| 1 | /* |
| 2 | * Compressed RAM block device |
| 3 | * |
| 4 | * Copyright (C) 2008, 2009, 2010 Nitin Gupta |
| 5 | * 2012, 2013 Minchan Kim |
| 6 | * |
| 7 | * This code is released using a dual license strategy: BSD/GPL |
| 8 | * You can choose the licence that better fits your requirements. |
| 9 | * |
| 10 | * Released under the terms of 3-clause BSD License |
| 11 | * Released under the terms of GNU General Public License Version 2.0 |
| 12 | * |
| 13 | */ |
| 14 | |
| 15 | #define KMSG_COMPONENT "zram" |
| 16 | #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| 17 | |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/bio.h> |
| 21 | #include <linux/bitops.h> |
| 22 | #include <linux/blkdev.h> |
| 23 | #include <linux/buffer_head.h> |
| 24 | #include <linux/device.h> |
| 25 | #include <linux/highmem.h> |
| 26 | #include <linux/slab.h> |
| 27 | #include <linux/backing-dev.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/vmalloc.h> |
| 30 | #include <linux/err.h> |
| 31 | #include <linux/idr.h> |
| 32 | #include <linux/sysfs.h> |
| 33 | #include <linux/debugfs.h> |
| 34 | #include <linux/cpuhotplug.h> |
| 35 | #include <linux/part_stat.h> |
| 36 | #include <linux/kernel_read_file.h> |
| 37 | |
| 38 | #include "zram_drv.h" |
| 39 | |
| 40 | static DEFINE_IDR(zram_index_idr); |
| 41 | /* idr index must be protected */ |
| 42 | static DEFINE_MUTEX(zram_index_mutex); |
| 43 | |
| 44 | static int zram_major; |
| 45 | static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; |
| 46 | |
| 47 | #define ZRAM_MAX_ALGO_NAME_SZ 128 |
| 48 | |
| 49 | /* Module params (documentation at end) */ |
| 50 | static unsigned int num_devices = 1; |
| 51 | /* |
| 52 | * Pages that compress to sizes equals or greater than this are stored |
| 53 | * uncompressed in memory. |
| 54 | */ |
| 55 | static size_t huge_class_size; |
| 56 | |
| 57 | static const struct block_device_operations zram_devops; |
| 58 | |
| 59 | static void zram_free_page(struct zram *zram, size_t index); |
| 60 | static int zram_read_from_zspool(struct zram *zram, struct page *page, |
| 61 | u32 index); |
| 62 | |
| 63 | #define slot_dep_map(zram, index) (&(zram)->table[(index)].dep_map) |
| 64 | |
| 65 | static void zram_slot_lock_init(struct zram *zram, u32 index) |
| 66 | { |
| 67 | static struct lock_class_key __key; |
| 68 | |
| 69 | lockdep_init_map(slot_dep_map(zram, index), name: "zram->table[index].lock" , |
| 70 | key: &__key, subclass: 0); |
| 71 | } |
| 72 | |
| 73 | /* |
| 74 | * entry locking rules: |
| 75 | * |
| 76 | * 1) Lock is exclusive |
| 77 | * |
| 78 | * 2) lock() function can sleep waiting for the lock |
| 79 | * |
| 80 | * 3) Lock owner can sleep |
| 81 | * |
| 82 | * 4) Use TRY lock variant when in atomic context |
| 83 | * - must check return value and handle locking failers |
| 84 | */ |
| 85 | static __must_check bool zram_slot_trylock(struct zram *zram, u32 index) |
| 86 | { |
| 87 | unsigned long *lock = &zram->table[index].flags; |
| 88 | |
| 89 | if (!test_and_set_bit_lock(nr: ZRAM_ENTRY_LOCK, addr: lock)) { |
| 90 | mutex_acquire(slot_dep_map(zram, index), 0, 1, _RET_IP_); |
| 91 | lock_acquired(slot_dep_map(zram, index), _RET_IP_); |
| 92 | return true; |
| 93 | } |
| 94 | |
| 95 | return false; |
| 96 | } |
| 97 | |
| 98 | static void zram_slot_lock(struct zram *zram, u32 index) |
| 99 | { |
| 100 | unsigned long *lock = &zram->table[index].flags; |
| 101 | |
| 102 | mutex_acquire(slot_dep_map(zram, index), 0, 0, _RET_IP_); |
| 103 | wait_on_bit_lock(word: lock, bit: ZRAM_ENTRY_LOCK, TASK_UNINTERRUPTIBLE); |
| 104 | lock_acquired(slot_dep_map(zram, index), _RET_IP_); |
| 105 | } |
| 106 | |
| 107 | static void zram_slot_unlock(struct zram *zram, u32 index) |
| 108 | { |
| 109 | unsigned long *lock = &zram->table[index].flags; |
| 110 | |
| 111 | mutex_release(slot_dep_map(zram, index), _RET_IP_); |
| 112 | clear_and_wake_up_bit(bit: ZRAM_ENTRY_LOCK, word: lock); |
| 113 | } |
| 114 | |
| 115 | static inline bool init_done(struct zram *zram) |
| 116 | { |
| 117 | return zram->disksize; |
| 118 | } |
| 119 | |
| 120 | static inline struct zram *dev_to_zram(struct device *dev) |
| 121 | { |
| 122 | return (struct zram *)dev_to_disk(dev)->private_data; |
| 123 | } |
| 124 | |
| 125 | static unsigned long zram_get_handle(struct zram *zram, u32 index) |
| 126 | { |
| 127 | return zram->table[index].handle; |
| 128 | } |
| 129 | |
| 130 | static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) |
| 131 | { |
| 132 | zram->table[index].handle = handle; |
| 133 | } |
| 134 | |
| 135 | static bool zram_test_flag(struct zram *zram, u32 index, |
| 136 | enum zram_pageflags flag) |
| 137 | { |
| 138 | return zram->table[index].flags & BIT(flag); |
| 139 | } |
| 140 | |
| 141 | static void zram_set_flag(struct zram *zram, u32 index, |
| 142 | enum zram_pageflags flag) |
| 143 | { |
| 144 | zram->table[index].flags |= BIT(flag); |
| 145 | } |
| 146 | |
| 147 | static void zram_clear_flag(struct zram *zram, u32 index, |
| 148 | enum zram_pageflags flag) |
| 149 | { |
| 150 | zram->table[index].flags &= ~BIT(flag); |
| 151 | } |
| 152 | |
| 153 | static size_t zram_get_obj_size(struct zram *zram, u32 index) |
| 154 | { |
| 155 | return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); |
| 156 | } |
| 157 | |
| 158 | static void zram_set_obj_size(struct zram *zram, |
| 159 | u32 index, size_t size) |
| 160 | { |
| 161 | unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; |
| 162 | |
| 163 | zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; |
| 164 | } |
| 165 | |
| 166 | static inline bool zram_allocated(struct zram *zram, u32 index) |
| 167 | { |
| 168 | return zram_get_obj_size(zram, index) || |
| 169 | zram_test_flag(zram, index, flag: ZRAM_SAME) || |
| 170 | zram_test_flag(zram, index, flag: ZRAM_WB); |
| 171 | } |
| 172 | |
| 173 | static inline void update_used_max(struct zram *zram, const unsigned long pages) |
| 174 | { |
| 175 | unsigned long cur_max = atomic_long_read(v: &zram->stats.max_used_pages); |
| 176 | |
| 177 | do { |
| 178 | if (cur_max >= pages) |
| 179 | return; |
| 180 | } while (!atomic_long_try_cmpxchg(v: &zram->stats.max_used_pages, |
| 181 | old: &cur_max, new: pages)); |
| 182 | } |
| 183 | |
| 184 | static bool zram_can_store_page(struct zram *zram) |
| 185 | { |
| 186 | unsigned long alloced_pages; |
| 187 | |
| 188 | alloced_pages = zs_get_total_pages(pool: zram->mem_pool); |
| 189 | update_used_max(zram, pages: alloced_pages); |
| 190 | |
| 191 | return !zram->limit_pages || alloced_pages <= zram->limit_pages; |
| 192 | } |
| 193 | |
| 194 | #if PAGE_SIZE != 4096 |
| 195 | static inline bool is_partial_io(struct bio_vec *bvec) |
| 196 | { |
| 197 | return bvec->bv_len != PAGE_SIZE; |
| 198 | } |
| 199 | #define ZRAM_PARTIAL_IO 1 |
| 200 | #else |
| 201 | static inline bool is_partial_io(struct bio_vec *bvec) |
| 202 | { |
| 203 | return false; |
| 204 | } |
| 205 | #endif |
| 206 | |
| 207 | static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) |
| 208 | { |
| 209 | prio &= ZRAM_COMP_PRIORITY_MASK; |
| 210 | /* |
| 211 | * Clear previous priority value first, in case if we recompress |
| 212 | * further an already recompressed page |
| 213 | */ |
| 214 | zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << |
| 215 | ZRAM_COMP_PRIORITY_BIT1); |
| 216 | zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); |
| 217 | } |
| 218 | |
| 219 | static inline u32 zram_get_priority(struct zram *zram, u32 index) |
| 220 | { |
| 221 | u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; |
| 222 | |
| 223 | return prio & ZRAM_COMP_PRIORITY_MASK; |
| 224 | } |
| 225 | |
| 226 | static void zram_accessed(struct zram *zram, u32 index) |
| 227 | { |
| 228 | zram_clear_flag(zram, index, flag: ZRAM_IDLE); |
| 229 | zram_clear_flag(zram, index, flag: ZRAM_PP_SLOT); |
| 230 | #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME |
| 231 | zram->table[index].ac_time = ktime_get_boottime(); |
| 232 | #endif |
| 233 | } |
| 234 | |
| 235 | #if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP |
| 236 | struct zram_pp_slot { |
| 237 | unsigned long index; |
| 238 | struct list_head entry; |
| 239 | }; |
| 240 | |
| 241 | /* |
| 242 | * A post-processing bucket is, essentially, a size class, this defines |
| 243 | * the range (in bytes) of pp-slots sizes in particular bucket. |
| 244 | */ |
| 245 | #define PP_BUCKET_SIZE_RANGE 64 |
| 246 | #define NUM_PP_BUCKETS ((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1) |
| 247 | |
| 248 | struct zram_pp_ctl { |
| 249 | struct list_head pp_buckets[NUM_PP_BUCKETS]; |
| 250 | }; |
| 251 | |
| 252 | static struct zram_pp_ctl *init_pp_ctl(void) |
| 253 | { |
| 254 | struct zram_pp_ctl *ctl; |
| 255 | u32 idx; |
| 256 | |
| 257 | ctl = kmalloc(sizeof(*ctl), GFP_KERNEL); |
| 258 | if (!ctl) |
| 259 | return NULL; |
| 260 | |
| 261 | for (idx = 0; idx < NUM_PP_BUCKETS; idx++) |
| 262 | INIT_LIST_HEAD(list: &ctl->pp_buckets[idx]); |
| 263 | return ctl; |
| 264 | } |
| 265 | |
| 266 | static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps) |
| 267 | { |
| 268 | list_del_init(entry: &pps->entry); |
| 269 | |
| 270 | zram_slot_lock(zram, index: pps->index); |
| 271 | zram_clear_flag(zram, index: pps->index, flag: ZRAM_PP_SLOT); |
| 272 | zram_slot_unlock(zram, index: pps->index); |
| 273 | |
| 274 | kfree(objp: pps); |
| 275 | } |
| 276 | |
| 277 | static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl) |
| 278 | { |
| 279 | u32 idx; |
| 280 | |
| 281 | if (!ctl) |
| 282 | return; |
| 283 | |
| 284 | for (idx = 0; idx < NUM_PP_BUCKETS; idx++) { |
| 285 | while (!list_empty(head: &ctl->pp_buckets[idx])) { |
| 286 | struct zram_pp_slot *pps; |
| 287 | |
| 288 | pps = list_first_entry(&ctl->pp_buckets[idx], |
| 289 | struct zram_pp_slot, |
| 290 | entry); |
| 291 | release_pp_slot(zram, pps); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | kfree(objp: ctl); |
| 296 | } |
| 297 | |
| 298 | static bool place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl, |
| 299 | u32 index) |
| 300 | { |
| 301 | struct zram_pp_slot *pps; |
| 302 | u32 bid; |
| 303 | |
| 304 | pps = kmalloc(sizeof(*pps), GFP_NOIO | __GFP_NOWARN); |
| 305 | if (!pps) |
| 306 | return false; |
| 307 | |
| 308 | INIT_LIST_HEAD(list: &pps->entry); |
| 309 | pps->index = index; |
| 310 | |
| 311 | bid = zram_get_obj_size(zram, index: pps->index) / PP_BUCKET_SIZE_RANGE; |
| 312 | list_add(new: &pps->entry, head: &ctl->pp_buckets[bid]); |
| 313 | |
| 314 | zram_set_flag(zram, index: pps->index, flag: ZRAM_PP_SLOT); |
| 315 | return true; |
| 316 | } |
| 317 | |
| 318 | static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl) |
| 319 | { |
| 320 | struct zram_pp_slot *pps = NULL; |
| 321 | s32 idx = NUM_PP_BUCKETS - 1; |
| 322 | |
| 323 | /* The higher the bucket id the more optimal slot post-processing is */ |
| 324 | while (idx >= 0) { |
| 325 | pps = list_first_entry_or_null(&ctl->pp_buckets[idx], |
| 326 | struct zram_pp_slot, |
| 327 | entry); |
| 328 | if (pps) |
| 329 | break; |
| 330 | |
| 331 | idx--; |
| 332 | } |
| 333 | return pps; |
| 334 | } |
| 335 | #endif |
| 336 | |
| 337 | static inline void zram_fill_page(void *ptr, unsigned long len, |
| 338 | unsigned long value) |
| 339 | { |
| 340 | WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); |
| 341 | memset_l(p: ptr, v: value, n: len / sizeof(unsigned long)); |
| 342 | } |
| 343 | |
| 344 | static bool page_same_filled(void *ptr, unsigned long *element) |
| 345 | { |
| 346 | unsigned long *page; |
| 347 | unsigned long val; |
| 348 | unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; |
| 349 | |
| 350 | page = (unsigned long *)ptr; |
| 351 | val = page[0]; |
| 352 | |
| 353 | if (val != page[last_pos]) |
| 354 | return false; |
| 355 | |
| 356 | for (pos = 1; pos < last_pos; pos++) { |
| 357 | if (val != page[pos]) |
| 358 | return false; |
| 359 | } |
| 360 | |
| 361 | *element = val; |
| 362 | |
| 363 | return true; |
| 364 | } |
| 365 | |
| 366 | static ssize_t initstate_show(struct device *dev, |
| 367 | struct device_attribute *attr, char *buf) |
| 368 | { |
| 369 | u32 val; |
| 370 | struct zram *zram = dev_to_zram(dev); |
| 371 | |
| 372 | down_read(sem: &zram->init_lock); |
| 373 | val = init_done(zram); |
| 374 | up_read(sem: &zram->init_lock); |
| 375 | |
| 376 | return scnprintf(buf, PAGE_SIZE, fmt: "%u\n" , val); |
| 377 | } |
| 378 | |
| 379 | static ssize_t disksize_show(struct device *dev, |
| 380 | struct device_attribute *attr, char *buf) |
| 381 | { |
| 382 | struct zram *zram = dev_to_zram(dev); |
| 383 | |
| 384 | return scnprintf(buf, PAGE_SIZE, fmt: "%llu\n" , zram->disksize); |
| 385 | } |
| 386 | |
| 387 | static ssize_t mem_limit_store(struct device *dev, |
| 388 | struct device_attribute *attr, const char *buf, size_t len) |
| 389 | { |
| 390 | u64 limit; |
| 391 | char *tmp; |
| 392 | struct zram *zram = dev_to_zram(dev); |
| 393 | |
| 394 | limit = memparse(ptr: buf, retptr: &tmp); |
| 395 | if (buf == tmp) /* no chars parsed, invalid input */ |
| 396 | return -EINVAL; |
| 397 | |
| 398 | down_write(sem: &zram->init_lock); |
| 399 | zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; |
| 400 | up_write(sem: &zram->init_lock); |
| 401 | |
| 402 | return len; |
| 403 | } |
| 404 | |
| 405 | static ssize_t mem_used_max_store(struct device *dev, |
| 406 | struct device_attribute *attr, const char *buf, size_t len) |
| 407 | { |
| 408 | int err; |
| 409 | unsigned long val; |
| 410 | struct zram *zram = dev_to_zram(dev); |
| 411 | |
| 412 | err = kstrtoul(s: buf, base: 10, res: &val); |
| 413 | if (err || val != 0) |
| 414 | return -EINVAL; |
| 415 | |
| 416 | down_read(sem: &zram->init_lock); |
| 417 | if (init_done(zram)) { |
| 418 | atomic_long_set(v: &zram->stats.max_used_pages, |
| 419 | i: zs_get_total_pages(pool: zram->mem_pool)); |
| 420 | } |
| 421 | up_read(sem: &zram->init_lock); |
| 422 | |
| 423 | return len; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * Mark all pages which are older than or equal to cutoff as IDLE. |
| 428 | * Callers should hold the zram init lock in read mode |
| 429 | */ |
| 430 | static void mark_idle(struct zram *zram, ktime_t cutoff) |
| 431 | { |
| 432 | int is_idle = 1; |
| 433 | unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| 434 | int index; |
| 435 | |
| 436 | for (index = 0; index < nr_pages; index++) { |
| 437 | /* |
| 438 | * Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no |
| 439 | * post-processing (recompress, writeback) happens to the |
| 440 | * ZRAM_SAME slot. |
| 441 | * |
| 442 | * And ZRAM_WB slots simply cannot be ZRAM_IDLE. |
| 443 | */ |
| 444 | zram_slot_lock(zram, index); |
| 445 | if (!zram_allocated(zram, index) || |
| 446 | zram_test_flag(zram, index, flag: ZRAM_WB) || |
| 447 | zram_test_flag(zram, index, flag: ZRAM_SAME)) { |
| 448 | zram_slot_unlock(zram, index); |
| 449 | continue; |
| 450 | } |
| 451 | |
| 452 | #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME |
| 453 | is_idle = !cutoff || |
| 454 | ktime_after(cmp1: cutoff, cmp2: zram->table[index].ac_time); |
| 455 | #endif |
| 456 | if (is_idle) |
| 457 | zram_set_flag(zram, index, flag: ZRAM_IDLE); |
| 458 | else |
| 459 | zram_clear_flag(zram, index, flag: ZRAM_IDLE); |
| 460 | zram_slot_unlock(zram, index); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | static ssize_t idle_store(struct device *dev, |
| 465 | struct device_attribute *attr, const char *buf, size_t len) |
| 466 | { |
| 467 | struct zram *zram = dev_to_zram(dev); |
| 468 | ktime_t cutoff_time = 0; |
| 469 | ssize_t rv = -EINVAL; |
| 470 | |
| 471 | if (!sysfs_streq(s1: buf, s2: "all" )) { |
| 472 | /* |
| 473 | * If it did not parse as 'all' try to treat it as an integer |
| 474 | * when we have memory tracking enabled. |
| 475 | */ |
| 476 | u64 age_sec; |
| 477 | |
| 478 | if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(s: buf, base: 0, res: &age_sec)) |
| 479 | cutoff_time = ktime_sub(ktime_get_boottime(), |
| 480 | ns_to_ktime(age_sec * NSEC_PER_SEC)); |
| 481 | else |
| 482 | goto out; |
| 483 | } |
| 484 | |
| 485 | down_read(sem: &zram->init_lock); |
| 486 | if (!init_done(zram)) |
| 487 | goto out_unlock; |
| 488 | |
| 489 | /* |
| 490 | * A cutoff_time of 0 marks everything as idle, this is the |
| 491 | * "all" behavior. |
| 492 | */ |
| 493 | mark_idle(zram, cutoff: cutoff_time); |
| 494 | rv = len; |
| 495 | |
| 496 | out_unlock: |
| 497 | up_read(sem: &zram->init_lock); |
| 498 | out: |
| 499 | return rv; |
| 500 | } |
| 501 | |
| 502 | #ifdef CONFIG_ZRAM_WRITEBACK |
| 503 | static ssize_t writeback_limit_enable_store(struct device *dev, |
| 504 | struct device_attribute *attr, const char *buf, size_t len) |
| 505 | { |
| 506 | struct zram *zram = dev_to_zram(dev); |
| 507 | u64 val; |
| 508 | ssize_t ret = -EINVAL; |
| 509 | |
| 510 | if (kstrtoull(s: buf, base: 10, res: &val)) |
| 511 | return ret; |
| 512 | |
| 513 | down_read(sem: &zram->init_lock); |
| 514 | spin_lock(lock: &zram->wb_limit_lock); |
| 515 | zram->wb_limit_enable = val; |
| 516 | spin_unlock(lock: &zram->wb_limit_lock); |
| 517 | up_read(sem: &zram->init_lock); |
| 518 | ret = len; |
| 519 | |
| 520 | return ret; |
| 521 | } |
| 522 | |
| 523 | static ssize_t writeback_limit_enable_show(struct device *dev, |
| 524 | struct device_attribute *attr, char *buf) |
| 525 | { |
| 526 | bool val; |
| 527 | struct zram *zram = dev_to_zram(dev); |
| 528 | |
| 529 | down_read(sem: &zram->init_lock); |
| 530 | spin_lock(lock: &zram->wb_limit_lock); |
| 531 | val = zram->wb_limit_enable; |
| 532 | spin_unlock(lock: &zram->wb_limit_lock); |
| 533 | up_read(sem: &zram->init_lock); |
| 534 | |
| 535 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n" , val); |
| 536 | } |
| 537 | |
| 538 | static ssize_t writeback_limit_store(struct device *dev, |
| 539 | struct device_attribute *attr, const char *buf, size_t len) |
| 540 | { |
| 541 | struct zram *zram = dev_to_zram(dev); |
| 542 | u64 val; |
| 543 | ssize_t ret = -EINVAL; |
| 544 | |
| 545 | if (kstrtoull(s: buf, base: 10, res: &val)) |
| 546 | return ret; |
| 547 | |
| 548 | down_read(sem: &zram->init_lock); |
| 549 | spin_lock(lock: &zram->wb_limit_lock); |
| 550 | zram->bd_wb_limit = val; |
| 551 | spin_unlock(lock: &zram->wb_limit_lock); |
| 552 | up_read(sem: &zram->init_lock); |
| 553 | ret = len; |
| 554 | |
| 555 | return ret; |
| 556 | } |
| 557 | |
| 558 | static ssize_t writeback_limit_show(struct device *dev, |
| 559 | struct device_attribute *attr, char *buf) |
| 560 | { |
| 561 | u64 val; |
| 562 | struct zram *zram = dev_to_zram(dev); |
| 563 | |
| 564 | down_read(sem: &zram->init_lock); |
| 565 | spin_lock(lock: &zram->wb_limit_lock); |
| 566 | val = zram->bd_wb_limit; |
| 567 | spin_unlock(lock: &zram->wb_limit_lock); |
| 568 | up_read(sem: &zram->init_lock); |
| 569 | |
| 570 | return scnprintf(buf, PAGE_SIZE, fmt: "%llu\n" , val); |
| 571 | } |
| 572 | |
| 573 | static void reset_bdev(struct zram *zram) |
| 574 | { |
| 575 | if (!zram->backing_dev) |
| 576 | return; |
| 577 | |
| 578 | /* hope filp_close flush all of IO */ |
| 579 | filp_close(zram->backing_dev, NULL); |
| 580 | zram->backing_dev = NULL; |
| 581 | zram->bdev = NULL; |
| 582 | zram->disk->fops = &zram_devops; |
| 583 | kvfree(addr: zram->bitmap); |
| 584 | zram->bitmap = NULL; |
| 585 | } |
| 586 | |
| 587 | static ssize_t backing_dev_show(struct device *dev, |
| 588 | struct device_attribute *attr, char *buf) |
| 589 | { |
| 590 | struct file *file; |
| 591 | struct zram *zram = dev_to_zram(dev); |
| 592 | char *p; |
| 593 | ssize_t ret; |
| 594 | |
| 595 | down_read(sem: &zram->init_lock); |
| 596 | file = zram->backing_dev; |
| 597 | if (!file) { |
| 598 | memcpy(buf, "none\n" , 5); |
| 599 | up_read(sem: &zram->init_lock); |
| 600 | return 5; |
| 601 | } |
| 602 | |
| 603 | p = file_path(file, buf, PAGE_SIZE - 1); |
| 604 | if (IS_ERR(ptr: p)) { |
| 605 | ret = PTR_ERR(ptr: p); |
| 606 | goto out; |
| 607 | } |
| 608 | |
| 609 | ret = strlen(p); |
| 610 | memmove(buf, p, ret); |
| 611 | buf[ret++] = '\n'; |
| 612 | out: |
| 613 | up_read(sem: &zram->init_lock); |
| 614 | return ret; |
| 615 | } |
| 616 | |
| 617 | static ssize_t backing_dev_store(struct device *dev, |
| 618 | struct device_attribute *attr, const char *buf, size_t len) |
| 619 | { |
| 620 | char *file_name; |
| 621 | size_t sz; |
| 622 | struct file *backing_dev = NULL; |
| 623 | struct inode *inode; |
| 624 | unsigned int bitmap_sz; |
| 625 | unsigned long nr_pages, *bitmap = NULL; |
| 626 | int err; |
| 627 | struct zram *zram = dev_to_zram(dev); |
| 628 | |
| 629 | file_name = kmalloc(PATH_MAX, GFP_KERNEL); |
| 630 | if (!file_name) |
| 631 | return -ENOMEM; |
| 632 | |
| 633 | down_write(sem: &zram->init_lock); |
| 634 | if (init_done(zram)) { |
| 635 | pr_info("Can't setup backing device for initialized device\n" ); |
| 636 | err = -EBUSY; |
| 637 | goto out; |
| 638 | } |
| 639 | |
| 640 | strscpy(file_name, buf, PATH_MAX); |
| 641 | /* ignore trailing newline */ |
| 642 | sz = strlen(file_name); |
| 643 | if (sz > 0 && file_name[sz - 1] == '\n') |
| 644 | file_name[sz - 1] = 0x00; |
| 645 | |
| 646 | backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0); |
| 647 | if (IS_ERR(ptr: backing_dev)) { |
| 648 | err = PTR_ERR(ptr: backing_dev); |
| 649 | backing_dev = NULL; |
| 650 | goto out; |
| 651 | } |
| 652 | |
| 653 | inode = backing_dev->f_mapping->host; |
| 654 | |
| 655 | /* Support only block device in this moment */ |
| 656 | if (!S_ISBLK(inode->i_mode)) { |
| 657 | err = -ENOTBLK; |
| 658 | goto out; |
| 659 | } |
| 660 | |
| 661 | nr_pages = i_size_read(inode) >> PAGE_SHIFT; |
| 662 | /* Refuse to use zero sized device (also prevents self reference) */ |
| 663 | if (!nr_pages) { |
| 664 | err = -EINVAL; |
| 665 | goto out; |
| 666 | } |
| 667 | |
| 668 | bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); |
| 669 | bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); |
| 670 | if (!bitmap) { |
| 671 | err = -ENOMEM; |
| 672 | goto out; |
| 673 | } |
| 674 | |
| 675 | reset_bdev(zram); |
| 676 | |
| 677 | zram->bdev = I_BDEV(inode); |
| 678 | zram->backing_dev = backing_dev; |
| 679 | zram->bitmap = bitmap; |
| 680 | zram->nr_pages = nr_pages; |
| 681 | up_write(sem: &zram->init_lock); |
| 682 | |
| 683 | pr_info("setup backing device %s\n" , file_name); |
| 684 | kfree(objp: file_name); |
| 685 | |
| 686 | return len; |
| 687 | out: |
| 688 | kvfree(addr: bitmap); |
| 689 | |
| 690 | if (backing_dev) |
| 691 | filp_close(backing_dev, NULL); |
| 692 | |
| 693 | up_write(sem: &zram->init_lock); |
| 694 | |
| 695 | kfree(objp: file_name); |
| 696 | |
| 697 | return err; |
| 698 | } |
| 699 | |
| 700 | static unsigned long alloc_block_bdev(struct zram *zram) |
| 701 | { |
| 702 | unsigned long blk_idx = 1; |
| 703 | retry: |
| 704 | /* skip 0 bit to confuse zram.handle = 0 */ |
| 705 | blk_idx = find_next_zero_bit(addr: zram->bitmap, size: zram->nr_pages, offset: blk_idx); |
| 706 | if (blk_idx == zram->nr_pages) |
| 707 | return 0; |
| 708 | |
| 709 | if (test_and_set_bit(nr: blk_idx, addr: zram->bitmap)) |
| 710 | goto retry; |
| 711 | |
| 712 | atomic64_inc(v: &zram->stats.bd_count); |
| 713 | return blk_idx; |
| 714 | } |
| 715 | |
| 716 | static void free_block_bdev(struct zram *zram, unsigned long blk_idx) |
| 717 | { |
| 718 | int was_set; |
| 719 | |
| 720 | was_set = test_and_clear_bit(nr: blk_idx, addr: zram->bitmap); |
| 721 | WARN_ON_ONCE(!was_set); |
| 722 | atomic64_dec(v: &zram->stats.bd_count); |
| 723 | } |
| 724 | |
| 725 | static void read_from_bdev_async(struct zram *zram, struct page *page, |
| 726 | unsigned long entry, struct bio *parent) |
| 727 | { |
| 728 | struct bio *bio; |
| 729 | |
| 730 | bio = bio_alloc(bdev: zram->bdev, nr_vecs: 1, opf: parent->bi_opf, GFP_NOIO); |
| 731 | bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); |
| 732 | __bio_add_page(bio, page, PAGE_SIZE, off: 0); |
| 733 | bio_chain(bio, parent); |
| 734 | submit_bio(bio); |
| 735 | } |
| 736 | |
| 737 | static int zram_writeback_slots(struct zram *zram, struct zram_pp_ctl *ctl) |
| 738 | { |
| 739 | unsigned long blk_idx = 0; |
| 740 | struct page *page = NULL; |
| 741 | struct zram_pp_slot *pps; |
| 742 | struct bio_vec bio_vec; |
| 743 | struct bio bio; |
| 744 | int ret = 0, err; |
| 745 | u32 index; |
| 746 | |
| 747 | page = alloc_page(GFP_KERNEL); |
| 748 | if (!page) |
| 749 | return -ENOMEM; |
| 750 | |
| 751 | while ((pps = select_pp_slot(ctl))) { |
| 752 | spin_lock(lock: &zram->wb_limit_lock); |
| 753 | if (zram->wb_limit_enable && !zram->bd_wb_limit) { |
| 754 | spin_unlock(lock: &zram->wb_limit_lock); |
| 755 | ret = -EIO; |
| 756 | break; |
| 757 | } |
| 758 | spin_unlock(lock: &zram->wb_limit_lock); |
| 759 | |
| 760 | if (!blk_idx) { |
| 761 | blk_idx = alloc_block_bdev(zram); |
| 762 | if (!blk_idx) { |
| 763 | ret = -ENOSPC; |
| 764 | break; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | index = pps->index; |
| 769 | zram_slot_lock(zram, index); |
| 770 | /* |
| 771 | * scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so |
| 772 | * slots can change in the meantime. If slots are accessed or |
| 773 | * freed they lose ZRAM_PP_SLOT flag and hence we don't |
| 774 | * post-process them. |
| 775 | */ |
| 776 | if (!zram_test_flag(zram, index, flag: ZRAM_PP_SLOT)) |
| 777 | goto next; |
| 778 | if (zram_read_from_zspool(zram, page, index)) |
| 779 | goto next; |
| 780 | zram_slot_unlock(zram, index); |
| 781 | |
| 782 | bio_init(bio: &bio, bdev: zram->bdev, table: &bio_vec, max_vecs: 1, |
| 783 | opf: REQ_OP_WRITE | REQ_SYNC); |
| 784 | bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); |
| 785 | __bio_add_page(bio: &bio, page, PAGE_SIZE, off: 0); |
| 786 | |
| 787 | /* |
| 788 | * XXX: A single page IO would be inefficient for write |
| 789 | * but it would be not bad as starter. |
| 790 | */ |
| 791 | err = submit_bio_wait(bio: &bio); |
| 792 | if (err) { |
| 793 | release_pp_slot(zram, pps); |
| 794 | /* |
| 795 | * BIO errors are not fatal, we continue and simply |
| 796 | * attempt to writeback the remaining objects (pages). |
| 797 | * At the same time we need to signal user-space that |
| 798 | * some writes (at least one, but also could be all of |
| 799 | * them) were not successful and we do so by returning |
| 800 | * the most recent BIO error. |
| 801 | */ |
| 802 | ret = err; |
| 803 | continue; |
| 804 | } |
| 805 | |
| 806 | atomic64_inc(v: &zram->stats.bd_writes); |
| 807 | zram_slot_lock(zram, index); |
| 808 | /* |
| 809 | * Same as above, we release slot lock during writeback so |
| 810 | * slot can change under us: slot_free() or slot_free() and |
| 811 | * reallocation (zram_write_page()). In both cases slot loses |
| 812 | * ZRAM_PP_SLOT flag. No concurrent post-processing can set |
| 813 | * ZRAM_PP_SLOT on such slots until current post-processing |
| 814 | * finishes. |
| 815 | */ |
| 816 | if (!zram_test_flag(zram, index, flag: ZRAM_PP_SLOT)) |
| 817 | goto next; |
| 818 | |
| 819 | zram_free_page(zram, index); |
| 820 | zram_set_flag(zram, index, flag: ZRAM_WB); |
| 821 | zram_set_handle(zram, index, handle: blk_idx); |
| 822 | blk_idx = 0; |
| 823 | atomic64_inc(v: &zram->stats.pages_stored); |
| 824 | spin_lock(lock: &zram->wb_limit_lock); |
| 825 | if (zram->wb_limit_enable && zram->bd_wb_limit > 0) |
| 826 | zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); |
| 827 | spin_unlock(lock: &zram->wb_limit_lock); |
| 828 | next: |
| 829 | zram_slot_unlock(zram, index); |
| 830 | release_pp_slot(zram, pps); |
| 831 | |
| 832 | cond_resched(); |
| 833 | } |
| 834 | |
| 835 | if (blk_idx) |
| 836 | free_block_bdev(zram, blk_idx); |
| 837 | if (page) |
| 838 | __free_page(page); |
| 839 | |
| 840 | return ret; |
| 841 | } |
| 842 | |
| 843 | #define PAGE_WRITEBACK 0 |
| 844 | #define HUGE_WRITEBACK (1 << 0) |
| 845 | #define IDLE_WRITEBACK (1 << 1) |
| 846 | #define INCOMPRESSIBLE_WRITEBACK (1 << 2) |
| 847 | |
| 848 | static int parse_page_index(char *val, unsigned long nr_pages, |
| 849 | unsigned long *lo, unsigned long *hi) |
| 850 | { |
| 851 | int ret; |
| 852 | |
| 853 | ret = kstrtoul(s: val, base: 10, res: lo); |
| 854 | if (ret) |
| 855 | return ret; |
| 856 | if (*lo >= nr_pages) |
| 857 | return -ERANGE; |
| 858 | *hi = *lo + 1; |
| 859 | return 0; |
| 860 | } |
| 861 | |
| 862 | static int parse_page_indexes(char *val, unsigned long nr_pages, |
| 863 | unsigned long *lo, unsigned long *hi) |
| 864 | { |
| 865 | char *delim; |
| 866 | int ret; |
| 867 | |
| 868 | delim = strchr(val, '-'); |
| 869 | if (!delim) |
| 870 | return -EINVAL; |
| 871 | |
| 872 | *delim = 0x00; |
| 873 | ret = kstrtoul(s: val, base: 10, res: lo); |
| 874 | if (ret) |
| 875 | return ret; |
| 876 | if (*lo >= nr_pages) |
| 877 | return -ERANGE; |
| 878 | |
| 879 | ret = kstrtoul(s: delim + 1, base: 10, res: hi); |
| 880 | if (ret) |
| 881 | return ret; |
| 882 | if (*hi >= nr_pages || *lo > *hi) |
| 883 | return -ERANGE; |
| 884 | *hi += 1; |
| 885 | return 0; |
| 886 | } |
| 887 | |
| 888 | static int parse_mode(char *val, u32 *mode) |
| 889 | { |
| 890 | *mode = 0; |
| 891 | |
| 892 | if (!strcmp(val, "idle" )) |
| 893 | *mode = IDLE_WRITEBACK; |
| 894 | if (!strcmp(val, "huge" )) |
| 895 | *mode = HUGE_WRITEBACK; |
| 896 | if (!strcmp(val, "huge_idle" )) |
| 897 | *mode = IDLE_WRITEBACK | HUGE_WRITEBACK; |
| 898 | if (!strcmp(val, "incompressible" )) |
| 899 | *mode = INCOMPRESSIBLE_WRITEBACK; |
| 900 | |
| 901 | if (*mode == 0) |
| 902 | return -EINVAL; |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | static int scan_slots_for_writeback(struct zram *zram, u32 mode, |
| 907 | unsigned long lo, unsigned long hi, |
| 908 | struct zram_pp_ctl *ctl) |
| 909 | { |
| 910 | u32 index = lo; |
| 911 | |
| 912 | while (index < hi) { |
| 913 | bool ok = true; |
| 914 | |
| 915 | zram_slot_lock(zram, index); |
| 916 | if (!zram_allocated(zram, index)) |
| 917 | goto next; |
| 918 | |
| 919 | if (zram_test_flag(zram, index, flag: ZRAM_WB) || |
| 920 | zram_test_flag(zram, index, flag: ZRAM_SAME)) |
| 921 | goto next; |
| 922 | |
| 923 | if (mode & IDLE_WRITEBACK && |
| 924 | !zram_test_flag(zram, index, flag: ZRAM_IDLE)) |
| 925 | goto next; |
| 926 | if (mode & HUGE_WRITEBACK && |
| 927 | !zram_test_flag(zram, index, flag: ZRAM_HUGE)) |
| 928 | goto next; |
| 929 | if (mode & INCOMPRESSIBLE_WRITEBACK && |
| 930 | !zram_test_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE)) |
| 931 | goto next; |
| 932 | |
| 933 | ok = place_pp_slot(zram, ctl, index); |
| 934 | next: |
| 935 | zram_slot_unlock(zram, index); |
| 936 | if (!ok) |
| 937 | break; |
| 938 | index++; |
| 939 | } |
| 940 | |
| 941 | return 0; |
| 942 | } |
| 943 | |
| 944 | static ssize_t writeback_store(struct device *dev, |
| 945 | struct device_attribute *attr, |
| 946 | const char *buf, size_t len) |
| 947 | { |
| 948 | struct zram *zram = dev_to_zram(dev); |
| 949 | u64 nr_pages = zram->disksize >> PAGE_SHIFT; |
| 950 | unsigned long lo = 0, hi = nr_pages; |
| 951 | struct zram_pp_ctl *ctl = NULL; |
| 952 | char *args, *param, *val; |
| 953 | ssize_t ret = len; |
| 954 | int err, mode = 0; |
| 955 | |
| 956 | down_read(sem: &zram->init_lock); |
| 957 | if (!init_done(zram)) { |
| 958 | up_read(sem: &zram->init_lock); |
| 959 | return -EINVAL; |
| 960 | } |
| 961 | |
| 962 | /* Do not permit concurrent post-processing actions. */ |
| 963 | if (atomic_xchg(v: &zram->pp_in_progress, new: 1)) { |
| 964 | up_read(sem: &zram->init_lock); |
| 965 | return -EAGAIN; |
| 966 | } |
| 967 | |
| 968 | if (!zram->backing_dev) { |
| 969 | ret = -ENODEV; |
| 970 | goto release_init_lock; |
| 971 | } |
| 972 | |
| 973 | ctl = init_pp_ctl(); |
| 974 | if (!ctl) { |
| 975 | ret = -ENOMEM; |
| 976 | goto release_init_lock; |
| 977 | } |
| 978 | |
| 979 | args = skip_spaces(buf); |
| 980 | while (*args) { |
| 981 | args = next_arg(args, param: ¶m, val: &val); |
| 982 | |
| 983 | /* |
| 984 | * Workaround to support the old writeback interface. |
| 985 | * |
| 986 | * The old writeback interface has a minor inconsistency and |
| 987 | * requires key=value only for page_index parameter, while the |
| 988 | * writeback mode is a valueless parameter. |
| 989 | * |
| 990 | * This is not the case anymore and now all parameters are |
| 991 | * required to have values, however, we need to support the |
| 992 | * legacy writeback interface format so we check if we can |
| 993 | * recognize a valueless parameter as the (legacy) writeback |
| 994 | * mode. |
| 995 | */ |
| 996 | if (!val || !*val) { |
| 997 | err = parse_mode(val: param, mode: &mode); |
| 998 | if (err) { |
| 999 | ret = err; |
| 1000 | goto release_init_lock; |
| 1001 | } |
| 1002 | |
| 1003 | scan_slots_for_writeback(zram, mode, lo, hi, ctl); |
| 1004 | break; |
| 1005 | } |
| 1006 | |
| 1007 | if (!strcmp(param, "type" )) { |
| 1008 | err = parse_mode(val, mode: &mode); |
| 1009 | if (err) { |
| 1010 | ret = err; |
| 1011 | goto release_init_lock; |
| 1012 | } |
| 1013 | |
| 1014 | scan_slots_for_writeback(zram, mode, lo, hi, ctl); |
| 1015 | break; |
| 1016 | } |
| 1017 | |
| 1018 | if (!strcmp(param, "page_index" )) { |
| 1019 | err = parse_page_index(val, nr_pages, lo: &lo, hi: &hi); |
| 1020 | if (err) { |
| 1021 | ret = err; |
| 1022 | goto release_init_lock; |
| 1023 | } |
| 1024 | |
| 1025 | scan_slots_for_writeback(zram, mode, lo, hi, ctl); |
| 1026 | continue; |
| 1027 | } |
| 1028 | |
| 1029 | if (!strcmp(param, "page_indexes" )) { |
| 1030 | err = parse_page_indexes(val, nr_pages, lo: &lo, hi: &hi); |
| 1031 | if (err) { |
| 1032 | ret = err; |
| 1033 | goto release_init_lock; |
| 1034 | } |
| 1035 | |
| 1036 | scan_slots_for_writeback(zram, mode, lo, hi, ctl); |
| 1037 | continue; |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | err = zram_writeback_slots(zram, ctl); |
| 1042 | if (err) |
| 1043 | ret = err; |
| 1044 | |
| 1045 | release_init_lock: |
| 1046 | release_pp_ctl(zram, ctl); |
| 1047 | atomic_set(v: &zram->pp_in_progress, i: 0); |
| 1048 | up_read(sem: &zram->init_lock); |
| 1049 | |
| 1050 | return ret; |
| 1051 | } |
| 1052 | |
| 1053 | struct zram_work { |
| 1054 | struct work_struct work; |
| 1055 | struct zram *zram; |
| 1056 | unsigned long entry; |
| 1057 | struct page *page; |
| 1058 | int error; |
| 1059 | }; |
| 1060 | |
| 1061 | static void zram_sync_read(struct work_struct *work) |
| 1062 | { |
| 1063 | struct zram_work *zw = container_of(work, struct zram_work, work); |
| 1064 | struct bio_vec bv; |
| 1065 | struct bio bio; |
| 1066 | |
| 1067 | bio_init(bio: &bio, bdev: zw->zram->bdev, table: &bv, max_vecs: 1, opf: REQ_OP_READ); |
| 1068 | bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); |
| 1069 | __bio_add_page(bio: &bio, page: zw->page, PAGE_SIZE, off: 0); |
| 1070 | zw->error = submit_bio_wait(bio: &bio); |
| 1071 | } |
| 1072 | |
| 1073 | /* |
| 1074 | * Block layer want one ->submit_bio to be active at a time, so if we use |
| 1075 | * chained IO with parent IO in same context, it's a deadlock. To avoid that, |
| 1076 | * use a worker thread context. |
| 1077 | */ |
| 1078 | static int read_from_bdev_sync(struct zram *zram, struct page *page, |
| 1079 | unsigned long entry) |
| 1080 | { |
| 1081 | struct zram_work work; |
| 1082 | |
| 1083 | work.page = page; |
| 1084 | work.zram = zram; |
| 1085 | work.entry = entry; |
| 1086 | |
| 1087 | INIT_WORK_ONSTACK(&work.work, zram_sync_read); |
| 1088 | queue_work(wq: system_unbound_wq, work: &work.work); |
| 1089 | flush_work(work: &work.work); |
| 1090 | destroy_work_on_stack(work: &work.work); |
| 1091 | |
| 1092 | return work.error; |
| 1093 | } |
| 1094 | |
| 1095 | static int read_from_bdev(struct zram *zram, struct page *page, |
| 1096 | unsigned long entry, struct bio *parent) |
| 1097 | { |
| 1098 | atomic64_inc(v: &zram->stats.bd_reads); |
| 1099 | if (!parent) { |
| 1100 | if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) |
| 1101 | return -EIO; |
| 1102 | return read_from_bdev_sync(zram, page, entry); |
| 1103 | } |
| 1104 | read_from_bdev_async(zram, page, entry, parent); |
| 1105 | return 0; |
| 1106 | } |
| 1107 | #else |
| 1108 | static inline void reset_bdev(struct zram *zram) {}; |
| 1109 | static int read_from_bdev(struct zram *zram, struct page *page, |
| 1110 | unsigned long entry, struct bio *parent) |
| 1111 | { |
| 1112 | return -EIO; |
| 1113 | } |
| 1114 | |
| 1115 | static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; |
| 1116 | #endif |
| 1117 | |
| 1118 | #ifdef CONFIG_ZRAM_MEMORY_TRACKING |
| 1119 | |
| 1120 | static struct dentry *zram_debugfs_root; |
| 1121 | |
| 1122 | static void zram_debugfs_create(void) |
| 1123 | { |
| 1124 | zram_debugfs_root = debugfs_create_dir(name: "zram" , NULL); |
| 1125 | } |
| 1126 | |
| 1127 | static void zram_debugfs_destroy(void) |
| 1128 | { |
| 1129 | debugfs_remove_recursive(dentry: zram_debugfs_root); |
| 1130 | } |
| 1131 | |
| 1132 | static ssize_t read_block_state(struct file *file, char __user *buf, |
| 1133 | size_t count, loff_t *ppos) |
| 1134 | { |
| 1135 | char *kbuf; |
| 1136 | ssize_t index, written = 0; |
| 1137 | struct zram *zram = file->private_data; |
| 1138 | unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| 1139 | struct timespec64 ts; |
| 1140 | |
| 1141 | kbuf = kvmalloc(count, GFP_KERNEL); |
| 1142 | if (!kbuf) |
| 1143 | return -ENOMEM; |
| 1144 | |
| 1145 | down_read(sem: &zram->init_lock); |
| 1146 | if (!init_done(zram)) { |
| 1147 | up_read(sem: &zram->init_lock); |
| 1148 | kvfree(addr: kbuf); |
| 1149 | return -EINVAL; |
| 1150 | } |
| 1151 | |
| 1152 | for (index = *ppos; index < nr_pages; index++) { |
| 1153 | int copied; |
| 1154 | |
| 1155 | zram_slot_lock(zram, index); |
| 1156 | if (!zram_allocated(zram, index)) |
| 1157 | goto next; |
| 1158 | |
| 1159 | ts = ktime_to_timespec64(zram->table[index].ac_time); |
| 1160 | copied = snprintf(buf: kbuf + written, size: count, |
| 1161 | fmt: "%12zd %12lld.%06lu %c%c%c%c%c%c\n" , |
| 1162 | index, (s64)ts.tv_sec, |
| 1163 | ts.tv_nsec / NSEC_PER_USEC, |
| 1164 | zram_test_flag(zram, index, flag: ZRAM_SAME) ? 's' : '.', |
| 1165 | zram_test_flag(zram, index, flag: ZRAM_WB) ? 'w' : '.', |
| 1166 | zram_test_flag(zram, index, flag: ZRAM_HUGE) ? 'h' : '.', |
| 1167 | zram_test_flag(zram, index, flag: ZRAM_IDLE) ? 'i' : '.', |
| 1168 | zram_get_priority(zram, index) ? 'r' : '.', |
| 1169 | zram_test_flag(zram, index, |
| 1170 | flag: ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); |
| 1171 | |
| 1172 | if (count <= copied) { |
| 1173 | zram_slot_unlock(zram, index); |
| 1174 | break; |
| 1175 | } |
| 1176 | written += copied; |
| 1177 | count -= copied; |
| 1178 | next: |
| 1179 | zram_slot_unlock(zram, index); |
| 1180 | *ppos += 1; |
| 1181 | } |
| 1182 | |
| 1183 | up_read(sem: &zram->init_lock); |
| 1184 | if (copy_to_user(to: buf, from: kbuf, n: written)) |
| 1185 | written = -EFAULT; |
| 1186 | kvfree(addr: kbuf); |
| 1187 | |
| 1188 | return written; |
| 1189 | } |
| 1190 | |
| 1191 | static const struct file_operations proc_zram_block_state_op = { |
| 1192 | .open = simple_open, |
| 1193 | .read = read_block_state, |
| 1194 | .llseek = default_llseek, |
| 1195 | }; |
| 1196 | |
| 1197 | static void zram_debugfs_register(struct zram *zram) |
| 1198 | { |
| 1199 | if (!zram_debugfs_root) |
| 1200 | return; |
| 1201 | |
| 1202 | zram->debugfs_dir = debugfs_create_dir(name: zram->disk->disk_name, |
| 1203 | parent: zram_debugfs_root); |
| 1204 | debugfs_create_file("block_state" , 0400, zram->debugfs_dir, |
| 1205 | zram, &proc_zram_block_state_op); |
| 1206 | } |
| 1207 | |
| 1208 | static void zram_debugfs_unregister(struct zram *zram) |
| 1209 | { |
| 1210 | debugfs_remove_recursive(dentry: zram->debugfs_dir); |
| 1211 | } |
| 1212 | #else |
| 1213 | static void zram_debugfs_create(void) {}; |
| 1214 | static void zram_debugfs_destroy(void) {}; |
| 1215 | static void zram_debugfs_register(struct zram *zram) {}; |
| 1216 | static void zram_debugfs_unregister(struct zram *zram) {}; |
| 1217 | #endif |
| 1218 | |
| 1219 | static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) |
| 1220 | { |
| 1221 | /* Do not free statically defined compression algorithms */ |
| 1222 | if (zram->comp_algs[prio] != default_compressor) |
| 1223 | kfree(objp: zram->comp_algs[prio]); |
| 1224 | |
| 1225 | zram->comp_algs[prio] = alg; |
| 1226 | } |
| 1227 | |
| 1228 | static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) |
| 1229 | { |
| 1230 | ssize_t sz; |
| 1231 | |
| 1232 | down_read(sem: &zram->init_lock); |
| 1233 | sz = zcomp_available_show(comp: zram->comp_algs[prio], buf); |
| 1234 | up_read(sem: &zram->init_lock); |
| 1235 | |
| 1236 | return sz; |
| 1237 | } |
| 1238 | |
| 1239 | static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) |
| 1240 | { |
| 1241 | char *compressor; |
| 1242 | size_t sz; |
| 1243 | |
| 1244 | sz = strlen(buf); |
| 1245 | if (sz >= ZRAM_MAX_ALGO_NAME_SZ) |
| 1246 | return -E2BIG; |
| 1247 | |
| 1248 | compressor = kstrdup(s: buf, GFP_KERNEL); |
| 1249 | if (!compressor) |
| 1250 | return -ENOMEM; |
| 1251 | |
| 1252 | /* ignore trailing newline */ |
| 1253 | if (sz > 0 && compressor[sz - 1] == '\n') |
| 1254 | compressor[sz - 1] = 0x00; |
| 1255 | |
| 1256 | if (!zcomp_available_algorithm(comp: compressor)) { |
| 1257 | kfree(objp: compressor); |
| 1258 | return -EINVAL; |
| 1259 | } |
| 1260 | |
| 1261 | down_write(sem: &zram->init_lock); |
| 1262 | if (init_done(zram)) { |
| 1263 | up_write(sem: &zram->init_lock); |
| 1264 | kfree(objp: compressor); |
| 1265 | pr_info("Can't change algorithm for initialized device\n" ); |
| 1266 | return -EBUSY; |
| 1267 | } |
| 1268 | |
| 1269 | comp_algorithm_set(zram, prio, alg: compressor); |
| 1270 | up_write(sem: &zram->init_lock); |
| 1271 | return 0; |
| 1272 | } |
| 1273 | |
| 1274 | static void comp_params_reset(struct zram *zram, u32 prio) |
| 1275 | { |
| 1276 | struct zcomp_params *params = &zram->params[prio]; |
| 1277 | |
| 1278 | vfree(addr: params->dict); |
| 1279 | params->level = ZCOMP_PARAM_NOT_SET; |
| 1280 | params->deflate.winbits = ZCOMP_PARAM_NOT_SET; |
| 1281 | params->dict_sz = 0; |
| 1282 | params->dict = NULL; |
| 1283 | } |
| 1284 | |
| 1285 | static int comp_params_store(struct zram *zram, u32 prio, s32 level, |
| 1286 | const char *dict_path, |
| 1287 | struct deflate_params *deflate_params) |
| 1288 | { |
| 1289 | ssize_t sz = 0; |
| 1290 | |
| 1291 | comp_params_reset(zram, prio); |
| 1292 | |
| 1293 | if (dict_path) { |
| 1294 | sz = kernel_read_file_from_path(path: dict_path, offset: 0, |
| 1295 | buf: &zram->params[prio].dict, |
| 1296 | INT_MAX, |
| 1297 | NULL, |
| 1298 | id: READING_POLICY); |
| 1299 | if (sz < 0) |
| 1300 | return -EINVAL; |
| 1301 | } |
| 1302 | |
| 1303 | zram->params[prio].dict_sz = sz; |
| 1304 | zram->params[prio].level = level; |
| 1305 | zram->params[prio].deflate.winbits = deflate_params->winbits; |
| 1306 | return 0; |
| 1307 | } |
| 1308 | |
| 1309 | static ssize_t algorithm_params_store(struct device *dev, |
| 1310 | struct device_attribute *attr, |
| 1311 | const char *buf, |
| 1312 | size_t len) |
| 1313 | { |
| 1314 | s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NOT_SET; |
| 1315 | char *args, *param, *val, *algo = NULL, *dict_path = NULL; |
| 1316 | struct deflate_params deflate_params; |
| 1317 | struct zram *zram = dev_to_zram(dev); |
| 1318 | int ret; |
| 1319 | |
| 1320 | deflate_params.winbits = ZCOMP_PARAM_NOT_SET; |
| 1321 | |
| 1322 | args = skip_spaces(buf); |
| 1323 | while (*args) { |
| 1324 | args = next_arg(args, param: ¶m, val: &val); |
| 1325 | |
| 1326 | if (!val || !*val) |
| 1327 | return -EINVAL; |
| 1328 | |
| 1329 | if (!strcmp(param, "priority" )) { |
| 1330 | ret = kstrtoint(s: val, base: 10, res: &prio); |
| 1331 | if (ret) |
| 1332 | return ret; |
| 1333 | continue; |
| 1334 | } |
| 1335 | |
| 1336 | if (!strcmp(param, "level" )) { |
| 1337 | ret = kstrtoint(s: val, base: 10, res: &level); |
| 1338 | if (ret) |
| 1339 | return ret; |
| 1340 | continue; |
| 1341 | } |
| 1342 | |
| 1343 | if (!strcmp(param, "algo" )) { |
| 1344 | algo = val; |
| 1345 | continue; |
| 1346 | } |
| 1347 | |
| 1348 | if (!strcmp(param, "dict" )) { |
| 1349 | dict_path = val; |
| 1350 | continue; |
| 1351 | } |
| 1352 | |
| 1353 | if (!strcmp(param, "deflate.winbits" )) { |
| 1354 | ret = kstrtoint(s: val, base: 10, res: &deflate_params.winbits); |
| 1355 | if (ret) |
| 1356 | return ret; |
| 1357 | continue; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | /* Lookup priority by algorithm name */ |
| 1362 | if (algo) { |
| 1363 | s32 p; |
| 1364 | |
| 1365 | prio = -EINVAL; |
| 1366 | for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) { |
| 1367 | if (!zram->comp_algs[p]) |
| 1368 | continue; |
| 1369 | |
| 1370 | if (!strcmp(zram->comp_algs[p], algo)) { |
| 1371 | prio = p; |
| 1372 | break; |
| 1373 | } |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS) |
| 1378 | return -EINVAL; |
| 1379 | |
| 1380 | ret = comp_params_store(zram, prio, level, dict_path, deflate_params: &deflate_params); |
| 1381 | return ret ? ret : len; |
| 1382 | } |
| 1383 | |
| 1384 | static ssize_t comp_algorithm_show(struct device *dev, |
| 1385 | struct device_attribute *attr, |
| 1386 | char *buf) |
| 1387 | { |
| 1388 | struct zram *zram = dev_to_zram(dev); |
| 1389 | |
| 1390 | return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); |
| 1391 | } |
| 1392 | |
| 1393 | static ssize_t comp_algorithm_store(struct device *dev, |
| 1394 | struct device_attribute *attr, |
| 1395 | const char *buf, |
| 1396 | size_t len) |
| 1397 | { |
| 1398 | struct zram *zram = dev_to_zram(dev); |
| 1399 | int ret; |
| 1400 | |
| 1401 | ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); |
| 1402 | return ret ? ret : len; |
| 1403 | } |
| 1404 | |
| 1405 | #ifdef CONFIG_ZRAM_MULTI_COMP |
| 1406 | static ssize_t recomp_algorithm_show(struct device *dev, |
| 1407 | struct device_attribute *attr, |
| 1408 | char *buf) |
| 1409 | { |
| 1410 | struct zram *zram = dev_to_zram(dev); |
| 1411 | ssize_t sz = 0; |
| 1412 | u32 prio; |
| 1413 | |
| 1414 | for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { |
| 1415 | if (!zram->comp_algs[prio]) |
| 1416 | continue; |
| 1417 | |
| 1418 | sz += scnprintf(buf: buf + sz, PAGE_SIZE - sz - 2, fmt: "#%d: " , prio); |
| 1419 | sz += __comp_algorithm_show(zram, prio, buf: buf + sz); |
| 1420 | } |
| 1421 | |
| 1422 | return sz; |
| 1423 | } |
| 1424 | |
| 1425 | static ssize_t recomp_algorithm_store(struct device *dev, |
| 1426 | struct device_attribute *attr, |
| 1427 | const char *buf, |
| 1428 | size_t len) |
| 1429 | { |
| 1430 | struct zram *zram = dev_to_zram(dev); |
| 1431 | int prio = ZRAM_SECONDARY_COMP; |
| 1432 | char *args, *param, *val; |
| 1433 | char *alg = NULL; |
| 1434 | int ret; |
| 1435 | |
| 1436 | args = skip_spaces(buf); |
| 1437 | while (*args) { |
| 1438 | args = next_arg(args, param: ¶m, val: &val); |
| 1439 | |
| 1440 | if (!val || !*val) |
| 1441 | return -EINVAL; |
| 1442 | |
| 1443 | if (!strcmp(param, "algo" )) { |
| 1444 | alg = val; |
| 1445 | continue; |
| 1446 | } |
| 1447 | |
| 1448 | if (!strcmp(param, "priority" )) { |
| 1449 | ret = kstrtoint(s: val, base: 10, res: &prio); |
| 1450 | if (ret) |
| 1451 | return ret; |
| 1452 | continue; |
| 1453 | } |
| 1454 | } |
| 1455 | |
| 1456 | if (!alg) |
| 1457 | return -EINVAL; |
| 1458 | |
| 1459 | if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) |
| 1460 | return -EINVAL; |
| 1461 | |
| 1462 | ret = __comp_algorithm_store(zram, prio, buf: alg); |
| 1463 | return ret ? ret : len; |
| 1464 | } |
| 1465 | #endif |
| 1466 | |
| 1467 | static ssize_t compact_store(struct device *dev, |
| 1468 | struct device_attribute *attr, const char *buf, size_t len) |
| 1469 | { |
| 1470 | struct zram *zram = dev_to_zram(dev); |
| 1471 | |
| 1472 | down_read(sem: &zram->init_lock); |
| 1473 | if (!init_done(zram)) { |
| 1474 | up_read(sem: &zram->init_lock); |
| 1475 | return -EINVAL; |
| 1476 | } |
| 1477 | |
| 1478 | zs_compact(pool: zram->mem_pool); |
| 1479 | up_read(sem: &zram->init_lock); |
| 1480 | |
| 1481 | return len; |
| 1482 | } |
| 1483 | |
| 1484 | static ssize_t io_stat_show(struct device *dev, |
| 1485 | struct device_attribute *attr, char *buf) |
| 1486 | { |
| 1487 | struct zram *zram = dev_to_zram(dev); |
| 1488 | ssize_t ret; |
| 1489 | |
| 1490 | down_read(sem: &zram->init_lock); |
| 1491 | ret = scnprintf(buf, PAGE_SIZE, |
| 1492 | fmt: "%8llu %8llu 0 %8llu\n" , |
| 1493 | (u64)atomic64_read(v: &zram->stats.failed_reads), |
| 1494 | (u64)atomic64_read(v: &zram->stats.failed_writes), |
| 1495 | (u64)atomic64_read(v: &zram->stats.notify_free)); |
| 1496 | up_read(sem: &zram->init_lock); |
| 1497 | |
| 1498 | return ret; |
| 1499 | } |
| 1500 | |
| 1501 | static ssize_t mm_stat_show(struct device *dev, |
| 1502 | struct device_attribute *attr, char *buf) |
| 1503 | { |
| 1504 | struct zram *zram = dev_to_zram(dev); |
| 1505 | struct zs_pool_stats pool_stats; |
| 1506 | u64 orig_size, mem_used = 0; |
| 1507 | long max_used; |
| 1508 | ssize_t ret; |
| 1509 | |
| 1510 | memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); |
| 1511 | |
| 1512 | down_read(sem: &zram->init_lock); |
| 1513 | if (init_done(zram)) { |
| 1514 | mem_used = zs_get_total_pages(pool: zram->mem_pool); |
| 1515 | zs_pool_stats(pool: zram->mem_pool, stats: &pool_stats); |
| 1516 | } |
| 1517 | |
| 1518 | orig_size = atomic64_read(v: &zram->stats.pages_stored); |
| 1519 | max_used = atomic_long_read(v: &zram->stats.max_used_pages); |
| 1520 | |
| 1521 | ret = scnprintf(buf, PAGE_SIZE, |
| 1522 | fmt: "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n" , |
| 1523 | orig_size << PAGE_SHIFT, |
| 1524 | (u64)atomic64_read(v: &zram->stats.compr_data_size), |
| 1525 | mem_used << PAGE_SHIFT, |
| 1526 | zram->limit_pages << PAGE_SHIFT, |
| 1527 | max_used << PAGE_SHIFT, |
| 1528 | (u64)atomic64_read(v: &zram->stats.same_pages), |
| 1529 | atomic_long_read(v: &pool_stats.pages_compacted), |
| 1530 | (u64)atomic64_read(v: &zram->stats.huge_pages), |
| 1531 | (u64)atomic64_read(v: &zram->stats.huge_pages_since)); |
| 1532 | up_read(sem: &zram->init_lock); |
| 1533 | |
| 1534 | return ret; |
| 1535 | } |
| 1536 | |
| 1537 | #ifdef CONFIG_ZRAM_WRITEBACK |
| 1538 | #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) |
| 1539 | static ssize_t bd_stat_show(struct device *dev, |
| 1540 | struct device_attribute *attr, char *buf) |
| 1541 | { |
| 1542 | struct zram *zram = dev_to_zram(dev); |
| 1543 | ssize_t ret; |
| 1544 | |
| 1545 | down_read(sem: &zram->init_lock); |
| 1546 | ret = scnprintf(buf, PAGE_SIZE, |
| 1547 | fmt: "%8llu %8llu %8llu\n" , |
| 1548 | FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), |
| 1549 | FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), |
| 1550 | FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); |
| 1551 | up_read(sem: &zram->init_lock); |
| 1552 | |
| 1553 | return ret; |
| 1554 | } |
| 1555 | #endif |
| 1556 | |
| 1557 | static ssize_t debug_stat_show(struct device *dev, |
| 1558 | struct device_attribute *attr, char *buf) |
| 1559 | { |
| 1560 | int version = 1; |
| 1561 | struct zram *zram = dev_to_zram(dev); |
| 1562 | ssize_t ret; |
| 1563 | |
| 1564 | down_read(sem: &zram->init_lock); |
| 1565 | ret = scnprintf(buf, PAGE_SIZE, |
| 1566 | fmt: "version: %d\n0 %8llu\n" , |
| 1567 | version, |
| 1568 | (u64)atomic64_read(v: &zram->stats.miss_free)); |
| 1569 | up_read(sem: &zram->init_lock); |
| 1570 | |
| 1571 | return ret; |
| 1572 | } |
| 1573 | |
| 1574 | static DEVICE_ATTR_RO(io_stat); |
| 1575 | static DEVICE_ATTR_RO(mm_stat); |
| 1576 | #ifdef CONFIG_ZRAM_WRITEBACK |
| 1577 | static DEVICE_ATTR_RO(bd_stat); |
| 1578 | #endif |
| 1579 | static DEVICE_ATTR_RO(debug_stat); |
| 1580 | |
| 1581 | static void zram_meta_free(struct zram *zram, u64 disksize) |
| 1582 | { |
| 1583 | size_t num_pages = disksize >> PAGE_SHIFT; |
| 1584 | size_t index; |
| 1585 | |
| 1586 | if (!zram->table) |
| 1587 | return; |
| 1588 | |
| 1589 | /* Free all pages that are still in this zram device */ |
| 1590 | for (index = 0; index < num_pages; index++) |
| 1591 | zram_free_page(zram, index); |
| 1592 | |
| 1593 | zs_destroy_pool(pool: zram->mem_pool); |
| 1594 | vfree(addr: zram->table); |
| 1595 | zram->table = NULL; |
| 1596 | } |
| 1597 | |
| 1598 | static bool zram_meta_alloc(struct zram *zram, u64 disksize) |
| 1599 | { |
| 1600 | size_t num_pages, index; |
| 1601 | |
| 1602 | num_pages = disksize >> PAGE_SHIFT; |
| 1603 | zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); |
| 1604 | if (!zram->table) |
| 1605 | return false; |
| 1606 | |
| 1607 | zram->mem_pool = zs_create_pool(name: zram->disk->disk_name); |
| 1608 | if (!zram->mem_pool) { |
| 1609 | vfree(addr: zram->table); |
| 1610 | zram->table = NULL; |
| 1611 | return false; |
| 1612 | } |
| 1613 | |
| 1614 | if (!huge_class_size) |
| 1615 | huge_class_size = zs_huge_class_size(pool: zram->mem_pool); |
| 1616 | |
| 1617 | for (index = 0; index < num_pages; index++) |
| 1618 | zram_slot_lock_init(zram, index); |
| 1619 | |
| 1620 | return true; |
| 1621 | } |
| 1622 | |
| 1623 | static void zram_free_page(struct zram *zram, size_t index) |
| 1624 | { |
| 1625 | unsigned long handle; |
| 1626 | |
| 1627 | #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME |
| 1628 | zram->table[index].ac_time = 0; |
| 1629 | #endif |
| 1630 | |
| 1631 | zram_clear_flag(zram, index, flag: ZRAM_IDLE); |
| 1632 | zram_clear_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE); |
| 1633 | zram_clear_flag(zram, index, flag: ZRAM_PP_SLOT); |
| 1634 | zram_set_priority(zram, index, prio: 0); |
| 1635 | |
| 1636 | if (zram_test_flag(zram, index, flag: ZRAM_HUGE)) { |
| 1637 | zram_clear_flag(zram, index, flag: ZRAM_HUGE); |
| 1638 | atomic64_dec(v: &zram->stats.huge_pages); |
| 1639 | } |
| 1640 | |
| 1641 | if (zram_test_flag(zram, index, flag: ZRAM_WB)) { |
| 1642 | zram_clear_flag(zram, index, flag: ZRAM_WB); |
| 1643 | free_block_bdev(zram, blk_idx: zram_get_handle(zram, index)); |
| 1644 | goto out; |
| 1645 | } |
| 1646 | |
| 1647 | /* |
| 1648 | * No memory is allocated for same element filled pages. |
| 1649 | * Simply clear same page flag. |
| 1650 | */ |
| 1651 | if (zram_test_flag(zram, index, flag: ZRAM_SAME)) { |
| 1652 | zram_clear_flag(zram, index, flag: ZRAM_SAME); |
| 1653 | atomic64_dec(v: &zram->stats.same_pages); |
| 1654 | goto out; |
| 1655 | } |
| 1656 | |
| 1657 | handle = zram_get_handle(zram, index); |
| 1658 | if (!handle) |
| 1659 | return; |
| 1660 | |
| 1661 | zs_free(pool: zram->mem_pool, obj: handle); |
| 1662 | |
| 1663 | atomic64_sub(i: zram_get_obj_size(zram, index), |
| 1664 | v: &zram->stats.compr_data_size); |
| 1665 | out: |
| 1666 | atomic64_dec(v: &zram->stats.pages_stored); |
| 1667 | zram_set_handle(zram, index, handle: 0); |
| 1668 | zram_set_obj_size(zram, index, size: 0); |
| 1669 | } |
| 1670 | |
| 1671 | static int read_same_filled_page(struct zram *zram, struct page *page, |
| 1672 | u32 index) |
| 1673 | { |
| 1674 | void *mem; |
| 1675 | |
| 1676 | mem = kmap_local_page(page); |
| 1677 | zram_fill_page(ptr: mem, PAGE_SIZE, value: zram_get_handle(zram, index)); |
| 1678 | kunmap_local(mem); |
| 1679 | return 0; |
| 1680 | } |
| 1681 | |
| 1682 | static int read_incompressible_page(struct zram *zram, struct page *page, |
| 1683 | u32 index) |
| 1684 | { |
| 1685 | unsigned long handle; |
| 1686 | void *src, *dst; |
| 1687 | |
| 1688 | handle = zram_get_handle(zram, index); |
| 1689 | src = zs_obj_read_begin(pool: zram->mem_pool, handle, NULL); |
| 1690 | dst = kmap_local_page(page); |
| 1691 | copy_page(to: dst, from: src); |
| 1692 | kunmap_local(dst); |
| 1693 | zs_obj_read_end(pool: zram->mem_pool, handle, handle_mem: src); |
| 1694 | |
| 1695 | return 0; |
| 1696 | } |
| 1697 | |
| 1698 | static int read_compressed_page(struct zram *zram, struct page *page, u32 index) |
| 1699 | { |
| 1700 | struct zcomp_strm *zstrm; |
| 1701 | unsigned long handle; |
| 1702 | unsigned int size; |
| 1703 | void *src, *dst; |
| 1704 | int ret, prio; |
| 1705 | |
| 1706 | handle = zram_get_handle(zram, index); |
| 1707 | size = zram_get_obj_size(zram, index); |
| 1708 | prio = zram_get_priority(zram, index); |
| 1709 | |
| 1710 | zstrm = zcomp_stream_get(comp: zram->comps[prio]); |
| 1711 | src = zs_obj_read_begin(pool: zram->mem_pool, handle, local_copy: zstrm->local_copy); |
| 1712 | dst = kmap_local_page(page); |
| 1713 | ret = zcomp_decompress(comp: zram->comps[prio], zstrm, src, src_len: size, dst); |
| 1714 | kunmap_local(dst); |
| 1715 | zs_obj_read_end(pool: zram->mem_pool, handle, handle_mem: src); |
| 1716 | zcomp_stream_put(zstrm); |
| 1717 | |
| 1718 | return ret; |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * Reads (decompresses if needed) a page from zspool (zsmalloc). |
| 1723 | * Corresponding ZRAM slot should be locked. |
| 1724 | */ |
| 1725 | static int zram_read_from_zspool(struct zram *zram, struct page *page, |
| 1726 | u32 index) |
| 1727 | { |
| 1728 | if (zram_test_flag(zram, index, flag: ZRAM_SAME) || |
| 1729 | !zram_get_handle(zram, index)) |
| 1730 | return read_same_filled_page(zram, page, index); |
| 1731 | |
| 1732 | if (!zram_test_flag(zram, index, flag: ZRAM_HUGE)) |
| 1733 | return read_compressed_page(zram, page, index); |
| 1734 | else |
| 1735 | return read_incompressible_page(zram, page, index); |
| 1736 | } |
| 1737 | |
| 1738 | static int zram_read_page(struct zram *zram, struct page *page, u32 index, |
| 1739 | struct bio *parent) |
| 1740 | { |
| 1741 | int ret; |
| 1742 | |
| 1743 | zram_slot_lock(zram, index); |
| 1744 | if (!zram_test_flag(zram, index, flag: ZRAM_WB)) { |
| 1745 | /* Slot should be locked through out the function call */ |
| 1746 | ret = zram_read_from_zspool(zram, page, index); |
| 1747 | zram_slot_unlock(zram, index); |
| 1748 | } else { |
| 1749 | /* |
| 1750 | * The slot should be unlocked before reading from the backing |
| 1751 | * device. |
| 1752 | */ |
| 1753 | zram_slot_unlock(zram, index); |
| 1754 | |
| 1755 | ret = read_from_bdev(zram, page, entry: zram_get_handle(zram, index), |
| 1756 | parent); |
| 1757 | } |
| 1758 | |
| 1759 | /* Should NEVER happen. Return bio error if it does. */ |
| 1760 | if (WARN_ON(ret < 0)) |
| 1761 | pr_err("Decompression failed! err=%d, page=%u\n" , ret, index); |
| 1762 | |
| 1763 | return ret; |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * Use a temporary buffer to decompress the page, as the decompressor |
| 1768 | * always expects a full page for the output. |
| 1769 | */ |
| 1770 | static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, |
| 1771 | u32 index, int offset) |
| 1772 | { |
| 1773 | struct page *page = alloc_page(GFP_NOIO); |
| 1774 | int ret; |
| 1775 | |
| 1776 | if (!page) |
| 1777 | return -ENOMEM; |
| 1778 | ret = zram_read_page(zram, page, index, NULL); |
| 1779 | if (likely(!ret)) |
| 1780 | memcpy_to_bvec(bvec, page_address(page) + offset); |
| 1781 | __free_page(page); |
| 1782 | return ret; |
| 1783 | } |
| 1784 | |
| 1785 | static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, |
| 1786 | u32 index, int offset, struct bio *bio) |
| 1787 | { |
| 1788 | if (is_partial_io(bvec)) |
| 1789 | return zram_bvec_read_partial(zram, bvec, index, offset); |
| 1790 | return zram_read_page(zram, page: bvec->bv_page, index, parent: bio); |
| 1791 | } |
| 1792 | |
| 1793 | static int write_same_filled_page(struct zram *zram, unsigned long fill, |
| 1794 | u32 index) |
| 1795 | { |
| 1796 | zram_slot_lock(zram, index); |
| 1797 | zram_set_flag(zram, index, flag: ZRAM_SAME); |
| 1798 | zram_set_handle(zram, index, handle: fill); |
| 1799 | zram_slot_unlock(zram, index); |
| 1800 | |
| 1801 | atomic64_inc(v: &zram->stats.same_pages); |
| 1802 | atomic64_inc(v: &zram->stats.pages_stored); |
| 1803 | |
| 1804 | return 0; |
| 1805 | } |
| 1806 | |
| 1807 | static int write_incompressible_page(struct zram *zram, struct page *page, |
| 1808 | u32 index) |
| 1809 | { |
| 1810 | unsigned long handle; |
| 1811 | void *src; |
| 1812 | |
| 1813 | /* |
| 1814 | * This function is called from preemptible context so we don't need |
| 1815 | * to do optimistic and fallback to pessimistic handle allocation, |
| 1816 | * like we do for compressible pages. |
| 1817 | */ |
| 1818 | handle = zs_malloc(pool: zram->mem_pool, PAGE_SIZE, |
| 1819 | GFP_NOIO | __GFP_NOWARN | |
| 1820 | __GFP_HIGHMEM | __GFP_MOVABLE, nid: page_to_nid(page)); |
| 1821 | if (IS_ERR_VALUE(handle)) |
| 1822 | return PTR_ERR(ptr: (void *)handle); |
| 1823 | |
| 1824 | if (!zram_can_store_page(zram)) { |
| 1825 | zs_free(pool: zram->mem_pool, obj: handle); |
| 1826 | return -ENOMEM; |
| 1827 | } |
| 1828 | |
| 1829 | src = kmap_local_page(page); |
| 1830 | zs_obj_write(pool: zram->mem_pool, handle, handle_mem: src, PAGE_SIZE); |
| 1831 | kunmap_local(src); |
| 1832 | |
| 1833 | zram_slot_lock(zram, index); |
| 1834 | zram_set_flag(zram, index, flag: ZRAM_HUGE); |
| 1835 | zram_set_handle(zram, index, handle); |
| 1836 | zram_set_obj_size(zram, index, PAGE_SIZE); |
| 1837 | zram_slot_unlock(zram, index); |
| 1838 | |
| 1839 | atomic64_add(PAGE_SIZE, v: &zram->stats.compr_data_size); |
| 1840 | atomic64_inc(v: &zram->stats.huge_pages); |
| 1841 | atomic64_inc(v: &zram->stats.huge_pages_since); |
| 1842 | atomic64_inc(v: &zram->stats.pages_stored); |
| 1843 | |
| 1844 | return 0; |
| 1845 | } |
| 1846 | |
| 1847 | static int zram_write_page(struct zram *zram, struct page *page, u32 index) |
| 1848 | { |
| 1849 | int ret = 0; |
| 1850 | unsigned long handle; |
| 1851 | unsigned int comp_len; |
| 1852 | void *mem; |
| 1853 | struct zcomp_strm *zstrm; |
| 1854 | unsigned long element; |
| 1855 | bool same_filled; |
| 1856 | |
| 1857 | /* First, free memory allocated to this slot (if any) */ |
| 1858 | zram_slot_lock(zram, index); |
| 1859 | zram_free_page(zram, index); |
| 1860 | zram_slot_unlock(zram, index); |
| 1861 | |
| 1862 | mem = kmap_local_page(page); |
| 1863 | same_filled = page_same_filled(ptr: mem, element: &element); |
| 1864 | kunmap_local(mem); |
| 1865 | if (same_filled) |
| 1866 | return write_same_filled_page(zram, fill: element, index); |
| 1867 | |
| 1868 | zstrm = zcomp_stream_get(comp: zram->comps[ZRAM_PRIMARY_COMP]); |
| 1869 | mem = kmap_local_page(page); |
| 1870 | ret = zcomp_compress(comp: zram->comps[ZRAM_PRIMARY_COMP], zstrm, |
| 1871 | src: mem, dst_len: &comp_len); |
| 1872 | kunmap_local(mem); |
| 1873 | |
| 1874 | if (unlikely(ret)) { |
| 1875 | zcomp_stream_put(zstrm); |
| 1876 | pr_err("Compression failed! err=%d\n" , ret); |
| 1877 | return ret; |
| 1878 | } |
| 1879 | |
| 1880 | if (comp_len >= huge_class_size) { |
| 1881 | zcomp_stream_put(zstrm); |
| 1882 | return write_incompressible_page(zram, page, index); |
| 1883 | } |
| 1884 | |
| 1885 | handle = zs_malloc(pool: zram->mem_pool, size: comp_len, |
| 1886 | GFP_NOIO | __GFP_NOWARN | |
| 1887 | __GFP_HIGHMEM | __GFP_MOVABLE, nid: page_to_nid(page)); |
| 1888 | if (IS_ERR_VALUE(handle)) { |
| 1889 | zcomp_stream_put(zstrm); |
| 1890 | return PTR_ERR(ptr: (void *)handle); |
| 1891 | } |
| 1892 | |
| 1893 | if (!zram_can_store_page(zram)) { |
| 1894 | zcomp_stream_put(zstrm); |
| 1895 | zs_free(pool: zram->mem_pool, obj: handle); |
| 1896 | return -ENOMEM; |
| 1897 | } |
| 1898 | |
| 1899 | zs_obj_write(pool: zram->mem_pool, handle, handle_mem: zstrm->buffer, mem_len: comp_len); |
| 1900 | zcomp_stream_put(zstrm); |
| 1901 | |
| 1902 | zram_slot_lock(zram, index); |
| 1903 | zram_set_handle(zram, index, handle); |
| 1904 | zram_set_obj_size(zram, index, size: comp_len); |
| 1905 | zram_slot_unlock(zram, index); |
| 1906 | |
| 1907 | /* Update stats */ |
| 1908 | atomic64_inc(v: &zram->stats.pages_stored); |
| 1909 | atomic64_add(i: comp_len, v: &zram->stats.compr_data_size); |
| 1910 | |
| 1911 | return ret; |
| 1912 | } |
| 1913 | |
| 1914 | /* |
| 1915 | * This is a partial IO. Read the full page before writing the changes. |
| 1916 | */ |
| 1917 | static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, |
| 1918 | u32 index, int offset, struct bio *bio) |
| 1919 | { |
| 1920 | struct page *page = alloc_page(GFP_NOIO); |
| 1921 | int ret; |
| 1922 | |
| 1923 | if (!page) |
| 1924 | return -ENOMEM; |
| 1925 | |
| 1926 | ret = zram_read_page(zram, page, index, parent: bio); |
| 1927 | if (!ret) { |
| 1928 | memcpy_from_bvec(page_address(page) + offset, bvec); |
| 1929 | ret = zram_write_page(zram, page, index); |
| 1930 | } |
| 1931 | __free_page(page); |
| 1932 | return ret; |
| 1933 | } |
| 1934 | |
| 1935 | static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, |
| 1936 | u32 index, int offset, struct bio *bio) |
| 1937 | { |
| 1938 | if (is_partial_io(bvec)) |
| 1939 | return zram_bvec_write_partial(zram, bvec, index, offset, bio); |
| 1940 | return zram_write_page(zram, page: bvec->bv_page, index); |
| 1941 | } |
| 1942 | |
| 1943 | #ifdef CONFIG_ZRAM_MULTI_COMP |
| 1944 | #define RECOMPRESS_IDLE (1 << 0) |
| 1945 | #define RECOMPRESS_HUGE (1 << 1) |
| 1946 | |
| 1947 | static int scan_slots_for_recompress(struct zram *zram, u32 mode, u32 prio_max, |
| 1948 | struct zram_pp_ctl *ctl) |
| 1949 | { |
| 1950 | unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| 1951 | unsigned long index; |
| 1952 | |
| 1953 | for (index = 0; index < nr_pages; index++) { |
| 1954 | bool ok = true; |
| 1955 | |
| 1956 | zram_slot_lock(zram, index); |
| 1957 | if (!zram_allocated(zram, index)) |
| 1958 | goto next; |
| 1959 | |
| 1960 | if (mode & RECOMPRESS_IDLE && |
| 1961 | !zram_test_flag(zram, index, flag: ZRAM_IDLE)) |
| 1962 | goto next; |
| 1963 | |
| 1964 | if (mode & RECOMPRESS_HUGE && |
| 1965 | !zram_test_flag(zram, index, flag: ZRAM_HUGE)) |
| 1966 | goto next; |
| 1967 | |
| 1968 | if (zram_test_flag(zram, index, flag: ZRAM_WB) || |
| 1969 | zram_test_flag(zram, index, flag: ZRAM_SAME) || |
| 1970 | zram_test_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE)) |
| 1971 | goto next; |
| 1972 | |
| 1973 | /* Already compressed with same of higher priority */ |
| 1974 | if (zram_get_priority(zram, index) + 1 >= prio_max) |
| 1975 | goto next; |
| 1976 | |
| 1977 | ok = place_pp_slot(zram, ctl, index); |
| 1978 | next: |
| 1979 | zram_slot_unlock(zram, index); |
| 1980 | if (!ok) |
| 1981 | break; |
| 1982 | } |
| 1983 | |
| 1984 | return 0; |
| 1985 | } |
| 1986 | |
| 1987 | /* |
| 1988 | * This function will decompress (unless it's ZRAM_HUGE) the page and then |
| 1989 | * attempt to compress it using provided compression algorithm priority |
| 1990 | * (which is potentially more effective). |
| 1991 | * |
| 1992 | * Corresponding ZRAM slot should be locked. |
| 1993 | */ |
| 1994 | static int recompress_slot(struct zram *zram, u32 index, struct page *page, |
| 1995 | u64 *num_recomp_pages, u32 threshold, u32 prio, |
| 1996 | u32 prio_max) |
| 1997 | { |
| 1998 | struct zcomp_strm *zstrm = NULL; |
| 1999 | unsigned long handle_old; |
| 2000 | unsigned long handle_new; |
| 2001 | unsigned int comp_len_old; |
| 2002 | unsigned int comp_len_new; |
| 2003 | unsigned int class_index_old; |
| 2004 | unsigned int class_index_new; |
| 2005 | void *src; |
| 2006 | int ret = 0; |
| 2007 | |
| 2008 | handle_old = zram_get_handle(zram, index); |
| 2009 | if (!handle_old) |
| 2010 | return -EINVAL; |
| 2011 | |
| 2012 | comp_len_old = zram_get_obj_size(zram, index); |
| 2013 | /* |
| 2014 | * Do not recompress objects that are already "small enough". |
| 2015 | */ |
| 2016 | if (comp_len_old < threshold) |
| 2017 | return 0; |
| 2018 | |
| 2019 | ret = zram_read_from_zspool(zram, page, index); |
| 2020 | if (ret) |
| 2021 | return ret; |
| 2022 | |
| 2023 | /* |
| 2024 | * We touched this entry so mark it as non-IDLE. This makes sure that |
| 2025 | * we don't preserve IDLE flag and don't incorrectly pick this entry |
| 2026 | * for different post-processing type (e.g. writeback). |
| 2027 | */ |
| 2028 | zram_clear_flag(zram, index, flag: ZRAM_IDLE); |
| 2029 | |
| 2030 | class_index_old = zs_lookup_class_index(pool: zram->mem_pool, size: comp_len_old); |
| 2031 | |
| 2032 | prio = max(prio, zram_get_priority(zram, index) + 1); |
| 2033 | /* |
| 2034 | * Recompression slots scan should not select slots that are |
| 2035 | * already compressed with a higher priority algorithm, but |
| 2036 | * just in case |
| 2037 | */ |
| 2038 | if (prio >= prio_max) |
| 2039 | return 0; |
| 2040 | |
| 2041 | /* |
| 2042 | * Iterate the secondary comp algorithms list (in order of priority) |
| 2043 | * and try to recompress the page. |
| 2044 | */ |
| 2045 | for (; prio < prio_max; prio++) { |
| 2046 | if (!zram->comps[prio]) |
| 2047 | continue; |
| 2048 | |
| 2049 | zstrm = zcomp_stream_get(comp: zram->comps[prio]); |
| 2050 | src = kmap_local_page(page); |
| 2051 | ret = zcomp_compress(comp: zram->comps[prio], zstrm, |
| 2052 | src, dst_len: &comp_len_new); |
| 2053 | kunmap_local(src); |
| 2054 | |
| 2055 | if (ret) { |
| 2056 | zcomp_stream_put(zstrm); |
| 2057 | zstrm = NULL; |
| 2058 | break; |
| 2059 | } |
| 2060 | |
| 2061 | class_index_new = zs_lookup_class_index(pool: zram->mem_pool, |
| 2062 | size: comp_len_new); |
| 2063 | |
| 2064 | /* Continue until we make progress */ |
| 2065 | if (class_index_new >= class_index_old || |
| 2066 | (threshold && comp_len_new >= threshold)) { |
| 2067 | zcomp_stream_put(zstrm); |
| 2068 | zstrm = NULL; |
| 2069 | continue; |
| 2070 | } |
| 2071 | |
| 2072 | /* Recompression was successful so break out */ |
| 2073 | break; |
| 2074 | } |
| 2075 | |
| 2076 | /* |
| 2077 | * Decrement the limit (if set) on pages we can recompress, even |
| 2078 | * when current recompression was unsuccessful or did not compress |
| 2079 | * the page below the threshold, because we still spent resources |
| 2080 | * on it. |
| 2081 | */ |
| 2082 | if (*num_recomp_pages) |
| 2083 | *num_recomp_pages -= 1; |
| 2084 | |
| 2085 | /* Compression error */ |
| 2086 | if (ret) |
| 2087 | return ret; |
| 2088 | |
| 2089 | if (!zstrm) { |
| 2090 | /* |
| 2091 | * Secondary algorithms failed to re-compress the page |
| 2092 | * in a way that would save memory. |
| 2093 | * |
| 2094 | * Mark the object incompressible if the max-priority |
| 2095 | * algorithm couldn't re-compress it. |
| 2096 | */ |
| 2097 | if (prio < zram->num_active_comps) |
| 2098 | return 0; |
| 2099 | zram_set_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE); |
| 2100 | return 0; |
| 2101 | } |
| 2102 | |
| 2103 | /* |
| 2104 | * We are holding per-CPU stream mutex and entry lock so better |
| 2105 | * avoid direct reclaim. Allocation error is not fatal since |
| 2106 | * we still have the old object in the mem_pool. |
| 2107 | * |
| 2108 | * XXX: technically, the node we really want here is the node that holds |
| 2109 | * the original compressed data. But that would require us to modify |
| 2110 | * zsmalloc API to return this information. For now, we will make do with |
| 2111 | * the node of the page allocated for recompression. |
| 2112 | */ |
| 2113 | handle_new = zs_malloc(pool: zram->mem_pool, size: comp_len_new, |
| 2114 | GFP_NOIO | __GFP_NOWARN | |
| 2115 | __GFP_HIGHMEM | __GFP_MOVABLE, nid: page_to_nid(page)); |
| 2116 | if (IS_ERR_VALUE(handle_new)) { |
| 2117 | zcomp_stream_put(zstrm); |
| 2118 | return PTR_ERR(ptr: (void *)handle_new); |
| 2119 | } |
| 2120 | |
| 2121 | zs_obj_write(pool: zram->mem_pool, handle: handle_new, handle_mem: zstrm->buffer, mem_len: comp_len_new); |
| 2122 | zcomp_stream_put(zstrm); |
| 2123 | |
| 2124 | zram_free_page(zram, index); |
| 2125 | zram_set_handle(zram, index, handle: handle_new); |
| 2126 | zram_set_obj_size(zram, index, size: comp_len_new); |
| 2127 | zram_set_priority(zram, index, prio); |
| 2128 | |
| 2129 | atomic64_add(i: comp_len_new, v: &zram->stats.compr_data_size); |
| 2130 | atomic64_inc(v: &zram->stats.pages_stored); |
| 2131 | |
| 2132 | return 0; |
| 2133 | } |
| 2134 | |
| 2135 | static ssize_t recompress_store(struct device *dev, |
| 2136 | struct device_attribute *attr, |
| 2137 | const char *buf, size_t len) |
| 2138 | { |
| 2139 | struct zram *zram = dev_to_zram(dev); |
| 2140 | char *args, *param, *val, *algo = NULL; |
| 2141 | u64 num_recomp_pages = ULLONG_MAX; |
| 2142 | struct zram_pp_ctl *ctl = NULL; |
| 2143 | struct zram_pp_slot *pps; |
| 2144 | u32 mode = 0, threshold = 0; |
| 2145 | u32 prio, prio_max; |
| 2146 | struct page *page = NULL; |
| 2147 | ssize_t ret; |
| 2148 | |
| 2149 | prio = ZRAM_SECONDARY_COMP; |
| 2150 | prio_max = zram->num_active_comps; |
| 2151 | |
| 2152 | args = skip_spaces(buf); |
| 2153 | while (*args) { |
| 2154 | args = next_arg(args, param: ¶m, val: &val); |
| 2155 | |
| 2156 | if (!val || !*val) |
| 2157 | return -EINVAL; |
| 2158 | |
| 2159 | if (!strcmp(param, "type" )) { |
| 2160 | if (!strcmp(val, "idle" )) |
| 2161 | mode = RECOMPRESS_IDLE; |
| 2162 | if (!strcmp(val, "huge" )) |
| 2163 | mode = RECOMPRESS_HUGE; |
| 2164 | if (!strcmp(val, "huge_idle" )) |
| 2165 | mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; |
| 2166 | continue; |
| 2167 | } |
| 2168 | |
| 2169 | if (!strcmp(param, "max_pages" )) { |
| 2170 | /* |
| 2171 | * Limit the number of entries (pages) we attempt to |
| 2172 | * recompress. |
| 2173 | */ |
| 2174 | ret = kstrtoull(s: val, base: 10, res: &num_recomp_pages); |
| 2175 | if (ret) |
| 2176 | return ret; |
| 2177 | continue; |
| 2178 | } |
| 2179 | |
| 2180 | if (!strcmp(param, "threshold" )) { |
| 2181 | /* |
| 2182 | * We will re-compress only idle objects equal or |
| 2183 | * greater in size than watermark. |
| 2184 | */ |
| 2185 | ret = kstrtouint(s: val, base: 10, res: &threshold); |
| 2186 | if (ret) |
| 2187 | return ret; |
| 2188 | continue; |
| 2189 | } |
| 2190 | |
| 2191 | if (!strcmp(param, "algo" )) { |
| 2192 | algo = val; |
| 2193 | continue; |
| 2194 | } |
| 2195 | |
| 2196 | if (!strcmp(param, "priority" )) { |
| 2197 | ret = kstrtouint(s: val, base: 10, res: &prio); |
| 2198 | if (ret) |
| 2199 | return ret; |
| 2200 | |
| 2201 | if (prio == ZRAM_PRIMARY_COMP) |
| 2202 | prio = ZRAM_SECONDARY_COMP; |
| 2203 | |
| 2204 | prio_max = prio + 1; |
| 2205 | continue; |
| 2206 | } |
| 2207 | } |
| 2208 | |
| 2209 | if (threshold >= huge_class_size) |
| 2210 | return -EINVAL; |
| 2211 | |
| 2212 | down_read(sem: &zram->init_lock); |
| 2213 | if (!init_done(zram)) { |
| 2214 | ret = -EINVAL; |
| 2215 | goto release_init_lock; |
| 2216 | } |
| 2217 | |
| 2218 | /* Do not permit concurrent post-processing actions. */ |
| 2219 | if (atomic_xchg(v: &zram->pp_in_progress, new: 1)) { |
| 2220 | up_read(sem: &zram->init_lock); |
| 2221 | return -EAGAIN; |
| 2222 | } |
| 2223 | |
| 2224 | if (algo) { |
| 2225 | bool found = false; |
| 2226 | |
| 2227 | for (; prio < ZRAM_MAX_COMPS; prio++) { |
| 2228 | if (!zram->comp_algs[prio]) |
| 2229 | continue; |
| 2230 | |
| 2231 | if (!strcmp(zram->comp_algs[prio], algo)) { |
| 2232 | prio_max = prio + 1; |
| 2233 | found = true; |
| 2234 | break; |
| 2235 | } |
| 2236 | } |
| 2237 | |
| 2238 | if (!found) { |
| 2239 | ret = -EINVAL; |
| 2240 | goto release_init_lock; |
| 2241 | } |
| 2242 | } |
| 2243 | |
| 2244 | prio_max = min(prio_max, (u32)zram->num_active_comps); |
| 2245 | if (prio >= prio_max) { |
| 2246 | ret = -EINVAL; |
| 2247 | goto release_init_lock; |
| 2248 | } |
| 2249 | |
| 2250 | page = alloc_page(GFP_KERNEL); |
| 2251 | if (!page) { |
| 2252 | ret = -ENOMEM; |
| 2253 | goto release_init_lock; |
| 2254 | } |
| 2255 | |
| 2256 | ctl = init_pp_ctl(); |
| 2257 | if (!ctl) { |
| 2258 | ret = -ENOMEM; |
| 2259 | goto release_init_lock; |
| 2260 | } |
| 2261 | |
| 2262 | scan_slots_for_recompress(zram, mode, prio_max, ctl); |
| 2263 | |
| 2264 | ret = len; |
| 2265 | while ((pps = select_pp_slot(ctl))) { |
| 2266 | int err = 0; |
| 2267 | |
| 2268 | if (!num_recomp_pages) |
| 2269 | break; |
| 2270 | |
| 2271 | zram_slot_lock(zram, index: pps->index); |
| 2272 | if (!zram_test_flag(zram, index: pps->index, flag: ZRAM_PP_SLOT)) |
| 2273 | goto next; |
| 2274 | |
| 2275 | err = recompress_slot(zram, index: pps->index, page, |
| 2276 | num_recomp_pages: &num_recomp_pages, threshold, |
| 2277 | prio, prio_max); |
| 2278 | next: |
| 2279 | zram_slot_unlock(zram, index: pps->index); |
| 2280 | release_pp_slot(zram, pps); |
| 2281 | |
| 2282 | if (err) { |
| 2283 | ret = err; |
| 2284 | break; |
| 2285 | } |
| 2286 | |
| 2287 | cond_resched(); |
| 2288 | } |
| 2289 | |
| 2290 | release_init_lock: |
| 2291 | if (page) |
| 2292 | __free_page(page); |
| 2293 | release_pp_ctl(zram, ctl); |
| 2294 | atomic_set(v: &zram->pp_in_progress, i: 0); |
| 2295 | up_read(sem: &zram->init_lock); |
| 2296 | return ret; |
| 2297 | } |
| 2298 | #endif |
| 2299 | |
| 2300 | static void zram_bio_discard(struct zram *zram, struct bio *bio) |
| 2301 | { |
| 2302 | size_t n = bio->bi_iter.bi_size; |
| 2303 | u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| 2304 | u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << |
| 2305 | SECTOR_SHIFT; |
| 2306 | |
| 2307 | /* |
| 2308 | * zram manages data in physical block size units. Because logical block |
| 2309 | * size isn't identical with physical block size on some arch, we |
| 2310 | * could get a discard request pointing to a specific offset within a |
| 2311 | * certain physical block. Although we can handle this request by |
| 2312 | * reading that physiclal block and decompressing and partially zeroing |
| 2313 | * and re-compressing and then re-storing it, this isn't reasonable |
| 2314 | * because our intent with a discard request is to save memory. So |
| 2315 | * skipping this logical block is appropriate here. |
| 2316 | */ |
| 2317 | if (offset) { |
| 2318 | if (n <= (PAGE_SIZE - offset)) |
| 2319 | return; |
| 2320 | |
| 2321 | n -= (PAGE_SIZE - offset); |
| 2322 | index++; |
| 2323 | } |
| 2324 | |
| 2325 | while (n >= PAGE_SIZE) { |
| 2326 | zram_slot_lock(zram, index); |
| 2327 | zram_free_page(zram, index); |
| 2328 | zram_slot_unlock(zram, index); |
| 2329 | atomic64_inc(v: &zram->stats.notify_free); |
| 2330 | index++; |
| 2331 | n -= PAGE_SIZE; |
| 2332 | } |
| 2333 | |
| 2334 | bio_endio(bio); |
| 2335 | } |
| 2336 | |
| 2337 | static void zram_bio_read(struct zram *zram, struct bio *bio) |
| 2338 | { |
| 2339 | unsigned long start_time = bio_start_io_acct(bio); |
| 2340 | struct bvec_iter iter = bio->bi_iter; |
| 2341 | |
| 2342 | do { |
| 2343 | u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| 2344 | u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << |
| 2345 | SECTOR_SHIFT; |
| 2346 | struct bio_vec bv = bio_iter_iovec(bio, iter); |
| 2347 | |
| 2348 | bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); |
| 2349 | |
| 2350 | if (zram_bvec_read(zram, bvec: &bv, index, offset, bio) < 0) { |
| 2351 | atomic64_inc(v: &zram->stats.failed_reads); |
| 2352 | bio->bi_status = BLK_STS_IOERR; |
| 2353 | break; |
| 2354 | } |
| 2355 | flush_dcache_page(page: bv.bv_page); |
| 2356 | |
| 2357 | zram_slot_lock(zram, index); |
| 2358 | zram_accessed(zram, index); |
| 2359 | zram_slot_unlock(zram, index); |
| 2360 | |
| 2361 | bio_advance_iter_single(bio, iter: &iter, bytes: bv.bv_len); |
| 2362 | } while (iter.bi_size); |
| 2363 | |
| 2364 | bio_end_io_acct(bio, start_time); |
| 2365 | bio_endio(bio); |
| 2366 | } |
| 2367 | |
| 2368 | static void zram_bio_write(struct zram *zram, struct bio *bio) |
| 2369 | { |
| 2370 | unsigned long start_time = bio_start_io_acct(bio); |
| 2371 | struct bvec_iter iter = bio->bi_iter; |
| 2372 | |
| 2373 | do { |
| 2374 | u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| 2375 | u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << |
| 2376 | SECTOR_SHIFT; |
| 2377 | struct bio_vec bv = bio_iter_iovec(bio, iter); |
| 2378 | |
| 2379 | bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); |
| 2380 | |
| 2381 | if (zram_bvec_write(zram, bvec: &bv, index, offset, bio) < 0) { |
| 2382 | atomic64_inc(v: &zram->stats.failed_writes); |
| 2383 | bio->bi_status = BLK_STS_IOERR; |
| 2384 | break; |
| 2385 | } |
| 2386 | |
| 2387 | zram_slot_lock(zram, index); |
| 2388 | zram_accessed(zram, index); |
| 2389 | zram_slot_unlock(zram, index); |
| 2390 | |
| 2391 | bio_advance_iter_single(bio, iter: &iter, bytes: bv.bv_len); |
| 2392 | } while (iter.bi_size); |
| 2393 | |
| 2394 | bio_end_io_acct(bio, start_time); |
| 2395 | bio_endio(bio); |
| 2396 | } |
| 2397 | |
| 2398 | /* |
| 2399 | * Handler function for all zram I/O requests. |
| 2400 | */ |
| 2401 | static void zram_submit_bio(struct bio *bio) |
| 2402 | { |
| 2403 | struct zram *zram = bio->bi_bdev->bd_disk->private_data; |
| 2404 | |
| 2405 | switch (bio_op(bio)) { |
| 2406 | case REQ_OP_READ: |
| 2407 | zram_bio_read(zram, bio); |
| 2408 | break; |
| 2409 | case REQ_OP_WRITE: |
| 2410 | zram_bio_write(zram, bio); |
| 2411 | break; |
| 2412 | case REQ_OP_DISCARD: |
| 2413 | case REQ_OP_WRITE_ZEROES: |
| 2414 | zram_bio_discard(zram, bio); |
| 2415 | break; |
| 2416 | default: |
| 2417 | WARN_ON_ONCE(1); |
| 2418 | bio_endio(bio); |
| 2419 | } |
| 2420 | } |
| 2421 | |
| 2422 | static void zram_slot_free_notify(struct block_device *bdev, |
| 2423 | unsigned long index) |
| 2424 | { |
| 2425 | struct zram *zram; |
| 2426 | |
| 2427 | zram = bdev->bd_disk->private_data; |
| 2428 | |
| 2429 | atomic64_inc(v: &zram->stats.notify_free); |
| 2430 | if (!zram_slot_trylock(zram, index)) { |
| 2431 | atomic64_inc(v: &zram->stats.miss_free); |
| 2432 | return; |
| 2433 | } |
| 2434 | |
| 2435 | zram_free_page(zram, index); |
| 2436 | zram_slot_unlock(zram, index); |
| 2437 | } |
| 2438 | |
| 2439 | static void zram_comp_params_reset(struct zram *zram) |
| 2440 | { |
| 2441 | u32 prio; |
| 2442 | |
| 2443 | for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { |
| 2444 | comp_params_reset(zram, prio); |
| 2445 | } |
| 2446 | } |
| 2447 | |
| 2448 | static void zram_destroy_comps(struct zram *zram) |
| 2449 | { |
| 2450 | u32 prio; |
| 2451 | |
| 2452 | for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { |
| 2453 | struct zcomp *comp = zram->comps[prio]; |
| 2454 | |
| 2455 | zram->comps[prio] = NULL; |
| 2456 | if (!comp) |
| 2457 | continue; |
| 2458 | zcomp_destroy(comp); |
| 2459 | zram->num_active_comps--; |
| 2460 | } |
| 2461 | |
| 2462 | for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { |
| 2463 | /* Do not free statically defined compression algorithms */ |
| 2464 | if (zram->comp_algs[prio] != default_compressor) |
| 2465 | kfree(objp: zram->comp_algs[prio]); |
| 2466 | zram->comp_algs[prio] = NULL; |
| 2467 | } |
| 2468 | |
| 2469 | zram_comp_params_reset(zram); |
| 2470 | } |
| 2471 | |
| 2472 | static void zram_reset_device(struct zram *zram) |
| 2473 | { |
| 2474 | down_write(sem: &zram->init_lock); |
| 2475 | |
| 2476 | zram->limit_pages = 0; |
| 2477 | |
| 2478 | set_capacity_and_notify(disk: zram->disk, size: 0); |
| 2479 | part_stat_set_all(part: zram->disk->part0, value: 0); |
| 2480 | |
| 2481 | /* I/O operation under all of CPU are done so let's free */ |
| 2482 | zram_meta_free(zram, disksize: zram->disksize); |
| 2483 | zram->disksize = 0; |
| 2484 | zram_destroy_comps(zram); |
| 2485 | memset(&zram->stats, 0, sizeof(zram->stats)); |
| 2486 | atomic_set(v: &zram->pp_in_progress, i: 0); |
| 2487 | reset_bdev(zram); |
| 2488 | |
| 2489 | comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, alg: default_compressor); |
| 2490 | up_write(sem: &zram->init_lock); |
| 2491 | } |
| 2492 | |
| 2493 | static ssize_t disksize_store(struct device *dev, |
| 2494 | struct device_attribute *attr, const char *buf, size_t len) |
| 2495 | { |
| 2496 | u64 disksize; |
| 2497 | struct zcomp *comp; |
| 2498 | struct zram *zram = dev_to_zram(dev); |
| 2499 | int err; |
| 2500 | u32 prio; |
| 2501 | |
| 2502 | disksize = memparse(ptr: buf, NULL); |
| 2503 | if (!disksize) |
| 2504 | return -EINVAL; |
| 2505 | |
| 2506 | down_write(sem: &zram->init_lock); |
| 2507 | if (init_done(zram)) { |
| 2508 | pr_info("Cannot change disksize for initialized device\n" ); |
| 2509 | err = -EBUSY; |
| 2510 | goto out_unlock; |
| 2511 | } |
| 2512 | |
| 2513 | disksize = PAGE_ALIGN(disksize); |
| 2514 | if (!zram_meta_alloc(zram, disksize)) { |
| 2515 | err = -ENOMEM; |
| 2516 | goto out_unlock; |
| 2517 | } |
| 2518 | |
| 2519 | for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { |
| 2520 | if (!zram->comp_algs[prio]) |
| 2521 | continue; |
| 2522 | |
| 2523 | comp = zcomp_create(alg: zram->comp_algs[prio], |
| 2524 | params: &zram->params[prio]); |
| 2525 | if (IS_ERR(ptr: comp)) { |
| 2526 | pr_err("Cannot initialise %s compressing backend\n" , |
| 2527 | zram->comp_algs[prio]); |
| 2528 | err = PTR_ERR(ptr: comp); |
| 2529 | goto out_free_comps; |
| 2530 | } |
| 2531 | |
| 2532 | zram->comps[prio] = comp; |
| 2533 | zram->num_active_comps++; |
| 2534 | } |
| 2535 | zram->disksize = disksize; |
| 2536 | set_capacity_and_notify(disk: zram->disk, size: zram->disksize >> SECTOR_SHIFT); |
| 2537 | up_write(sem: &zram->init_lock); |
| 2538 | |
| 2539 | return len; |
| 2540 | |
| 2541 | out_free_comps: |
| 2542 | zram_destroy_comps(zram); |
| 2543 | zram_meta_free(zram, disksize); |
| 2544 | out_unlock: |
| 2545 | up_write(sem: &zram->init_lock); |
| 2546 | return err; |
| 2547 | } |
| 2548 | |
| 2549 | static ssize_t reset_store(struct device *dev, |
| 2550 | struct device_attribute *attr, const char *buf, size_t len) |
| 2551 | { |
| 2552 | int ret; |
| 2553 | unsigned short do_reset; |
| 2554 | struct zram *zram; |
| 2555 | struct gendisk *disk; |
| 2556 | |
| 2557 | ret = kstrtou16(s: buf, base: 10, res: &do_reset); |
| 2558 | if (ret) |
| 2559 | return ret; |
| 2560 | |
| 2561 | if (!do_reset) |
| 2562 | return -EINVAL; |
| 2563 | |
| 2564 | zram = dev_to_zram(dev); |
| 2565 | disk = zram->disk; |
| 2566 | |
| 2567 | mutex_lock(&disk->open_mutex); |
| 2568 | /* Do not reset an active device or claimed device */ |
| 2569 | if (disk_openers(disk) || zram->claim) { |
| 2570 | mutex_unlock(lock: &disk->open_mutex); |
| 2571 | return -EBUSY; |
| 2572 | } |
| 2573 | |
| 2574 | /* From now on, anyone can't open /dev/zram[0-9] */ |
| 2575 | zram->claim = true; |
| 2576 | mutex_unlock(lock: &disk->open_mutex); |
| 2577 | |
| 2578 | /* Make sure all the pending I/O are finished */ |
| 2579 | sync_blockdev(bdev: disk->part0); |
| 2580 | zram_reset_device(zram); |
| 2581 | |
| 2582 | mutex_lock(&disk->open_mutex); |
| 2583 | zram->claim = false; |
| 2584 | mutex_unlock(lock: &disk->open_mutex); |
| 2585 | |
| 2586 | return len; |
| 2587 | } |
| 2588 | |
| 2589 | static int zram_open(struct gendisk *disk, blk_mode_t mode) |
| 2590 | { |
| 2591 | struct zram *zram = disk->private_data; |
| 2592 | |
| 2593 | WARN_ON(!mutex_is_locked(&disk->open_mutex)); |
| 2594 | |
| 2595 | /* zram was claimed to reset so open request fails */ |
| 2596 | if (zram->claim) |
| 2597 | return -EBUSY; |
| 2598 | return 0; |
| 2599 | } |
| 2600 | |
| 2601 | static const struct block_device_operations zram_devops = { |
| 2602 | .open = zram_open, |
| 2603 | .submit_bio = zram_submit_bio, |
| 2604 | .swap_slot_free_notify = zram_slot_free_notify, |
| 2605 | .owner = THIS_MODULE |
| 2606 | }; |
| 2607 | |
| 2608 | static DEVICE_ATTR_WO(compact); |
| 2609 | static DEVICE_ATTR_RW(disksize); |
| 2610 | static DEVICE_ATTR_RO(initstate); |
| 2611 | static DEVICE_ATTR_WO(reset); |
| 2612 | static DEVICE_ATTR_WO(mem_limit); |
| 2613 | static DEVICE_ATTR_WO(mem_used_max); |
| 2614 | static DEVICE_ATTR_WO(idle); |
| 2615 | static DEVICE_ATTR_RW(comp_algorithm); |
| 2616 | #ifdef CONFIG_ZRAM_WRITEBACK |
| 2617 | static DEVICE_ATTR_RW(backing_dev); |
| 2618 | static DEVICE_ATTR_WO(writeback); |
| 2619 | static DEVICE_ATTR_RW(writeback_limit); |
| 2620 | static DEVICE_ATTR_RW(writeback_limit_enable); |
| 2621 | #endif |
| 2622 | #ifdef CONFIG_ZRAM_MULTI_COMP |
| 2623 | static DEVICE_ATTR_RW(recomp_algorithm); |
| 2624 | static DEVICE_ATTR_WO(recompress); |
| 2625 | #endif |
| 2626 | static DEVICE_ATTR_WO(algorithm_params); |
| 2627 | |
| 2628 | static struct attribute *zram_disk_attrs[] = { |
| 2629 | &dev_attr_disksize.attr, |
| 2630 | &dev_attr_initstate.attr, |
| 2631 | &dev_attr_reset.attr, |
| 2632 | &dev_attr_compact.attr, |
| 2633 | &dev_attr_mem_limit.attr, |
| 2634 | &dev_attr_mem_used_max.attr, |
| 2635 | &dev_attr_idle.attr, |
| 2636 | &dev_attr_comp_algorithm.attr, |
| 2637 | #ifdef CONFIG_ZRAM_WRITEBACK |
| 2638 | &dev_attr_backing_dev.attr, |
| 2639 | &dev_attr_writeback.attr, |
| 2640 | &dev_attr_writeback_limit.attr, |
| 2641 | &dev_attr_writeback_limit_enable.attr, |
| 2642 | #endif |
| 2643 | &dev_attr_io_stat.attr, |
| 2644 | &dev_attr_mm_stat.attr, |
| 2645 | #ifdef CONFIG_ZRAM_WRITEBACK |
| 2646 | &dev_attr_bd_stat.attr, |
| 2647 | #endif |
| 2648 | &dev_attr_debug_stat.attr, |
| 2649 | #ifdef CONFIG_ZRAM_MULTI_COMP |
| 2650 | &dev_attr_recomp_algorithm.attr, |
| 2651 | &dev_attr_recompress.attr, |
| 2652 | #endif |
| 2653 | &dev_attr_algorithm_params.attr, |
| 2654 | NULL, |
| 2655 | }; |
| 2656 | |
| 2657 | ATTRIBUTE_GROUPS(zram_disk); |
| 2658 | |
| 2659 | /* |
| 2660 | * Allocate and initialize new zram device. the function returns |
| 2661 | * '>= 0' device_id upon success, and negative value otherwise. |
| 2662 | */ |
| 2663 | static int zram_add(void) |
| 2664 | { |
| 2665 | struct queue_limits lim = { |
| 2666 | .logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE, |
| 2667 | /* |
| 2668 | * To ensure that we always get PAGE_SIZE aligned and |
| 2669 | * n*PAGE_SIZED sized I/O requests. |
| 2670 | */ |
| 2671 | .physical_block_size = PAGE_SIZE, |
| 2672 | .io_min = PAGE_SIZE, |
| 2673 | .io_opt = PAGE_SIZE, |
| 2674 | .max_hw_discard_sectors = UINT_MAX, |
| 2675 | /* |
| 2676 | * zram_bio_discard() will clear all logical blocks if logical |
| 2677 | * block size is identical with physical block size(PAGE_SIZE). |
| 2678 | * But if it is different, we will skip discarding some parts of |
| 2679 | * logical blocks in the part of the request range which isn't |
| 2680 | * aligned to physical block size. So we can't ensure that all |
| 2681 | * discarded logical blocks are zeroed. |
| 2682 | */ |
| 2683 | #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE |
| 2684 | .max_write_zeroes_sectors = UINT_MAX, |
| 2685 | #endif |
| 2686 | .features = BLK_FEAT_STABLE_WRITES | |
| 2687 | BLK_FEAT_SYNCHRONOUS, |
| 2688 | }; |
| 2689 | struct zram *zram; |
| 2690 | int ret, device_id; |
| 2691 | |
| 2692 | zram = kzalloc(sizeof(struct zram), GFP_KERNEL); |
| 2693 | if (!zram) |
| 2694 | return -ENOMEM; |
| 2695 | |
| 2696 | ret = idr_alloc(&zram_index_idr, ptr: zram, start: 0, end: 0, GFP_KERNEL); |
| 2697 | if (ret < 0) |
| 2698 | goto out_free_dev; |
| 2699 | device_id = ret; |
| 2700 | |
| 2701 | init_rwsem(&zram->init_lock); |
| 2702 | #ifdef CONFIG_ZRAM_WRITEBACK |
| 2703 | spin_lock_init(&zram->wb_limit_lock); |
| 2704 | #endif |
| 2705 | |
| 2706 | /* gendisk structure */ |
| 2707 | zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); |
| 2708 | if (IS_ERR(ptr: zram->disk)) { |
| 2709 | pr_err("Error allocating disk structure for device %d\n" , |
| 2710 | device_id); |
| 2711 | ret = PTR_ERR(ptr: zram->disk); |
| 2712 | goto out_free_idr; |
| 2713 | } |
| 2714 | |
| 2715 | zram->disk->major = zram_major; |
| 2716 | zram->disk->first_minor = device_id; |
| 2717 | zram->disk->minors = 1; |
| 2718 | zram->disk->flags |= GENHD_FL_NO_PART; |
| 2719 | zram->disk->fops = &zram_devops; |
| 2720 | zram->disk->private_data = zram; |
| 2721 | snprintf(buf: zram->disk->disk_name, size: 16, fmt: "zram%d" , device_id); |
| 2722 | atomic_set(v: &zram->pp_in_progress, i: 0); |
| 2723 | zram_comp_params_reset(zram); |
| 2724 | comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, alg: default_compressor); |
| 2725 | |
| 2726 | /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ |
| 2727 | set_capacity(disk: zram->disk, size: 0); |
| 2728 | ret = device_add_disk(NULL, disk: zram->disk, groups: zram_disk_groups); |
| 2729 | if (ret) |
| 2730 | goto out_cleanup_disk; |
| 2731 | |
| 2732 | zram_debugfs_register(zram); |
| 2733 | pr_info("Added device: %s\n" , zram->disk->disk_name); |
| 2734 | return device_id; |
| 2735 | |
| 2736 | out_cleanup_disk: |
| 2737 | put_disk(disk: zram->disk); |
| 2738 | out_free_idr: |
| 2739 | idr_remove(&zram_index_idr, id: device_id); |
| 2740 | out_free_dev: |
| 2741 | kfree(objp: zram); |
| 2742 | return ret; |
| 2743 | } |
| 2744 | |
| 2745 | static int zram_remove(struct zram *zram) |
| 2746 | { |
| 2747 | bool claimed; |
| 2748 | |
| 2749 | mutex_lock(&zram->disk->open_mutex); |
| 2750 | if (disk_openers(disk: zram->disk)) { |
| 2751 | mutex_unlock(lock: &zram->disk->open_mutex); |
| 2752 | return -EBUSY; |
| 2753 | } |
| 2754 | |
| 2755 | claimed = zram->claim; |
| 2756 | if (!claimed) |
| 2757 | zram->claim = true; |
| 2758 | mutex_unlock(lock: &zram->disk->open_mutex); |
| 2759 | |
| 2760 | zram_debugfs_unregister(zram); |
| 2761 | |
| 2762 | if (claimed) { |
| 2763 | /* |
| 2764 | * If we were claimed by reset_store(), del_gendisk() will |
| 2765 | * wait until reset_store() is done, so nothing need to do. |
| 2766 | */ |
| 2767 | ; |
| 2768 | } else { |
| 2769 | /* Make sure all the pending I/O are finished */ |
| 2770 | sync_blockdev(bdev: zram->disk->part0); |
| 2771 | zram_reset_device(zram); |
| 2772 | } |
| 2773 | |
| 2774 | pr_info("Removed device: %s\n" , zram->disk->disk_name); |
| 2775 | |
| 2776 | del_gendisk(gp: zram->disk); |
| 2777 | |
| 2778 | /* del_gendisk drains pending reset_store */ |
| 2779 | WARN_ON_ONCE(claimed && zram->claim); |
| 2780 | |
| 2781 | /* |
| 2782 | * disksize_store() may be called in between zram_reset_device() |
| 2783 | * and del_gendisk(), so run the last reset to avoid leaking |
| 2784 | * anything allocated with disksize_store() |
| 2785 | */ |
| 2786 | zram_reset_device(zram); |
| 2787 | |
| 2788 | put_disk(disk: zram->disk); |
| 2789 | kfree(objp: zram); |
| 2790 | return 0; |
| 2791 | } |
| 2792 | |
| 2793 | /* zram-control sysfs attributes */ |
| 2794 | |
| 2795 | /* |
| 2796 | * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a |
| 2797 | * sense that reading from this file does alter the state of your system -- it |
| 2798 | * creates a new un-initialized zram device and returns back this device's |
| 2799 | * device_id (or an error code if it fails to create a new device). |
| 2800 | */ |
| 2801 | static ssize_t hot_add_show(const struct class *class, |
| 2802 | const struct class_attribute *attr, |
| 2803 | char *buf) |
| 2804 | { |
| 2805 | int ret; |
| 2806 | |
| 2807 | mutex_lock(&zram_index_mutex); |
| 2808 | ret = zram_add(); |
| 2809 | mutex_unlock(lock: &zram_index_mutex); |
| 2810 | |
| 2811 | if (ret < 0) |
| 2812 | return ret; |
| 2813 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n" , ret); |
| 2814 | } |
| 2815 | /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ |
| 2816 | static struct class_attribute class_attr_hot_add = |
| 2817 | __ATTR(hot_add, 0400, hot_add_show, NULL); |
| 2818 | |
| 2819 | static ssize_t hot_remove_store(const struct class *class, |
| 2820 | const struct class_attribute *attr, |
| 2821 | const char *buf, |
| 2822 | size_t count) |
| 2823 | { |
| 2824 | struct zram *zram; |
| 2825 | int ret, dev_id; |
| 2826 | |
| 2827 | /* dev_id is gendisk->first_minor, which is `int' */ |
| 2828 | ret = kstrtoint(s: buf, base: 10, res: &dev_id); |
| 2829 | if (ret) |
| 2830 | return ret; |
| 2831 | if (dev_id < 0) |
| 2832 | return -EINVAL; |
| 2833 | |
| 2834 | mutex_lock(&zram_index_mutex); |
| 2835 | |
| 2836 | zram = idr_find(&zram_index_idr, id: dev_id); |
| 2837 | if (zram) { |
| 2838 | ret = zram_remove(zram); |
| 2839 | if (!ret) |
| 2840 | idr_remove(&zram_index_idr, id: dev_id); |
| 2841 | } else { |
| 2842 | ret = -ENODEV; |
| 2843 | } |
| 2844 | |
| 2845 | mutex_unlock(lock: &zram_index_mutex); |
| 2846 | return ret ? ret : count; |
| 2847 | } |
| 2848 | static CLASS_ATTR_WO(hot_remove); |
| 2849 | |
| 2850 | static struct attribute *zram_control_class_attrs[] = { |
| 2851 | &class_attr_hot_add.attr, |
| 2852 | &class_attr_hot_remove.attr, |
| 2853 | NULL, |
| 2854 | }; |
| 2855 | ATTRIBUTE_GROUPS(zram_control_class); |
| 2856 | |
| 2857 | static struct class zram_control_class = { |
| 2858 | .name = "zram-control" , |
| 2859 | .class_groups = zram_control_class_groups, |
| 2860 | }; |
| 2861 | |
| 2862 | static int zram_remove_cb(int id, void *ptr, void *data) |
| 2863 | { |
| 2864 | WARN_ON_ONCE(zram_remove(ptr)); |
| 2865 | return 0; |
| 2866 | } |
| 2867 | |
| 2868 | static void destroy_devices(void) |
| 2869 | { |
| 2870 | class_unregister(class: &zram_control_class); |
| 2871 | idr_for_each(&zram_index_idr, fn: &zram_remove_cb, NULL); |
| 2872 | zram_debugfs_destroy(); |
| 2873 | idr_destroy(&zram_index_idr); |
| 2874 | unregister_blkdev(major: zram_major, name: "zram" ); |
| 2875 | cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE); |
| 2876 | } |
| 2877 | |
| 2878 | static int __init zram_init(void) |
| 2879 | { |
| 2880 | struct zram_table_entry zram_te; |
| 2881 | int ret; |
| 2882 | |
| 2883 | BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8); |
| 2884 | |
| 2885 | ret = cpuhp_setup_state_multi(state: CPUHP_ZCOMP_PREPARE, name: "block/zram:prepare" , |
| 2886 | startup: zcomp_cpu_up_prepare, teardown: zcomp_cpu_dead); |
| 2887 | if (ret < 0) |
| 2888 | return ret; |
| 2889 | |
| 2890 | ret = class_register(class: &zram_control_class); |
| 2891 | if (ret) { |
| 2892 | pr_err("Unable to register zram-control class\n" ); |
| 2893 | cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE); |
| 2894 | return ret; |
| 2895 | } |
| 2896 | |
| 2897 | zram_debugfs_create(); |
| 2898 | zram_major = register_blkdev(0, "zram" ); |
| 2899 | if (zram_major <= 0) { |
| 2900 | pr_err("Unable to get major number\n" ); |
| 2901 | class_unregister(class: &zram_control_class); |
| 2902 | cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE); |
| 2903 | return -EBUSY; |
| 2904 | } |
| 2905 | |
| 2906 | while (num_devices != 0) { |
| 2907 | mutex_lock(&zram_index_mutex); |
| 2908 | ret = zram_add(); |
| 2909 | mutex_unlock(lock: &zram_index_mutex); |
| 2910 | if (ret < 0) |
| 2911 | goto out_error; |
| 2912 | num_devices--; |
| 2913 | } |
| 2914 | |
| 2915 | return 0; |
| 2916 | |
| 2917 | out_error: |
| 2918 | destroy_devices(); |
| 2919 | return ret; |
| 2920 | } |
| 2921 | |
| 2922 | static void __exit zram_exit(void) |
| 2923 | { |
| 2924 | destroy_devices(); |
| 2925 | } |
| 2926 | |
| 2927 | module_init(zram_init); |
| 2928 | module_exit(zram_exit); |
| 2929 | |
| 2930 | module_param(num_devices, uint, 0); |
| 2931 | MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices" ); |
| 2932 | |
| 2933 | MODULE_LICENSE("Dual BSD/GPL" ); |
| 2934 | MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>" ); |
| 2935 | MODULE_DESCRIPTION("Compressed RAM Block Device" ); |
| 2936 | |