return false; |
| 719 | |
| 720 | switch (type) { |
| 721 | case ACPI_HMAT_ACCESS_LATENCY: |
| 722 | case ACPI_HMAT_READ_LATENCY: |
| 723 | case ACPI_HMAT_WRITE_LATENCY: |
| 724 | if (!*best || *best > value) { |
| 725 | *best = value; |
| 726 | updated = true; |
| 727 | } |
| 728 | break; |
| 729 | case ACPI_HMAT_ACCESS_BANDWIDTH: |
| 730 | case ACPI_HMAT_READ_BANDWIDTH: |
| 731 | case ACPI_HMAT_WRITE_BANDWIDTH: |
| 732 | if (!*best || *best < value) { |
| 733 | *best = value; |
| 734 | updated = true; |
| 735 | } |
| 736 | break; |
| 737 | } |
| 738 | |
| 739 | return updated; |
| 740 | } |
| 741 | |
| 742 | static int initiator_cmp(void *priv, const struct list_head *a, |
| 743 | const struct list_head *b) |
| 744 | { |
| 745 | struct memory_initiator *ia; |
| 746 | struct memory_initiator *ib; |
| 747 | |
| 748 | ia = list_entry(a, struct memory_initiator, node); |
| 749 | ib = list_entry(b, struct memory_initiator, node); |
| 750 | |
| 751 | return ia->processor_pxm - ib->processor_pxm; |
| 752 | } |
| 753 | |
| 754 | static int initiators_to_nodemask(unsigned long *p_nodes) |
| 755 | { |
| 756 | struct memory_initiator *initiator; |
| 757 | |
| 758 | if (list_empty(head: &initiators)) |
| 759 | return -ENXIO; |
| 760 | |
| 761 | list_for_each_entry(initiator, &initiators, node) |
| 762 | set_bit(nr: initiator->processor_pxm, addr: p_nodes); |
| 763 | |
| 764 | return 0; |
| 765 | } |
| 766 | |
| 767 | static void hmat_update_target_attrs(struct memory_target *target, |
| 768 | unsigned long *p_nodes, int access) |
| 769 | { |
| 770 | struct memory_initiator *initiator; |
| 771 | unsigned int cpu_nid; |
| 772 | struct memory_locality *loc = NULL; |
| 773 | u32 best = 0; |
| 774 | int i; |
| 775 | |
| 776 | /* Don't update if an external agent has changed the data. */ |
| 777 | if (target->ext_updated) |
| 778 | return; |
| 779 | |
| 780 | /* Don't update for generic port if there's no device handle */ |
| 781 | if ((access == NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL || |
| 782 | access == NODE_ACCESS_CLASS_GENPORT_SINK_CPU) && |
| 783 | !(*(u16 *)target->gen_port_device_handle)) |
| 784 | return; |
| 785 | |
| 786 | bitmap_zero(dst: p_nodes, MAX_NUMNODES); |
| 787 | /* |
| 788 | * If the Address Range Structure provides a local processor pxm, set |
| 789 | * only that one. Otherwise, find the best performance attributes and |
| 790 | * collect all initiators that match. |
| 791 | */ |
| 792 | if (target->processor_pxm != PXM_INVAL) { |
| 793 | cpu_nid = pxm_to_node(target->processor_pxm); |
| 794 | if (access == ACCESS_COORDINATE_LOCAL || |
| 795 | node_state(node: cpu_nid, state: N_CPU)) { |
| 796 | set_bit(nr: target->processor_pxm, addr: p_nodes); |
| 797 | return; |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | if (list_empty(head: &localities)) |
| 802 | return; |
| 803 | |
| 804 | /* |
| 805 | * We need the initiator list sorted so we can use bitmap_clear for |
| 806 | * previously set initiators when we find a better memory accessor. |
| 807 | * We'll also use the sorting to prime the candidate nodes with known |
| 808 | * initiators. |
| 809 | */ |
| 810 | list_sort(NULL, head: &initiators, cmp: initiator_cmp); |
| 811 | if (initiators_to_nodemask(p_nodes) < 0) |
| 812 | return; |
| 813 | |
| 814 | for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) { |
| 815 | loc = localities_types[i]; |
| 816 | if (!loc) |
| 817 | continue; |
| 818 | |
| 819 | best = 0; |
| 820 | list_for_each_entry(initiator, &initiators, node) { |
| 821 | u32 value; |
| 822 | |
| 823 | if ((access == ACCESS_COORDINATE_CPU || |
| 824 | access == NODE_ACCESS_CLASS_GENPORT_SINK_CPU) && |
| 825 | !initiator->has_cpu) { |
| 826 | clear_bit(nr: initiator->processor_pxm, addr: p_nodes); |
| 827 | continue; |
| 828 | } |
| 829 | if (!test_bit(initiator->processor_pxm, p_nodes)) |
| 830 | continue; |
| 831 | |
| 832 | value = hmat_initiator_perf(target, initiator, hmat_loc: loc->hmat_loc); |
| 833 | if (hmat_update_best(type: loc->hmat_loc->data_type, value, best: &best)) |
| 834 | bitmap_clear(map: p_nodes, start: 0, nbits: initiator->processor_pxm); |
| 835 | if (value != best) |
| 836 | clear_bit(nr: initiator->processor_pxm, addr: p_nodes); |
| 837 | } |
| 838 | if (best) |
| 839 | hmat_update_target_access(target, type: loc->hmat_loc->data_type, value: best, access); |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | static void __hmat_register_target_initiators(struct memory_target *target, |
| 844 | unsigned long *p_nodes, |
| 845 | int access) |
| 846 | { |
| 847 | unsigned int mem_nid, cpu_nid; |
| 848 | int i; |
| 849 | |
| 850 | mem_nid = pxm_to_node(target->memory_pxm); |
| 851 | hmat_update_target_attrs(target, p_nodes, access); |
| 852 | for_each_set_bit(i, p_nodes, MAX_NUMNODES) { |
| 853 | cpu_nid = pxm_to_node(i); |
| 854 | register_memory_node_under_compute_node(mem_nid, cpu_nid, access); |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | static void hmat_update_generic_target(struct memory_target *target) |
| 859 | { |
| 860 | static DECLARE_BITMAP(p_nodes, MAX_NUMNODES); |
| 861 | |
| 862 | hmat_update_target_attrs(target, p_nodes, |
| 863 | access: NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL); |
| 864 | hmat_update_target_attrs(target, p_nodes, |
| 865 | access: NODE_ACCESS_CLASS_GENPORT_SINK_CPU); |
| 866 | } |
| 867 | |
| 868 | static void hmat_register_target_initiators(struct memory_target *target) |
| 869 | { |
| 870 | static DECLARE_BITMAP(p_nodes, MAX_NUMNODES); |
| 871 | |
| 872 | __hmat_register_target_initiators(target, p_nodes, |
| 873 | access: ACCESS_COORDINATE_LOCAL); |
| 874 | __hmat_register_target_initiators(target, p_nodes, |
| 875 | access: ACCESS_COORDINATE_CPU); |
| 876 | } |
| 877 | |
| 878 | static void hmat_register_target_cache(struct memory_target *target) |
| 879 | { |
| 880 | unsigned mem_nid = pxm_to_node(target->memory_pxm); |
| 881 | struct target_cache *tcache; |
| 882 | |
| 883 | list_for_each_entry(tcache, &target->caches, node) |
| 884 | node_add_cache(nid: mem_nid, cache_attrs: &tcache->cache_attrs); |
| 885 | } |
| 886 | |
| 887 | static void hmat_register_target_perf(struct memory_target *target, int access) |
| 888 | { |
| 889 | unsigned mem_nid = pxm_to_node(target->memory_pxm); |
| 890 | node_set_perf_attrs(nid: mem_nid, coord: &target->coord[access], access); |
| 891 | } |
| 892 | |
| 893 | static void hmat_register_target_devices(struct memory_target *target) |
| 894 | { |
| 895 | struct resource *res; |
| 896 | |
| 897 | /* |
| 898 | * Do not bother creating devices if no driver is available to |
| 899 | * consume them. |
| 900 | */ |
| 901 | if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM)) |
| 902 | return; |
| 903 | |
| 904 | for (res = target->memregions.child; res; res = res->sibling) { |
| 905 | int target_nid = pxm_to_node(target->memory_pxm); |
| 906 | |
| 907 | hmem_register_resource(target_nid, r: res); |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | static void hmat_register_target(struct memory_target *target) |
| 912 | { |
| 913 | int nid = pxm_to_node(target->memory_pxm); |
| 914 | |
| 915 | /* |
| 916 | * Devices may belong to either an offline or online |
| 917 | * node, so unconditionally add them. |
| 918 | */ |
| 919 | hmat_register_target_devices(target); |
| 920 | |
| 921 | /* |
| 922 | * Register generic port perf numbers. The nid may not be |
| 923 | * initialized and is still NUMA_NO_NODE. |
| 924 | */ |
| 925 | mutex_lock(&target_lock); |
| 926 | if (*(u16 *)target->gen_port_device_handle) { |
| 927 | hmat_update_generic_target(target); |
| 928 | target->registered = true; |
| 929 | } |
| 930 | mutex_unlock(lock: &target_lock); |
| 931 | |
| 932 | /* |
| 933 | * Skip offline nodes. This can happen when memory |
| 934 | * marked EFI_MEMORY_SP, "specific purpose", is applied |
| 935 | * to all the memory in a proximity domain leading to |
| 936 | * the node being marked offline / unplugged, or if |
| 937 | * memory-only "hotplug" node is offline. |
| 938 | */ |
| 939 | if (nid == NUMA_NO_NODE || !node_online(nid)) |
| 940 | return; |
| 941 | |
| 942 | mutex_lock(&target_lock); |
| 943 | if (!target->registered) { |
| 944 | hmat_register_target_initiators(target); |
| 945 | hmat_register_target_cache(target); |
| 946 | hmat_register_target_perf(target, access: ACCESS_COORDINATE_LOCAL); |
| 947 | hmat_register_target_perf(target, access: ACCESS_COORDINATE_CPU); |
| 948 | target->registered = true; |
| 949 | } |
| 950 | mutex_unlock(lock: &target_lock); |
| 951 | } |
| 952 | |
| 953 | static void hmat_register_targets(void) |
| 954 | { |
| 955 | struct memory_target *target; |
| 956 | |
| 957 | list_for_each_entry(target, &targets, node) |
| 958 | hmat_register_target(target); |
| 959 | } |
| 960 | |
| 961 | static int hmat_callback(struct notifier_block *self, |
| 962 | unsigned long action, void *arg) |
| 963 | { |
| 964 | struct memory_target *target; |
| 965 | struct memory_notify *mnb = arg; |
| 966 | int pxm, nid = mnb->status_change_nid; |
| 967 | |
| 968 | if (nid == NUMA_NO_NODE || action != MEM_ONLINE) |
| 969 | return NOTIFY_OK; |
| 970 | |
| 971 | pxm = node_to_pxm(nid); |
| 972 | target = find_mem_target(mem_pxm: pxm); |
| 973 | if (!target) |
| 974 | return NOTIFY_OK; |
| 975 | |
| 976 | hmat_register_target(target); |
| 977 | return NOTIFY_OK; |
| 978 | } |
| 979 | |
| 980 | static int __init hmat_set_default_dram_perf(void) |
| 981 | { |
| 982 | int rc; |
| 983 | int nid, pxm; |
| 984 | struct memory_target *target; |
| 985 | struct access_coordinate *attrs; |
| 986 | |
| 987 | for_each_node_mask(nid, default_dram_nodes) { |
| 988 | pxm = node_to_pxm(nid); |
| 989 | target = find_mem_target(mem_pxm: pxm); |
| 990 | if (!target) |
| 991 | continue; |
| 992 | attrs = &target->coord[ACCESS_COORDINATE_CPU]; |
| 993 | rc = mt_set_default_dram_perf(nid, perf: attrs, source: "ACPI HMAT" ); |
| 994 | if (rc) |
| 995 | return rc; |
| 996 | } |
| 997 | |
| 998 | return 0; |
| 999 | } |
| 1000 | |
| 1001 | static int hmat_calculate_adistance(struct notifier_block *self, |
| 1002 | unsigned long nid, void *data) |
| 1003 | { |
| 1004 | static DECLARE_BITMAP(p_nodes, MAX_NUMNODES); |
| 1005 | struct memory_target *target; |
| 1006 | struct access_coordinate *perf; |
| 1007 | int *adist = data; |
| 1008 | int pxm; |
| 1009 | |
| 1010 | pxm = node_to_pxm(nid); |
| 1011 | target = find_mem_target(mem_pxm: pxm); |
| 1012 | if (!target) |
| 1013 | return NOTIFY_OK; |
| 1014 | |
| 1015 | mutex_lock(&target_lock); |
| 1016 | hmat_update_target_attrs(target, p_nodes, access: ACCESS_COORDINATE_CPU); |
| 1017 | mutex_unlock(lock: &target_lock); |
| 1018 | |
| 1019 | perf = &target->coord[ACCESS_COORDINATE_CPU]; |
| 1020 | |
| 1021 | if (mt_perf_to_adistance(perf, adist)) |
| 1022 | return NOTIFY_OK; |
| 1023 | |
| 1024 | return NOTIFY_STOP; |
| 1025 | } |
| 1026 | |
| 1027 | static struct notifier_block hmat_adist_nb __meminitdata = { |
| 1028 | .notifier_call = hmat_calculate_adistance, |
| 1029 | .priority = 100, |
| 1030 | }; |
| 1031 | |
| 1032 | static __init void hmat_free_structures(void) |
| 1033 | { |
| 1034 | struct memory_target *target, *tnext; |
| 1035 | struct memory_locality *loc, *lnext; |
| 1036 | struct memory_initiator *initiator, *inext; |
| 1037 | struct target_cache *tcache, *cnext; |
| 1038 | |
| 1039 | list_for_each_entry_safe(target, tnext, &targets, node) { |
| 1040 | struct resource *res, *res_next; |
| 1041 | |
| 1042 | list_for_each_entry_safe(tcache, cnext, &target->caches, node) { |
| 1043 | list_del(entry: &tcache->node); |
| 1044 | kfree(objp: tcache); |
| 1045 | } |
| 1046 | |
| 1047 | list_del(entry: &target->node); |
| 1048 | res = target->memregions.child; |
| 1049 | while (res) { |
| 1050 | res_next = res->sibling; |
| 1051 | __release_region(&target->memregions, res->start, |
| 1052 | resource_size(res)); |
| 1053 | res = res_next; |
| 1054 | } |
| 1055 | kfree(objp: target); |
| 1056 | } |
| 1057 | |
| 1058 | list_for_each_entry_safe(initiator, inext, &initiators, node) { |
| 1059 | list_del(entry: &initiator->node); |
| 1060 | kfree(objp: initiator); |
| 1061 | } |
| 1062 | |
| 1063 | list_for_each_entry_safe(loc, lnext, &localities, node) { |
| 1064 | list_del(entry: &loc->node); |
| 1065 | kfree(objp: loc); |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | static __init int hmat_init(void) |
| 1070 | { |
| 1071 | struct acpi_table_header *tbl; |
| 1072 | enum acpi_hmat_type i; |
| 1073 | acpi_status status; |
| 1074 | |
| 1075 | if (srat_disabled() || hmat_disable) |
| 1076 | return 0; |
| 1077 | |
| 1078 | status = acpi_get_table(ACPI_SIG_SRAT, instance: 0, out_table: &tbl); |
| 1079 | if (ACPI_FAILURE(status)) |
| 1080 | return 0; |
| 1081 | |
| 1082 | if (acpi_table_parse_entries(ACPI_SIG_SRAT, |
| 1083 | table_size: sizeof(struct acpi_table_srat), |
| 1084 | entry_id: ACPI_SRAT_TYPE_MEMORY_AFFINITY, |
| 1085 | handler: srat_parse_mem_affinity, max_entries: 0) < 0) |
| 1086 | goto out_put; |
| 1087 | |
| 1088 | if (acpi_table_parse_entries(ACPI_SIG_SRAT, |
| 1089 | table_size: sizeof(struct acpi_table_srat), |
| 1090 | entry_id: ACPI_SRAT_TYPE_GENERIC_PORT_AFFINITY, |
| 1091 | handler: srat_parse_genport_affinity, max_entries: 0) < 0) |
| 1092 | goto out_put; |
| 1093 | |
| 1094 | acpi_put_table(table: tbl); |
| 1095 | |
| 1096 | status = acpi_get_table(ACPI_SIG_HMAT, instance: 0, out_table: &tbl); |
| 1097 | if (ACPI_FAILURE(status)) |
| 1098 | goto out_put; |
| 1099 | |
| 1100 | hmat_revision = tbl->revision; |
| 1101 | switch (hmat_revision) { |
| 1102 | case 1: |
| 1103 | case 2: |
| 1104 | break; |
| 1105 | default: |
| 1106 | pr_notice("Ignoring: Unknown revision:%d\n" , hmat_revision); |
| 1107 | goto out_put; |
| 1108 | } |
| 1109 | |
| 1110 | for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) { |
| 1111 | if (acpi_table_parse_entries(ACPI_SIG_HMAT, |
| 1112 | table_size: sizeof(struct acpi_table_hmat), entry_id: i, |
| 1113 | handler: hmat_parse_subtable, max_entries: 0) < 0) { |
| 1114 | pr_notice("Ignoring: Invalid table" ); |
| 1115 | goto out_put; |
| 1116 | } |
| 1117 | } |
| 1118 | hmat_register_targets(); |
| 1119 | |
| 1120 | /* Keep the table and structures if the notifier may use them */ |
| 1121 | if (hotplug_memory_notifier(hmat_callback, HMAT_CALLBACK_PRI)) |
| 1122 | goto out_put; |
| 1123 | |
| 1124 | if (!hmat_set_default_dram_perf()) |
| 1125 | register_mt_adistance_algorithm(nb: &hmat_adist_nb); |
| 1126 | |
| 1127 | return 0; |
| 1128 | out_put: |
| 1129 | hmat_free_structures(); |
| 1130 | acpi_put_table(table: tbl); |
| 1131 | return 0; |
| 1132 | } |
| 1133 | subsys_initcall(hmat_init); |
| 1134 | |