1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | /* |
3 | * |
4 | * Bluetooth support for Intel devices |
5 | * |
6 | * Copyright (C) 2015 Intel Corporation |
7 | */ |
8 | |
9 | #include <linux/module.h> |
10 | #include <linux/firmware.h> |
11 | #include <linux/regmap.h> |
12 | #include <linux/string_choices.h> |
13 | #include <linux/acpi.h> |
14 | #include <acpi/acpi_bus.h> |
15 | #include <linux/unaligned.h> |
16 | #include <linux/efi.h> |
17 | |
18 | #include <net/bluetooth/bluetooth.h> |
19 | #include <net/bluetooth/hci_core.h> |
20 | |
21 | #include "btintel.h" |
22 | |
23 | #define VERSION "0.1" |
24 | |
25 | #define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}}) |
26 | #define 644 |
27 | #define 8 |
28 | #define ECDSA_OFFSET 644 |
29 | #define 320 |
30 | |
31 | #define BTINTEL_EFI_DSBR L"UefiCnvCommonDSBR" |
32 | |
33 | enum { |
34 | DSM_SET_WDISABLE2_DELAY = 1, |
35 | DSM_SET_RESET_METHOD = 3, |
36 | }; |
37 | |
38 | #define BTINTEL_BT_DOMAIN 0x12 |
39 | #define BTINTEL_SAR_LEGACY 0 |
40 | #define BTINTEL_SAR_INC_PWR 1 |
41 | #define BTINTEL_SAR_INC_PWR_SUPPORTED 0 |
42 | |
43 | #define CMD_WRITE_BOOT_PARAMS 0xfc0e |
44 | struct cmd_write_boot_params { |
45 | __le32 boot_addr; |
46 | u8 fw_build_num; |
47 | u8 fw_build_ww; |
48 | u8 fw_build_yy; |
49 | } __packed; |
50 | |
51 | static struct { |
52 | const char *driver_name; |
53 | u8 hw_variant; |
54 | u32 fw_build_num; |
55 | } coredump_info; |
56 | |
57 | static const guid_t btintel_guid_dsm = |
58 | GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233, |
59 | 0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9); |
60 | |
61 | int btintel_check_bdaddr(struct hci_dev *hdev) |
62 | { |
63 | struct hci_rp_read_bd_addr *bda; |
64 | struct sk_buff *skb; |
65 | |
66 | skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, plen: 0, NULL, |
67 | HCI_INIT_TIMEOUT); |
68 | if (IS_ERR(ptr: skb)) { |
69 | int err = PTR_ERR(ptr: skb); |
70 | bt_dev_err(hdev, "Reading Intel device address failed (%d)" , |
71 | err); |
72 | return err; |
73 | } |
74 | |
75 | if (skb->len != sizeof(*bda)) { |
76 | bt_dev_err(hdev, "Intel device address length mismatch" ); |
77 | kfree_skb(skb); |
78 | return -EIO; |
79 | } |
80 | |
81 | bda = (struct hci_rp_read_bd_addr *)skb->data; |
82 | |
83 | /* For some Intel based controllers, the default Bluetooth device |
84 | * address 00:03:19:9E:8B:00 can be found. These controllers are |
85 | * fully operational, but have the danger of duplicate addresses |
86 | * and that in turn can cause problems with Bluetooth operation. |
87 | */ |
88 | if (!bacmp(ba1: &bda->bdaddr, BDADDR_INTEL)) { |
89 | bt_dev_err(hdev, "Found Intel default device address (%pMR)" , |
90 | &bda->bdaddr); |
91 | set_bit(nr: HCI_QUIRK_INVALID_BDADDR, addr: &hdev->quirks); |
92 | } |
93 | |
94 | kfree_skb(skb); |
95 | |
96 | return 0; |
97 | } |
98 | EXPORT_SYMBOL_GPL(btintel_check_bdaddr); |
99 | |
100 | int btintel_enter_mfg(struct hci_dev *hdev) |
101 | { |
102 | static const u8 param[] = { 0x01, 0x00 }; |
103 | struct sk_buff *skb; |
104 | |
105 | skb = __hci_cmd_sync(hdev, opcode: 0xfc11, plen: 2, param, HCI_CMD_TIMEOUT); |
106 | if (IS_ERR(ptr: skb)) { |
107 | bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)" , |
108 | PTR_ERR(skb)); |
109 | return PTR_ERR(ptr: skb); |
110 | } |
111 | kfree_skb(skb); |
112 | |
113 | return 0; |
114 | } |
115 | EXPORT_SYMBOL_GPL(btintel_enter_mfg); |
116 | |
117 | int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched) |
118 | { |
119 | u8 param[] = { 0x00, 0x00 }; |
120 | struct sk_buff *skb; |
121 | |
122 | /* The 2nd command parameter specifies the manufacturing exit method: |
123 | * 0x00: Just disable the manufacturing mode (0x00). |
124 | * 0x01: Disable manufacturing mode and reset with patches deactivated. |
125 | * 0x02: Disable manufacturing mode and reset with patches activated. |
126 | */ |
127 | if (reset) |
128 | param[1] |= patched ? 0x02 : 0x01; |
129 | |
130 | skb = __hci_cmd_sync(hdev, opcode: 0xfc11, plen: 2, param, HCI_CMD_TIMEOUT); |
131 | if (IS_ERR(ptr: skb)) { |
132 | bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)" , |
133 | PTR_ERR(skb)); |
134 | return PTR_ERR(ptr: skb); |
135 | } |
136 | kfree_skb(skb); |
137 | |
138 | return 0; |
139 | } |
140 | EXPORT_SYMBOL_GPL(btintel_exit_mfg); |
141 | |
142 | int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) |
143 | { |
144 | struct sk_buff *skb; |
145 | int err; |
146 | |
147 | skb = __hci_cmd_sync(hdev, opcode: 0xfc31, plen: 6, param: bdaddr, HCI_INIT_TIMEOUT); |
148 | if (IS_ERR(ptr: skb)) { |
149 | err = PTR_ERR(ptr: skb); |
150 | bt_dev_err(hdev, "Changing Intel device address failed (%d)" , |
151 | err); |
152 | return err; |
153 | } |
154 | kfree_skb(skb); |
155 | |
156 | return 0; |
157 | } |
158 | EXPORT_SYMBOL_GPL(btintel_set_bdaddr); |
159 | |
160 | static int btintel_set_event_mask(struct hci_dev *hdev, bool debug) |
161 | { |
162 | u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
163 | struct sk_buff *skb; |
164 | int err; |
165 | |
166 | if (debug) |
167 | mask[1] |= 0x62; |
168 | |
169 | skb = __hci_cmd_sync(hdev, opcode: 0xfc52, plen: 8, param: mask, HCI_INIT_TIMEOUT); |
170 | if (IS_ERR(ptr: skb)) { |
171 | err = PTR_ERR(ptr: skb); |
172 | bt_dev_err(hdev, "Setting Intel event mask failed (%d)" , err); |
173 | return err; |
174 | } |
175 | kfree_skb(skb); |
176 | |
177 | return 0; |
178 | } |
179 | |
180 | int btintel_set_diag(struct hci_dev *hdev, bool enable) |
181 | { |
182 | struct sk_buff *skb; |
183 | u8 param[3]; |
184 | int err; |
185 | |
186 | if (enable) { |
187 | param[0] = 0x03; |
188 | param[1] = 0x03; |
189 | param[2] = 0x03; |
190 | } else { |
191 | param[0] = 0x00; |
192 | param[1] = 0x00; |
193 | param[2] = 0x00; |
194 | } |
195 | |
196 | skb = __hci_cmd_sync(hdev, opcode: 0xfc43, plen: 3, param, HCI_INIT_TIMEOUT); |
197 | if (IS_ERR(ptr: skb)) { |
198 | err = PTR_ERR(ptr: skb); |
199 | if (err == -ENODATA) |
200 | goto done; |
201 | bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)" , |
202 | err); |
203 | return err; |
204 | } |
205 | kfree_skb(skb); |
206 | |
207 | done: |
208 | btintel_set_event_mask(hdev, debug: enable); |
209 | return 0; |
210 | } |
211 | EXPORT_SYMBOL_GPL(btintel_set_diag); |
212 | |
213 | static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable) |
214 | { |
215 | int err, ret; |
216 | |
217 | err = btintel_enter_mfg(hdev); |
218 | if (err) |
219 | return err; |
220 | |
221 | ret = btintel_set_diag(hdev, enable); |
222 | |
223 | err = btintel_exit_mfg(hdev, false, false); |
224 | if (err) |
225 | return err; |
226 | |
227 | return ret; |
228 | } |
229 | |
230 | static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable) |
231 | { |
232 | int ret; |
233 | |
234 | /* Legacy ROM device needs to be in the manufacturer mode to apply |
235 | * diagnostic setting |
236 | * |
237 | * This flag is set after reading the Intel version. |
238 | */ |
239 | if (btintel_test_flag(hdev, INTEL_ROM_LEGACY)) |
240 | ret = btintel_set_diag_mfg(hdev, enable); |
241 | else |
242 | ret = btintel_set_diag(hdev, enable); |
243 | |
244 | return ret; |
245 | } |
246 | |
247 | void btintel_hw_error(struct hci_dev *hdev, u8 code) |
248 | { |
249 | struct sk_buff *skb; |
250 | u8 type = 0x00; |
251 | |
252 | bt_dev_err(hdev, "Hardware error 0x%2.2x" , code); |
253 | |
254 | skb = __hci_cmd_sync(hdev, HCI_OP_RESET, plen: 0, NULL, HCI_INIT_TIMEOUT); |
255 | if (IS_ERR(ptr: skb)) { |
256 | bt_dev_err(hdev, "Reset after hardware error failed (%ld)" , |
257 | PTR_ERR(skb)); |
258 | return; |
259 | } |
260 | kfree_skb(skb); |
261 | |
262 | skb = __hci_cmd_sync(hdev, opcode: 0xfc22, plen: 1, param: &type, HCI_INIT_TIMEOUT); |
263 | if (IS_ERR(ptr: skb)) { |
264 | bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)" , |
265 | PTR_ERR(skb)); |
266 | return; |
267 | } |
268 | |
269 | if (skb->len != 13) { |
270 | bt_dev_err(hdev, "Exception info size mismatch" ); |
271 | kfree_skb(skb); |
272 | return; |
273 | } |
274 | |
275 | bt_dev_err(hdev, "Exception info %s" , (char *)(skb->data + 1)); |
276 | |
277 | kfree_skb(skb); |
278 | } |
279 | EXPORT_SYMBOL_GPL(btintel_hw_error); |
280 | |
281 | int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver) |
282 | { |
283 | const char *variant; |
284 | |
285 | /* The hardware platform number has a fixed value of 0x37 and |
286 | * for now only accept this single value. |
287 | */ |
288 | if (ver->hw_platform != 0x37) { |
289 | bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)" , |
290 | ver->hw_platform); |
291 | return -EINVAL; |
292 | } |
293 | |
294 | /* Check for supported iBT hardware variants of this firmware |
295 | * loading method. |
296 | * |
297 | * This check has been put in place to ensure correct forward |
298 | * compatibility options when newer hardware variants come along. |
299 | */ |
300 | switch (ver->hw_variant) { |
301 | case 0x07: /* WP - Legacy ROM */ |
302 | case 0x08: /* StP - Legacy ROM */ |
303 | case 0x0b: /* SfP */ |
304 | case 0x0c: /* WsP */ |
305 | case 0x11: /* JfP */ |
306 | case 0x12: /* ThP */ |
307 | case 0x13: /* HrP */ |
308 | case 0x14: /* CcP */ |
309 | break; |
310 | default: |
311 | bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)" , |
312 | ver->hw_variant); |
313 | return -EINVAL; |
314 | } |
315 | |
316 | switch (ver->fw_variant) { |
317 | case 0x01: |
318 | variant = "Legacy ROM 2.5" ; |
319 | break; |
320 | case 0x06: |
321 | variant = "Bootloader" ; |
322 | break; |
323 | case 0x22: |
324 | variant = "Legacy ROM 2.x" ; |
325 | break; |
326 | case 0x23: |
327 | variant = "Firmware" ; |
328 | break; |
329 | default: |
330 | bt_dev_err(hdev, "Unsupported firmware variant(%02x)" , ver->fw_variant); |
331 | return -EINVAL; |
332 | } |
333 | |
334 | coredump_info.hw_variant = ver->hw_variant; |
335 | coredump_info.fw_build_num = ver->fw_build_num; |
336 | |
337 | bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u" , |
338 | variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f, |
339 | ver->fw_build_num, ver->fw_build_ww, |
340 | 2000 + ver->fw_build_yy); |
341 | |
342 | return 0; |
343 | } |
344 | EXPORT_SYMBOL_GPL(btintel_version_info); |
345 | |
346 | static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen, |
347 | const void *param) |
348 | { |
349 | while (plen > 0) { |
350 | struct sk_buff *skb; |
351 | u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen; |
352 | |
353 | cmd_param[0] = fragment_type; |
354 | memcpy(cmd_param + 1, param, fragment_len); |
355 | |
356 | skb = __hci_cmd_sync(hdev, opcode: 0xfc09, plen: fragment_len + 1, |
357 | param: cmd_param, HCI_INIT_TIMEOUT); |
358 | if (IS_ERR(ptr: skb)) |
359 | return PTR_ERR(ptr: skb); |
360 | |
361 | kfree_skb(skb); |
362 | |
363 | plen -= fragment_len; |
364 | param += fragment_len; |
365 | } |
366 | |
367 | return 0; |
368 | } |
369 | |
370 | int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name) |
371 | { |
372 | const struct firmware *fw; |
373 | struct sk_buff *skb; |
374 | const u8 *fw_ptr; |
375 | int err; |
376 | |
377 | err = request_firmware_direct(fw: &fw, name: ddc_name, device: &hdev->dev); |
378 | if (err < 0) { |
379 | bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)" , |
380 | ddc_name, err); |
381 | return err; |
382 | } |
383 | |
384 | bt_dev_info(hdev, "Found Intel DDC parameters: %s" , ddc_name); |
385 | |
386 | fw_ptr = fw->data; |
387 | |
388 | /* DDC file contains one or more DDC structure which has |
389 | * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2). |
390 | */ |
391 | while (fw->size > fw_ptr - fw->data) { |
392 | u8 cmd_plen = fw_ptr[0] + sizeof(u8); |
393 | |
394 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: cmd_plen, param: fw_ptr, |
395 | HCI_INIT_TIMEOUT); |
396 | if (IS_ERR(ptr: skb)) { |
397 | bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)" , |
398 | PTR_ERR(skb)); |
399 | release_firmware(fw); |
400 | return PTR_ERR(ptr: skb); |
401 | } |
402 | |
403 | fw_ptr += cmd_plen; |
404 | kfree_skb(skb); |
405 | } |
406 | |
407 | release_firmware(fw); |
408 | |
409 | bt_dev_info(hdev, "Applying Intel DDC parameters completed" ); |
410 | |
411 | return 0; |
412 | } |
413 | EXPORT_SYMBOL_GPL(btintel_load_ddc_config); |
414 | |
415 | int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug) |
416 | { |
417 | int err, ret; |
418 | |
419 | err = btintel_enter_mfg(hdev); |
420 | if (err) |
421 | return err; |
422 | |
423 | ret = btintel_set_event_mask(hdev, debug); |
424 | |
425 | err = btintel_exit_mfg(hdev, false, false); |
426 | if (err) |
427 | return err; |
428 | |
429 | return ret; |
430 | } |
431 | EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg); |
432 | |
433 | int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver) |
434 | { |
435 | struct sk_buff *skb; |
436 | |
437 | skb = __hci_cmd_sync(hdev, opcode: 0xfc05, plen: 0, NULL, HCI_CMD_TIMEOUT); |
438 | if (IS_ERR(ptr: skb)) { |
439 | bt_dev_err(hdev, "Reading Intel version information failed (%ld)" , |
440 | PTR_ERR(skb)); |
441 | return PTR_ERR(ptr: skb); |
442 | } |
443 | |
444 | if (!skb || skb->len != sizeof(*ver)) { |
445 | bt_dev_err(hdev, "Intel version event size mismatch" ); |
446 | kfree_skb(skb); |
447 | return -EILSEQ; |
448 | } |
449 | |
450 | memcpy(ver, skb->data, sizeof(*ver)); |
451 | |
452 | kfree_skb(skb); |
453 | |
454 | return 0; |
455 | } |
456 | EXPORT_SYMBOL_GPL(btintel_read_version); |
457 | |
458 | int btintel_version_info_tlv(struct hci_dev *hdev, |
459 | struct intel_version_tlv *version) |
460 | { |
461 | const char *variant; |
462 | |
463 | /* The hardware platform number has a fixed value of 0x37 and |
464 | * for now only accept this single value. |
465 | */ |
466 | if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) { |
467 | bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)" , |
468 | INTEL_HW_PLATFORM(version->cnvi_bt)); |
469 | return -EINVAL; |
470 | } |
471 | |
472 | /* Check for supported iBT hardware variants of this firmware |
473 | * loading method. |
474 | * |
475 | * This check has been put in place to ensure correct forward |
476 | * compatibility options when newer hardware variants come along. |
477 | */ |
478 | switch (INTEL_HW_VARIANT(version->cnvi_bt)) { |
479 | case 0x17: /* TyP */ |
480 | case 0x18: /* Slr */ |
481 | case 0x19: /* Slr-F */ |
482 | case 0x1b: /* Mgr */ |
483 | case 0x1c: /* Gale Peak (GaP) */ |
484 | case 0x1d: /* BlazarU (BzrU) */ |
485 | case 0x1e: /* BlazarI (Bzr) */ |
486 | case 0x1f: /* Scorpious Peak */ |
487 | break; |
488 | default: |
489 | bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)" , |
490 | INTEL_HW_VARIANT(version->cnvi_bt)); |
491 | return -EINVAL; |
492 | } |
493 | |
494 | switch (version->img_type) { |
495 | case BTINTEL_IMG_BOOTLOADER: |
496 | variant = "Bootloader" ; |
497 | /* It is required that every single firmware fragment is acknowledged |
498 | * with a command complete event. If the boot parameters indicate |
499 | * that this bootloader does not send them, then abort the setup. |
500 | */ |
501 | if (version->limited_cce != 0x00) { |
502 | bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)" , |
503 | version->limited_cce); |
504 | return -EINVAL; |
505 | } |
506 | |
507 | /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */ |
508 | if (version->sbe_type > 0x01) { |
509 | bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)" , |
510 | version->sbe_type); |
511 | return -EINVAL; |
512 | } |
513 | |
514 | bt_dev_info(hdev, "Device revision is %u" , version->dev_rev_id); |
515 | bt_dev_info(hdev, "Secure boot is %s" , |
516 | str_enabled_disabled(version->secure_boot)); |
517 | bt_dev_info(hdev, "OTP lock is %s" , |
518 | str_enabled_disabled(version->otp_lock)); |
519 | bt_dev_info(hdev, "API lock is %s" , |
520 | str_enabled_disabled(version->api_lock)); |
521 | bt_dev_info(hdev, "Debug lock is %s" , |
522 | str_enabled_disabled(version->debug_lock)); |
523 | bt_dev_info(hdev, "Minimum firmware build %u week %u %u" , |
524 | version->min_fw_build_nn, version->min_fw_build_cw, |
525 | 2000 + version->min_fw_build_yy); |
526 | break; |
527 | case BTINTEL_IMG_IML: |
528 | variant = "Intermediate loader" ; |
529 | break; |
530 | case BTINTEL_IMG_OP: |
531 | variant = "Firmware" ; |
532 | break; |
533 | default: |
534 | bt_dev_err(hdev, "Unsupported image type(%02x)" , version->img_type); |
535 | return -EINVAL; |
536 | } |
537 | |
538 | coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt); |
539 | coredump_info.fw_build_num = version->build_num; |
540 | |
541 | bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u" , variant, |
542 | 2000 + (version->timestamp >> 8), version->timestamp & 0xff, |
543 | version->build_type, version->build_num); |
544 | if (version->img_type == BTINTEL_IMG_OP) |
545 | bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x" , version->git_sha1); |
546 | |
547 | return 0; |
548 | } |
549 | EXPORT_SYMBOL_GPL(btintel_version_info_tlv); |
550 | |
551 | int btintel_parse_version_tlv(struct hci_dev *hdev, |
552 | struct intel_version_tlv *version, |
553 | struct sk_buff *skb) |
554 | { |
555 | /* Consume Command Complete Status field */ |
556 | skb_pull(skb, len: 1); |
557 | |
558 | /* Event parameters contatin multiple TLVs. Read each of them |
559 | * and only keep the required data. Also, it use existing legacy |
560 | * version field like hw_platform, hw_variant, and fw_variant |
561 | * to keep the existing setup flow |
562 | */ |
563 | while (skb->len) { |
564 | struct intel_tlv *tlv; |
565 | |
566 | /* Make sure skb has a minimum length of the header */ |
567 | if (skb->len < sizeof(*tlv)) |
568 | return -EINVAL; |
569 | |
570 | tlv = (struct intel_tlv *)skb->data; |
571 | |
572 | /* Make sure skb has a enough data */ |
573 | if (skb->len < tlv->len + sizeof(*tlv)) |
574 | return -EINVAL; |
575 | |
576 | switch (tlv->type) { |
577 | case INTEL_TLV_CNVI_TOP: |
578 | version->cnvi_top = get_unaligned_le32(p: tlv->val); |
579 | break; |
580 | case INTEL_TLV_CNVR_TOP: |
581 | version->cnvr_top = get_unaligned_le32(p: tlv->val); |
582 | break; |
583 | case INTEL_TLV_CNVI_BT: |
584 | version->cnvi_bt = get_unaligned_le32(p: tlv->val); |
585 | break; |
586 | case INTEL_TLV_CNVR_BT: |
587 | version->cnvr_bt = get_unaligned_le32(p: tlv->val); |
588 | break; |
589 | case INTEL_TLV_DEV_REV_ID: |
590 | version->dev_rev_id = get_unaligned_le16(p: tlv->val); |
591 | break; |
592 | case INTEL_TLV_IMAGE_TYPE: |
593 | version->img_type = tlv->val[0]; |
594 | break; |
595 | case INTEL_TLV_TIME_STAMP: |
596 | /* If image type is Operational firmware (0x03), then |
597 | * running FW Calendar Week and Year information can |
598 | * be extracted from Timestamp information |
599 | */ |
600 | version->min_fw_build_cw = tlv->val[0]; |
601 | version->min_fw_build_yy = tlv->val[1]; |
602 | version->timestamp = get_unaligned_le16(p: tlv->val); |
603 | break; |
604 | case INTEL_TLV_BUILD_TYPE: |
605 | version->build_type = tlv->val[0]; |
606 | break; |
607 | case INTEL_TLV_BUILD_NUM: |
608 | /* If image type is Operational firmware (0x03), then |
609 | * running FW build number can be extracted from the |
610 | * Build information |
611 | */ |
612 | version->min_fw_build_nn = tlv->val[0]; |
613 | version->build_num = get_unaligned_le32(p: tlv->val); |
614 | break; |
615 | case INTEL_TLV_SECURE_BOOT: |
616 | version->secure_boot = tlv->val[0]; |
617 | break; |
618 | case INTEL_TLV_OTP_LOCK: |
619 | version->otp_lock = tlv->val[0]; |
620 | break; |
621 | case INTEL_TLV_API_LOCK: |
622 | version->api_lock = tlv->val[0]; |
623 | break; |
624 | case INTEL_TLV_DEBUG_LOCK: |
625 | version->debug_lock = tlv->val[0]; |
626 | break; |
627 | case INTEL_TLV_MIN_FW: |
628 | version->min_fw_build_nn = tlv->val[0]; |
629 | version->min_fw_build_cw = tlv->val[1]; |
630 | version->min_fw_build_yy = tlv->val[2]; |
631 | break; |
632 | case INTEL_TLV_LIMITED_CCE: |
633 | version->limited_cce = tlv->val[0]; |
634 | break; |
635 | case INTEL_TLV_SBE_TYPE: |
636 | version->sbe_type = tlv->val[0]; |
637 | break; |
638 | case INTEL_TLV_OTP_BDADDR: |
639 | memcpy(&version->otp_bd_addr, tlv->val, |
640 | sizeof(bdaddr_t)); |
641 | break; |
642 | case INTEL_TLV_GIT_SHA1: |
643 | version->git_sha1 = get_unaligned_le32(p: tlv->val); |
644 | break; |
645 | case INTEL_TLV_FW_ID: |
646 | snprintf(buf: version->fw_id, size: sizeof(version->fw_id), |
647 | fmt: "%s" , tlv->val); |
648 | break; |
649 | default: |
650 | /* Ignore rest of information */ |
651 | break; |
652 | } |
653 | /* consume the current tlv and move to next*/ |
654 | skb_pull(skb, len: tlv->len + sizeof(*tlv)); |
655 | } |
656 | |
657 | return 0; |
658 | } |
659 | EXPORT_SYMBOL_GPL(btintel_parse_version_tlv); |
660 | |
661 | static int btintel_read_version_tlv(struct hci_dev *hdev, |
662 | struct intel_version_tlv *version) |
663 | { |
664 | struct sk_buff *skb; |
665 | const u8 param[1] = { 0xFF }; |
666 | |
667 | if (!version) |
668 | return -EINVAL; |
669 | |
670 | skb = __hci_cmd_sync(hdev, opcode: 0xfc05, plen: 1, param, HCI_CMD_TIMEOUT); |
671 | if (IS_ERR(ptr: skb)) { |
672 | bt_dev_err(hdev, "Reading Intel version information failed (%ld)" , |
673 | PTR_ERR(skb)); |
674 | return PTR_ERR(ptr: skb); |
675 | } |
676 | |
677 | if (skb->data[0]) { |
678 | bt_dev_err(hdev, "Intel Read Version command failed (%02x)" , |
679 | skb->data[0]); |
680 | kfree_skb(skb); |
681 | return -EIO; |
682 | } |
683 | |
684 | btintel_parse_version_tlv(hdev, version, skb); |
685 | |
686 | kfree_skb(skb); |
687 | return 0; |
688 | } |
689 | |
690 | /* ------- REGMAP IBT SUPPORT ------- */ |
691 | |
692 | #define IBT_REG_MODE_8BIT 0x00 |
693 | #define IBT_REG_MODE_16BIT 0x01 |
694 | #define IBT_REG_MODE_32BIT 0x02 |
695 | |
696 | struct regmap_ibt_context { |
697 | struct hci_dev *hdev; |
698 | __u16 op_write; |
699 | __u16 op_read; |
700 | }; |
701 | |
702 | struct ibt_cp_reg_access { |
703 | __le32 addr; |
704 | __u8 mode; |
705 | __u8 len; |
706 | __u8 data[]; |
707 | } __packed; |
708 | |
709 | struct ibt_rp_reg_access { |
710 | __u8 status; |
711 | __le32 addr; |
712 | __u8 data[]; |
713 | } __packed; |
714 | |
715 | static int regmap_ibt_read(void *context, const void *addr, size_t reg_size, |
716 | void *val, size_t val_size) |
717 | { |
718 | struct regmap_ibt_context *ctx = context; |
719 | struct ibt_cp_reg_access cp; |
720 | struct ibt_rp_reg_access *rp; |
721 | struct sk_buff *skb; |
722 | int err = 0; |
723 | |
724 | if (reg_size != sizeof(__le32)) |
725 | return -EINVAL; |
726 | |
727 | switch (val_size) { |
728 | case 1: |
729 | cp.mode = IBT_REG_MODE_8BIT; |
730 | break; |
731 | case 2: |
732 | cp.mode = IBT_REG_MODE_16BIT; |
733 | break; |
734 | case 4: |
735 | cp.mode = IBT_REG_MODE_32BIT; |
736 | break; |
737 | default: |
738 | return -EINVAL; |
739 | } |
740 | |
741 | /* regmap provides a little-endian formatted addr */ |
742 | cp.addr = *(__le32 *)addr; |
743 | cp.len = val_size; |
744 | |
745 | bt_dev_dbg(ctx->hdev, "Register (0x%x) read" , le32_to_cpu(cp.addr)); |
746 | |
747 | skb = hci_cmd_sync(hdev: ctx->hdev, opcode: ctx->op_read, plen: sizeof(cp), param: &cp, |
748 | HCI_CMD_TIMEOUT); |
749 | if (IS_ERR(ptr: skb)) { |
750 | err = PTR_ERR(ptr: skb); |
751 | bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)" , |
752 | le32_to_cpu(cp.addr), err); |
753 | return err; |
754 | } |
755 | |
756 | if (skb->len != sizeof(*rp) + val_size) { |
757 | bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len" , |
758 | le32_to_cpu(cp.addr)); |
759 | err = -EINVAL; |
760 | goto done; |
761 | } |
762 | |
763 | rp = (struct ibt_rp_reg_access *)skb->data; |
764 | |
765 | if (rp->addr != cp.addr) { |
766 | bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr" , |
767 | le32_to_cpu(rp->addr)); |
768 | err = -EINVAL; |
769 | goto done; |
770 | } |
771 | |
772 | memcpy(val, rp->data, val_size); |
773 | |
774 | done: |
775 | kfree_skb(skb); |
776 | return err; |
777 | } |
778 | |
779 | static int regmap_ibt_gather_write(void *context, |
780 | const void *addr, size_t reg_size, |
781 | const void *val, size_t val_size) |
782 | { |
783 | struct regmap_ibt_context *ctx = context; |
784 | struct ibt_cp_reg_access *cp; |
785 | struct sk_buff *skb; |
786 | int plen = sizeof(*cp) + val_size; |
787 | u8 mode; |
788 | int err = 0; |
789 | |
790 | if (reg_size != sizeof(__le32)) |
791 | return -EINVAL; |
792 | |
793 | switch (val_size) { |
794 | case 1: |
795 | mode = IBT_REG_MODE_8BIT; |
796 | break; |
797 | case 2: |
798 | mode = IBT_REG_MODE_16BIT; |
799 | break; |
800 | case 4: |
801 | mode = IBT_REG_MODE_32BIT; |
802 | break; |
803 | default: |
804 | return -EINVAL; |
805 | } |
806 | |
807 | cp = kmalloc(plen, GFP_KERNEL); |
808 | if (!cp) |
809 | return -ENOMEM; |
810 | |
811 | /* regmap provides a little-endian formatted addr/value */ |
812 | cp->addr = *(__le32 *)addr; |
813 | cp->mode = mode; |
814 | cp->len = val_size; |
815 | memcpy(&cp->data, val, val_size); |
816 | |
817 | bt_dev_dbg(ctx->hdev, "Register (0x%x) write" , le32_to_cpu(cp->addr)); |
818 | |
819 | skb = hci_cmd_sync(hdev: ctx->hdev, opcode: ctx->op_write, plen, param: cp, HCI_CMD_TIMEOUT); |
820 | if (IS_ERR(ptr: skb)) { |
821 | err = PTR_ERR(ptr: skb); |
822 | bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)" , |
823 | le32_to_cpu(cp->addr), err); |
824 | goto done; |
825 | } |
826 | kfree_skb(skb); |
827 | |
828 | done: |
829 | kfree(objp: cp); |
830 | return err; |
831 | } |
832 | |
833 | static int regmap_ibt_write(void *context, const void *data, size_t count) |
834 | { |
835 | /* data contains register+value, since we only support 32bit addr, |
836 | * minimum data size is 4 bytes. |
837 | */ |
838 | if (WARN_ONCE(count < 4, "Invalid register access" )) |
839 | return -EINVAL; |
840 | |
841 | return regmap_ibt_gather_write(context, addr: data, reg_size: 4, val: data + 4, val_size: count - 4); |
842 | } |
843 | |
844 | static void regmap_ibt_free_context(void *context) |
845 | { |
846 | kfree(objp: context); |
847 | } |
848 | |
849 | static const struct regmap_bus regmap_ibt = { |
850 | .read = regmap_ibt_read, |
851 | .write = regmap_ibt_write, |
852 | .gather_write = regmap_ibt_gather_write, |
853 | .free_context = regmap_ibt_free_context, |
854 | .reg_format_endian_default = REGMAP_ENDIAN_LITTLE, |
855 | .val_format_endian_default = REGMAP_ENDIAN_LITTLE, |
856 | }; |
857 | |
858 | /* Config is the same for all register regions */ |
859 | static const struct regmap_config regmap_ibt_cfg = { |
860 | .name = "btintel_regmap" , |
861 | .reg_bits = 32, |
862 | .val_bits = 32, |
863 | }; |
864 | |
865 | struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read, |
866 | u16 opcode_write) |
867 | { |
868 | struct regmap_ibt_context *ctx; |
869 | |
870 | bt_dev_info(hdev, "regmap: Init R%x-W%x region" , opcode_read, |
871 | opcode_write); |
872 | |
873 | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
874 | if (!ctx) |
875 | return ERR_PTR(error: -ENOMEM); |
876 | |
877 | ctx->op_read = opcode_read; |
878 | ctx->op_write = opcode_write; |
879 | ctx->hdev = hdev; |
880 | |
881 | return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg); |
882 | } |
883 | EXPORT_SYMBOL_GPL(btintel_regmap_init); |
884 | |
885 | int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param) |
886 | { |
887 | struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 }; |
888 | struct sk_buff *skb; |
889 | |
890 | params.boot_param = cpu_to_le32(boot_param); |
891 | |
892 | skb = __hci_cmd_sync(hdev, opcode: 0xfc01, plen: sizeof(params), param: ¶ms, |
893 | HCI_INIT_TIMEOUT); |
894 | if (IS_ERR(ptr: skb)) { |
895 | bt_dev_err(hdev, "Failed to send Intel Reset command" ); |
896 | return PTR_ERR(ptr: skb); |
897 | } |
898 | |
899 | kfree_skb(skb); |
900 | |
901 | return 0; |
902 | } |
903 | EXPORT_SYMBOL_GPL(btintel_send_intel_reset); |
904 | |
905 | int btintel_read_boot_params(struct hci_dev *hdev, |
906 | struct intel_boot_params *params) |
907 | { |
908 | struct sk_buff *skb; |
909 | |
910 | skb = __hci_cmd_sync(hdev, opcode: 0xfc0d, plen: 0, NULL, HCI_INIT_TIMEOUT); |
911 | if (IS_ERR(ptr: skb)) { |
912 | bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)" , |
913 | PTR_ERR(skb)); |
914 | return PTR_ERR(ptr: skb); |
915 | } |
916 | |
917 | if (skb->len != sizeof(*params)) { |
918 | bt_dev_err(hdev, "Intel boot parameters size mismatch" ); |
919 | kfree_skb(skb); |
920 | return -EILSEQ; |
921 | } |
922 | |
923 | memcpy(params, skb->data, sizeof(*params)); |
924 | |
925 | kfree_skb(skb); |
926 | |
927 | if (params->status) { |
928 | bt_dev_err(hdev, "Intel boot parameters command failed (%02x)" , |
929 | params->status); |
930 | return -bt_to_errno(code: params->status); |
931 | } |
932 | |
933 | bt_dev_info(hdev, "Device revision is %u" , |
934 | le16_to_cpu(params->dev_revid)); |
935 | |
936 | bt_dev_info(hdev, "Secure boot is %s" , |
937 | str_enabled_disabled(params->secure_boot)); |
938 | |
939 | bt_dev_info(hdev, "OTP lock is %s" , |
940 | str_enabled_disabled(params->otp_lock)); |
941 | |
942 | bt_dev_info(hdev, "API lock is %s" , |
943 | str_enabled_disabled(params->api_lock)); |
944 | |
945 | bt_dev_info(hdev, "Debug lock is %s" , |
946 | str_enabled_disabled(params->debug_lock)); |
947 | |
948 | bt_dev_info(hdev, "Minimum firmware build %u week %u %u" , |
949 | params->min_fw_build_nn, params->min_fw_build_cw, |
950 | 2000 + params->min_fw_build_yy); |
951 | |
952 | return 0; |
953 | } |
954 | EXPORT_SYMBOL_GPL(btintel_read_boot_params); |
955 | |
956 | static int (struct hci_dev *hdev, |
957 | const struct firmware *fw) |
958 | { |
959 | int err; |
960 | |
961 | /* Start the firmware download transaction with the Init fragment |
962 | * represented by the 128 bytes of CSS header. |
963 | */ |
964 | err = btintel_secure_send(hdev, fragment_type: 0x00, plen: 128, param: fw->data); |
965 | if (err < 0) { |
966 | bt_dev_err(hdev, "Failed to send firmware header (%d)" , err); |
967 | goto done; |
968 | } |
969 | |
970 | /* Send the 256 bytes of public key information from the firmware |
971 | * as the PKey fragment. |
972 | */ |
973 | err = btintel_secure_send(hdev, fragment_type: 0x03, plen: 256, param: fw->data + 128); |
974 | if (err < 0) { |
975 | bt_dev_err(hdev, "Failed to send firmware pkey (%d)" , err); |
976 | goto done; |
977 | } |
978 | |
979 | /* Send the 256 bytes of signature information from the firmware |
980 | * as the Sign fragment. |
981 | */ |
982 | err = btintel_secure_send(hdev, fragment_type: 0x02, plen: 256, param: fw->data + 388); |
983 | if (err < 0) { |
984 | bt_dev_err(hdev, "Failed to send firmware signature (%d)" , err); |
985 | goto done; |
986 | } |
987 | |
988 | done: |
989 | return err; |
990 | } |
991 | |
992 | static int (struct hci_dev *hdev, |
993 | const struct firmware *fw) |
994 | { |
995 | int err; |
996 | |
997 | /* Start the firmware download transaction with the Init fragment |
998 | * represented by the 128 bytes of CSS header. |
999 | */ |
1000 | err = btintel_secure_send(hdev, fragment_type: 0x00, plen: 128, param: fw->data + 644); |
1001 | if (err < 0) { |
1002 | bt_dev_err(hdev, "Failed to send firmware header (%d)" , err); |
1003 | return err; |
1004 | } |
1005 | |
1006 | /* Send the 96 bytes of public key information from the firmware |
1007 | * as the PKey fragment. |
1008 | */ |
1009 | err = btintel_secure_send(hdev, fragment_type: 0x03, plen: 96, param: fw->data + 644 + 128); |
1010 | if (err < 0) { |
1011 | bt_dev_err(hdev, "Failed to send firmware pkey (%d)" , err); |
1012 | return err; |
1013 | } |
1014 | |
1015 | /* Send the 96 bytes of signature information from the firmware |
1016 | * as the Sign fragment |
1017 | */ |
1018 | err = btintel_secure_send(hdev, fragment_type: 0x02, plen: 96, param: fw->data + 644 + 224); |
1019 | if (err < 0) { |
1020 | bt_dev_err(hdev, "Failed to send firmware signature (%d)" , |
1021 | err); |
1022 | return err; |
1023 | } |
1024 | return 0; |
1025 | } |
1026 | |
1027 | static int btintel_download_firmware_payload(struct hci_dev *hdev, |
1028 | const struct firmware *fw, |
1029 | size_t offset) |
1030 | { |
1031 | int err; |
1032 | const u8 *fw_ptr; |
1033 | u32 frag_len; |
1034 | |
1035 | fw_ptr = fw->data + offset; |
1036 | frag_len = 0; |
1037 | err = -EINVAL; |
1038 | |
1039 | while (fw_ptr - fw->data < fw->size) { |
1040 | struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); |
1041 | |
1042 | frag_len += sizeof(*cmd) + cmd->plen; |
1043 | |
1044 | /* The parameter length of the secure send command requires |
1045 | * a 4 byte alignment. It happens so that the firmware file |
1046 | * contains proper Intel_NOP commands to align the fragments |
1047 | * as needed. |
1048 | * |
1049 | * Send set of commands with 4 byte alignment from the |
1050 | * firmware data buffer as a single Data fragment. |
1051 | */ |
1052 | if (!(frag_len % 4)) { |
1053 | err = btintel_secure_send(hdev, fragment_type: 0x01, plen: frag_len, param: fw_ptr); |
1054 | if (err < 0) { |
1055 | bt_dev_err(hdev, |
1056 | "Failed to send firmware data (%d)" , |
1057 | err); |
1058 | goto done; |
1059 | } |
1060 | |
1061 | fw_ptr += frag_len; |
1062 | frag_len = 0; |
1063 | } |
1064 | } |
1065 | |
1066 | done: |
1067 | return err; |
1068 | } |
1069 | |
1070 | static bool btintel_firmware_version(struct hci_dev *hdev, |
1071 | u8 num, u8 ww, u8 yy, |
1072 | const struct firmware *fw, |
1073 | u32 *boot_addr) |
1074 | { |
1075 | const u8 *fw_ptr; |
1076 | |
1077 | fw_ptr = fw->data; |
1078 | |
1079 | while (fw_ptr - fw->data < fw->size) { |
1080 | struct hci_command_hdr *cmd = (void *)(fw_ptr); |
1081 | |
1082 | /* Each SKU has a different reset parameter to use in the |
1083 | * HCI_Intel_Reset command and it is embedded in the firmware |
1084 | * data. So, instead of using static value per SKU, check |
1085 | * the firmware data and save it for later use. |
1086 | */ |
1087 | if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) { |
1088 | struct cmd_write_boot_params *params; |
1089 | |
1090 | params = (void *)(fw_ptr + sizeof(*cmd)); |
1091 | |
1092 | *boot_addr = le32_to_cpu(params->boot_addr); |
1093 | |
1094 | bt_dev_info(hdev, "Boot Address: 0x%x" , *boot_addr); |
1095 | |
1096 | bt_dev_info(hdev, "Firmware Version: %u-%u.%u" , |
1097 | params->fw_build_num, params->fw_build_ww, |
1098 | params->fw_build_yy); |
1099 | |
1100 | return (num == params->fw_build_num && |
1101 | ww == params->fw_build_ww && |
1102 | yy == params->fw_build_yy); |
1103 | } |
1104 | |
1105 | fw_ptr += sizeof(*cmd) + cmd->plen; |
1106 | } |
1107 | |
1108 | return false; |
1109 | } |
1110 | |
1111 | int btintel_download_firmware(struct hci_dev *hdev, |
1112 | struct intel_version *ver, |
1113 | const struct firmware *fw, |
1114 | u32 *boot_param) |
1115 | { |
1116 | int err; |
1117 | |
1118 | /* SfP and WsP don't seem to update the firmware version on file |
1119 | * so version checking is currently not possible. |
1120 | */ |
1121 | switch (ver->hw_variant) { |
1122 | case 0x0b: /* SfP */ |
1123 | case 0x0c: /* WsP */ |
1124 | /* Skip version checking */ |
1125 | break; |
1126 | default: |
1127 | |
1128 | /* Skip download if firmware has the same version */ |
1129 | if (btintel_firmware_version(hdev, num: ver->fw_build_num, |
1130 | ww: ver->fw_build_ww, yy: ver->fw_build_yy, |
1131 | fw, boot_addr: boot_param)) { |
1132 | bt_dev_info(hdev, "Firmware already loaded" ); |
1133 | /* Return -EALREADY to indicate that the firmware has |
1134 | * already been loaded. |
1135 | */ |
1136 | return -EALREADY; |
1137 | } |
1138 | } |
1139 | |
1140 | /* The firmware variant determines if the device is in bootloader |
1141 | * mode or is running operational firmware. The value 0x06 identifies |
1142 | * the bootloader and the value 0x23 identifies the operational |
1143 | * firmware. |
1144 | * |
1145 | * If the firmware version has changed that means it needs to be reset |
1146 | * to bootloader when operational so the new firmware can be loaded. |
1147 | */ |
1148 | if (ver->fw_variant == 0x23) |
1149 | return -EINVAL; |
1150 | |
1151 | err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
1152 | if (err) |
1153 | return err; |
1154 | |
1155 | return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); |
1156 | } |
1157 | EXPORT_SYMBOL_GPL(btintel_download_firmware); |
1158 | |
1159 | static int btintel_download_fw_tlv(struct hci_dev *hdev, |
1160 | struct intel_version_tlv *ver, |
1161 | const struct firmware *fw, u32 *boot_param, |
1162 | u8 hw_variant, u8 sbe_type) |
1163 | { |
1164 | int err; |
1165 | u32 ; |
1166 | |
1167 | /* Skip download if firmware has the same version */ |
1168 | if (btintel_firmware_version(hdev, num: ver->min_fw_build_nn, |
1169 | ww: ver->min_fw_build_cw, |
1170 | yy: ver->min_fw_build_yy, |
1171 | fw, boot_addr: boot_param)) { |
1172 | bt_dev_info(hdev, "Firmware already loaded" ); |
1173 | /* Return -EALREADY to indicate that firmware has |
1174 | * already been loaded. |
1175 | */ |
1176 | return -EALREADY; |
1177 | } |
1178 | |
1179 | /* The firmware variant determines if the device is in bootloader |
1180 | * mode or is running operational firmware. The value 0x01 identifies |
1181 | * the bootloader and the value 0x03 identifies the operational |
1182 | * firmware. |
1183 | * |
1184 | * If the firmware version has changed that means it needs to be reset |
1185 | * to bootloader when operational so the new firmware can be loaded. |
1186 | */ |
1187 | if (ver->img_type == BTINTEL_IMG_OP) |
1188 | return -EINVAL; |
1189 | |
1190 | /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support |
1191 | * only RSA secure boot engine. Hence, the corresponding sfi file will |
1192 | * have RSA header of 644 bytes followed by Command Buffer. |
1193 | * |
1194 | * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA |
1195 | * secure boot engine. As a result, the corresponding sfi file will |
1196 | * have RSA header of 644, ECDSA header of 320 bytes followed by |
1197 | * Command Buffer. |
1198 | * |
1199 | * CSS Header byte positions 0x08 to 0x0B represent the CSS Header |
1200 | * version: RSA(0x00010000) , ECDSA (0x00020000) |
1201 | */ |
1202 | css_header_ver = get_unaligned_le32(p: fw->data + CSS_HEADER_OFFSET); |
1203 | if (css_header_ver != 0x00010000) { |
1204 | bt_dev_err(hdev, "Invalid CSS Header version" ); |
1205 | return -EINVAL; |
1206 | } |
1207 | |
1208 | if (hw_variant <= 0x14) { |
1209 | if (sbe_type != 0x00) { |
1210 | bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)" , |
1211 | hw_variant); |
1212 | return -EINVAL; |
1213 | } |
1214 | |
1215 | err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
1216 | if (err) |
1217 | return err; |
1218 | |
1219 | err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); |
1220 | if (err) |
1221 | return err; |
1222 | } else if (hw_variant >= 0x17) { |
1223 | /* Check if CSS header for ECDSA follows the RSA header */ |
1224 | if (fw->data[ECDSA_OFFSET] != 0x06) |
1225 | return -EINVAL; |
1226 | |
1227 | /* Check if the CSS Header version is ECDSA(0x00020000) */ |
1228 | css_header_ver = get_unaligned_le32(p: fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET); |
1229 | if (css_header_ver != 0x00020000) { |
1230 | bt_dev_err(hdev, "Invalid CSS Header version" ); |
1231 | return -EINVAL; |
1232 | } |
1233 | |
1234 | if (sbe_type == 0x00) { |
1235 | err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
1236 | if (err) |
1237 | return err; |
1238 | |
1239 | err = btintel_download_firmware_payload(hdev, fw, |
1240 | RSA_HEADER_LEN + ECDSA_HEADER_LEN); |
1241 | if (err) |
1242 | return err; |
1243 | } else if (sbe_type == 0x01) { |
1244 | err = btintel_sfi_ecdsa_header_secure_send(hdev, fw); |
1245 | if (err) |
1246 | return err; |
1247 | |
1248 | err = btintel_download_firmware_payload(hdev, fw, |
1249 | RSA_HEADER_LEN + ECDSA_HEADER_LEN); |
1250 | if (err) |
1251 | return err; |
1252 | } |
1253 | } |
1254 | return 0; |
1255 | } |
1256 | |
1257 | static void btintel_reset_to_bootloader(struct hci_dev *hdev) |
1258 | { |
1259 | struct intel_reset params; |
1260 | struct sk_buff *skb; |
1261 | |
1262 | /* PCIe transport uses shared hardware reset mechanism for recovery |
1263 | * which gets triggered in pcie *setup* function on error. |
1264 | */ |
1265 | if (hdev->bus == HCI_PCI) |
1266 | return; |
1267 | |
1268 | /* Send Intel Reset command. This will result in |
1269 | * re-enumeration of BT controller. |
1270 | * |
1271 | * Intel Reset parameter description: |
1272 | * reset_type : 0x00 (Soft reset), |
1273 | * 0x01 (Hard reset) |
1274 | * patch_enable : 0x00 (Do not enable), |
1275 | * 0x01 (Enable) |
1276 | * ddc_reload : 0x00 (Do not reload), |
1277 | * 0x01 (Reload) |
1278 | * boot_option: 0x00 (Current image), |
1279 | * 0x01 (Specified boot address) |
1280 | * boot_param: Boot address |
1281 | * |
1282 | */ |
1283 | |
1284 | params.reset_type = 0x01; |
1285 | params.patch_enable = 0x01; |
1286 | params.ddc_reload = 0x01; |
1287 | params.boot_option = 0x00; |
1288 | params.boot_param = cpu_to_le32(0x00000000); |
1289 | |
1290 | skb = __hci_cmd_sync(hdev, opcode: 0xfc01, plen: sizeof(params), |
1291 | param: ¶ms, HCI_INIT_TIMEOUT); |
1292 | if (IS_ERR(ptr: skb)) { |
1293 | bt_dev_err(hdev, "FW download error recovery failed (%ld)" , |
1294 | PTR_ERR(skb)); |
1295 | return; |
1296 | } |
1297 | bt_dev_info(hdev, "Intel reset sent to retry FW download" ); |
1298 | kfree_skb(skb); |
1299 | |
1300 | /* Current Intel BT controllers(ThP/JfP) hold the USB reset |
1301 | * lines for 2ms when it receives Intel Reset in bootloader mode. |
1302 | * Whereas, the upcoming Intel BT controllers will hold USB reset |
1303 | * for 150ms. To keep the delay generic, 150ms is chosen here. |
1304 | */ |
1305 | msleep(msecs: 150); |
1306 | } |
1307 | |
1308 | static int btintel_read_debug_features(struct hci_dev *hdev, |
1309 | struct intel_debug_features *features) |
1310 | { |
1311 | struct sk_buff *skb; |
1312 | u8 page_no = 1; |
1313 | |
1314 | /* Intel controller supports two pages, each page is of 128-bit |
1315 | * feature bit mask. And each bit defines specific feature support |
1316 | */ |
1317 | skb = __hci_cmd_sync(hdev, opcode: 0xfca6, plen: sizeof(page_no), param: &page_no, |
1318 | HCI_INIT_TIMEOUT); |
1319 | if (IS_ERR(ptr: skb)) { |
1320 | bt_dev_err(hdev, "Reading supported features failed (%ld)" , |
1321 | PTR_ERR(skb)); |
1322 | return PTR_ERR(ptr: skb); |
1323 | } |
1324 | |
1325 | if (skb->len != (sizeof(features->page1) + 3)) { |
1326 | bt_dev_err(hdev, "Supported features event size mismatch" ); |
1327 | kfree_skb(skb); |
1328 | return -EILSEQ; |
1329 | } |
1330 | |
1331 | memcpy(features->page1, skb->data + 3, sizeof(features->page1)); |
1332 | |
1333 | /* Read the supported features page2 if required in future. |
1334 | */ |
1335 | kfree_skb(skb); |
1336 | return 0; |
1337 | } |
1338 | |
1339 | static int btintel_set_debug_features(struct hci_dev *hdev, |
1340 | const struct intel_debug_features *features) |
1341 | { |
1342 | u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00, |
1343 | 0x00, 0x00, 0x00 }; |
1344 | u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 }; |
1345 | u8 trace_enable = 0x02; |
1346 | struct sk_buff *skb; |
1347 | |
1348 | if (!features) { |
1349 | bt_dev_warn(hdev, "Debug features not read" ); |
1350 | return -EINVAL; |
1351 | } |
1352 | |
1353 | if (!(features->page1[0] & 0x3f)) { |
1354 | bt_dev_info(hdev, "Telemetry exception format not supported" ); |
1355 | return 0; |
1356 | } |
1357 | |
1358 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: 11, param: mask, HCI_INIT_TIMEOUT); |
1359 | if (IS_ERR(ptr: skb)) { |
1360 | bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)" , |
1361 | PTR_ERR(skb)); |
1362 | return PTR_ERR(ptr: skb); |
1363 | } |
1364 | kfree_skb(skb); |
1365 | |
1366 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: 5, param: period, HCI_INIT_TIMEOUT); |
1367 | if (IS_ERR(ptr: skb)) { |
1368 | bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)" , |
1369 | PTR_ERR(skb)); |
1370 | return PTR_ERR(ptr: skb); |
1371 | } |
1372 | kfree_skb(skb); |
1373 | |
1374 | skb = __hci_cmd_sync(hdev, opcode: 0xfca1, plen: 1, param: &trace_enable, HCI_INIT_TIMEOUT); |
1375 | if (IS_ERR(ptr: skb)) { |
1376 | bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)" , |
1377 | PTR_ERR(skb)); |
1378 | return PTR_ERR(ptr: skb); |
1379 | } |
1380 | kfree_skb(skb); |
1381 | |
1382 | bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x" , |
1383 | trace_enable, mask[3]); |
1384 | |
1385 | return 0; |
1386 | } |
1387 | |
1388 | static int btintel_reset_debug_features(struct hci_dev *hdev, |
1389 | const struct intel_debug_features *features) |
1390 | { |
1391 | u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, |
1392 | 0x00, 0x00, 0x00 }; |
1393 | u8 trace_enable = 0x00; |
1394 | struct sk_buff *skb; |
1395 | |
1396 | if (!features) { |
1397 | bt_dev_warn(hdev, "Debug features not read" ); |
1398 | return -EINVAL; |
1399 | } |
1400 | |
1401 | if (!(features->page1[0] & 0x3f)) { |
1402 | bt_dev_info(hdev, "Telemetry exception format not supported" ); |
1403 | return 0; |
1404 | } |
1405 | |
1406 | /* Should stop the trace before writing ddc event mask. */ |
1407 | skb = __hci_cmd_sync(hdev, opcode: 0xfca1, plen: 1, param: &trace_enable, HCI_INIT_TIMEOUT); |
1408 | if (IS_ERR(ptr: skb)) { |
1409 | bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)" , |
1410 | PTR_ERR(skb)); |
1411 | return PTR_ERR(ptr: skb); |
1412 | } |
1413 | kfree_skb(skb); |
1414 | |
1415 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: 11, param: mask, HCI_INIT_TIMEOUT); |
1416 | if (IS_ERR(ptr: skb)) { |
1417 | bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)" , |
1418 | PTR_ERR(skb)); |
1419 | return PTR_ERR(ptr: skb); |
1420 | } |
1421 | kfree_skb(skb); |
1422 | |
1423 | bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x" , |
1424 | trace_enable, mask[3]); |
1425 | |
1426 | return 0; |
1427 | } |
1428 | |
1429 | int btintel_set_quality_report(struct hci_dev *hdev, bool enable) |
1430 | { |
1431 | struct intel_debug_features features; |
1432 | int err; |
1433 | |
1434 | bt_dev_dbg(hdev, "enable %d" , enable); |
1435 | |
1436 | /* Read the Intel supported features and if new exception formats |
1437 | * supported, need to load the additional DDC config to enable. |
1438 | */ |
1439 | err = btintel_read_debug_features(hdev, features: &features); |
1440 | if (err) |
1441 | return err; |
1442 | |
1443 | /* Set or reset the debug features. */ |
1444 | if (enable) |
1445 | err = btintel_set_debug_features(hdev, features: &features); |
1446 | else |
1447 | err = btintel_reset_debug_features(hdev, features: &features); |
1448 | |
1449 | return err; |
1450 | } |
1451 | EXPORT_SYMBOL_GPL(btintel_set_quality_report); |
1452 | |
1453 | static void btintel_coredump(struct hci_dev *hdev) |
1454 | { |
1455 | struct sk_buff *skb; |
1456 | |
1457 | skb = __hci_cmd_sync(hdev, opcode: 0xfc4e, plen: 0, NULL, HCI_CMD_TIMEOUT); |
1458 | if (IS_ERR(ptr: skb)) { |
1459 | bt_dev_err(hdev, "Coredump failed (%ld)" , PTR_ERR(skb)); |
1460 | return; |
1461 | } |
1462 | |
1463 | kfree_skb(skb); |
1464 | } |
1465 | |
1466 | static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb) |
1467 | { |
1468 | char buf[80]; |
1469 | |
1470 | snprintf(buf, size: sizeof(buf), fmt: "Controller Name: 0x%X\n" , |
1471 | coredump_info.hw_variant); |
1472 | skb_put_data(skb, data: buf, strlen(buf)); |
1473 | |
1474 | snprintf(buf, size: sizeof(buf), fmt: "Firmware Version: 0x%X\n" , |
1475 | coredump_info.fw_build_num); |
1476 | skb_put_data(skb, data: buf, strlen(buf)); |
1477 | |
1478 | snprintf(buf, size: sizeof(buf), fmt: "Driver: %s\n" , coredump_info.driver_name); |
1479 | skb_put_data(skb, data: buf, strlen(buf)); |
1480 | |
1481 | snprintf(buf, size: sizeof(buf), fmt: "Vendor: Intel\n" ); |
1482 | skb_put_data(skb, data: buf, strlen(buf)); |
1483 | } |
1484 | |
1485 | static int btintel_register_devcoredump_support(struct hci_dev *hdev) |
1486 | { |
1487 | struct intel_debug_features features; |
1488 | int err; |
1489 | |
1490 | err = btintel_read_debug_features(hdev, features: &features); |
1491 | if (err) { |
1492 | bt_dev_info(hdev, "Error reading debug features" ); |
1493 | return err; |
1494 | } |
1495 | |
1496 | if (!(features.page1[0] & 0x3f)) { |
1497 | bt_dev_dbg(hdev, "Telemetry exception format not supported" ); |
1498 | return -EOPNOTSUPP; |
1499 | } |
1500 | |
1501 | hci_devcd_register(hdev, coredump: btintel_coredump, dmp_hdr: btintel_dmp_hdr, NULL); |
1502 | |
1503 | return err; |
1504 | } |
1505 | |
1506 | static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev, |
1507 | struct intel_version *ver) |
1508 | { |
1509 | const struct firmware *fw; |
1510 | char fwname[64]; |
1511 | int ret; |
1512 | |
1513 | snprintf(buf: fwname, size: sizeof(fwname), |
1514 | fmt: "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq" , |
1515 | ver->hw_platform, ver->hw_variant, ver->hw_revision, |
1516 | ver->fw_variant, ver->fw_revision, ver->fw_build_num, |
1517 | ver->fw_build_ww, ver->fw_build_yy); |
1518 | |
1519 | ret = request_firmware(fw: &fw, name: fwname, device: &hdev->dev); |
1520 | if (ret < 0) { |
1521 | if (ret == -EINVAL) { |
1522 | bt_dev_err(hdev, "Intel firmware file request failed (%d)" , |
1523 | ret); |
1524 | return NULL; |
1525 | } |
1526 | |
1527 | bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)" , |
1528 | fwname, ret); |
1529 | |
1530 | /* If the correct firmware patch file is not found, use the |
1531 | * default firmware patch file instead |
1532 | */ |
1533 | snprintf(buf: fwname, size: sizeof(fwname), fmt: "intel/ibt-hw-%x.%x.bseq" , |
1534 | ver->hw_platform, ver->hw_variant); |
1535 | if (request_firmware(fw: &fw, name: fwname, device: &hdev->dev) < 0) { |
1536 | bt_dev_err(hdev, "failed to open default fw file: %s" , |
1537 | fwname); |
1538 | return NULL; |
1539 | } |
1540 | } |
1541 | |
1542 | bt_dev_info(hdev, "Intel Bluetooth firmware file: %s" , fwname); |
1543 | |
1544 | return fw; |
1545 | } |
1546 | |
1547 | static int btintel_legacy_rom_patching(struct hci_dev *hdev, |
1548 | const struct firmware *fw, |
1549 | const u8 **fw_ptr, int *disable_patch) |
1550 | { |
1551 | struct sk_buff *skb; |
1552 | struct hci_command_hdr *cmd; |
1553 | const u8 *cmd_param; |
1554 | struct hci_event_hdr *evt = NULL; |
1555 | const u8 *evt_param = NULL; |
1556 | int remain = fw->size - (*fw_ptr - fw->data); |
1557 | |
1558 | /* The first byte indicates the types of the patch command or event. |
1559 | * 0x01 means HCI command and 0x02 is HCI event. If the first bytes |
1560 | * in the current firmware buffer doesn't start with 0x01 or |
1561 | * the size of remain buffer is smaller than HCI command header, |
1562 | * the firmware file is corrupted and it should stop the patching |
1563 | * process. |
1564 | */ |
1565 | if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) { |
1566 | bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read" ); |
1567 | return -EINVAL; |
1568 | } |
1569 | (*fw_ptr)++; |
1570 | remain--; |
1571 | |
1572 | cmd = (struct hci_command_hdr *)(*fw_ptr); |
1573 | *fw_ptr += sizeof(*cmd); |
1574 | remain -= sizeof(*cmd); |
1575 | |
1576 | /* Ensure that the remain firmware data is long enough than the length |
1577 | * of command parameter. If not, the firmware file is corrupted. |
1578 | */ |
1579 | if (remain < cmd->plen) { |
1580 | bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len" ); |
1581 | return -EFAULT; |
1582 | } |
1583 | |
1584 | /* If there is a command that loads a patch in the firmware |
1585 | * file, then enable the patch upon success, otherwise just |
1586 | * disable the manufacturer mode, for example patch activation |
1587 | * is not required when the default firmware patch file is used |
1588 | * because there are no patch data to load. |
1589 | */ |
1590 | if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e) |
1591 | *disable_patch = 0; |
1592 | |
1593 | cmd_param = *fw_ptr; |
1594 | *fw_ptr += cmd->plen; |
1595 | remain -= cmd->plen; |
1596 | |
1597 | /* This reads the expected events when the above command is sent to the |
1598 | * device. Some vendor commands expects more than one events, for |
1599 | * example command status event followed by vendor specific event. |
1600 | * For this case, it only keeps the last expected event. so the command |
1601 | * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of |
1602 | * last expected event. |
1603 | */ |
1604 | while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) { |
1605 | (*fw_ptr)++; |
1606 | remain--; |
1607 | |
1608 | evt = (struct hci_event_hdr *)(*fw_ptr); |
1609 | *fw_ptr += sizeof(*evt); |
1610 | remain -= sizeof(*evt); |
1611 | |
1612 | if (remain < evt->plen) { |
1613 | bt_dev_err(hdev, "Intel fw corrupted: invalid evt len" ); |
1614 | return -EFAULT; |
1615 | } |
1616 | |
1617 | evt_param = *fw_ptr; |
1618 | *fw_ptr += evt->plen; |
1619 | remain -= evt->plen; |
1620 | } |
1621 | |
1622 | /* Every HCI commands in the firmware file has its correspond event. |
1623 | * If event is not found or remain is smaller than zero, the firmware |
1624 | * file is corrupted. |
1625 | */ |
1626 | if (!evt || !evt_param || remain < 0) { |
1627 | bt_dev_err(hdev, "Intel fw corrupted: invalid evt read" ); |
1628 | return -EFAULT; |
1629 | } |
1630 | |
1631 | skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), plen: cmd->plen, |
1632 | param: cmd_param, event: evt->evt, HCI_INIT_TIMEOUT); |
1633 | if (IS_ERR(ptr: skb)) { |
1634 | bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)" , |
1635 | cmd->opcode, PTR_ERR(skb)); |
1636 | return PTR_ERR(ptr: skb); |
1637 | } |
1638 | |
1639 | /* It ensures that the returned event matches the event data read from |
1640 | * the firmware file. At fist, it checks the length and then |
1641 | * the contents of the event. |
1642 | */ |
1643 | if (skb->len != evt->plen) { |
1644 | bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)" , |
1645 | le16_to_cpu(cmd->opcode)); |
1646 | kfree_skb(skb); |
1647 | return -EFAULT; |
1648 | } |
1649 | |
1650 | if (memcmp(p: skb->data, q: evt_param, size: evt->plen)) { |
1651 | bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)" , |
1652 | le16_to_cpu(cmd->opcode)); |
1653 | kfree_skb(skb); |
1654 | return -EFAULT; |
1655 | } |
1656 | kfree_skb(skb); |
1657 | |
1658 | return 0; |
1659 | } |
1660 | |
1661 | static int btintel_legacy_rom_setup(struct hci_dev *hdev, |
1662 | struct intel_version *ver) |
1663 | { |
1664 | const struct firmware *fw; |
1665 | const u8 *fw_ptr; |
1666 | int disable_patch, err; |
1667 | struct intel_version new_ver; |
1668 | |
1669 | BT_DBG("%s" , hdev->name); |
1670 | |
1671 | /* fw_patch_num indicates the version of patch the device currently |
1672 | * have. If there is no patch data in the device, it is always 0x00. |
1673 | * So, if it is other than 0x00, no need to patch the device again. |
1674 | */ |
1675 | if (ver->fw_patch_num) { |
1676 | bt_dev_info(hdev, |
1677 | "Intel device is already patched. patch num: %02x" , |
1678 | ver->fw_patch_num); |
1679 | goto complete; |
1680 | } |
1681 | |
1682 | /* Opens the firmware patch file based on the firmware version read |
1683 | * from the controller. If it fails to open the matching firmware |
1684 | * patch file, it tries to open the default firmware patch file. |
1685 | * If no patch file is found, allow the device to operate without |
1686 | * a patch. |
1687 | */ |
1688 | fw = btintel_legacy_rom_get_fw(hdev, ver); |
1689 | if (!fw) |
1690 | goto complete; |
1691 | fw_ptr = fw->data; |
1692 | |
1693 | /* Enable the manufacturer mode of the controller. |
1694 | * Only while this mode is enabled, the driver can download the |
1695 | * firmware patch data and configuration parameters. |
1696 | */ |
1697 | err = btintel_enter_mfg(hdev); |
1698 | if (err) { |
1699 | release_firmware(fw); |
1700 | return err; |
1701 | } |
1702 | |
1703 | disable_patch = 1; |
1704 | |
1705 | /* The firmware data file consists of list of Intel specific HCI |
1706 | * commands and its expected events. The first byte indicates the |
1707 | * type of the message, either HCI command or HCI event. |
1708 | * |
1709 | * It reads the command and its expected event from the firmware file, |
1710 | * and send to the controller. Once __hci_cmd_sync_ev() returns, |
1711 | * the returned event is compared with the event read from the firmware |
1712 | * file and it will continue until all the messages are downloaded to |
1713 | * the controller. |
1714 | * |
1715 | * Once the firmware patching is completed successfully, |
1716 | * the manufacturer mode is disabled with reset and activating the |
1717 | * downloaded patch. |
1718 | * |
1719 | * If the firmware patching fails, the manufacturer mode is |
1720 | * disabled with reset and deactivating the patch. |
1721 | * |
1722 | * If the default patch file is used, no reset is done when disabling |
1723 | * the manufacturer. |
1724 | */ |
1725 | while (fw->size > fw_ptr - fw->data) { |
1726 | int ret; |
1727 | |
1728 | ret = btintel_legacy_rom_patching(hdev, fw, fw_ptr: &fw_ptr, |
1729 | disable_patch: &disable_patch); |
1730 | if (ret < 0) |
1731 | goto exit_mfg_deactivate; |
1732 | } |
1733 | |
1734 | release_firmware(fw); |
1735 | |
1736 | if (disable_patch) |
1737 | goto exit_mfg_disable; |
1738 | |
1739 | /* Patching completed successfully and disable the manufacturer mode |
1740 | * with reset and activate the downloaded firmware patches. |
1741 | */ |
1742 | err = btintel_exit_mfg(hdev, true, true); |
1743 | if (err) |
1744 | return err; |
1745 | |
1746 | /* Need build number for downloaded fw patches in |
1747 | * every power-on boot |
1748 | */ |
1749 | err = btintel_read_version(hdev, &new_ver); |
1750 | if (err) |
1751 | return err; |
1752 | |
1753 | bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated" , |
1754 | new_ver.fw_patch_num); |
1755 | |
1756 | goto complete; |
1757 | |
1758 | exit_mfg_disable: |
1759 | /* Disable the manufacturer mode without reset */ |
1760 | err = btintel_exit_mfg(hdev, false, false); |
1761 | if (err) |
1762 | return err; |
1763 | |
1764 | bt_dev_info(hdev, "Intel firmware patch completed" ); |
1765 | |
1766 | goto complete; |
1767 | |
1768 | exit_mfg_deactivate: |
1769 | release_firmware(fw); |
1770 | |
1771 | /* Patching failed. Disable the manufacturer mode with reset and |
1772 | * deactivate the downloaded firmware patches. |
1773 | */ |
1774 | err = btintel_exit_mfg(hdev, true, false); |
1775 | if (err) |
1776 | return err; |
1777 | |
1778 | bt_dev_info(hdev, "Intel firmware patch completed and deactivated" ); |
1779 | |
1780 | complete: |
1781 | /* Set the event mask for Intel specific vendor events. This enables |
1782 | * a few extra events that are useful during general operation. |
1783 | */ |
1784 | btintel_set_event_mask_mfg(hdev, false); |
1785 | |
1786 | btintel_check_bdaddr(hdev); |
1787 | |
1788 | return 0; |
1789 | } |
1790 | |
1791 | static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec) |
1792 | { |
1793 | ktime_t delta, rettime; |
1794 | unsigned long long duration; |
1795 | int err; |
1796 | |
1797 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
1798 | |
1799 | bt_dev_info(hdev, "Waiting for firmware download to complete" ); |
1800 | |
1801 | err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING, |
1802 | TASK_INTERRUPTIBLE, |
1803 | msecs_to_jiffies(msec)); |
1804 | if (err == -EINTR) { |
1805 | bt_dev_err(hdev, "Firmware loading interrupted" ); |
1806 | return err; |
1807 | } |
1808 | |
1809 | if (err) { |
1810 | bt_dev_err(hdev, "Firmware loading timeout" ); |
1811 | return -ETIMEDOUT; |
1812 | } |
1813 | |
1814 | if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) { |
1815 | bt_dev_err(hdev, "Firmware loading failed" ); |
1816 | return -ENOEXEC; |
1817 | } |
1818 | |
1819 | rettime = ktime_get(); |
1820 | delta = ktime_sub(rettime, calltime); |
1821 | duration = (unsigned long long)ktime_to_ns(kt: delta) >> 10; |
1822 | |
1823 | bt_dev_info(hdev, "Firmware loaded in %llu usecs" , duration); |
1824 | |
1825 | return 0; |
1826 | } |
1827 | |
1828 | static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec) |
1829 | { |
1830 | ktime_t delta, rettime; |
1831 | unsigned long long duration; |
1832 | int err; |
1833 | |
1834 | bt_dev_info(hdev, "Waiting for device to boot" ); |
1835 | |
1836 | err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING, |
1837 | TASK_INTERRUPTIBLE, |
1838 | msecs_to_jiffies(msec)); |
1839 | if (err == -EINTR) { |
1840 | bt_dev_err(hdev, "Device boot interrupted" ); |
1841 | return -EINTR; |
1842 | } |
1843 | |
1844 | if (err) { |
1845 | bt_dev_err(hdev, "Device boot timeout" ); |
1846 | return -ETIMEDOUT; |
1847 | } |
1848 | |
1849 | rettime = ktime_get(); |
1850 | delta = ktime_sub(rettime, calltime); |
1851 | duration = (unsigned long long) ktime_to_ns(kt: delta) >> 10; |
1852 | |
1853 | bt_dev_info(hdev, "Device booted in %llu usecs" , duration); |
1854 | |
1855 | return 0; |
1856 | } |
1857 | |
1858 | static int btintel_boot_wait_d0(struct hci_dev *hdev, ktime_t calltime, |
1859 | int msec) |
1860 | { |
1861 | ktime_t delta, rettime; |
1862 | unsigned long long duration; |
1863 | int err; |
1864 | |
1865 | bt_dev_info(hdev, "Waiting for device transition to d0" ); |
1866 | |
1867 | err = btintel_wait_on_flag_timeout(hdev, INTEL_WAIT_FOR_D0, |
1868 | TASK_INTERRUPTIBLE, |
1869 | msecs_to_jiffies(msec)); |
1870 | if (err == -EINTR) { |
1871 | bt_dev_err(hdev, "Device d0 move interrupted" ); |
1872 | return -EINTR; |
1873 | } |
1874 | |
1875 | if (err) { |
1876 | bt_dev_err(hdev, "Device d0 move timeout" ); |
1877 | return -ETIMEDOUT; |
1878 | } |
1879 | |
1880 | rettime = ktime_get(); |
1881 | delta = ktime_sub(rettime, calltime); |
1882 | duration = (unsigned long long)ktime_to_ns(kt: delta) >> 10; |
1883 | |
1884 | bt_dev_info(hdev, "Device moved to D0 in %llu usecs" , duration); |
1885 | |
1886 | return 0; |
1887 | } |
1888 | |
1889 | static int btintel_boot(struct hci_dev *hdev, u32 boot_addr) |
1890 | { |
1891 | ktime_t calltime; |
1892 | int err; |
1893 | |
1894 | calltime = ktime_get(); |
1895 | |
1896 | btintel_set_flag(hdev, INTEL_BOOTING); |
1897 | btintel_set_flag(hdev, INTEL_WAIT_FOR_D0); |
1898 | |
1899 | err = btintel_send_intel_reset(hdev, boot_addr); |
1900 | if (err) { |
1901 | bt_dev_err(hdev, "Intel Soft Reset failed (%d)" , err); |
1902 | btintel_reset_to_bootloader(hdev); |
1903 | return err; |
1904 | } |
1905 | |
1906 | /* The bootloader will not indicate when the device is ready. This |
1907 | * is done by the operational firmware sending bootup notification. |
1908 | * |
1909 | * Booting into operational firmware should not take longer than |
1910 | * 5 second. However if that happens, then just fail the setup |
1911 | * since something went wrong. |
1912 | */ |
1913 | err = btintel_boot_wait(hdev, calltime, msec: 5000); |
1914 | if (err == -ETIMEDOUT) { |
1915 | btintel_reset_to_bootloader(hdev); |
1916 | goto exit_error; |
1917 | } |
1918 | |
1919 | if (hdev->bus == HCI_PCI) { |
1920 | /* In case of PCIe, after receiving bootup event, driver performs |
1921 | * D0 entry by writing 0 to sleep control register (check |
1922 | * btintel_pcie_recv_event()) |
1923 | * Firmware acks with alive interrupt indicating host is full ready to |
1924 | * perform BT operation. Lets wait here till INTEL_WAIT_FOR_D0 |
1925 | * bit is cleared. |
1926 | */ |
1927 | calltime = ktime_get(); |
1928 | err = btintel_boot_wait_d0(hdev, calltime, msec: 2000); |
1929 | } |
1930 | |
1931 | exit_error: |
1932 | return err; |
1933 | } |
1934 | |
1935 | static int btintel_get_fw_name(struct intel_version *ver, |
1936 | struct intel_boot_params *params, |
1937 | char *fw_name, size_t len, |
1938 | const char *suffix) |
1939 | { |
1940 | switch (ver->hw_variant) { |
1941 | case 0x0b: /* SfP */ |
1942 | case 0x0c: /* WsP */ |
1943 | snprintf(buf: fw_name, size: len, fmt: "intel/ibt-%u-%u.%s" , |
1944 | ver->hw_variant, |
1945 | le16_to_cpu(params->dev_revid), |
1946 | suffix); |
1947 | break; |
1948 | case 0x11: /* JfP */ |
1949 | case 0x12: /* ThP */ |
1950 | case 0x13: /* HrP */ |
1951 | case 0x14: /* CcP */ |
1952 | snprintf(buf: fw_name, size: len, fmt: "intel/ibt-%u-%u-%u.%s" , |
1953 | ver->hw_variant, |
1954 | ver->hw_revision, |
1955 | ver->fw_revision, |
1956 | suffix); |
1957 | break; |
1958 | default: |
1959 | return -EINVAL; |
1960 | } |
1961 | |
1962 | return 0; |
1963 | } |
1964 | |
1965 | static int btintel_download_fw(struct hci_dev *hdev, |
1966 | struct intel_version *ver, |
1967 | struct intel_boot_params *params, |
1968 | u32 *boot_param) |
1969 | { |
1970 | const struct firmware *fw; |
1971 | char fwname[64]; |
1972 | int err; |
1973 | ktime_t calltime; |
1974 | |
1975 | if (!ver || !params) |
1976 | return -EINVAL; |
1977 | |
1978 | /* The firmware variant determines if the device is in bootloader |
1979 | * mode or is running operational firmware. The value 0x06 identifies |
1980 | * the bootloader and the value 0x23 identifies the operational |
1981 | * firmware. |
1982 | * |
1983 | * When the operational firmware is already present, then only |
1984 | * the check for valid Bluetooth device address is needed. This |
1985 | * determines if the device will be added as configured or |
1986 | * unconfigured controller. |
1987 | * |
1988 | * It is not possible to use the Secure Boot Parameters in this |
1989 | * case since that command is only available in bootloader mode. |
1990 | */ |
1991 | if (ver->fw_variant == 0x23) { |
1992 | btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
1993 | btintel_check_bdaddr(hdev); |
1994 | |
1995 | /* SfP and WsP don't seem to update the firmware version on file |
1996 | * so version checking is currently possible. |
1997 | */ |
1998 | switch (ver->hw_variant) { |
1999 | case 0x0b: /* SfP */ |
2000 | case 0x0c: /* WsP */ |
2001 | return 0; |
2002 | } |
2003 | |
2004 | /* Proceed to download to check if the version matches */ |
2005 | goto download; |
2006 | } |
2007 | |
2008 | /* Read the secure boot parameters to identify the operating |
2009 | * details of the bootloader. |
2010 | */ |
2011 | err = btintel_read_boot_params(hdev, params); |
2012 | if (err) |
2013 | return err; |
2014 | |
2015 | /* It is required that every single firmware fragment is acknowledged |
2016 | * with a command complete event. If the boot parameters indicate |
2017 | * that this bootloader does not send them, then abort the setup. |
2018 | */ |
2019 | if (params->limited_cce != 0x00) { |
2020 | bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)" , |
2021 | params->limited_cce); |
2022 | return -EINVAL; |
2023 | } |
2024 | |
2025 | /* If the OTP has no valid Bluetooth device address, then there will |
2026 | * also be no valid address for the operational firmware. |
2027 | */ |
2028 | if (!bacmp(ba1: ¶ms->otp_bdaddr, BDADDR_ANY)) { |
2029 | bt_dev_info(hdev, "No device address configured" ); |
2030 | set_bit(nr: HCI_QUIRK_INVALID_BDADDR, addr: &hdev->quirks); |
2031 | } |
2032 | |
2033 | download: |
2034 | /* With this Intel bootloader only the hardware variant and device |
2035 | * revision information are used to select the right firmware for SfP |
2036 | * and WsP. |
2037 | * |
2038 | * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. |
2039 | * |
2040 | * Currently the supported hardware variants are: |
2041 | * 11 (0x0b) for iBT3.0 (LnP/SfP) |
2042 | * 12 (0x0c) for iBT3.5 (WsP) |
2043 | * |
2044 | * For ThP/JfP and for future SKU's, the FW name varies based on HW |
2045 | * variant, HW revision and FW revision, as these are dependent on CNVi |
2046 | * and RF Combination. |
2047 | * |
2048 | * 17 (0x11) for iBT3.5 (JfP) |
2049 | * 18 (0x12) for iBT3.5 (ThP) |
2050 | * |
2051 | * The firmware file name for these will be |
2052 | * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. |
2053 | * |
2054 | */ |
2055 | err = btintel_get_fw_name(ver, params, fw_name: fwname, len: sizeof(fwname), suffix: "sfi" ); |
2056 | if (err < 0) { |
2057 | if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
2058 | /* Firmware has already been loaded */ |
2059 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2060 | return 0; |
2061 | } |
2062 | |
2063 | bt_dev_err(hdev, "Unsupported Intel firmware naming" ); |
2064 | return -EINVAL; |
2065 | } |
2066 | |
2067 | err = firmware_request_nowarn(fw: &fw, name: fwname, device: &hdev->dev); |
2068 | if (err < 0) { |
2069 | if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
2070 | /* Firmware has already been loaded */ |
2071 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2072 | return 0; |
2073 | } |
2074 | |
2075 | bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)" , |
2076 | fwname, err); |
2077 | return err; |
2078 | } |
2079 | |
2080 | bt_dev_info(hdev, "Found device firmware: %s" , fwname); |
2081 | |
2082 | if (fw->size < 644) { |
2083 | bt_dev_err(hdev, "Invalid size of firmware file (%zu)" , |
2084 | fw->size); |
2085 | err = -EBADF; |
2086 | goto done; |
2087 | } |
2088 | |
2089 | calltime = ktime_get(); |
2090 | |
2091 | btintel_set_flag(hdev, INTEL_DOWNLOADING); |
2092 | |
2093 | /* Start firmware downloading and get boot parameter */ |
2094 | err = btintel_download_firmware(hdev, ver, fw, boot_param); |
2095 | if (err < 0) { |
2096 | if (err == -EALREADY) { |
2097 | /* Firmware has already been loaded */ |
2098 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2099 | err = 0; |
2100 | goto done; |
2101 | } |
2102 | |
2103 | /* When FW download fails, send Intel Reset to retry |
2104 | * FW download. |
2105 | */ |
2106 | btintel_reset_to_bootloader(hdev); |
2107 | goto done; |
2108 | } |
2109 | |
2110 | /* Before switching the device into operational mode and with that |
2111 | * booting the loaded firmware, wait for the bootloader notification |
2112 | * that all fragments have been successfully received. |
2113 | * |
2114 | * When the event processing receives the notification, then the |
2115 | * INTEL_DOWNLOADING flag will be cleared. |
2116 | * |
2117 | * The firmware loading should not take longer than 5 seconds |
2118 | * and thus just timeout if that happens and fail the setup |
2119 | * of this device. |
2120 | */ |
2121 | err = btintel_download_wait(hdev, calltime, msec: 5000); |
2122 | if (err == -ETIMEDOUT) |
2123 | btintel_reset_to_bootloader(hdev); |
2124 | |
2125 | done: |
2126 | release_firmware(fw); |
2127 | return err; |
2128 | } |
2129 | |
2130 | static int btintel_bootloader_setup(struct hci_dev *hdev, |
2131 | struct intel_version *ver) |
2132 | { |
2133 | struct intel_version new_ver; |
2134 | struct intel_boot_params params; |
2135 | u32 boot_param; |
2136 | char ddcname[64]; |
2137 | int err; |
2138 | |
2139 | BT_DBG("%s" , hdev->name); |
2140 | |
2141 | /* Set the default boot parameter to 0x0 and it is updated to |
2142 | * SKU specific boot parameter after reading Intel_Write_Boot_Params |
2143 | * command while downloading the firmware. |
2144 | */ |
2145 | boot_param = 0x00000000; |
2146 | |
2147 | btintel_set_flag(hdev, INTEL_BOOTLOADER); |
2148 | |
2149 | err = btintel_download_fw(hdev, ver, params: ¶ms, boot_param: &boot_param); |
2150 | if (err) |
2151 | return err; |
2152 | |
2153 | /* controller is already having an operational firmware */ |
2154 | if (ver->fw_variant == 0x23) |
2155 | goto finish; |
2156 | |
2157 | err = btintel_boot(hdev, boot_addr: boot_param); |
2158 | if (err) |
2159 | return err; |
2160 | |
2161 | btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
2162 | |
2163 | err = btintel_get_fw_name(ver, params: ¶ms, fw_name: ddcname, |
2164 | len: sizeof(ddcname), suffix: "ddc" ); |
2165 | |
2166 | if (err < 0) { |
2167 | bt_dev_err(hdev, "Unsupported Intel firmware naming" ); |
2168 | } else { |
2169 | /* Once the device is running in operational mode, it needs to |
2170 | * apply the device configuration (DDC) parameters. |
2171 | * |
2172 | * The device can work without DDC parameters, so even if it |
2173 | * fails to load the file, no need to fail the setup. |
2174 | */ |
2175 | btintel_load_ddc_config(hdev, ddcname); |
2176 | } |
2177 | |
2178 | hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); |
2179 | |
2180 | /* Read the Intel version information after loading the FW */ |
2181 | err = btintel_read_version(hdev, &new_ver); |
2182 | if (err) |
2183 | return err; |
2184 | |
2185 | btintel_version_info(hdev, &new_ver); |
2186 | |
2187 | finish: |
2188 | /* Set the event mask for Intel specific vendor events. This enables |
2189 | * a few extra events that are useful during general operation. It |
2190 | * does not enable any debugging related events. |
2191 | * |
2192 | * The device will function correctly without these events enabled |
2193 | * and thus no need to fail the setup. |
2194 | */ |
2195 | btintel_set_event_mask(hdev, debug: false); |
2196 | |
2197 | return 0; |
2198 | } |
2199 | |
2200 | static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver, |
2201 | char *fw_name, size_t len, |
2202 | const char *suffix) |
2203 | { |
2204 | const char *format; |
2205 | u32 cnvi, cnvr; |
2206 | |
2207 | cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), |
2208 | INTEL_CNVX_TOP_STEP(ver->cnvi_top)); |
2209 | |
2210 | cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), |
2211 | INTEL_CNVX_TOP_STEP(ver->cnvr_top)); |
2212 | |
2213 | /* Only Blazar product supports downloading of intermediate loader |
2214 | * image |
2215 | */ |
2216 | if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) { |
2217 | u8 zero[BTINTEL_FWID_MAXLEN]; |
2218 | |
2219 | if (ver->img_type == BTINTEL_IMG_BOOTLOADER) { |
2220 | format = "intel/ibt-%04x-%04x-iml.%s" ; |
2221 | snprintf(buf: fw_name, size: len, fmt: format, cnvi, cnvr, suffix); |
2222 | return; |
2223 | } |
2224 | |
2225 | memset(zero, 0, sizeof(zero)); |
2226 | |
2227 | /* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */ |
2228 | if (memcmp(p: ver->fw_id, q: zero, size: sizeof(zero))) { |
2229 | format = "intel/ibt-%04x-%04x-%s.%s" ; |
2230 | snprintf(buf: fw_name, size: len, fmt: format, cnvi, cnvr, |
2231 | ver->fw_id, suffix); |
2232 | return; |
2233 | } |
2234 | /* If firmware id is not present, fallback to legacy naming |
2235 | * convention |
2236 | */ |
2237 | } |
2238 | /* Fallback to legacy naming convention for other controllers |
2239 | * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step> |
2240 | */ |
2241 | format = "intel/ibt-%04x-%04x.%s" ; |
2242 | snprintf(buf: fw_name, size: len, fmt: format, cnvi, cnvr, suffix); |
2243 | } |
2244 | |
2245 | static void btintel_get_iml_tlv(const struct intel_version_tlv *ver, |
2246 | char *fw_name, size_t len, |
2247 | const char *suffix) |
2248 | { |
2249 | const char *format; |
2250 | u32 cnvi, cnvr; |
2251 | |
2252 | cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), |
2253 | INTEL_CNVX_TOP_STEP(ver->cnvi_top)); |
2254 | |
2255 | cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), |
2256 | INTEL_CNVX_TOP_STEP(ver->cnvr_top)); |
2257 | |
2258 | format = "intel/ibt-%04x-%04x-iml.%s" ; |
2259 | snprintf(buf: fw_name, size: len, fmt: format, cnvi, cnvr, suffix); |
2260 | } |
2261 | |
2262 | static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev, |
2263 | struct intel_version_tlv *ver, |
2264 | u32 *boot_param) |
2265 | { |
2266 | const struct firmware *fw; |
2267 | char fwname[128]; |
2268 | int err; |
2269 | ktime_t calltime; |
2270 | |
2271 | if (!ver || !boot_param) |
2272 | return -EINVAL; |
2273 | |
2274 | /* The firmware variant determines if the device is in bootloader |
2275 | * mode or is running operational firmware. The value 0x03 identifies |
2276 | * the bootloader and the value 0x23 identifies the operational |
2277 | * firmware. |
2278 | * |
2279 | * When the operational firmware is already present, then only |
2280 | * the check for valid Bluetooth device address is needed. This |
2281 | * determines if the device will be added as configured or |
2282 | * unconfigured controller. |
2283 | * |
2284 | * It is not possible to use the Secure Boot Parameters in this |
2285 | * case since that command is only available in bootloader mode. |
2286 | */ |
2287 | if (ver->img_type == BTINTEL_IMG_OP) { |
2288 | btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
2289 | btintel_check_bdaddr(hdev); |
2290 | } else { |
2291 | /* |
2292 | * Check for valid bd address in boot loader mode. Device |
2293 | * will be marked as unconfigured if empty bd address is |
2294 | * found. |
2295 | */ |
2296 | if (!bacmp(ba1: &ver->otp_bd_addr, BDADDR_ANY)) { |
2297 | bt_dev_info(hdev, "No device address configured" ); |
2298 | set_bit(nr: HCI_QUIRK_INVALID_BDADDR, addr: &hdev->quirks); |
2299 | } |
2300 | } |
2301 | |
2302 | if (ver->img_type == BTINTEL_IMG_OP) { |
2303 | /* Controller running OP image. In case of FW downgrade, |
2304 | * FWID TLV may not be present and driver may attempt to load |
2305 | * firmware image which doesn't exist. Lets compare the version |
2306 | * of IML image |
2307 | */ |
2308 | if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) |
2309 | btintel_get_iml_tlv(ver, fw_name: fwname, len: sizeof(fwname), suffix: "sfi" ); |
2310 | else |
2311 | btintel_get_fw_name_tlv(ver, fw_name: fwname, len: sizeof(fwname), suffix: "sfi" ); |
2312 | } else { |
2313 | btintel_get_fw_name_tlv(ver, fw_name: fwname, len: sizeof(fwname), suffix: "sfi" ); |
2314 | } |
2315 | |
2316 | err = firmware_request_nowarn(fw: &fw, name: fwname, device: &hdev->dev); |
2317 | if (err < 0) { |
2318 | if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
2319 | /* Firmware has already been loaded */ |
2320 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2321 | return 0; |
2322 | } |
2323 | |
2324 | bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)" , |
2325 | fwname, err); |
2326 | |
2327 | return err; |
2328 | } |
2329 | |
2330 | bt_dev_info(hdev, "Found device firmware: %s" , fwname); |
2331 | |
2332 | if (fw->size < 644) { |
2333 | bt_dev_err(hdev, "Invalid size of firmware file (%zu)" , |
2334 | fw->size); |
2335 | err = -EBADF; |
2336 | goto done; |
2337 | } |
2338 | |
2339 | calltime = ktime_get(); |
2340 | |
2341 | btintel_set_flag(hdev, INTEL_DOWNLOADING); |
2342 | |
2343 | /* Start firmware downloading and get boot parameter */ |
2344 | err = btintel_download_fw_tlv(hdev, ver, fw, boot_param, |
2345 | INTEL_HW_VARIANT(ver->cnvi_bt), |
2346 | sbe_type: ver->sbe_type); |
2347 | if (err < 0) { |
2348 | if (err == -EALREADY) { |
2349 | /* Firmware has already been loaded */ |
2350 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2351 | err = 0; |
2352 | goto done; |
2353 | } |
2354 | |
2355 | /* When FW download fails, send Intel Reset to retry |
2356 | * FW download. |
2357 | */ |
2358 | btintel_reset_to_bootloader(hdev); |
2359 | goto done; |
2360 | } |
2361 | |
2362 | /* Before switching the device into operational mode and with that |
2363 | * booting the loaded firmware, wait for the bootloader notification |
2364 | * that all fragments have been successfully received. |
2365 | * |
2366 | * When the event processing receives the notification, then the |
2367 | * BTUSB_DOWNLOADING flag will be cleared. |
2368 | * |
2369 | * The firmware loading should not take longer than 5 seconds |
2370 | * and thus just timeout if that happens and fail the setup |
2371 | * of this device. |
2372 | */ |
2373 | err = btintel_download_wait(hdev, calltime, msec: 5000); |
2374 | if (err == -ETIMEDOUT) |
2375 | btintel_reset_to_bootloader(hdev); |
2376 | |
2377 | done: |
2378 | release_firmware(fw); |
2379 | return err; |
2380 | } |
2381 | |
2382 | static int btintel_get_codec_config_data(struct hci_dev *hdev, |
2383 | __u8 link, struct bt_codec *codec, |
2384 | __u8 *ven_len, __u8 **ven_data) |
2385 | { |
2386 | int err = 0; |
2387 | |
2388 | if (!ven_data || !ven_len) |
2389 | return -EINVAL; |
2390 | |
2391 | *ven_len = 0; |
2392 | *ven_data = NULL; |
2393 | |
2394 | if (link != ESCO_LINK) { |
2395 | bt_dev_err(hdev, "Invalid link type(%u)" , link); |
2396 | return -EINVAL; |
2397 | } |
2398 | |
2399 | *ven_data = kmalloc(sizeof(__u8), GFP_KERNEL); |
2400 | if (!*ven_data) { |
2401 | err = -ENOMEM; |
2402 | goto error; |
2403 | } |
2404 | |
2405 | /* supports only CVSD and mSBC offload codecs */ |
2406 | switch (codec->id) { |
2407 | case 0x02: |
2408 | **ven_data = 0x00; |
2409 | break; |
2410 | case 0x05: |
2411 | **ven_data = 0x01; |
2412 | break; |
2413 | default: |
2414 | err = -EINVAL; |
2415 | bt_dev_err(hdev, "Invalid codec id(%u)" , codec->id); |
2416 | goto error; |
2417 | } |
2418 | /* codec and its capabilities are pre-defined to ids |
2419 | * preset id = 0x00 represents CVSD codec with sampling rate 8K |
2420 | * preset id = 0x01 represents mSBC codec with sampling rate 16K |
2421 | */ |
2422 | *ven_len = sizeof(__u8); |
2423 | return err; |
2424 | |
2425 | error: |
2426 | kfree(objp: *ven_data); |
2427 | *ven_data = NULL; |
2428 | return err; |
2429 | } |
2430 | |
2431 | static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id) |
2432 | { |
2433 | /* Intel uses 1 as data path id for all the usecases */ |
2434 | *data_path_id = 1; |
2435 | return 0; |
2436 | } |
2437 | |
2438 | static int btintel_configure_offload(struct hci_dev *hdev) |
2439 | { |
2440 | struct sk_buff *skb; |
2441 | int err = 0; |
2442 | struct intel_offload_use_cases *use_cases; |
2443 | |
2444 | skb = __hci_cmd_sync(hdev, opcode: 0xfc86, plen: 0, NULL, HCI_INIT_TIMEOUT); |
2445 | if (IS_ERR(ptr: skb)) { |
2446 | bt_dev_err(hdev, "Reading offload use cases failed (%ld)" , |
2447 | PTR_ERR(skb)); |
2448 | return PTR_ERR(ptr: skb); |
2449 | } |
2450 | |
2451 | if (skb->len < sizeof(*use_cases)) { |
2452 | err = -EIO; |
2453 | goto error; |
2454 | } |
2455 | |
2456 | use_cases = (void *)skb->data; |
2457 | |
2458 | if (use_cases->status) { |
2459 | err = -bt_to_errno(code: skb->data[0]); |
2460 | goto error; |
2461 | } |
2462 | |
2463 | if (use_cases->preset[0] & 0x03) { |
2464 | hdev->get_data_path_id = btintel_get_data_path_id; |
2465 | hdev->get_codec_config_data = btintel_get_codec_config_data; |
2466 | } |
2467 | error: |
2468 | kfree_skb(skb); |
2469 | return err; |
2470 | } |
2471 | |
2472 | static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver) |
2473 | { |
2474 | struct sk_buff *skb; |
2475 | struct hci_ppag_enable_cmd ppag_cmd; |
2476 | acpi_handle handle; |
2477 | struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; |
2478 | union acpi_object *p, *elements; |
2479 | u32 domain, mode; |
2480 | acpi_status status; |
2481 | |
2482 | /* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */ |
2483 | switch (ver->cnvr_top & 0xFFF) { |
2484 | case 0x504: /* Hrp2 */ |
2485 | case 0x202: /* Jfp2 */ |
2486 | case 0x201: /* Jfp1 */ |
2487 | bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)" , |
2488 | ver->cnvr_top & 0xFFF); |
2489 | return; |
2490 | } |
2491 | |
2492 | handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); |
2493 | if (!handle) { |
2494 | bt_dev_info(hdev, "No support for BT device in ACPI firmware" ); |
2495 | return; |
2496 | } |
2497 | |
2498 | status = acpi_evaluate_object(object: handle, pathname: "PPAG" , NULL, return_object_buffer: &buffer); |
2499 | if (ACPI_FAILURE(status)) { |
2500 | if (status == AE_NOT_FOUND) { |
2501 | bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found" ); |
2502 | return; |
2503 | } |
2504 | bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s" , acpi_format_exception(status)); |
2505 | return; |
2506 | } |
2507 | |
2508 | p = buffer.pointer; |
2509 | if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) { |
2510 | bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d" , |
2511 | p->type, p->package.count); |
2512 | kfree(objp: buffer.pointer); |
2513 | return; |
2514 | } |
2515 | |
2516 | elements = p->package.elements; |
2517 | |
2518 | /* PPAG table is located at element[1] */ |
2519 | p = &elements[1]; |
2520 | |
2521 | domain = (u32)p->package.elements[0].integer.value; |
2522 | mode = (u32)p->package.elements[1].integer.value; |
2523 | kfree(objp: buffer.pointer); |
2524 | |
2525 | if (domain != 0x12) { |
2526 | bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware" ); |
2527 | return; |
2528 | } |
2529 | |
2530 | /* PPAG mode |
2531 | * BIT 0 : 0 Disabled in EU |
2532 | * 1 Enabled in EU |
2533 | * BIT 1 : 0 Disabled in China |
2534 | * 1 Enabled in China |
2535 | */ |
2536 | mode &= 0x03; |
2537 | |
2538 | if (!mode) { |
2539 | bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS" ); |
2540 | return; |
2541 | } |
2542 | |
2543 | ppag_cmd.ppag_enable_flags = cpu_to_le32(mode); |
2544 | |
2545 | skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, plen: sizeof(ppag_cmd), |
2546 | param: &ppag_cmd, HCI_CMD_TIMEOUT); |
2547 | if (IS_ERR(ptr: skb)) { |
2548 | bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)" , PTR_ERR(skb)); |
2549 | return; |
2550 | } |
2551 | bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)" , mode); |
2552 | kfree_skb(skb); |
2553 | } |
2554 | |
2555 | static int btintel_acpi_reset_method(struct hci_dev *hdev) |
2556 | { |
2557 | int ret = 0; |
2558 | acpi_status status; |
2559 | union acpi_object *p, *ref; |
2560 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
2561 | |
2562 | status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), pathname: "_PRR" , NULL, return_object_buffer: &buffer); |
2563 | if (ACPI_FAILURE(status)) { |
2564 | bt_dev_err(hdev, "Failed to run _PRR method" ); |
2565 | ret = -ENODEV; |
2566 | return ret; |
2567 | } |
2568 | p = buffer.pointer; |
2569 | |
2570 | if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) { |
2571 | bt_dev_err(hdev, "Invalid arguments" ); |
2572 | ret = -EINVAL; |
2573 | goto exit_on_error; |
2574 | } |
2575 | |
2576 | ref = &p->package.elements[0]; |
2577 | if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) { |
2578 | bt_dev_err(hdev, "Invalid object type: 0x%x" , ref->type); |
2579 | ret = -EINVAL; |
2580 | goto exit_on_error; |
2581 | } |
2582 | |
2583 | status = acpi_evaluate_object(object: ref->reference.handle, pathname: "_RST" , NULL, NULL); |
2584 | if (ACPI_FAILURE(status)) { |
2585 | bt_dev_err(hdev, "Failed to run_RST method" ); |
2586 | ret = -ENODEV; |
2587 | goto exit_on_error; |
2588 | } |
2589 | |
2590 | exit_on_error: |
2591 | kfree(objp: buffer.pointer); |
2592 | return ret; |
2593 | } |
2594 | |
2595 | static void btintel_set_dsm_reset_method(struct hci_dev *hdev, |
2596 | struct intel_version_tlv *ver_tlv) |
2597 | { |
2598 | struct btintel_data *data = hci_get_priv(hdev); |
2599 | acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); |
2600 | u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00}; |
2601 | union acpi_object *obj, argv4; |
2602 | enum { |
2603 | RESET_TYPE_WDISABLE2, |
2604 | RESET_TYPE_VSEC |
2605 | }; |
2606 | |
2607 | handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); |
2608 | |
2609 | if (!handle) { |
2610 | bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware" ); |
2611 | return; |
2612 | } |
2613 | |
2614 | if (!acpi_has_method(handle, name: "_PRR" )) { |
2615 | bt_dev_err(hdev, "No support for _PRR ACPI method" ); |
2616 | return; |
2617 | } |
2618 | |
2619 | switch (ver_tlv->cnvi_top & 0xfff) { |
2620 | case 0x910: /* GalePeak2 */ |
2621 | reset_payload[2] = RESET_TYPE_VSEC; |
2622 | break; |
2623 | default: |
2624 | /* WDISABLE2 is the default reset method */ |
2625 | reset_payload[2] = RESET_TYPE_WDISABLE2; |
2626 | |
2627 | if (!acpi_check_dsm(handle, guid: &btintel_guid_dsm, rev: 0, |
2628 | BIT(DSM_SET_WDISABLE2_DELAY))) { |
2629 | bt_dev_err(hdev, "No dsm support to set reset delay" ); |
2630 | return; |
2631 | } |
2632 | argv4.integer.type = ACPI_TYPE_INTEGER; |
2633 | /* delay required to toggle BT power */ |
2634 | argv4.integer.value = 160; |
2635 | obj = acpi_evaluate_dsm(handle, guid: &btintel_guid_dsm, rev: 0, |
2636 | func: DSM_SET_WDISABLE2_DELAY, argv4: &argv4); |
2637 | if (!obj) { |
2638 | bt_dev_err(hdev, "Failed to call dsm to set reset delay" ); |
2639 | return; |
2640 | } |
2641 | ACPI_FREE(obj); |
2642 | } |
2643 | |
2644 | bt_dev_info(hdev, "DSM reset method type: 0x%02x" , reset_payload[2]); |
2645 | |
2646 | if (!acpi_check_dsm(handle, guid: &btintel_guid_dsm, rev: 0, |
2647 | funcs: DSM_SET_RESET_METHOD)) { |
2648 | bt_dev_warn(hdev, "No support for dsm to set reset method" ); |
2649 | return; |
2650 | } |
2651 | argv4.buffer.type = ACPI_TYPE_BUFFER; |
2652 | argv4.buffer.length = sizeof(reset_payload); |
2653 | argv4.buffer.pointer = reset_payload; |
2654 | |
2655 | obj = acpi_evaluate_dsm(handle, guid: &btintel_guid_dsm, rev: 0, |
2656 | func: DSM_SET_RESET_METHOD, argv4: &argv4); |
2657 | if (!obj) { |
2658 | bt_dev_err(hdev, "Failed to call dsm to set reset method" ); |
2659 | return; |
2660 | } |
2661 | ACPI_FREE(obj); |
2662 | data->acpi_reset_method = btintel_acpi_reset_method; |
2663 | } |
2664 | |
2665 | #define BTINTEL_ISODATA_HANDLE_BASE 0x900 |
2666 | |
2667 | static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb) |
2668 | { |
2669 | /* |
2670 | * Distinguish ISO data packets form ACL data packets |
2671 | * based on their connection handle value range. |
2672 | */ |
2673 | if (hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) { |
2674 | __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); |
2675 | |
2676 | if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE) |
2677 | return HCI_ISODATA_PKT; |
2678 | } |
2679 | |
2680 | return hci_skb_pkt_type(skb); |
2681 | } |
2682 | |
2683 | /* |
2684 | * UefiCnvCommonDSBR UEFI variable provides information from the OEM platforms |
2685 | * if they have replaced the BRI (Bluetooth Radio Interface) resistor to |
2686 | * overcome the potential STEP errors on their designs. Based on the |
2687 | * configauration, bluetooth firmware shall adjust the BRI response line drive |
2688 | * strength. The below structure represents DSBR data. |
2689 | * struct { |
2690 | * u8 header; |
2691 | * u32 dsbr; |
2692 | * } __packed; |
2693 | * |
2694 | * header - defines revision number of the structure |
2695 | * dsbr - defines drive strength BRI response |
2696 | * bit0 |
2697 | * 0 - instructs bluetooth firmware to use default values |
2698 | * 1 - instructs bluetooth firmware to override default values |
2699 | * bit3:1 |
2700 | * Reserved |
2701 | * bit7:4 |
2702 | * DSBR override values (only if bit0 is set. Default value is 0xF |
2703 | * bit31:7 |
2704 | * Reserved |
2705 | * Expected values for dsbr field: |
2706 | * 1. 0xF1 - indicates that the resistor on board is 33 Ohm |
2707 | * 2. 0x00 or 0xB1 - indicates that the resistor on board is 10 Ohm |
2708 | * 3. Non existing UEFI variable or invalid (none of the above) - indicates |
2709 | * that the resistor on board is 10 Ohm |
2710 | * Even if uefi variable is not present, driver shall send 0xfc0a command to |
2711 | * firmware to use default values. |
2712 | * |
2713 | */ |
2714 | static int btintel_uefi_get_dsbr(u32 *dsbr_var) |
2715 | { |
2716 | struct btintel_dsbr { |
2717 | u8 ; |
2718 | u32 dsbr; |
2719 | } __packed data; |
2720 | |
2721 | efi_status_t status; |
2722 | unsigned long data_size = sizeof(data); |
2723 | efi_guid_t guid = EFI_GUID(0xe65d8884, 0xd4af, 0x4b20, 0x8d, 0x03, |
2724 | 0x77, 0x2e, 0xcc, 0x3d, 0xa5, 0x31); |
2725 | |
2726 | if (!IS_ENABLED(CONFIG_EFI)) |
2727 | return -EOPNOTSUPP; |
2728 | |
2729 | if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE)) |
2730 | return -EOPNOTSUPP; |
2731 | |
2732 | status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size, |
2733 | &data); |
2734 | |
2735 | if (status != EFI_SUCCESS || data_size != sizeof(data)) |
2736 | return -ENXIO; |
2737 | |
2738 | *dsbr_var = data.dsbr; |
2739 | return 0; |
2740 | } |
2741 | |
2742 | static int btintel_set_dsbr(struct hci_dev *hdev, struct intel_version_tlv *ver) |
2743 | { |
2744 | struct btintel_dsbr_cmd { |
2745 | u8 enable; |
2746 | u8 dsbr; |
2747 | } __packed; |
2748 | |
2749 | struct btintel_dsbr_cmd cmd; |
2750 | struct sk_buff *skb; |
2751 | u32 dsbr, cnvi; |
2752 | u8 status; |
2753 | int err; |
2754 | |
2755 | cnvi = ver->cnvi_top & 0xfff; |
2756 | /* DSBR command needs to be sent for, |
2757 | * 1. BlazarI or BlazarIW + B0 step product in IML image. |
2758 | * 2. Gale Peak2 or BlazarU in OP image. |
2759 | * 3. Scorpious Peak in IML image. |
2760 | */ |
2761 | |
2762 | switch (cnvi) { |
2763 | case BTINTEL_CNVI_BLAZARI: |
2764 | case BTINTEL_CNVI_BLAZARIW: |
2765 | if (ver->img_type == BTINTEL_IMG_IML && |
2766 | INTEL_CNVX_TOP_STEP(ver->cnvi_top) == 0x01) |
2767 | break; |
2768 | return 0; |
2769 | case BTINTEL_CNVI_GAP: |
2770 | case BTINTEL_CNVI_BLAZARU: |
2771 | if (ver->img_type == BTINTEL_IMG_OP && |
2772 | hdev->bus == HCI_USB) |
2773 | break; |
2774 | return 0; |
2775 | case BTINTEL_CNVI_SCP: |
2776 | if (ver->img_type == BTINTEL_IMG_IML) |
2777 | break; |
2778 | return 0; |
2779 | default: |
2780 | return 0; |
2781 | } |
2782 | |
2783 | dsbr = 0; |
2784 | err = btintel_uefi_get_dsbr(dsbr_var: &dsbr); |
2785 | if (err < 0) |
2786 | bt_dev_dbg(hdev, "Error reading efi: %ls (%d)" , |
2787 | BTINTEL_EFI_DSBR, err); |
2788 | |
2789 | cmd.enable = dsbr & BIT(0); |
2790 | cmd.dsbr = dsbr >> 4 & 0xF; |
2791 | |
2792 | bt_dev_info(hdev, "dsbr: enable: 0x%2.2x value: 0x%2.2x" , cmd.enable, |
2793 | cmd.dsbr); |
2794 | |
2795 | skb = __hci_cmd_sync(hdev, opcode: 0xfc0a, plen: sizeof(cmd), param: &cmd, HCI_CMD_TIMEOUT); |
2796 | if (IS_ERR(ptr: skb)) |
2797 | return -bt_to_errno(code: PTR_ERR(ptr: skb)); |
2798 | |
2799 | status = skb->data[0]; |
2800 | kfree_skb(skb); |
2801 | |
2802 | if (status) |
2803 | return -bt_to_errno(code: status); |
2804 | |
2805 | return 0; |
2806 | } |
2807 | |
2808 | #ifdef CONFIG_ACPI |
2809 | static acpi_status btintel_evaluate_acpi_method(struct hci_dev *hdev, |
2810 | acpi_string method, |
2811 | union acpi_object **ptr, |
2812 | u8 pkg_size) |
2813 | { |
2814 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
2815 | union acpi_object *p; |
2816 | acpi_status status; |
2817 | acpi_handle handle; |
2818 | |
2819 | handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); |
2820 | if (!handle) { |
2821 | bt_dev_dbg(hdev, "ACPI-BT: No ACPI support for Bluetooth device" ); |
2822 | return AE_NOT_EXIST; |
2823 | } |
2824 | |
2825 | status = acpi_evaluate_object(object: handle, pathname: method, NULL, return_object_buffer: &buffer); |
2826 | |
2827 | if (ACPI_FAILURE(status)) { |
2828 | bt_dev_dbg(hdev, "ACPI-BT: ACPI Failure: %s method: %s" , |
2829 | acpi_format_exception(status), method); |
2830 | return status; |
2831 | } |
2832 | |
2833 | p = buffer.pointer; |
2834 | |
2835 | if (p->type != ACPI_TYPE_PACKAGE || p->package.count < pkg_size) { |
2836 | bt_dev_warn(hdev, "ACPI-BT: Invalid object type: %d or package count: %d" , |
2837 | p->type, p->package.count); |
2838 | kfree(objp: buffer.pointer); |
2839 | return AE_ERROR; |
2840 | } |
2841 | |
2842 | *ptr = buffer.pointer; |
2843 | return 0; |
2844 | } |
2845 | |
2846 | static union acpi_object *btintel_acpi_get_bt_pkg(union acpi_object *buffer) |
2847 | { |
2848 | union acpi_object *domain, *bt_pkg; |
2849 | int i; |
2850 | |
2851 | for (i = 1; i < buffer->package.count; i++) { |
2852 | bt_pkg = &buffer->package.elements[i]; |
2853 | domain = &bt_pkg->package.elements[0]; |
2854 | if (domain->type == ACPI_TYPE_INTEGER && |
2855 | domain->integer.value == BTINTEL_BT_DOMAIN) |
2856 | return bt_pkg; |
2857 | } |
2858 | return ERR_PTR(error: -ENOENT); |
2859 | } |
2860 | |
2861 | static int btintel_send_sar_ddc(struct hci_dev *hdev, struct btintel_cp_ddc_write *data, u8 len) |
2862 | { |
2863 | struct sk_buff *skb; |
2864 | |
2865 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: len, param: data, HCI_CMD_TIMEOUT); |
2866 | if (IS_ERR(ptr: skb)) { |
2867 | bt_dev_warn(hdev, "Failed to send sar ddc id:0x%4.4x (%ld)" , |
2868 | le16_to_cpu(data->id), PTR_ERR(skb)); |
2869 | return PTR_ERR(ptr: skb); |
2870 | } |
2871 | kfree_skb(skb); |
2872 | return 0; |
2873 | } |
2874 | |
2875 | static int btintel_send_edr(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd, |
2876 | int id, struct btintel_sar_inc_pwr *sar) |
2877 | { |
2878 | cmd->len = 5; |
2879 | cmd->id = cpu_to_le16(id); |
2880 | cmd->data[0] = sar->br >> 3; |
2881 | cmd->data[1] = sar->edr2 >> 3; |
2882 | cmd->data[2] = sar->edr3 >> 3; |
2883 | return btintel_send_sar_ddc(hdev, data: cmd, len: 6); |
2884 | } |
2885 | |
2886 | static int btintel_send_le(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd, |
2887 | int id, struct btintel_sar_inc_pwr *sar) |
2888 | { |
2889 | cmd->len = 3; |
2890 | cmd->id = cpu_to_le16(id); |
2891 | cmd->data[0] = min3(sar->le, sar->le_lr, sar->le_2mhz) >> 3; |
2892 | return btintel_send_sar_ddc(hdev, data: cmd, len: 4); |
2893 | } |
2894 | |
2895 | static int btintel_send_br(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd, |
2896 | int id, struct btintel_sar_inc_pwr *sar) |
2897 | { |
2898 | cmd->len = 3; |
2899 | cmd->id = cpu_to_le16(id); |
2900 | cmd->data[0] = sar->br >> 3; |
2901 | return btintel_send_sar_ddc(hdev, data: cmd, len: 4); |
2902 | } |
2903 | |
2904 | static int btintel_send_br_mutual(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd, |
2905 | int id, struct btintel_sar_inc_pwr *sar) |
2906 | { |
2907 | cmd->len = 3; |
2908 | cmd->id = cpu_to_le16(id); |
2909 | cmd->data[0] = sar->br; |
2910 | return btintel_send_sar_ddc(hdev, data: cmd, len: 4); |
2911 | } |
2912 | |
2913 | static int btintel_send_edr2(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd, |
2914 | int id, struct btintel_sar_inc_pwr *sar) |
2915 | { |
2916 | cmd->len = 3; |
2917 | cmd->id = cpu_to_le16(id); |
2918 | cmd->data[0] = sar->edr2; |
2919 | return btintel_send_sar_ddc(hdev, data: cmd, len: 4); |
2920 | } |
2921 | |
2922 | static int btintel_send_edr3(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd, |
2923 | int id, struct btintel_sar_inc_pwr *sar) |
2924 | { |
2925 | cmd->len = 3; |
2926 | cmd->id = cpu_to_le16(id); |
2927 | cmd->data[0] = sar->edr3; |
2928 | return btintel_send_sar_ddc(hdev, data: cmd, len: 4); |
2929 | } |
2930 | |
2931 | static int btintel_set_legacy_sar(struct hci_dev *hdev, struct btintel_sar_inc_pwr *sar) |
2932 | { |
2933 | struct btintel_cp_ddc_write *cmd; |
2934 | u8 buffer[64]; |
2935 | int ret; |
2936 | |
2937 | cmd = (void *)buffer; |
2938 | ret = btintel_send_br(hdev, cmd, id: 0x0131, sar); |
2939 | if (ret) |
2940 | return ret; |
2941 | |
2942 | ret = btintel_send_br(hdev, cmd, id: 0x0132, sar); |
2943 | if (ret) |
2944 | return ret; |
2945 | |
2946 | ret = btintel_send_le(hdev, cmd, id: 0x0133, sar); |
2947 | if (ret) |
2948 | return ret; |
2949 | |
2950 | ret = btintel_send_edr(hdev, cmd, id: 0x0137, sar); |
2951 | if (ret) |
2952 | return ret; |
2953 | |
2954 | ret = btintel_send_edr(hdev, cmd, id: 0x0138, sar); |
2955 | if (ret) |
2956 | return ret; |
2957 | |
2958 | ret = btintel_send_edr(hdev, cmd, id: 0x013b, sar); |
2959 | if (ret) |
2960 | return ret; |
2961 | |
2962 | ret = btintel_send_edr(hdev, cmd, id: 0x013c, sar); |
2963 | |
2964 | return ret; |
2965 | } |
2966 | |
2967 | static int btintel_set_mutual_sar(struct hci_dev *hdev, struct btintel_sar_inc_pwr *sar) |
2968 | { |
2969 | struct btintel_cp_ddc_write *cmd; |
2970 | struct sk_buff *skb; |
2971 | u8 buffer[64]; |
2972 | bool enable; |
2973 | int ret; |
2974 | |
2975 | cmd = (void *)buffer; |
2976 | |
2977 | cmd->len = 3; |
2978 | cmd->id = cpu_to_le16(0x019e); |
2979 | |
2980 | if (sar->revision == BTINTEL_SAR_INC_PWR && |
2981 | sar->inc_power_mode == BTINTEL_SAR_INC_PWR_SUPPORTED) |
2982 | cmd->data[0] = 0x01; |
2983 | else |
2984 | cmd->data[0] = 0x00; |
2985 | |
2986 | ret = btintel_send_sar_ddc(hdev, data: cmd, len: 4); |
2987 | if (ret) |
2988 | return ret; |
2989 | |
2990 | if (sar->revision == BTINTEL_SAR_INC_PWR && |
2991 | sar->inc_power_mode == BTINTEL_SAR_INC_PWR_SUPPORTED) { |
2992 | cmd->len = 3; |
2993 | cmd->id = cpu_to_le16(0x019f); |
2994 | cmd->data[0] = sar->sar_2400_chain_a; |
2995 | |
2996 | ret = btintel_send_sar_ddc(hdev, data: cmd, len: 4); |
2997 | if (ret) |
2998 | return ret; |
2999 | } |
3000 | |
3001 | ret = btintel_send_br_mutual(hdev, cmd, id: 0x01a0, sar); |
3002 | if (ret) |
3003 | return ret; |
3004 | |
3005 | ret = btintel_send_edr2(hdev, cmd, id: 0x01a1, sar); |
3006 | if (ret) |
3007 | return ret; |
3008 | |
3009 | ret = btintel_send_edr3(hdev, cmd, id: 0x01a2, sar); |
3010 | if (ret) |
3011 | return ret; |
3012 | |
3013 | ret = btintel_send_le(hdev, cmd, id: 0x01a3, sar); |
3014 | if (ret) |
3015 | return ret; |
3016 | |
3017 | enable = true; |
3018 | skb = __hci_cmd_sync(hdev, opcode: 0xfe25, plen: 1, param: &enable, HCI_CMD_TIMEOUT); |
3019 | if (IS_ERR(ptr: skb)) { |
3020 | bt_dev_warn(hdev, "Failed to send Intel SAR Enable (%ld)" , PTR_ERR(skb)); |
3021 | return PTR_ERR(ptr: skb); |
3022 | } |
3023 | |
3024 | kfree_skb(skb); |
3025 | return 0; |
3026 | } |
3027 | |
3028 | static int btintel_sar_send_to_device(struct hci_dev *hdev, struct btintel_sar_inc_pwr *sar, |
3029 | struct intel_version_tlv *ver) |
3030 | { |
3031 | u16 cnvi, cnvr; |
3032 | int ret; |
3033 | |
3034 | cnvi = ver->cnvi_top & 0xfff; |
3035 | cnvr = ver->cnvr_top & 0xfff; |
3036 | |
3037 | if (cnvi < BTINTEL_CNVI_BLAZARI && cnvr < BTINTEL_CNVR_FMP2) { |
3038 | bt_dev_info(hdev, "Applying legacy Bluetooth SAR" ); |
3039 | ret = btintel_set_legacy_sar(hdev, sar); |
3040 | } else if (cnvi == BTINTEL_CNVI_GAP || cnvr == BTINTEL_CNVR_FMP2) { |
3041 | bt_dev_info(hdev, "Applying mutual Bluetooth SAR" ); |
3042 | ret = btintel_set_mutual_sar(hdev, sar); |
3043 | } else { |
3044 | ret = -EOPNOTSUPP; |
3045 | } |
3046 | |
3047 | return ret; |
3048 | } |
3049 | |
3050 | static int btintel_acpi_set_sar(struct hci_dev *hdev, struct intel_version_tlv *ver) |
3051 | { |
3052 | union acpi_object *bt_pkg, *buffer = NULL; |
3053 | struct btintel_sar_inc_pwr sar; |
3054 | acpi_status status; |
3055 | u8 revision; |
3056 | int ret; |
3057 | |
3058 | status = btintel_evaluate_acpi_method(hdev, method: "BRDS" , ptr: &buffer, pkg_size: 2); |
3059 | if (ACPI_FAILURE(status)) |
3060 | return -ENOENT; |
3061 | |
3062 | bt_pkg = btintel_acpi_get_bt_pkg(buffer); |
3063 | |
3064 | if (IS_ERR(ptr: bt_pkg)) { |
3065 | ret = PTR_ERR(ptr: bt_pkg); |
3066 | goto error; |
3067 | } |
3068 | |
3069 | if (!bt_pkg->package.count) { |
3070 | ret = -EINVAL; |
3071 | goto error; |
3072 | } |
3073 | |
3074 | revision = buffer->package.elements[0].integer.value; |
3075 | |
3076 | if (revision > BTINTEL_SAR_INC_PWR) { |
3077 | bt_dev_dbg(hdev, "BT_SAR: revision: 0x%2.2x not supported" , revision); |
3078 | ret = -EOPNOTSUPP; |
3079 | goto error; |
3080 | } |
3081 | |
3082 | memset(&sar, 0, sizeof(sar)); |
3083 | |
3084 | if (revision == BTINTEL_SAR_LEGACY && bt_pkg->package.count == 8) { |
3085 | sar.revision = revision; |
3086 | sar.bt_sar_bios = bt_pkg->package.elements[1].integer.value; |
3087 | sar.br = bt_pkg->package.elements[2].integer.value; |
3088 | sar.edr2 = bt_pkg->package.elements[3].integer.value; |
3089 | sar.edr3 = bt_pkg->package.elements[4].integer.value; |
3090 | sar.le = bt_pkg->package.elements[5].integer.value; |
3091 | sar.le_2mhz = bt_pkg->package.elements[6].integer.value; |
3092 | sar.le_lr = bt_pkg->package.elements[7].integer.value; |
3093 | |
3094 | } else if (revision == BTINTEL_SAR_INC_PWR && bt_pkg->package.count == 10) { |
3095 | sar.revision = revision; |
3096 | sar.bt_sar_bios = bt_pkg->package.elements[1].integer.value; |
3097 | sar.inc_power_mode = bt_pkg->package.elements[2].integer.value; |
3098 | sar.sar_2400_chain_a = bt_pkg->package.elements[3].integer.value; |
3099 | sar.br = bt_pkg->package.elements[4].integer.value; |
3100 | sar.edr2 = bt_pkg->package.elements[5].integer.value; |
3101 | sar.edr3 = bt_pkg->package.elements[6].integer.value; |
3102 | sar.le = bt_pkg->package.elements[7].integer.value; |
3103 | sar.le_2mhz = bt_pkg->package.elements[8].integer.value; |
3104 | sar.le_lr = bt_pkg->package.elements[9].integer.value; |
3105 | } else { |
3106 | ret = -EINVAL; |
3107 | goto error; |
3108 | } |
3109 | |
3110 | /* Apply only if it is enabled in BIOS */ |
3111 | if (sar.bt_sar_bios != 1) { |
3112 | bt_dev_dbg(hdev, "Bluetooth SAR is not enabled" ); |
3113 | ret = -EOPNOTSUPP; |
3114 | goto error; |
3115 | } |
3116 | |
3117 | ret = btintel_sar_send_to_device(hdev, sar: &sar, ver); |
3118 | error: |
3119 | kfree(objp: buffer); |
3120 | return ret; |
3121 | } |
3122 | #endif /* CONFIG_ACPI */ |
3123 | |
3124 | static int btintel_set_specific_absorption_rate(struct hci_dev *hdev, |
3125 | struct intel_version_tlv *ver) |
3126 | { |
3127 | #ifdef CONFIG_ACPI |
3128 | return btintel_acpi_set_sar(hdev, ver); |
3129 | #endif |
3130 | return 0; |
3131 | } |
3132 | |
3133 | int btintel_bootloader_setup_tlv(struct hci_dev *hdev, |
3134 | struct intel_version_tlv *ver) |
3135 | { |
3136 | u32 boot_param; |
3137 | char ddcname[64]; |
3138 | int err; |
3139 | struct intel_version_tlv new_ver; |
3140 | |
3141 | bt_dev_dbg(hdev, "" ); |
3142 | |
3143 | /* Set the default boot parameter to 0x0 and it is updated to |
3144 | * SKU specific boot parameter after reading Intel_Write_Boot_Params |
3145 | * command while downloading the firmware. |
3146 | */ |
3147 | boot_param = 0x00000000; |
3148 | |
3149 | /* In case of PCIe, this function might get called multiple times with |
3150 | * same hdev instance if there is any error on firmware download. |
3151 | * Need to clear stale bits of previous firmware download attempt. |
3152 | */ |
3153 | for (int i = 0; i < __INTEL_NUM_FLAGS; i++) |
3154 | btintel_clear_flag(hdev, i); |
3155 | |
3156 | btintel_set_flag(hdev, INTEL_BOOTLOADER); |
3157 | |
3158 | err = btintel_prepare_fw_download_tlv(hdev, ver, boot_param: &boot_param); |
3159 | if (err) |
3160 | return err; |
3161 | |
3162 | /* check if controller is already having an operational firmware */ |
3163 | if (ver->img_type == BTINTEL_IMG_OP) |
3164 | goto finish; |
3165 | |
3166 | err = btintel_boot(hdev, boot_addr: boot_param); |
3167 | if (err) |
3168 | return err; |
3169 | |
3170 | err = btintel_read_version_tlv(hdev, version: ver); |
3171 | if (err) |
3172 | return err; |
3173 | |
3174 | /* set drive strength of BRI response */ |
3175 | err = btintel_set_dsbr(hdev, ver); |
3176 | if (err) { |
3177 | bt_dev_err(hdev, "Failed to send dsbr command (%d)" , err); |
3178 | return err; |
3179 | } |
3180 | |
3181 | /* If image type returned is BTINTEL_IMG_IML, then controller supports |
3182 | * intermediate loader image |
3183 | */ |
3184 | if (ver->img_type == BTINTEL_IMG_IML) { |
3185 | err = btintel_prepare_fw_download_tlv(hdev, ver, boot_param: &boot_param); |
3186 | if (err) |
3187 | return err; |
3188 | |
3189 | err = btintel_boot(hdev, boot_addr: boot_param); |
3190 | if (err) |
3191 | return err; |
3192 | } |
3193 | |
3194 | btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
3195 | |
3196 | btintel_get_fw_name_tlv(ver, fw_name: ddcname, len: sizeof(ddcname), suffix: "ddc" ); |
3197 | /* Once the device is running in operational mode, it needs to |
3198 | * apply the device configuration (DDC) parameters. |
3199 | * |
3200 | * The device can work without DDC parameters, so even if it |
3201 | * fails to load the file, no need to fail the setup. |
3202 | */ |
3203 | btintel_load_ddc_config(hdev, ddcname); |
3204 | |
3205 | /* Read supported use cases and set callbacks to fetch datapath id */ |
3206 | btintel_configure_offload(hdev); |
3207 | |
3208 | hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); |
3209 | |
3210 | /* Send sar values to controller */ |
3211 | btintel_set_specific_absorption_rate(hdev, ver); |
3212 | |
3213 | /* Set PPAG feature */ |
3214 | btintel_set_ppag(hdev, ver); |
3215 | |
3216 | /* Read the Intel version information after loading the FW */ |
3217 | err = btintel_read_version_tlv(hdev, version: &new_ver); |
3218 | if (err) |
3219 | return err; |
3220 | |
3221 | btintel_version_info_tlv(hdev, &new_ver); |
3222 | |
3223 | finish: |
3224 | /* Set the event mask for Intel specific vendor events. This enables |
3225 | * a few extra events that are useful during general operation. It |
3226 | * does not enable any debugging related events. |
3227 | * |
3228 | * The device will function correctly without these events enabled |
3229 | * and thus no need to fail the setup. |
3230 | */ |
3231 | btintel_set_event_mask(hdev, debug: false); |
3232 | |
3233 | return 0; |
3234 | } |
3235 | EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv); |
3236 | |
3237 | void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant) |
3238 | { |
3239 | switch (hw_variant) { |
3240 | /* Legacy bootloader devices that supports MSFT Extension */ |
3241 | case 0x11: /* JfP */ |
3242 | case 0x12: /* ThP */ |
3243 | case 0x13: /* HrP */ |
3244 | case 0x14: /* CcP */ |
3245 | /* All Intel new generation controllers support the Microsoft vendor |
3246 | * extension are using 0xFC1E for VsMsftOpCode. |
3247 | */ |
3248 | case 0x17: |
3249 | case 0x18: |
3250 | case 0x19: |
3251 | case 0x1b: |
3252 | case 0x1c: |
3253 | case 0x1d: |
3254 | case 0x1e: |
3255 | case 0x1f: |
3256 | hci_set_msft_opcode(hdev, opcode: 0xFC1E); |
3257 | break; |
3258 | default: |
3259 | /* Not supported */ |
3260 | break; |
3261 | } |
3262 | } |
3263 | EXPORT_SYMBOL_GPL(btintel_set_msft_opcode); |
3264 | |
3265 | void btintel_print_fseq_info(struct hci_dev *hdev) |
3266 | { |
3267 | struct sk_buff *skb; |
3268 | u8 *p; |
3269 | u32 val; |
3270 | const char *str; |
3271 | |
3272 | skb = __hci_cmd_sync(hdev, opcode: 0xfcb3, plen: 0, NULL, HCI_CMD_TIMEOUT); |
3273 | if (IS_ERR(ptr: skb)) { |
3274 | bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)" , |
3275 | PTR_ERR(skb)); |
3276 | return; |
3277 | } |
3278 | |
3279 | if (skb->len < (sizeof(u32) * 16 + 2)) { |
3280 | bt_dev_dbg(hdev, "Malformed packet of length %u received" , |
3281 | skb->len); |
3282 | kfree_skb(skb); |
3283 | return; |
3284 | } |
3285 | |
3286 | p = skb_pull_data(skb, len: 1); |
3287 | if (*p) { |
3288 | bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)" , *p); |
3289 | kfree_skb(skb); |
3290 | return; |
3291 | } |
3292 | |
3293 | p = skb_pull_data(skb, len: 1); |
3294 | switch (*p) { |
3295 | case 0: |
3296 | str = "Success" ; |
3297 | break; |
3298 | case 1: |
3299 | str = "Fatal error" ; |
3300 | break; |
3301 | case 2: |
3302 | str = "Semaphore acquire error" ; |
3303 | break; |
3304 | default: |
3305 | str = "Unknown error" ; |
3306 | break; |
3307 | } |
3308 | |
3309 | if (*p) { |
3310 | bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)" , str, *p); |
3311 | kfree_skb(skb); |
3312 | return; |
3313 | } |
3314 | |
3315 | bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)" , str, *p); |
3316 | |
3317 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3318 | bt_dev_dbg(hdev, "Reason: 0x%8.8x" , val); |
3319 | |
3320 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3321 | bt_dev_dbg(hdev, "Global version: 0x%8.8x" , val); |
3322 | |
3323 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3324 | bt_dev_dbg(hdev, "Installed version: 0x%8.8x" , val); |
3325 | |
3326 | p = skb->data; |
3327 | skb_pull_data(skb, len: 4); |
3328 | bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u" , p[0], p[1], |
3329 | p[2], p[3]); |
3330 | |
3331 | p = skb->data; |
3332 | skb_pull_data(skb, len: 4); |
3333 | bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u" , p[0], p[1], |
3334 | p[2], p[3]); |
3335 | |
3336 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3337 | bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x" , val); |
3338 | |
3339 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3340 | bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x" , val); |
3341 | |
3342 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3343 | bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x" , val); |
3344 | |
3345 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3346 | bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x" , val); |
3347 | |
3348 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3349 | bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x" , val); |
3350 | |
3351 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3352 | bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x" , val); |
3353 | |
3354 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3355 | bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x" , val); |
3356 | |
3357 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3358 | bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x" , val); |
3359 | |
3360 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3361 | bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x" , val); |
3362 | |
3363 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3364 | bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x" , val); |
3365 | |
3366 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3367 | bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x" , val); |
3368 | |
3369 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3370 | bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x" , val); |
3371 | |
3372 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
3373 | bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x" , val); |
3374 | |
3375 | kfree_skb(skb); |
3376 | } |
3377 | EXPORT_SYMBOL_GPL(btintel_print_fseq_info); |
3378 | |
3379 | static int btintel_setup_combined(struct hci_dev *hdev) |
3380 | { |
3381 | const u8 param[1] = { 0xFF }; |
3382 | struct intel_version ver; |
3383 | struct intel_version_tlv ver_tlv; |
3384 | struct sk_buff *skb; |
3385 | int err; |
3386 | |
3387 | BT_DBG("%s" , hdev->name); |
3388 | |
3389 | /* The some controllers have a bug with the first HCI command sent to it |
3390 | * returning number of completed commands as zero. This would stall the |
3391 | * command processing in the Bluetooth core. |
3392 | * |
3393 | * As a workaround, send HCI Reset command first which will reset the |
3394 | * number of completed commands and allow normal command processing |
3395 | * from now on. |
3396 | * |
3397 | * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe |
3398 | * in the SW_RFKILL ON state as a workaround of fixing LED issue during |
3399 | * the shutdown() procedure, and once the device is in SW_RFKILL ON |
3400 | * state, the only way to exit out of it is sending the HCI_Reset |
3401 | * command. |
3402 | */ |
3403 | if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) || |
3404 | btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { |
3405 | skb = __hci_cmd_sync(hdev, HCI_OP_RESET, plen: 0, NULL, |
3406 | HCI_INIT_TIMEOUT); |
3407 | if (IS_ERR(ptr: skb)) { |
3408 | bt_dev_err(hdev, |
3409 | "sending initial HCI reset failed (%ld)" , |
3410 | PTR_ERR(skb)); |
3411 | return PTR_ERR(ptr: skb); |
3412 | } |
3413 | kfree_skb(skb); |
3414 | } |
3415 | |
3416 | /* Starting from TyP device, the command parameter and response are |
3417 | * changed even though the OCF for HCI_Intel_Read_Version command |
3418 | * remains same. The legacy devices can handle even if the |
3419 | * command has a parameter and returns a correct version information. |
3420 | * So, it uses new format to support both legacy and new format. |
3421 | */ |
3422 | skb = __hci_cmd_sync(hdev, opcode: 0xfc05, plen: 1, param, HCI_CMD_TIMEOUT); |
3423 | if (IS_ERR(ptr: skb)) { |
3424 | bt_dev_err(hdev, "Reading Intel version command failed (%ld)" , |
3425 | PTR_ERR(skb)); |
3426 | return PTR_ERR(ptr: skb); |
3427 | } |
3428 | |
3429 | /* Check the status */ |
3430 | if (skb->data[0]) { |
3431 | bt_dev_err(hdev, "Intel Read Version command failed (%02x)" , |
3432 | skb->data[0]); |
3433 | err = -EIO; |
3434 | goto exit_error; |
3435 | } |
3436 | |
3437 | /* Apply the common HCI quirks for Intel device */ |
3438 | set_bit(nr: HCI_QUIRK_STRICT_DUPLICATE_FILTER, addr: &hdev->quirks); |
3439 | set_bit(nr: HCI_QUIRK_SIMULTANEOUS_DISCOVERY, addr: &hdev->quirks); |
3440 | set_bit(nr: HCI_QUIRK_NON_PERSISTENT_DIAG, addr: &hdev->quirks); |
3441 | |
3442 | /* Set up the quality report callback for Intel devices */ |
3443 | hdev->set_quality_report = btintel_set_quality_report; |
3444 | |
3445 | /* For Legacy device, check the HW platform value and size */ |
3446 | if (skb->len == sizeof(ver) && skb->data[1] == 0x37) { |
3447 | bt_dev_dbg(hdev, "Read the legacy Intel version information" ); |
3448 | |
3449 | memcpy(&ver, skb->data, sizeof(ver)); |
3450 | |
3451 | /* Display version information */ |
3452 | btintel_version_info(hdev, &ver); |
3453 | |
3454 | /* Check for supported iBT hardware variants of this firmware |
3455 | * loading method. |
3456 | * |
3457 | * This check has been put in place to ensure correct forward |
3458 | * compatibility options when newer hardware variants come |
3459 | * along. |
3460 | */ |
3461 | switch (ver.hw_variant) { |
3462 | case 0x07: /* WP */ |
3463 | case 0x08: /* StP */ |
3464 | /* Legacy ROM product */ |
3465 | btintel_set_flag(hdev, INTEL_ROM_LEGACY); |
3466 | |
3467 | /* Apply the device specific HCI quirks |
3468 | * |
3469 | * WBS for SdP - For the Legacy ROM products, only SdP |
3470 | * supports the WBS. But the version information is not |
3471 | * enough to use here because the StP2 and SdP have same |
3472 | * hw_variant and fw_variant. So, this flag is set by |
3473 | * the transport driver (btusb) based on the HW info |
3474 | * (idProduct) |
3475 | */ |
3476 | if (!btintel_test_flag(hdev, |
3477 | INTEL_ROM_LEGACY_NO_WBS_SUPPORT)) |
3478 | set_bit(nr: HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, |
3479 | addr: &hdev->quirks); |
3480 | |
3481 | err = btintel_legacy_rom_setup(hdev, ver: &ver); |
3482 | break; |
3483 | case 0x0b: /* SfP */ |
3484 | case 0x11: /* JfP */ |
3485 | case 0x12: /* ThP */ |
3486 | case 0x13: /* HrP */ |
3487 | case 0x14: /* CcP */ |
3488 | fallthrough; |
3489 | case 0x0c: /* WsP */ |
3490 | /* Apply the device specific HCI quirks |
3491 | * |
3492 | * All Legacy bootloader devices support WBS |
3493 | */ |
3494 | set_bit(nr: HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, |
3495 | addr: &hdev->quirks); |
3496 | |
3497 | /* These variants don't seem to support LE Coded PHY */ |
3498 | set_bit(nr: HCI_QUIRK_BROKEN_LE_CODED, addr: &hdev->quirks); |
3499 | |
3500 | /* Setup MSFT Extension support */ |
3501 | btintel_set_msft_opcode(hdev, ver.hw_variant); |
3502 | |
3503 | err = btintel_bootloader_setup(hdev, ver: &ver); |
3504 | btintel_register_devcoredump_support(hdev); |
3505 | break; |
3506 | default: |
3507 | bt_dev_err(hdev, "Unsupported Intel hw variant (%u)" , |
3508 | ver.hw_variant); |
3509 | err = -EINVAL; |
3510 | } |
3511 | |
3512 | hci_set_hw_info(hdev, |
3513 | fmt: "INTEL platform=%u variant=%u revision=%u" , |
3514 | ver.hw_platform, ver.hw_variant, |
3515 | ver.hw_revision); |
3516 | |
3517 | goto exit_error; |
3518 | } |
3519 | |
3520 | /* memset ver_tlv to start with clean state as few fields are exclusive |
3521 | * to bootloader mode and are not populated in operational mode |
3522 | */ |
3523 | memset(&ver_tlv, 0, sizeof(ver_tlv)); |
3524 | /* For TLV type device, parse the tlv data */ |
3525 | err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); |
3526 | if (err) { |
3527 | bt_dev_err(hdev, "Failed to parse TLV version information" ); |
3528 | goto exit_error; |
3529 | } |
3530 | |
3531 | if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) { |
3532 | bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)" , |
3533 | INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); |
3534 | err = -EINVAL; |
3535 | goto exit_error; |
3536 | } |
3537 | |
3538 | /* Check for supported iBT hardware variants of this firmware |
3539 | * loading method. |
3540 | * |
3541 | * This check has been put in place to ensure correct forward |
3542 | * compatibility options when newer hardware variants come |
3543 | * along. |
3544 | */ |
3545 | switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { |
3546 | case 0x11: /* JfP */ |
3547 | case 0x12: /* ThP */ |
3548 | case 0x13: /* HrP */ |
3549 | case 0x14: /* CcP */ |
3550 | /* Some legacy bootloader devices starting from JfP, |
3551 | * the operational firmware supports both old and TLV based |
3552 | * HCI_Intel_Read_Version command based on the command |
3553 | * parameter. |
3554 | * |
3555 | * For upgrading firmware case, the TLV based version cannot |
3556 | * be used because the firmware filename for legacy bootloader |
3557 | * is based on the old format. |
3558 | * |
3559 | * Also, it is not easy to convert TLV based version from the |
3560 | * legacy version format. |
3561 | * |
3562 | * So, as a workaround for those devices, use the legacy |
3563 | * HCI_Intel_Read_Version to get the version information and |
3564 | * run the legacy bootloader setup. |
3565 | */ |
3566 | err = btintel_read_version(hdev, &ver); |
3567 | if (err) |
3568 | break; |
3569 | |
3570 | /* Apply the device specific HCI quirks |
3571 | * |
3572 | * All Legacy bootloader devices support WBS |
3573 | */ |
3574 | set_bit(nr: HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, addr: &hdev->quirks); |
3575 | |
3576 | /* These variants don't seem to support LE Coded PHY */ |
3577 | set_bit(nr: HCI_QUIRK_BROKEN_LE_CODED, addr: &hdev->quirks); |
3578 | |
3579 | /* Setup MSFT Extension support */ |
3580 | btintel_set_msft_opcode(hdev, ver.hw_variant); |
3581 | |
3582 | err = btintel_bootloader_setup(hdev, ver: &ver); |
3583 | btintel_register_devcoredump_support(hdev); |
3584 | break; |
3585 | case 0x18: /* GfP2 */ |
3586 | case 0x1c: /* GaP */ |
3587 | /* Re-classify packet type for controllers with LE audio */ |
3588 | hdev->classify_pkt_type = btintel_classify_pkt_type; |
3589 | fallthrough; |
3590 | case 0x17: |
3591 | case 0x19: |
3592 | case 0x1b: |
3593 | case 0x1d: |
3594 | case 0x1e: |
3595 | case 0x1f: |
3596 | /* Display version information of TLV type */ |
3597 | btintel_version_info_tlv(hdev, &ver_tlv); |
3598 | |
3599 | /* Apply the device specific HCI quirks for TLV based devices |
3600 | * |
3601 | * All TLV based devices support WBS |
3602 | */ |
3603 | set_bit(nr: HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, addr: &hdev->quirks); |
3604 | |
3605 | /* Setup MSFT Extension support */ |
3606 | btintel_set_msft_opcode(hdev, |
3607 | INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
3608 | btintel_set_dsm_reset_method(hdev, ver_tlv: &ver_tlv); |
3609 | |
3610 | err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); |
3611 | if (err) |
3612 | goto exit_error; |
3613 | |
3614 | btintel_register_devcoredump_support(hdev); |
3615 | btintel_print_fseq_info(hdev); |
3616 | break; |
3617 | default: |
3618 | bt_dev_err(hdev, "Unsupported Intel hw variant (%u)" , |
3619 | INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
3620 | err = -EINVAL; |
3621 | break; |
3622 | } |
3623 | |
3624 | hci_set_hw_info(hdev, fmt: "INTEL platform=%u variant=%u" , |
3625 | INTEL_HW_PLATFORM(ver_tlv.cnvi_bt), |
3626 | INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
3627 | |
3628 | exit_error: |
3629 | kfree_skb(skb); |
3630 | |
3631 | return err; |
3632 | } |
3633 | |
3634 | int btintel_shutdown_combined(struct hci_dev *hdev) |
3635 | { |
3636 | struct sk_buff *skb; |
3637 | int ret; |
3638 | |
3639 | /* Send HCI Reset to the controller to stop any BT activity which |
3640 | * were triggered. This will help to save power and maintain the |
3641 | * sync b/w Host and controller |
3642 | */ |
3643 | skb = __hci_cmd_sync(hdev, HCI_OP_RESET, plen: 0, NULL, HCI_INIT_TIMEOUT); |
3644 | if (IS_ERR(ptr: skb)) { |
3645 | bt_dev_err(hdev, "HCI reset during shutdown failed" ); |
3646 | return PTR_ERR(ptr: skb); |
3647 | } |
3648 | kfree_skb(skb); |
3649 | |
3650 | |
3651 | /* Some platforms have an issue with BT LED when the interface is |
3652 | * down or BT radio is turned off, which takes 5 seconds to BT LED |
3653 | * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the |
3654 | * device in the RFKILL ON state which turns off the BT LED immediately. |
3655 | */ |
3656 | if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { |
3657 | skb = __hci_cmd_sync(hdev, opcode: 0xfc3f, plen: 0, NULL, HCI_INIT_TIMEOUT); |
3658 | if (IS_ERR(ptr: skb)) { |
3659 | ret = PTR_ERR(ptr: skb); |
3660 | bt_dev_err(hdev, "turning off Intel device LED failed" ); |
3661 | return ret; |
3662 | } |
3663 | kfree_skb(skb); |
3664 | } |
3665 | |
3666 | return 0; |
3667 | } |
3668 | EXPORT_SYMBOL_GPL(btintel_shutdown_combined); |
3669 | |
3670 | int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name) |
3671 | { |
3672 | hdev->manufacturer = 2; |
3673 | hdev->setup = btintel_setup_combined; |
3674 | hdev->shutdown = btintel_shutdown_combined; |
3675 | hdev->hw_error = btintel_hw_error; |
3676 | hdev->set_diag = btintel_set_diag_combined; |
3677 | hdev->set_bdaddr = btintel_set_bdaddr; |
3678 | |
3679 | coredump_info.driver_name = driver_name; |
3680 | |
3681 | return 0; |
3682 | } |
3683 | EXPORT_SYMBOL_GPL(btintel_configure_setup); |
3684 | |
3685 | static int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb) |
3686 | { |
3687 | struct intel_tlv *tlv = (void *)&skb->data[5]; |
3688 | |
3689 | /* The first event is always an event type TLV */ |
3690 | if (tlv->type != INTEL_TLV_TYPE_ID) |
3691 | goto recv_frame; |
3692 | |
3693 | switch (tlv->val[0]) { |
3694 | case INTEL_TLV_SYSTEM_EXCEPTION: |
3695 | case INTEL_TLV_FATAL_EXCEPTION: |
3696 | case INTEL_TLV_DEBUG_EXCEPTION: |
3697 | case INTEL_TLV_TEST_EXCEPTION: |
3698 | /* Generate devcoredump from exception */ |
3699 | if (!hci_devcd_init(hdev, dump_size: skb->len)) { |
3700 | hci_devcd_append(hdev, skb: skb_clone(skb, GFP_ATOMIC)); |
3701 | hci_devcd_complete(hdev); |
3702 | } else { |
3703 | bt_dev_err(hdev, "Failed to generate devcoredump" ); |
3704 | } |
3705 | break; |
3706 | default: |
3707 | bt_dev_err(hdev, "Invalid exception type %02X" , tlv->val[0]); |
3708 | } |
3709 | |
3710 | recv_frame: |
3711 | return hci_recv_frame(hdev, skb); |
3712 | } |
3713 | |
3714 | int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) |
3715 | { |
3716 | struct hci_event_hdr *hdr = (void *)skb->data; |
3717 | const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 }; |
3718 | |
3719 | if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff && |
3720 | hdr->plen > 0) { |
3721 | const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1; |
3722 | unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1; |
3723 | |
3724 | if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
3725 | switch (skb->data[2]) { |
3726 | case 0x02: |
3727 | /* When switching to the operational firmware |
3728 | * the device sends a vendor specific event |
3729 | * indicating that the bootup completed. |
3730 | */ |
3731 | btintel_bootup(hdev, ptr, len); |
3732 | kfree_skb(skb); |
3733 | return 0; |
3734 | case 0x06: |
3735 | /* When the firmware loading completes the |
3736 | * device sends out a vendor specific event |
3737 | * indicating the result of the firmware |
3738 | * loading. |
3739 | */ |
3740 | btintel_secure_send_result(hdev, ptr, len); |
3741 | kfree_skb(skb); |
3742 | return 0; |
3743 | } |
3744 | } |
3745 | |
3746 | /* Handle all diagnostics events separately. May still call |
3747 | * hci_recv_frame. |
3748 | */ |
3749 | if (len >= sizeof(diagnostics_hdr) && |
3750 | memcmp(p: &skb->data[2], q: diagnostics_hdr, |
3751 | size: sizeof(diagnostics_hdr)) == 0) { |
3752 | return btintel_diagnostics(hdev, skb); |
3753 | } |
3754 | } |
3755 | |
3756 | return hci_recv_frame(hdev, skb); |
3757 | } |
3758 | EXPORT_SYMBOL_GPL(btintel_recv_event); |
3759 | |
3760 | void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len) |
3761 | { |
3762 | const struct intel_bootup *evt = ptr; |
3763 | |
3764 | if (len != sizeof(*evt)) |
3765 | return; |
3766 | |
3767 | if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING)) |
3768 | btintel_wake_up_flag(hdev, INTEL_BOOTING); |
3769 | } |
3770 | EXPORT_SYMBOL_GPL(btintel_bootup); |
3771 | |
3772 | void btintel_secure_send_result(struct hci_dev *hdev, |
3773 | const void *ptr, unsigned int len) |
3774 | { |
3775 | const struct intel_secure_send_result *evt = ptr; |
3776 | |
3777 | if (len != sizeof(*evt)) |
3778 | return; |
3779 | |
3780 | if (evt->result) |
3781 | btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED); |
3782 | |
3783 | if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) && |
3784 | btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED)) |
3785 | btintel_wake_up_flag(hdev, INTEL_DOWNLOADING); |
3786 | } |
3787 | EXPORT_SYMBOL_GPL(btintel_secure_send_result); |
3788 | |
3789 | MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>" ); |
3790 | MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION); |
3791 | MODULE_VERSION(VERSION); |
3792 | MODULE_LICENSE("GPL" ); |
3793 | MODULE_FIRMWARE("intel/ibt-11-5.sfi" ); |
3794 | MODULE_FIRMWARE("intel/ibt-11-5.ddc" ); |
3795 | MODULE_FIRMWARE("intel/ibt-12-16.sfi" ); |
3796 | MODULE_FIRMWARE("intel/ibt-12-16.ddc" ); |
3797 | |