1/*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15#define KMSG_COMPONENT "zram"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/highmem.h>
26#include <linux/slab.h>
27#include <linux/backing-dev.h>
28#include <linux/string.h>
29#include <linux/vmalloc.h>
30#include <linux/err.h>
31#include <linux/idr.h>
32#include <linux/sysfs.h>
33#include <linux/debugfs.h>
34#include <linux/cpuhotplug.h>
35#include <linux/part_stat.h>
36#include <linux/kernel_read_file.h>
37
38#include "zram_drv.h"
39
40static DEFINE_IDR(zram_index_idr);
41/* idr index must be protected */
42static DEFINE_MUTEX(zram_index_mutex);
43
44static int zram_major;
45static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
46
47#define ZRAM_MAX_ALGO_NAME_SZ 128
48
49/* Module params (documentation at end) */
50static unsigned int num_devices = 1;
51/*
52 * Pages that compress to sizes equals or greater than this are stored
53 * uncompressed in memory.
54 */
55static size_t huge_class_size;
56
57static const struct block_device_operations zram_devops;
58
59static void zram_free_page(struct zram *zram, size_t index);
60static int zram_read_from_zspool(struct zram *zram, struct page *page,
61 u32 index);
62
63#define slot_dep_map(zram, index) (&(zram)->table[(index)].dep_map)
64
65static void zram_slot_lock_init(struct zram *zram, u32 index)
66{
67 static struct lock_class_key __key;
68
69 lockdep_init_map(slot_dep_map(zram, index), name: "zram->table[index].lock",
70 key: &__key, subclass: 0);
71}
72
73/*
74 * entry locking rules:
75 *
76 * 1) Lock is exclusive
77 *
78 * 2) lock() function can sleep waiting for the lock
79 *
80 * 3) Lock owner can sleep
81 *
82 * 4) Use TRY lock variant when in atomic context
83 * - must check return value and handle locking failers
84 */
85static __must_check bool zram_slot_trylock(struct zram *zram, u32 index)
86{
87 unsigned long *lock = &zram->table[index].flags;
88
89 if (!test_and_set_bit_lock(nr: ZRAM_ENTRY_LOCK, addr: lock)) {
90 mutex_acquire(slot_dep_map(zram, index), 0, 1, _RET_IP_);
91 lock_acquired(slot_dep_map(zram, index), _RET_IP_);
92 return true;
93 }
94
95 return false;
96}
97
98static void zram_slot_lock(struct zram *zram, u32 index)
99{
100 unsigned long *lock = &zram->table[index].flags;
101
102 mutex_acquire(slot_dep_map(zram, index), 0, 0, _RET_IP_);
103 wait_on_bit_lock(word: lock, bit: ZRAM_ENTRY_LOCK, TASK_UNINTERRUPTIBLE);
104 lock_acquired(slot_dep_map(zram, index), _RET_IP_);
105}
106
107static void zram_slot_unlock(struct zram *zram, u32 index)
108{
109 unsigned long *lock = &zram->table[index].flags;
110
111 mutex_release(slot_dep_map(zram, index), _RET_IP_);
112 clear_and_wake_up_bit(bit: ZRAM_ENTRY_LOCK, word: lock);
113}
114
115static inline bool init_done(struct zram *zram)
116{
117 return zram->disksize;
118}
119
120static inline struct zram *dev_to_zram(struct device *dev)
121{
122 return (struct zram *)dev_to_disk(dev)->private_data;
123}
124
125static unsigned long zram_get_handle(struct zram *zram, u32 index)
126{
127 return zram->table[index].handle;
128}
129
130static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
131{
132 zram->table[index].handle = handle;
133}
134
135static bool zram_test_flag(struct zram *zram, u32 index,
136 enum zram_pageflags flag)
137{
138 return zram->table[index].flags & BIT(flag);
139}
140
141static void zram_set_flag(struct zram *zram, u32 index,
142 enum zram_pageflags flag)
143{
144 zram->table[index].flags |= BIT(flag);
145}
146
147static void zram_clear_flag(struct zram *zram, u32 index,
148 enum zram_pageflags flag)
149{
150 zram->table[index].flags &= ~BIT(flag);
151}
152
153static size_t zram_get_obj_size(struct zram *zram, u32 index)
154{
155 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
156}
157
158static void zram_set_obj_size(struct zram *zram,
159 u32 index, size_t size)
160{
161 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
162
163 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
164}
165
166static inline bool zram_allocated(struct zram *zram, u32 index)
167{
168 return zram_get_obj_size(zram, index) ||
169 zram_test_flag(zram, index, flag: ZRAM_SAME) ||
170 zram_test_flag(zram, index, flag: ZRAM_WB);
171}
172
173static inline void update_used_max(struct zram *zram, const unsigned long pages)
174{
175 unsigned long cur_max = atomic_long_read(v: &zram->stats.max_used_pages);
176
177 do {
178 if (cur_max >= pages)
179 return;
180 } while (!atomic_long_try_cmpxchg(v: &zram->stats.max_used_pages,
181 old: &cur_max, new: pages));
182}
183
184static bool zram_can_store_page(struct zram *zram)
185{
186 unsigned long alloced_pages;
187
188 alloced_pages = zs_get_total_pages(pool: zram->mem_pool);
189 update_used_max(zram, pages: alloced_pages);
190
191 return !zram->limit_pages || alloced_pages <= zram->limit_pages;
192}
193
194#if PAGE_SIZE != 4096
195static inline bool is_partial_io(struct bio_vec *bvec)
196{
197 return bvec->bv_len != PAGE_SIZE;
198}
199#define ZRAM_PARTIAL_IO 1
200#else
201static inline bool is_partial_io(struct bio_vec *bvec)
202{
203 return false;
204}
205#endif
206
207static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
208{
209 prio &= ZRAM_COMP_PRIORITY_MASK;
210 /*
211 * Clear previous priority value first, in case if we recompress
212 * further an already recompressed page
213 */
214 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
215 ZRAM_COMP_PRIORITY_BIT1);
216 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
217}
218
219static inline u32 zram_get_priority(struct zram *zram, u32 index)
220{
221 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
222
223 return prio & ZRAM_COMP_PRIORITY_MASK;
224}
225
226static void zram_accessed(struct zram *zram, u32 index)
227{
228 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
229 zram_clear_flag(zram, index, flag: ZRAM_PP_SLOT);
230#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
231 zram->table[index].ac_time = ktime_get_boottime();
232#endif
233}
234
235#if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP
236struct zram_pp_slot {
237 unsigned long index;
238 struct list_head entry;
239};
240
241/*
242 * A post-processing bucket is, essentially, a size class, this defines
243 * the range (in bytes) of pp-slots sizes in particular bucket.
244 */
245#define PP_BUCKET_SIZE_RANGE 64
246#define NUM_PP_BUCKETS ((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1)
247
248struct zram_pp_ctl {
249 struct list_head pp_buckets[NUM_PP_BUCKETS];
250};
251
252static struct zram_pp_ctl *init_pp_ctl(void)
253{
254 struct zram_pp_ctl *ctl;
255 u32 idx;
256
257 ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
258 if (!ctl)
259 return NULL;
260
261 for (idx = 0; idx < NUM_PP_BUCKETS; idx++)
262 INIT_LIST_HEAD(list: &ctl->pp_buckets[idx]);
263 return ctl;
264}
265
266static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps)
267{
268 list_del_init(entry: &pps->entry);
269
270 zram_slot_lock(zram, index: pps->index);
271 zram_clear_flag(zram, index: pps->index, flag: ZRAM_PP_SLOT);
272 zram_slot_unlock(zram, index: pps->index);
273
274 kfree(objp: pps);
275}
276
277static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl)
278{
279 u32 idx;
280
281 if (!ctl)
282 return;
283
284 for (idx = 0; idx < NUM_PP_BUCKETS; idx++) {
285 while (!list_empty(head: &ctl->pp_buckets[idx])) {
286 struct zram_pp_slot *pps;
287
288 pps = list_first_entry(&ctl->pp_buckets[idx],
289 struct zram_pp_slot,
290 entry);
291 release_pp_slot(zram, pps);
292 }
293 }
294
295 kfree(objp: ctl);
296}
297
298static bool place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl,
299 u32 index)
300{
301 struct zram_pp_slot *pps;
302 u32 bid;
303
304 pps = kmalloc(sizeof(*pps), GFP_NOIO | __GFP_NOWARN);
305 if (!pps)
306 return false;
307
308 INIT_LIST_HEAD(list: &pps->entry);
309 pps->index = index;
310
311 bid = zram_get_obj_size(zram, index: pps->index) / PP_BUCKET_SIZE_RANGE;
312 list_add(new: &pps->entry, head: &ctl->pp_buckets[bid]);
313
314 zram_set_flag(zram, index: pps->index, flag: ZRAM_PP_SLOT);
315 return true;
316}
317
318static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl)
319{
320 struct zram_pp_slot *pps = NULL;
321 s32 idx = NUM_PP_BUCKETS - 1;
322
323 /* The higher the bucket id the more optimal slot post-processing is */
324 while (idx >= 0) {
325 pps = list_first_entry_or_null(&ctl->pp_buckets[idx],
326 struct zram_pp_slot,
327 entry);
328 if (pps)
329 break;
330
331 idx--;
332 }
333 return pps;
334}
335#endif
336
337static inline void zram_fill_page(void *ptr, unsigned long len,
338 unsigned long value)
339{
340 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
341 memset_l(p: ptr, v: value, n: len / sizeof(unsigned long));
342}
343
344static bool page_same_filled(void *ptr, unsigned long *element)
345{
346 unsigned long *page;
347 unsigned long val;
348 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
349
350 page = (unsigned long *)ptr;
351 val = page[0];
352
353 if (val != page[last_pos])
354 return false;
355
356 for (pos = 1; pos < last_pos; pos++) {
357 if (val != page[pos])
358 return false;
359 }
360
361 *element = val;
362
363 return true;
364}
365
366static ssize_t initstate_show(struct device *dev,
367 struct device_attribute *attr, char *buf)
368{
369 u32 val;
370 struct zram *zram = dev_to_zram(dev);
371
372 down_read(sem: &zram->init_lock);
373 val = init_done(zram);
374 up_read(sem: &zram->init_lock);
375
376 return scnprintf(buf, PAGE_SIZE, fmt: "%u\n", val);
377}
378
379static ssize_t disksize_show(struct device *dev,
380 struct device_attribute *attr, char *buf)
381{
382 struct zram *zram = dev_to_zram(dev);
383
384 return scnprintf(buf, PAGE_SIZE, fmt: "%llu\n", zram->disksize);
385}
386
387static ssize_t mem_limit_store(struct device *dev,
388 struct device_attribute *attr, const char *buf, size_t len)
389{
390 u64 limit;
391 char *tmp;
392 struct zram *zram = dev_to_zram(dev);
393
394 limit = memparse(ptr: buf, retptr: &tmp);
395 if (buf == tmp) /* no chars parsed, invalid input */
396 return -EINVAL;
397
398 down_write(sem: &zram->init_lock);
399 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
400 up_write(sem: &zram->init_lock);
401
402 return len;
403}
404
405static ssize_t mem_used_max_store(struct device *dev,
406 struct device_attribute *attr, const char *buf, size_t len)
407{
408 int err;
409 unsigned long val;
410 struct zram *zram = dev_to_zram(dev);
411
412 err = kstrtoul(s: buf, base: 10, res: &val);
413 if (err || val != 0)
414 return -EINVAL;
415
416 down_read(sem: &zram->init_lock);
417 if (init_done(zram)) {
418 atomic_long_set(v: &zram->stats.max_used_pages,
419 i: zs_get_total_pages(pool: zram->mem_pool));
420 }
421 up_read(sem: &zram->init_lock);
422
423 return len;
424}
425
426/*
427 * Mark all pages which are older than or equal to cutoff as IDLE.
428 * Callers should hold the zram init lock in read mode
429 */
430static void mark_idle(struct zram *zram, ktime_t cutoff)
431{
432 int is_idle = 1;
433 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
434 int index;
435
436 for (index = 0; index < nr_pages; index++) {
437 /*
438 * Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no
439 * post-processing (recompress, writeback) happens to the
440 * ZRAM_SAME slot.
441 *
442 * And ZRAM_WB slots simply cannot be ZRAM_IDLE.
443 */
444 zram_slot_lock(zram, index);
445 if (!zram_allocated(zram, index) ||
446 zram_test_flag(zram, index, flag: ZRAM_WB) ||
447 zram_test_flag(zram, index, flag: ZRAM_SAME)) {
448 zram_slot_unlock(zram, index);
449 continue;
450 }
451
452#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
453 is_idle = !cutoff ||
454 ktime_after(cmp1: cutoff, cmp2: zram->table[index].ac_time);
455#endif
456 if (is_idle)
457 zram_set_flag(zram, index, flag: ZRAM_IDLE);
458 else
459 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
460 zram_slot_unlock(zram, index);
461 }
462}
463
464static ssize_t idle_store(struct device *dev,
465 struct device_attribute *attr, const char *buf, size_t len)
466{
467 struct zram *zram = dev_to_zram(dev);
468 ktime_t cutoff_time = 0;
469 ssize_t rv = -EINVAL;
470
471 if (!sysfs_streq(s1: buf, s2: "all")) {
472 /*
473 * If it did not parse as 'all' try to treat it as an integer
474 * when we have memory tracking enabled.
475 */
476 u64 age_sec;
477
478 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(s: buf, base: 0, res: &age_sec))
479 cutoff_time = ktime_sub(ktime_get_boottime(),
480 ns_to_ktime(age_sec * NSEC_PER_SEC));
481 else
482 goto out;
483 }
484
485 down_read(sem: &zram->init_lock);
486 if (!init_done(zram))
487 goto out_unlock;
488
489 /*
490 * A cutoff_time of 0 marks everything as idle, this is the
491 * "all" behavior.
492 */
493 mark_idle(zram, cutoff: cutoff_time);
494 rv = len;
495
496out_unlock:
497 up_read(sem: &zram->init_lock);
498out:
499 return rv;
500}
501
502#ifdef CONFIG_ZRAM_WRITEBACK
503static ssize_t writeback_limit_enable_store(struct device *dev,
504 struct device_attribute *attr, const char *buf, size_t len)
505{
506 struct zram *zram = dev_to_zram(dev);
507 u64 val;
508 ssize_t ret = -EINVAL;
509
510 if (kstrtoull(s: buf, base: 10, res: &val))
511 return ret;
512
513 down_read(sem: &zram->init_lock);
514 spin_lock(lock: &zram->wb_limit_lock);
515 zram->wb_limit_enable = val;
516 spin_unlock(lock: &zram->wb_limit_lock);
517 up_read(sem: &zram->init_lock);
518 ret = len;
519
520 return ret;
521}
522
523static ssize_t writeback_limit_enable_show(struct device *dev,
524 struct device_attribute *attr, char *buf)
525{
526 bool val;
527 struct zram *zram = dev_to_zram(dev);
528
529 down_read(sem: &zram->init_lock);
530 spin_lock(lock: &zram->wb_limit_lock);
531 val = zram->wb_limit_enable;
532 spin_unlock(lock: &zram->wb_limit_lock);
533 up_read(sem: &zram->init_lock);
534
535 return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", val);
536}
537
538static ssize_t writeback_limit_store(struct device *dev,
539 struct device_attribute *attr, const char *buf, size_t len)
540{
541 struct zram *zram = dev_to_zram(dev);
542 u64 val;
543 ssize_t ret = -EINVAL;
544
545 if (kstrtoull(s: buf, base: 10, res: &val))
546 return ret;
547
548 down_read(sem: &zram->init_lock);
549 spin_lock(lock: &zram->wb_limit_lock);
550 zram->bd_wb_limit = val;
551 spin_unlock(lock: &zram->wb_limit_lock);
552 up_read(sem: &zram->init_lock);
553 ret = len;
554
555 return ret;
556}
557
558static ssize_t writeback_limit_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560{
561 u64 val;
562 struct zram *zram = dev_to_zram(dev);
563
564 down_read(sem: &zram->init_lock);
565 spin_lock(lock: &zram->wb_limit_lock);
566 val = zram->bd_wb_limit;
567 spin_unlock(lock: &zram->wb_limit_lock);
568 up_read(sem: &zram->init_lock);
569
570 return scnprintf(buf, PAGE_SIZE, fmt: "%llu\n", val);
571}
572
573static void reset_bdev(struct zram *zram)
574{
575 if (!zram->backing_dev)
576 return;
577
578 /* hope filp_close flush all of IO */
579 filp_close(zram->backing_dev, NULL);
580 zram->backing_dev = NULL;
581 zram->bdev = NULL;
582 zram->disk->fops = &zram_devops;
583 kvfree(addr: zram->bitmap);
584 zram->bitmap = NULL;
585}
586
587static ssize_t backing_dev_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589{
590 struct file *file;
591 struct zram *zram = dev_to_zram(dev);
592 char *p;
593 ssize_t ret;
594
595 down_read(sem: &zram->init_lock);
596 file = zram->backing_dev;
597 if (!file) {
598 memcpy(buf, "none\n", 5);
599 up_read(sem: &zram->init_lock);
600 return 5;
601 }
602
603 p = file_path(file, buf, PAGE_SIZE - 1);
604 if (IS_ERR(ptr: p)) {
605 ret = PTR_ERR(ptr: p);
606 goto out;
607 }
608
609 ret = strlen(p);
610 memmove(buf, p, ret);
611 buf[ret++] = '\n';
612out:
613 up_read(sem: &zram->init_lock);
614 return ret;
615}
616
617static ssize_t backing_dev_store(struct device *dev,
618 struct device_attribute *attr, const char *buf, size_t len)
619{
620 char *file_name;
621 size_t sz;
622 struct file *backing_dev = NULL;
623 struct inode *inode;
624 unsigned int bitmap_sz;
625 unsigned long nr_pages, *bitmap = NULL;
626 int err;
627 struct zram *zram = dev_to_zram(dev);
628
629 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
630 if (!file_name)
631 return -ENOMEM;
632
633 down_write(sem: &zram->init_lock);
634 if (init_done(zram)) {
635 pr_info("Can't setup backing device for initialized device\n");
636 err = -EBUSY;
637 goto out;
638 }
639
640 strscpy(file_name, buf, PATH_MAX);
641 /* ignore trailing newline */
642 sz = strlen(file_name);
643 if (sz > 0 && file_name[sz - 1] == '\n')
644 file_name[sz - 1] = 0x00;
645
646 backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
647 if (IS_ERR(ptr: backing_dev)) {
648 err = PTR_ERR(ptr: backing_dev);
649 backing_dev = NULL;
650 goto out;
651 }
652
653 inode = backing_dev->f_mapping->host;
654
655 /* Support only block device in this moment */
656 if (!S_ISBLK(inode->i_mode)) {
657 err = -ENOTBLK;
658 goto out;
659 }
660
661 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
662 /* Refuse to use zero sized device (also prevents self reference) */
663 if (!nr_pages) {
664 err = -EINVAL;
665 goto out;
666 }
667
668 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
669 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
670 if (!bitmap) {
671 err = -ENOMEM;
672 goto out;
673 }
674
675 reset_bdev(zram);
676
677 zram->bdev = I_BDEV(inode);
678 zram->backing_dev = backing_dev;
679 zram->bitmap = bitmap;
680 zram->nr_pages = nr_pages;
681 up_write(sem: &zram->init_lock);
682
683 pr_info("setup backing device %s\n", file_name);
684 kfree(objp: file_name);
685
686 return len;
687out:
688 kvfree(addr: bitmap);
689
690 if (backing_dev)
691 filp_close(backing_dev, NULL);
692
693 up_write(sem: &zram->init_lock);
694
695 kfree(objp: file_name);
696
697 return err;
698}
699
700static unsigned long alloc_block_bdev(struct zram *zram)
701{
702 unsigned long blk_idx = 1;
703retry:
704 /* skip 0 bit to confuse zram.handle = 0 */
705 blk_idx = find_next_zero_bit(addr: zram->bitmap, size: zram->nr_pages, offset: blk_idx);
706 if (blk_idx == zram->nr_pages)
707 return 0;
708
709 if (test_and_set_bit(nr: blk_idx, addr: zram->bitmap))
710 goto retry;
711
712 atomic64_inc(v: &zram->stats.bd_count);
713 return blk_idx;
714}
715
716static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
717{
718 int was_set;
719
720 was_set = test_and_clear_bit(nr: blk_idx, addr: zram->bitmap);
721 WARN_ON_ONCE(!was_set);
722 atomic64_dec(v: &zram->stats.bd_count);
723}
724
725static void read_from_bdev_async(struct zram *zram, struct page *page,
726 unsigned long entry, struct bio *parent)
727{
728 struct bio *bio;
729
730 bio = bio_alloc(bdev: zram->bdev, nr_vecs: 1, opf: parent->bi_opf, GFP_NOIO);
731 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
732 __bio_add_page(bio, page, PAGE_SIZE, off: 0);
733 bio_chain(bio, parent);
734 submit_bio(bio);
735}
736
737static int zram_writeback_slots(struct zram *zram, struct zram_pp_ctl *ctl)
738{
739 unsigned long blk_idx = 0;
740 struct page *page = NULL;
741 struct zram_pp_slot *pps;
742 struct bio_vec bio_vec;
743 struct bio bio;
744 int ret = 0, err;
745 u32 index;
746
747 page = alloc_page(GFP_KERNEL);
748 if (!page)
749 return -ENOMEM;
750
751 while ((pps = select_pp_slot(ctl))) {
752 spin_lock(lock: &zram->wb_limit_lock);
753 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
754 spin_unlock(lock: &zram->wb_limit_lock);
755 ret = -EIO;
756 break;
757 }
758 spin_unlock(lock: &zram->wb_limit_lock);
759
760 if (!blk_idx) {
761 blk_idx = alloc_block_bdev(zram);
762 if (!blk_idx) {
763 ret = -ENOSPC;
764 break;
765 }
766 }
767
768 index = pps->index;
769 zram_slot_lock(zram, index);
770 /*
771 * scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so
772 * slots can change in the meantime. If slots are accessed or
773 * freed they lose ZRAM_PP_SLOT flag and hence we don't
774 * post-process them.
775 */
776 if (!zram_test_flag(zram, index, flag: ZRAM_PP_SLOT))
777 goto next;
778 if (zram_read_from_zspool(zram, page, index))
779 goto next;
780 zram_slot_unlock(zram, index);
781
782 bio_init(bio: &bio, bdev: zram->bdev, table: &bio_vec, max_vecs: 1,
783 opf: REQ_OP_WRITE | REQ_SYNC);
784 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
785 __bio_add_page(bio: &bio, page, PAGE_SIZE, off: 0);
786
787 /*
788 * XXX: A single page IO would be inefficient for write
789 * but it would be not bad as starter.
790 */
791 err = submit_bio_wait(bio: &bio);
792 if (err) {
793 release_pp_slot(zram, pps);
794 /*
795 * BIO errors are not fatal, we continue and simply
796 * attempt to writeback the remaining objects (pages).
797 * At the same time we need to signal user-space that
798 * some writes (at least one, but also could be all of
799 * them) were not successful and we do so by returning
800 * the most recent BIO error.
801 */
802 ret = err;
803 continue;
804 }
805
806 atomic64_inc(v: &zram->stats.bd_writes);
807 zram_slot_lock(zram, index);
808 /*
809 * Same as above, we release slot lock during writeback so
810 * slot can change under us: slot_free() or slot_free() and
811 * reallocation (zram_write_page()). In both cases slot loses
812 * ZRAM_PP_SLOT flag. No concurrent post-processing can set
813 * ZRAM_PP_SLOT on such slots until current post-processing
814 * finishes.
815 */
816 if (!zram_test_flag(zram, index, flag: ZRAM_PP_SLOT))
817 goto next;
818
819 zram_free_page(zram, index);
820 zram_set_flag(zram, index, flag: ZRAM_WB);
821 zram_set_handle(zram, index, handle: blk_idx);
822 blk_idx = 0;
823 atomic64_inc(v: &zram->stats.pages_stored);
824 spin_lock(lock: &zram->wb_limit_lock);
825 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
826 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
827 spin_unlock(lock: &zram->wb_limit_lock);
828next:
829 zram_slot_unlock(zram, index);
830 release_pp_slot(zram, pps);
831
832 cond_resched();
833 }
834
835 if (blk_idx)
836 free_block_bdev(zram, blk_idx);
837 if (page)
838 __free_page(page);
839
840 return ret;
841}
842
843#define PAGE_WRITEBACK 0
844#define HUGE_WRITEBACK (1 << 0)
845#define IDLE_WRITEBACK (1 << 1)
846#define INCOMPRESSIBLE_WRITEBACK (1 << 2)
847
848static int parse_page_index(char *val, unsigned long nr_pages,
849 unsigned long *lo, unsigned long *hi)
850{
851 int ret;
852
853 ret = kstrtoul(s: val, base: 10, res: lo);
854 if (ret)
855 return ret;
856 if (*lo >= nr_pages)
857 return -ERANGE;
858 *hi = *lo + 1;
859 return 0;
860}
861
862static int parse_page_indexes(char *val, unsigned long nr_pages,
863 unsigned long *lo, unsigned long *hi)
864{
865 char *delim;
866 int ret;
867
868 delim = strchr(val, '-');
869 if (!delim)
870 return -EINVAL;
871
872 *delim = 0x00;
873 ret = kstrtoul(s: val, base: 10, res: lo);
874 if (ret)
875 return ret;
876 if (*lo >= nr_pages)
877 return -ERANGE;
878
879 ret = kstrtoul(s: delim + 1, base: 10, res: hi);
880 if (ret)
881 return ret;
882 if (*hi >= nr_pages || *lo > *hi)
883 return -ERANGE;
884 *hi += 1;
885 return 0;
886}
887
888static int parse_mode(char *val, u32 *mode)
889{
890 *mode = 0;
891
892 if (!strcmp(val, "idle"))
893 *mode = IDLE_WRITEBACK;
894 if (!strcmp(val, "huge"))
895 *mode = HUGE_WRITEBACK;
896 if (!strcmp(val, "huge_idle"))
897 *mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
898 if (!strcmp(val, "incompressible"))
899 *mode = INCOMPRESSIBLE_WRITEBACK;
900
901 if (*mode == 0)
902 return -EINVAL;
903 return 0;
904}
905
906static int scan_slots_for_writeback(struct zram *zram, u32 mode,
907 unsigned long lo, unsigned long hi,
908 struct zram_pp_ctl *ctl)
909{
910 u32 index = lo;
911
912 while (index < hi) {
913 bool ok = true;
914
915 zram_slot_lock(zram, index);
916 if (!zram_allocated(zram, index))
917 goto next;
918
919 if (zram_test_flag(zram, index, flag: ZRAM_WB) ||
920 zram_test_flag(zram, index, flag: ZRAM_SAME))
921 goto next;
922
923 if (mode & IDLE_WRITEBACK &&
924 !zram_test_flag(zram, index, flag: ZRAM_IDLE))
925 goto next;
926 if (mode & HUGE_WRITEBACK &&
927 !zram_test_flag(zram, index, flag: ZRAM_HUGE))
928 goto next;
929 if (mode & INCOMPRESSIBLE_WRITEBACK &&
930 !zram_test_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE))
931 goto next;
932
933 ok = place_pp_slot(zram, ctl, index);
934next:
935 zram_slot_unlock(zram, index);
936 if (!ok)
937 break;
938 index++;
939 }
940
941 return 0;
942}
943
944static ssize_t writeback_store(struct device *dev,
945 struct device_attribute *attr,
946 const char *buf, size_t len)
947{
948 struct zram *zram = dev_to_zram(dev);
949 u64 nr_pages = zram->disksize >> PAGE_SHIFT;
950 unsigned long lo = 0, hi = nr_pages;
951 struct zram_pp_ctl *ctl = NULL;
952 char *args, *param, *val;
953 ssize_t ret = len;
954 int err, mode = 0;
955
956 down_read(sem: &zram->init_lock);
957 if (!init_done(zram)) {
958 up_read(sem: &zram->init_lock);
959 return -EINVAL;
960 }
961
962 /* Do not permit concurrent post-processing actions. */
963 if (atomic_xchg(v: &zram->pp_in_progress, new: 1)) {
964 up_read(sem: &zram->init_lock);
965 return -EAGAIN;
966 }
967
968 if (!zram->backing_dev) {
969 ret = -ENODEV;
970 goto release_init_lock;
971 }
972
973 ctl = init_pp_ctl();
974 if (!ctl) {
975 ret = -ENOMEM;
976 goto release_init_lock;
977 }
978
979 args = skip_spaces(buf);
980 while (*args) {
981 args = next_arg(args, param: &param, val: &val);
982
983 /*
984 * Workaround to support the old writeback interface.
985 *
986 * The old writeback interface has a minor inconsistency and
987 * requires key=value only for page_index parameter, while the
988 * writeback mode is a valueless parameter.
989 *
990 * This is not the case anymore and now all parameters are
991 * required to have values, however, we need to support the
992 * legacy writeback interface format so we check if we can
993 * recognize a valueless parameter as the (legacy) writeback
994 * mode.
995 */
996 if (!val || !*val) {
997 err = parse_mode(val: param, mode: &mode);
998 if (err) {
999 ret = err;
1000 goto release_init_lock;
1001 }
1002
1003 scan_slots_for_writeback(zram, mode, lo, hi, ctl);
1004 break;
1005 }
1006
1007 if (!strcmp(param, "type")) {
1008 err = parse_mode(val, mode: &mode);
1009 if (err) {
1010 ret = err;
1011 goto release_init_lock;
1012 }
1013
1014 scan_slots_for_writeback(zram, mode, lo, hi, ctl);
1015 break;
1016 }
1017
1018 if (!strcmp(param, "page_index")) {
1019 err = parse_page_index(val, nr_pages, lo: &lo, hi: &hi);
1020 if (err) {
1021 ret = err;
1022 goto release_init_lock;
1023 }
1024
1025 scan_slots_for_writeback(zram, mode, lo, hi, ctl);
1026 continue;
1027 }
1028
1029 if (!strcmp(param, "page_indexes")) {
1030 err = parse_page_indexes(val, nr_pages, lo: &lo, hi: &hi);
1031 if (err) {
1032 ret = err;
1033 goto release_init_lock;
1034 }
1035
1036 scan_slots_for_writeback(zram, mode, lo, hi, ctl);
1037 continue;
1038 }
1039 }
1040
1041 err = zram_writeback_slots(zram, ctl);
1042 if (err)
1043 ret = err;
1044
1045release_init_lock:
1046 release_pp_ctl(zram, ctl);
1047 atomic_set(v: &zram->pp_in_progress, i: 0);
1048 up_read(sem: &zram->init_lock);
1049
1050 return ret;
1051}
1052
1053struct zram_work {
1054 struct work_struct work;
1055 struct zram *zram;
1056 unsigned long entry;
1057 struct page *page;
1058 int error;
1059};
1060
1061static void zram_sync_read(struct work_struct *work)
1062{
1063 struct zram_work *zw = container_of(work, struct zram_work, work);
1064 struct bio_vec bv;
1065 struct bio bio;
1066
1067 bio_init(bio: &bio, bdev: zw->zram->bdev, table: &bv, max_vecs: 1, opf: REQ_OP_READ);
1068 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
1069 __bio_add_page(bio: &bio, page: zw->page, PAGE_SIZE, off: 0);
1070 zw->error = submit_bio_wait(bio: &bio);
1071}
1072
1073/*
1074 * Block layer want one ->submit_bio to be active at a time, so if we use
1075 * chained IO with parent IO in same context, it's a deadlock. To avoid that,
1076 * use a worker thread context.
1077 */
1078static int read_from_bdev_sync(struct zram *zram, struct page *page,
1079 unsigned long entry)
1080{
1081 struct zram_work work;
1082
1083 work.page = page;
1084 work.zram = zram;
1085 work.entry = entry;
1086
1087 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
1088 queue_work(wq: system_unbound_wq, work: &work.work);
1089 flush_work(work: &work.work);
1090 destroy_work_on_stack(work: &work.work);
1091
1092 return work.error;
1093}
1094
1095static int read_from_bdev(struct zram *zram, struct page *page,
1096 unsigned long entry, struct bio *parent)
1097{
1098 atomic64_inc(v: &zram->stats.bd_reads);
1099 if (!parent) {
1100 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
1101 return -EIO;
1102 return read_from_bdev_sync(zram, page, entry);
1103 }
1104 read_from_bdev_async(zram, page, entry, parent);
1105 return 0;
1106}
1107#else
1108static inline void reset_bdev(struct zram *zram) {};
1109static int read_from_bdev(struct zram *zram, struct page *page,
1110 unsigned long entry, struct bio *parent)
1111{
1112 return -EIO;
1113}
1114
1115static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
1116#endif
1117
1118#ifdef CONFIG_ZRAM_MEMORY_TRACKING
1119
1120static struct dentry *zram_debugfs_root;
1121
1122static void zram_debugfs_create(void)
1123{
1124 zram_debugfs_root = debugfs_create_dir(name: "zram", NULL);
1125}
1126
1127static void zram_debugfs_destroy(void)
1128{
1129 debugfs_remove_recursive(dentry: zram_debugfs_root);
1130}
1131
1132static ssize_t read_block_state(struct file *file, char __user *buf,
1133 size_t count, loff_t *ppos)
1134{
1135 char *kbuf;
1136 ssize_t index, written = 0;
1137 struct zram *zram = file->private_data;
1138 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1139 struct timespec64 ts;
1140
1141 kbuf = kvmalloc(count, GFP_KERNEL);
1142 if (!kbuf)
1143 return -ENOMEM;
1144
1145 down_read(sem: &zram->init_lock);
1146 if (!init_done(zram)) {
1147 up_read(sem: &zram->init_lock);
1148 kvfree(addr: kbuf);
1149 return -EINVAL;
1150 }
1151
1152 for (index = *ppos; index < nr_pages; index++) {
1153 int copied;
1154
1155 zram_slot_lock(zram, index);
1156 if (!zram_allocated(zram, index))
1157 goto next;
1158
1159 ts = ktime_to_timespec64(zram->table[index].ac_time);
1160 copied = snprintf(buf: kbuf + written, size: count,
1161 fmt: "%12zd %12lld.%06lu %c%c%c%c%c%c\n",
1162 index, (s64)ts.tv_sec,
1163 ts.tv_nsec / NSEC_PER_USEC,
1164 zram_test_flag(zram, index, flag: ZRAM_SAME) ? 's' : '.',
1165 zram_test_flag(zram, index, flag: ZRAM_WB) ? 'w' : '.',
1166 zram_test_flag(zram, index, flag: ZRAM_HUGE) ? 'h' : '.',
1167 zram_test_flag(zram, index, flag: ZRAM_IDLE) ? 'i' : '.',
1168 zram_get_priority(zram, index) ? 'r' : '.',
1169 zram_test_flag(zram, index,
1170 flag: ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
1171
1172 if (count <= copied) {
1173 zram_slot_unlock(zram, index);
1174 break;
1175 }
1176 written += copied;
1177 count -= copied;
1178next:
1179 zram_slot_unlock(zram, index);
1180 *ppos += 1;
1181 }
1182
1183 up_read(sem: &zram->init_lock);
1184 if (copy_to_user(to: buf, from: kbuf, n: written))
1185 written = -EFAULT;
1186 kvfree(addr: kbuf);
1187
1188 return written;
1189}
1190
1191static const struct file_operations proc_zram_block_state_op = {
1192 .open = simple_open,
1193 .read = read_block_state,
1194 .llseek = default_llseek,
1195};
1196
1197static void zram_debugfs_register(struct zram *zram)
1198{
1199 if (!zram_debugfs_root)
1200 return;
1201
1202 zram->debugfs_dir = debugfs_create_dir(name: zram->disk->disk_name,
1203 parent: zram_debugfs_root);
1204 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
1205 zram, &proc_zram_block_state_op);
1206}
1207
1208static void zram_debugfs_unregister(struct zram *zram)
1209{
1210 debugfs_remove_recursive(dentry: zram->debugfs_dir);
1211}
1212#else
1213static void zram_debugfs_create(void) {};
1214static void zram_debugfs_destroy(void) {};
1215static void zram_debugfs_register(struct zram *zram) {};
1216static void zram_debugfs_unregister(struct zram *zram) {};
1217#endif
1218
1219static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
1220{
1221 /* Do not free statically defined compression algorithms */
1222 if (zram->comp_algs[prio] != default_compressor)
1223 kfree(objp: zram->comp_algs[prio]);
1224
1225 zram->comp_algs[prio] = alg;
1226}
1227
1228static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
1229{
1230 ssize_t sz;
1231
1232 down_read(sem: &zram->init_lock);
1233 sz = zcomp_available_show(comp: zram->comp_algs[prio], buf);
1234 up_read(sem: &zram->init_lock);
1235
1236 return sz;
1237}
1238
1239static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
1240{
1241 char *compressor;
1242 size_t sz;
1243
1244 sz = strlen(buf);
1245 if (sz >= ZRAM_MAX_ALGO_NAME_SZ)
1246 return -E2BIG;
1247
1248 compressor = kstrdup(s: buf, GFP_KERNEL);
1249 if (!compressor)
1250 return -ENOMEM;
1251
1252 /* ignore trailing newline */
1253 if (sz > 0 && compressor[sz - 1] == '\n')
1254 compressor[sz - 1] = 0x00;
1255
1256 if (!zcomp_available_algorithm(comp: compressor)) {
1257 kfree(objp: compressor);
1258 return -EINVAL;
1259 }
1260
1261 down_write(sem: &zram->init_lock);
1262 if (init_done(zram)) {
1263 up_write(sem: &zram->init_lock);
1264 kfree(objp: compressor);
1265 pr_info("Can't change algorithm for initialized device\n");
1266 return -EBUSY;
1267 }
1268
1269 comp_algorithm_set(zram, prio, alg: compressor);
1270 up_write(sem: &zram->init_lock);
1271 return 0;
1272}
1273
1274static void comp_params_reset(struct zram *zram, u32 prio)
1275{
1276 struct zcomp_params *params = &zram->params[prio];
1277
1278 vfree(addr: params->dict);
1279 params->level = ZCOMP_PARAM_NOT_SET;
1280 params->deflate.winbits = ZCOMP_PARAM_NOT_SET;
1281 params->dict_sz = 0;
1282 params->dict = NULL;
1283}
1284
1285static int comp_params_store(struct zram *zram, u32 prio, s32 level,
1286 const char *dict_path,
1287 struct deflate_params *deflate_params)
1288{
1289 ssize_t sz = 0;
1290
1291 comp_params_reset(zram, prio);
1292
1293 if (dict_path) {
1294 sz = kernel_read_file_from_path(path: dict_path, offset: 0,
1295 buf: &zram->params[prio].dict,
1296 INT_MAX,
1297 NULL,
1298 id: READING_POLICY);
1299 if (sz < 0)
1300 return -EINVAL;
1301 }
1302
1303 zram->params[prio].dict_sz = sz;
1304 zram->params[prio].level = level;
1305 zram->params[prio].deflate.winbits = deflate_params->winbits;
1306 return 0;
1307}
1308
1309static ssize_t algorithm_params_store(struct device *dev,
1310 struct device_attribute *attr,
1311 const char *buf,
1312 size_t len)
1313{
1314 s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NOT_SET;
1315 char *args, *param, *val, *algo = NULL, *dict_path = NULL;
1316 struct deflate_params deflate_params;
1317 struct zram *zram = dev_to_zram(dev);
1318 int ret;
1319
1320 deflate_params.winbits = ZCOMP_PARAM_NOT_SET;
1321
1322 args = skip_spaces(buf);
1323 while (*args) {
1324 args = next_arg(args, param: &param, val: &val);
1325
1326 if (!val || !*val)
1327 return -EINVAL;
1328
1329 if (!strcmp(param, "priority")) {
1330 ret = kstrtoint(s: val, base: 10, res: &prio);
1331 if (ret)
1332 return ret;
1333 continue;
1334 }
1335
1336 if (!strcmp(param, "level")) {
1337 ret = kstrtoint(s: val, base: 10, res: &level);
1338 if (ret)
1339 return ret;
1340 continue;
1341 }
1342
1343 if (!strcmp(param, "algo")) {
1344 algo = val;
1345 continue;
1346 }
1347
1348 if (!strcmp(param, "dict")) {
1349 dict_path = val;
1350 continue;
1351 }
1352
1353 if (!strcmp(param, "deflate.winbits")) {
1354 ret = kstrtoint(s: val, base: 10, res: &deflate_params.winbits);
1355 if (ret)
1356 return ret;
1357 continue;
1358 }
1359 }
1360
1361 /* Lookup priority by algorithm name */
1362 if (algo) {
1363 s32 p;
1364
1365 prio = -EINVAL;
1366 for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) {
1367 if (!zram->comp_algs[p])
1368 continue;
1369
1370 if (!strcmp(zram->comp_algs[p], algo)) {
1371 prio = p;
1372 break;
1373 }
1374 }
1375 }
1376
1377 if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS)
1378 return -EINVAL;
1379
1380 ret = comp_params_store(zram, prio, level, dict_path, deflate_params: &deflate_params);
1381 return ret ? ret : len;
1382}
1383
1384static ssize_t comp_algorithm_show(struct device *dev,
1385 struct device_attribute *attr,
1386 char *buf)
1387{
1388 struct zram *zram = dev_to_zram(dev);
1389
1390 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1391}
1392
1393static ssize_t comp_algorithm_store(struct device *dev,
1394 struct device_attribute *attr,
1395 const char *buf,
1396 size_t len)
1397{
1398 struct zram *zram = dev_to_zram(dev);
1399 int ret;
1400
1401 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1402 return ret ? ret : len;
1403}
1404
1405#ifdef CONFIG_ZRAM_MULTI_COMP
1406static ssize_t recomp_algorithm_show(struct device *dev,
1407 struct device_attribute *attr,
1408 char *buf)
1409{
1410 struct zram *zram = dev_to_zram(dev);
1411 ssize_t sz = 0;
1412 u32 prio;
1413
1414 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1415 if (!zram->comp_algs[prio])
1416 continue;
1417
1418 sz += scnprintf(buf: buf + sz, PAGE_SIZE - sz - 2, fmt: "#%d: ", prio);
1419 sz += __comp_algorithm_show(zram, prio, buf: buf + sz);
1420 }
1421
1422 return sz;
1423}
1424
1425static ssize_t recomp_algorithm_store(struct device *dev,
1426 struct device_attribute *attr,
1427 const char *buf,
1428 size_t len)
1429{
1430 struct zram *zram = dev_to_zram(dev);
1431 int prio = ZRAM_SECONDARY_COMP;
1432 char *args, *param, *val;
1433 char *alg = NULL;
1434 int ret;
1435
1436 args = skip_spaces(buf);
1437 while (*args) {
1438 args = next_arg(args, param: &param, val: &val);
1439
1440 if (!val || !*val)
1441 return -EINVAL;
1442
1443 if (!strcmp(param, "algo")) {
1444 alg = val;
1445 continue;
1446 }
1447
1448 if (!strcmp(param, "priority")) {
1449 ret = kstrtoint(s: val, base: 10, res: &prio);
1450 if (ret)
1451 return ret;
1452 continue;
1453 }
1454 }
1455
1456 if (!alg)
1457 return -EINVAL;
1458
1459 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1460 return -EINVAL;
1461
1462 ret = __comp_algorithm_store(zram, prio, buf: alg);
1463 return ret ? ret : len;
1464}
1465#endif
1466
1467static ssize_t compact_store(struct device *dev,
1468 struct device_attribute *attr, const char *buf, size_t len)
1469{
1470 struct zram *zram = dev_to_zram(dev);
1471
1472 down_read(sem: &zram->init_lock);
1473 if (!init_done(zram)) {
1474 up_read(sem: &zram->init_lock);
1475 return -EINVAL;
1476 }
1477
1478 zs_compact(pool: zram->mem_pool);
1479 up_read(sem: &zram->init_lock);
1480
1481 return len;
1482}
1483
1484static ssize_t io_stat_show(struct device *dev,
1485 struct device_attribute *attr, char *buf)
1486{
1487 struct zram *zram = dev_to_zram(dev);
1488 ssize_t ret;
1489
1490 down_read(sem: &zram->init_lock);
1491 ret = scnprintf(buf, PAGE_SIZE,
1492 fmt: "%8llu %8llu 0 %8llu\n",
1493 (u64)atomic64_read(v: &zram->stats.failed_reads),
1494 (u64)atomic64_read(v: &zram->stats.failed_writes),
1495 (u64)atomic64_read(v: &zram->stats.notify_free));
1496 up_read(sem: &zram->init_lock);
1497
1498 return ret;
1499}
1500
1501static ssize_t mm_stat_show(struct device *dev,
1502 struct device_attribute *attr, char *buf)
1503{
1504 struct zram *zram = dev_to_zram(dev);
1505 struct zs_pool_stats pool_stats;
1506 u64 orig_size, mem_used = 0;
1507 long max_used;
1508 ssize_t ret;
1509
1510 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1511
1512 down_read(sem: &zram->init_lock);
1513 if (init_done(zram)) {
1514 mem_used = zs_get_total_pages(pool: zram->mem_pool);
1515 zs_pool_stats(pool: zram->mem_pool, stats: &pool_stats);
1516 }
1517
1518 orig_size = atomic64_read(v: &zram->stats.pages_stored);
1519 max_used = atomic_long_read(v: &zram->stats.max_used_pages);
1520
1521 ret = scnprintf(buf, PAGE_SIZE,
1522 fmt: "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1523 orig_size << PAGE_SHIFT,
1524 (u64)atomic64_read(v: &zram->stats.compr_data_size),
1525 mem_used << PAGE_SHIFT,
1526 zram->limit_pages << PAGE_SHIFT,
1527 max_used << PAGE_SHIFT,
1528 (u64)atomic64_read(v: &zram->stats.same_pages),
1529 atomic_long_read(v: &pool_stats.pages_compacted),
1530 (u64)atomic64_read(v: &zram->stats.huge_pages),
1531 (u64)atomic64_read(v: &zram->stats.huge_pages_since));
1532 up_read(sem: &zram->init_lock);
1533
1534 return ret;
1535}
1536
1537#ifdef CONFIG_ZRAM_WRITEBACK
1538#define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1539static ssize_t bd_stat_show(struct device *dev,
1540 struct device_attribute *attr, char *buf)
1541{
1542 struct zram *zram = dev_to_zram(dev);
1543 ssize_t ret;
1544
1545 down_read(sem: &zram->init_lock);
1546 ret = scnprintf(buf, PAGE_SIZE,
1547 fmt: "%8llu %8llu %8llu\n",
1548 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1549 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1550 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1551 up_read(sem: &zram->init_lock);
1552
1553 return ret;
1554}
1555#endif
1556
1557static ssize_t debug_stat_show(struct device *dev,
1558 struct device_attribute *attr, char *buf)
1559{
1560 int version = 1;
1561 struct zram *zram = dev_to_zram(dev);
1562 ssize_t ret;
1563
1564 down_read(sem: &zram->init_lock);
1565 ret = scnprintf(buf, PAGE_SIZE,
1566 fmt: "version: %d\n0 %8llu\n",
1567 version,
1568 (u64)atomic64_read(v: &zram->stats.miss_free));
1569 up_read(sem: &zram->init_lock);
1570
1571 return ret;
1572}
1573
1574static DEVICE_ATTR_RO(io_stat);
1575static DEVICE_ATTR_RO(mm_stat);
1576#ifdef CONFIG_ZRAM_WRITEBACK
1577static DEVICE_ATTR_RO(bd_stat);
1578#endif
1579static DEVICE_ATTR_RO(debug_stat);
1580
1581static void zram_meta_free(struct zram *zram, u64 disksize)
1582{
1583 size_t num_pages = disksize >> PAGE_SHIFT;
1584 size_t index;
1585
1586 if (!zram->table)
1587 return;
1588
1589 /* Free all pages that are still in this zram device */
1590 for (index = 0; index < num_pages; index++)
1591 zram_free_page(zram, index);
1592
1593 zs_destroy_pool(pool: zram->mem_pool);
1594 vfree(addr: zram->table);
1595 zram->table = NULL;
1596}
1597
1598static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1599{
1600 size_t num_pages, index;
1601
1602 num_pages = disksize >> PAGE_SHIFT;
1603 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1604 if (!zram->table)
1605 return false;
1606
1607 zram->mem_pool = zs_create_pool(name: zram->disk->disk_name);
1608 if (!zram->mem_pool) {
1609 vfree(addr: zram->table);
1610 zram->table = NULL;
1611 return false;
1612 }
1613
1614 if (!huge_class_size)
1615 huge_class_size = zs_huge_class_size(pool: zram->mem_pool);
1616
1617 for (index = 0; index < num_pages; index++)
1618 zram_slot_lock_init(zram, index);
1619
1620 return true;
1621}
1622
1623static void zram_free_page(struct zram *zram, size_t index)
1624{
1625 unsigned long handle;
1626
1627#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
1628 zram->table[index].ac_time = 0;
1629#endif
1630
1631 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
1632 zram_clear_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE);
1633 zram_clear_flag(zram, index, flag: ZRAM_PP_SLOT);
1634 zram_set_priority(zram, index, prio: 0);
1635
1636 if (zram_test_flag(zram, index, flag: ZRAM_HUGE)) {
1637 zram_clear_flag(zram, index, flag: ZRAM_HUGE);
1638 atomic64_dec(v: &zram->stats.huge_pages);
1639 }
1640
1641 if (zram_test_flag(zram, index, flag: ZRAM_WB)) {
1642 zram_clear_flag(zram, index, flag: ZRAM_WB);
1643 free_block_bdev(zram, blk_idx: zram_get_handle(zram, index));
1644 goto out;
1645 }
1646
1647 /*
1648 * No memory is allocated for same element filled pages.
1649 * Simply clear same page flag.
1650 */
1651 if (zram_test_flag(zram, index, flag: ZRAM_SAME)) {
1652 zram_clear_flag(zram, index, flag: ZRAM_SAME);
1653 atomic64_dec(v: &zram->stats.same_pages);
1654 goto out;
1655 }
1656
1657 handle = zram_get_handle(zram, index);
1658 if (!handle)
1659 return;
1660
1661 zs_free(pool: zram->mem_pool, obj: handle);
1662
1663 atomic64_sub(i: zram_get_obj_size(zram, index),
1664 v: &zram->stats.compr_data_size);
1665out:
1666 atomic64_dec(v: &zram->stats.pages_stored);
1667 zram_set_handle(zram, index, handle: 0);
1668 zram_set_obj_size(zram, index, size: 0);
1669}
1670
1671static int read_same_filled_page(struct zram *zram, struct page *page,
1672 u32 index)
1673{
1674 void *mem;
1675
1676 mem = kmap_local_page(page);
1677 zram_fill_page(ptr: mem, PAGE_SIZE, value: zram_get_handle(zram, index));
1678 kunmap_local(mem);
1679 return 0;
1680}
1681
1682static int read_incompressible_page(struct zram *zram, struct page *page,
1683 u32 index)
1684{
1685 unsigned long handle;
1686 void *src, *dst;
1687
1688 handle = zram_get_handle(zram, index);
1689 src = zs_obj_read_begin(pool: zram->mem_pool, handle, NULL);
1690 dst = kmap_local_page(page);
1691 copy_page(to: dst, from: src);
1692 kunmap_local(dst);
1693 zs_obj_read_end(pool: zram->mem_pool, handle, handle_mem: src);
1694
1695 return 0;
1696}
1697
1698static int read_compressed_page(struct zram *zram, struct page *page, u32 index)
1699{
1700 struct zcomp_strm *zstrm;
1701 unsigned long handle;
1702 unsigned int size;
1703 void *src, *dst;
1704 int ret, prio;
1705
1706 handle = zram_get_handle(zram, index);
1707 size = zram_get_obj_size(zram, index);
1708 prio = zram_get_priority(zram, index);
1709
1710 zstrm = zcomp_stream_get(comp: zram->comps[prio]);
1711 src = zs_obj_read_begin(pool: zram->mem_pool, handle, local_copy: zstrm->local_copy);
1712 dst = kmap_local_page(page);
1713 ret = zcomp_decompress(comp: zram->comps[prio], zstrm, src, src_len: size, dst);
1714 kunmap_local(dst);
1715 zs_obj_read_end(pool: zram->mem_pool, handle, handle_mem: src);
1716 zcomp_stream_put(zstrm);
1717
1718 return ret;
1719}
1720
1721/*
1722 * Reads (decompresses if needed) a page from zspool (zsmalloc).
1723 * Corresponding ZRAM slot should be locked.
1724 */
1725static int zram_read_from_zspool(struct zram *zram, struct page *page,
1726 u32 index)
1727{
1728 if (zram_test_flag(zram, index, flag: ZRAM_SAME) ||
1729 !zram_get_handle(zram, index))
1730 return read_same_filled_page(zram, page, index);
1731
1732 if (!zram_test_flag(zram, index, flag: ZRAM_HUGE))
1733 return read_compressed_page(zram, page, index);
1734 else
1735 return read_incompressible_page(zram, page, index);
1736}
1737
1738static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1739 struct bio *parent)
1740{
1741 int ret;
1742
1743 zram_slot_lock(zram, index);
1744 if (!zram_test_flag(zram, index, flag: ZRAM_WB)) {
1745 /* Slot should be locked through out the function call */
1746 ret = zram_read_from_zspool(zram, page, index);
1747 zram_slot_unlock(zram, index);
1748 } else {
1749 /*
1750 * The slot should be unlocked before reading from the backing
1751 * device.
1752 */
1753 zram_slot_unlock(zram, index);
1754
1755 ret = read_from_bdev(zram, page, entry: zram_get_handle(zram, index),
1756 parent);
1757 }
1758
1759 /* Should NEVER happen. Return bio error if it does. */
1760 if (WARN_ON(ret < 0))
1761 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1762
1763 return ret;
1764}
1765
1766/*
1767 * Use a temporary buffer to decompress the page, as the decompressor
1768 * always expects a full page for the output.
1769 */
1770static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1771 u32 index, int offset)
1772{
1773 struct page *page = alloc_page(GFP_NOIO);
1774 int ret;
1775
1776 if (!page)
1777 return -ENOMEM;
1778 ret = zram_read_page(zram, page, index, NULL);
1779 if (likely(!ret))
1780 memcpy_to_bvec(bvec, page_address(page) + offset);
1781 __free_page(page);
1782 return ret;
1783}
1784
1785static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1786 u32 index, int offset, struct bio *bio)
1787{
1788 if (is_partial_io(bvec))
1789 return zram_bvec_read_partial(zram, bvec, index, offset);
1790 return zram_read_page(zram, page: bvec->bv_page, index, parent: bio);
1791}
1792
1793static int write_same_filled_page(struct zram *zram, unsigned long fill,
1794 u32 index)
1795{
1796 zram_slot_lock(zram, index);
1797 zram_set_flag(zram, index, flag: ZRAM_SAME);
1798 zram_set_handle(zram, index, handle: fill);
1799 zram_slot_unlock(zram, index);
1800
1801 atomic64_inc(v: &zram->stats.same_pages);
1802 atomic64_inc(v: &zram->stats.pages_stored);
1803
1804 return 0;
1805}
1806
1807static int write_incompressible_page(struct zram *zram, struct page *page,
1808 u32 index)
1809{
1810 unsigned long handle;
1811 void *src;
1812
1813 /*
1814 * This function is called from preemptible context so we don't need
1815 * to do optimistic and fallback to pessimistic handle allocation,
1816 * like we do for compressible pages.
1817 */
1818 handle = zs_malloc(pool: zram->mem_pool, PAGE_SIZE,
1819 GFP_NOIO | __GFP_NOWARN |
1820 __GFP_HIGHMEM | __GFP_MOVABLE, nid: page_to_nid(page));
1821 if (IS_ERR_VALUE(handle))
1822 return PTR_ERR(ptr: (void *)handle);
1823
1824 if (!zram_can_store_page(zram)) {
1825 zs_free(pool: zram->mem_pool, obj: handle);
1826 return -ENOMEM;
1827 }
1828
1829 src = kmap_local_page(page);
1830 zs_obj_write(pool: zram->mem_pool, handle, handle_mem: src, PAGE_SIZE);
1831 kunmap_local(src);
1832
1833 zram_slot_lock(zram, index);
1834 zram_set_flag(zram, index, flag: ZRAM_HUGE);
1835 zram_set_handle(zram, index, handle);
1836 zram_set_obj_size(zram, index, PAGE_SIZE);
1837 zram_slot_unlock(zram, index);
1838
1839 atomic64_add(PAGE_SIZE, v: &zram->stats.compr_data_size);
1840 atomic64_inc(v: &zram->stats.huge_pages);
1841 atomic64_inc(v: &zram->stats.huge_pages_since);
1842 atomic64_inc(v: &zram->stats.pages_stored);
1843
1844 return 0;
1845}
1846
1847static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1848{
1849 int ret = 0;
1850 unsigned long handle;
1851 unsigned int comp_len;
1852 void *mem;
1853 struct zcomp_strm *zstrm;
1854 unsigned long element;
1855 bool same_filled;
1856
1857 /* First, free memory allocated to this slot (if any) */
1858 zram_slot_lock(zram, index);
1859 zram_free_page(zram, index);
1860 zram_slot_unlock(zram, index);
1861
1862 mem = kmap_local_page(page);
1863 same_filled = page_same_filled(ptr: mem, element: &element);
1864 kunmap_local(mem);
1865 if (same_filled)
1866 return write_same_filled_page(zram, fill: element, index);
1867
1868 zstrm = zcomp_stream_get(comp: zram->comps[ZRAM_PRIMARY_COMP]);
1869 mem = kmap_local_page(page);
1870 ret = zcomp_compress(comp: zram->comps[ZRAM_PRIMARY_COMP], zstrm,
1871 src: mem, dst_len: &comp_len);
1872 kunmap_local(mem);
1873
1874 if (unlikely(ret)) {
1875 zcomp_stream_put(zstrm);
1876 pr_err("Compression failed! err=%d\n", ret);
1877 return ret;
1878 }
1879
1880 if (comp_len >= huge_class_size) {
1881 zcomp_stream_put(zstrm);
1882 return write_incompressible_page(zram, page, index);
1883 }
1884
1885 handle = zs_malloc(pool: zram->mem_pool, size: comp_len,
1886 GFP_NOIO | __GFP_NOWARN |
1887 __GFP_HIGHMEM | __GFP_MOVABLE, nid: page_to_nid(page));
1888 if (IS_ERR_VALUE(handle)) {
1889 zcomp_stream_put(zstrm);
1890 return PTR_ERR(ptr: (void *)handle);
1891 }
1892
1893 if (!zram_can_store_page(zram)) {
1894 zcomp_stream_put(zstrm);
1895 zs_free(pool: zram->mem_pool, obj: handle);
1896 return -ENOMEM;
1897 }
1898
1899 zs_obj_write(pool: zram->mem_pool, handle, handle_mem: zstrm->buffer, mem_len: comp_len);
1900 zcomp_stream_put(zstrm);
1901
1902 zram_slot_lock(zram, index);
1903 zram_set_handle(zram, index, handle);
1904 zram_set_obj_size(zram, index, size: comp_len);
1905 zram_slot_unlock(zram, index);
1906
1907 /* Update stats */
1908 atomic64_inc(v: &zram->stats.pages_stored);
1909 atomic64_add(i: comp_len, v: &zram->stats.compr_data_size);
1910
1911 return ret;
1912}
1913
1914/*
1915 * This is a partial IO. Read the full page before writing the changes.
1916 */
1917static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1918 u32 index, int offset, struct bio *bio)
1919{
1920 struct page *page = alloc_page(GFP_NOIO);
1921 int ret;
1922
1923 if (!page)
1924 return -ENOMEM;
1925
1926 ret = zram_read_page(zram, page, index, parent: bio);
1927 if (!ret) {
1928 memcpy_from_bvec(page_address(page) + offset, bvec);
1929 ret = zram_write_page(zram, page, index);
1930 }
1931 __free_page(page);
1932 return ret;
1933}
1934
1935static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1936 u32 index, int offset, struct bio *bio)
1937{
1938 if (is_partial_io(bvec))
1939 return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1940 return zram_write_page(zram, page: bvec->bv_page, index);
1941}
1942
1943#ifdef CONFIG_ZRAM_MULTI_COMP
1944#define RECOMPRESS_IDLE (1 << 0)
1945#define RECOMPRESS_HUGE (1 << 1)
1946
1947static int scan_slots_for_recompress(struct zram *zram, u32 mode, u32 prio_max,
1948 struct zram_pp_ctl *ctl)
1949{
1950 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1951 unsigned long index;
1952
1953 for (index = 0; index < nr_pages; index++) {
1954 bool ok = true;
1955
1956 zram_slot_lock(zram, index);
1957 if (!zram_allocated(zram, index))
1958 goto next;
1959
1960 if (mode & RECOMPRESS_IDLE &&
1961 !zram_test_flag(zram, index, flag: ZRAM_IDLE))
1962 goto next;
1963
1964 if (mode & RECOMPRESS_HUGE &&
1965 !zram_test_flag(zram, index, flag: ZRAM_HUGE))
1966 goto next;
1967
1968 if (zram_test_flag(zram, index, flag: ZRAM_WB) ||
1969 zram_test_flag(zram, index, flag: ZRAM_SAME) ||
1970 zram_test_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE))
1971 goto next;
1972
1973 /* Already compressed with same of higher priority */
1974 if (zram_get_priority(zram, index) + 1 >= prio_max)
1975 goto next;
1976
1977 ok = place_pp_slot(zram, ctl, index);
1978next:
1979 zram_slot_unlock(zram, index);
1980 if (!ok)
1981 break;
1982 }
1983
1984 return 0;
1985}
1986
1987/*
1988 * This function will decompress (unless it's ZRAM_HUGE) the page and then
1989 * attempt to compress it using provided compression algorithm priority
1990 * (which is potentially more effective).
1991 *
1992 * Corresponding ZRAM slot should be locked.
1993 */
1994static int recompress_slot(struct zram *zram, u32 index, struct page *page,
1995 u64 *num_recomp_pages, u32 threshold, u32 prio,
1996 u32 prio_max)
1997{
1998 struct zcomp_strm *zstrm = NULL;
1999 unsigned long handle_old;
2000 unsigned long handle_new;
2001 unsigned int comp_len_old;
2002 unsigned int comp_len_new;
2003 unsigned int class_index_old;
2004 unsigned int class_index_new;
2005 void *src;
2006 int ret = 0;
2007
2008 handle_old = zram_get_handle(zram, index);
2009 if (!handle_old)
2010 return -EINVAL;
2011
2012 comp_len_old = zram_get_obj_size(zram, index);
2013 /*
2014 * Do not recompress objects that are already "small enough".
2015 */
2016 if (comp_len_old < threshold)
2017 return 0;
2018
2019 ret = zram_read_from_zspool(zram, page, index);
2020 if (ret)
2021 return ret;
2022
2023 /*
2024 * We touched this entry so mark it as non-IDLE. This makes sure that
2025 * we don't preserve IDLE flag and don't incorrectly pick this entry
2026 * for different post-processing type (e.g. writeback).
2027 */
2028 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
2029
2030 class_index_old = zs_lookup_class_index(pool: zram->mem_pool, size: comp_len_old);
2031
2032 prio = max(prio, zram_get_priority(zram, index) + 1);
2033 /*
2034 * Recompression slots scan should not select slots that are
2035 * already compressed with a higher priority algorithm, but
2036 * just in case
2037 */
2038 if (prio >= prio_max)
2039 return 0;
2040
2041 /*
2042 * Iterate the secondary comp algorithms list (in order of priority)
2043 * and try to recompress the page.
2044 */
2045 for (; prio < prio_max; prio++) {
2046 if (!zram->comps[prio])
2047 continue;
2048
2049 zstrm = zcomp_stream_get(comp: zram->comps[prio]);
2050 src = kmap_local_page(page);
2051 ret = zcomp_compress(comp: zram->comps[prio], zstrm,
2052 src, dst_len: &comp_len_new);
2053 kunmap_local(src);
2054
2055 if (ret) {
2056 zcomp_stream_put(zstrm);
2057 zstrm = NULL;
2058 break;
2059 }
2060
2061 class_index_new = zs_lookup_class_index(pool: zram->mem_pool,
2062 size: comp_len_new);
2063
2064 /* Continue until we make progress */
2065 if (class_index_new >= class_index_old ||
2066 (threshold && comp_len_new >= threshold)) {
2067 zcomp_stream_put(zstrm);
2068 zstrm = NULL;
2069 continue;
2070 }
2071
2072 /* Recompression was successful so break out */
2073 break;
2074 }
2075
2076 /*
2077 * Decrement the limit (if set) on pages we can recompress, even
2078 * when current recompression was unsuccessful or did not compress
2079 * the page below the threshold, because we still spent resources
2080 * on it.
2081 */
2082 if (*num_recomp_pages)
2083 *num_recomp_pages -= 1;
2084
2085 /* Compression error */
2086 if (ret)
2087 return ret;
2088
2089 if (!zstrm) {
2090 /*
2091 * Secondary algorithms failed to re-compress the page
2092 * in a way that would save memory.
2093 *
2094 * Mark the object incompressible if the max-priority
2095 * algorithm couldn't re-compress it.
2096 */
2097 if (prio < zram->num_active_comps)
2098 return 0;
2099 zram_set_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE);
2100 return 0;
2101 }
2102
2103 /*
2104 * We are holding per-CPU stream mutex and entry lock so better
2105 * avoid direct reclaim. Allocation error is not fatal since
2106 * we still have the old object in the mem_pool.
2107 *
2108 * XXX: technically, the node we really want here is the node that holds
2109 * the original compressed data. But that would require us to modify
2110 * zsmalloc API to return this information. For now, we will make do with
2111 * the node of the page allocated for recompression.
2112 */
2113 handle_new = zs_malloc(pool: zram->mem_pool, size: comp_len_new,
2114 GFP_NOIO | __GFP_NOWARN |
2115 __GFP_HIGHMEM | __GFP_MOVABLE, nid: page_to_nid(page));
2116 if (IS_ERR_VALUE(handle_new)) {
2117 zcomp_stream_put(zstrm);
2118 return PTR_ERR(ptr: (void *)handle_new);
2119 }
2120
2121 zs_obj_write(pool: zram->mem_pool, handle: handle_new, handle_mem: zstrm->buffer, mem_len: comp_len_new);
2122 zcomp_stream_put(zstrm);
2123
2124 zram_free_page(zram, index);
2125 zram_set_handle(zram, index, handle: handle_new);
2126 zram_set_obj_size(zram, index, size: comp_len_new);
2127 zram_set_priority(zram, index, prio);
2128
2129 atomic64_add(i: comp_len_new, v: &zram->stats.compr_data_size);
2130 atomic64_inc(v: &zram->stats.pages_stored);
2131
2132 return 0;
2133}
2134
2135static ssize_t recompress_store(struct device *dev,
2136 struct device_attribute *attr,
2137 const char *buf, size_t len)
2138{
2139 struct zram *zram = dev_to_zram(dev);
2140 char *args, *param, *val, *algo = NULL;
2141 u64 num_recomp_pages = ULLONG_MAX;
2142 struct zram_pp_ctl *ctl = NULL;
2143 struct zram_pp_slot *pps;
2144 u32 mode = 0, threshold = 0;
2145 u32 prio, prio_max;
2146 struct page *page = NULL;
2147 ssize_t ret;
2148
2149 prio = ZRAM_SECONDARY_COMP;
2150 prio_max = zram->num_active_comps;
2151
2152 args = skip_spaces(buf);
2153 while (*args) {
2154 args = next_arg(args, param: &param, val: &val);
2155
2156 if (!val || !*val)
2157 return -EINVAL;
2158
2159 if (!strcmp(param, "type")) {
2160 if (!strcmp(val, "idle"))
2161 mode = RECOMPRESS_IDLE;
2162 if (!strcmp(val, "huge"))
2163 mode = RECOMPRESS_HUGE;
2164 if (!strcmp(val, "huge_idle"))
2165 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
2166 continue;
2167 }
2168
2169 if (!strcmp(param, "max_pages")) {
2170 /*
2171 * Limit the number of entries (pages) we attempt to
2172 * recompress.
2173 */
2174 ret = kstrtoull(s: val, base: 10, res: &num_recomp_pages);
2175 if (ret)
2176 return ret;
2177 continue;
2178 }
2179
2180 if (!strcmp(param, "threshold")) {
2181 /*
2182 * We will re-compress only idle objects equal or
2183 * greater in size than watermark.
2184 */
2185 ret = kstrtouint(s: val, base: 10, res: &threshold);
2186 if (ret)
2187 return ret;
2188 continue;
2189 }
2190
2191 if (!strcmp(param, "algo")) {
2192 algo = val;
2193 continue;
2194 }
2195
2196 if (!strcmp(param, "priority")) {
2197 ret = kstrtouint(s: val, base: 10, res: &prio);
2198 if (ret)
2199 return ret;
2200
2201 if (prio == ZRAM_PRIMARY_COMP)
2202 prio = ZRAM_SECONDARY_COMP;
2203
2204 prio_max = prio + 1;
2205 continue;
2206 }
2207 }
2208
2209 if (threshold >= huge_class_size)
2210 return -EINVAL;
2211
2212 down_read(sem: &zram->init_lock);
2213 if (!init_done(zram)) {
2214 ret = -EINVAL;
2215 goto release_init_lock;
2216 }
2217
2218 /* Do not permit concurrent post-processing actions. */
2219 if (atomic_xchg(v: &zram->pp_in_progress, new: 1)) {
2220 up_read(sem: &zram->init_lock);
2221 return -EAGAIN;
2222 }
2223
2224 if (algo) {
2225 bool found = false;
2226
2227 for (; prio < ZRAM_MAX_COMPS; prio++) {
2228 if (!zram->comp_algs[prio])
2229 continue;
2230
2231 if (!strcmp(zram->comp_algs[prio], algo)) {
2232 prio_max = prio + 1;
2233 found = true;
2234 break;
2235 }
2236 }
2237
2238 if (!found) {
2239 ret = -EINVAL;
2240 goto release_init_lock;
2241 }
2242 }
2243
2244 prio_max = min(prio_max, (u32)zram->num_active_comps);
2245 if (prio >= prio_max) {
2246 ret = -EINVAL;
2247 goto release_init_lock;
2248 }
2249
2250 page = alloc_page(GFP_KERNEL);
2251 if (!page) {
2252 ret = -ENOMEM;
2253 goto release_init_lock;
2254 }
2255
2256 ctl = init_pp_ctl();
2257 if (!ctl) {
2258 ret = -ENOMEM;
2259 goto release_init_lock;
2260 }
2261
2262 scan_slots_for_recompress(zram, mode, prio_max, ctl);
2263
2264 ret = len;
2265 while ((pps = select_pp_slot(ctl))) {
2266 int err = 0;
2267
2268 if (!num_recomp_pages)
2269 break;
2270
2271 zram_slot_lock(zram, index: pps->index);
2272 if (!zram_test_flag(zram, index: pps->index, flag: ZRAM_PP_SLOT))
2273 goto next;
2274
2275 err = recompress_slot(zram, index: pps->index, page,
2276 num_recomp_pages: &num_recomp_pages, threshold,
2277 prio, prio_max);
2278next:
2279 zram_slot_unlock(zram, index: pps->index);
2280 release_pp_slot(zram, pps);
2281
2282 if (err) {
2283 ret = err;
2284 break;
2285 }
2286
2287 cond_resched();
2288 }
2289
2290release_init_lock:
2291 if (page)
2292 __free_page(page);
2293 release_pp_ctl(zram, ctl);
2294 atomic_set(v: &zram->pp_in_progress, i: 0);
2295 up_read(sem: &zram->init_lock);
2296 return ret;
2297}
2298#endif
2299
2300static void zram_bio_discard(struct zram *zram, struct bio *bio)
2301{
2302 size_t n = bio->bi_iter.bi_size;
2303 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2304 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2305 SECTOR_SHIFT;
2306
2307 /*
2308 * zram manages data in physical block size units. Because logical block
2309 * size isn't identical with physical block size on some arch, we
2310 * could get a discard request pointing to a specific offset within a
2311 * certain physical block. Although we can handle this request by
2312 * reading that physiclal block and decompressing and partially zeroing
2313 * and re-compressing and then re-storing it, this isn't reasonable
2314 * because our intent with a discard request is to save memory. So
2315 * skipping this logical block is appropriate here.
2316 */
2317 if (offset) {
2318 if (n <= (PAGE_SIZE - offset))
2319 return;
2320
2321 n -= (PAGE_SIZE - offset);
2322 index++;
2323 }
2324
2325 while (n >= PAGE_SIZE) {
2326 zram_slot_lock(zram, index);
2327 zram_free_page(zram, index);
2328 zram_slot_unlock(zram, index);
2329 atomic64_inc(v: &zram->stats.notify_free);
2330 index++;
2331 n -= PAGE_SIZE;
2332 }
2333
2334 bio_endio(bio);
2335}
2336
2337static void zram_bio_read(struct zram *zram, struct bio *bio)
2338{
2339 unsigned long start_time = bio_start_io_acct(bio);
2340 struct bvec_iter iter = bio->bi_iter;
2341
2342 do {
2343 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2344 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2345 SECTOR_SHIFT;
2346 struct bio_vec bv = bio_iter_iovec(bio, iter);
2347
2348 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2349
2350 if (zram_bvec_read(zram, bvec: &bv, index, offset, bio) < 0) {
2351 atomic64_inc(v: &zram->stats.failed_reads);
2352 bio->bi_status = BLK_STS_IOERR;
2353 break;
2354 }
2355 flush_dcache_page(page: bv.bv_page);
2356
2357 zram_slot_lock(zram, index);
2358 zram_accessed(zram, index);
2359 zram_slot_unlock(zram, index);
2360
2361 bio_advance_iter_single(bio, iter: &iter, bytes: bv.bv_len);
2362 } while (iter.bi_size);
2363
2364 bio_end_io_acct(bio, start_time);
2365 bio_endio(bio);
2366}
2367
2368static void zram_bio_write(struct zram *zram, struct bio *bio)
2369{
2370 unsigned long start_time = bio_start_io_acct(bio);
2371 struct bvec_iter iter = bio->bi_iter;
2372
2373 do {
2374 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2375 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2376 SECTOR_SHIFT;
2377 struct bio_vec bv = bio_iter_iovec(bio, iter);
2378
2379 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2380
2381 if (zram_bvec_write(zram, bvec: &bv, index, offset, bio) < 0) {
2382 atomic64_inc(v: &zram->stats.failed_writes);
2383 bio->bi_status = BLK_STS_IOERR;
2384 break;
2385 }
2386
2387 zram_slot_lock(zram, index);
2388 zram_accessed(zram, index);
2389 zram_slot_unlock(zram, index);
2390
2391 bio_advance_iter_single(bio, iter: &iter, bytes: bv.bv_len);
2392 } while (iter.bi_size);
2393
2394 bio_end_io_acct(bio, start_time);
2395 bio_endio(bio);
2396}
2397
2398/*
2399 * Handler function for all zram I/O requests.
2400 */
2401static void zram_submit_bio(struct bio *bio)
2402{
2403 struct zram *zram = bio->bi_bdev->bd_disk->private_data;
2404
2405 switch (bio_op(bio)) {
2406 case REQ_OP_READ:
2407 zram_bio_read(zram, bio);
2408 break;
2409 case REQ_OP_WRITE:
2410 zram_bio_write(zram, bio);
2411 break;
2412 case REQ_OP_DISCARD:
2413 case REQ_OP_WRITE_ZEROES:
2414 zram_bio_discard(zram, bio);
2415 break;
2416 default:
2417 WARN_ON_ONCE(1);
2418 bio_endio(bio);
2419 }
2420}
2421
2422static void zram_slot_free_notify(struct block_device *bdev,
2423 unsigned long index)
2424{
2425 struct zram *zram;
2426
2427 zram = bdev->bd_disk->private_data;
2428
2429 atomic64_inc(v: &zram->stats.notify_free);
2430 if (!zram_slot_trylock(zram, index)) {
2431 atomic64_inc(v: &zram->stats.miss_free);
2432 return;
2433 }
2434
2435 zram_free_page(zram, index);
2436 zram_slot_unlock(zram, index);
2437}
2438
2439static void zram_comp_params_reset(struct zram *zram)
2440{
2441 u32 prio;
2442
2443 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2444 comp_params_reset(zram, prio);
2445 }
2446}
2447
2448static void zram_destroy_comps(struct zram *zram)
2449{
2450 u32 prio;
2451
2452 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2453 struct zcomp *comp = zram->comps[prio];
2454
2455 zram->comps[prio] = NULL;
2456 if (!comp)
2457 continue;
2458 zcomp_destroy(comp);
2459 zram->num_active_comps--;
2460 }
2461
2462 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2463 /* Do not free statically defined compression algorithms */
2464 if (zram->comp_algs[prio] != default_compressor)
2465 kfree(objp: zram->comp_algs[prio]);
2466 zram->comp_algs[prio] = NULL;
2467 }
2468
2469 zram_comp_params_reset(zram);
2470}
2471
2472static void zram_reset_device(struct zram *zram)
2473{
2474 down_write(sem: &zram->init_lock);
2475
2476 zram->limit_pages = 0;
2477
2478 set_capacity_and_notify(disk: zram->disk, size: 0);
2479 part_stat_set_all(part: zram->disk->part0, value: 0);
2480
2481 /* I/O operation under all of CPU are done so let's free */
2482 zram_meta_free(zram, disksize: zram->disksize);
2483 zram->disksize = 0;
2484 zram_destroy_comps(zram);
2485 memset(&zram->stats, 0, sizeof(zram->stats));
2486 atomic_set(v: &zram->pp_in_progress, i: 0);
2487 reset_bdev(zram);
2488
2489 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, alg: default_compressor);
2490 up_write(sem: &zram->init_lock);
2491}
2492
2493static ssize_t disksize_store(struct device *dev,
2494 struct device_attribute *attr, const char *buf, size_t len)
2495{
2496 u64 disksize;
2497 struct zcomp *comp;
2498 struct zram *zram = dev_to_zram(dev);
2499 int err;
2500 u32 prio;
2501
2502 disksize = memparse(ptr: buf, NULL);
2503 if (!disksize)
2504 return -EINVAL;
2505
2506 down_write(sem: &zram->init_lock);
2507 if (init_done(zram)) {
2508 pr_info("Cannot change disksize for initialized device\n");
2509 err = -EBUSY;
2510 goto out_unlock;
2511 }
2512
2513 disksize = PAGE_ALIGN(disksize);
2514 if (!zram_meta_alloc(zram, disksize)) {
2515 err = -ENOMEM;
2516 goto out_unlock;
2517 }
2518
2519 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2520 if (!zram->comp_algs[prio])
2521 continue;
2522
2523 comp = zcomp_create(alg: zram->comp_algs[prio],
2524 params: &zram->params[prio]);
2525 if (IS_ERR(ptr: comp)) {
2526 pr_err("Cannot initialise %s compressing backend\n",
2527 zram->comp_algs[prio]);
2528 err = PTR_ERR(ptr: comp);
2529 goto out_free_comps;
2530 }
2531
2532 zram->comps[prio] = comp;
2533 zram->num_active_comps++;
2534 }
2535 zram->disksize = disksize;
2536 set_capacity_and_notify(disk: zram->disk, size: zram->disksize >> SECTOR_SHIFT);
2537 up_write(sem: &zram->init_lock);
2538
2539 return len;
2540
2541out_free_comps:
2542 zram_destroy_comps(zram);
2543 zram_meta_free(zram, disksize);
2544out_unlock:
2545 up_write(sem: &zram->init_lock);
2546 return err;
2547}
2548
2549static ssize_t reset_store(struct device *dev,
2550 struct device_attribute *attr, const char *buf, size_t len)
2551{
2552 int ret;
2553 unsigned short do_reset;
2554 struct zram *zram;
2555 struct gendisk *disk;
2556
2557 ret = kstrtou16(s: buf, base: 10, res: &do_reset);
2558 if (ret)
2559 return ret;
2560
2561 if (!do_reset)
2562 return -EINVAL;
2563
2564 zram = dev_to_zram(dev);
2565 disk = zram->disk;
2566
2567 mutex_lock(&disk->open_mutex);
2568 /* Do not reset an active device or claimed device */
2569 if (disk_openers(disk) || zram->claim) {
2570 mutex_unlock(lock: &disk->open_mutex);
2571 return -EBUSY;
2572 }
2573
2574 /* From now on, anyone can't open /dev/zram[0-9] */
2575 zram->claim = true;
2576 mutex_unlock(lock: &disk->open_mutex);
2577
2578 /* Make sure all the pending I/O are finished */
2579 sync_blockdev(bdev: disk->part0);
2580 zram_reset_device(zram);
2581
2582 mutex_lock(&disk->open_mutex);
2583 zram->claim = false;
2584 mutex_unlock(lock: &disk->open_mutex);
2585
2586 return len;
2587}
2588
2589static int zram_open(struct gendisk *disk, blk_mode_t mode)
2590{
2591 struct zram *zram = disk->private_data;
2592
2593 WARN_ON(!mutex_is_locked(&disk->open_mutex));
2594
2595 /* zram was claimed to reset so open request fails */
2596 if (zram->claim)
2597 return -EBUSY;
2598 return 0;
2599}
2600
2601static const struct block_device_operations zram_devops = {
2602 .open = zram_open,
2603 .submit_bio = zram_submit_bio,
2604 .swap_slot_free_notify = zram_slot_free_notify,
2605 .owner = THIS_MODULE
2606};
2607
2608static DEVICE_ATTR_WO(compact);
2609static DEVICE_ATTR_RW(disksize);
2610static DEVICE_ATTR_RO(initstate);
2611static DEVICE_ATTR_WO(reset);
2612static DEVICE_ATTR_WO(mem_limit);
2613static DEVICE_ATTR_WO(mem_used_max);
2614static DEVICE_ATTR_WO(idle);
2615static DEVICE_ATTR_RW(comp_algorithm);
2616#ifdef CONFIG_ZRAM_WRITEBACK
2617static DEVICE_ATTR_RW(backing_dev);
2618static DEVICE_ATTR_WO(writeback);
2619static DEVICE_ATTR_RW(writeback_limit);
2620static DEVICE_ATTR_RW(writeback_limit_enable);
2621#endif
2622#ifdef CONFIG_ZRAM_MULTI_COMP
2623static DEVICE_ATTR_RW(recomp_algorithm);
2624static DEVICE_ATTR_WO(recompress);
2625#endif
2626static DEVICE_ATTR_WO(algorithm_params);
2627
2628static struct attribute *zram_disk_attrs[] = {
2629 &dev_attr_disksize.attr,
2630 &dev_attr_initstate.attr,
2631 &dev_attr_reset.attr,
2632 &dev_attr_compact.attr,
2633 &dev_attr_mem_limit.attr,
2634 &dev_attr_mem_used_max.attr,
2635 &dev_attr_idle.attr,
2636 &dev_attr_comp_algorithm.attr,
2637#ifdef CONFIG_ZRAM_WRITEBACK
2638 &dev_attr_backing_dev.attr,
2639 &dev_attr_writeback.attr,
2640 &dev_attr_writeback_limit.attr,
2641 &dev_attr_writeback_limit_enable.attr,
2642#endif
2643 &dev_attr_io_stat.attr,
2644 &dev_attr_mm_stat.attr,
2645#ifdef CONFIG_ZRAM_WRITEBACK
2646 &dev_attr_bd_stat.attr,
2647#endif
2648 &dev_attr_debug_stat.attr,
2649#ifdef CONFIG_ZRAM_MULTI_COMP
2650 &dev_attr_recomp_algorithm.attr,
2651 &dev_attr_recompress.attr,
2652#endif
2653 &dev_attr_algorithm_params.attr,
2654 NULL,
2655};
2656
2657ATTRIBUTE_GROUPS(zram_disk);
2658
2659/*
2660 * Allocate and initialize new zram device. the function returns
2661 * '>= 0' device_id upon success, and negative value otherwise.
2662 */
2663static int zram_add(void)
2664{
2665 struct queue_limits lim = {
2666 .logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE,
2667 /*
2668 * To ensure that we always get PAGE_SIZE aligned and
2669 * n*PAGE_SIZED sized I/O requests.
2670 */
2671 .physical_block_size = PAGE_SIZE,
2672 .io_min = PAGE_SIZE,
2673 .io_opt = PAGE_SIZE,
2674 .max_hw_discard_sectors = UINT_MAX,
2675 /*
2676 * zram_bio_discard() will clear all logical blocks if logical
2677 * block size is identical with physical block size(PAGE_SIZE).
2678 * But if it is different, we will skip discarding some parts of
2679 * logical blocks in the part of the request range which isn't
2680 * aligned to physical block size. So we can't ensure that all
2681 * discarded logical blocks are zeroed.
2682 */
2683#if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
2684 .max_write_zeroes_sectors = UINT_MAX,
2685#endif
2686 .features = BLK_FEAT_STABLE_WRITES |
2687 BLK_FEAT_SYNCHRONOUS,
2688 };
2689 struct zram *zram;
2690 int ret, device_id;
2691
2692 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2693 if (!zram)
2694 return -ENOMEM;
2695
2696 ret = idr_alloc(&zram_index_idr, ptr: zram, start: 0, end: 0, GFP_KERNEL);
2697 if (ret < 0)
2698 goto out_free_dev;
2699 device_id = ret;
2700
2701 init_rwsem(&zram->init_lock);
2702#ifdef CONFIG_ZRAM_WRITEBACK
2703 spin_lock_init(&zram->wb_limit_lock);
2704#endif
2705
2706 /* gendisk structure */
2707 zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2708 if (IS_ERR(ptr: zram->disk)) {
2709 pr_err("Error allocating disk structure for device %d\n",
2710 device_id);
2711 ret = PTR_ERR(ptr: zram->disk);
2712 goto out_free_idr;
2713 }
2714
2715 zram->disk->major = zram_major;
2716 zram->disk->first_minor = device_id;
2717 zram->disk->minors = 1;
2718 zram->disk->flags |= GENHD_FL_NO_PART;
2719 zram->disk->fops = &zram_devops;
2720 zram->disk->private_data = zram;
2721 snprintf(buf: zram->disk->disk_name, size: 16, fmt: "zram%d", device_id);
2722 atomic_set(v: &zram->pp_in_progress, i: 0);
2723 zram_comp_params_reset(zram);
2724 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, alg: default_compressor);
2725
2726 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2727 set_capacity(disk: zram->disk, size: 0);
2728 ret = device_add_disk(NULL, disk: zram->disk, groups: zram_disk_groups);
2729 if (ret)
2730 goto out_cleanup_disk;
2731
2732 zram_debugfs_register(zram);
2733 pr_info("Added device: %s\n", zram->disk->disk_name);
2734 return device_id;
2735
2736out_cleanup_disk:
2737 put_disk(disk: zram->disk);
2738out_free_idr:
2739 idr_remove(&zram_index_idr, id: device_id);
2740out_free_dev:
2741 kfree(objp: zram);
2742 return ret;
2743}
2744
2745static int zram_remove(struct zram *zram)
2746{
2747 bool claimed;
2748
2749 mutex_lock(&zram->disk->open_mutex);
2750 if (disk_openers(disk: zram->disk)) {
2751 mutex_unlock(lock: &zram->disk->open_mutex);
2752 return -EBUSY;
2753 }
2754
2755 claimed = zram->claim;
2756 if (!claimed)
2757 zram->claim = true;
2758 mutex_unlock(lock: &zram->disk->open_mutex);
2759
2760 zram_debugfs_unregister(zram);
2761
2762 if (claimed) {
2763 /*
2764 * If we were claimed by reset_store(), del_gendisk() will
2765 * wait until reset_store() is done, so nothing need to do.
2766 */
2767 ;
2768 } else {
2769 /* Make sure all the pending I/O are finished */
2770 sync_blockdev(bdev: zram->disk->part0);
2771 zram_reset_device(zram);
2772 }
2773
2774 pr_info("Removed device: %s\n", zram->disk->disk_name);
2775
2776 del_gendisk(gp: zram->disk);
2777
2778 /* del_gendisk drains pending reset_store */
2779 WARN_ON_ONCE(claimed && zram->claim);
2780
2781 /*
2782 * disksize_store() may be called in between zram_reset_device()
2783 * and del_gendisk(), so run the last reset to avoid leaking
2784 * anything allocated with disksize_store()
2785 */
2786 zram_reset_device(zram);
2787
2788 put_disk(disk: zram->disk);
2789 kfree(objp: zram);
2790 return 0;
2791}
2792
2793/* zram-control sysfs attributes */
2794
2795/*
2796 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2797 * sense that reading from this file does alter the state of your system -- it
2798 * creates a new un-initialized zram device and returns back this device's
2799 * device_id (or an error code if it fails to create a new device).
2800 */
2801static ssize_t hot_add_show(const struct class *class,
2802 const struct class_attribute *attr,
2803 char *buf)
2804{
2805 int ret;
2806
2807 mutex_lock(&zram_index_mutex);
2808 ret = zram_add();
2809 mutex_unlock(lock: &zram_index_mutex);
2810
2811 if (ret < 0)
2812 return ret;
2813 return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", ret);
2814}
2815/* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2816static struct class_attribute class_attr_hot_add =
2817 __ATTR(hot_add, 0400, hot_add_show, NULL);
2818
2819static ssize_t hot_remove_store(const struct class *class,
2820 const struct class_attribute *attr,
2821 const char *buf,
2822 size_t count)
2823{
2824 struct zram *zram;
2825 int ret, dev_id;
2826
2827 /* dev_id is gendisk->first_minor, which is `int' */
2828 ret = kstrtoint(s: buf, base: 10, res: &dev_id);
2829 if (ret)
2830 return ret;
2831 if (dev_id < 0)
2832 return -EINVAL;
2833
2834 mutex_lock(&zram_index_mutex);
2835
2836 zram = idr_find(&zram_index_idr, id: dev_id);
2837 if (zram) {
2838 ret = zram_remove(zram);
2839 if (!ret)
2840 idr_remove(&zram_index_idr, id: dev_id);
2841 } else {
2842 ret = -ENODEV;
2843 }
2844
2845 mutex_unlock(lock: &zram_index_mutex);
2846 return ret ? ret : count;
2847}
2848static CLASS_ATTR_WO(hot_remove);
2849
2850static struct attribute *zram_control_class_attrs[] = {
2851 &class_attr_hot_add.attr,
2852 &class_attr_hot_remove.attr,
2853 NULL,
2854};
2855ATTRIBUTE_GROUPS(zram_control_class);
2856
2857static struct class zram_control_class = {
2858 .name = "zram-control",
2859 .class_groups = zram_control_class_groups,
2860};
2861
2862static int zram_remove_cb(int id, void *ptr, void *data)
2863{
2864 WARN_ON_ONCE(zram_remove(ptr));
2865 return 0;
2866}
2867
2868static void destroy_devices(void)
2869{
2870 class_unregister(class: &zram_control_class);
2871 idr_for_each(&zram_index_idr, fn: &zram_remove_cb, NULL);
2872 zram_debugfs_destroy();
2873 idr_destroy(&zram_index_idr);
2874 unregister_blkdev(major: zram_major, name: "zram");
2875 cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE);
2876}
2877
2878static int __init zram_init(void)
2879{
2880 struct zram_table_entry zram_te;
2881 int ret;
2882
2883 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
2884
2885 ret = cpuhp_setup_state_multi(state: CPUHP_ZCOMP_PREPARE, name: "block/zram:prepare",
2886 startup: zcomp_cpu_up_prepare, teardown: zcomp_cpu_dead);
2887 if (ret < 0)
2888 return ret;
2889
2890 ret = class_register(class: &zram_control_class);
2891 if (ret) {
2892 pr_err("Unable to register zram-control class\n");
2893 cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE);
2894 return ret;
2895 }
2896
2897 zram_debugfs_create();
2898 zram_major = register_blkdev(0, "zram");
2899 if (zram_major <= 0) {
2900 pr_err("Unable to get major number\n");
2901 class_unregister(class: &zram_control_class);
2902 cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE);
2903 return -EBUSY;
2904 }
2905
2906 while (num_devices != 0) {
2907 mutex_lock(&zram_index_mutex);
2908 ret = zram_add();
2909 mutex_unlock(lock: &zram_index_mutex);
2910 if (ret < 0)
2911 goto out_error;
2912 num_devices--;
2913 }
2914
2915 return 0;
2916
2917out_error:
2918 destroy_devices();
2919 return ret;
2920}
2921
2922static void __exit zram_exit(void)
2923{
2924 destroy_devices();
2925}
2926
2927module_init(zram_init);
2928module_exit(zram_exit);
2929
2930module_param(num_devices, uint, 0);
2931MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2932
2933MODULE_LICENSE("Dual BSD/GPL");
2934MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2935MODULE_DESCRIPTION("Compressed RAM Block Device");
2936

source code of linux/drivers/block/zram/zram_drv.c