1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * |
4 | * Bluetooth support for Intel devices |
5 | * |
6 | * Copyright (C) 2015 Intel Corporation |
7 | */ |
8 | |
9 | #include <linux/module.h> |
10 | #include <linux/firmware.h> |
11 | #include <linux/regmap.h> |
12 | #include <linux/acpi.h> |
13 | #include <acpi/acpi_bus.h> |
14 | #include <asm/unaligned.h> |
15 | |
16 | #include <net/bluetooth/bluetooth.h> |
17 | #include <net/bluetooth/hci_core.h> |
18 | |
19 | #include "btintel.h" |
20 | |
21 | #define VERSION "0.1" |
22 | |
23 | #define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}}) |
24 | #define RSA_HEADER_LEN 644 |
25 | #define CSS_HEADER_OFFSET 8 |
26 | #define ECDSA_OFFSET 644 |
27 | #define ECDSA_HEADER_LEN 320 |
28 | |
29 | #define BTINTEL_PPAG_NAME "PPAG" |
30 | |
31 | enum { |
32 | DSM_SET_WDISABLE2_DELAY = 1, |
33 | DSM_SET_RESET_METHOD = 3, |
34 | }; |
35 | |
36 | /* structure to store the PPAG data read from ACPI table */ |
37 | struct btintel_ppag { |
38 | u32 domain; |
39 | u32 mode; |
40 | acpi_status status; |
41 | struct hci_dev *hdev; |
42 | }; |
43 | |
44 | #define CMD_WRITE_BOOT_PARAMS 0xfc0e |
45 | struct cmd_write_boot_params { |
46 | __le32 boot_addr; |
47 | u8 fw_build_num; |
48 | u8 fw_build_ww; |
49 | u8 fw_build_yy; |
50 | } __packed; |
51 | |
52 | static struct { |
53 | const char *driver_name; |
54 | u8 hw_variant; |
55 | u32 fw_build_num; |
56 | } coredump_info; |
57 | |
58 | static const guid_t btintel_guid_dsm = |
59 | GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233, |
60 | 0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9); |
61 | |
62 | int btintel_check_bdaddr(struct hci_dev *hdev) |
63 | { |
64 | struct hci_rp_read_bd_addr *bda; |
65 | struct sk_buff *skb; |
66 | |
67 | skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, plen: 0, NULL, |
68 | HCI_INIT_TIMEOUT); |
69 | if (IS_ERR(ptr: skb)) { |
70 | int err = PTR_ERR(ptr: skb); |
71 | bt_dev_err(hdev, "Reading Intel device address failed (%d)", |
72 | err); |
73 | return err; |
74 | } |
75 | |
76 | if (skb->len != sizeof(*bda)) { |
77 | bt_dev_err(hdev, "Intel device address length mismatch"); |
78 | kfree_skb(skb); |
79 | return -EIO; |
80 | } |
81 | |
82 | bda = (struct hci_rp_read_bd_addr *)skb->data; |
83 | |
84 | /* For some Intel based controllers, the default Bluetooth device |
85 | * address 00:03:19:9E:8B:00 can be found. These controllers are |
86 | * fully operational, but have the danger of duplicate addresses |
87 | * and that in turn can cause problems with Bluetooth operation. |
88 | */ |
89 | if (!bacmp(ba1: &bda->bdaddr, BDADDR_INTEL)) { |
90 | bt_dev_err(hdev, "Found Intel default device address (%pMR)", |
91 | &bda->bdaddr); |
92 | set_bit(nr: HCI_QUIRK_INVALID_BDADDR, addr: &hdev->quirks); |
93 | } |
94 | |
95 | kfree_skb(skb); |
96 | |
97 | return 0; |
98 | } |
99 | EXPORT_SYMBOL_GPL(btintel_check_bdaddr); |
100 | |
101 | int btintel_enter_mfg(struct hci_dev *hdev) |
102 | { |
103 | static const u8 param[] = { 0x01, 0x00 }; |
104 | struct sk_buff *skb; |
105 | |
106 | skb = __hci_cmd_sync(hdev, opcode: 0xfc11, plen: 2, param, HCI_CMD_TIMEOUT); |
107 | if (IS_ERR(ptr: skb)) { |
108 | bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)", |
109 | PTR_ERR(skb)); |
110 | return PTR_ERR(ptr: skb); |
111 | } |
112 | kfree_skb(skb); |
113 | |
114 | return 0; |
115 | } |
116 | EXPORT_SYMBOL_GPL(btintel_enter_mfg); |
117 | |
118 | int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched) |
119 | { |
120 | u8 param[] = { 0x00, 0x00 }; |
121 | struct sk_buff *skb; |
122 | |
123 | /* The 2nd command parameter specifies the manufacturing exit method: |
124 | * 0x00: Just disable the manufacturing mode (0x00). |
125 | * 0x01: Disable manufacturing mode and reset with patches deactivated. |
126 | * 0x02: Disable manufacturing mode and reset with patches activated. |
127 | */ |
128 | if (reset) |
129 | param[1] |= patched ? 0x02 : 0x01; |
130 | |
131 | skb = __hci_cmd_sync(hdev, opcode: 0xfc11, plen: 2, param, HCI_CMD_TIMEOUT); |
132 | if (IS_ERR(ptr: skb)) { |
133 | bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)", |
134 | PTR_ERR(skb)); |
135 | return PTR_ERR(ptr: skb); |
136 | } |
137 | kfree_skb(skb); |
138 | |
139 | return 0; |
140 | } |
141 | EXPORT_SYMBOL_GPL(btintel_exit_mfg); |
142 | |
143 | int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) |
144 | { |
145 | struct sk_buff *skb; |
146 | int err; |
147 | |
148 | skb = __hci_cmd_sync(hdev, opcode: 0xfc31, plen: 6, param: bdaddr, HCI_INIT_TIMEOUT); |
149 | if (IS_ERR(ptr: skb)) { |
150 | err = PTR_ERR(ptr: skb); |
151 | bt_dev_err(hdev, "Changing Intel device address failed (%d)", |
152 | err); |
153 | return err; |
154 | } |
155 | kfree_skb(skb); |
156 | |
157 | return 0; |
158 | } |
159 | EXPORT_SYMBOL_GPL(btintel_set_bdaddr); |
160 | |
161 | static int btintel_set_event_mask(struct hci_dev *hdev, bool debug) |
162 | { |
163 | u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
164 | struct sk_buff *skb; |
165 | int err; |
166 | |
167 | if (debug) |
168 | mask[1] |= 0x62; |
169 | |
170 | skb = __hci_cmd_sync(hdev, opcode: 0xfc52, plen: 8, param: mask, HCI_INIT_TIMEOUT); |
171 | if (IS_ERR(ptr: skb)) { |
172 | err = PTR_ERR(ptr: skb); |
173 | bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err); |
174 | return err; |
175 | } |
176 | kfree_skb(skb); |
177 | |
178 | return 0; |
179 | } |
180 | |
181 | int btintel_set_diag(struct hci_dev *hdev, bool enable) |
182 | { |
183 | struct sk_buff *skb; |
184 | u8 param[3]; |
185 | int err; |
186 | |
187 | if (enable) { |
188 | param[0] = 0x03; |
189 | param[1] = 0x03; |
190 | param[2] = 0x03; |
191 | } else { |
192 | param[0] = 0x00; |
193 | param[1] = 0x00; |
194 | param[2] = 0x00; |
195 | } |
196 | |
197 | skb = __hci_cmd_sync(hdev, opcode: 0xfc43, plen: 3, param, HCI_INIT_TIMEOUT); |
198 | if (IS_ERR(ptr: skb)) { |
199 | err = PTR_ERR(ptr: skb); |
200 | if (err == -ENODATA) |
201 | goto done; |
202 | bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)", |
203 | err); |
204 | return err; |
205 | } |
206 | kfree_skb(skb); |
207 | |
208 | done: |
209 | btintel_set_event_mask(hdev, debug: enable); |
210 | return 0; |
211 | } |
212 | EXPORT_SYMBOL_GPL(btintel_set_diag); |
213 | |
214 | static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable) |
215 | { |
216 | int err, ret; |
217 | |
218 | err = btintel_enter_mfg(hdev); |
219 | if (err) |
220 | return err; |
221 | |
222 | ret = btintel_set_diag(hdev, enable); |
223 | |
224 | err = btintel_exit_mfg(hdev, false, false); |
225 | if (err) |
226 | return err; |
227 | |
228 | return ret; |
229 | } |
230 | |
231 | static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable) |
232 | { |
233 | int ret; |
234 | |
235 | /* Legacy ROM device needs to be in the manufacturer mode to apply |
236 | * diagnostic setting |
237 | * |
238 | * This flag is set after reading the Intel version. |
239 | */ |
240 | if (btintel_test_flag(hdev, INTEL_ROM_LEGACY)) |
241 | ret = btintel_set_diag_mfg(hdev, enable); |
242 | else |
243 | ret = btintel_set_diag(hdev, enable); |
244 | |
245 | return ret; |
246 | } |
247 | |
248 | static void btintel_hw_error(struct hci_dev *hdev, u8 code) |
249 | { |
250 | struct sk_buff *skb; |
251 | u8 type = 0x00; |
252 | |
253 | bt_dev_err(hdev, "Hardware error 0x%2.2x", code); |
254 | |
255 | skb = __hci_cmd_sync(hdev, HCI_OP_RESET, plen: 0, NULL, HCI_INIT_TIMEOUT); |
256 | if (IS_ERR(ptr: skb)) { |
257 | bt_dev_err(hdev, "Reset after hardware error failed (%ld)", |
258 | PTR_ERR(skb)); |
259 | return; |
260 | } |
261 | kfree_skb(skb); |
262 | |
263 | skb = __hci_cmd_sync(hdev, opcode: 0xfc22, plen: 1, param: &type, HCI_INIT_TIMEOUT); |
264 | if (IS_ERR(ptr: skb)) { |
265 | bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)", |
266 | PTR_ERR(skb)); |
267 | return; |
268 | } |
269 | |
270 | if (skb->len != 13) { |
271 | bt_dev_err(hdev, "Exception info size mismatch"); |
272 | kfree_skb(skb); |
273 | return; |
274 | } |
275 | |
276 | bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1)); |
277 | |
278 | kfree_skb(skb); |
279 | } |
280 | |
281 | int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver) |
282 | { |
283 | const char *variant; |
284 | |
285 | /* The hardware platform number has a fixed value of 0x37 and |
286 | * for now only accept this single value. |
287 | */ |
288 | if (ver->hw_platform != 0x37) { |
289 | bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", |
290 | ver->hw_platform); |
291 | return -EINVAL; |
292 | } |
293 | |
294 | /* Check for supported iBT hardware variants of this firmware |
295 | * loading method. |
296 | * |
297 | * This check has been put in place to ensure correct forward |
298 | * compatibility options when newer hardware variants come along. |
299 | */ |
300 | switch (ver->hw_variant) { |
301 | case 0x07: /* WP - Legacy ROM */ |
302 | case 0x08: /* StP - Legacy ROM */ |
303 | case 0x0b: /* SfP */ |
304 | case 0x0c: /* WsP */ |
305 | case 0x11: /* JfP */ |
306 | case 0x12: /* ThP */ |
307 | case 0x13: /* HrP */ |
308 | case 0x14: /* CcP */ |
309 | break; |
310 | default: |
311 | bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", |
312 | ver->hw_variant); |
313 | return -EINVAL; |
314 | } |
315 | |
316 | switch (ver->fw_variant) { |
317 | case 0x01: |
318 | variant = "Legacy ROM 2.5"; |
319 | break; |
320 | case 0x06: |
321 | variant = "Bootloader"; |
322 | break; |
323 | case 0x22: |
324 | variant = "Legacy ROM 2.x"; |
325 | break; |
326 | case 0x23: |
327 | variant = "Firmware"; |
328 | break; |
329 | default: |
330 | bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant); |
331 | return -EINVAL; |
332 | } |
333 | |
334 | coredump_info.hw_variant = ver->hw_variant; |
335 | coredump_info.fw_build_num = ver->fw_build_num; |
336 | |
337 | bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u", |
338 | variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f, |
339 | ver->fw_build_num, ver->fw_build_ww, |
340 | 2000 + ver->fw_build_yy); |
341 | |
342 | return 0; |
343 | } |
344 | EXPORT_SYMBOL_GPL(btintel_version_info); |
345 | |
346 | static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen, |
347 | const void *param) |
348 | { |
349 | while (plen > 0) { |
350 | struct sk_buff *skb; |
351 | u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen; |
352 | |
353 | cmd_param[0] = fragment_type; |
354 | memcpy(cmd_param + 1, param, fragment_len); |
355 | |
356 | skb = __hci_cmd_sync(hdev, opcode: 0xfc09, plen: fragment_len + 1, |
357 | param: cmd_param, HCI_INIT_TIMEOUT); |
358 | if (IS_ERR(ptr: skb)) |
359 | return PTR_ERR(ptr: skb); |
360 | |
361 | kfree_skb(skb); |
362 | |
363 | plen -= fragment_len; |
364 | param += fragment_len; |
365 | } |
366 | |
367 | return 0; |
368 | } |
369 | |
370 | int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name) |
371 | { |
372 | const struct firmware *fw; |
373 | struct sk_buff *skb; |
374 | const u8 *fw_ptr; |
375 | int err; |
376 | |
377 | err = request_firmware_direct(fw: &fw, name: ddc_name, device: &hdev->dev); |
378 | if (err < 0) { |
379 | bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)", |
380 | ddc_name, err); |
381 | return err; |
382 | } |
383 | |
384 | bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name); |
385 | |
386 | fw_ptr = fw->data; |
387 | |
388 | /* DDC file contains one or more DDC structure which has |
389 | * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2). |
390 | */ |
391 | while (fw->size > fw_ptr - fw->data) { |
392 | u8 cmd_plen = fw_ptr[0] + sizeof(u8); |
393 | |
394 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: cmd_plen, param: fw_ptr, |
395 | HCI_INIT_TIMEOUT); |
396 | if (IS_ERR(ptr: skb)) { |
397 | bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)", |
398 | PTR_ERR(skb)); |
399 | release_firmware(fw); |
400 | return PTR_ERR(ptr: skb); |
401 | } |
402 | |
403 | fw_ptr += cmd_plen; |
404 | kfree_skb(skb); |
405 | } |
406 | |
407 | release_firmware(fw); |
408 | |
409 | bt_dev_info(hdev, "Applying Intel DDC parameters completed"); |
410 | |
411 | return 0; |
412 | } |
413 | EXPORT_SYMBOL_GPL(btintel_load_ddc_config); |
414 | |
415 | int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug) |
416 | { |
417 | int err, ret; |
418 | |
419 | err = btintel_enter_mfg(hdev); |
420 | if (err) |
421 | return err; |
422 | |
423 | ret = btintel_set_event_mask(hdev, debug); |
424 | |
425 | err = btintel_exit_mfg(hdev, false, false); |
426 | if (err) |
427 | return err; |
428 | |
429 | return ret; |
430 | } |
431 | EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg); |
432 | |
433 | int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver) |
434 | { |
435 | struct sk_buff *skb; |
436 | |
437 | skb = __hci_cmd_sync(hdev, opcode: 0xfc05, plen: 0, NULL, HCI_CMD_TIMEOUT); |
438 | if (IS_ERR(ptr: skb)) { |
439 | bt_dev_err(hdev, "Reading Intel version information failed (%ld)", |
440 | PTR_ERR(skb)); |
441 | return PTR_ERR(ptr: skb); |
442 | } |
443 | |
444 | if (!skb || skb->len != sizeof(*ver)) { |
445 | bt_dev_err(hdev, "Intel version event size mismatch"); |
446 | kfree_skb(skb); |
447 | return -EILSEQ; |
448 | } |
449 | |
450 | memcpy(ver, skb->data, sizeof(*ver)); |
451 | |
452 | kfree_skb(skb); |
453 | |
454 | return 0; |
455 | } |
456 | EXPORT_SYMBOL_GPL(btintel_read_version); |
457 | |
458 | static int btintel_version_info_tlv(struct hci_dev *hdev, |
459 | struct intel_version_tlv *version) |
460 | { |
461 | const char *variant; |
462 | |
463 | /* The hardware platform number has a fixed value of 0x37 and |
464 | * for now only accept this single value. |
465 | */ |
466 | if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) { |
467 | bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", |
468 | INTEL_HW_PLATFORM(version->cnvi_bt)); |
469 | return -EINVAL; |
470 | } |
471 | |
472 | /* Check for supported iBT hardware variants of this firmware |
473 | * loading method. |
474 | * |
475 | * This check has been put in place to ensure correct forward |
476 | * compatibility options when newer hardware variants come along. |
477 | */ |
478 | switch (INTEL_HW_VARIANT(version->cnvi_bt)) { |
479 | case 0x17: /* TyP */ |
480 | case 0x18: /* Slr */ |
481 | case 0x19: /* Slr-F */ |
482 | case 0x1b: /* Mgr */ |
483 | case 0x1c: /* Gale Peak (GaP) */ |
484 | break; |
485 | default: |
486 | bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)", |
487 | INTEL_HW_VARIANT(version->cnvi_bt)); |
488 | return -EINVAL; |
489 | } |
490 | |
491 | switch (version->img_type) { |
492 | case 0x01: |
493 | variant = "Bootloader"; |
494 | /* It is required that every single firmware fragment is acknowledged |
495 | * with a command complete event. If the boot parameters indicate |
496 | * that this bootloader does not send them, then abort the setup. |
497 | */ |
498 | if (version->limited_cce != 0x00) { |
499 | bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)", |
500 | version->limited_cce); |
501 | return -EINVAL; |
502 | } |
503 | |
504 | /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */ |
505 | if (version->sbe_type > 0x01) { |
506 | bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)", |
507 | version->sbe_type); |
508 | return -EINVAL; |
509 | } |
510 | |
511 | bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id); |
512 | bt_dev_info(hdev, "Secure boot is %s", |
513 | version->secure_boot ? "enabled": "disabled"); |
514 | bt_dev_info(hdev, "OTP lock is %s", |
515 | version->otp_lock ? "enabled": "disabled"); |
516 | bt_dev_info(hdev, "API lock is %s", |
517 | version->api_lock ? "enabled": "disabled"); |
518 | bt_dev_info(hdev, "Debug lock is %s", |
519 | version->debug_lock ? "enabled": "disabled"); |
520 | bt_dev_info(hdev, "Minimum firmware build %u week %u %u", |
521 | version->min_fw_build_nn, version->min_fw_build_cw, |
522 | 2000 + version->min_fw_build_yy); |
523 | break; |
524 | case 0x03: |
525 | variant = "Firmware"; |
526 | break; |
527 | default: |
528 | bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type); |
529 | return -EINVAL; |
530 | } |
531 | |
532 | coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt); |
533 | coredump_info.fw_build_num = version->build_num; |
534 | |
535 | bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant, |
536 | 2000 + (version->timestamp >> 8), version->timestamp & 0xff, |
537 | version->build_type, version->build_num); |
538 | if (version->img_type == 0x03) |
539 | bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1); |
540 | |
541 | return 0; |
542 | } |
543 | |
544 | static int btintel_parse_version_tlv(struct hci_dev *hdev, |
545 | struct intel_version_tlv *version, |
546 | struct sk_buff *skb) |
547 | { |
548 | /* Consume Command Complete Status field */ |
549 | skb_pull(skb, len: 1); |
550 | |
551 | /* Event parameters contatin multiple TLVs. Read each of them |
552 | * and only keep the required data. Also, it use existing legacy |
553 | * version field like hw_platform, hw_variant, and fw_variant |
554 | * to keep the existing setup flow |
555 | */ |
556 | while (skb->len) { |
557 | struct intel_tlv *tlv; |
558 | |
559 | /* Make sure skb has a minimum length of the header */ |
560 | if (skb->len < sizeof(*tlv)) |
561 | return -EINVAL; |
562 | |
563 | tlv = (struct intel_tlv *)skb->data; |
564 | |
565 | /* Make sure skb has a enough data */ |
566 | if (skb->len < tlv->len + sizeof(*tlv)) |
567 | return -EINVAL; |
568 | |
569 | switch (tlv->type) { |
570 | case INTEL_TLV_CNVI_TOP: |
571 | version->cnvi_top = get_unaligned_le32(p: tlv->val); |
572 | break; |
573 | case INTEL_TLV_CNVR_TOP: |
574 | version->cnvr_top = get_unaligned_le32(p: tlv->val); |
575 | break; |
576 | case INTEL_TLV_CNVI_BT: |
577 | version->cnvi_bt = get_unaligned_le32(p: tlv->val); |
578 | break; |
579 | case INTEL_TLV_CNVR_BT: |
580 | version->cnvr_bt = get_unaligned_le32(p: tlv->val); |
581 | break; |
582 | case INTEL_TLV_DEV_REV_ID: |
583 | version->dev_rev_id = get_unaligned_le16(p: tlv->val); |
584 | break; |
585 | case INTEL_TLV_IMAGE_TYPE: |
586 | version->img_type = tlv->val[0]; |
587 | break; |
588 | case INTEL_TLV_TIME_STAMP: |
589 | /* If image type is Operational firmware (0x03), then |
590 | * running FW Calendar Week and Year information can |
591 | * be extracted from Timestamp information |
592 | */ |
593 | version->min_fw_build_cw = tlv->val[0]; |
594 | version->min_fw_build_yy = tlv->val[1]; |
595 | version->timestamp = get_unaligned_le16(p: tlv->val); |
596 | break; |
597 | case INTEL_TLV_BUILD_TYPE: |
598 | version->build_type = tlv->val[0]; |
599 | break; |
600 | case INTEL_TLV_BUILD_NUM: |
601 | /* If image type is Operational firmware (0x03), then |
602 | * running FW build number can be extracted from the |
603 | * Build information |
604 | */ |
605 | version->min_fw_build_nn = tlv->val[0]; |
606 | version->build_num = get_unaligned_le32(p: tlv->val); |
607 | break; |
608 | case INTEL_TLV_SECURE_BOOT: |
609 | version->secure_boot = tlv->val[0]; |
610 | break; |
611 | case INTEL_TLV_OTP_LOCK: |
612 | version->otp_lock = tlv->val[0]; |
613 | break; |
614 | case INTEL_TLV_API_LOCK: |
615 | version->api_lock = tlv->val[0]; |
616 | break; |
617 | case INTEL_TLV_DEBUG_LOCK: |
618 | version->debug_lock = tlv->val[0]; |
619 | break; |
620 | case INTEL_TLV_MIN_FW: |
621 | version->min_fw_build_nn = tlv->val[0]; |
622 | version->min_fw_build_cw = tlv->val[1]; |
623 | version->min_fw_build_yy = tlv->val[2]; |
624 | break; |
625 | case INTEL_TLV_LIMITED_CCE: |
626 | version->limited_cce = tlv->val[0]; |
627 | break; |
628 | case INTEL_TLV_SBE_TYPE: |
629 | version->sbe_type = tlv->val[0]; |
630 | break; |
631 | case INTEL_TLV_OTP_BDADDR: |
632 | memcpy(&version->otp_bd_addr, tlv->val, |
633 | sizeof(bdaddr_t)); |
634 | break; |
635 | case INTEL_TLV_GIT_SHA1: |
636 | version->git_sha1 = get_unaligned_le32(p: tlv->val); |
637 | break; |
638 | default: |
639 | /* Ignore rest of information */ |
640 | break; |
641 | } |
642 | /* consume the current tlv and move to next*/ |
643 | skb_pull(skb, len: tlv->len + sizeof(*tlv)); |
644 | } |
645 | |
646 | return 0; |
647 | } |
648 | |
649 | static int btintel_read_version_tlv(struct hci_dev *hdev, |
650 | struct intel_version_tlv *version) |
651 | { |
652 | struct sk_buff *skb; |
653 | const u8 param[1] = { 0xFF }; |
654 | |
655 | if (!version) |
656 | return -EINVAL; |
657 | |
658 | skb = __hci_cmd_sync(hdev, opcode: 0xfc05, plen: 1, param, HCI_CMD_TIMEOUT); |
659 | if (IS_ERR(ptr: skb)) { |
660 | bt_dev_err(hdev, "Reading Intel version information failed (%ld)", |
661 | PTR_ERR(skb)); |
662 | return PTR_ERR(ptr: skb); |
663 | } |
664 | |
665 | if (skb->data[0]) { |
666 | bt_dev_err(hdev, "Intel Read Version command failed (%02x)", |
667 | skb->data[0]); |
668 | kfree_skb(skb); |
669 | return -EIO; |
670 | } |
671 | |
672 | btintel_parse_version_tlv(hdev, version, skb); |
673 | |
674 | kfree_skb(skb); |
675 | return 0; |
676 | } |
677 | |
678 | /* ------- REGMAP IBT SUPPORT ------- */ |
679 | |
680 | #define IBT_REG_MODE_8BIT 0x00 |
681 | #define IBT_REG_MODE_16BIT 0x01 |
682 | #define IBT_REG_MODE_32BIT 0x02 |
683 | |
684 | struct regmap_ibt_context { |
685 | struct hci_dev *hdev; |
686 | __u16 op_write; |
687 | __u16 op_read; |
688 | }; |
689 | |
690 | struct ibt_cp_reg_access { |
691 | __le32 addr; |
692 | __u8 mode; |
693 | __u8 len; |
694 | __u8 data[]; |
695 | } __packed; |
696 | |
697 | struct ibt_rp_reg_access { |
698 | __u8 status; |
699 | __le32 addr; |
700 | __u8 data[]; |
701 | } __packed; |
702 | |
703 | static int regmap_ibt_read(void *context, const void *addr, size_t reg_size, |
704 | void *val, size_t val_size) |
705 | { |
706 | struct regmap_ibt_context *ctx = context; |
707 | struct ibt_cp_reg_access cp; |
708 | struct ibt_rp_reg_access *rp; |
709 | struct sk_buff *skb; |
710 | int err = 0; |
711 | |
712 | if (reg_size != sizeof(__le32)) |
713 | return -EINVAL; |
714 | |
715 | switch (val_size) { |
716 | case 1: |
717 | cp.mode = IBT_REG_MODE_8BIT; |
718 | break; |
719 | case 2: |
720 | cp.mode = IBT_REG_MODE_16BIT; |
721 | break; |
722 | case 4: |
723 | cp.mode = IBT_REG_MODE_32BIT; |
724 | break; |
725 | default: |
726 | return -EINVAL; |
727 | } |
728 | |
729 | /* regmap provides a little-endian formatted addr */ |
730 | cp.addr = *(__le32 *)addr; |
731 | cp.len = val_size; |
732 | |
733 | bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr)); |
734 | |
735 | skb = hci_cmd_sync(hdev: ctx->hdev, opcode: ctx->op_read, plen: sizeof(cp), param: &cp, |
736 | HCI_CMD_TIMEOUT); |
737 | if (IS_ERR(ptr: skb)) { |
738 | err = PTR_ERR(ptr: skb); |
739 | bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)", |
740 | le32_to_cpu(cp.addr), err); |
741 | return err; |
742 | } |
743 | |
744 | if (skb->len != sizeof(*rp) + val_size) { |
745 | bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len", |
746 | le32_to_cpu(cp.addr)); |
747 | err = -EINVAL; |
748 | goto done; |
749 | } |
750 | |
751 | rp = (struct ibt_rp_reg_access *)skb->data; |
752 | |
753 | if (rp->addr != cp.addr) { |
754 | bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr", |
755 | le32_to_cpu(rp->addr)); |
756 | err = -EINVAL; |
757 | goto done; |
758 | } |
759 | |
760 | memcpy(val, rp->data, val_size); |
761 | |
762 | done: |
763 | kfree_skb(skb); |
764 | return err; |
765 | } |
766 | |
767 | static int regmap_ibt_gather_write(void *context, |
768 | const void *addr, size_t reg_size, |
769 | const void *val, size_t val_size) |
770 | { |
771 | struct regmap_ibt_context *ctx = context; |
772 | struct ibt_cp_reg_access *cp; |
773 | struct sk_buff *skb; |
774 | int plen = sizeof(*cp) + val_size; |
775 | u8 mode; |
776 | int err = 0; |
777 | |
778 | if (reg_size != sizeof(__le32)) |
779 | return -EINVAL; |
780 | |
781 | switch (val_size) { |
782 | case 1: |
783 | mode = IBT_REG_MODE_8BIT; |
784 | break; |
785 | case 2: |
786 | mode = IBT_REG_MODE_16BIT; |
787 | break; |
788 | case 4: |
789 | mode = IBT_REG_MODE_32BIT; |
790 | break; |
791 | default: |
792 | return -EINVAL; |
793 | } |
794 | |
795 | cp = kmalloc(size: plen, GFP_KERNEL); |
796 | if (!cp) |
797 | return -ENOMEM; |
798 | |
799 | /* regmap provides a little-endian formatted addr/value */ |
800 | cp->addr = *(__le32 *)addr; |
801 | cp->mode = mode; |
802 | cp->len = val_size; |
803 | memcpy(&cp->data, val, val_size); |
804 | |
805 | bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr)); |
806 | |
807 | skb = hci_cmd_sync(hdev: ctx->hdev, opcode: ctx->op_write, plen, param: cp, HCI_CMD_TIMEOUT); |
808 | if (IS_ERR(ptr: skb)) { |
809 | err = PTR_ERR(ptr: skb); |
810 | bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)", |
811 | le32_to_cpu(cp->addr), err); |
812 | goto done; |
813 | } |
814 | kfree_skb(skb); |
815 | |
816 | done: |
817 | kfree(objp: cp); |
818 | return err; |
819 | } |
820 | |
821 | static int regmap_ibt_write(void *context, const void *data, size_t count) |
822 | { |
823 | /* data contains register+value, since we only support 32bit addr, |
824 | * minimum data size is 4 bytes. |
825 | */ |
826 | if (WARN_ONCE(count < 4, "Invalid register access")) |
827 | return -EINVAL; |
828 | |
829 | return regmap_ibt_gather_write(context, addr: data, reg_size: 4, val: data + 4, val_size: count - 4); |
830 | } |
831 | |
832 | static void regmap_ibt_free_context(void *context) |
833 | { |
834 | kfree(objp: context); |
835 | } |
836 | |
837 | static const struct regmap_bus regmap_ibt = { |
838 | .read = regmap_ibt_read, |
839 | .write = regmap_ibt_write, |
840 | .gather_write = regmap_ibt_gather_write, |
841 | .free_context = regmap_ibt_free_context, |
842 | .reg_format_endian_default = REGMAP_ENDIAN_LITTLE, |
843 | .val_format_endian_default = REGMAP_ENDIAN_LITTLE, |
844 | }; |
845 | |
846 | /* Config is the same for all register regions */ |
847 | static const struct regmap_config regmap_ibt_cfg = { |
848 | .name = "btintel_regmap", |
849 | .reg_bits = 32, |
850 | .val_bits = 32, |
851 | }; |
852 | |
853 | struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read, |
854 | u16 opcode_write) |
855 | { |
856 | struct regmap_ibt_context *ctx; |
857 | |
858 | bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read, |
859 | opcode_write); |
860 | |
861 | ctx = kzalloc(size: sizeof(*ctx), GFP_KERNEL); |
862 | if (!ctx) |
863 | return ERR_PTR(error: -ENOMEM); |
864 | |
865 | ctx->op_read = opcode_read; |
866 | ctx->op_write = opcode_write; |
867 | ctx->hdev = hdev; |
868 | |
869 | return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg); |
870 | } |
871 | EXPORT_SYMBOL_GPL(btintel_regmap_init); |
872 | |
873 | int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param) |
874 | { |
875 | struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 }; |
876 | struct sk_buff *skb; |
877 | |
878 | params.boot_param = cpu_to_le32(boot_param); |
879 | |
880 | skb = __hci_cmd_sync(hdev, opcode: 0xfc01, plen: sizeof(params), param: ¶ms, |
881 | HCI_INIT_TIMEOUT); |
882 | if (IS_ERR(ptr: skb)) { |
883 | bt_dev_err(hdev, "Failed to send Intel Reset command"); |
884 | return PTR_ERR(ptr: skb); |
885 | } |
886 | |
887 | kfree_skb(skb); |
888 | |
889 | return 0; |
890 | } |
891 | EXPORT_SYMBOL_GPL(btintel_send_intel_reset); |
892 | |
893 | int btintel_read_boot_params(struct hci_dev *hdev, |
894 | struct intel_boot_params *params) |
895 | { |
896 | struct sk_buff *skb; |
897 | |
898 | skb = __hci_cmd_sync(hdev, opcode: 0xfc0d, plen: 0, NULL, HCI_INIT_TIMEOUT); |
899 | if (IS_ERR(ptr: skb)) { |
900 | bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", |
901 | PTR_ERR(skb)); |
902 | return PTR_ERR(ptr: skb); |
903 | } |
904 | |
905 | if (skb->len != sizeof(*params)) { |
906 | bt_dev_err(hdev, "Intel boot parameters size mismatch"); |
907 | kfree_skb(skb); |
908 | return -EILSEQ; |
909 | } |
910 | |
911 | memcpy(params, skb->data, sizeof(*params)); |
912 | |
913 | kfree_skb(skb); |
914 | |
915 | if (params->status) { |
916 | bt_dev_err(hdev, "Intel boot parameters command failed (%02x)", |
917 | params->status); |
918 | return -bt_to_errno(code: params->status); |
919 | } |
920 | |
921 | bt_dev_info(hdev, "Device revision is %u", |
922 | le16_to_cpu(params->dev_revid)); |
923 | |
924 | bt_dev_info(hdev, "Secure boot is %s", |
925 | params->secure_boot ? "enabled": "disabled"); |
926 | |
927 | bt_dev_info(hdev, "OTP lock is %s", |
928 | params->otp_lock ? "enabled": "disabled"); |
929 | |
930 | bt_dev_info(hdev, "API lock is %s", |
931 | params->api_lock ? "enabled": "disabled"); |
932 | |
933 | bt_dev_info(hdev, "Debug lock is %s", |
934 | params->debug_lock ? "enabled": "disabled"); |
935 | |
936 | bt_dev_info(hdev, "Minimum firmware build %u week %u %u", |
937 | params->min_fw_build_nn, params->min_fw_build_cw, |
938 | 2000 + params->min_fw_build_yy); |
939 | |
940 | return 0; |
941 | } |
942 | EXPORT_SYMBOL_GPL(btintel_read_boot_params); |
943 | |
944 | static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev, |
945 | const struct firmware *fw) |
946 | { |
947 | int err; |
948 | |
949 | /* Start the firmware download transaction with the Init fragment |
950 | * represented by the 128 bytes of CSS header. |
951 | */ |
952 | err = btintel_secure_send(hdev, fragment_type: 0x00, plen: 128, param: fw->data); |
953 | if (err < 0) { |
954 | bt_dev_err(hdev, "Failed to send firmware header (%d)", err); |
955 | goto done; |
956 | } |
957 | |
958 | /* Send the 256 bytes of public key information from the firmware |
959 | * as the PKey fragment. |
960 | */ |
961 | err = btintel_secure_send(hdev, fragment_type: 0x03, plen: 256, param: fw->data + 128); |
962 | if (err < 0) { |
963 | bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); |
964 | goto done; |
965 | } |
966 | |
967 | /* Send the 256 bytes of signature information from the firmware |
968 | * as the Sign fragment. |
969 | */ |
970 | err = btintel_secure_send(hdev, fragment_type: 0x02, plen: 256, param: fw->data + 388); |
971 | if (err < 0) { |
972 | bt_dev_err(hdev, "Failed to send firmware signature (%d)", err); |
973 | goto done; |
974 | } |
975 | |
976 | done: |
977 | return err; |
978 | } |
979 | |
980 | static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev, |
981 | const struct firmware *fw) |
982 | { |
983 | int err; |
984 | |
985 | /* Start the firmware download transaction with the Init fragment |
986 | * represented by the 128 bytes of CSS header. |
987 | */ |
988 | err = btintel_secure_send(hdev, fragment_type: 0x00, plen: 128, param: fw->data + 644); |
989 | if (err < 0) { |
990 | bt_dev_err(hdev, "Failed to send firmware header (%d)", err); |
991 | return err; |
992 | } |
993 | |
994 | /* Send the 96 bytes of public key information from the firmware |
995 | * as the PKey fragment. |
996 | */ |
997 | err = btintel_secure_send(hdev, fragment_type: 0x03, plen: 96, param: fw->data + 644 + 128); |
998 | if (err < 0) { |
999 | bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); |
1000 | return err; |
1001 | } |
1002 | |
1003 | /* Send the 96 bytes of signature information from the firmware |
1004 | * as the Sign fragment |
1005 | */ |
1006 | err = btintel_secure_send(hdev, fragment_type: 0x02, plen: 96, param: fw->data + 644 + 224); |
1007 | if (err < 0) { |
1008 | bt_dev_err(hdev, "Failed to send firmware signature (%d)", |
1009 | err); |
1010 | return err; |
1011 | } |
1012 | return 0; |
1013 | } |
1014 | |
1015 | static int btintel_download_firmware_payload(struct hci_dev *hdev, |
1016 | const struct firmware *fw, |
1017 | size_t offset) |
1018 | { |
1019 | int err; |
1020 | const u8 *fw_ptr; |
1021 | u32 frag_len; |
1022 | |
1023 | fw_ptr = fw->data + offset; |
1024 | frag_len = 0; |
1025 | err = -EINVAL; |
1026 | |
1027 | while (fw_ptr - fw->data < fw->size) { |
1028 | struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); |
1029 | |
1030 | frag_len += sizeof(*cmd) + cmd->plen; |
1031 | |
1032 | /* The parameter length of the secure send command requires |
1033 | * a 4 byte alignment. It happens so that the firmware file |
1034 | * contains proper Intel_NOP commands to align the fragments |
1035 | * as needed. |
1036 | * |
1037 | * Send set of commands with 4 byte alignment from the |
1038 | * firmware data buffer as a single Data fragement. |
1039 | */ |
1040 | if (!(frag_len % 4)) { |
1041 | err = btintel_secure_send(hdev, fragment_type: 0x01, plen: frag_len, param: fw_ptr); |
1042 | if (err < 0) { |
1043 | bt_dev_err(hdev, |
1044 | "Failed to send firmware data (%d)", |
1045 | err); |
1046 | goto done; |
1047 | } |
1048 | |
1049 | fw_ptr += frag_len; |
1050 | frag_len = 0; |
1051 | } |
1052 | } |
1053 | |
1054 | done: |
1055 | return err; |
1056 | } |
1057 | |
1058 | static bool btintel_firmware_version(struct hci_dev *hdev, |
1059 | u8 num, u8 ww, u8 yy, |
1060 | const struct firmware *fw, |
1061 | u32 *boot_addr) |
1062 | { |
1063 | const u8 *fw_ptr; |
1064 | |
1065 | fw_ptr = fw->data; |
1066 | |
1067 | while (fw_ptr - fw->data < fw->size) { |
1068 | struct hci_command_hdr *cmd = (void *)(fw_ptr); |
1069 | |
1070 | /* Each SKU has a different reset parameter to use in the |
1071 | * HCI_Intel_Reset command and it is embedded in the firmware |
1072 | * data. So, instead of using static value per SKU, check |
1073 | * the firmware data and save it for later use. |
1074 | */ |
1075 | if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) { |
1076 | struct cmd_write_boot_params *params; |
1077 | |
1078 | params = (void *)(fw_ptr + sizeof(*cmd)); |
1079 | |
1080 | *boot_addr = le32_to_cpu(params->boot_addr); |
1081 | |
1082 | bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr); |
1083 | |
1084 | bt_dev_info(hdev, "Firmware Version: %u-%u.%u", |
1085 | params->fw_build_num, params->fw_build_ww, |
1086 | params->fw_build_yy); |
1087 | |
1088 | return (num == params->fw_build_num && |
1089 | ww == params->fw_build_ww && |
1090 | yy == params->fw_build_yy); |
1091 | } |
1092 | |
1093 | fw_ptr += sizeof(*cmd) + cmd->plen; |
1094 | } |
1095 | |
1096 | return false; |
1097 | } |
1098 | |
1099 | int btintel_download_firmware(struct hci_dev *hdev, |
1100 | struct intel_version *ver, |
1101 | const struct firmware *fw, |
1102 | u32 *boot_param) |
1103 | { |
1104 | int err; |
1105 | |
1106 | /* SfP and WsP don't seem to update the firmware version on file |
1107 | * so version checking is currently not possible. |
1108 | */ |
1109 | switch (ver->hw_variant) { |
1110 | case 0x0b: /* SfP */ |
1111 | case 0x0c: /* WsP */ |
1112 | /* Skip version checking */ |
1113 | break; |
1114 | default: |
1115 | |
1116 | /* Skip download if firmware has the same version */ |
1117 | if (btintel_firmware_version(hdev, num: ver->fw_build_num, |
1118 | ww: ver->fw_build_ww, yy: ver->fw_build_yy, |
1119 | fw, boot_addr: boot_param)) { |
1120 | bt_dev_info(hdev, "Firmware already loaded"); |
1121 | /* Return -EALREADY to indicate that the firmware has |
1122 | * already been loaded. |
1123 | */ |
1124 | return -EALREADY; |
1125 | } |
1126 | } |
1127 | |
1128 | /* The firmware variant determines if the device is in bootloader |
1129 | * mode or is running operational firmware. The value 0x06 identifies |
1130 | * the bootloader and the value 0x23 identifies the operational |
1131 | * firmware. |
1132 | * |
1133 | * If the firmware version has changed that means it needs to be reset |
1134 | * to bootloader when operational so the new firmware can be loaded. |
1135 | */ |
1136 | if (ver->fw_variant == 0x23) |
1137 | return -EINVAL; |
1138 | |
1139 | err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
1140 | if (err) |
1141 | return err; |
1142 | |
1143 | return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); |
1144 | } |
1145 | EXPORT_SYMBOL_GPL(btintel_download_firmware); |
1146 | |
1147 | static int btintel_download_fw_tlv(struct hci_dev *hdev, |
1148 | struct intel_version_tlv *ver, |
1149 | const struct firmware *fw, u32 *boot_param, |
1150 | u8 hw_variant, u8 sbe_type) |
1151 | { |
1152 | int err; |
1153 | u32 css_header_ver; |
1154 | |
1155 | /* Skip download if firmware has the same version */ |
1156 | if (btintel_firmware_version(hdev, num: ver->min_fw_build_nn, |
1157 | ww: ver->min_fw_build_cw, |
1158 | yy: ver->min_fw_build_yy, |
1159 | fw, boot_addr: boot_param)) { |
1160 | bt_dev_info(hdev, "Firmware already loaded"); |
1161 | /* Return -EALREADY to indicate that firmware has |
1162 | * already been loaded. |
1163 | */ |
1164 | return -EALREADY; |
1165 | } |
1166 | |
1167 | /* The firmware variant determines if the device is in bootloader |
1168 | * mode or is running operational firmware. The value 0x01 identifies |
1169 | * the bootloader and the value 0x03 identifies the operational |
1170 | * firmware. |
1171 | * |
1172 | * If the firmware version has changed that means it needs to be reset |
1173 | * to bootloader when operational so the new firmware can be loaded. |
1174 | */ |
1175 | if (ver->img_type == 0x03) |
1176 | return -EINVAL; |
1177 | |
1178 | /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support |
1179 | * only RSA secure boot engine. Hence, the corresponding sfi file will |
1180 | * have RSA header of 644 bytes followed by Command Buffer. |
1181 | * |
1182 | * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA |
1183 | * secure boot engine. As a result, the corresponding sfi file will |
1184 | * have RSA header of 644, ECDSA header of 320 bytes followed by |
1185 | * Command Buffer. |
1186 | * |
1187 | * CSS Header byte positions 0x08 to 0x0B represent the CSS Header |
1188 | * version: RSA(0x00010000) , ECDSA (0x00020000) |
1189 | */ |
1190 | css_header_ver = get_unaligned_le32(p: fw->data + CSS_HEADER_OFFSET); |
1191 | if (css_header_ver != 0x00010000) { |
1192 | bt_dev_err(hdev, "Invalid CSS Header version"); |
1193 | return -EINVAL; |
1194 | } |
1195 | |
1196 | if (hw_variant <= 0x14) { |
1197 | if (sbe_type != 0x00) { |
1198 | bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)", |
1199 | hw_variant); |
1200 | return -EINVAL; |
1201 | } |
1202 | |
1203 | err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
1204 | if (err) |
1205 | return err; |
1206 | |
1207 | err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); |
1208 | if (err) |
1209 | return err; |
1210 | } else if (hw_variant >= 0x17) { |
1211 | /* Check if CSS header for ECDSA follows the RSA header */ |
1212 | if (fw->data[ECDSA_OFFSET] != 0x06) |
1213 | return -EINVAL; |
1214 | |
1215 | /* Check if the CSS Header version is ECDSA(0x00020000) */ |
1216 | css_header_ver = get_unaligned_le32(p: fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET); |
1217 | if (css_header_ver != 0x00020000) { |
1218 | bt_dev_err(hdev, "Invalid CSS Header version"); |
1219 | return -EINVAL; |
1220 | } |
1221 | |
1222 | if (sbe_type == 0x00) { |
1223 | err = btintel_sfi_rsa_header_secure_send(hdev, fw); |
1224 | if (err) |
1225 | return err; |
1226 | |
1227 | err = btintel_download_firmware_payload(hdev, fw, |
1228 | RSA_HEADER_LEN + ECDSA_HEADER_LEN); |
1229 | if (err) |
1230 | return err; |
1231 | } else if (sbe_type == 0x01) { |
1232 | err = btintel_sfi_ecdsa_header_secure_send(hdev, fw); |
1233 | if (err) |
1234 | return err; |
1235 | |
1236 | err = btintel_download_firmware_payload(hdev, fw, |
1237 | RSA_HEADER_LEN + ECDSA_HEADER_LEN); |
1238 | if (err) |
1239 | return err; |
1240 | } |
1241 | } |
1242 | return 0; |
1243 | } |
1244 | |
1245 | static void btintel_reset_to_bootloader(struct hci_dev *hdev) |
1246 | { |
1247 | struct intel_reset params; |
1248 | struct sk_buff *skb; |
1249 | |
1250 | /* Send Intel Reset command. This will result in |
1251 | * re-enumeration of BT controller. |
1252 | * |
1253 | * Intel Reset parameter description: |
1254 | * reset_type : 0x00 (Soft reset), |
1255 | * 0x01 (Hard reset) |
1256 | * patch_enable : 0x00 (Do not enable), |
1257 | * 0x01 (Enable) |
1258 | * ddc_reload : 0x00 (Do not reload), |
1259 | * 0x01 (Reload) |
1260 | * boot_option: 0x00 (Current image), |
1261 | * 0x01 (Specified boot address) |
1262 | * boot_param: Boot address |
1263 | * |
1264 | */ |
1265 | params.reset_type = 0x01; |
1266 | params.patch_enable = 0x01; |
1267 | params.ddc_reload = 0x01; |
1268 | params.boot_option = 0x00; |
1269 | params.boot_param = cpu_to_le32(0x00000000); |
1270 | |
1271 | skb = __hci_cmd_sync(hdev, opcode: 0xfc01, plen: sizeof(params), |
1272 | param: ¶ms, HCI_INIT_TIMEOUT); |
1273 | if (IS_ERR(ptr: skb)) { |
1274 | bt_dev_err(hdev, "FW download error recovery failed (%ld)", |
1275 | PTR_ERR(skb)); |
1276 | return; |
1277 | } |
1278 | bt_dev_info(hdev, "Intel reset sent to retry FW download"); |
1279 | kfree_skb(skb); |
1280 | |
1281 | /* Current Intel BT controllers(ThP/JfP) hold the USB reset |
1282 | * lines for 2ms when it receives Intel Reset in bootloader mode. |
1283 | * Whereas, the upcoming Intel BT controllers will hold USB reset |
1284 | * for 150ms. To keep the delay generic, 150ms is chosen here. |
1285 | */ |
1286 | msleep(msecs: 150); |
1287 | } |
1288 | |
1289 | static int btintel_read_debug_features(struct hci_dev *hdev, |
1290 | struct intel_debug_features *features) |
1291 | { |
1292 | struct sk_buff *skb; |
1293 | u8 page_no = 1; |
1294 | |
1295 | /* Intel controller supports two pages, each page is of 128-bit |
1296 | * feature bit mask. And each bit defines specific feature support |
1297 | */ |
1298 | skb = __hci_cmd_sync(hdev, opcode: 0xfca6, plen: sizeof(page_no), param: &page_no, |
1299 | HCI_INIT_TIMEOUT); |
1300 | if (IS_ERR(ptr: skb)) { |
1301 | bt_dev_err(hdev, "Reading supported features failed (%ld)", |
1302 | PTR_ERR(skb)); |
1303 | return PTR_ERR(ptr: skb); |
1304 | } |
1305 | |
1306 | if (skb->len != (sizeof(features->page1) + 3)) { |
1307 | bt_dev_err(hdev, "Supported features event size mismatch"); |
1308 | kfree_skb(skb); |
1309 | return -EILSEQ; |
1310 | } |
1311 | |
1312 | memcpy(features->page1, skb->data + 3, sizeof(features->page1)); |
1313 | |
1314 | /* Read the supported features page2 if required in future. |
1315 | */ |
1316 | kfree_skb(skb); |
1317 | return 0; |
1318 | } |
1319 | |
1320 | static acpi_status btintel_ppag_callback(acpi_handle handle, u32 lvl, void *data, |
1321 | void **ret) |
1322 | { |
1323 | acpi_status status; |
1324 | size_t len; |
1325 | struct btintel_ppag *ppag = data; |
1326 | union acpi_object *p, *elements; |
1327 | struct acpi_buffer string = {ACPI_ALLOCATE_BUFFER, NULL}; |
1328 | struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; |
1329 | struct hci_dev *hdev = ppag->hdev; |
1330 | |
1331 | status = acpi_get_name(object: handle, ACPI_FULL_PATHNAME, ret_path_ptr: &string); |
1332 | if (ACPI_FAILURE(status)) { |
1333 | bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status)); |
1334 | return status; |
1335 | } |
1336 | |
1337 | len = strlen(string.pointer); |
1338 | if (len < strlen(BTINTEL_PPAG_NAME)) { |
1339 | kfree(objp: string.pointer); |
1340 | return AE_OK; |
1341 | } |
1342 | |
1343 | if (strncmp((char *)string.pointer + len - 4, BTINTEL_PPAG_NAME, 4)) { |
1344 | kfree(objp: string.pointer); |
1345 | return AE_OK; |
1346 | } |
1347 | kfree(objp: string.pointer); |
1348 | |
1349 | status = acpi_evaluate_object(object: handle, NULL, NULL, return_object_buffer: &buffer); |
1350 | if (ACPI_FAILURE(status)) { |
1351 | ppag->status = status; |
1352 | bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status)); |
1353 | return status; |
1354 | } |
1355 | |
1356 | p = buffer.pointer; |
1357 | ppag = (struct btintel_ppag *)data; |
1358 | |
1359 | if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) { |
1360 | kfree(objp: buffer.pointer); |
1361 | bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d", |
1362 | p->type, p->package.count); |
1363 | ppag->status = AE_ERROR; |
1364 | return AE_ERROR; |
1365 | } |
1366 | |
1367 | elements = p->package.elements; |
1368 | |
1369 | /* PPAG table is located at element[1] */ |
1370 | p = &elements[1]; |
1371 | |
1372 | ppag->domain = (u32)p->package.elements[0].integer.value; |
1373 | ppag->mode = (u32)p->package.elements[1].integer.value; |
1374 | ppag->status = AE_OK; |
1375 | kfree(objp: buffer.pointer); |
1376 | return AE_CTRL_TERMINATE; |
1377 | } |
1378 | |
1379 | static int btintel_set_debug_features(struct hci_dev *hdev, |
1380 | const struct intel_debug_features *features) |
1381 | { |
1382 | u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00, |
1383 | 0x00, 0x00, 0x00 }; |
1384 | u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 }; |
1385 | u8 trace_enable = 0x02; |
1386 | struct sk_buff *skb; |
1387 | |
1388 | if (!features) { |
1389 | bt_dev_warn(hdev, "Debug features not read"); |
1390 | return -EINVAL; |
1391 | } |
1392 | |
1393 | if (!(features->page1[0] & 0x3f)) { |
1394 | bt_dev_info(hdev, "Telemetry exception format not supported"); |
1395 | return 0; |
1396 | } |
1397 | |
1398 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: 11, param: mask, HCI_INIT_TIMEOUT); |
1399 | if (IS_ERR(ptr: skb)) { |
1400 | bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", |
1401 | PTR_ERR(skb)); |
1402 | return PTR_ERR(ptr: skb); |
1403 | } |
1404 | kfree_skb(skb); |
1405 | |
1406 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: 5, param: period, HCI_INIT_TIMEOUT); |
1407 | if (IS_ERR(ptr: skb)) { |
1408 | bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)", |
1409 | PTR_ERR(skb)); |
1410 | return PTR_ERR(ptr: skb); |
1411 | } |
1412 | kfree_skb(skb); |
1413 | |
1414 | skb = __hci_cmd_sync(hdev, opcode: 0xfca1, plen: 1, param: &trace_enable, HCI_INIT_TIMEOUT); |
1415 | if (IS_ERR(ptr: skb)) { |
1416 | bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)", |
1417 | PTR_ERR(skb)); |
1418 | return PTR_ERR(ptr: skb); |
1419 | } |
1420 | kfree_skb(skb); |
1421 | |
1422 | bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x", |
1423 | trace_enable, mask[3]); |
1424 | |
1425 | return 0; |
1426 | } |
1427 | |
1428 | static int btintel_reset_debug_features(struct hci_dev *hdev, |
1429 | const struct intel_debug_features *features) |
1430 | { |
1431 | u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, |
1432 | 0x00, 0x00, 0x00 }; |
1433 | u8 trace_enable = 0x00; |
1434 | struct sk_buff *skb; |
1435 | |
1436 | if (!features) { |
1437 | bt_dev_warn(hdev, "Debug features not read"); |
1438 | return -EINVAL; |
1439 | } |
1440 | |
1441 | if (!(features->page1[0] & 0x3f)) { |
1442 | bt_dev_info(hdev, "Telemetry exception format not supported"); |
1443 | return 0; |
1444 | } |
1445 | |
1446 | /* Should stop the trace before writing ddc event mask. */ |
1447 | skb = __hci_cmd_sync(hdev, opcode: 0xfca1, plen: 1, param: &trace_enable, HCI_INIT_TIMEOUT); |
1448 | if (IS_ERR(ptr: skb)) { |
1449 | bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)", |
1450 | PTR_ERR(skb)); |
1451 | return PTR_ERR(ptr: skb); |
1452 | } |
1453 | kfree_skb(skb); |
1454 | |
1455 | skb = __hci_cmd_sync(hdev, opcode: 0xfc8b, plen: 11, param: mask, HCI_INIT_TIMEOUT); |
1456 | if (IS_ERR(ptr: skb)) { |
1457 | bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", |
1458 | PTR_ERR(skb)); |
1459 | return PTR_ERR(ptr: skb); |
1460 | } |
1461 | kfree_skb(skb); |
1462 | |
1463 | bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x", |
1464 | trace_enable, mask[3]); |
1465 | |
1466 | return 0; |
1467 | } |
1468 | |
1469 | int btintel_set_quality_report(struct hci_dev *hdev, bool enable) |
1470 | { |
1471 | struct intel_debug_features features; |
1472 | int err; |
1473 | |
1474 | bt_dev_dbg(hdev, "enable %d", enable); |
1475 | |
1476 | /* Read the Intel supported features and if new exception formats |
1477 | * supported, need to load the additional DDC config to enable. |
1478 | */ |
1479 | err = btintel_read_debug_features(hdev, features: &features); |
1480 | if (err) |
1481 | return err; |
1482 | |
1483 | /* Set or reset the debug features. */ |
1484 | if (enable) |
1485 | err = btintel_set_debug_features(hdev, features: &features); |
1486 | else |
1487 | err = btintel_reset_debug_features(hdev, features: &features); |
1488 | |
1489 | return err; |
1490 | } |
1491 | EXPORT_SYMBOL_GPL(btintel_set_quality_report); |
1492 | |
1493 | static void btintel_coredump(struct hci_dev *hdev) |
1494 | { |
1495 | struct sk_buff *skb; |
1496 | |
1497 | skb = __hci_cmd_sync(hdev, opcode: 0xfc4e, plen: 0, NULL, HCI_CMD_TIMEOUT); |
1498 | if (IS_ERR(ptr: skb)) { |
1499 | bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb)); |
1500 | return; |
1501 | } |
1502 | |
1503 | kfree_skb(skb); |
1504 | } |
1505 | |
1506 | static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb) |
1507 | { |
1508 | char buf[80]; |
1509 | |
1510 | snprintf(buf, size: sizeof(buf), fmt: "Controller Name: 0x%X\n", |
1511 | coredump_info.hw_variant); |
1512 | skb_put_data(skb, data: buf, strlen(buf)); |
1513 | |
1514 | snprintf(buf, size: sizeof(buf), fmt: "Firmware Version: 0x%X\n", |
1515 | coredump_info.fw_build_num); |
1516 | skb_put_data(skb, data: buf, strlen(buf)); |
1517 | |
1518 | snprintf(buf, size: sizeof(buf), fmt: "Driver: %s\n", coredump_info.driver_name); |
1519 | skb_put_data(skb, data: buf, strlen(buf)); |
1520 | |
1521 | snprintf(buf, size: sizeof(buf), fmt: "Vendor: Intel\n"); |
1522 | skb_put_data(skb, data: buf, strlen(buf)); |
1523 | } |
1524 | |
1525 | static int btintel_register_devcoredump_support(struct hci_dev *hdev) |
1526 | { |
1527 | struct intel_debug_features features; |
1528 | int err; |
1529 | |
1530 | err = btintel_read_debug_features(hdev, features: &features); |
1531 | if (err) { |
1532 | bt_dev_info(hdev, "Error reading debug features"); |
1533 | return err; |
1534 | } |
1535 | |
1536 | if (!(features.page1[0] & 0x3f)) { |
1537 | bt_dev_dbg(hdev, "Telemetry exception format not supported"); |
1538 | return -EOPNOTSUPP; |
1539 | } |
1540 | |
1541 | hci_devcd_register(hdev, coredump: btintel_coredump, dmp_hdr: btintel_dmp_hdr, NULL); |
1542 | |
1543 | return err; |
1544 | } |
1545 | |
1546 | static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev, |
1547 | struct intel_version *ver) |
1548 | { |
1549 | const struct firmware *fw; |
1550 | char fwname[64]; |
1551 | int ret; |
1552 | |
1553 | snprintf(buf: fwname, size: sizeof(fwname), |
1554 | fmt: "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq", |
1555 | ver->hw_platform, ver->hw_variant, ver->hw_revision, |
1556 | ver->fw_variant, ver->fw_revision, ver->fw_build_num, |
1557 | ver->fw_build_ww, ver->fw_build_yy); |
1558 | |
1559 | ret = request_firmware(fw: &fw, name: fwname, device: &hdev->dev); |
1560 | if (ret < 0) { |
1561 | if (ret == -EINVAL) { |
1562 | bt_dev_err(hdev, "Intel firmware file request failed (%d)", |
1563 | ret); |
1564 | return NULL; |
1565 | } |
1566 | |
1567 | bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)", |
1568 | fwname, ret); |
1569 | |
1570 | /* If the correct firmware patch file is not found, use the |
1571 | * default firmware patch file instead |
1572 | */ |
1573 | snprintf(buf: fwname, size: sizeof(fwname), fmt: "intel/ibt-hw-%x.%x.bseq", |
1574 | ver->hw_platform, ver->hw_variant); |
1575 | if (request_firmware(fw: &fw, name: fwname, device: &hdev->dev) < 0) { |
1576 | bt_dev_err(hdev, "failed to open default fw file: %s", |
1577 | fwname); |
1578 | return NULL; |
1579 | } |
1580 | } |
1581 | |
1582 | bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname); |
1583 | |
1584 | return fw; |
1585 | } |
1586 | |
1587 | static int btintel_legacy_rom_patching(struct hci_dev *hdev, |
1588 | const struct firmware *fw, |
1589 | const u8 **fw_ptr, int *disable_patch) |
1590 | { |
1591 | struct sk_buff *skb; |
1592 | struct hci_command_hdr *cmd; |
1593 | const u8 *cmd_param; |
1594 | struct hci_event_hdr *evt = NULL; |
1595 | const u8 *evt_param = NULL; |
1596 | int remain = fw->size - (*fw_ptr - fw->data); |
1597 | |
1598 | /* The first byte indicates the types of the patch command or event. |
1599 | * 0x01 means HCI command and 0x02 is HCI event. If the first bytes |
1600 | * in the current firmware buffer doesn't start with 0x01 or |
1601 | * the size of remain buffer is smaller than HCI command header, |
1602 | * the firmware file is corrupted and it should stop the patching |
1603 | * process. |
1604 | */ |
1605 | if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) { |
1606 | bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read"); |
1607 | return -EINVAL; |
1608 | } |
1609 | (*fw_ptr)++; |
1610 | remain--; |
1611 | |
1612 | cmd = (struct hci_command_hdr *)(*fw_ptr); |
1613 | *fw_ptr += sizeof(*cmd); |
1614 | remain -= sizeof(*cmd); |
1615 | |
1616 | /* Ensure that the remain firmware data is long enough than the length |
1617 | * of command parameter. If not, the firmware file is corrupted. |
1618 | */ |
1619 | if (remain < cmd->plen) { |
1620 | bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len"); |
1621 | return -EFAULT; |
1622 | } |
1623 | |
1624 | /* If there is a command that loads a patch in the firmware |
1625 | * file, then enable the patch upon success, otherwise just |
1626 | * disable the manufacturer mode, for example patch activation |
1627 | * is not required when the default firmware patch file is used |
1628 | * because there are no patch data to load. |
1629 | */ |
1630 | if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e) |
1631 | *disable_patch = 0; |
1632 | |
1633 | cmd_param = *fw_ptr; |
1634 | *fw_ptr += cmd->plen; |
1635 | remain -= cmd->plen; |
1636 | |
1637 | /* This reads the expected events when the above command is sent to the |
1638 | * device. Some vendor commands expects more than one events, for |
1639 | * example command status event followed by vendor specific event. |
1640 | * For this case, it only keeps the last expected event. so the command |
1641 | * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of |
1642 | * last expected event. |
1643 | */ |
1644 | while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) { |
1645 | (*fw_ptr)++; |
1646 | remain--; |
1647 | |
1648 | evt = (struct hci_event_hdr *)(*fw_ptr); |
1649 | *fw_ptr += sizeof(*evt); |
1650 | remain -= sizeof(*evt); |
1651 | |
1652 | if (remain < evt->plen) { |
1653 | bt_dev_err(hdev, "Intel fw corrupted: invalid evt len"); |
1654 | return -EFAULT; |
1655 | } |
1656 | |
1657 | evt_param = *fw_ptr; |
1658 | *fw_ptr += evt->plen; |
1659 | remain -= evt->plen; |
1660 | } |
1661 | |
1662 | /* Every HCI commands in the firmware file has its correspond event. |
1663 | * If event is not found or remain is smaller than zero, the firmware |
1664 | * file is corrupted. |
1665 | */ |
1666 | if (!evt || !evt_param || remain < 0) { |
1667 | bt_dev_err(hdev, "Intel fw corrupted: invalid evt read"); |
1668 | return -EFAULT; |
1669 | } |
1670 | |
1671 | skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), plen: cmd->plen, |
1672 | param: cmd_param, event: evt->evt, HCI_INIT_TIMEOUT); |
1673 | if (IS_ERR(ptr: skb)) { |
1674 | bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)", |
1675 | cmd->opcode, PTR_ERR(skb)); |
1676 | return PTR_ERR(ptr: skb); |
1677 | } |
1678 | |
1679 | /* It ensures that the returned event matches the event data read from |
1680 | * the firmware file. At fist, it checks the length and then |
1681 | * the contents of the event. |
1682 | */ |
1683 | if (skb->len != evt->plen) { |
1684 | bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)", |
1685 | le16_to_cpu(cmd->opcode)); |
1686 | kfree_skb(skb); |
1687 | return -EFAULT; |
1688 | } |
1689 | |
1690 | if (memcmp(p: skb->data, q: evt_param, size: evt->plen)) { |
1691 | bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)", |
1692 | le16_to_cpu(cmd->opcode)); |
1693 | kfree_skb(skb); |
1694 | return -EFAULT; |
1695 | } |
1696 | kfree_skb(skb); |
1697 | |
1698 | return 0; |
1699 | } |
1700 | |
1701 | static int btintel_legacy_rom_setup(struct hci_dev *hdev, |
1702 | struct intel_version *ver) |
1703 | { |
1704 | const struct firmware *fw; |
1705 | const u8 *fw_ptr; |
1706 | int disable_patch, err; |
1707 | struct intel_version new_ver; |
1708 | |
1709 | BT_DBG("%s", hdev->name); |
1710 | |
1711 | /* fw_patch_num indicates the version of patch the device currently |
1712 | * have. If there is no patch data in the device, it is always 0x00. |
1713 | * So, if it is other than 0x00, no need to patch the device again. |
1714 | */ |
1715 | if (ver->fw_patch_num) { |
1716 | bt_dev_info(hdev, |
1717 | "Intel device is already patched. patch num: %02x", |
1718 | ver->fw_patch_num); |
1719 | goto complete; |
1720 | } |
1721 | |
1722 | /* Opens the firmware patch file based on the firmware version read |
1723 | * from the controller. If it fails to open the matching firmware |
1724 | * patch file, it tries to open the default firmware patch file. |
1725 | * If no patch file is found, allow the device to operate without |
1726 | * a patch. |
1727 | */ |
1728 | fw = btintel_legacy_rom_get_fw(hdev, ver); |
1729 | if (!fw) |
1730 | goto complete; |
1731 | fw_ptr = fw->data; |
1732 | |
1733 | /* Enable the manufacturer mode of the controller. |
1734 | * Only while this mode is enabled, the driver can download the |
1735 | * firmware patch data and configuration parameters. |
1736 | */ |
1737 | err = btintel_enter_mfg(hdev); |
1738 | if (err) { |
1739 | release_firmware(fw); |
1740 | return err; |
1741 | } |
1742 | |
1743 | disable_patch = 1; |
1744 | |
1745 | /* The firmware data file consists of list of Intel specific HCI |
1746 | * commands and its expected events. The first byte indicates the |
1747 | * type of the message, either HCI command or HCI event. |
1748 | * |
1749 | * It reads the command and its expected event from the firmware file, |
1750 | * and send to the controller. Once __hci_cmd_sync_ev() returns, |
1751 | * the returned event is compared with the event read from the firmware |
1752 | * file and it will continue until all the messages are downloaded to |
1753 | * the controller. |
1754 | * |
1755 | * Once the firmware patching is completed successfully, |
1756 | * the manufacturer mode is disabled with reset and activating the |
1757 | * downloaded patch. |
1758 | * |
1759 | * If the firmware patching fails, the manufacturer mode is |
1760 | * disabled with reset and deactivating the patch. |
1761 | * |
1762 | * If the default patch file is used, no reset is done when disabling |
1763 | * the manufacturer. |
1764 | */ |
1765 | while (fw->size > fw_ptr - fw->data) { |
1766 | int ret; |
1767 | |
1768 | ret = btintel_legacy_rom_patching(hdev, fw, fw_ptr: &fw_ptr, |
1769 | disable_patch: &disable_patch); |
1770 | if (ret < 0) |
1771 | goto exit_mfg_deactivate; |
1772 | } |
1773 | |
1774 | release_firmware(fw); |
1775 | |
1776 | if (disable_patch) |
1777 | goto exit_mfg_disable; |
1778 | |
1779 | /* Patching completed successfully and disable the manufacturer mode |
1780 | * with reset and activate the downloaded firmware patches. |
1781 | */ |
1782 | err = btintel_exit_mfg(hdev, true, true); |
1783 | if (err) |
1784 | return err; |
1785 | |
1786 | /* Need build number for downloaded fw patches in |
1787 | * every power-on boot |
1788 | */ |
1789 | err = btintel_read_version(hdev, &new_ver); |
1790 | if (err) |
1791 | return err; |
1792 | |
1793 | bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated", |
1794 | new_ver.fw_patch_num); |
1795 | |
1796 | goto complete; |
1797 | |
1798 | exit_mfg_disable: |
1799 | /* Disable the manufacturer mode without reset */ |
1800 | err = btintel_exit_mfg(hdev, false, false); |
1801 | if (err) |
1802 | return err; |
1803 | |
1804 | bt_dev_info(hdev, "Intel firmware patch completed"); |
1805 | |
1806 | goto complete; |
1807 | |
1808 | exit_mfg_deactivate: |
1809 | release_firmware(fw); |
1810 | |
1811 | /* Patching failed. Disable the manufacturer mode with reset and |
1812 | * deactivate the downloaded firmware patches. |
1813 | */ |
1814 | err = btintel_exit_mfg(hdev, true, false); |
1815 | if (err) |
1816 | return err; |
1817 | |
1818 | bt_dev_info(hdev, "Intel firmware patch completed and deactivated"); |
1819 | |
1820 | complete: |
1821 | /* Set the event mask for Intel specific vendor events. This enables |
1822 | * a few extra events that are useful during general operation. |
1823 | */ |
1824 | btintel_set_event_mask_mfg(hdev, false); |
1825 | |
1826 | btintel_check_bdaddr(hdev); |
1827 | |
1828 | return 0; |
1829 | } |
1830 | |
1831 | static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec) |
1832 | { |
1833 | ktime_t delta, rettime; |
1834 | unsigned long long duration; |
1835 | int err; |
1836 | |
1837 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
1838 | |
1839 | bt_dev_info(hdev, "Waiting for firmware download to complete"); |
1840 | |
1841 | err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING, |
1842 | TASK_INTERRUPTIBLE, |
1843 | msecs_to_jiffies(msec)); |
1844 | if (err == -EINTR) { |
1845 | bt_dev_err(hdev, "Firmware loading interrupted"); |
1846 | return err; |
1847 | } |
1848 | |
1849 | if (err) { |
1850 | bt_dev_err(hdev, "Firmware loading timeout"); |
1851 | return -ETIMEDOUT; |
1852 | } |
1853 | |
1854 | if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) { |
1855 | bt_dev_err(hdev, "Firmware loading failed"); |
1856 | return -ENOEXEC; |
1857 | } |
1858 | |
1859 | rettime = ktime_get(); |
1860 | delta = ktime_sub(rettime, calltime); |
1861 | duration = (unsigned long long)ktime_to_ns(kt: delta) >> 10; |
1862 | |
1863 | bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); |
1864 | |
1865 | return 0; |
1866 | } |
1867 | |
1868 | static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec) |
1869 | { |
1870 | ktime_t delta, rettime; |
1871 | unsigned long long duration; |
1872 | int err; |
1873 | |
1874 | bt_dev_info(hdev, "Waiting for device to boot"); |
1875 | |
1876 | err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING, |
1877 | TASK_INTERRUPTIBLE, |
1878 | msecs_to_jiffies(msec)); |
1879 | if (err == -EINTR) { |
1880 | bt_dev_err(hdev, "Device boot interrupted"); |
1881 | return -EINTR; |
1882 | } |
1883 | |
1884 | if (err) { |
1885 | bt_dev_err(hdev, "Device boot timeout"); |
1886 | return -ETIMEDOUT; |
1887 | } |
1888 | |
1889 | rettime = ktime_get(); |
1890 | delta = ktime_sub(rettime, calltime); |
1891 | duration = (unsigned long long) ktime_to_ns(kt: delta) >> 10; |
1892 | |
1893 | bt_dev_info(hdev, "Device booted in %llu usecs", duration); |
1894 | |
1895 | return 0; |
1896 | } |
1897 | |
1898 | static int btintel_boot(struct hci_dev *hdev, u32 boot_addr) |
1899 | { |
1900 | ktime_t calltime; |
1901 | int err; |
1902 | |
1903 | calltime = ktime_get(); |
1904 | |
1905 | btintel_set_flag(hdev, INTEL_BOOTING); |
1906 | |
1907 | err = btintel_send_intel_reset(hdev, boot_addr); |
1908 | if (err) { |
1909 | bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err); |
1910 | btintel_reset_to_bootloader(hdev); |
1911 | return err; |
1912 | } |
1913 | |
1914 | /* The bootloader will not indicate when the device is ready. This |
1915 | * is done by the operational firmware sending bootup notification. |
1916 | * |
1917 | * Booting into operational firmware should not take longer than |
1918 | * 1 second. However if that happens, then just fail the setup |
1919 | * since something went wrong. |
1920 | */ |
1921 | err = btintel_boot_wait(hdev, calltime, msec: 1000); |
1922 | if (err == -ETIMEDOUT) |
1923 | btintel_reset_to_bootloader(hdev); |
1924 | |
1925 | return err; |
1926 | } |
1927 | |
1928 | static int btintel_get_fw_name(struct intel_version *ver, |
1929 | struct intel_boot_params *params, |
1930 | char *fw_name, size_t len, |
1931 | const char *suffix) |
1932 | { |
1933 | switch (ver->hw_variant) { |
1934 | case 0x0b: /* SfP */ |
1935 | case 0x0c: /* WsP */ |
1936 | snprintf(buf: fw_name, size: len, fmt: "intel/ibt-%u-%u.%s", |
1937 | ver->hw_variant, |
1938 | le16_to_cpu(params->dev_revid), |
1939 | suffix); |
1940 | break; |
1941 | case 0x11: /* JfP */ |
1942 | case 0x12: /* ThP */ |
1943 | case 0x13: /* HrP */ |
1944 | case 0x14: /* CcP */ |
1945 | snprintf(buf: fw_name, size: len, fmt: "intel/ibt-%u-%u-%u.%s", |
1946 | ver->hw_variant, |
1947 | ver->hw_revision, |
1948 | ver->fw_revision, |
1949 | suffix); |
1950 | break; |
1951 | default: |
1952 | return -EINVAL; |
1953 | } |
1954 | |
1955 | return 0; |
1956 | } |
1957 | |
1958 | static int btintel_download_fw(struct hci_dev *hdev, |
1959 | struct intel_version *ver, |
1960 | struct intel_boot_params *params, |
1961 | u32 *boot_param) |
1962 | { |
1963 | const struct firmware *fw; |
1964 | char fwname[64]; |
1965 | int err; |
1966 | ktime_t calltime; |
1967 | |
1968 | if (!ver || !params) |
1969 | return -EINVAL; |
1970 | |
1971 | /* The firmware variant determines if the device is in bootloader |
1972 | * mode or is running operational firmware. The value 0x06 identifies |
1973 | * the bootloader and the value 0x23 identifies the operational |
1974 | * firmware. |
1975 | * |
1976 | * When the operational firmware is already present, then only |
1977 | * the check for valid Bluetooth device address is needed. This |
1978 | * determines if the device will be added as configured or |
1979 | * unconfigured controller. |
1980 | * |
1981 | * It is not possible to use the Secure Boot Parameters in this |
1982 | * case since that command is only available in bootloader mode. |
1983 | */ |
1984 | if (ver->fw_variant == 0x23) { |
1985 | btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
1986 | btintel_check_bdaddr(hdev); |
1987 | |
1988 | /* SfP and WsP don't seem to update the firmware version on file |
1989 | * so version checking is currently possible. |
1990 | */ |
1991 | switch (ver->hw_variant) { |
1992 | case 0x0b: /* SfP */ |
1993 | case 0x0c: /* WsP */ |
1994 | return 0; |
1995 | } |
1996 | |
1997 | /* Proceed to download to check if the version matches */ |
1998 | goto download; |
1999 | } |
2000 | |
2001 | /* Read the secure boot parameters to identify the operating |
2002 | * details of the bootloader. |
2003 | */ |
2004 | err = btintel_read_boot_params(hdev, params); |
2005 | if (err) |
2006 | return err; |
2007 | |
2008 | /* It is required that every single firmware fragment is acknowledged |
2009 | * with a command complete event. If the boot parameters indicate |
2010 | * that this bootloader does not send them, then abort the setup. |
2011 | */ |
2012 | if (params->limited_cce != 0x00) { |
2013 | bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", |
2014 | params->limited_cce); |
2015 | return -EINVAL; |
2016 | } |
2017 | |
2018 | /* If the OTP has no valid Bluetooth device address, then there will |
2019 | * also be no valid address for the operational firmware. |
2020 | */ |
2021 | if (!bacmp(ba1: ¶ms->otp_bdaddr, BDADDR_ANY)) { |
2022 | bt_dev_info(hdev, "No device address configured"); |
2023 | set_bit(nr: HCI_QUIRK_INVALID_BDADDR, addr: &hdev->quirks); |
2024 | } |
2025 | |
2026 | download: |
2027 | /* With this Intel bootloader only the hardware variant and device |
2028 | * revision information are used to select the right firmware for SfP |
2029 | * and WsP. |
2030 | * |
2031 | * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. |
2032 | * |
2033 | * Currently the supported hardware variants are: |
2034 | * 11 (0x0b) for iBT3.0 (LnP/SfP) |
2035 | * 12 (0x0c) for iBT3.5 (WsP) |
2036 | * |
2037 | * For ThP/JfP and for future SKU's, the FW name varies based on HW |
2038 | * variant, HW revision and FW revision, as these are dependent on CNVi |
2039 | * and RF Combination. |
2040 | * |
2041 | * 17 (0x11) for iBT3.5 (JfP) |
2042 | * 18 (0x12) for iBT3.5 (ThP) |
2043 | * |
2044 | * The firmware file name for these will be |
2045 | * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. |
2046 | * |
2047 | */ |
2048 | err = btintel_get_fw_name(ver, params, fw_name: fwname, len: sizeof(fwname), suffix: "sfi"); |
2049 | if (err < 0) { |
2050 | if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
2051 | /* Firmware has already been loaded */ |
2052 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2053 | return 0; |
2054 | } |
2055 | |
2056 | bt_dev_err(hdev, "Unsupported Intel firmware naming"); |
2057 | return -EINVAL; |
2058 | } |
2059 | |
2060 | err = firmware_request_nowarn(fw: &fw, name: fwname, device: &hdev->dev); |
2061 | if (err < 0) { |
2062 | if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
2063 | /* Firmware has already been loaded */ |
2064 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2065 | return 0; |
2066 | } |
2067 | |
2068 | bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", |
2069 | fwname, err); |
2070 | return err; |
2071 | } |
2072 | |
2073 | bt_dev_info(hdev, "Found device firmware: %s", fwname); |
2074 | |
2075 | if (fw->size < 644) { |
2076 | bt_dev_err(hdev, "Invalid size of firmware file (%zu)", |
2077 | fw->size); |
2078 | err = -EBADF; |
2079 | goto done; |
2080 | } |
2081 | |
2082 | calltime = ktime_get(); |
2083 | |
2084 | btintel_set_flag(hdev, INTEL_DOWNLOADING); |
2085 | |
2086 | /* Start firmware downloading and get boot parameter */ |
2087 | err = btintel_download_firmware(hdev, ver, fw, boot_param); |
2088 | if (err < 0) { |
2089 | if (err == -EALREADY) { |
2090 | /* Firmware has already been loaded */ |
2091 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2092 | err = 0; |
2093 | goto done; |
2094 | } |
2095 | |
2096 | /* When FW download fails, send Intel Reset to retry |
2097 | * FW download. |
2098 | */ |
2099 | btintel_reset_to_bootloader(hdev); |
2100 | goto done; |
2101 | } |
2102 | |
2103 | /* Before switching the device into operational mode and with that |
2104 | * booting the loaded firmware, wait for the bootloader notification |
2105 | * that all fragments have been successfully received. |
2106 | * |
2107 | * When the event processing receives the notification, then the |
2108 | * INTEL_DOWNLOADING flag will be cleared. |
2109 | * |
2110 | * The firmware loading should not take longer than 5 seconds |
2111 | * and thus just timeout if that happens and fail the setup |
2112 | * of this device. |
2113 | */ |
2114 | err = btintel_download_wait(hdev, calltime, msec: 5000); |
2115 | if (err == -ETIMEDOUT) |
2116 | btintel_reset_to_bootloader(hdev); |
2117 | |
2118 | done: |
2119 | release_firmware(fw); |
2120 | return err; |
2121 | } |
2122 | |
2123 | static int btintel_bootloader_setup(struct hci_dev *hdev, |
2124 | struct intel_version *ver) |
2125 | { |
2126 | struct intel_version new_ver; |
2127 | struct intel_boot_params params; |
2128 | u32 boot_param; |
2129 | char ddcname[64]; |
2130 | int err; |
2131 | |
2132 | BT_DBG("%s", hdev->name); |
2133 | |
2134 | /* Set the default boot parameter to 0x0 and it is updated to |
2135 | * SKU specific boot parameter after reading Intel_Write_Boot_Params |
2136 | * command while downloading the firmware. |
2137 | */ |
2138 | boot_param = 0x00000000; |
2139 | |
2140 | btintel_set_flag(hdev, INTEL_BOOTLOADER); |
2141 | |
2142 | err = btintel_download_fw(hdev, ver, params: ¶ms, boot_param: &boot_param); |
2143 | if (err) |
2144 | return err; |
2145 | |
2146 | /* controller is already having an operational firmware */ |
2147 | if (ver->fw_variant == 0x23) |
2148 | goto finish; |
2149 | |
2150 | err = btintel_boot(hdev, boot_addr: boot_param); |
2151 | if (err) |
2152 | return err; |
2153 | |
2154 | btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
2155 | |
2156 | err = btintel_get_fw_name(ver, params: ¶ms, fw_name: ddcname, |
2157 | len: sizeof(ddcname), suffix: "ddc"); |
2158 | |
2159 | if (err < 0) { |
2160 | bt_dev_err(hdev, "Unsupported Intel firmware naming"); |
2161 | } else { |
2162 | /* Once the device is running in operational mode, it needs to |
2163 | * apply the device configuration (DDC) parameters. |
2164 | * |
2165 | * The device can work without DDC parameters, so even if it |
2166 | * fails to load the file, no need to fail the setup. |
2167 | */ |
2168 | btintel_load_ddc_config(hdev, ddcname); |
2169 | } |
2170 | |
2171 | hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); |
2172 | |
2173 | /* Read the Intel version information after loading the FW */ |
2174 | err = btintel_read_version(hdev, &new_ver); |
2175 | if (err) |
2176 | return err; |
2177 | |
2178 | btintel_version_info(hdev, &new_ver); |
2179 | |
2180 | finish: |
2181 | /* Set the event mask for Intel specific vendor events. This enables |
2182 | * a few extra events that are useful during general operation. It |
2183 | * does not enable any debugging related events. |
2184 | * |
2185 | * The device will function correctly without these events enabled |
2186 | * and thus no need to fail the setup. |
2187 | */ |
2188 | btintel_set_event_mask(hdev, debug: false); |
2189 | |
2190 | return 0; |
2191 | } |
2192 | |
2193 | static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver, |
2194 | char *fw_name, size_t len, |
2195 | const char *suffix) |
2196 | { |
2197 | /* The firmware file name for new generation controllers will be |
2198 | * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step> |
2199 | */ |
2200 | snprintf(buf: fw_name, size: len, fmt: "intel/ibt-%04x-%04x.%s", |
2201 | INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), |
2202 | INTEL_CNVX_TOP_STEP(ver->cnvi_top)), |
2203 | INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), |
2204 | INTEL_CNVX_TOP_STEP(ver->cnvr_top)), |
2205 | suffix); |
2206 | } |
2207 | |
2208 | static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev, |
2209 | struct intel_version_tlv *ver, |
2210 | u32 *boot_param) |
2211 | { |
2212 | const struct firmware *fw; |
2213 | char fwname[64]; |
2214 | int err; |
2215 | ktime_t calltime; |
2216 | |
2217 | if (!ver || !boot_param) |
2218 | return -EINVAL; |
2219 | |
2220 | /* The firmware variant determines if the device is in bootloader |
2221 | * mode or is running operational firmware. The value 0x03 identifies |
2222 | * the bootloader and the value 0x23 identifies the operational |
2223 | * firmware. |
2224 | * |
2225 | * When the operational firmware is already present, then only |
2226 | * the check for valid Bluetooth device address is needed. This |
2227 | * determines if the device will be added as configured or |
2228 | * unconfigured controller. |
2229 | * |
2230 | * It is not possible to use the Secure Boot Parameters in this |
2231 | * case since that command is only available in bootloader mode. |
2232 | */ |
2233 | if (ver->img_type == 0x03) { |
2234 | btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
2235 | btintel_check_bdaddr(hdev); |
2236 | } else { |
2237 | /* |
2238 | * Check for valid bd address in boot loader mode. Device |
2239 | * will be marked as unconfigured if empty bd address is |
2240 | * found. |
2241 | */ |
2242 | if (!bacmp(ba1: &ver->otp_bd_addr, BDADDR_ANY)) { |
2243 | bt_dev_info(hdev, "No device address configured"); |
2244 | set_bit(nr: HCI_QUIRK_INVALID_BDADDR, addr: &hdev->quirks); |
2245 | } |
2246 | } |
2247 | |
2248 | btintel_get_fw_name_tlv(ver, fw_name: fwname, len: sizeof(fwname), suffix: "sfi"); |
2249 | err = firmware_request_nowarn(fw: &fw, name: fwname, device: &hdev->dev); |
2250 | if (err < 0) { |
2251 | if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
2252 | /* Firmware has already been loaded */ |
2253 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2254 | return 0; |
2255 | } |
2256 | |
2257 | bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", |
2258 | fwname, err); |
2259 | |
2260 | return err; |
2261 | } |
2262 | |
2263 | bt_dev_info(hdev, "Found device firmware: %s", fwname); |
2264 | |
2265 | if (fw->size < 644) { |
2266 | bt_dev_err(hdev, "Invalid size of firmware file (%zu)", |
2267 | fw->size); |
2268 | err = -EBADF; |
2269 | goto done; |
2270 | } |
2271 | |
2272 | calltime = ktime_get(); |
2273 | |
2274 | btintel_set_flag(hdev, INTEL_DOWNLOADING); |
2275 | |
2276 | /* Start firmware downloading and get boot parameter */ |
2277 | err = btintel_download_fw_tlv(hdev, ver, fw, boot_param, |
2278 | INTEL_HW_VARIANT(ver->cnvi_bt), |
2279 | sbe_type: ver->sbe_type); |
2280 | if (err < 0) { |
2281 | if (err == -EALREADY) { |
2282 | /* Firmware has already been loaded */ |
2283 | btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); |
2284 | err = 0; |
2285 | goto done; |
2286 | } |
2287 | |
2288 | /* When FW download fails, send Intel Reset to retry |
2289 | * FW download. |
2290 | */ |
2291 | btintel_reset_to_bootloader(hdev); |
2292 | goto done; |
2293 | } |
2294 | |
2295 | /* Before switching the device into operational mode and with that |
2296 | * booting the loaded firmware, wait for the bootloader notification |
2297 | * that all fragments have been successfully received. |
2298 | * |
2299 | * When the event processing receives the notification, then the |
2300 | * BTUSB_DOWNLOADING flag will be cleared. |
2301 | * |
2302 | * The firmware loading should not take longer than 5 seconds |
2303 | * and thus just timeout if that happens and fail the setup |
2304 | * of this device. |
2305 | */ |
2306 | err = btintel_download_wait(hdev, calltime, msec: 5000); |
2307 | if (err == -ETIMEDOUT) |
2308 | btintel_reset_to_bootloader(hdev); |
2309 | |
2310 | done: |
2311 | release_firmware(fw); |
2312 | return err; |
2313 | } |
2314 | |
2315 | static int btintel_get_codec_config_data(struct hci_dev *hdev, |
2316 | __u8 link, struct bt_codec *codec, |
2317 | __u8 *ven_len, __u8 **ven_data) |
2318 | { |
2319 | int err = 0; |
2320 | |
2321 | if (!ven_data || !ven_len) |
2322 | return -EINVAL; |
2323 | |
2324 | *ven_len = 0; |
2325 | *ven_data = NULL; |
2326 | |
2327 | if (link != ESCO_LINK) { |
2328 | bt_dev_err(hdev, "Invalid link type(%u)", link); |
2329 | return -EINVAL; |
2330 | } |
2331 | |
2332 | *ven_data = kmalloc(size: sizeof(__u8), GFP_KERNEL); |
2333 | if (!*ven_data) { |
2334 | err = -ENOMEM; |
2335 | goto error; |
2336 | } |
2337 | |
2338 | /* supports only CVSD and mSBC offload codecs */ |
2339 | switch (codec->id) { |
2340 | case 0x02: |
2341 | **ven_data = 0x00; |
2342 | break; |
2343 | case 0x05: |
2344 | **ven_data = 0x01; |
2345 | break; |
2346 | default: |
2347 | err = -EINVAL; |
2348 | bt_dev_err(hdev, "Invalid codec id(%u)", codec->id); |
2349 | goto error; |
2350 | } |
2351 | /* codec and its capabilities are pre-defined to ids |
2352 | * preset id = 0x00 represents CVSD codec with sampling rate 8K |
2353 | * preset id = 0x01 represents mSBC codec with sampling rate 16K |
2354 | */ |
2355 | *ven_len = sizeof(__u8); |
2356 | return err; |
2357 | |
2358 | error: |
2359 | kfree(objp: *ven_data); |
2360 | *ven_data = NULL; |
2361 | return err; |
2362 | } |
2363 | |
2364 | static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id) |
2365 | { |
2366 | /* Intel uses 1 as data path id for all the usecases */ |
2367 | *data_path_id = 1; |
2368 | return 0; |
2369 | } |
2370 | |
2371 | static int btintel_configure_offload(struct hci_dev *hdev) |
2372 | { |
2373 | struct sk_buff *skb; |
2374 | int err = 0; |
2375 | struct intel_offload_use_cases *use_cases; |
2376 | |
2377 | skb = __hci_cmd_sync(hdev, opcode: 0xfc86, plen: 0, NULL, HCI_INIT_TIMEOUT); |
2378 | if (IS_ERR(ptr: skb)) { |
2379 | bt_dev_err(hdev, "Reading offload use cases failed (%ld)", |
2380 | PTR_ERR(skb)); |
2381 | return PTR_ERR(ptr: skb); |
2382 | } |
2383 | |
2384 | if (skb->len < sizeof(*use_cases)) { |
2385 | err = -EIO; |
2386 | goto error; |
2387 | } |
2388 | |
2389 | use_cases = (void *)skb->data; |
2390 | |
2391 | if (use_cases->status) { |
2392 | err = -bt_to_errno(code: skb->data[0]); |
2393 | goto error; |
2394 | } |
2395 | |
2396 | if (use_cases->preset[0] & 0x03) { |
2397 | hdev->get_data_path_id = btintel_get_data_path_id; |
2398 | hdev->get_codec_config_data = btintel_get_codec_config_data; |
2399 | } |
2400 | error: |
2401 | kfree_skb(skb); |
2402 | return err; |
2403 | } |
2404 | |
2405 | static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver) |
2406 | { |
2407 | struct btintel_ppag ppag; |
2408 | struct sk_buff *skb; |
2409 | struct hci_ppag_enable_cmd ppag_cmd; |
2410 | acpi_handle handle; |
2411 | |
2412 | /* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */ |
2413 | switch (ver->cnvr_top & 0xFFF) { |
2414 | case 0x504: /* Hrp2 */ |
2415 | case 0x202: /* Jfp2 */ |
2416 | case 0x201: /* Jfp1 */ |
2417 | bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)", |
2418 | ver->cnvr_top & 0xFFF); |
2419 | return; |
2420 | } |
2421 | |
2422 | handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); |
2423 | if (!handle) { |
2424 | bt_dev_info(hdev, "No support for BT device in ACPI firmware"); |
2425 | return; |
2426 | } |
2427 | |
2428 | memset(&ppag, 0, sizeof(ppag)); |
2429 | |
2430 | ppag.hdev = hdev; |
2431 | ppag.status = AE_NOT_FOUND; |
2432 | acpi_walk_namespace(ACPI_TYPE_PACKAGE, start_object: handle, max_depth: 1, NULL, |
2433 | ascending_callback: btintel_ppag_callback, context: &ppag, NULL); |
2434 | |
2435 | if (ACPI_FAILURE(ppag.status)) { |
2436 | if (ppag.status == AE_NOT_FOUND) { |
2437 | bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found"); |
2438 | return; |
2439 | } |
2440 | return; |
2441 | } |
2442 | |
2443 | if (ppag.domain != 0x12) { |
2444 | bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware"); |
2445 | return; |
2446 | } |
2447 | |
2448 | /* PPAG mode |
2449 | * BIT 0 : 0 Disabled in EU |
2450 | * 1 Enabled in EU |
2451 | * BIT 1 : 0 Disabled in China |
2452 | * 1 Enabled in China |
2453 | */ |
2454 | if ((ppag.mode & 0x01) != BIT(0) && (ppag.mode & 0x02) != BIT(1)) { |
2455 | bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in CB/BIOS"); |
2456 | return; |
2457 | } |
2458 | |
2459 | ppag_cmd.ppag_enable_flags = cpu_to_le32(ppag.mode); |
2460 | |
2461 | skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, plen: sizeof(ppag_cmd), param: &ppag_cmd, HCI_CMD_TIMEOUT); |
2462 | if (IS_ERR(ptr: skb)) { |
2463 | bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb)); |
2464 | return; |
2465 | } |
2466 | bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", ppag.mode); |
2467 | kfree_skb(skb); |
2468 | } |
2469 | |
2470 | static int btintel_acpi_reset_method(struct hci_dev *hdev) |
2471 | { |
2472 | int ret = 0; |
2473 | acpi_status status; |
2474 | union acpi_object *p, *ref; |
2475 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
2476 | |
2477 | status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), pathname: "_PRR", NULL, return_object_buffer: &buffer); |
2478 | if (ACPI_FAILURE(status)) { |
2479 | bt_dev_err(hdev, "Failed to run _PRR method"); |
2480 | ret = -ENODEV; |
2481 | return ret; |
2482 | } |
2483 | p = buffer.pointer; |
2484 | |
2485 | if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) { |
2486 | bt_dev_err(hdev, "Invalid arguments"); |
2487 | ret = -EINVAL; |
2488 | goto exit_on_error; |
2489 | } |
2490 | |
2491 | ref = &p->package.elements[0]; |
2492 | if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) { |
2493 | bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type); |
2494 | ret = -EINVAL; |
2495 | goto exit_on_error; |
2496 | } |
2497 | |
2498 | status = acpi_evaluate_object(object: ref->reference.handle, pathname: "_RST", NULL, NULL); |
2499 | if (ACPI_FAILURE(status)) { |
2500 | bt_dev_err(hdev, "Failed to run_RST method"); |
2501 | ret = -ENODEV; |
2502 | goto exit_on_error; |
2503 | } |
2504 | |
2505 | exit_on_error: |
2506 | kfree(objp: buffer.pointer); |
2507 | return ret; |
2508 | } |
2509 | |
2510 | static void btintel_set_dsm_reset_method(struct hci_dev *hdev, |
2511 | struct intel_version_tlv *ver_tlv) |
2512 | { |
2513 | struct btintel_data *data = hci_get_priv(hdev); |
2514 | acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); |
2515 | u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00}; |
2516 | union acpi_object *obj, argv4; |
2517 | enum { |
2518 | RESET_TYPE_WDISABLE2, |
2519 | RESET_TYPE_VSEC |
2520 | }; |
2521 | |
2522 | handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); |
2523 | |
2524 | if (!handle) { |
2525 | bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware"); |
2526 | return; |
2527 | } |
2528 | |
2529 | if (!acpi_has_method(handle, name: "_PRR")) { |
2530 | bt_dev_err(hdev, "No support for _PRR ACPI method"); |
2531 | return; |
2532 | } |
2533 | |
2534 | switch (ver_tlv->cnvi_top & 0xfff) { |
2535 | case 0x910: /* GalePeak2 */ |
2536 | reset_payload[2] = RESET_TYPE_VSEC; |
2537 | break; |
2538 | default: |
2539 | /* WDISABLE2 is the default reset method */ |
2540 | reset_payload[2] = RESET_TYPE_WDISABLE2; |
2541 | |
2542 | if (!acpi_check_dsm(handle, guid: &btintel_guid_dsm, rev: 0, |
2543 | BIT(DSM_SET_WDISABLE2_DELAY))) { |
2544 | bt_dev_err(hdev, "No dsm support to set reset delay"); |
2545 | return; |
2546 | } |
2547 | argv4.integer.type = ACPI_TYPE_INTEGER; |
2548 | /* delay required to toggle BT power */ |
2549 | argv4.integer.value = 160; |
2550 | obj = acpi_evaluate_dsm(handle, guid: &btintel_guid_dsm, rev: 0, |
2551 | func: DSM_SET_WDISABLE2_DELAY, argv4: &argv4); |
2552 | if (!obj) { |
2553 | bt_dev_err(hdev, "Failed to call dsm to set reset delay"); |
2554 | return; |
2555 | } |
2556 | ACPI_FREE(obj); |
2557 | } |
2558 | |
2559 | bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]); |
2560 | |
2561 | if (!acpi_check_dsm(handle, guid: &btintel_guid_dsm, rev: 0, |
2562 | funcs: DSM_SET_RESET_METHOD)) { |
2563 | bt_dev_warn(hdev, "No support for dsm to set reset method"); |
2564 | return; |
2565 | } |
2566 | argv4.buffer.type = ACPI_TYPE_BUFFER; |
2567 | argv4.buffer.length = sizeof(reset_payload); |
2568 | argv4.buffer.pointer = reset_payload; |
2569 | |
2570 | obj = acpi_evaluate_dsm(handle, guid: &btintel_guid_dsm, rev: 0, |
2571 | func: DSM_SET_RESET_METHOD, argv4: &argv4); |
2572 | if (!obj) { |
2573 | bt_dev_err(hdev, "Failed to call dsm to set reset method"); |
2574 | return; |
2575 | } |
2576 | ACPI_FREE(obj); |
2577 | data->acpi_reset_method = btintel_acpi_reset_method; |
2578 | } |
2579 | |
2580 | static int btintel_bootloader_setup_tlv(struct hci_dev *hdev, |
2581 | struct intel_version_tlv *ver) |
2582 | { |
2583 | u32 boot_param; |
2584 | char ddcname[64]; |
2585 | int err; |
2586 | struct intel_version_tlv new_ver; |
2587 | |
2588 | bt_dev_dbg(hdev, ""); |
2589 | |
2590 | /* Set the default boot parameter to 0x0 and it is updated to |
2591 | * SKU specific boot parameter after reading Intel_Write_Boot_Params |
2592 | * command while downloading the firmware. |
2593 | */ |
2594 | boot_param = 0x00000000; |
2595 | |
2596 | btintel_set_flag(hdev, INTEL_BOOTLOADER); |
2597 | |
2598 | err = btintel_prepare_fw_download_tlv(hdev, ver, boot_param: &boot_param); |
2599 | if (err) |
2600 | return err; |
2601 | |
2602 | /* check if controller is already having an operational firmware */ |
2603 | if (ver->img_type == 0x03) |
2604 | goto finish; |
2605 | |
2606 | err = btintel_boot(hdev, boot_addr: boot_param); |
2607 | if (err) |
2608 | return err; |
2609 | |
2610 | btintel_clear_flag(hdev, INTEL_BOOTLOADER); |
2611 | |
2612 | btintel_get_fw_name_tlv(ver, fw_name: ddcname, len: sizeof(ddcname), suffix: "ddc"); |
2613 | /* Once the device is running in operational mode, it needs to |
2614 | * apply the device configuration (DDC) parameters. |
2615 | * |
2616 | * The device can work without DDC parameters, so even if it |
2617 | * fails to load the file, no need to fail the setup. |
2618 | */ |
2619 | btintel_load_ddc_config(hdev, ddcname); |
2620 | |
2621 | /* Read supported use cases and set callbacks to fetch datapath id */ |
2622 | btintel_configure_offload(hdev); |
2623 | |
2624 | hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); |
2625 | |
2626 | /* Set PPAG feature */ |
2627 | btintel_set_ppag(hdev, ver); |
2628 | |
2629 | /* Read the Intel version information after loading the FW */ |
2630 | err = btintel_read_version_tlv(hdev, version: &new_ver); |
2631 | if (err) |
2632 | return err; |
2633 | |
2634 | btintel_version_info_tlv(hdev, version: &new_ver); |
2635 | |
2636 | finish: |
2637 | /* Set the event mask for Intel specific vendor events. This enables |
2638 | * a few extra events that are useful during general operation. It |
2639 | * does not enable any debugging related events. |
2640 | * |
2641 | * The device will function correctly without these events enabled |
2642 | * and thus no need to fail the setup. |
2643 | */ |
2644 | btintel_set_event_mask(hdev, debug: false); |
2645 | |
2646 | return 0; |
2647 | } |
2648 | |
2649 | static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant) |
2650 | { |
2651 | switch (hw_variant) { |
2652 | /* Legacy bootloader devices that supports MSFT Extension */ |
2653 | case 0x11: /* JfP */ |
2654 | case 0x12: /* ThP */ |
2655 | case 0x13: /* HrP */ |
2656 | case 0x14: /* CcP */ |
2657 | /* All Intel new genration controllers support the Microsoft vendor |
2658 | * extension are using 0xFC1E for VsMsftOpCode. |
2659 | */ |
2660 | case 0x17: |
2661 | case 0x18: |
2662 | case 0x19: |
2663 | case 0x1b: |
2664 | case 0x1c: |
2665 | hci_set_msft_opcode(hdev, opcode: 0xFC1E); |
2666 | break; |
2667 | default: |
2668 | /* Not supported */ |
2669 | break; |
2670 | } |
2671 | } |
2672 | |
2673 | static void btintel_print_fseq_info(struct hci_dev *hdev) |
2674 | { |
2675 | struct sk_buff *skb; |
2676 | u8 *p; |
2677 | u32 val; |
2678 | const char *str; |
2679 | |
2680 | skb = __hci_cmd_sync(hdev, opcode: 0xfcb3, plen: 0, NULL, HCI_CMD_TIMEOUT); |
2681 | if (IS_ERR(ptr: skb)) { |
2682 | bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)", |
2683 | PTR_ERR(skb)); |
2684 | return; |
2685 | } |
2686 | |
2687 | if (skb->len < (sizeof(u32) * 16 + 2)) { |
2688 | bt_dev_dbg(hdev, "Malformed packet of length %u received", |
2689 | skb->len); |
2690 | kfree_skb(skb); |
2691 | return; |
2692 | } |
2693 | |
2694 | p = skb_pull_data(skb, len: 1); |
2695 | if (*p) { |
2696 | bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p); |
2697 | kfree_skb(skb); |
2698 | return; |
2699 | } |
2700 | |
2701 | p = skb_pull_data(skb, len: 1); |
2702 | switch (*p) { |
2703 | case 0: |
2704 | str = "Success"; |
2705 | break; |
2706 | case 1: |
2707 | str = "Fatal error"; |
2708 | break; |
2709 | case 2: |
2710 | str = "Semaphore acquire error"; |
2711 | break; |
2712 | default: |
2713 | str = "Unknown error"; |
2714 | break; |
2715 | } |
2716 | |
2717 | if (*p) { |
2718 | bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p); |
2719 | kfree_skb(skb); |
2720 | return; |
2721 | } |
2722 | |
2723 | bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p); |
2724 | |
2725 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2726 | bt_dev_dbg(hdev, "Reason: 0x%8.8x", val); |
2727 | |
2728 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2729 | bt_dev_dbg(hdev, "Global version: 0x%8.8x", val); |
2730 | |
2731 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2732 | bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val); |
2733 | |
2734 | p = skb->data; |
2735 | skb_pull_data(skb, len: 4); |
2736 | bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1], |
2737 | p[2], p[3]); |
2738 | |
2739 | p = skb->data; |
2740 | skb_pull_data(skb, len: 4); |
2741 | bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1], |
2742 | p[2], p[3]); |
2743 | |
2744 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2745 | bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val); |
2746 | |
2747 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2748 | bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val); |
2749 | |
2750 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2751 | bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val); |
2752 | |
2753 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2754 | bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val); |
2755 | |
2756 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2757 | bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val); |
2758 | |
2759 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2760 | bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val); |
2761 | |
2762 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2763 | bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val); |
2764 | |
2765 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2766 | bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val); |
2767 | |
2768 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2769 | bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val); |
2770 | |
2771 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2772 | bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val); |
2773 | |
2774 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2775 | bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val); |
2776 | |
2777 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2778 | bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val); |
2779 | |
2780 | val = get_unaligned_le32(p: skb_pull_data(skb, len: 4)); |
2781 | bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val); |
2782 | |
2783 | kfree_skb(skb); |
2784 | } |
2785 | |
2786 | static int btintel_setup_combined(struct hci_dev *hdev) |
2787 | { |
2788 | const u8 param[1] = { 0xFF }; |
2789 | struct intel_version ver; |
2790 | struct intel_version_tlv ver_tlv; |
2791 | struct sk_buff *skb; |
2792 | int err; |
2793 | |
2794 | BT_DBG("%s", hdev->name); |
2795 | |
2796 | /* The some controllers have a bug with the first HCI command sent to it |
2797 | * returning number of completed commands as zero. This would stall the |
2798 | * command processing in the Bluetooth core. |
2799 | * |
2800 | * As a workaround, send HCI Reset command first which will reset the |
2801 | * number of completed commands and allow normal command processing |
2802 | * from now on. |
2803 | * |
2804 | * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe |
2805 | * in the SW_RFKILL ON state as a workaround of fixing LED issue during |
2806 | * the shutdown() procedure, and once the device is in SW_RFKILL ON |
2807 | * state, the only way to exit out of it is sending the HCI_Reset |
2808 | * command. |
2809 | */ |
2810 | if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) || |
2811 | btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { |
2812 | skb = __hci_cmd_sync(hdev, HCI_OP_RESET, plen: 0, NULL, |
2813 | HCI_INIT_TIMEOUT); |
2814 | if (IS_ERR(ptr: skb)) { |
2815 | bt_dev_err(hdev, |
2816 | "sending initial HCI reset failed (%ld)", |
2817 | PTR_ERR(skb)); |
2818 | return PTR_ERR(ptr: skb); |
2819 | } |
2820 | kfree_skb(skb); |
2821 | } |
2822 | |
2823 | /* Starting from TyP device, the command parameter and response are |
2824 | * changed even though the OCF for HCI_Intel_Read_Version command |
2825 | * remains same. The legacy devices can handle even if the |
2826 | * command has a parameter and returns a correct version information. |
2827 | * So, it uses new format to support both legacy and new format. |
2828 | */ |
2829 | skb = __hci_cmd_sync(hdev, opcode: 0xfc05, plen: 1, param, HCI_CMD_TIMEOUT); |
2830 | if (IS_ERR(ptr: skb)) { |
2831 | bt_dev_err(hdev, "Reading Intel version command failed (%ld)", |
2832 | PTR_ERR(skb)); |
2833 | return PTR_ERR(ptr: skb); |
2834 | } |
2835 | |
2836 | /* Check the status */ |
2837 | if (skb->data[0]) { |
2838 | bt_dev_err(hdev, "Intel Read Version command failed (%02x)", |
2839 | skb->data[0]); |
2840 | err = -EIO; |
2841 | goto exit_error; |
2842 | } |
2843 | |
2844 | /* Apply the common HCI quirks for Intel device */ |
2845 | set_bit(nr: HCI_QUIRK_STRICT_DUPLICATE_FILTER, addr: &hdev->quirks); |
2846 | set_bit(nr: HCI_QUIRK_SIMULTANEOUS_DISCOVERY, addr: &hdev->quirks); |
2847 | set_bit(nr: HCI_QUIRK_NON_PERSISTENT_DIAG, addr: &hdev->quirks); |
2848 | |
2849 | /* Set up the quality report callback for Intel devices */ |
2850 | hdev->set_quality_report = btintel_set_quality_report; |
2851 | |
2852 | /* For Legacy device, check the HW platform value and size */ |
2853 | if (skb->len == sizeof(ver) && skb->data[1] == 0x37) { |
2854 | bt_dev_dbg(hdev, "Read the legacy Intel version information"); |
2855 | |
2856 | memcpy(&ver, skb->data, sizeof(ver)); |
2857 | |
2858 | /* Display version information */ |
2859 | btintel_version_info(hdev, &ver); |
2860 | |
2861 | /* Check for supported iBT hardware variants of this firmware |
2862 | * loading method. |
2863 | * |
2864 | * This check has been put in place to ensure correct forward |
2865 | * compatibility options when newer hardware variants come |
2866 | * along. |
2867 | */ |
2868 | switch (ver.hw_variant) { |
2869 | case 0x07: /* WP */ |
2870 | case 0x08: /* StP */ |
2871 | /* Legacy ROM product */ |
2872 | btintel_set_flag(hdev, INTEL_ROM_LEGACY); |
2873 | |
2874 | /* Apply the device specific HCI quirks |
2875 | * |
2876 | * WBS for SdP - For the Legacy ROM products, only SdP |
2877 | * supports the WBS. But the version information is not |
2878 | * enough to use here because the StP2 and SdP have same |
2879 | * hw_variant and fw_variant. So, this flag is set by |
2880 | * the transport driver (btusb) based on the HW info |
2881 | * (idProduct) |
2882 | */ |
2883 | if (!btintel_test_flag(hdev, |
2884 | INTEL_ROM_LEGACY_NO_WBS_SUPPORT)) |
2885 | set_bit(nr: HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, |
2886 | addr: &hdev->quirks); |
2887 | if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22) |
2888 | set_bit(nr: HCI_QUIRK_VALID_LE_STATES, |
2889 | addr: &hdev->quirks); |
2890 | |
2891 | err = btintel_legacy_rom_setup(hdev, ver: &ver); |
2892 | break; |
2893 | case 0x0b: /* SfP */ |
2894 | case 0x11: /* JfP */ |
2895 | case 0x12: /* ThP */ |
2896 | case 0x13: /* HrP */ |
2897 | case 0x14: /* CcP */ |
2898 | set_bit(nr: HCI_QUIRK_VALID_LE_STATES, addr: &hdev->quirks); |
2899 | fallthrough; |
2900 | case 0x0c: /* WsP */ |
2901 | /* Apply the device specific HCI quirks |
2902 | * |
2903 | * All Legacy bootloader devices support WBS |
2904 | */ |
2905 | set_bit(nr: HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, |
2906 | addr: &hdev->quirks); |
2907 | |
2908 | /* These variants don't seem to support LE Coded PHY */ |
2909 | set_bit(nr: HCI_QUIRK_BROKEN_LE_CODED, addr: &hdev->quirks); |
2910 | |
2911 | /* Setup MSFT Extension support */ |
2912 | btintel_set_msft_opcode(hdev, hw_variant: ver.hw_variant); |
2913 | |
2914 | err = btintel_bootloader_setup(hdev, ver: &ver); |
2915 | btintel_register_devcoredump_support(hdev); |
2916 | break; |
2917 | default: |
2918 | bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", |
2919 | ver.hw_variant); |
2920 | err = -EINVAL; |
2921 | } |
2922 | |
2923 | goto exit_error; |
2924 | } |
2925 | |
2926 | /* memset ver_tlv to start with clean state as few fields are exclusive |
2927 | * to bootloader mode and are not populated in operational mode |
2928 | */ |
2929 | memset(&ver_tlv, 0, sizeof(ver_tlv)); |
2930 | /* For TLV type device, parse the tlv data */ |
2931 | err = btintel_parse_version_tlv(hdev, version: &ver_tlv, skb); |
2932 | if (err) { |
2933 | bt_dev_err(hdev, "Failed to parse TLV version information"); |
2934 | goto exit_error; |
2935 | } |
2936 | |
2937 | if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) { |
2938 | bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", |
2939 | INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); |
2940 | err = -EINVAL; |
2941 | goto exit_error; |
2942 | } |
2943 | |
2944 | /* Check for supported iBT hardware variants of this firmware |
2945 | * loading method. |
2946 | * |
2947 | * This check has been put in place to ensure correct forward |
2948 | * compatibility options when newer hardware variants come |
2949 | * along. |
2950 | */ |
2951 | switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { |
2952 | case 0x11: /* JfP */ |
2953 | case 0x12: /* ThP */ |
2954 | case 0x13: /* HrP */ |
2955 | case 0x14: /* CcP */ |
2956 | /* Some legacy bootloader devices starting from JfP, |
2957 | * the operational firmware supports both old and TLV based |
2958 | * HCI_Intel_Read_Version command based on the command |
2959 | * parameter. |
2960 | * |
2961 | * For upgrading firmware case, the TLV based version cannot |
2962 | * be used because the firmware filename for legacy bootloader |
2963 | * is based on the old format. |
2964 | * |
2965 | * Also, it is not easy to convert TLV based version from the |
2966 | * legacy version format. |
2967 | * |
2968 | * So, as a workaround for those devices, use the legacy |
2969 | * HCI_Intel_Read_Version to get the version information and |
2970 | * run the legacy bootloader setup. |
2971 | */ |
2972 | err = btintel_read_version(hdev, &ver); |
2973 | if (err) |
2974 | break; |
2975 | |
2976 | /* Apply the device specific HCI quirks |
2977 | * |
2978 | * All Legacy bootloader devices support WBS |
2979 | */ |
2980 | set_bit(nr: HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, addr: &hdev->quirks); |
2981 | |
2982 | /* These variants don't seem to support LE Coded PHY */ |
2983 | set_bit(nr: HCI_QUIRK_BROKEN_LE_CODED, addr: &hdev->quirks); |
2984 | |
2985 | /* Set Valid LE States quirk */ |
2986 | set_bit(nr: HCI_QUIRK_VALID_LE_STATES, addr: &hdev->quirks); |
2987 | |
2988 | /* Setup MSFT Extension support */ |
2989 | btintel_set_msft_opcode(hdev, hw_variant: ver.hw_variant); |
2990 | |
2991 | err = btintel_bootloader_setup(hdev, ver: &ver); |
2992 | btintel_register_devcoredump_support(hdev); |
2993 | break; |
2994 | case 0x17: |
2995 | case 0x18: |
2996 | case 0x19: |
2997 | case 0x1b: |
2998 | case 0x1c: |
2999 | /* Display version information of TLV type */ |
3000 | btintel_version_info_tlv(hdev, version: &ver_tlv); |
3001 | |
3002 | /* Apply the device specific HCI quirks for TLV based devices |
3003 | * |
3004 | * All TLV based devices support WBS |
3005 | */ |
3006 | set_bit(nr: HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, addr: &hdev->quirks); |
3007 | |
3008 | /* Apply LE States quirk from solar onwards */ |
3009 | set_bit(nr: HCI_QUIRK_VALID_LE_STATES, addr: &hdev->quirks); |
3010 | |
3011 | /* Setup MSFT Extension support */ |
3012 | btintel_set_msft_opcode(hdev, |
3013 | INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
3014 | btintel_set_dsm_reset_method(hdev, ver_tlv: &ver_tlv); |
3015 | |
3016 | err = btintel_bootloader_setup_tlv(hdev, ver: &ver_tlv); |
3017 | btintel_register_devcoredump_support(hdev); |
3018 | btintel_print_fseq_info(hdev); |
3019 | break; |
3020 | default: |
3021 | bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", |
3022 | INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
3023 | err = -EINVAL; |
3024 | break; |
3025 | } |
3026 | |
3027 | exit_error: |
3028 | kfree_skb(skb); |
3029 | |
3030 | return err; |
3031 | } |
3032 | |
3033 | static int btintel_shutdown_combined(struct hci_dev *hdev) |
3034 | { |
3035 | struct sk_buff *skb; |
3036 | int ret; |
3037 | |
3038 | /* Send HCI Reset to the controller to stop any BT activity which |
3039 | * were triggered. This will help to save power and maintain the |
3040 | * sync b/w Host and controller |
3041 | */ |
3042 | skb = __hci_cmd_sync(hdev, HCI_OP_RESET, plen: 0, NULL, HCI_INIT_TIMEOUT); |
3043 | if (IS_ERR(ptr: skb)) { |
3044 | bt_dev_err(hdev, "HCI reset during shutdown failed"); |
3045 | return PTR_ERR(ptr: skb); |
3046 | } |
3047 | kfree_skb(skb); |
3048 | |
3049 | |
3050 | /* Some platforms have an issue with BT LED when the interface is |
3051 | * down or BT radio is turned off, which takes 5 seconds to BT LED |
3052 | * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the |
3053 | * device in the RFKILL ON state which turns off the BT LED immediately. |
3054 | */ |
3055 | if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { |
3056 | skb = __hci_cmd_sync(hdev, opcode: 0xfc3f, plen: 0, NULL, HCI_INIT_TIMEOUT); |
3057 | if (IS_ERR(ptr: skb)) { |
3058 | ret = PTR_ERR(ptr: skb); |
3059 | bt_dev_err(hdev, "turning off Intel device LED failed"); |
3060 | return ret; |
3061 | } |
3062 | kfree_skb(skb); |
3063 | } |
3064 | |
3065 | return 0; |
3066 | } |
3067 | |
3068 | int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name) |
3069 | { |
3070 | hdev->manufacturer = 2; |
3071 | hdev->setup = btintel_setup_combined; |
3072 | hdev->shutdown = btintel_shutdown_combined; |
3073 | hdev->hw_error = btintel_hw_error; |
3074 | hdev->set_diag = btintel_set_diag_combined; |
3075 | hdev->set_bdaddr = btintel_set_bdaddr; |
3076 | |
3077 | coredump_info.driver_name = driver_name; |
3078 | |
3079 | return 0; |
3080 | } |
3081 | EXPORT_SYMBOL_GPL(btintel_configure_setup); |
3082 | |
3083 | static int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb) |
3084 | { |
3085 | struct intel_tlv *tlv = (void *)&skb->data[5]; |
3086 | |
3087 | /* The first event is always an event type TLV */ |
3088 | if (tlv->type != INTEL_TLV_TYPE_ID) |
3089 | goto recv_frame; |
3090 | |
3091 | switch (tlv->val[0]) { |
3092 | case INTEL_TLV_SYSTEM_EXCEPTION: |
3093 | case INTEL_TLV_FATAL_EXCEPTION: |
3094 | case INTEL_TLV_DEBUG_EXCEPTION: |
3095 | case INTEL_TLV_TEST_EXCEPTION: |
3096 | /* Generate devcoredump from exception */ |
3097 | if (!hci_devcd_init(hdev, dump_size: skb->len)) { |
3098 | hci_devcd_append(hdev, skb); |
3099 | hci_devcd_complete(hdev); |
3100 | } else { |
3101 | bt_dev_err(hdev, "Failed to generate devcoredump"); |
3102 | kfree_skb(skb); |
3103 | } |
3104 | return 0; |
3105 | default: |
3106 | bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]); |
3107 | } |
3108 | |
3109 | recv_frame: |
3110 | return hci_recv_frame(hdev, skb); |
3111 | } |
3112 | |
3113 | int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) |
3114 | { |
3115 | struct hci_event_hdr *hdr = (void *)skb->data; |
3116 | const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 }; |
3117 | |
3118 | if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff && |
3119 | hdr->plen > 0) { |
3120 | const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1; |
3121 | unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1; |
3122 | |
3123 | if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
3124 | switch (skb->data[2]) { |
3125 | case 0x02: |
3126 | /* When switching to the operational firmware |
3127 | * the device sends a vendor specific event |
3128 | * indicating that the bootup completed. |
3129 | */ |
3130 | btintel_bootup(hdev, ptr, len); |
3131 | break; |
3132 | case 0x06: |
3133 | /* When the firmware loading completes the |
3134 | * device sends out a vendor specific event |
3135 | * indicating the result of the firmware |
3136 | * loading. |
3137 | */ |
3138 | btintel_secure_send_result(hdev, ptr, len); |
3139 | break; |
3140 | } |
3141 | } |
3142 | |
3143 | /* Handle all diagnostics events separately. May still call |
3144 | * hci_recv_frame. |
3145 | */ |
3146 | if (len >= sizeof(diagnostics_hdr) && |
3147 | memcmp(p: &skb->data[2], q: diagnostics_hdr, |
3148 | size: sizeof(diagnostics_hdr)) == 0) { |
3149 | return btintel_diagnostics(hdev, skb); |
3150 | } |
3151 | } |
3152 | |
3153 | return hci_recv_frame(hdev, skb); |
3154 | } |
3155 | EXPORT_SYMBOL_GPL(btintel_recv_event); |
3156 | |
3157 | void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len) |
3158 | { |
3159 | const struct intel_bootup *evt = ptr; |
3160 | |
3161 | if (len != sizeof(*evt)) |
3162 | return; |
3163 | |
3164 | if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING)) |
3165 | btintel_wake_up_flag(hdev, INTEL_BOOTING); |
3166 | } |
3167 | EXPORT_SYMBOL_GPL(btintel_bootup); |
3168 | |
3169 | void btintel_secure_send_result(struct hci_dev *hdev, |
3170 | const void *ptr, unsigned int len) |
3171 | { |
3172 | const struct intel_secure_send_result *evt = ptr; |
3173 | |
3174 | if (len != sizeof(*evt)) |
3175 | return; |
3176 | |
3177 | if (evt->result) |
3178 | btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED); |
3179 | |
3180 | if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) && |
3181 | btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED)) |
3182 | btintel_wake_up_flag(hdev, INTEL_DOWNLOADING); |
3183 | } |
3184 | EXPORT_SYMBOL_GPL(btintel_secure_send_result); |
3185 | |
3186 | MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); |
3187 | MODULE_DESCRIPTION("Bluetooth support for Intel devices ver "VERSION); |
3188 | MODULE_VERSION(VERSION); |
3189 | MODULE_LICENSE("GPL"); |
3190 | MODULE_FIRMWARE("intel/ibt-11-5.sfi"); |
3191 | MODULE_FIRMWARE("intel/ibt-11-5.ddc"); |
3192 | MODULE_FIRMWARE("intel/ibt-12-16.sfi"); |
3193 | MODULE_FIRMWARE("intel/ibt-12-16.ddc"); |
3194 |
Definitions
- btintel_ppag
- cmd_write_boot_params
- coredump_info
- btintel_guid_dsm
- btintel_check_bdaddr
- btintel_enter_mfg
- btintel_exit_mfg
- btintel_set_bdaddr
- btintel_set_event_mask
- btintel_set_diag
- btintel_set_diag_mfg
- btintel_set_diag_combined
- btintel_hw_error
- btintel_version_info
- btintel_secure_send
- btintel_load_ddc_config
- btintel_set_event_mask_mfg
- btintel_read_version
- btintel_version_info_tlv
- btintel_parse_version_tlv
- btintel_read_version_tlv
- regmap_ibt_context
- ibt_cp_reg_access
- ibt_rp_reg_access
- regmap_ibt_read
- regmap_ibt_gather_write
- regmap_ibt_write
- regmap_ibt_free_context
- regmap_ibt
- regmap_ibt_cfg
- btintel_regmap_init
- btintel_send_intel_reset
- btintel_read_boot_params
- btintel_sfi_rsa_header_secure_send
- btintel_sfi_ecdsa_header_secure_send
- btintel_download_firmware_payload
- btintel_firmware_version
- btintel_download_firmware
- btintel_download_fw_tlv
- btintel_reset_to_bootloader
- btintel_read_debug_features
- btintel_ppag_callback
- btintel_set_debug_features
- btintel_reset_debug_features
- btintel_set_quality_report
- btintel_coredump
- btintel_dmp_hdr
- btintel_register_devcoredump_support
- btintel_legacy_rom_get_fw
- btintel_legacy_rom_patching
- btintel_legacy_rom_setup
- btintel_download_wait
- btintel_boot_wait
- btintel_boot
- btintel_get_fw_name
- btintel_download_fw
- btintel_bootloader_setup
- btintel_get_fw_name_tlv
- btintel_prepare_fw_download_tlv
- btintel_get_codec_config_data
- btintel_get_data_path_id
- btintel_configure_offload
- btintel_set_ppag
- btintel_acpi_reset_method
- btintel_set_dsm_reset_method
- btintel_bootloader_setup_tlv
- btintel_set_msft_opcode
- btintel_print_fseq_info
- btintel_setup_combined
- btintel_shutdown_combined
- btintel_configure_setup
- btintel_diagnostics
- btintel_recv_event
- btintel_bootup
Improve your Profiling and Debugging skills
Find out more