1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
---|---|
2 | /* |
3 | * Definitions for the 'struct sk_buff' memory handlers. |
4 | * |
5 | * Authors: |
6 | * Alan Cox, <gw4pts@gw4pts.ampr.org> |
7 | * Florian La Roche, <rzsfl@rz.uni-sb.de> |
8 | */ |
9 | |
10 | #ifndef _LINUX_SKBUFF_H |
11 | #define _LINUX_SKBUFF_H |
12 | |
13 | #include <linux/kernel.h> |
14 | #include <linux/compiler.h> |
15 | #include <linux/time.h> |
16 | #include <linux/bug.h> |
17 | #include <linux/bvec.h> |
18 | #include <linux/cache.h> |
19 | #include <linux/rbtree.h> |
20 | #include <linux/socket.h> |
21 | #include <linux/refcount.h> |
22 | |
23 | #include <linux/atomic.h> |
24 | #include <asm/types.h> |
25 | #include <linux/spinlock.h> |
26 | #include <net/checksum.h> |
27 | #include <linux/rcupdate.h> |
28 | #include <linux/dma-mapping.h> |
29 | #include <linux/netdev_features.h> |
30 | #include <net/flow_dissector.h> |
31 | #include <linux/in6.h> |
32 | #include <linux/if_packet.h> |
33 | #include <linux/llist.h> |
34 | #include <linux/page_frag_cache.h> |
35 | #include <net/flow.h> |
36 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
37 | #include <linux/netfilter/nf_conntrack_common.h> |
38 | #endif |
39 | #include <net/net_debug.h> |
40 | #include <net/dropreason-core.h> |
41 | #include <net/netmem.h> |
42 | |
43 | /** |
44 | * DOC: skb checksums |
45 | * |
46 | * The interface for checksum offload between the stack and networking drivers |
47 | * is as follows... |
48 | * |
49 | * IP checksum related features |
50 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
51 | * |
52 | * Drivers advertise checksum offload capabilities in the features of a device. |
53 | * From the stack's point of view these are capabilities offered by the driver. |
54 | * A driver typically only advertises features that it is capable of offloading |
55 | * to its device. |
56 | * |
57 | * .. flat-table:: Checksum related device features |
58 | * :widths: 1 10 |
59 | * |
60 | * * - %NETIF_F_HW_CSUM |
61 | * - The driver (or its device) is able to compute one |
62 | * IP (one's complement) checksum for any combination |
63 | * of protocols or protocol layering. The checksum is |
64 | * computed and set in a packet per the CHECKSUM_PARTIAL |
65 | * interface (see below). |
66 | * |
67 | * * - %NETIF_F_IP_CSUM |
68 | * - Driver (device) is only able to checksum plain |
69 | * TCP or UDP packets over IPv4. These are specifically |
70 | * unencapsulated packets of the form IPv4|TCP or |
71 | * IPv4|UDP where the Protocol field in the IPv4 header |
72 | * is TCP or UDP. The IPv4 header may contain IP options. |
73 | * This feature cannot be set in features for a device |
74 | * with NETIF_F_HW_CSUM also set. This feature is being |
75 | * DEPRECATED (see below). |
76 | * |
77 | * * - %NETIF_F_IPV6_CSUM |
78 | * - Driver (device) is only able to checksum plain |
79 | * TCP or UDP packets over IPv6. These are specifically |
80 | * unencapsulated packets of the form IPv6|TCP or |
81 | * IPv6|UDP where the Next Header field in the IPv6 |
82 | * header is either TCP or UDP. IPv6 extension headers |
83 | * are not supported with this feature. This feature |
84 | * cannot be set in features for a device with |
85 | * NETIF_F_HW_CSUM also set. This feature is being |
86 | * DEPRECATED (see below). |
87 | * |
88 | * * - %NETIF_F_RXCSUM |
89 | * - Driver (device) performs receive checksum offload. |
90 | * This flag is only used to disable the RX checksum |
91 | * feature for a device. The stack will accept receive |
92 | * checksum indication in packets received on a device |
93 | * regardless of whether NETIF_F_RXCSUM is set. |
94 | * |
95 | * Checksumming of received packets by device |
96 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
97 | * |
98 | * Indication of checksum verification is set in &sk_buff.ip_summed. |
99 | * Possible values are: |
100 | * |
101 | * - %CHECKSUM_NONE |
102 | * |
103 | * Device did not checksum this packet e.g. due to lack of capabilities. |
104 | * The packet contains full (though not verified) checksum in packet but |
105 | * not in skb->csum. Thus, skb->csum is undefined in this case. |
106 | * |
107 | * - %CHECKSUM_UNNECESSARY |
108 | * |
109 | * The hardware you're dealing with doesn't calculate the full checksum |
110 | * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums |
111 | * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY |
112 | * if their checksums are okay. &sk_buff.csum is still undefined in this case |
113 | * though. A driver or device must never modify the checksum field in the |
114 | * packet even if checksum is verified. |
115 | * |
116 | * %CHECKSUM_UNNECESSARY is applicable to following protocols: |
117 | * |
118 | * - TCP: IPv6 and IPv4. |
119 | * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a |
120 | * zero UDP checksum for either IPv4 or IPv6, the networking stack |
121 | * may perform further validation in this case. |
122 | * - GRE: only if the checksum is present in the header. |
123 | * - SCTP: indicates the CRC in SCTP header has been validated. |
124 | * - FCOE: indicates the CRC in FC frame has been validated. |
125 | * |
126 | * &sk_buff.csum_level indicates the number of consecutive checksums found in |
127 | * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. |
128 | * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet |
129 | * and a device is able to verify the checksums for UDP (possibly zero), |
130 | * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to |
131 | * two. If the device were only able to verify the UDP checksum and not |
132 | * GRE, either because it doesn't support GRE checksum or because GRE |
133 | * checksum is bad, skb->csum_level would be set to zero (TCP checksum is |
134 | * not considered in this case). |
135 | * |
136 | * - %CHECKSUM_COMPLETE |
137 | * |
138 | * This is the most generic way. The device supplied checksum of the _whole_ |
139 | * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the |
140 | * hardware doesn't need to parse L3/L4 headers to implement this. |
141 | * |
142 | * Notes: |
143 | * |
144 | * - Even if device supports only some protocols, but is able to produce |
145 | * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. |
146 | * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. |
147 | * |
148 | * - %CHECKSUM_PARTIAL |
149 | * |
150 | * A checksum is set up to be offloaded to a device as described in the |
151 | * output description for CHECKSUM_PARTIAL. This may occur on a packet |
152 | * received directly from another Linux OS, e.g., a virtualized Linux kernel |
153 | * on the same host, or it may be set in the input path in GRO or remote |
154 | * checksum offload. For the purposes of checksum verification, the checksum |
155 | * referred to by skb->csum_start + skb->csum_offset and any preceding |
156 | * checksums in the packet are considered verified. Any checksums in the |
157 | * packet that are after the checksum being offloaded are not considered to |
158 | * be verified. |
159 | * |
160 | * Checksumming on transmit for non-GSO |
161 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
162 | * |
163 | * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. |
164 | * Values are: |
165 | * |
166 | * - %CHECKSUM_PARTIAL |
167 | * |
168 | * The driver is required to checksum the packet as seen by hard_start_xmit() |
169 | * from &sk_buff.csum_start up to the end, and to record/write the checksum at |
170 | * offset &sk_buff.csum_start + &sk_buff.csum_offset. |
171 | * A driver may verify that the |
172 | * csum_start and csum_offset values are valid values given the length and |
173 | * offset of the packet, but it should not attempt to validate that the |
174 | * checksum refers to a legitimate transport layer checksum -- it is the |
175 | * purview of the stack to validate that csum_start and csum_offset are set |
176 | * correctly. |
177 | * |
178 | * When the stack requests checksum offload for a packet, the driver MUST |
179 | * ensure that the checksum is set correctly. A driver can either offload the |
180 | * checksum calculation to the device, or call skb_checksum_help (in the case |
181 | * that the device does not support offload for a particular checksum). |
182 | * |
183 | * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of |
184 | * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate |
185 | * checksum offload capability. |
186 | * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based |
187 | * on network device checksumming capabilities: if a packet does not match |
188 | * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of |
189 | * &sk_buff.csum_not_inet, see :ref:`crc`) |
190 | * is called to resolve the checksum. |
191 | * |
192 | * - %CHECKSUM_NONE |
193 | * |
194 | * The skb was already checksummed by the protocol, or a checksum is not |
195 | * required. |
196 | * |
197 | * - %CHECKSUM_UNNECESSARY |
198 | * |
199 | * This has the same meaning as CHECKSUM_NONE for checksum offload on |
200 | * output. |
201 | * |
202 | * - %CHECKSUM_COMPLETE |
203 | * |
204 | * Not used in checksum output. If a driver observes a packet with this value |
205 | * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. |
206 | * |
207 | * .. _crc: |
208 | * |
209 | * Non-IP checksum (CRC) offloads |
210 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
211 | * |
212 | * .. flat-table:: |
213 | * :widths: 1 10 |
214 | * |
215 | * * - %NETIF_F_SCTP_CRC |
216 | * - This feature indicates that a device is capable of |
217 | * offloading the SCTP CRC in a packet. To perform this offload the stack |
218 | * will set csum_start and csum_offset accordingly, set ip_summed to |
219 | * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication |
220 | * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. |
221 | * A driver that supports both IP checksum offload and SCTP CRC32c offload |
222 | * must verify which offload is configured for a packet by testing the |
223 | * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to |
224 | * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. |
225 | * |
226 | * * - %NETIF_F_FCOE_CRC |
227 | * - This feature indicates that a device is capable of offloading the FCOE |
228 | * CRC in a packet. To perform this offload the stack will set ip_summed |
229 | * to %CHECKSUM_PARTIAL and set csum_start and csum_offset |
230 | * accordingly. Note that there is no indication in the skbuff that the |
231 | * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports |
232 | * both IP checksum offload and FCOE CRC offload must verify which offload |
233 | * is configured for a packet, presumably by inspecting packet headers. |
234 | * |
235 | * Checksumming on output with GSO |
236 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
237 | * |
238 | * In the case of a GSO packet (skb_is_gso() is true), checksum offload |
239 | * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the |
240 | * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as |
241 | * part of the GSO operation is implied. If a checksum is being offloaded |
242 | * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and |
243 | * csum_offset are set to refer to the outermost checksum being offloaded |
244 | * (two offloaded checksums are possible with UDP encapsulation). |
245 | */ |
246 | |
247 | /* Don't change this without changing skb_csum_unnecessary! */ |
248 | #define CHECKSUM_NONE 0 |
249 | #define CHECKSUM_UNNECESSARY 1 |
250 | #define CHECKSUM_COMPLETE 2 |
251 | #define CHECKSUM_PARTIAL 3 |
252 | |
253 | /* Maximum value in skb->csum_level */ |
254 | #define SKB_MAX_CSUM_LEVEL 3 |
255 | |
256 | #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) |
257 | #define SKB_WITH_OVERHEAD(X) \ |
258 | ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
259 | |
260 | /* For X bytes available in skb->head, what is the minimal |
261 | * allocation needed, knowing struct skb_shared_info needs |
262 | * to be aligned. |
263 | */ |
264 | #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ |
265 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
266 | |
267 | #define SKB_MAX_ORDER(X, ORDER) \ |
268 | SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) |
269 | #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) |
270 | #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) |
271 | |
272 | /* return minimum truesize of one skb containing X bytes of data */ |
273 | #define SKB_TRUESIZE(X) ((X) + \ |
274 | SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ |
275 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
276 | |
277 | struct net_device; |
278 | struct scatterlist; |
279 | struct pipe_inode_info; |
280 | struct iov_iter; |
281 | struct napi_struct; |
282 | struct bpf_prog; |
283 | union bpf_attr; |
284 | struct skb_ext; |
285 | struct ts_config; |
286 | |
287 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
288 | struct nf_bridge_info { |
289 | enum { |
290 | BRNF_PROTO_UNCHANGED, |
291 | BRNF_PROTO_8021Q, |
292 | BRNF_PROTO_PPPOE |
293 | } orig_proto:8; |
294 | u8 pkt_otherhost:1; |
295 | u8 in_prerouting:1; |
296 | u8 bridged_dnat:1; |
297 | u8 sabotage_in_done:1; |
298 | __u16 frag_max_size; |
299 | int physinif; |
300 | |
301 | /* always valid & non-NULL from FORWARD on, for physdev match */ |
302 | struct net_device *physoutdev; |
303 | union { |
304 | /* prerouting: detect dnat in orig/reply direction */ |
305 | __be32 ipv4_daddr; |
306 | struct in6_addr ipv6_daddr; |
307 | |
308 | /* after prerouting + nat detected: store original source |
309 | * mac since neigh resolution overwrites it, only used while |
310 | * skb is out in neigh layer. |
311 | */ |
312 | char neigh_header[8]; |
313 | }; |
314 | }; |
315 | #endif |
316 | |
317 | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) |
318 | /* Chain in tc_skb_ext will be used to share the tc chain with |
319 | * ovs recirc_id. It will be set to the current chain by tc |
320 | * and read by ovs to recirc_id. |
321 | */ |
322 | struct tc_skb_ext { |
323 | union { |
324 | u64 act_miss_cookie; |
325 | __u32 chain; |
326 | }; |
327 | __u16 mru; |
328 | __u16 zone; |
329 | u8 post_ct:1; |
330 | u8 post_ct_snat:1; |
331 | u8 post_ct_dnat:1; |
332 | u8 act_miss:1; /* Set if act_miss_cookie is used */ |
333 | u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ |
334 | }; |
335 | #endif |
336 | |
337 | struct sk_buff_head { |
338 | /* These two members must be first to match sk_buff. */ |
339 | struct_group_tagged(sk_buff_list, list, |
340 | struct sk_buff *next; |
341 | struct sk_buff *prev; |
342 | ); |
343 | |
344 | __u32 qlen; |
345 | spinlock_t lock; |
346 | }; |
347 | |
348 | struct sk_buff; |
349 | |
350 | #ifndef CONFIG_MAX_SKB_FRAGS |
351 | # define CONFIG_MAX_SKB_FRAGS 17 |
352 | #endif |
353 | |
354 | #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS |
355 | |
356 | /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to |
357 | * segment using its current segmentation instead. |
358 | */ |
359 | #define GSO_BY_FRAGS 0xFFFF |
360 | |
361 | typedef struct skb_frag { |
362 | netmem_ref netmem; |
363 | unsigned int len; |
364 | unsigned int offset; |
365 | } skb_frag_t; |
366 | |
367 | /** |
368 | * skb_frag_size() - Returns the size of a skb fragment |
369 | * @frag: skb fragment |
370 | */ |
371 | static inline unsigned int skb_frag_size(const skb_frag_t *frag) |
372 | { |
373 | return frag->len; |
374 | } |
375 | |
376 | /** |
377 | * skb_frag_size_set() - Sets the size of a skb fragment |
378 | * @frag: skb fragment |
379 | * @size: size of fragment |
380 | */ |
381 | static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) |
382 | { |
383 | frag->len = size; |
384 | } |
385 | |
386 | /** |
387 | * skb_frag_size_add() - Increments the size of a skb fragment by @delta |
388 | * @frag: skb fragment |
389 | * @delta: value to add |
390 | */ |
391 | static inline void skb_frag_size_add(skb_frag_t *frag, int delta) |
392 | { |
393 | frag->len += delta; |
394 | } |
395 | |
396 | /** |
397 | * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta |
398 | * @frag: skb fragment |
399 | * @delta: value to subtract |
400 | */ |
401 | static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) |
402 | { |
403 | frag->len -= delta; |
404 | } |
405 | |
406 | /** |
407 | * skb_frag_must_loop - Test if %p is a high memory page |
408 | * @p: fragment's page |
409 | */ |
410 | static inline bool skb_frag_must_loop(struct page *p) |
411 | { |
412 | #if defined(CONFIG_HIGHMEM) |
413 | if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) |
414 | return true; |
415 | #endif |
416 | return false; |
417 | } |
418 | |
419 | /** |
420 | * skb_frag_foreach_page - loop over pages in a fragment |
421 | * |
422 | * @f: skb frag to operate on |
423 | * @f_off: offset from start of f->netmem |
424 | * @f_len: length from f_off to loop over |
425 | * @p: (temp var) current page |
426 | * @p_off: (temp var) offset from start of current page, |
427 | * non-zero only on first page. |
428 | * @p_len: (temp var) length in current page, |
429 | * < PAGE_SIZE only on first and last page. |
430 | * @copied: (temp var) length so far, excluding current p_len. |
431 | * |
432 | * A fragment can hold a compound page, in which case per-page |
433 | * operations, notably kmap_atomic, must be called for each |
434 | * regular page. |
435 | */ |
436 | #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ |
437 | for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ |
438 | p_off = (f_off) & (PAGE_SIZE - 1), \ |
439 | p_len = skb_frag_must_loop(p) ? \ |
440 | min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ |
441 | copied = 0; \ |
442 | copied < f_len; \ |
443 | copied += p_len, p++, p_off = 0, \ |
444 | p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ |
445 | |
446 | /** |
447 | * struct skb_shared_hwtstamps - hardware time stamps |
448 | * @hwtstamp: hardware time stamp transformed into duration |
449 | * since arbitrary point in time |
450 | * @netdev_data: address/cookie of network device driver used as |
451 | * reference to actual hardware time stamp |
452 | * |
453 | * Software time stamps generated by ktime_get_real() are stored in |
454 | * skb->tstamp. |
455 | * |
456 | * hwtstamps can only be compared against other hwtstamps from |
457 | * the same device. |
458 | * |
459 | * This structure is attached to packets as part of the |
460 | * &skb_shared_info. Use skb_hwtstamps() to get a pointer. |
461 | */ |
462 | struct skb_shared_hwtstamps { |
463 | union { |
464 | ktime_t hwtstamp; |
465 | void *netdev_data; |
466 | }; |
467 | }; |
468 | |
469 | /* Definitions for tx_flags in struct skb_shared_info */ |
470 | enum { |
471 | /* generate hardware time stamp */ |
472 | SKBTX_HW_TSTAMP_NOBPF = 1 << 0, |
473 | |
474 | /* generate software time stamp when queueing packet to NIC */ |
475 | SKBTX_SW_TSTAMP = 1 << 1, |
476 | |
477 | /* device driver is going to provide hardware time stamp */ |
478 | SKBTX_IN_PROGRESS = 1 << 2, |
479 | |
480 | /* generate software time stamp on packet tx completion */ |
481 | SKBTX_COMPLETION_TSTAMP = 1 << 3, |
482 | |
483 | /* determine hardware time stamp based on time or cycles */ |
484 | SKBTX_HW_TSTAMP_NETDEV = 1 << 5, |
485 | |
486 | /* generate software time stamp when entering packet scheduling */ |
487 | SKBTX_SCHED_TSTAMP = 1 << 6, |
488 | |
489 | /* used for bpf extension when a bpf program is loaded */ |
490 | SKBTX_BPF = 1 << 7, |
491 | }; |
492 | |
493 | #define SKBTX_HW_TSTAMP (SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF) |
494 | |
495 | #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ |
496 | SKBTX_SCHED_TSTAMP | \ |
497 | SKBTX_BPF | \ |
498 | SKBTX_COMPLETION_TSTAMP) |
499 | #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ |
500 | SKBTX_ANY_SW_TSTAMP) |
501 | |
502 | /* Definitions for flags in struct skb_shared_info */ |
503 | enum { |
504 | /* use zcopy routines */ |
505 | SKBFL_ZEROCOPY_ENABLE = BIT(0), |
506 | |
507 | /* This indicates at least one fragment might be overwritten |
508 | * (as in vmsplice(), sendfile() ...) |
509 | * If we need to compute a TX checksum, we'll need to copy |
510 | * all frags to avoid possible bad checksum |
511 | */ |
512 | SKBFL_SHARED_FRAG = BIT(1), |
513 | |
514 | /* segment contains only zerocopy data and should not be |
515 | * charged to the kernel memory. |
516 | */ |
517 | SKBFL_PURE_ZEROCOPY = BIT(2), |
518 | |
519 | SKBFL_DONT_ORPHAN = BIT(3), |
520 | |
521 | /* page references are managed by the ubuf_info, so it's safe to |
522 | * use frags only up until ubuf_info is released |
523 | */ |
524 | SKBFL_MANAGED_FRAG_REFS = BIT(4), |
525 | }; |
526 | |
527 | #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) |
528 | #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ |
529 | SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) |
530 | |
531 | struct ubuf_info_ops { |
532 | void (*complete)(struct sk_buff *, struct ubuf_info *, |
533 | bool zerocopy_success); |
534 | /* has to be compatible with skb_zcopy_set() */ |
535 | int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); |
536 | }; |
537 | |
538 | /* |
539 | * The callback notifies userspace to release buffers when skb DMA is done in |
540 | * lower device, the skb last reference should be 0 when calling this. |
541 | * The zerocopy_success argument is true if zero copy transmit occurred, |
542 | * false on data copy or out of memory error caused by data copy attempt. |
543 | * The ctx field is used to track device context. |
544 | * The desc field is used to track userspace buffer index. |
545 | */ |
546 | struct ubuf_info { |
547 | const struct ubuf_info_ops *ops; |
548 | refcount_t refcnt; |
549 | u8 flags; |
550 | }; |
551 | |
552 | struct ubuf_info_msgzc { |
553 | struct ubuf_info ubuf; |
554 | |
555 | union { |
556 | struct { |
557 | unsigned long desc; |
558 | void *ctx; |
559 | }; |
560 | struct { |
561 | u32 id; |
562 | u16 len; |
563 | u16 zerocopy:1; |
564 | u32 bytelen; |
565 | }; |
566 | }; |
567 | |
568 | struct mmpin { |
569 | struct user_struct *user; |
570 | unsigned int num_pg; |
571 | } mmp; |
572 | }; |
573 | |
574 | #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) |
575 | #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ |
576 | ubuf) |
577 | |
578 | int mm_account_pinned_pages(struct mmpin *mmp, size_t size); |
579 | void mm_unaccount_pinned_pages(struct mmpin *mmp); |
580 | |
581 | /* Preserve some data across TX submission and completion. |
582 | * |
583 | * Note, this state is stored in the driver. Extending the layout |
584 | * might need some special care. |
585 | */ |
586 | struct xsk_tx_metadata_compl { |
587 | __u64 *tx_timestamp; |
588 | }; |
589 | |
590 | /* This data is invariant across clones and lives at |
591 | * the end of the header data, ie. at skb->end. |
592 | */ |
593 | struct skb_shared_info { |
594 | __u8 flags; |
595 | __u8 meta_len; |
596 | __u8 nr_frags; |
597 | __u8 tx_flags; |
598 | unsigned short gso_size; |
599 | /* Warning: this field is not always filled in (UFO)! */ |
600 | unsigned short gso_segs; |
601 | struct sk_buff *frag_list; |
602 | union { |
603 | struct skb_shared_hwtstamps hwtstamps; |
604 | struct xsk_tx_metadata_compl xsk_meta; |
605 | }; |
606 | unsigned int gso_type; |
607 | u32 tskey; |
608 | |
609 | /* |
610 | * Warning : all fields before dataref are cleared in __alloc_skb() |
611 | */ |
612 | atomic_t dataref; |
613 | |
614 | union { |
615 | struct { |
616 | u32 xdp_frags_size; |
617 | u32 xdp_frags_truesize; |
618 | }; |
619 | |
620 | /* |
621 | * Intermediate layers must ensure that destructor_arg |
622 | * remains valid until skb destructor. |
623 | */ |
624 | void *destructor_arg; |
625 | }; |
626 | |
627 | /* must be last field, see pskb_expand_head() */ |
628 | skb_frag_t frags[MAX_SKB_FRAGS]; |
629 | }; |
630 | |
631 | /** |
632 | * DOC: dataref and headerless skbs |
633 | * |
634 | * Transport layers send out clones of payload skbs they hold for |
635 | * retransmissions. To allow lower layers of the stack to prepend their headers |
636 | * we split &skb_shared_info.dataref into two halves. |
637 | * The lower 16 bits count the overall number of references. |
638 | * The higher 16 bits indicate how many of the references are payload-only. |
639 | * skb_header_cloned() checks if skb is allowed to add / write the headers. |
640 | * |
641 | * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr |
642 | * (via __skb_header_release()). Any clone created from marked skb will get |
643 | * &sk_buff.hdr_len populated with the available headroom. |
644 | * If there's the only clone in existence it's able to modify the headroom |
645 | * at will. The sequence of calls inside the transport layer is:: |
646 | * |
647 | * <alloc skb> |
648 | * skb_reserve() |
649 | * __skb_header_release() |
650 | * skb_clone() |
651 | * // send the clone down the stack |
652 | * |
653 | * This is not a very generic construct and it depends on the transport layers |
654 | * doing the right thing. In practice there's usually only one payload-only skb. |
655 | * Having multiple payload-only skbs with different lengths of hdr_len is not |
656 | * possible. The payload-only skbs should never leave their owner. |
657 | */ |
658 | #define SKB_DATAREF_SHIFT 16 |
659 | #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) |
660 | |
661 | |
662 | enum { |
663 | SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ |
664 | SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ |
665 | SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ |
666 | }; |
667 | |
668 | enum { |
669 | SKB_GSO_TCPV4 = 1 << 0, |
670 | |
671 | /* This indicates the skb is from an untrusted source. */ |
672 | SKB_GSO_DODGY = 1 << 1, |
673 | |
674 | /* This indicates the tcp segment has CWR set. */ |
675 | SKB_GSO_TCP_ECN = 1 << 2, |
676 | |
677 | SKB_GSO_TCP_FIXEDID = 1 << 3, |
678 | |
679 | SKB_GSO_TCPV6 = 1 << 4, |
680 | |
681 | SKB_GSO_FCOE = 1 << 5, |
682 | |
683 | SKB_GSO_GRE = 1 << 6, |
684 | |
685 | SKB_GSO_GRE_CSUM = 1 << 7, |
686 | |
687 | SKB_GSO_IPXIP4 = 1 << 8, |
688 | |
689 | SKB_GSO_IPXIP6 = 1 << 9, |
690 | |
691 | SKB_GSO_UDP_TUNNEL = 1 << 10, |
692 | |
693 | SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, |
694 | |
695 | SKB_GSO_PARTIAL = 1 << 12, |
696 | |
697 | SKB_GSO_TUNNEL_REMCSUM = 1 << 13, |
698 | |
699 | SKB_GSO_SCTP = 1 << 14, |
700 | |
701 | SKB_GSO_ESP = 1 << 15, |
702 | |
703 | SKB_GSO_UDP = 1 << 16, |
704 | |
705 | SKB_GSO_UDP_L4 = 1 << 17, |
706 | |
707 | SKB_GSO_FRAGLIST = 1 << 18, |
708 | |
709 | SKB_GSO_TCP_ACCECN = 1 << 19, |
710 | }; |
711 | |
712 | #if BITS_PER_LONG > 32 |
713 | #define NET_SKBUFF_DATA_USES_OFFSET 1 |
714 | #endif |
715 | |
716 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
717 | typedef unsigned int sk_buff_data_t; |
718 | #else |
719 | typedef unsigned char *sk_buff_data_t; |
720 | #endif |
721 | |
722 | enum skb_tstamp_type { |
723 | SKB_CLOCK_REALTIME, |
724 | SKB_CLOCK_MONOTONIC, |
725 | SKB_CLOCK_TAI, |
726 | __SKB_CLOCK_MAX = SKB_CLOCK_TAI, |
727 | }; |
728 | |
729 | /** |
730 | * DOC: Basic sk_buff geometry |
731 | * |
732 | * struct sk_buff itself is a metadata structure and does not hold any packet |
733 | * data. All the data is held in associated buffers. |
734 | * |
735 | * &sk_buff.head points to the main "head" buffer. The head buffer is divided |
736 | * into two parts: |
737 | * |
738 | * - data buffer, containing headers and sometimes payload; |
739 | * this is the part of the skb operated on by the common helpers |
740 | * such as skb_put() or skb_pull(); |
741 | * - shared info (struct skb_shared_info) which holds an array of pointers |
742 | * to read-only data in the (page, offset, length) format. |
743 | * |
744 | * Optionally &skb_shared_info.frag_list may point to another skb. |
745 | * |
746 | * Basic diagram may look like this:: |
747 | * |
748 | * --------------- |
749 | * | sk_buff | |
750 | * --------------- |
751 | * ,--------------------------- + head |
752 | * / ,----------------- + data |
753 | * / / ,----------- + tail |
754 | * | | | , + end |
755 | * | | | | |
756 | * v v v v |
757 | * ----------------------------------------------- |
758 | * | headroom | data | tailroom | skb_shared_info | |
759 | * ----------------------------------------------- |
760 | * + [page frag] |
761 | * + [page frag] |
762 | * + [page frag] |
763 | * + [page frag] --------- |
764 | * + frag_list --> | sk_buff | |
765 | * --------- |
766 | * |
767 | */ |
768 | |
769 | /** |
770 | * struct sk_buff - socket buffer |
771 | * @next: Next buffer in list |
772 | * @prev: Previous buffer in list |
773 | * @tstamp: Time we arrived/left |
774 | * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point |
775 | * for retransmit timer |
776 | * @rbnode: RB tree node, alternative to next/prev for netem/tcp |
777 | * @list: queue head |
778 | * @ll_node: anchor in an llist (eg socket defer_list) |
779 | * @sk: Socket we are owned by |
780 | * @dev: Device we arrived on/are leaving by |
781 | * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL |
782 | * @cb: Control buffer. Free for use by every layer. Put private vars here |
783 | * @_skb_refdst: destination entry (with norefcount bit) |
784 | * @len: Length of actual data |
785 | * @data_len: Data length |
786 | * @mac_len: Length of link layer header |
787 | * @hdr_len: writable header length of cloned skb |
788 | * @csum: Checksum (must include start/offset pair) |
789 | * @csum_start: Offset from skb->head where checksumming should start |
790 | * @csum_offset: Offset from csum_start where checksum should be stored |
791 | * @priority: Packet queueing priority |
792 | * @ignore_df: allow local fragmentation |
793 | * @cloned: Head may be cloned (check refcnt to be sure) |
794 | * @ip_summed: Driver fed us an IP checksum |
795 | * @nohdr: Payload reference only, must not modify header |
796 | * @pkt_type: Packet class |
797 | * @fclone: skbuff clone status |
798 | * @ipvs_property: skbuff is owned by ipvs |
799 | * @inner_protocol_type: whether the inner protocol is |
800 | * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO |
801 | * @remcsum_offload: remote checksum offload is enabled |
802 | * @offload_fwd_mark: Packet was L2-forwarded in hardware |
803 | * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware |
804 | * @tc_skip_classify: do not classify packet. set by IFB device |
805 | * @tc_at_ingress: used within tc_classify to distinguish in/egress |
806 | * @redirected: packet was redirected by packet classifier |
807 | * @from_ingress: packet was redirected from the ingress path |
808 | * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h |
809 | * @peeked: this packet has been seen already, so stats have been |
810 | * done for it, don't do them again |
811 | * @nf_trace: netfilter packet trace flag |
812 | * @protocol: Packet protocol from driver |
813 | * @destructor: Destruct function |
814 | * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) |
815 | * @_sk_redir: socket redirection information for skmsg |
816 | * @_nfct: Associated connection, if any (with nfctinfo bits) |
817 | * @skb_iif: ifindex of device we arrived on |
818 | * @tc_index: Traffic control index |
819 | * @hash: the packet hash |
820 | * @queue_mapping: Queue mapping for multiqueue devices |
821 | * @head_frag: skb was allocated from page fragments, |
822 | * not allocated by kmalloc() or vmalloc(). |
823 | * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves |
824 | * @pp_recycle: mark the packet for recycling instead of freeing (implies |
825 | * page_pool support on driver) |
826 | * @active_extensions: active extensions (skb_ext_id types) |
827 | * @ndisc_nodetype: router type (from link layer) |
828 | * @ooo_okay: allow the mapping of a socket to a queue to be changed |
829 | * @l4_hash: indicate hash is a canonical 4-tuple hash over transport |
830 | * ports. |
831 | * @sw_hash: indicates hash was computed in software stack |
832 | * @wifi_acked_valid: wifi_acked was set |
833 | * @wifi_acked: whether frame was acked on wifi or not |
834 | * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS |
835 | * @encapsulation: indicates the inner headers in the skbuff are valid |
836 | * @encap_hdr_csum: software checksum is needed |
837 | * @csum_valid: checksum is already valid |
838 | * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL |
839 | * @csum_complete_sw: checksum was completed by software |
840 | * @csum_level: indicates the number of consecutive checksums found in |
841 | * the packet minus one that have been verified as |
842 | * CHECKSUM_UNNECESSARY (max 3) |
843 | * @unreadable: indicates that at least 1 of the fragments in this skb is |
844 | * unreadable. |
845 | * @dst_pending_confirm: need to confirm neighbour |
846 | * @decrypted: Decrypted SKB |
847 | * @slow_gro: state present at GRO time, slower prepare step required |
848 | * @tstamp_type: When set, skb->tstamp has the |
849 | * delivery_time clock base of skb->tstamp. |
850 | * @napi_id: id of the NAPI struct this skb came from |
851 | * @sender_cpu: (aka @napi_id) source CPU in XPS |
852 | * @alloc_cpu: CPU which did the skb allocation. |
853 | * @secmark: security marking |
854 | * @mark: Generic packet mark |
855 | * @reserved_tailroom: (aka @mark) number of bytes of free space available |
856 | * at the tail of an sk_buff |
857 | * @vlan_all: vlan fields (proto & tci) |
858 | * @vlan_proto: vlan encapsulation protocol |
859 | * @vlan_tci: vlan tag control information |
860 | * @inner_protocol: Protocol (encapsulation) |
861 | * @inner_ipproto: (aka @inner_protocol) stores ipproto when |
862 | * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; |
863 | * @inner_transport_header: Inner transport layer header (encapsulation) |
864 | * @inner_network_header: Network layer header (encapsulation) |
865 | * @inner_mac_header: Link layer header (encapsulation) |
866 | * @transport_header: Transport layer header |
867 | * @network_header: Network layer header |
868 | * @mac_header: Link layer header |
869 | * @kcov_handle: KCOV remote handle for remote coverage collection |
870 | * @tail: Tail pointer |
871 | * @end: End pointer |
872 | * @head: Head of buffer |
873 | * @data: Data head pointer |
874 | * @truesize: Buffer size |
875 | * @users: User count - see {datagram,tcp}.c |
876 | * @extensions: allocated extensions, valid if active_extensions is nonzero |
877 | */ |
878 | |
879 | struct sk_buff { |
880 | union { |
881 | struct { |
882 | /* These two members must be first to match sk_buff_head. */ |
883 | struct sk_buff *next; |
884 | struct sk_buff *prev; |
885 | |
886 | union { |
887 | struct net_device *dev; |
888 | /* Some protocols might use this space to store information, |
889 | * while device pointer would be NULL. |
890 | * UDP receive path is one user. |
891 | */ |
892 | unsigned long dev_scratch; |
893 | }; |
894 | }; |
895 | struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ |
896 | struct list_head list; |
897 | struct llist_node ll_node; |
898 | }; |
899 | |
900 | struct sock *sk; |
901 | |
902 | union { |
903 | ktime_t tstamp; |
904 | u64 skb_mstamp_ns; /* earliest departure time */ |
905 | }; |
906 | /* |
907 | * This is the control buffer. It is free to use for every |
908 | * layer. Please put your private variables there. If you |
909 | * want to keep them across layers you have to do a skb_clone() |
910 | * first. This is owned by whoever has the skb queued ATM. |
911 | */ |
912 | char cb[48] __aligned(8); |
913 | |
914 | union { |
915 | struct { |
916 | unsigned long _skb_refdst; |
917 | void (*destructor)(struct sk_buff *skb); |
918 | }; |
919 | struct list_head tcp_tsorted_anchor; |
920 | #ifdef CONFIG_NET_SOCK_MSG |
921 | unsigned long _sk_redir; |
922 | #endif |
923 | }; |
924 | |
925 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
926 | unsigned long _nfct; |
927 | #endif |
928 | unsigned int len, |
929 | data_len; |
930 | __u16 mac_len, |
931 | hdr_len; |
932 | |
933 | /* Following fields are _not_ copied in __copy_skb_header() |
934 | * Note that queue_mapping is here mostly to fill a hole. |
935 | */ |
936 | __u16 queue_mapping; |
937 | |
938 | /* if you move cloned around you also must adapt those constants */ |
939 | #ifdef __BIG_ENDIAN_BITFIELD |
940 | #define CLONED_MASK (1 << 7) |
941 | #else |
942 | #define CLONED_MASK 1 |
943 | #endif |
944 | #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) |
945 | |
946 | /* private: */ |
947 | __u8 __cloned_offset[0]; |
948 | /* public: */ |
949 | __u8 cloned:1, |
950 | nohdr:1, |
951 | fclone:2, |
952 | peeked:1, |
953 | head_frag:1, |
954 | pfmemalloc:1, |
955 | pp_recycle:1; /* page_pool recycle indicator */ |
956 | #ifdef CONFIG_SKB_EXTENSIONS |
957 | __u8 active_extensions; |
958 | #endif |
959 | |
960 | /* Fields enclosed in headers group are copied |
961 | * using a single memcpy() in __copy_skb_header() |
962 | */ |
963 | struct_group(headers, |
964 | |
965 | /* private: */ |
966 | __u8 __pkt_type_offset[0]; |
967 | /* public: */ |
968 | __u8 pkt_type:3; /* see PKT_TYPE_MAX */ |
969 | __u8 ignore_df:1; |
970 | __u8 dst_pending_confirm:1; |
971 | __u8 ip_summed:2; |
972 | __u8 ooo_okay:1; |
973 | |
974 | /* private: */ |
975 | __u8 __mono_tc_offset[0]; |
976 | /* public: */ |
977 | __u8 tstamp_type:2; /* See skb_tstamp_type */ |
978 | #ifdef CONFIG_NET_XGRESS |
979 | __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ |
980 | __u8 tc_skip_classify:1; |
981 | #endif |
982 | __u8 remcsum_offload:1; |
983 | __u8 csum_complete_sw:1; |
984 | __u8 csum_level:2; |
985 | __u8 inner_protocol_type:1; |
986 | |
987 | __u8 l4_hash:1; |
988 | __u8 sw_hash:1; |
989 | #ifdef CONFIG_WIRELESS |
990 | __u8 wifi_acked_valid:1; |
991 | __u8 wifi_acked:1; |
992 | #endif |
993 | __u8 no_fcs:1; |
994 | /* Indicates the inner headers are valid in the skbuff. */ |
995 | __u8 encapsulation:1; |
996 | __u8 encap_hdr_csum:1; |
997 | __u8 csum_valid:1; |
998 | #ifdef CONFIG_IPV6_NDISC_NODETYPE |
999 | __u8 ndisc_nodetype:2; |
1000 | #endif |
1001 | |
1002 | #if IS_ENABLED(CONFIG_IP_VS) |
1003 | __u8 ipvs_property:1; |
1004 | #endif |
1005 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) |
1006 | __u8 nf_trace:1; |
1007 | #endif |
1008 | #ifdef CONFIG_NET_SWITCHDEV |
1009 | __u8 offload_fwd_mark:1; |
1010 | __u8 offload_l3_fwd_mark:1; |
1011 | #endif |
1012 | __u8 redirected:1; |
1013 | #ifdef CONFIG_NET_REDIRECT |
1014 | __u8 from_ingress:1; |
1015 | #endif |
1016 | #ifdef CONFIG_NETFILTER_SKIP_EGRESS |
1017 | __u8 nf_skip_egress:1; |
1018 | #endif |
1019 | #ifdef CONFIG_SKB_DECRYPTED |
1020 | __u8 decrypted:1; |
1021 | #endif |
1022 | __u8 slow_gro:1; |
1023 | #if IS_ENABLED(CONFIG_IP_SCTP) |
1024 | __u8 csum_not_inet:1; |
1025 | #endif |
1026 | __u8 unreadable:1; |
1027 | #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) |
1028 | __u16 tc_index; /* traffic control index */ |
1029 | #endif |
1030 | |
1031 | u16 alloc_cpu; |
1032 | |
1033 | union { |
1034 | __wsum csum; |
1035 | struct { |
1036 | __u16 csum_start; |
1037 | __u16 csum_offset; |
1038 | }; |
1039 | }; |
1040 | __u32 priority; |
1041 | int skb_iif; |
1042 | __u32 hash; |
1043 | union { |
1044 | u32 vlan_all; |
1045 | struct { |
1046 | __be16 vlan_proto; |
1047 | __u16 vlan_tci; |
1048 | }; |
1049 | }; |
1050 | #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) |
1051 | union { |
1052 | unsigned int napi_id; |
1053 | unsigned int sender_cpu; |
1054 | }; |
1055 | #endif |
1056 | #ifdef CONFIG_NETWORK_SECMARK |
1057 | __u32 secmark; |
1058 | #endif |
1059 | |
1060 | union { |
1061 | __u32 mark; |
1062 | __u32 reserved_tailroom; |
1063 | }; |
1064 | |
1065 | union { |
1066 | __be16 inner_protocol; |
1067 | __u8 inner_ipproto; |
1068 | }; |
1069 | |
1070 | __u16 inner_transport_header; |
1071 | __u16 inner_network_header; |
1072 | __u16 inner_mac_header; |
1073 | |
1074 | __be16 protocol; |
1075 | __u16 transport_header; |
1076 | __u16 network_header; |
1077 | __u16 mac_header; |
1078 | |
1079 | #ifdef CONFIG_KCOV |
1080 | u64 kcov_handle; |
1081 | #endif |
1082 | |
1083 | ); /* end headers group */ |
1084 | |
1085 | /* These elements must be at the end, see alloc_skb() for details. */ |
1086 | sk_buff_data_t tail; |
1087 | sk_buff_data_t end; |
1088 | unsigned char *head, |
1089 | *data; |
1090 | unsigned int truesize; |
1091 | refcount_t users; |
1092 | |
1093 | #ifdef CONFIG_SKB_EXTENSIONS |
1094 | /* only usable after checking ->active_extensions != 0 */ |
1095 | struct skb_ext *extensions; |
1096 | #endif |
1097 | }; |
1098 | |
1099 | /* if you move pkt_type around you also must adapt those constants */ |
1100 | #ifdef __BIG_ENDIAN_BITFIELD |
1101 | #define PKT_TYPE_MAX (7 << 5) |
1102 | #else |
1103 | #define PKT_TYPE_MAX 7 |
1104 | #endif |
1105 | #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) |
1106 | |
1107 | /* if you move tc_at_ingress or tstamp_type |
1108 | * around, you also must adapt these constants. |
1109 | */ |
1110 | #ifdef __BIG_ENDIAN_BITFIELD |
1111 | #define SKB_TSTAMP_TYPE_MASK (3 << 6) |
1112 | #define SKB_TSTAMP_TYPE_RSHIFT (6) |
1113 | #define TC_AT_INGRESS_MASK (1 << 5) |
1114 | #else |
1115 | #define SKB_TSTAMP_TYPE_MASK (3) |
1116 | #define TC_AT_INGRESS_MASK (1 << 2) |
1117 | #endif |
1118 | #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) |
1119 | |
1120 | #ifdef __KERNEL__ |
1121 | /* |
1122 | * Handling routines are only of interest to the kernel |
1123 | */ |
1124 | |
1125 | #define SKB_ALLOC_FCLONE 0x01 |
1126 | #define SKB_ALLOC_RX 0x02 |
1127 | #define SKB_ALLOC_NAPI 0x04 |
1128 | |
1129 | /** |
1130 | * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves |
1131 | * @skb: buffer |
1132 | */ |
1133 | static inline bool skb_pfmemalloc(const struct sk_buff *skb) |
1134 | { |
1135 | return unlikely(skb->pfmemalloc); |
1136 | } |
1137 | |
1138 | /* |
1139 | * skb might have a dst pointer attached, refcounted or not. |
1140 | * _skb_refdst low order bit is set if refcount was _not_ taken |
1141 | */ |
1142 | #define SKB_DST_NOREF 1UL |
1143 | #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) |
1144 | |
1145 | /** |
1146 | * skb_dst - returns skb dst_entry |
1147 | * @skb: buffer |
1148 | * |
1149 | * Returns: skb dst_entry, regardless of reference taken or not. |
1150 | */ |
1151 | static inline struct dst_entry *skb_dst(const struct sk_buff *skb) |
1152 | { |
1153 | /* If refdst was not refcounted, check we still are in a |
1154 | * rcu_read_lock section |
1155 | */ |
1156 | WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && |
1157 | !rcu_read_lock_held() && |
1158 | !rcu_read_lock_bh_held()); |
1159 | return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); |
1160 | } |
1161 | |
1162 | /** |
1163 | * skb_dst_set - sets skb dst |
1164 | * @skb: buffer |
1165 | * @dst: dst entry |
1166 | * |
1167 | * Sets skb dst, assuming a reference was taken on dst and should |
1168 | * be released by skb_dst_drop() |
1169 | */ |
1170 | static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) |
1171 | { |
1172 | skb->slow_gro |= !!dst; |
1173 | skb->_skb_refdst = (unsigned long)dst; |
1174 | } |
1175 | |
1176 | /** |
1177 | * skb_dst_set_noref - sets skb dst, hopefully, without taking reference |
1178 | * @skb: buffer |
1179 | * @dst: dst entry |
1180 | * |
1181 | * Sets skb dst, assuming a reference was not taken on dst. |
1182 | * If dst entry is cached, we do not take reference and dst_release |
1183 | * will be avoided by refdst_drop. If dst entry is not cached, we take |
1184 | * reference, so that last dst_release can destroy the dst immediately. |
1185 | */ |
1186 | static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) |
1187 | { |
1188 | WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
1189 | skb->slow_gro |= !!dst; |
1190 | skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; |
1191 | } |
1192 | |
1193 | /** |
1194 | * skb_dst_is_noref - Test if skb dst isn't refcounted |
1195 | * @skb: buffer |
1196 | */ |
1197 | static inline bool skb_dst_is_noref(const struct sk_buff *skb) |
1198 | { |
1199 | return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); |
1200 | } |
1201 | |
1202 | /* For mangling skb->pkt_type from user space side from applications |
1203 | * such as nft, tc, etc, we only allow a conservative subset of |
1204 | * possible pkt_types to be set. |
1205 | */ |
1206 | static inline bool skb_pkt_type_ok(u32 ptype) |
1207 | { |
1208 | return ptype <= PACKET_OTHERHOST; |
1209 | } |
1210 | |
1211 | /** |
1212 | * skb_napi_id - Returns the skb's NAPI id |
1213 | * @skb: buffer |
1214 | */ |
1215 | static inline unsigned int skb_napi_id(const struct sk_buff *skb) |
1216 | { |
1217 | #ifdef CONFIG_NET_RX_BUSY_POLL |
1218 | return skb->napi_id; |
1219 | #else |
1220 | return 0; |
1221 | #endif |
1222 | } |
1223 | |
1224 | static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) |
1225 | { |
1226 | #ifdef CONFIG_WIRELESS |
1227 | return skb->wifi_acked_valid; |
1228 | #else |
1229 | return 0; |
1230 | #endif |
1231 | } |
1232 | |
1233 | /** |
1234 | * skb_unref - decrement the skb's reference count |
1235 | * @skb: buffer |
1236 | * |
1237 | * Returns: true if we can free the skb. |
1238 | */ |
1239 | static inline bool skb_unref(struct sk_buff *skb) |
1240 | { |
1241 | if (unlikely(!skb)) |
1242 | return false; |
1243 | if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1)) |
1244 | smp_rmb(); |
1245 | else if (likely(!refcount_dec_and_test(&skb->users))) |
1246 | return false; |
1247 | |
1248 | return true; |
1249 | } |
1250 | |
1251 | static inline bool skb_data_unref(const struct sk_buff *skb, |
1252 | struct skb_shared_info *shinfo) |
1253 | { |
1254 | int bias; |
1255 | |
1256 | if (!skb->cloned) |
1257 | return true; |
1258 | |
1259 | bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; |
1260 | |
1261 | if (atomic_read(v: &shinfo->dataref) == bias) |
1262 | smp_rmb(); |
1263 | else if (atomic_sub_return(i: bias, v: &shinfo->dataref)) |
1264 | return false; |
1265 | |
1266 | return true; |
1267 | } |
1268 | |
1269 | void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, |
1270 | enum skb_drop_reason reason); |
1271 | |
1272 | static inline void |
1273 | kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) |
1274 | { |
1275 | sk_skb_reason_drop(NULL, skb, reason); |
1276 | } |
1277 | |
1278 | /** |
1279 | * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason |
1280 | * @skb: buffer to free |
1281 | */ |
1282 | static inline void kfree_skb(struct sk_buff *skb) |
1283 | { |
1284 | kfree_skb_reason(skb, reason: SKB_DROP_REASON_NOT_SPECIFIED); |
1285 | } |
1286 | |
1287 | void skb_release_head_state(struct sk_buff *skb); |
1288 | void kfree_skb_list_reason(struct sk_buff *segs, |
1289 | enum skb_drop_reason reason); |
1290 | void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); |
1291 | void skb_tx_error(struct sk_buff *skb); |
1292 | |
1293 | static inline void kfree_skb_list(struct sk_buff *segs) |
1294 | { |
1295 | kfree_skb_list_reason(segs, reason: SKB_DROP_REASON_NOT_SPECIFIED); |
1296 | } |
1297 | |
1298 | #ifdef CONFIG_TRACEPOINTS |
1299 | void consume_skb(struct sk_buff *skb); |
1300 | #else |
1301 | static inline void consume_skb(struct sk_buff *skb) |
1302 | { |
1303 | return kfree_skb(skb); |
1304 | } |
1305 | #endif |
1306 | |
1307 | void __consume_stateless_skb(struct sk_buff *skb); |
1308 | void __kfree_skb(struct sk_buff *skb); |
1309 | |
1310 | void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); |
1311 | bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, |
1312 | bool *fragstolen, int *delta_truesize); |
1313 | |
1314 | struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, |
1315 | int node); |
1316 | struct sk_buff *__build_skb(void *data, unsigned int frag_size); |
1317 | struct sk_buff *build_skb(void *data, unsigned int frag_size); |
1318 | struct sk_buff *build_skb_around(struct sk_buff *skb, |
1319 | void *data, unsigned int frag_size); |
1320 | void skb_attempt_defer_free(struct sk_buff *skb); |
1321 | |
1322 | u32 napi_skb_cache_get_bulk(void **skbs, u32 n); |
1323 | struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); |
1324 | struct sk_buff *slab_build_skb(void *data); |
1325 | |
1326 | /** |
1327 | * alloc_skb - allocate a network buffer |
1328 | * @size: size to allocate |
1329 | * @priority: allocation mask |
1330 | * |
1331 | * This function is a convenient wrapper around __alloc_skb(). |
1332 | */ |
1333 | static inline struct sk_buff *alloc_skb(unsigned int size, |
1334 | gfp_t priority) |
1335 | { |
1336 | return __alloc_skb(size, priority, flags: 0, NUMA_NO_NODE); |
1337 | } |
1338 | |
1339 | struct sk_buff *alloc_skb_with_frags(unsigned long header_len, |
1340 | unsigned long data_len, |
1341 | int max_page_order, |
1342 | int *errcode, |
1343 | gfp_t gfp_mask); |
1344 | struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); |
1345 | |
1346 | /* Layout of fast clones : [skb1][skb2][fclone_ref] */ |
1347 | struct sk_buff_fclones { |
1348 | struct sk_buff skb1; |
1349 | |
1350 | struct sk_buff skb2; |
1351 | |
1352 | refcount_t fclone_ref; |
1353 | }; |
1354 | |
1355 | /** |
1356 | * skb_fclone_busy - check if fclone is busy |
1357 | * @sk: socket |
1358 | * @skb: buffer |
1359 | * |
1360 | * Returns: true if skb is a fast clone, and its clone is not freed. |
1361 | * Some drivers call skb_orphan() in their ndo_start_xmit(), |
1362 | * so we also check that didn't happen. |
1363 | */ |
1364 | static inline bool skb_fclone_busy(const struct sock *sk, |
1365 | const struct sk_buff *skb) |
1366 | { |
1367 | const struct sk_buff_fclones *fclones; |
1368 | |
1369 | fclones = container_of(skb, struct sk_buff_fclones, skb1); |
1370 | |
1371 | return skb->fclone == SKB_FCLONE_ORIG && |
1372 | refcount_read(r: &fclones->fclone_ref) > 1 && |
1373 | READ_ONCE(fclones->skb2.sk) == sk; |
1374 | } |
1375 | |
1376 | /** |
1377 | * alloc_skb_fclone - allocate a network buffer from fclone cache |
1378 | * @size: size to allocate |
1379 | * @priority: allocation mask |
1380 | * |
1381 | * This function is a convenient wrapper around __alloc_skb(). |
1382 | */ |
1383 | static inline struct sk_buff *alloc_skb_fclone(unsigned int size, |
1384 | gfp_t priority) |
1385 | { |
1386 | return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); |
1387 | } |
1388 | |
1389 | struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); |
1390 | void skb_headers_offset_update(struct sk_buff *skb, int off); |
1391 | int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); |
1392 | struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); |
1393 | void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); |
1394 | struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); |
1395 | struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, |
1396 | gfp_t gfp_mask, bool fclone); |
1397 | static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, |
1398 | gfp_t gfp_mask) |
1399 | { |
1400 | return __pskb_copy_fclone(skb, headroom, gfp_mask, fclone: false); |
1401 | } |
1402 | |
1403 | int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); |
1404 | struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, |
1405 | unsigned int headroom); |
1406 | struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); |
1407 | struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, |
1408 | int newtailroom, gfp_t priority); |
1409 | int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, |
1410 | int offset, int len); |
1411 | int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, |
1412 | int offset, int len); |
1413 | int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); |
1414 | int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); |
1415 | |
1416 | /** |
1417 | * skb_pad - zero pad the tail of an skb |
1418 | * @skb: buffer to pad |
1419 | * @pad: space to pad |
1420 | * |
1421 | * Ensure that a buffer is followed by a padding area that is zero |
1422 | * filled. Used by network drivers which may DMA or transfer data |
1423 | * beyond the buffer end onto the wire. |
1424 | * |
1425 | * May return error in out of memory cases. The skb is freed on error. |
1426 | */ |
1427 | static inline int skb_pad(struct sk_buff *skb, int pad) |
1428 | { |
1429 | return __skb_pad(skb, pad, free_on_error: true); |
1430 | } |
1431 | #define dev_kfree_skb(a) consume_skb(a) |
1432 | |
1433 | int skb_append_pagefrags(struct sk_buff *skb, struct page *page, |
1434 | int offset, size_t size, size_t max_frags); |
1435 | |
1436 | struct skb_seq_state { |
1437 | __u32 lower_offset; |
1438 | __u32 upper_offset; |
1439 | __u32 frag_idx; |
1440 | __u32 stepped_offset; |
1441 | struct sk_buff *root_skb; |
1442 | struct sk_buff *cur_skb; |
1443 | __u8 *frag_data; |
1444 | __u32 frag_off; |
1445 | }; |
1446 | |
1447 | void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, |
1448 | unsigned int to, struct skb_seq_state *st); |
1449 | unsigned int skb_seq_read(unsigned int consumed, const u8 **data, |
1450 | struct skb_seq_state *st); |
1451 | void skb_abort_seq_read(struct skb_seq_state *st); |
1452 | int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len); |
1453 | |
1454 | unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, |
1455 | unsigned int to, struct ts_config *config); |
1456 | |
1457 | /* |
1458 | * Packet hash types specify the type of hash in skb_set_hash. |
1459 | * |
1460 | * Hash types refer to the protocol layer addresses which are used to |
1461 | * construct a packet's hash. The hashes are used to differentiate or identify |
1462 | * flows of the protocol layer for the hash type. Hash types are either |
1463 | * layer-2 (L2), layer-3 (L3), or layer-4 (L4). |
1464 | * |
1465 | * Properties of hashes: |
1466 | * |
1467 | * 1) Two packets in different flows have different hash values |
1468 | * 2) Two packets in the same flow should have the same hash value |
1469 | * |
1470 | * A hash at a higher layer is considered to be more specific. A driver should |
1471 | * set the most specific hash possible. |
1472 | * |
1473 | * A driver cannot indicate a more specific hash than the layer at which a hash |
1474 | * was computed. For instance an L3 hash cannot be set as an L4 hash. |
1475 | * |
1476 | * A driver may indicate a hash level which is less specific than the |
1477 | * actual layer the hash was computed on. For instance, a hash computed |
1478 | * at L4 may be considered an L3 hash. This should only be done if the |
1479 | * driver can't unambiguously determine that the HW computed the hash at |
1480 | * the higher layer. Note that the "should" in the second property above |
1481 | * permits this. |
1482 | */ |
1483 | enum pkt_hash_types { |
1484 | PKT_HASH_TYPE_NONE, /* Undefined type */ |
1485 | PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ |
1486 | PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ |
1487 | PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ |
1488 | }; |
1489 | |
1490 | static inline void skb_clear_hash(struct sk_buff *skb) |
1491 | { |
1492 | skb->hash = 0; |
1493 | skb->sw_hash = 0; |
1494 | skb->l4_hash = 0; |
1495 | } |
1496 | |
1497 | static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) |
1498 | { |
1499 | if (!skb->l4_hash) |
1500 | skb_clear_hash(skb); |
1501 | } |
1502 | |
1503 | static inline void |
1504 | __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) |
1505 | { |
1506 | skb->l4_hash = is_l4; |
1507 | skb->sw_hash = is_sw; |
1508 | skb->hash = hash; |
1509 | } |
1510 | |
1511 | static inline void |
1512 | skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) |
1513 | { |
1514 | /* Used by drivers to set hash from HW */ |
1515 | __skb_set_hash(skb, hash, is_sw: false, is_l4: type == PKT_HASH_TYPE_L4); |
1516 | } |
1517 | |
1518 | static inline void |
1519 | __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) |
1520 | { |
1521 | __skb_set_hash(skb, hash, is_sw: true, is_l4); |
1522 | } |
1523 | |
1524 | u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); |
1525 | |
1526 | static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) |
1527 | { |
1528 | return __skb_get_hash_symmetric_net(NULL, skb); |
1529 | } |
1530 | |
1531 | void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); |
1532 | u32 skb_get_poff(const struct sk_buff *skb); |
1533 | u32 __skb_get_poff(const struct sk_buff *skb, const void *data, |
1534 | const struct flow_keys_basic *keys, int hlen); |
1535 | __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, |
1536 | const void *data, int hlen_proto); |
1537 | |
1538 | void skb_flow_dissector_init(struct flow_dissector *flow_dissector, |
1539 | const struct flow_dissector_key *key, |
1540 | unsigned int key_count); |
1541 | |
1542 | struct bpf_flow_dissector; |
1543 | u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, |
1544 | __be16 proto, int nhoff, int hlen, unsigned int flags); |
1545 | |
1546 | bool __skb_flow_dissect(const struct net *net, |
1547 | const struct sk_buff *skb, |
1548 | struct flow_dissector *flow_dissector, |
1549 | void *target_container, const void *data, |
1550 | __be16 proto, int nhoff, int hlen, unsigned int flags); |
1551 | |
1552 | static inline bool skb_flow_dissect(const struct sk_buff *skb, |
1553 | struct flow_dissector *flow_dissector, |
1554 | void *target_container, unsigned int flags) |
1555 | { |
1556 | return __skb_flow_dissect(NULL, skb, flow_dissector, |
1557 | target_container, NULL, proto: 0, nhoff: 0, hlen: 0, flags); |
1558 | } |
1559 | |
1560 | static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, |
1561 | struct flow_keys *flow, |
1562 | unsigned int flags) |
1563 | { |
1564 | memset(flow, 0, sizeof(*flow)); |
1565 | return __skb_flow_dissect(NULL, skb, flow_dissector: &flow_keys_dissector, |
1566 | target_container: flow, NULL, proto: 0, nhoff: 0, hlen: 0, flags); |
1567 | } |
1568 | |
1569 | static inline bool |
1570 | skb_flow_dissect_flow_keys_basic(const struct net *net, |
1571 | const struct sk_buff *skb, |
1572 | struct flow_keys_basic *flow, |
1573 | const void *data, __be16 proto, |
1574 | int nhoff, int hlen, unsigned int flags) |
1575 | { |
1576 | memset(flow, 0, sizeof(*flow)); |
1577 | return __skb_flow_dissect(net, skb, flow_dissector: &flow_keys_basic_dissector, target_container: flow, |
1578 | data, proto, nhoff, hlen, flags); |
1579 | } |
1580 | |
1581 | void skb_flow_dissect_meta(const struct sk_buff *skb, |
1582 | struct flow_dissector *flow_dissector, |
1583 | void *target_container); |
1584 | |
1585 | /* Gets a skb connection tracking info, ctinfo map should be a |
1586 | * map of mapsize to translate enum ip_conntrack_info states |
1587 | * to user states. |
1588 | */ |
1589 | void |
1590 | skb_flow_dissect_ct(const struct sk_buff *skb, |
1591 | struct flow_dissector *flow_dissector, |
1592 | void *target_container, |
1593 | u16 *ctinfo_map, size_t mapsize, |
1594 | bool post_ct, u16 zone); |
1595 | void |
1596 | skb_flow_dissect_tunnel_info(const struct sk_buff *skb, |
1597 | struct flow_dissector *flow_dissector, |
1598 | void *target_container); |
1599 | |
1600 | void skb_flow_dissect_hash(const struct sk_buff *skb, |
1601 | struct flow_dissector *flow_dissector, |
1602 | void *target_container); |
1603 | |
1604 | static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) |
1605 | { |
1606 | if (!skb->l4_hash && !skb->sw_hash) |
1607 | __skb_get_hash_net(net, skb); |
1608 | |
1609 | return skb->hash; |
1610 | } |
1611 | |
1612 | static inline __u32 skb_get_hash(struct sk_buff *skb) |
1613 | { |
1614 | if (!skb->l4_hash && !skb->sw_hash) |
1615 | __skb_get_hash_net(NULL, skb); |
1616 | |
1617 | return skb->hash; |
1618 | } |
1619 | |
1620 | static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) |
1621 | { |
1622 | if (!skb->l4_hash && !skb->sw_hash) { |
1623 | struct flow_keys keys; |
1624 | __u32 hash = __get_hash_from_flowi6(fl6, keys: &keys); |
1625 | |
1626 | __skb_set_sw_hash(skb, hash, is_l4: flow_keys_have_l4(keys: &keys)); |
1627 | } |
1628 | |
1629 | return skb->hash; |
1630 | } |
1631 | |
1632 | __u32 skb_get_hash_perturb(const struct sk_buff *skb, |
1633 | const siphash_key_t *perturb); |
1634 | |
1635 | static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) |
1636 | { |
1637 | return skb->hash; |
1638 | } |
1639 | |
1640 | static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) |
1641 | { |
1642 | to->hash = from->hash; |
1643 | to->sw_hash = from->sw_hash; |
1644 | to->l4_hash = from->l4_hash; |
1645 | }; |
1646 | |
1647 | static inline int skb_cmp_decrypted(const struct sk_buff *skb1, |
1648 | const struct sk_buff *skb2) |
1649 | { |
1650 | #ifdef CONFIG_SKB_DECRYPTED |
1651 | return skb2->decrypted - skb1->decrypted; |
1652 | #else |
1653 | return 0; |
1654 | #endif |
1655 | } |
1656 | |
1657 | static inline bool skb_is_decrypted(const struct sk_buff *skb) |
1658 | { |
1659 | #ifdef CONFIG_SKB_DECRYPTED |
1660 | return skb->decrypted; |
1661 | #else |
1662 | return false; |
1663 | #endif |
1664 | } |
1665 | |
1666 | static inline void skb_copy_decrypted(struct sk_buff *to, |
1667 | const struct sk_buff *from) |
1668 | { |
1669 | #ifdef CONFIG_SKB_DECRYPTED |
1670 | to->decrypted = from->decrypted; |
1671 | #endif |
1672 | } |
1673 | |
1674 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
1675 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) |
1676 | { |
1677 | return skb->head + skb->end; |
1678 | } |
1679 | |
1680 | static inline unsigned int skb_end_offset(const struct sk_buff *skb) |
1681 | { |
1682 | return skb->end; |
1683 | } |
1684 | |
1685 | static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) |
1686 | { |
1687 | skb->end = offset; |
1688 | } |
1689 | #else |
1690 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) |
1691 | { |
1692 | return skb->end; |
1693 | } |
1694 | |
1695 | static inline unsigned int skb_end_offset(const struct sk_buff *skb) |
1696 | { |
1697 | return skb->end - skb->head; |
1698 | } |
1699 | |
1700 | static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) |
1701 | { |
1702 | skb->end = skb->head + offset; |
1703 | } |
1704 | #endif |
1705 | |
1706 | extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; |
1707 | |
1708 | struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, |
1709 | struct ubuf_info *uarg, bool devmem); |
1710 | |
1711 | void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); |
1712 | |
1713 | struct net_devmem_dmabuf_binding; |
1714 | |
1715 | int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, |
1716 | struct sk_buff *skb, struct iov_iter *from, |
1717 | size_t length, |
1718 | struct net_devmem_dmabuf_binding *binding); |
1719 | |
1720 | int zerocopy_fill_skb_from_iter(struct sk_buff *skb, |
1721 | struct iov_iter *from, size_t length); |
1722 | |
1723 | static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, |
1724 | struct msghdr *msg, int len) |
1725 | { |
1726 | return __zerocopy_sg_from_iter(msg, sk: skb->sk, skb, from: &msg->msg_iter, length: len, |
1727 | NULL); |
1728 | } |
1729 | |
1730 | int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, |
1731 | struct msghdr *msg, int len, |
1732 | struct ubuf_info *uarg, |
1733 | struct net_devmem_dmabuf_binding *binding); |
1734 | |
1735 | /* Internal */ |
1736 | #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) |
1737 | |
1738 | static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) |
1739 | { |
1740 | return &skb_shinfo(skb)->hwtstamps; |
1741 | } |
1742 | |
1743 | static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) |
1744 | { |
1745 | bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; |
1746 | |
1747 | return is_zcopy ? skb_uarg(skb) : NULL; |
1748 | } |
1749 | |
1750 | static inline bool skb_zcopy_pure(const struct sk_buff *skb) |
1751 | { |
1752 | return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; |
1753 | } |
1754 | |
1755 | static inline bool skb_zcopy_managed(const struct sk_buff *skb) |
1756 | { |
1757 | return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; |
1758 | } |
1759 | |
1760 | static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, |
1761 | const struct sk_buff *skb2) |
1762 | { |
1763 | return skb_zcopy_pure(skb: skb1) == skb_zcopy_pure(skb: skb2); |
1764 | } |
1765 | |
1766 | static inline void net_zcopy_get(struct ubuf_info *uarg) |
1767 | { |
1768 | refcount_inc(r: &uarg->refcnt); |
1769 | } |
1770 | |
1771 | static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) |
1772 | { |
1773 | skb_shinfo(skb)->destructor_arg = uarg; |
1774 | skb_shinfo(skb)->flags |= uarg->flags; |
1775 | } |
1776 | |
1777 | static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, |
1778 | bool *have_ref) |
1779 | { |
1780 | if (skb && uarg && !skb_zcopy(skb)) { |
1781 | if (unlikely(have_ref && *have_ref)) |
1782 | *have_ref = false; |
1783 | else |
1784 | net_zcopy_get(uarg); |
1785 | skb_zcopy_init(skb, uarg); |
1786 | } |
1787 | } |
1788 | |
1789 | static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) |
1790 | { |
1791 | skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); |
1792 | skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; |
1793 | } |
1794 | |
1795 | static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) |
1796 | { |
1797 | return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; |
1798 | } |
1799 | |
1800 | static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) |
1801 | { |
1802 | return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); |
1803 | } |
1804 | |
1805 | static inline void net_zcopy_put(struct ubuf_info *uarg) |
1806 | { |
1807 | if (uarg) |
1808 | uarg->ops->complete(NULL, uarg, true); |
1809 | } |
1810 | |
1811 | static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) |
1812 | { |
1813 | if (uarg) { |
1814 | if (uarg->ops == &msg_zerocopy_ubuf_ops) |
1815 | msg_zerocopy_put_abort(uarg, have_uref); |
1816 | else if (have_uref) |
1817 | net_zcopy_put(uarg); |
1818 | } |
1819 | } |
1820 | |
1821 | /* Release a reference on a zerocopy structure */ |
1822 | static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) |
1823 | { |
1824 | struct ubuf_info *uarg = skb_zcopy(skb); |
1825 | |
1826 | if (uarg) { |
1827 | if (!skb_zcopy_is_nouarg(skb)) |
1828 | uarg->ops->complete(skb, uarg, zerocopy_success); |
1829 | |
1830 | skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; |
1831 | } |
1832 | } |
1833 | |
1834 | void __skb_zcopy_downgrade_managed(struct sk_buff *skb); |
1835 | |
1836 | static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) |
1837 | { |
1838 | if (unlikely(skb_zcopy_managed(skb))) |
1839 | __skb_zcopy_downgrade_managed(skb); |
1840 | } |
1841 | |
1842 | /* Return true if frags in this skb are readable by the host. */ |
1843 | static inline bool skb_frags_readable(const struct sk_buff *skb) |
1844 | { |
1845 | return !skb->unreadable; |
1846 | } |
1847 | |
1848 | static inline void skb_mark_not_on_list(struct sk_buff *skb) |
1849 | { |
1850 | skb->next = NULL; |
1851 | } |
1852 | |
1853 | static inline void skb_poison_list(struct sk_buff *skb) |
1854 | { |
1855 | #ifdef CONFIG_DEBUG_NET |
1856 | skb->next = SKB_LIST_POISON_NEXT; |
1857 | #endif |
1858 | } |
1859 | |
1860 | /* Iterate through singly-linked GSO fragments of an skb. */ |
1861 | #define skb_list_walk_safe(first, skb, next_skb) \ |
1862 | for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ |
1863 | (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) |
1864 | |
1865 | static inline void skb_list_del_init(struct sk_buff *skb) |
1866 | { |
1867 | __list_del_entry(entry: &skb->list); |
1868 | skb_mark_not_on_list(skb); |
1869 | } |
1870 | |
1871 | /** |
1872 | * skb_queue_empty - check if a queue is empty |
1873 | * @list: queue head |
1874 | * |
1875 | * Returns true if the queue is empty, false otherwise. |
1876 | */ |
1877 | static inline int skb_queue_empty(const struct sk_buff_head *list) |
1878 | { |
1879 | return list->next == (const struct sk_buff *) list; |
1880 | } |
1881 | |
1882 | /** |
1883 | * skb_queue_empty_lockless - check if a queue is empty |
1884 | * @list: queue head |
1885 | * |
1886 | * Returns true if the queue is empty, false otherwise. |
1887 | * This variant can be used in lockless contexts. |
1888 | */ |
1889 | static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) |
1890 | { |
1891 | return READ_ONCE(list->next) == (const struct sk_buff *) list; |
1892 | } |
1893 | |
1894 | |
1895 | /** |
1896 | * skb_queue_is_last - check if skb is the last entry in the queue |
1897 | * @list: queue head |
1898 | * @skb: buffer |
1899 | * |
1900 | * Returns true if @skb is the last buffer on the list. |
1901 | */ |
1902 | static inline bool skb_queue_is_last(const struct sk_buff_head *list, |
1903 | const struct sk_buff *skb) |
1904 | { |
1905 | return skb->next == (const struct sk_buff *) list; |
1906 | } |
1907 | |
1908 | /** |
1909 | * skb_queue_is_first - check if skb is the first entry in the queue |
1910 | * @list: queue head |
1911 | * @skb: buffer |
1912 | * |
1913 | * Returns true if @skb is the first buffer on the list. |
1914 | */ |
1915 | static inline bool skb_queue_is_first(const struct sk_buff_head *list, |
1916 | const struct sk_buff *skb) |
1917 | { |
1918 | return skb->prev == (const struct sk_buff *) list; |
1919 | } |
1920 | |
1921 | /** |
1922 | * skb_queue_next - return the next packet in the queue |
1923 | * @list: queue head |
1924 | * @skb: current buffer |
1925 | * |
1926 | * Return the next packet in @list after @skb. It is only valid to |
1927 | * call this if skb_queue_is_last() evaluates to false. |
1928 | */ |
1929 | static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, |
1930 | const struct sk_buff *skb) |
1931 | { |
1932 | /* This BUG_ON may seem severe, but if we just return then we |
1933 | * are going to dereference garbage. |
1934 | */ |
1935 | BUG_ON(skb_queue_is_last(list, skb)); |
1936 | return skb->next; |
1937 | } |
1938 | |
1939 | /** |
1940 | * skb_queue_prev - return the prev packet in the queue |
1941 | * @list: queue head |
1942 | * @skb: current buffer |
1943 | * |
1944 | * Return the prev packet in @list before @skb. It is only valid to |
1945 | * call this if skb_queue_is_first() evaluates to false. |
1946 | */ |
1947 | static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, |
1948 | const struct sk_buff *skb) |
1949 | { |
1950 | /* This BUG_ON may seem severe, but if we just return then we |
1951 | * are going to dereference garbage. |
1952 | */ |
1953 | BUG_ON(skb_queue_is_first(list, skb)); |
1954 | return skb->prev; |
1955 | } |
1956 | |
1957 | /** |
1958 | * skb_get - reference buffer |
1959 | * @skb: buffer to reference |
1960 | * |
1961 | * Makes another reference to a socket buffer and returns a pointer |
1962 | * to the buffer. |
1963 | */ |
1964 | static inline struct sk_buff *skb_get(struct sk_buff *skb) |
1965 | { |
1966 | refcount_inc(r: &skb->users); |
1967 | return skb; |
1968 | } |
1969 | |
1970 | /* |
1971 | * If users == 1, we are the only owner and can avoid redundant atomic changes. |
1972 | */ |
1973 | |
1974 | /** |
1975 | * skb_cloned - is the buffer a clone |
1976 | * @skb: buffer to check |
1977 | * |
1978 | * Returns true if the buffer was generated with skb_clone() and is |
1979 | * one of multiple shared copies of the buffer. Cloned buffers are |
1980 | * shared data so must not be written to under normal circumstances. |
1981 | */ |
1982 | static inline int skb_cloned(const struct sk_buff *skb) |
1983 | { |
1984 | return skb->cloned && |
1985 | (atomic_read(v: &skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; |
1986 | } |
1987 | |
1988 | static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) |
1989 | { |
1990 | might_sleep_if(gfpflags_allow_blocking(pri)); |
1991 | |
1992 | if (skb_cloned(skb)) |
1993 | return pskb_expand_head(skb, nhead: 0, ntail: 0, gfp_mask: pri); |
1994 | |
1995 | return 0; |
1996 | } |
1997 | |
1998 | /* This variant of skb_unclone() makes sure skb->truesize |
1999 | * and skb_end_offset() are not changed, whenever a new skb->head is needed. |
2000 | * |
2001 | * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) |
2002 | * when various debugging features are in place. |
2003 | */ |
2004 | int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); |
2005 | static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) |
2006 | { |
2007 | might_sleep_if(gfpflags_allow_blocking(pri)); |
2008 | |
2009 | if (skb_cloned(skb)) |
2010 | return __skb_unclone_keeptruesize(skb, pri); |
2011 | return 0; |
2012 | } |
2013 | |
2014 | /** |
2015 | * skb_header_cloned - is the header a clone |
2016 | * @skb: buffer to check |
2017 | * |
2018 | * Returns true if modifying the header part of the buffer requires |
2019 | * the data to be copied. |
2020 | */ |
2021 | static inline int skb_header_cloned(const struct sk_buff *skb) |
2022 | { |
2023 | int dataref; |
2024 | |
2025 | if (!skb->cloned) |
2026 | return 0; |
2027 | |
2028 | dataref = atomic_read(v: &skb_shinfo(skb)->dataref); |
2029 | dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); |
2030 | return dataref != 1; |
2031 | } |
2032 | |
2033 | static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) |
2034 | { |
2035 | might_sleep_if(gfpflags_allow_blocking(pri)); |
2036 | |
2037 | if (skb_header_cloned(skb)) |
2038 | return pskb_expand_head(skb, nhead: 0, ntail: 0, gfp_mask: pri); |
2039 | |
2040 | return 0; |
2041 | } |
2042 | |
2043 | /** |
2044 | * __skb_header_release() - allow clones to use the headroom |
2045 | * @skb: buffer to operate on |
2046 | * |
2047 | * See "DOC: dataref and headerless skbs". |
2048 | */ |
2049 | static inline void __skb_header_release(struct sk_buff *skb) |
2050 | { |
2051 | skb->nohdr = 1; |
2052 | atomic_set(v: &skb_shinfo(skb)->dataref, i: 1 + (1 << SKB_DATAREF_SHIFT)); |
2053 | } |
2054 | |
2055 | |
2056 | /** |
2057 | * skb_shared - is the buffer shared |
2058 | * @skb: buffer to check |
2059 | * |
2060 | * Returns true if more than one person has a reference to this |
2061 | * buffer. |
2062 | */ |
2063 | static inline int skb_shared(const struct sk_buff *skb) |
2064 | { |
2065 | return refcount_read(r: &skb->users) != 1; |
2066 | } |
2067 | |
2068 | /** |
2069 | * skb_share_check - check if buffer is shared and if so clone it |
2070 | * @skb: buffer to check |
2071 | * @pri: priority for memory allocation |
2072 | * |
2073 | * If the buffer is shared the buffer is cloned and the old copy |
2074 | * drops a reference. A new clone with a single reference is returned. |
2075 | * If the buffer is not shared the original buffer is returned. When |
2076 | * being called from interrupt status or with spinlocks held pri must |
2077 | * be GFP_ATOMIC. |
2078 | * |
2079 | * NULL is returned on a memory allocation failure. |
2080 | */ |
2081 | static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) |
2082 | { |
2083 | might_sleep_if(gfpflags_allow_blocking(pri)); |
2084 | if (skb_shared(skb)) { |
2085 | struct sk_buff *nskb = skb_clone(skb, priority: pri); |
2086 | |
2087 | if (likely(nskb)) |
2088 | consume_skb(skb); |
2089 | else |
2090 | kfree_skb(skb); |
2091 | skb = nskb; |
2092 | } |
2093 | return skb; |
2094 | } |
2095 | |
2096 | /* |
2097 | * Copy shared buffers into a new sk_buff. We effectively do COW on |
2098 | * packets to handle cases where we have a local reader and forward |
2099 | * and a couple of other messy ones. The normal one is tcpdumping |
2100 | * a packet that's being forwarded. |
2101 | */ |
2102 | |
2103 | /** |
2104 | * skb_unshare - make a copy of a shared buffer |
2105 | * @skb: buffer to check |
2106 | * @pri: priority for memory allocation |
2107 | * |
2108 | * If the socket buffer is a clone then this function creates a new |
2109 | * copy of the data, drops a reference count on the old copy and returns |
2110 | * the new copy with the reference count at 1. If the buffer is not a clone |
2111 | * the original buffer is returned. When called with a spinlock held or |
2112 | * from interrupt state @pri must be %GFP_ATOMIC |
2113 | * |
2114 | * %NULL is returned on a memory allocation failure. |
2115 | */ |
2116 | static inline struct sk_buff *skb_unshare(struct sk_buff *skb, |
2117 | gfp_t pri) |
2118 | { |
2119 | might_sleep_if(gfpflags_allow_blocking(pri)); |
2120 | if (skb_cloned(skb)) { |
2121 | struct sk_buff *nskb = skb_copy(skb, priority: pri); |
2122 | |
2123 | /* Free our shared copy */ |
2124 | if (likely(nskb)) |
2125 | consume_skb(skb); |
2126 | else |
2127 | kfree_skb(skb); |
2128 | skb = nskb; |
2129 | } |
2130 | return skb; |
2131 | } |
2132 | |
2133 | /** |
2134 | * skb_peek - peek at the head of an &sk_buff_head |
2135 | * @list_: list to peek at |
2136 | * |
2137 | * Peek an &sk_buff. Unlike most other operations you _MUST_ |
2138 | * be careful with this one. A peek leaves the buffer on the |
2139 | * list and someone else may run off with it. You must hold |
2140 | * the appropriate locks or have a private queue to do this. |
2141 | * |
2142 | * Returns %NULL for an empty list or a pointer to the head element. |
2143 | * The reference count is not incremented and the reference is therefore |
2144 | * volatile. Use with caution. |
2145 | */ |
2146 | static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) |
2147 | { |
2148 | struct sk_buff *skb = list_->next; |
2149 | |
2150 | if (skb == (struct sk_buff *)list_) |
2151 | skb = NULL; |
2152 | return skb; |
2153 | } |
2154 | |
2155 | /** |
2156 | * __skb_peek - peek at the head of a non-empty &sk_buff_head |
2157 | * @list_: list to peek at |
2158 | * |
2159 | * Like skb_peek(), but the caller knows that the list is not empty. |
2160 | */ |
2161 | static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) |
2162 | { |
2163 | return list_->next; |
2164 | } |
2165 | |
2166 | /** |
2167 | * skb_peek_next - peek skb following the given one from a queue |
2168 | * @skb: skb to start from |
2169 | * @list_: list to peek at |
2170 | * |
2171 | * Returns %NULL when the end of the list is met or a pointer to the |
2172 | * next element. The reference count is not incremented and the |
2173 | * reference is therefore volatile. Use with caution. |
2174 | */ |
2175 | static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, |
2176 | const struct sk_buff_head *list_) |
2177 | { |
2178 | struct sk_buff *next = skb->next; |
2179 | |
2180 | if (next == (struct sk_buff *)list_) |
2181 | next = NULL; |
2182 | return next; |
2183 | } |
2184 | |
2185 | /** |
2186 | * skb_peek_tail - peek at the tail of an &sk_buff_head |
2187 | * @list_: list to peek at |
2188 | * |
2189 | * Peek an &sk_buff. Unlike most other operations you _MUST_ |
2190 | * be careful with this one. A peek leaves the buffer on the |
2191 | * list and someone else may run off with it. You must hold |
2192 | * the appropriate locks or have a private queue to do this. |
2193 | * |
2194 | * Returns %NULL for an empty list or a pointer to the tail element. |
2195 | * The reference count is not incremented and the reference is therefore |
2196 | * volatile. Use with caution. |
2197 | */ |
2198 | static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) |
2199 | { |
2200 | struct sk_buff *skb = READ_ONCE(list_->prev); |
2201 | |
2202 | if (skb == (struct sk_buff *)list_) |
2203 | skb = NULL; |
2204 | return skb; |
2205 | |
2206 | } |
2207 | |
2208 | /** |
2209 | * skb_queue_len - get queue length |
2210 | * @list_: list to measure |
2211 | * |
2212 | * Return the length of an &sk_buff queue. |
2213 | */ |
2214 | static inline __u32 skb_queue_len(const struct sk_buff_head *list_) |
2215 | { |
2216 | return list_->qlen; |
2217 | } |
2218 | |
2219 | /** |
2220 | * skb_queue_len_lockless - get queue length |
2221 | * @list_: list to measure |
2222 | * |
2223 | * Return the length of an &sk_buff queue. |
2224 | * This variant can be used in lockless contexts. |
2225 | */ |
2226 | static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) |
2227 | { |
2228 | return READ_ONCE(list_->qlen); |
2229 | } |
2230 | |
2231 | /** |
2232 | * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head |
2233 | * @list: queue to initialize |
2234 | * |
2235 | * This initializes only the list and queue length aspects of |
2236 | * an sk_buff_head object. This allows to initialize the list |
2237 | * aspects of an sk_buff_head without reinitializing things like |
2238 | * the spinlock. It can also be used for on-stack sk_buff_head |
2239 | * objects where the spinlock is known to not be used. |
2240 | */ |
2241 | static inline void __skb_queue_head_init(struct sk_buff_head *list) |
2242 | { |
2243 | list->prev = list->next = (struct sk_buff *)list; |
2244 | list->qlen = 0; |
2245 | } |
2246 | |
2247 | /* |
2248 | * This function creates a split out lock class for each invocation; |
2249 | * this is needed for now since a whole lot of users of the skb-queue |
2250 | * infrastructure in drivers have different locking usage (in hardirq) |
2251 | * than the networking core (in softirq only). In the long run either the |
2252 | * network layer or drivers should need annotation to consolidate the |
2253 | * main types of usage into 3 classes. |
2254 | */ |
2255 | static inline void skb_queue_head_init(struct sk_buff_head *list) |
2256 | { |
2257 | spin_lock_init(&list->lock); |
2258 | __skb_queue_head_init(list); |
2259 | } |
2260 | |
2261 | static inline void skb_queue_head_init_class(struct sk_buff_head *list, |
2262 | struct lock_class_key *class) |
2263 | { |
2264 | skb_queue_head_init(list); |
2265 | lockdep_set_class(&list->lock, class); |
2266 | } |
2267 | |
2268 | /* |
2269 | * Insert an sk_buff on a list. |
2270 | * |
2271 | * The "__skb_xxxx()" functions are the non-atomic ones that |
2272 | * can only be called with interrupts disabled. |
2273 | */ |
2274 | static inline void __skb_insert(struct sk_buff *newsk, |
2275 | struct sk_buff *prev, struct sk_buff *next, |
2276 | struct sk_buff_head *list) |
2277 | { |
2278 | /* See skb_queue_empty_lockless() and skb_peek_tail() |
2279 | * for the opposite READ_ONCE() |
2280 | */ |
2281 | WRITE_ONCE(newsk->next, next); |
2282 | WRITE_ONCE(newsk->prev, prev); |
2283 | WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); |
2284 | WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); |
2285 | WRITE_ONCE(list->qlen, list->qlen + 1); |
2286 | } |
2287 | |
2288 | static inline void __skb_queue_splice(const struct sk_buff_head *list, |
2289 | struct sk_buff *prev, |
2290 | struct sk_buff *next) |
2291 | { |
2292 | struct sk_buff *first = list->next; |
2293 | struct sk_buff *last = list->prev; |
2294 | |
2295 | WRITE_ONCE(first->prev, prev); |
2296 | WRITE_ONCE(prev->next, first); |
2297 | |
2298 | WRITE_ONCE(last->next, next); |
2299 | WRITE_ONCE(next->prev, last); |
2300 | } |
2301 | |
2302 | /** |
2303 | * skb_queue_splice - join two skb lists, this is designed for stacks |
2304 | * @list: the new list to add |
2305 | * @head: the place to add it in the first list |
2306 | */ |
2307 | static inline void skb_queue_splice(const struct sk_buff_head *list, |
2308 | struct sk_buff_head *head) |
2309 | { |
2310 | if (!skb_queue_empty(list)) { |
2311 | __skb_queue_splice(list, prev: (struct sk_buff *) head, next: head->next); |
2312 | head->qlen += list->qlen; |
2313 | } |
2314 | } |
2315 | |
2316 | /** |
2317 | * skb_queue_splice_init - join two skb lists and reinitialise the emptied list |
2318 | * @list: the new list to add |
2319 | * @head: the place to add it in the first list |
2320 | * |
2321 | * The list at @list is reinitialised |
2322 | */ |
2323 | static inline void skb_queue_splice_init(struct sk_buff_head *list, |
2324 | struct sk_buff_head *head) |
2325 | { |
2326 | if (!skb_queue_empty(list)) { |
2327 | __skb_queue_splice(list, prev: (struct sk_buff *) head, next: head->next); |
2328 | head->qlen += list->qlen; |
2329 | __skb_queue_head_init(list); |
2330 | } |
2331 | } |
2332 | |
2333 | /** |
2334 | * skb_queue_splice_tail - join two skb lists, each list being a queue |
2335 | * @list: the new list to add |
2336 | * @head: the place to add it in the first list |
2337 | */ |
2338 | static inline void skb_queue_splice_tail(const struct sk_buff_head *list, |
2339 | struct sk_buff_head *head) |
2340 | { |
2341 | if (!skb_queue_empty(list)) { |
2342 | __skb_queue_splice(list, prev: head->prev, next: (struct sk_buff *) head); |
2343 | head->qlen += list->qlen; |
2344 | } |
2345 | } |
2346 | |
2347 | /** |
2348 | * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list |
2349 | * @list: the new list to add |
2350 | * @head: the place to add it in the first list |
2351 | * |
2352 | * Each of the lists is a queue. |
2353 | * The list at @list is reinitialised |
2354 | */ |
2355 | static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, |
2356 | struct sk_buff_head *head) |
2357 | { |
2358 | if (!skb_queue_empty(list)) { |
2359 | __skb_queue_splice(list, prev: head->prev, next: (struct sk_buff *) head); |
2360 | head->qlen += list->qlen; |
2361 | __skb_queue_head_init(list); |
2362 | } |
2363 | } |
2364 | |
2365 | /** |
2366 | * __skb_queue_after - queue a buffer at the list head |
2367 | * @list: list to use |
2368 | * @prev: place after this buffer |
2369 | * @newsk: buffer to queue |
2370 | * |
2371 | * Queue a buffer int the middle of a list. This function takes no locks |
2372 | * and you must therefore hold required locks before calling it. |
2373 | * |
2374 | * A buffer cannot be placed on two lists at the same time. |
2375 | */ |
2376 | static inline void __skb_queue_after(struct sk_buff_head *list, |
2377 | struct sk_buff *prev, |
2378 | struct sk_buff *newsk) |
2379 | { |
2380 | __skb_insert(newsk, prev, next: ((struct sk_buff_list *)prev)->next, list); |
2381 | } |
2382 | |
2383 | void skb_append(struct sk_buff *old, struct sk_buff *newsk, |
2384 | struct sk_buff_head *list); |
2385 | |
2386 | static inline void __skb_queue_before(struct sk_buff_head *list, |
2387 | struct sk_buff *next, |
2388 | struct sk_buff *newsk) |
2389 | { |
2390 | __skb_insert(newsk, prev: ((struct sk_buff_list *)next)->prev, next, list); |
2391 | } |
2392 | |
2393 | /** |
2394 | * __skb_queue_head - queue a buffer at the list head |
2395 | * @list: list to use |
2396 | * @newsk: buffer to queue |
2397 | * |
2398 | * Queue a buffer at the start of a list. This function takes no locks |
2399 | * and you must therefore hold required locks before calling it. |
2400 | * |
2401 | * A buffer cannot be placed on two lists at the same time. |
2402 | */ |
2403 | static inline void __skb_queue_head(struct sk_buff_head *list, |
2404 | struct sk_buff *newsk) |
2405 | { |
2406 | __skb_queue_after(list, prev: (struct sk_buff *)list, newsk); |
2407 | } |
2408 | void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); |
2409 | |
2410 | /** |
2411 | * __skb_queue_tail - queue a buffer at the list tail |
2412 | * @list: list to use |
2413 | * @newsk: buffer to queue |
2414 | * |
2415 | * Queue a buffer at the end of a list. This function takes no locks |
2416 | * and you must therefore hold required locks before calling it. |
2417 | * |
2418 | * A buffer cannot be placed on two lists at the same time. |
2419 | */ |
2420 | static inline void __skb_queue_tail(struct sk_buff_head *list, |
2421 | struct sk_buff *newsk) |
2422 | { |
2423 | __skb_queue_before(list, next: (struct sk_buff *)list, newsk); |
2424 | } |
2425 | void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); |
2426 | |
2427 | /* |
2428 | * remove sk_buff from list. _Must_ be called atomically, and with |
2429 | * the list known.. |
2430 | */ |
2431 | void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); |
2432 | static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) |
2433 | { |
2434 | struct sk_buff *next, *prev; |
2435 | |
2436 | WRITE_ONCE(list->qlen, list->qlen - 1); |
2437 | next = skb->next; |
2438 | prev = skb->prev; |
2439 | skb->next = skb->prev = NULL; |
2440 | WRITE_ONCE(next->prev, prev); |
2441 | WRITE_ONCE(prev->next, next); |
2442 | } |
2443 | |
2444 | /** |
2445 | * __skb_dequeue - remove from the head of the queue |
2446 | * @list: list to dequeue from |
2447 | * |
2448 | * Remove the head of the list. This function does not take any locks |
2449 | * so must be used with appropriate locks held only. The head item is |
2450 | * returned or %NULL if the list is empty. |
2451 | */ |
2452 | static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) |
2453 | { |
2454 | struct sk_buff *skb = skb_peek(list_: list); |
2455 | if (skb) |
2456 | __skb_unlink(skb, list); |
2457 | return skb; |
2458 | } |
2459 | struct sk_buff *skb_dequeue(struct sk_buff_head *list); |
2460 | |
2461 | /** |
2462 | * __skb_dequeue_tail - remove from the tail of the queue |
2463 | * @list: list to dequeue from |
2464 | * |
2465 | * Remove the tail of the list. This function does not take any locks |
2466 | * so must be used with appropriate locks held only. The tail item is |
2467 | * returned or %NULL if the list is empty. |
2468 | */ |
2469 | static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) |
2470 | { |
2471 | struct sk_buff *skb = skb_peek_tail(list_: list); |
2472 | if (skb) |
2473 | __skb_unlink(skb, list); |
2474 | return skb; |
2475 | } |
2476 | struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); |
2477 | |
2478 | |
2479 | static inline bool skb_is_nonlinear(const struct sk_buff *skb) |
2480 | { |
2481 | return skb->data_len; |
2482 | } |
2483 | |
2484 | static inline unsigned int skb_headlen(const struct sk_buff *skb) |
2485 | { |
2486 | return skb->len - skb->data_len; |
2487 | } |
2488 | |
2489 | static inline unsigned int __skb_pagelen(const struct sk_buff *skb) |
2490 | { |
2491 | unsigned int i, len = 0; |
2492 | |
2493 | for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) |
2494 | len += skb_frag_size(frag: &skb_shinfo(skb)->frags[i]); |
2495 | return len; |
2496 | } |
2497 | |
2498 | static inline unsigned int skb_pagelen(const struct sk_buff *skb) |
2499 | { |
2500 | return skb_headlen(skb) + __skb_pagelen(skb); |
2501 | } |
2502 | |
2503 | static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, |
2504 | netmem_ref netmem, int off, |
2505 | int size) |
2506 | { |
2507 | frag->netmem = netmem; |
2508 | frag->offset = off; |
2509 | skb_frag_size_set(frag, size); |
2510 | } |
2511 | |
2512 | static inline void skb_frag_fill_page_desc(skb_frag_t *frag, |
2513 | struct page *page, |
2514 | int off, int size) |
2515 | { |
2516 | skb_frag_fill_netmem_desc(frag, netmem: page_to_netmem(page), off, size); |
2517 | } |
2518 | |
2519 | static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, |
2520 | int i, netmem_ref netmem, |
2521 | int off, int size) |
2522 | { |
2523 | skb_frag_t *frag = &shinfo->frags[i]; |
2524 | |
2525 | skb_frag_fill_netmem_desc(frag, netmem, off, size); |
2526 | } |
2527 | |
2528 | static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, |
2529 | int i, struct page *page, |
2530 | int off, int size) |
2531 | { |
2532 | __skb_fill_netmem_desc_noacc(shinfo, i, netmem: page_to_netmem(page), off, |
2533 | size); |
2534 | } |
2535 | |
2536 | /** |
2537 | * skb_len_add - adds a number to len fields of skb |
2538 | * @skb: buffer to add len to |
2539 | * @delta: number of bytes to add |
2540 | */ |
2541 | static inline void skb_len_add(struct sk_buff *skb, int delta) |
2542 | { |
2543 | skb->len += delta; |
2544 | skb->data_len += delta; |
2545 | skb->truesize += delta; |
2546 | } |
2547 | |
2548 | /** |
2549 | * __skb_fill_netmem_desc - initialise a fragment in an skb |
2550 | * @skb: buffer containing fragment to be initialised |
2551 | * @i: fragment index to initialise |
2552 | * @netmem: the netmem to use for this fragment |
2553 | * @off: the offset to the data with @page |
2554 | * @size: the length of the data |
2555 | * |
2556 | * Initialises the @i'th fragment of @skb to point to &size bytes at |
2557 | * offset @off within @page. |
2558 | * |
2559 | * Does not take any additional reference on the fragment. |
2560 | */ |
2561 | static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, |
2562 | netmem_ref netmem, int off, int size) |
2563 | { |
2564 | struct page *page; |
2565 | |
2566 | __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); |
2567 | |
2568 | if (netmem_is_net_iov(netmem)) { |
2569 | skb->unreadable = true; |
2570 | return; |
2571 | } |
2572 | |
2573 | page = netmem_to_page(netmem); |
2574 | |
2575 | /* Propagate page pfmemalloc to the skb if we can. The problem is |
2576 | * that not all callers have unique ownership of the page but rely |
2577 | * on page_is_pfmemalloc doing the right thing(tm). |
2578 | */ |
2579 | page = compound_head(page); |
2580 | if (page_is_pfmemalloc(page)) |
2581 | skb->pfmemalloc = true; |
2582 | } |
2583 | |
2584 | static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, |
2585 | struct page *page, int off, int size) |
2586 | { |
2587 | __skb_fill_netmem_desc(skb, i, netmem: page_to_netmem(page), off, size); |
2588 | } |
2589 | |
2590 | static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, |
2591 | netmem_ref netmem, int off, int size) |
2592 | { |
2593 | __skb_fill_netmem_desc(skb, i, netmem, off, size); |
2594 | skb_shinfo(skb)->nr_frags = i + 1; |
2595 | } |
2596 | |
2597 | /** |
2598 | * skb_fill_page_desc - initialise a paged fragment in an skb |
2599 | * @skb: buffer containing fragment to be initialised |
2600 | * @i: paged fragment index to initialise |
2601 | * @page: the page to use for this fragment |
2602 | * @off: the offset to the data with @page |
2603 | * @size: the length of the data |
2604 | * |
2605 | * As per __skb_fill_page_desc() -- initialises the @i'th fragment of |
2606 | * @skb to point to @size bytes at offset @off within @page. In |
2607 | * addition updates @skb such that @i is the last fragment. |
2608 | * |
2609 | * Does not take any additional reference on the fragment. |
2610 | */ |
2611 | static inline void skb_fill_page_desc(struct sk_buff *skb, int i, |
2612 | struct page *page, int off, int size) |
2613 | { |
2614 | skb_fill_netmem_desc(skb, i, netmem: page_to_netmem(page), off, size); |
2615 | } |
2616 | |
2617 | /** |
2618 | * skb_fill_page_desc_noacc - initialise a paged fragment in an skb |
2619 | * @skb: buffer containing fragment to be initialised |
2620 | * @i: paged fragment index to initialise |
2621 | * @page: the page to use for this fragment |
2622 | * @off: the offset to the data with @page |
2623 | * @size: the length of the data |
2624 | * |
2625 | * Variant of skb_fill_page_desc() which does not deal with |
2626 | * pfmemalloc, if page is not owned by us. |
2627 | */ |
2628 | static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, |
2629 | struct page *page, int off, |
2630 | int size) |
2631 | { |
2632 | struct skb_shared_info *shinfo = skb_shinfo(skb); |
2633 | |
2634 | __skb_fill_page_desc_noacc(shinfo, i, page, off, size); |
2635 | shinfo->nr_frags = i + 1; |
2636 | } |
2637 | |
2638 | void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, |
2639 | int off, int size, unsigned int truesize); |
2640 | |
2641 | static inline void skb_add_rx_frag(struct sk_buff *skb, int i, |
2642 | struct page *page, int off, int size, |
2643 | unsigned int truesize) |
2644 | { |
2645 | skb_add_rx_frag_netmem(skb, i, netmem: page_to_netmem(page), off, size, |
2646 | truesize); |
2647 | } |
2648 | |
2649 | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, |
2650 | unsigned int truesize); |
2651 | |
2652 | #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) |
2653 | |
2654 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
2655 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) |
2656 | { |
2657 | return skb->head + skb->tail; |
2658 | } |
2659 | |
2660 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) |
2661 | { |
2662 | skb->tail = skb->data - skb->head; |
2663 | } |
2664 | |
2665 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) |
2666 | { |
2667 | skb_reset_tail_pointer(skb); |
2668 | skb->tail += offset; |
2669 | } |
2670 | |
2671 | #else /* NET_SKBUFF_DATA_USES_OFFSET */ |
2672 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) |
2673 | { |
2674 | return skb->tail; |
2675 | } |
2676 | |
2677 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) |
2678 | { |
2679 | skb->tail = skb->data; |
2680 | } |
2681 | |
2682 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) |
2683 | { |
2684 | skb->tail = skb->data + offset; |
2685 | } |
2686 | |
2687 | #endif /* NET_SKBUFF_DATA_USES_OFFSET */ |
2688 | |
2689 | static inline void skb_assert_len(struct sk_buff *skb) |
2690 | { |
2691 | #ifdef CONFIG_DEBUG_NET |
2692 | if (WARN_ONCE(!skb->len, "%s\n", __func__)) |
2693 | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); |
2694 | #endif /* CONFIG_DEBUG_NET */ |
2695 | } |
2696 | |
2697 | #if defined(CONFIG_FAIL_SKB_REALLOC) |
2698 | void skb_might_realloc(struct sk_buff *skb); |
2699 | #else |
2700 | static inline void skb_might_realloc(struct sk_buff *skb) {} |
2701 | #endif |
2702 | |
2703 | /* |
2704 | * Add data to an sk_buff |
2705 | */ |
2706 | void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); |
2707 | void *skb_put(struct sk_buff *skb, unsigned int len); |
2708 | static inline void *__skb_put(struct sk_buff *skb, unsigned int len) |
2709 | { |
2710 | void *tmp = skb_tail_pointer(skb); |
2711 | SKB_LINEAR_ASSERT(skb); |
2712 | skb->tail += len; |
2713 | skb->len += len; |
2714 | return tmp; |
2715 | } |
2716 | |
2717 | static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) |
2718 | { |
2719 | void *tmp = __skb_put(skb, len); |
2720 | |
2721 | memset(tmp, 0, len); |
2722 | return tmp; |
2723 | } |
2724 | |
2725 | static inline void *__skb_put_data(struct sk_buff *skb, const void *data, |
2726 | unsigned int len) |
2727 | { |
2728 | void *tmp = __skb_put(skb, len); |
2729 | |
2730 | memcpy(tmp, data, len); |
2731 | return tmp; |
2732 | } |
2733 | |
2734 | static inline void __skb_put_u8(struct sk_buff *skb, u8 val) |
2735 | { |
2736 | *(u8 *)__skb_put(skb, len: 1) = val; |
2737 | } |
2738 | |
2739 | static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) |
2740 | { |
2741 | void *tmp = skb_put(skb, len); |
2742 | |
2743 | memset(tmp, 0, len); |
2744 | |
2745 | return tmp; |
2746 | } |
2747 | |
2748 | static inline void *skb_put_data(struct sk_buff *skb, const void *data, |
2749 | unsigned int len) |
2750 | { |
2751 | void *tmp = skb_put(skb, len); |
2752 | |
2753 | memcpy(tmp, data, len); |
2754 | |
2755 | return tmp; |
2756 | } |
2757 | |
2758 | static inline void skb_put_u8(struct sk_buff *skb, u8 val) |
2759 | { |
2760 | *(u8 *)skb_put(skb, len: 1) = val; |
2761 | } |
2762 | |
2763 | void *skb_push(struct sk_buff *skb, unsigned int len); |
2764 | static inline void *__skb_push(struct sk_buff *skb, unsigned int len) |
2765 | { |
2766 | DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); |
2767 | |
2768 | skb->data -= len; |
2769 | skb->len += len; |
2770 | return skb->data; |
2771 | } |
2772 | |
2773 | void *skb_pull(struct sk_buff *skb, unsigned int len); |
2774 | static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) |
2775 | { |
2776 | DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); |
2777 | |
2778 | skb->len -= len; |
2779 | if (unlikely(skb->len < skb->data_len)) { |
2780 | #if defined(CONFIG_DEBUG_NET) |
2781 | skb->len += len; |
2782 | pr_err("__skb_pull(len=%u)\n", len); |
2783 | skb_dump(KERN_ERR, skb, full_pkt: false); |
2784 | #endif |
2785 | BUG(); |
2786 | } |
2787 | return skb->data += len; |
2788 | } |
2789 | |
2790 | static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) |
2791 | { |
2792 | return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); |
2793 | } |
2794 | |
2795 | void *skb_pull_data(struct sk_buff *skb, size_t len); |
2796 | |
2797 | void *__pskb_pull_tail(struct sk_buff *skb, int delta); |
2798 | |
2799 | static inline enum skb_drop_reason |
2800 | pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) |
2801 | { |
2802 | DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); |
2803 | skb_might_realloc(skb); |
2804 | |
2805 | if (likely(len <= skb_headlen(skb))) |
2806 | return SKB_NOT_DROPPED_YET; |
2807 | |
2808 | if (unlikely(len > skb->len)) |
2809 | return SKB_DROP_REASON_PKT_TOO_SMALL; |
2810 | |
2811 | if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) |
2812 | return SKB_DROP_REASON_NOMEM; |
2813 | |
2814 | return SKB_NOT_DROPPED_YET; |
2815 | } |
2816 | |
2817 | static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) |
2818 | { |
2819 | return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; |
2820 | } |
2821 | |
2822 | static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) |
2823 | { |
2824 | if (!pskb_may_pull(skb, len)) |
2825 | return NULL; |
2826 | |
2827 | skb->len -= len; |
2828 | return skb->data += len; |
2829 | } |
2830 | |
2831 | void skb_condense(struct sk_buff *skb); |
2832 | |
2833 | /** |
2834 | * skb_headroom - bytes at buffer head |
2835 | * @skb: buffer to check |
2836 | * |
2837 | * Return the number of bytes of free space at the head of an &sk_buff. |
2838 | */ |
2839 | static inline unsigned int skb_headroom(const struct sk_buff *skb) |
2840 | { |
2841 | return skb->data - skb->head; |
2842 | } |
2843 | |
2844 | /** |
2845 | * skb_tailroom - bytes at buffer end |
2846 | * @skb: buffer to check |
2847 | * |
2848 | * Return the number of bytes of free space at the tail of an sk_buff |
2849 | */ |
2850 | static inline int skb_tailroom(const struct sk_buff *skb) |
2851 | { |
2852 | return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; |
2853 | } |
2854 | |
2855 | /** |
2856 | * skb_availroom - bytes at buffer end |
2857 | * @skb: buffer to check |
2858 | * |
2859 | * Return the number of bytes of free space at the tail of an sk_buff |
2860 | * allocated by sk_stream_alloc() |
2861 | */ |
2862 | static inline int skb_availroom(const struct sk_buff *skb) |
2863 | { |
2864 | if (skb_is_nonlinear(skb)) |
2865 | return 0; |
2866 | |
2867 | return skb->end - skb->tail - skb->reserved_tailroom; |
2868 | } |
2869 | |
2870 | /** |
2871 | * skb_reserve - adjust headroom |
2872 | * @skb: buffer to alter |
2873 | * @len: bytes to move |
2874 | * |
2875 | * Increase the headroom of an empty &sk_buff by reducing the tail |
2876 | * room. This is only allowed for an empty buffer. |
2877 | */ |
2878 | static inline void skb_reserve(struct sk_buff *skb, int len) |
2879 | { |
2880 | skb->data += len; |
2881 | skb->tail += len; |
2882 | } |
2883 | |
2884 | /** |
2885 | * skb_tailroom_reserve - adjust reserved_tailroom |
2886 | * @skb: buffer to alter |
2887 | * @mtu: maximum amount of headlen permitted |
2888 | * @needed_tailroom: minimum amount of reserved_tailroom |
2889 | * |
2890 | * Set reserved_tailroom so that headlen can be as large as possible but |
2891 | * not larger than mtu and tailroom cannot be smaller than |
2892 | * needed_tailroom. |
2893 | * The required headroom should already have been reserved before using |
2894 | * this function. |
2895 | */ |
2896 | static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, |
2897 | unsigned int needed_tailroom) |
2898 | { |
2899 | SKB_LINEAR_ASSERT(skb); |
2900 | if (mtu < skb_tailroom(skb) - needed_tailroom) |
2901 | /* use at most mtu */ |
2902 | skb->reserved_tailroom = skb_tailroom(skb) - mtu; |
2903 | else |
2904 | /* use up to all available space */ |
2905 | skb->reserved_tailroom = needed_tailroom; |
2906 | } |
2907 | |
2908 | #define ENCAP_TYPE_ETHER 0 |
2909 | #define ENCAP_TYPE_IPPROTO 1 |
2910 | |
2911 | static inline void skb_set_inner_protocol(struct sk_buff *skb, |
2912 | __be16 protocol) |
2913 | { |
2914 | skb->inner_protocol = protocol; |
2915 | skb->inner_protocol_type = ENCAP_TYPE_ETHER; |
2916 | } |
2917 | |
2918 | static inline void skb_set_inner_ipproto(struct sk_buff *skb, |
2919 | __u8 ipproto) |
2920 | { |
2921 | skb->inner_ipproto = ipproto; |
2922 | skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; |
2923 | } |
2924 | |
2925 | static inline void skb_reset_inner_headers(struct sk_buff *skb) |
2926 | { |
2927 | skb->inner_mac_header = skb->mac_header; |
2928 | skb->inner_network_header = skb->network_header; |
2929 | skb->inner_transport_header = skb->transport_header; |
2930 | } |
2931 | |
2932 | static inline int skb_mac_header_was_set(const struct sk_buff *skb) |
2933 | { |
2934 | return skb->mac_header != (typeof(skb->mac_header))~0U; |
2935 | } |
2936 | |
2937 | static inline void skb_reset_mac_len(struct sk_buff *skb) |
2938 | { |
2939 | if (!skb_mac_header_was_set(skb)) { |
2940 | DEBUG_NET_WARN_ON_ONCE(1); |
2941 | skb->mac_len = 0; |
2942 | } else { |
2943 | skb->mac_len = skb->network_header - skb->mac_header; |
2944 | } |
2945 | } |
2946 | |
2947 | static inline unsigned char *skb_inner_transport_header(const struct sk_buff |
2948 | *skb) |
2949 | { |
2950 | return skb->head + skb->inner_transport_header; |
2951 | } |
2952 | |
2953 | static inline int skb_inner_transport_offset(const struct sk_buff *skb) |
2954 | { |
2955 | return skb_inner_transport_header(skb) - skb->data; |
2956 | } |
2957 | |
2958 | static inline void skb_reset_inner_transport_header(struct sk_buff *skb) |
2959 | { |
2960 | long offset = skb->data - skb->head; |
2961 | |
2962 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset); |
2963 | skb->inner_transport_header = offset; |
2964 | } |
2965 | |
2966 | static inline void skb_set_inner_transport_header(struct sk_buff *skb, |
2967 | const int offset) |
2968 | { |
2969 | skb_reset_inner_transport_header(skb); |
2970 | skb->inner_transport_header += offset; |
2971 | } |
2972 | |
2973 | static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) |
2974 | { |
2975 | return skb->head + skb->inner_network_header; |
2976 | } |
2977 | |
2978 | static inline void skb_reset_inner_network_header(struct sk_buff *skb) |
2979 | { |
2980 | long offset = skb->data - skb->head; |
2981 | |
2982 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset); |
2983 | skb->inner_network_header = offset; |
2984 | } |
2985 | |
2986 | static inline void skb_set_inner_network_header(struct sk_buff *skb, |
2987 | const int offset) |
2988 | { |
2989 | skb_reset_inner_network_header(skb); |
2990 | skb->inner_network_header += offset; |
2991 | } |
2992 | |
2993 | static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) |
2994 | { |
2995 | return skb->inner_network_header > 0; |
2996 | } |
2997 | |
2998 | static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) |
2999 | { |
3000 | return skb->head + skb->inner_mac_header; |
3001 | } |
3002 | |
3003 | static inline void skb_reset_inner_mac_header(struct sk_buff *skb) |
3004 | { |
3005 | long offset = skb->data - skb->head; |
3006 | |
3007 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset); |
3008 | skb->inner_mac_header = offset; |
3009 | } |
3010 | |
3011 | static inline void skb_set_inner_mac_header(struct sk_buff *skb, |
3012 | const int offset) |
3013 | { |
3014 | skb_reset_inner_mac_header(skb); |
3015 | skb->inner_mac_header += offset; |
3016 | } |
3017 | static inline bool skb_transport_header_was_set(const struct sk_buff *skb) |
3018 | { |
3019 | return skb->transport_header != (typeof(skb->transport_header))~0U; |
3020 | } |
3021 | |
3022 | static inline unsigned char *skb_transport_header(const struct sk_buff *skb) |
3023 | { |
3024 | DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); |
3025 | return skb->head + skb->transport_header; |
3026 | } |
3027 | |
3028 | static inline void skb_reset_transport_header(struct sk_buff *skb) |
3029 | { |
3030 | long offset = skb->data - skb->head; |
3031 | |
3032 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset); |
3033 | skb->transport_header = offset; |
3034 | } |
3035 | |
3036 | static inline void skb_set_transport_header(struct sk_buff *skb, |
3037 | const int offset) |
3038 | { |
3039 | skb_reset_transport_header(skb); |
3040 | skb->transport_header += offset; |
3041 | } |
3042 | |
3043 | static inline unsigned char *skb_network_header(const struct sk_buff *skb) |
3044 | { |
3045 | return skb->head + skb->network_header; |
3046 | } |
3047 | |
3048 | static inline void skb_reset_network_header(struct sk_buff *skb) |
3049 | { |
3050 | long offset = skb->data - skb->head; |
3051 | |
3052 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset); |
3053 | skb->network_header = offset; |
3054 | } |
3055 | |
3056 | static inline void skb_set_network_header(struct sk_buff *skb, const int offset) |
3057 | { |
3058 | skb_reset_network_header(skb); |
3059 | skb->network_header += offset; |
3060 | } |
3061 | |
3062 | static inline unsigned char *skb_mac_header(const struct sk_buff *skb) |
3063 | { |
3064 | DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); |
3065 | return skb->head + skb->mac_header; |
3066 | } |
3067 | |
3068 | static inline int skb_mac_offset(const struct sk_buff *skb) |
3069 | { |
3070 | return skb_mac_header(skb) - skb->data; |
3071 | } |
3072 | |
3073 | static inline u32 skb_mac_header_len(const struct sk_buff *skb) |
3074 | { |
3075 | DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); |
3076 | return skb->network_header - skb->mac_header; |
3077 | } |
3078 | |
3079 | static inline void skb_unset_mac_header(struct sk_buff *skb) |
3080 | { |
3081 | skb->mac_header = (typeof(skb->mac_header))~0U; |
3082 | } |
3083 | |
3084 | static inline void skb_reset_mac_header(struct sk_buff *skb) |
3085 | { |
3086 | long offset = skb->data - skb->head; |
3087 | |
3088 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset); |
3089 | skb->mac_header = offset; |
3090 | } |
3091 | |
3092 | static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) |
3093 | { |
3094 | skb_reset_mac_header(skb); |
3095 | skb->mac_header += offset; |
3096 | } |
3097 | |
3098 | static inline void skb_pop_mac_header(struct sk_buff *skb) |
3099 | { |
3100 | skb->mac_header = skb->network_header; |
3101 | } |
3102 | |
3103 | static inline void skb_probe_transport_header(struct sk_buff *skb) |
3104 | { |
3105 | struct flow_keys_basic keys; |
3106 | |
3107 | if (skb_transport_header_was_set(skb)) |
3108 | return; |
3109 | |
3110 | if (skb_flow_dissect_flow_keys_basic(NULL, skb, flow: &keys, |
3111 | NULL, proto: 0, nhoff: 0, hlen: 0, flags: 0)) |
3112 | skb_set_transport_header(skb, offset: keys.control.thoff); |
3113 | } |
3114 | |
3115 | static inline void skb_mac_header_rebuild(struct sk_buff *skb) |
3116 | { |
3117 | if (skb_mac_header_was_set(skb)) { |
3118 | const unsigned char *old_mac = skb_mac_header(skb); |
3119 | |
3120 | skb_set_mac_header(skb, offset: -skb->mac_len); |
3121 | memmove(skb_mac_header(skb), old_mac, skb->mac_len); |
3122 | } |
3123 | } |
3124 | |
3125 | /* Move the full mac header up to current network_header. |
3126 | * Leaves skb->data pointing at offset skb->mac_len into the mac_header. |
3127 | * Must be provided the complete mac header length. |
3128 | */ |
3129 | static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) |
3130 | { |
3131 | if (skb_mac_header_was_set(skb)) { |
3132 | const unsigned char *old_mac = skb_mac_header(skb); |
3133 | |
3134 | skb_set_mac_header(skb, offset: -full_mac_len); |
3135 | memmove(skb_mac_header(skb), old_mac, full_mac_len); |
3136 | __skb_push(skb, len: full_mac_len - skb->mac_len); |
3137 | } |
3138 | } |
3139 | |
3140 | static inline int skb_checksum_start_offset(const struct sk_buff *skb) |
3141 | { |
3142 | return skb->csum_start - skb_headroom(skb); |
3143 | } |
3144 | |
3145 | static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) |
3146 | { |
3147 | return skb->head + skb->csum_start; |
3148 | } |
3149 | |
3150 | static inline int skb_transport_offset(const struct sk_buff *skb) |
3151 | { |
3152 | return skb_transport_header(skb) - skb->data; |
3153 | } |
3154 | |
3155 | static inline u32 skb_network_header_len(const struct sk_buff *skb) |
3156 | { |
3157 | DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); |
3158 | return skb->transport_header - skb->network_header; |
3159 | } |
3160 | |
3161 | static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) |
3162 | { |
3163 | return skb->inner_transport_header - skb->inner_network_header; |
3164 | } |
3165 | |
3166 | static inline int skb_network_offset(const struct sk_buff *skb) |
3167 | { |
3168 | return skb_network_header(skb) - skb->data; |
3169 | } |
3170 | |
3171 | static inline int skb_inner_network_offset(const struct sk_buff *skb) |
3172 | { |
3173 | return skb_inner_network_header(skb) - skb->data; |
3174 | } |
3175 | |
3176 | static inline enum skb_drop_reason |
3177 | pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len) |
3178 | { |
3179 | return pskb_may_pull_reason(skb, len: skb_network_offset(skb) + len); |
3180 | } |
3181 | |
3182 | static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) |
3183 | { |
3184 | return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; |
3185 | } |
3186 | |
3187 | /* |
3188 | * CPUs often take a performance hit when accessing unaligned memory |
3189 | * locations. The actual performance hit varies, it can be small if the |
3190 | * hardware handles it or large if we have to take an exception and fix it |
3191 | * in software. |
3192 | * |
3193 | * Since an ethernet header is 14 bytes network drivers often end up with |
3194 | * the IP header at an unaligned offset. The IP header can be aligned by |
3195 | * shifting the start of the packet by 2 bytes. Drivers should do this |
3196 | * with: |
3197 | * |
3198 | * skb_reserve(skb, NET_IP_ALIGN); |
3199 | * |
3200 | * The downside to this alignment of the IP header is that the DMA is now |
3201 | * unaligned. On some architectures the cost of an unaligned DMA is high |
3202 | * and this cost outweighs the gains made by aligning the IP header. |
3203 | * |
3204 | * Since this trade off varies between architectures, we allow NET_IP_ALIGN |
3205 | * to be overridden. |
3206 | */ |
3207 | #ifndef NET_IP_ALIGN |
3208 | #define NET_IP_ALIGN 2 |
3209 | #endif |
3210 | |
3211 | /* |
3212 | * The networking layer reserves some headroom in skb data (via |
3213 | * dev_alloc_skb). This is used to avoid having to reallocate skb data when |
3214 | * the header has to grow. In the default case, if the header has to grow |
3215 | * 32 bytes or less we avoid the reallocation. |
3216 | * |
3217 | * Unfortunately this headroom changes the DMA alignment of the resulting |
3218 | * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive |
3219 | * on some architectures. An architecture can override this value, |
3220 | * perhaps setting it to a cacheline in size (since that will maintain |
3221 | * cacheline alignment of the DMA). It must be a power of 2. |
3222 | * |
3223 | * Various parts of the networking layer expect at least 32 bytes of |
3224 | * headroom, you should not reduce this. |
3225 | * |
3226 | * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) |
3227 | * to reduce average number of cache lines per packet. |
3228 | * get_rps_cpu() for example only access one 64 bytes aligned block : |
3229 | * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) |
3230 | */ |
3231 | #ifndef NET_SKB_PAD |
3232 | #define NET_SKB_PAD max(32, L1_CACHE_BYTES) |
3233 | #endif |
3234 | |
3235 | int ___pskb_trim(struct sk_buff *skb, unsigned int len); |
3236 | |
3237 | static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) |
3238 | { |
3239 | if (WARN_ON(skb_is_nonlinear(skb))) |
3240 | return; |
3241 | skb->len = len; |
3242 | skb_set_tail_pointer(skb, offset: len); |
3243 | } |
3244 | |
3245 | static inline void __skb_trim(struct sk_buff *skb, unsigned int len) |
3246 | { |
3247 | __skb_set_length(skb, len); |
3248 | } |
3249 | |
3250 | void skb_trim(struct sk_buff *skb, unsigned int len); |
3251 | |
3252 | static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) |
3253 | { |
3254 | if (skb->data_len) |
3255 | return ___pskb_trim(skb, len); |
3256 | __skb_trim(skb, len); |
3257 | return 0; |
3258 | } |
3259 | |
3260 | static inline int pskb_trim(struct sk_buff *skb, unsigned int len) |
3261 | { |
3262 | skb_might_realloc(skb); |
3263 | return (len < skb->len) ? __pskb_trim(skb, len) : 0; |
3264 | } |
3265 | |
3266 | /** |
3267 | * pskb_trim_unique - remove end from a paged unique (not cloned) buffer |
3268 | * @skb: buffer to alter |
3269 | * @len: new length |
3270 | * |
3271 | * This is identical to pskb_trim except that the caller knows that |
3272 | * the skb is not cloned so we should never get an error due to out- |
3273 | * of-memory. |
3274 | */ |
3275 | static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) |
3276 | { |
3277 | int err = pskb_trim(skb, len); |
3278 | BUG_ON(err); |
3279 | } |
3280 | |
3281 | static inline int __skb_grow(struct sk_buff *skb, unsigned int len) |
3282 | { |
3283 | unsigned int diff = len - skb->len; |
3284 | |
3285 | if (skb_tailroom(skb) < diff) { |
3286 | int ret = pskb_expand_head(skb, nhead: 0, ntail: diff - skb_tailroom(skb), |
3287 | GFP_ATOMIC); |
3288 | if (ret) |
3289 | return ret; |
3290 | } |
3291 | __skb_set_length(skb, len); |
3292 | return 0; |
3293 | } |
3294 | |
3295 | /** |
3296 | * skb_orphan - orphan a buffer |
3297 | * @skb: buffer to orphan |
3298 | * |
3299 | * If a buffer currently has an owner then we call the owner's |
3300 | * destructor function and make the @skb unowned. The buffer continues |
3301 | * to exist but is no longer charged to its former owner. |
3302 | */ |
3303 | static inline void skb_orphan(struct sk_buff *skb) |
3304 | { |
3305 | if (skb->destructor) { |
3306 | skb->destructor(skb); |
3307 | skb->destructor = NULL; |
3308 | skb->sk = NULL; |
3309 | } else { |
3310 | BUG_ON(skb->sk); |
3311 | } |
3312 | } |
3313 | |
3314 | /** |
3315 | * skb_orphan_frags - orphan the frags contained in a buffer |
3316 | * @skb: buffer to orphan frags from |
3317 | * @gfp_mask: allocation mask for replacement pages |
3318 | * |
3319 | * For each frag in the SKB which needs a destructor (i.e. has an |
3320 | * owner) create a copy of that frag and release the original |
3321 | * page by calling the destructor. |
3322 | */ |
3323 | static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) |
3324 | { |
3325 | if (likely(!skb_zcopy(skb))) |
3326 | return 0; |
3327 | if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) |
3328 | return 0; |
3329 | return skb_copy_ubufs(skb, gfp_mask); |
3330 | } |
3331 | |
3332 | /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ |
3333 | static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) |
3334 | { |
3335 | if (likely(!skb_zcopy(skb))) |
3336 | return 0; |
3337 | return skb_copy_ubufs(skb, gfp_mask); |
3338 | } |
3339 | |
3340 | /** |
3341 | * __skb_queue_purge_reason - empty a list |
3342 | * @list: list to empty |
3343 | * @reason: drop reason |
3344 | * |
3345 | * Delete all buffers on an &sk_buff list. Each buffer is removed from |
3346 | * the list and one reference dropped. This function does not take the |
3347 | * list lock and the caller must hold the relevant locks to use it. |
3348 | */ |
3349 | static inline void __skb_queue_purge_reason(struct sk_buff_head *list, |
3350 | enum skb_drop_reason reason) |
3351 | { |
3352 | struct sk_buff *skb; |
3353 | |
3354 | while ((skb = __skb_dequeue(list)) != NULL) |
3355 | kfree_skb_reason(skb, reason); |
3356 | } |
3357 | |
3358 | static inline void __skb_queue_purge(struct sk_buff_head *list) |
3359 | { |
3360 | __skb_queue_purge_reason(list, reason: SKB_DROP_REASON_QUEUE_PURGE); |
3361 | } |
3362 | |
3363 | void skb_queue_purge_reason(struct sk_buff_head *list, |
3364 | enum skb_drop_reason reason); |
3365 | |
3366 | static inline void skb_queue_purge(struct sk_buff_head *list) |
3367 | { |
3368 | skb_queue_purge_reason(list, reason: SKB_DROP_REASON_QUEUE_PURGE); |
3369 | } |
3370 | |
3371 | unsigned int skb_rbtree_purge(struct rb_root *root); |
3372 | void skb_errqueue_purge(struct sk_buff_head *list); |
3373 | |
3374 | void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); |
3375 | |
3376 | /** |
3377 | * netdev_alloc_frag - allocate a page fragment |
3378 | * @fragsz: fragment size |
3379 | * |
3380 | * Allocates a frag from a page for receive buffer. |
3381 | * Uses GFP_ATOMIC allocations. |
3382 | */ |
3383 | static inline void *netdev_alloc_frag(unsigned int fragsz) |
3384 | { |
3385 | return __netdev_alloc_frag_align(fragsz, align_mask: ~0u); |
3386 | } |
3387 | |
3388 | static inline void *netdev_alloc_frag_align(unsigned int fragsz, |
3389 | unsigned int align) |
3390 | { |
3391 | WARN_ON_ONCE(!is_power_of_2(align)); |
3392 | return __netdev_alloc_frag_align(fragsz, align_mask: -align); |
3393 | } |
3394 | |
3395 | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, |
3396 | gfp_t gfp_mask); |
3397 | |
3398 | /** |
3399 | * netdev_alloc_skb - allocate an skbuff for rx on a specific device |
3400 | * @dev: network device to receive on |
3401 | * @length: length to allocate |
3402 | * |
3403 | * Allocate a new &sk_buff and assign it a usage count of one. The |
3404 | * buffer has unspecified headroom built in. Users should allocate |
3405 | * the headroom they think they need without accounting for the |
3406 | * built in space. The built in space is used for optimisations. |
3407 | * |
3408 | * %NULL is returned if there is no free memory. Although this function |
3409 | * allocates memory it can be called from an interrupt. |
3410 | */ |
3411 | static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, |
3412 | unsigned int length) |
3413 | { |
3414 | return __netdev_alloc_skb(dev, length, GFP_ATOMIC); |
3415 | } |
3416 | |
3417 | /* legacy helper around __netdev_alloc_skb() */ |
3418 | static inline struct sk_buff *__dev_alloc_skb(unsigned int length, |
3419 | gfp_t gfp_mask) |
3420 | { |
3421 | return __netdev_alloc_skb(NULL, length, gfp_mask); |
3422 | } |
3423 | |
3424 | /* legacy helper around netdev_alloc_skb() */ |
3425 | static inline struct sk_buff *dev_alloc_skb(unsigned int length) |
3426 | { |
3427 | return netdev_alloc_skb(NULL, length); |
3428 | } |
3429 | |
3430 | |
3431 | static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, |
3432 | unsigned int length, gfp_t gfp) |
3433 | { |
3434 | struct sk_buff *skb = __netdev_alloc_skb(dev, length: length + NET_IP_ALIGN, gfp_mask: gfp); |
3435 | |
3436 | if (NET_IP_ALIGN && skb) |
3437 | skb_reserve(skb, NET_IP_ALIGN); |
3438 | return skb; |
3439 | } |
3440 | |
3441 | static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, |
3442 | unsigned int length) |
3443 | { |
3444 | return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); |
3445 | } |
3446 | |
3447 | static inline void skb_free_frag(void *addr) |
3448 | { |
3449 | page_frag_free(addr); |
3450 | } |
3451 | |
3452 | void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); |
3453 | |
3454 | static inline void *napi_alloc_frag(unsigned int fragsz) |
3455 | { |
3456 | return __napi_alloc_frag_align(fragsz, align_mask: ~0u); |
3457 | } |
3458 | |
3459 | static inline void *napi_alloc_frag_align(unsigned int fragsz, |
3460 | unsigned int align) |
3461 | { |
3462 | WARN_ON_ONCE(!is_power_of_2(align)); |
3463 | return __napi_alloc_frag_align(fragsz, align_mask: -align); |
3464 | } |
3465 | |
3466 | struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); |
3467 | void napi_consume_skb(struct sk_buff *skb, int budget); |
3468 | |
3469 | void napi_skb_free_stolen_head(struct sk_buff *skb); |
3470 | void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); |
3471 | |
3472 | /** |
3473 | * __dev_alloc_pages - allocate page for network Rx |
3474 | * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx |
3475 | * @order: size of the allocation |
3476 | * |
3477 | * Allocate a new page. |
3478 | * |
3479 | * %NULL is returned if there is no free memory. |
3480 | */ |
3481 | static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, |
3482 | unsigned int order) |
3483 | { |
3484 | /* This piece of code contains several assumptions. |
3485 | * 1. This is for device Rx, therefore a cold page is preferred. |
3486 | * 2. The expectation is the user wants a compound page. |
3487 | * 3. If requesting a order 0 page it will not be compound |
3488 | * due to the check to see if order has a value in prep_new_page |
3489 | * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to |
3490 | * code in gfp_to_alloc_flags that should be enforcing this. |
3491 | */ |
3492 | gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; |
3493 | |
3494 | return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); |
3495 | } |
3496 | #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) |
3497 | |
3498 | /* |
3499 | * This specialized allocator has to be a macro for its allocations to be |
3500 | * accounted separately (to have a separate alloc_tag). |
3501 | */ |
3502 | #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) |
3503 | |
3504 | /** |
3505 | * __dev_alloc_page - allocate a page for network Rx |
3506 | * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx |
3507 | * |
3508 | * Allocate a new page. |
3509 | * |
3510 | * %NULL is returned if there is no free memory. |
3511 | */ |
3512 | static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) |
3513 | { |
3514 | return __dev_alloc_pages_noprof(gfp_mask, order: 0); |
3515 | } |
3516 | #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) |
3517 | |
3518 | /* |
3519 | * This specialized allocator has to be a macro for its allocations to be |
3520 | * accounted separately (to have a separate alloc_tag). |
3521 | */ |
3522 | #define dev_alloc_page() dev_alloc_pages(0) |
3523 | |
3524 | /** |
3525 | * dev_page_is_reusable - check whether a page can be reused for network Rx |
3526 | * @page: the page to test |
3527 | * |
3528 | * A page shouldn't be considered for reusing/recycling if it was allocated |
3529 | * under memory pressure or at a distant memory node. |
3530 | * |
3531 | * Returns: false if this page should be returned to page allocator, true |
3532 | * otherwise. |
3533 | */ |
3534 | static inline bool dev_page_is_reusable(const struct page *page) |
3535 | { |
3536 | return likely(page_to_nid(page) == numa_mem_id() && |
3537 | !page_is_pfmemalloc(page)); |
3538 | } |
3539 | |
3540 | /** |
3541 | * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page |
3542 | * @page: The page that was allocated from skb_alloc_page |
3543 | * @skb: The skb that may need pfmemalloc set |
3544 | */ |
3545 | static inline void skb_propagate_pfmemalloc(const struct page *page, |
3546 | struct sk_buff *skb) |
3547 | { |
3548 | if (page_is_pfmemalloc(page)) |
3549 | skb->pfmemalloc = true; |
3550 | } |
3551 | |
3552 | /** |
3553 | * skb_frag_off() - Returns the offset of a skb fragment |
3554 | * @frag: the paged fragment |
3555 | */ |
3556 | static inline unsigned int skb_frag_off(const skb_frag_t *frag) |
3557 | { |
3558 | return frag->offset; |
3559 | } |
3560 | |
3561 | /** |
3562 | * skb_frag_off_add() - Increments the offset of a skb fragment by @delta |
3563 | * @frag: skb fragment |
3564 | * @delta: value to add |
3565 | */ |
3566 | static inline void skb_frag_off_add(skb_frag_t *frag, int delta) |
3567 | { |
3568 | frag->offset += delta; |
3569 | } |
3570 | |
3571 | /** |
3572 | * skb_frag_off_set() - Sets the offset of a skb fragment |
3573 | * @frag: skb fragment |
3574 | * @offset: offset of fragment |
3575 | */ |
3576 | static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) |
3577 | { |
3578 | frag->offset = offset; |
3579 | } |
3580 | |
3581 | /** |
3582 | * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment |
3583 | * @fragto: skb fragment where offset is set |
3584 | * @fragfrom: skb fragment offset is copied from |
3585 | */ |
3586 | static inline void skb_frag_off_copy(skb_frag_t *fragto, |
3587 | const skb_frag_t *fragfrom) |
3588 | { |
3589 | fragto->offset = fragfrom->offset; |
3590 | } |
3591 | |
3592 | /* Return: true if the skb_frag contains a net_iov. */ |
3593 | static inline bool skb_frag_is_net_iov(const skb_frag_t *frag) |
3594 | { |
3595 | return netmem_is_net_iov(netmem: frag->netmem); |
3596 | } |
3597 | |
3598 | /** |
3599 | * skb_frag_net_iov - retrieve the net_iov referred to by fragment |
3600 | * @frag: the fragment |
3601 | * |
3602 | * Return: the &struct net_iov associated with @frag. Returns NULL if this |
3603 | * frag has no associated net_iov. |
3604 | */ |
3605 | static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag) |
3606 | { |
3607 | if (!skb_frag_is_net_iov(frag)) |
3608 | return NULL; |
3609 | |
3610 | return netmem_to_net_iov(netmem: frag->netmem); |
3611 | } |
3612 | |
3613 | /** |
3614 | * skb_frag_page - retrieve the page referred to by a paged fragment |
3615 | * @frag: the paged fragment |
3616 | * |
3617 | * Return: the &struct page associated with @frag. Returns NULL if this frag |
3618 | * has no associated page. |
3619 | */ |
3620 | static inline struct page *skb_frag_page(const skb_frag_t *frag) |
3621 | { |
3622 | if (skb_frag_is_net_iov(frag)) |
3623 | return NULL; |
3624 | |
3625 | return netmem_to_page(netmem: frag->netmem); |
3626 | } |
3627 | |
3628 | /** |
3629 | * skb_frag_netmem - retrieve the netmem referred to by a fragment |
3630 | * @frag: the fragment |
3631 | * |
3632 | * Return: the &netmem_ref associated with @frag. |
3633 | */ |
3634 | static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag) |
3635 | { |
3636 | return frag->netmem; |
3637 | } |
3638 | |
3639 | int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, |
3640 | unsigned int headroom); |
3641 | int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, |
3642 | const struct bpf_prog *prog); |
3643 | |
3644 | /** |
3645 | * skb_frag_address - gets the address of the data contained in a paged fragment |
3646 | * @frag: the paged fragment buffer |
3647 | * |
3648 | * Returns: the address of the data within @frag. The page must already |
3649 | * be mapped. |
3650 | */ |
3651 | static inline void *skb_frag_address(const skb_frag_t *frag) |
3652 | { |
3653 | if (!skb_frag_page(frag)) |
3654 | return NULL; |
3655 | |
3656 | return page_address(skb_frag_page(frag)) + skb_frag_off(frag); |
3657 | } |
3658 | |
3659 | /** |
3660 | * skb_frag_address_safe - gets the address of the data contained in a paged fragment |
3661 | * @frag: the paged fragment buffer |
3662 | * |
3663 | * Returns: the address of the data within @frag. Checks that the page |
3664 | * is mapped and returns %NULL otherwise. |
3665 | */ |
3666 | static inline void *skb_frag_address_safe(const skb_frag_t *frag) |
3667 | { |
3668 | void *ptr = page_address(skb_frag_page(frag)); |
3669 | if (unlikely(!ptr)) |
3670 | return NULL; |
3671 | |
3672 | return ptr + skb_frag_off(frag); |
3673 | } |
3674 | |
3675 | /** |
3676 | * skb_frag_page_copy() - sets the page in a fragment from another fragment |
3677 | * @fragto: skb fragment where page is set |
3678 | * @fragfrom: skb fragment page is copied from |
3679 | */ |
3680 | static inline void skb_frag_page_copy(skb_frag_t *fragto, |
3681 | const skb_frag_t *fragfrom) |
3682 | { |
3683 | fragto->netmem = fragfrom->netmem; |
3684 | } |
3685 | |
3686 | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); |
3687 | |
3688 | /** |
3689 | * __skb_frag_dma_map - maps a paged fragment via the DMA API |
3690 | * @dev: the device to map the fragment to |
3691 | * @frag: the paged fragment to map |
3692 | * @offset: the offset within the fragment (starting at the |
3693 | * fragment's own offset) |
3694 | * @size: the number of bytes to map |
3695 | * @dir: the direction of the mapping (``PCI_DMA_*``) |
3696 | * |
3697 | * Maps the page associated with @frag to @device. |
3698 | */ |
3699 | static inline dma_addr_t __skb_frag_dma_map(struct device *dev, |
3700 | const skb_frag_t *frag, |
3701 | size_t offset, size_t size, |
3702 | enum dma_data_direction dir) |
3703 | { |
3704 | if (skb_frag_is_net_iov(frag)) { |
3705 | return netmem_to_net_iov(netmem: frag->netmem)->dma_addr + offset + |
3706 | frag->offset; |
3707 | } |
3708 | return dma_map_page(dev, skb_frag_page(frag), |
3709 | skb_frag_off(frag) + offset, size, dir); |
3710 | } |
3711 | |
3712 | #define skb_frag_dma_map(dev, frag, ...) \ |
3713 | CONCATENATE(_skb_frag_dma_map, \ |
3714 | COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__) |
3715 | |
3716 | #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({ \ |
3717 | const skb_frag_t *uf = (frag); \ |
3718 | size_t uo = (offset); \ |
3719 | \ |
3720 | __skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo, \ |
3721 | DMA_TO_DEVICE); \ |
3722 | }) |
3723 | #define _skb_frag_dma_map1(dev, frag, offset) \ |
3724 | __skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_), \ |
3725 | __UNIQUE_ID(offset_)) |
3726 | #define _skb_frag_dma_map0(dev, frag) \ |
3727 | _skb_frag_dma_map1(dev, frag, 0) |
3728 | #define _skb_frag_dma_map2(dev, frag, offset, size) \ |
3729 | __skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE) |
3730 | #define _skb_frag_dma_map3(dev, frag, offset, size, dir) \ |
3731 | __skb_frag_dma_map(dev, frag, offset, size, dir) |
3732 | |
3733 | static inline struct sk_buff *pskb_copy(struct sk_buff *skb, |
3734 | gfp_t gfp_mask) |
3735 | { |
3736 | return __pskb_copy(skb, headroom: skb_headroom(skb), gfp_mask); |
3737 | } |
3738 | |
3739 | |
3740 | static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, |
3741 | gfp_t gfp_mask) |
3742 | { |
3743 | return __pskb_copy_fclone(skb, headroom: skb_headroom(skb), gfp_mask, fclone: true); |
3744 | } |
3745 | |
3746 | |
3747 | /** |
3748 | * skb_clone_writable - is the header of a clone writable |
3749 | * @skb: buffer to check |
3750 | * @len: length up to which to write |
3751 | * |
3752 | * Returns true if modifying the header part of the cloned buffer |
3753 | * does not requires the data to be copied. |
3754 | */ |
3755 | static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) |
3756 | { |
3757 | return !skb_header_cloned(skb) && |
3758 | skb_headroom(skb) + len <= skb->hdr_len; |
3759 | } |
3760 | |
3761 | static inline int skb_try_make_writable(struct sk_buff *skb, |
3762 | unsigned int write_len) |
3763 | { |
3764 | return skb_cloned(skb) && !skb_clone_writable(skb, len: write_len) && |
3765 | pskb_expand_head(skb, nhead: 0, ntail: 0, GFP_ATOMIC); |
3766 | } |
3767 | |
3768 | static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, |
3769 | int cloned) |
3770 | { |
3771 | int delta = 0; |
3772 | |
3773 | if (headroom > skb_headroom(skb)) |
3774 | delta = headroom - skb_headroom(skb); |
3775 | |
3776 | if (delta || cloned) |
3777 | return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), ntail: 0, |
3778 | GFP_ATOMIC); |
3779 | return 0; |
3780 | } |
3781 | |
3782 | /** |
3783 | * skb_cow - copy header of skb when it is required |
3784 | * @skb: buffer to cow |
3785 | * @headroom: needed headroom |
3786 | * |
3787 | * If the skb passed lacks sufficient headroom or its data part |
3788 | * is shared, data is reallocated. If reallocation fails, an error |
3789 | * is returned and original skb is not changed. |
3790 | * |
3791 | * The result is skb with writable area skb->head...skb->tail |
3792 | * and at least @headroom of space at head. |
3793 | */ |
3794 | static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) |
3795 | { |
3796 | return __skb_cow(skb, headroom, cloned: skb_cloned(skb)); |
3797 | } |
3798 | |
3799 | /** |
3800 | * skb_cow_head - skb_cow but only making the head writable |
3801 | * @skb: buffer to cow |
3802 | * @headroom: needed headroom |
3803 | * |
3804 | * This function is identical to skb_cow except that we replace the |
3805 | * skb_cloned check by skb_header_cloned. It should be used when |
3806 | * you only need to push on some header and do not need to modify |
3807 | * the data. |
3808 | */ |
3809 | static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) |
3810 | { |
3811 | return __skb_cow(skb, headroom, cloned: skb_header_cloned(skb)); |
3812 | } |
3813 | |
3814 | /** |
3815 | * skb_padto - pad an skbuff up to a minimal size |
3816 | * @skb: buffer to pad |
3817 | * @len: minimal length |
3818 | * |
3819 | * Pads up a buffer to ensure the trailing bytes exist and are |
3820 | * blanked. If the buffer already contains sufficient data it |
3821 | * is untouched. Otherwise it is extended. Returns zero on |
3822 | * success. The skb is freed on error. |
3823 | */ |
3824 | static inline int skb_padto(struct sk_buff *skb, unsigned int len) |
3825 | { |
3826 | unsigned int size = skb->len; |
3827 | if (likely(size >= len)) |
3828 | return 0; |
3829 | return skb_pad(skb, pad: len - size); |
3830 | } |
3831 | |
3832 | /** |
3833 | * __skb_put_padto - increase size and pad an skbuff up to a minimal size |
3834 | * @skb: buffer to pad |
3835 | * @len: minimal length |
3836 | * @free_on_error: free buffer on error |
3837 | * |
3838 | * Pads up a buffer to ensure the trailing bytes exist and are |
3839 | * blanked. If the buffer already contains sufficient data it |
3840 | * is untouched. Otherwise it is extended. Returns zero on |
3841 | * success. The skb is freed on error if @free_on_error is true. |
3842 | */ |
3843 | static inline int __must_check __skb_put_padto(struct sk_buff *skb, |
3844 | unsigned int len, |
3845 | bool free_on_error) |
3846 | { |
3847 | unsigned int size = skb->len; |
3848 | |
3849 | if (unlikely(size < len)) { |
3850 | len -= size; |
3851 | if (__skb_pad(skb, pad: len, free_on_error)) |
3852 | return -ENOMEM; |
3853 | __skb_put(skb, len); |
3854 | } |
3855 | return 0; |
3856 | } |
3857 | |
3858 | /** |
3859 | * skb_put_padto - increase size and pad an skbuff up to a minimal size |
3860 | * @skb: buffer to pad |
3861 | * @len: minimal length |
3862 | * |
3863 | * Pads up a buffer to ensure the trailing bytes exist and are |
3864 | * blanked. If the buffer already contains sufficient data it |
3865 | * is untouched. Otherwise it is extended. Returns zero on |
3866 | * success. The skb is freed on error. |
3867 | */ |
3868 | static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) |
3869 | { |
3870 | return __skb_put_padto(skb, len, free_on_error: true); |
3871 | } |
3872 | |
3873 | bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) |
3874 | __must_check; |
3875 | |
3876 | static inline bool skb_can_coalesce(struct sk_buff *skb, int i, |
3877 | const struct page *page, int off) |
3878 | { |
3879 | if (skb_zcopy(skb)) |
3880 | return false; |
3881 | if (i) { |
3882 | const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; |
3883 | |
3884 | return page == skb_frag_page(frag) && |
3885 | off == skb_frag_off(frag) + skb_frag_size(frag); |
3886 | } |
3887 | return false; |
3888 | } |
3889 | |
3890 | static inline int __skb_linearize(struct sk_buff *skb) |
3891 | { |
3892 | return __pskb_pull_tail(skb, delta: skb->data_len) ? 0 : -ENOMEM; |
3893 | } |
3894 | |
3895 | /** |
3896 | * skb_linearize - convert paged skb to linear one |
3897 | * @skb: buffer to linarize |
3898 | * |
3899 | * If there is no free memory -ENOMEM is returned, otherwise zero |
3900 | * is returned and the old skb data released. |
3901 | */ |
3902 | static inline int skb_linearize(struct sk_buff *skb) |
3903 | { |
3904 | return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; |
3905 | } |
3906 | |
3907 | /** |
3908 | * skb_has_shared_frag - can any frag be overwritten |
3909 | * @skb: buffer to test |
3910 | * |
3911 | * Return: true if the skb has at least one frag that might be modified |
3912 | * by an external entity (as in vmsplice()/sendfile()) |
3913 | */ |
3914 | static inline bool skb_has_shared_frag(const struct sk_buff *skb) |
3915 | { |
3916 | return skb_is_nonlinear(skb) && |
3917 | skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; |
3918 | } |
3919 | |
3920 | /** |
3921 | * skb_linearize_cow - make sure skb is linear and writable |
3922 | * @skb: buffer to process |
3923 | * |
3924 | * If there is no free memory -ENOMEM is returned, otherwise zero |
3925 | * is returned and the old skb data released. |
3926 | */ |
3927 | static inline int skb_linearize_cow(struct sk_buff *skb) |
3928 | { |
3929 | return skb_is_nonlinear(skb) || skb_cloned(skb) ? |
3930 | __skb_linearize(skb) : 0; |
3931 | } |
3932 | |
3933 | static __always_inline void |
3934 | __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, |
3935 | unsigned int off) |
3936 | { |
3937 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
3938 | skb->csum = csum_block_sub(csum: skb->csum, |
3939 | csum2: csum_partial(buff: start, len, sum: 0), offset: off); |
3940 | else if (skb->ip_summed == CHECKSUM_PARTIAL && |
3941 | skb_checksum_start_offset(skb) < 0) |
3942 | skb->ip_summed = CHECKSUM_NONE; |
3943 | } |
3944 | |
3945 | /** |
3946 | * skb_postpull_rcsum - update checksum for received skb after pull |
3947 | * @skb: buffer to update |
3948 | * @start: start of data before pull |
3949 | * @len: length of data pulled |
3950 | * |
3951 | * After doing a pull on a received packet, you need to call this to |
3952 | * update the CHECKSUM_COMPLETE checksum, or set ip_summed to |
3953 | * CHECKSUM_NONE so that it can be recomputed from scratch. |
3954 | */ |
3955 | static inline void skb_postpull_rcsum(struct sk_buff *skb, |
3956 | const void *start, unsigned int len) |
3957 | { |
3958 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
3959 | skb->csum = wsum_negate(val: csum_partial(buff: start, len, |
3960 | sum: wsum_negate(val: skb->csum))); |
3961 | else if (skb->ip_summed == CHECKSUM_PARTIAL && |
3962 | skb_checksum_start_offset(skb) < 0) |
3963 | skb->ip_summed = CHECKSUM_NONE; |
3964 | } |
3965 | |
3966 | static __always_inline void |
3967 | __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, |
3968 | unsigned int off) |
3969 | { |
3970 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
3971 | skb->csum = csum_block_add(csum: skb->csum, |
3972 | csum2: csum_partial(buff: start, len, sum: 0), offset: off); |
3973 | } |
3974 | |
3975 | /** |
3976 | * skb_postpush_rcsum - update checksum for received skb after push |
3977 | * @skb: buffer to update |
3978 | * @start: start of data after push |
3979 | * @len: length of data pushed |
3980 | * |
3981 | * After doing a push on a received packet, you need to call this to |
3982 | * update the CHECKSUM_COMPLETE checksum. |
3983 | */ |
3984 | static inline void skb_postpush_rcsum(struct sk_buff *skb, |
3985 | const void *start, unsigned int len) |
3986 | { |
3987 | __skb_postpush_rcsum(skb, start, len, off: 0); |
3988 | } |
3989 | |
3990 | void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); |
3991 | |
3992 | /** |
3993 | * skb_push_rcsum - push skb and update receive checksum |
3994 | * @skb: buffer to update |
3995 | * @len: length of data pulled |
3996 | * |
3997 | * This function performs an skb_push on the packet and updates |
3998 | * the CHECKSUM_COMPLETE checksum. It should be used on |
3999 | * receive path processing instead of skb_push unless you know |
4000 | * that the checksum difference is zero (e.g., a valid IP header) |
4001 | * or you are setting ip_summed to CHECKSUM_NONE. |
4002 | */ |
4003 | static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) |
4004 | { |
4005 | skb_push(skb, len); |
4006 | skb_postpush_rcsum(skb, start: skb->data, len); |
4007 | return skb->data; |
4008 | } |
4009 | |
4010 | int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); |
4011 | /** |
4012 | * pskb_trim_rcsum - trim received skb and update checksum |
4013 | * @skb: buffer to trim |
4014 | * @len: new length |
4015 | * |
4016 | * This is exactly the same as pskb_trim except that it ensures the |
4017 | * checksum of received packets are still valid after the operation. |
4018 | * It can change skb pointers. |
4019 | */ |
4020 | |
4021 | static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) |
4022 | { |
4023 | skb_might_realloc(skb); |
4024 | if (likely(len >= skb->len)) |
4025 | return 0; |
4026 | return pskb_trim_rcsum_slow(skb, len); |
4027 | } |
4028 | |
4029 | static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) |
4030 | { |
4031 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
4032 | skb->ip_summed = CHECKSUM_NONE; |
4033 | __skb_trim(skb, len); |
4034 | return 0; |
4035 | } |
4036 | |
4037 | static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) |
4038 | { |
4039 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
4040 | skb->ip_summed = CHECKSUM_NONE; |
4041 | return __skb_grow(skb, len); |
4042 | } |
4043 | |
4044 | #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) |
4045 | #define skb_rb_first(root) rb_to_skb(rb_first(root)) |
4046 | #define skb_rb_last(root) rb_to_skb(rb_last(root)) |
4047 | #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) |
4048 | #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) |
4049 | |
4050 | #define skb_queue_walk(queue, skb) \ |
4051 | for (skb = (queue)->next; \ |
4052 | skb != (struct sk_buff *)(queue); \ |
4053 | skb = skb->next) |
4054 | |
4055 | #define skb_queue_walk_safe(queue, skb, tmp) \ |
4056 | for (skb = (queue)->next, tmp = skb->next; \ |
4057 | skb != (struct sk_buff *)(queue); \ |
4058 | skb = tmp, tmp = skb->next) |
4059 | |
4060 | #define skb_queue_walk_from(queue, skb) \ |
4061 | for (; skb != (struct sk_buff *)(queue); \ |
4062 | skb = skb->next) |
4063 | |
4064 | #define skb_rbtree_walk(skb, root) \ |
4065 | for (skb = skb_rb_first(root); skb != NULL; \ |
4066 | skb = skb_rb_next(skb)) |
4067 | |
4068 | #define skb_rbtree_walk_from(skb) \ |
4069 | for (; skb != NULL; \ |
4070 | skb = skb_rb_next(skb)) |
4071 | |
4072 | #define skb_rbtree_walk_from_safe(skb, tmp) \ |
4073 | for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ |
4074 | skb = tmp) |
4075 | |
4076 | #define skb_queue_walk_from_safe(queue, skb, tmp) \ |
4077 | for (tmp = skb->next; \ |
4078 | skb != (struct sk_buff *)(queue); \ |
4079 | skb = tmp, tmp = skb->next) |
4080 | |
4081 | #define skb_queue_reverse_walk(queue, skb) \ |
4082 | for (skb = (queue)->prev; \ |
4083 | skb != (struct sk_buff *)(queue); \ |
4084 | skb = skb->prev) |
4085 | |
4086 | #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ |
4087 | for (skb = (queue)->prev, tmp = skb->prev; \ |
4088 | skb != (struct sk_buff *)(queue); \ |
4089 | skb = tmp, tmp = skb->prev) |
4090 | |
4091 | #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ |
4092 | for (tmp = skb->prev; \ |
4093 | skb != (struct sk_buff *)(queue); \ |
4094 | skb = tmp, tmp = skb->prev) |
4095 | |
4096 | static inline bool skb_has_frag_list(const struct sk_buff *skb) |
4097 | { |
4098 | return skb_shinfo(skb)->frag_list != NULL; |
4099 | } |
4100 | |
4101 | static inline void skb_frag_list_init(struct sk_buff *skb) |
4102 | { |
4103 | skb_shinfo(skb)->frag_list = NULL; |
4104 | } |
4105 | |
4106 | #define skb_walk_frags(skb, iter) \ |
4107 | for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) |
4108 | |
4109 | |
4110 | int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, |
4111 | int *err, long *timeo_p, |
4112 | const struct sk_buff *skb); |
4113 | struct sk_buff *__skb_try_recv_from_queue(struct sk_buff_head *queue, |
4114 | unsigned int flags, |
4115 | int *off, int *err, |
4116 | struct sk_buff **last); |
4117 | struct sk_buff *__skb_try_recv_datagram(struct sock *sk, |
4118 | struct sk_buff_head *queue, |
4119 | unsigned int flags, int *off, int *err, |
4120 | struct sk_buff **last); |
4121 | struct sk_buff *__skb_recv_datagram(struct sock *sk, |
4122 | struct sk_buff_head *sk_queue, |
4123 | unsigned int flags, int *off, int *err); |
4124 | struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); |
4125 | __poll_t datagram_poll(struct file *file, struct socket *sock, |
4126 | struct poll_table_struct *wait); |
4127 | int skb_copy_datagram_iter(const struct sk_buff *from, int offset, |
4128 | struct iov_iter *to, int size); |
4129 | static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, |
4130 | struct msghdr *msg, int size) |
4131 | { |
4132 | return skb_copy_datagram_iter(from, offset, to: &msg->msg_iter, size); |
4133 | } |
4134 | int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, |
4135 | struct msghdr *msg); |
4136 | int skb_copy_and_crc32c_datagram_iter(const struct sk_buff *skb, int offset, |
4137 | struct iov_iter *to, int len, u32 *crcp); |
4138 | int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, |
4139 | struct iov_iter *from, int len); |
4140 | int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); |
4141 | void skb_free_datagram(struct sock *sk, struct sk_buff *skb); |
4142 | int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); |
4143 | int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); |
4144 | int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); |
4145 | __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, |
4146 | int len); |
4147 | int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, |
4148 | struct pipe_inode_info *pipe, unsigned int len, |
4149 | unsigned int flags); |
4150 | int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, |
4151 | int len); |
4152 | int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, |
4153 | int offset, int len, int flags); |
4154 | int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); |
4155 | void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); |
4156 | unsigned int skb_zerocopy_headlen(const struct sk_buff *from); |
4157 | int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, |
4158 | int len, int hlen); |
4159 | void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); |
4160 | int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); |
4161 | void skb_scrub_packet(struct sk_buff *skb, bool xnet); |
4162 | struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); |
4163 | struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, |
4164 | unsigned int offset); |
4165 | struct sk_buff *skb_vlan_untag(struct sk_buff *skb); |
4166 | int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); |
4167 | int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); |
4168 | int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); |
4169 | int skb_vlan_pop(struct sk_buff *skb); |
4170 | int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); |
4171 | int skb_eth_pop(struct sk_buff *skb); |
4172 | int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, |
4173 | const unsigned char *src); |
4174 | int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, |
4175 | int mac_len, bool ethernet); |
4176 | int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, |
4177 | bool ethernet); |
4178 | int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); |
4179 | int skb_mpls_dec_ttl(struct sk_buff *skb); |
4180 | struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, |
4181 | gfp_t gfp); |
4182 | |
4183 | static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) |
4184 | { |
4185 | return copy_from_iter_full(addr: data, bytes: len, i: &msg->msg_iter) ? 0 : -EFAULT; |
4186 | } |
4187 | |
4188 | static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) |
4189 | { |
4190 | return copy_to_iter(addr: data, bytes: len, i: &msg->msg_iter) == len ? 0 : -EFAULT; |
4191 | } |
4192 | |
4193 | __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, |
4194 | __wsum csum); |
4195 | u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc); |
4196 | |
4197 | static inline void * __must_check |
4198 | __skb_header_pointer(const struct sk_buff *skb, int offset, int len, |
4199 | const void *data, int hlen, void *buffer) |
4200 | { |
4201 | if (likely(hlen - offset >= len)) |
4202 | return (void *)data + offset; |
4203 | |
4204 | if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) |
4205 | return NULL; |
4206 | |
4207 | return buffer; |
4208 | } |
4209 | |
4210 | static inline void * __must_check |
4211 | skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) |
4212 | { |
4213 | return __skb_header_pointer(skb, offset, len, data: skb->data, |
4214 | hlen: skb_headlen(skb), buffer); |
4215 | } |
4216 | |
4217 | static inline void * __must_check |
4218 | skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) |
4219 | { |
4220 | if (likely(skb_headlen(skb) - offset >= len)) |
4221 | return skb->data + offset; |
4222 | return NULL; |
4223 | } |
4224 | |
4225 | /** |
4226 | * skb_needs_linearize - check if we need to linearize a given skb |
4227 | * depending on the given device features. |
4228 | * @skb: socket buffer to check |
4229 | * @features: net device features |
4230 | * |
4231 | * Returns true if either: |
4232 | * 1. skb has frag_list and the device doesn't support FRAGLIST, or |
4233 | * 2. skb is fragmented and the device does not support SG. |
4234 | */ |
4235 | static inline bool skb_needs_linearize(struct sk_buff *skb, |
4236 | netdev_features_t features) |
4237 | { |
4238 | return skb_is_nonlinear(skb) && |
4239 | ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || |
4240 | (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); |
4241 | } |
4242 | |
4243 | static inline void skb_copy_from_linear_data(const struct sk_buff *skb, |
4244 | void *to, |
4245 | const unsigned int len) |
4246 | { |
4247 | memcpy(to, skb->data, len); |
4248 | } |
4249 | |
4250 | static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, |
4251 | const int offset, void *to, |
4252 | const unsigned int len) |
4253 | { |
4254 | memcpy(to, skb->data + offset, len); |
4255 | } |
4256 | |
4257 | static inline void skb_copy_to_linear_data(struct sk_buff *skb, |
4258 | const void *from, |
4259 | const unsigned int len) |
4260 | { |
4261 | memcpy(skb->data, from, len); |
4262 | } |
4263 | |
4264 | static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, |
4265 | const int offset, |
4266 | const void *from, |
4267 | const unsigned int len) |
4268 | { |
4269 | memcpy(skb->data + offset, from, len); |
4270 | } |
4271 | |
4272 | void skb_init(void); |
4273 | |
4274 | static inline ktime_t skb_get_ktime(const struct sk_buff *skb) |
4275 | { |
4276 | return skb->tstamp; |
4277 | } |
4278 | |
4279 | /** |
4280 | * skb_get_timestamp - get timestamp from a skb |
4281 | * @skb: skb to get stamp from |
4282 | * @stamp: pointer to struct __kernel_old_timeval to store stamp in |
4283 | * |
4284 | * Timestamps are stored in the skb as offsets to a base timestamp. |
4285 | * This function converts the offset back to a struct timeval and stores |
4286 | * it in stamp. |
4287 | */ |
4288 | static inline void skb_get_timestamp(const struct sk_buff *skb, |
4289 | struct __kernel_old_timeval *stamp) |
4290 | { |
4291 | *stamp = ns_to_kernel_old_timeval(nsec: skb->tstamp); |
4292 | } |
4293 | |
4294 | static inline void skb_get_new_timestamp(const struct sk_buff *skb, |
4295 | struct __kernel_sock_timeval *stamp) |
4296 | { |
4297 | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); |
4298 | |
4299 | stamp->tv_sec = ts.tv_sec; |
4300 | stamp->tv_usec = ts.tv_nsec / 1000; |
4301 | } |
4302 | |
4303 | static inline void skb_get_timestampns(const struct sk_buff *skb, |
4304 | struct __kernel_old_timespec *stamp) |
4305 | { |
4306 | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); |
4307 | |
4308 | stamp->tv_sec = ts.tv_sec; |
4309 | stamp->tv_nsec = ts.tv_nsec; |
4310 | } |
4311 | |
4312 | static inline void skb_get_new_timestampns(const struct sk_buff *skb, |
4313 | struct __kernel_timespec *stamp) |
4314 | { |
4315 | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); |
4316 | |
4317 | stamp->tv_sec = ts.tv_sec; |
4318 | stamp->tv_nsec = ts.tv_nsec; |
4319 | } |
4320 | |
4321 | static inline void __net_timestamp(struct sk_buff *skb) |
4322 | { |
4323 | skb->tstamp = ktime_get_real(); |
4324 | skb->tstamp_type = SKB_CLOCK_REALTIME; |
4325 | } |
4326 | |
4327 | static inline ktime_t net_timedelta(ktime_t t) |
4328 | { |
4329 | return ktime_sub(ktime_get_real(), t); |
4330 | } |
4331 | |
4332 | static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, |
4333 | u8 tstamp_type) |
4334 | { |
4335 | skb->tstamp = kt; |
4336 | |
4337 | if (kt) |
4338 | skb->tstamp_type = tstamp_type; |
4339 | else |
4340 | skb->tstamp_type = SKB_CLOCK_REALTIME; |
4341 | } |
4342 | |
4343 | static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, |
4344 | ktime_t kt, clockid_t clockid) |
4345 | { |
4346 | u8 tstamp_type = SKB_CLOCK_REALTIME; |
4347 | |
4348 | switch (clockid) { |
4349 | case CLOCK_REALTIME: |
4350 | break; |
4351 | case CLOCK_MONOTONIC: |
4352 | tstamp_type = SKB_CLOCK_MONOTONIC; |
4353 | break; |
4354 | case CLOCK_TAI: |
4355 | tstamp_type = SKB_CLOCK_TAI; |
4356 | break; |
4357 | default: |
4358 | WARN_ON_ONCE(1); |
4359 | kt = 0; |
4360 | } |
4361 | |
4362 | skb_set_delivery_time(skb, kt, tstamp_type); |
4363 | } |
4364 | |
4365 | DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); |
4366 | |
4367 | /* It is used in the ingress path to clear the delivery_time. |
4368 | * If needed, set the skb->tstamp to the (rcv) timestamp. |
4369 | */ |
4370 | static inline void skb_clear_delivery_time(struct sk_buff *skb) |
4371 | { |
4372 | if (skb->tstamp_type) { |
4373 | skb->tstamp_type = SKB_CLOCK_REALTIME; |
4374 | if (static_branch_unlikely(&netstamp_needed_key)) |
4375 | skb->tstamp = ktime_get_real(); |
4376 | else |
4377 | skb->tstamp = 0; |
4378 | } |
4379 | } |
4380 | |
4381 | static inline void skb_clear_tstamp(struct sk_buff *skb) |
4382 | { |
4383 | if (skb->tstamp_type) |
4384 | return; |
4385 | |
4386 | skb->tstamp = 0; |
4387 | } |
4388 | |
4389 | static inline ktime_t skb_tstamp(const struct sk_buff *skb) |
4390 | { |
4391 | if (skb->tstamp_type) |
4392 | return 0; |
4393 | |
4394 | return skb->tstamp; |
4395 | } |
4396 | |
4397 | static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) |
4398 | { |
4399 | if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) |
4400 | return skb->tstamp; |
4401 | |
4402 | if (static_branch_unlikely(&netstamp_needed_key) || cond) |
4403 | return ktime_get_real(); |
4404 | |
4405 | return 0; |
4406 | } |
4407 | |
4408 | static inline u8 skb_metadata_len(const struct sk_buff *skb) |
4409 | { |
4410 | return skb_shinfo(skb)->meta_len; |
4411 | } |
4412 | |
4413 | static inline void *skb_metadata_end(const struct sk_buff *skb) |
4414 | { |
4415 | return skb_mac_header(skb); |
4416 | } |
4417 | |
4418 | static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, |
4419 | const struct sk_buff *skb_b, |
4420 | u8 meta_len) |
4421 | { |
4422 | const void *a = skb_metadata_end(skb: skb_a); |
4423 | const void *b = skb_metadata_end(skb: skb_b); |
4424 | u64 diffs = 0; |
4425 | |
4426 | if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || |
4427 | BITS_PER_LONG != 64) |
4428 | goto slow; |
4429 | |
4430 | /* Using more efficient variant than plain call to memcmp(). */ |
4431 | switch (meta_len) { |
4432 | #define __it(x, op) (x -= sizeof(u##op)) |
4433 | #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) |
4434 | case 32: diffs |= __it_diff(a, b, 64); |
4435 | fallthrough; |
4436 | case 24: diffs |= __it_diff(a, b, 64); |
4437 | fallthrough; |
4438 | case 16: diffs |= __it_diff(a, b, 64); |
4439 | fallthrough; |
4440 | case 8: diffs |= __it_diff(a, b, 64); |
4441 | break; |
4442 | case 28: diffs |= __it_diff(a, b, 64); |
4443 | fallthrough; |
4444 | case 20: diffs |= __it_diff(a, b, 64); |
4445 | fallthrough; |
4446 | case 12: diffs |= __it_diff(a, b, 64); |
4447 | fallthrough; |
4448 | case 4: diffs |= __it_diff(a, b, 32); |
4449 | break; |
4450 | default: |
4451 | slow: |
4452 | return memcmp(p: a - meta_len, q: b - meta_len, size: meta_len); |
4453 | } |
4454 | return diffs; |
4455 | } |
4456 | |
4457 | static inline bool skb_metadata_differs(const struct sk_buff *skb_a, |
4458 | const struct sk_buff *skb_b) |
4459 | { |
4460 | u8 len_a = skb_metadata_len(skb: skb_a); |
4461 | u8 len_b = skb_metadata_len(skb: skb_b); |
4462 | |
4463 | if (!(len_a | len_b)) |
4464 | return false; |
4465 | |
4466 | return len_a != len_b ? |
4467 | true : __skb_metadata_differs(skb_a, skb_b, meta_len: len_a); |
4468 | } |
4469 | |
4470 | static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) |
4471 | { |
4472 | skb_shinfo(skb)->meta_len = meta_len; |
4473 | } |
4474 | |
4475 | static inline void skb_metadata_clear(struct sk_buff *skb) |
4476 | { |
4477 | skb_metadata_set(skb, meta_len: 0); |
4478 | } |
4479 | |
4480 | struct sk_buff *skb_clone_sk(struct sk_buff *skb); |
4481 | |
4482 | #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING |
4483 | |
4484 | void skb_clone_tx_timestamp(struct sk_buff *skb); |
4485 | bool skb_defer_rx_timestamp(struct sk_buff *skb); |
4486 | |
4487 | #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ |
4488 | |
4489 | static inline void skb_clone_tx_timestamp(struct sk_buff *skb) |
4490 | { |
4491 | } |
4492 | |
4493 | static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) |
4494 | { |
4495 | return false; |
4496 | } |
4497 | |
4498 | #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ |
4499 | |
4500 | /** |
4501 | * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps |
4502 | * |
4503 | * PHY drivers may accept clones of transmitted packets for |
4504 | * timestamping via their phy_driver.txtstamp method. These drivers |
4505 | * must call this function to return the skb back to the stack with a |
4506 | * timestamp. |
4507 | * |
4508 | * @skb: clone of the original outgoing packet |
4509 | * @hwtstamps: hardware time stamps |
4510 | * |
4511 | */ |
4512 | void skb_complete_tx_timestamp(struct sk_buff *skb, |
4513 | struct skb_shared_hwtstamps *hwtstamps); |
4514 | |
4515 | void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, |
4516 | struct skb_shared_hwtstamps *hwtstamps, |
4517 | struct sock *sk, int tstype); |
4518 | |
4519 | /** |
4520 | * skb_tstamp_tx - queue clone of skb with send time stamps |
4521 | * @orig_skb: the original outgoing packet |
4522 | * @hwtstamps: hardware time stamps, may be NULL if not available |
4523 | * |
4524 | * If the skb has a socket associated, then this function clones the |
4525 | * skb (thus sharing the actual data and optional structures), stores |
4526 | * the optional hardware time stamping information (if non NULL) or |
4527 | * generates a software time stamp (otherwise), then queues the clone |
4528 | * to the error queue of the socket. Errors are silently ignored. |
4529 | */ |
4530 | void skb_tstamp_tx(struct sk_buff *orig_skb, |
4531 | struct skb_shared_hwtstamps *hwtstamps); |
4532 | |
4533 | /** |
4534 | * skb_tx_timestamp() - Driver hook for transmit timestamping |
4535 | * |
4536 | * Ethernet MAC Drivers should call this function in their hard_xmit() |
4537 | * function immediately before giving the sk_buff to the MAC hardware. |
4538 | * |
4539 | * Specifically, one should make absolutely sure that this function is |
4540 | * called before TX completion of this packet can trigger. Otherwise |
4541 | * the packet could potentially already be freed. |
4542 | * |
4543 | * @skb: A socket buffer. |
4544 | */ |
4545 | static inline void skb_tx_timestamp(struct sk_buff *skb) |
4546 | { |
4547 | skb_clone_tx_timestamp(skb); |
4548 | if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF)) |
4549 | skb_tstamp_tx(orig_skb: skb, NULL); |
4550 | } |
4551 | |
4552 | /** |
4553 | * skb_complete_wifi_ack - deliver skb with wifi status |
4554 | * |
4555 | * @skb: the original outgoing packet |
4556 | * @acked: ack status |
4557 | * |
4558 | */ |
4559 | void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); |
4560 | |
4561 | __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); |
4562 | __sum16 __skb_checksum_complete(struct sk_buff *skb); |
4563 | |
4564 | static inline int skb_csum_unnecessary(const struct sk_buff *skb) |
4565 | { |
4566 | return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || |
4567 | skb->csum_valid || |
4568 | (skb->ip_summed == CHECKSUM_PARTIAL && |
4569 | skb_checksum_start_offset(skb) >= 0)); |
4570 | } |
4571 | |
4572 | /** |
4573 | * skb_checksum_complete - Calculate checksum of an entire packet |
4574 | * @skb: packet to process |
4575 | * |
4576 | * This function calculates the checksum over the entire packet plus |
4577 | * the value of skb->csum. The latter can be used to supply the |
4578 | * checksum of a pseudo header as used by TCP/UDP. It returns the |
4579 | * checksum. |
4580 | * |
4581 | * For protocols that contain complete checksums such as ICMP/TCP/UDP, |
4582 | * this function can be used to verify that checksum on received |
4583 | * packets. In that case the function should return zero if the |
4584 | * checksum is correct. In particular, this function will return zero |
4585 | * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the |
4586 | * hardware has already verified the correctness of the checksum. |
4587 | */ |
4588 | static inline __sum16 skb_checksum_complete(struct sk_buff *skb) |
4589 | { |
4590 | return skb_csum_unnecessary(skb) ? |
4591 | 0 : __skb_checksum_complete(skb); |
4592 | } |
4593 | |
4594 | static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) |
4595 | { |
4596 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
4597 | if (skb->csum_level == 0) |
4598 | skb->ip_summed = CHECKSUM_NONE; |
4599 | else |
4600 | skb->csum_level--; |
4601 | } |
4602 | } |
4603 | |
4604 | static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) |
4605 | { |
4606 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
4607 | if (skb->csum_level < SKB_MAX_CSUM_LEVEL) |
4608 | skb->csum_level++; |
4609 | } else if (skb->ip_summed == CHECKSUM_NONE) { |
4610 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
4611 | skb->csum_level = 0; |
4612 | } |
4613 | } |
4614 | |
4615 | static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) |
4616 | { |
4617 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
4618 | skb->ip_summed = CHECKSUM_NONE; |
4619 | skb->csum_level = 0; |
4620 | } |
4621 | } |
4622 | |
4623 | /* Check if we need to perform checksum complete validation. |
4624 | * |
4625 | * Returns: true if checksum complete is needed, false otherwise |
4626 | * (either checksum is unnecessary or zero checksum is allowed). |
4627 | */ |
4628 | static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, |
4629 | bool zero_okay, |
4630 | __sum16 check) |
4631 | { |
4632 | if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { |
4633 | skb->csum_valid = 1; |
4634 | __skb_decr_checksum_unnecessary(skb); |
4635 | return false; |
4636 | } |
4637 | |
4638 | return true; |
4639 | } |
4640 | |
4641 | /* For small packets <= CHECKSUM_BREAK perform checksum complete directly |
4642 | * in checksum_init. |
4643 | */ |
4644 | #define CHECKSUM_BREAK 76 |
4645 | |
4646 | /* Unset checksum-complete |
4647 | * |
4648 | * Unset checksum complete can be done when packet is being modified |
4649 | * (uncompressed for instance) and checksum-complete value is |
4650 | * invalidated. |
4651 | */ |
4652 | static inline void skb_checksum_complete_unset(struct sk_buff *skb) |
4653 | { |
4654 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
4655 | skb->ip_summed = CHECKSUM_NONE; |
4656 | } |
4657 | |
4658 | /* Validate (init) checksum based on checksum complete. |
4659 | * |
4660 | * Return values: |
4661 | * 0: checksum is validated or try to in skb_checksum_complete. In the latter |
4662 | * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo |
4663 | * checksum is stored in skb->csum for use in __skb_checksum_complete |
4664 | * non-zero: value of invalid checksum |
4665 | * |
4666 | */ |
4667 | static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, |
4668 | bool complete, |
4669 | __wsum psum) |
4670 | { |
4671 | if (skb->ip_summed == CHECKSUM_COMPLETE) { |
4672 | if (!csum_fold(csum: csum_add(csum: psum, addend: skb->csum))) { |
4673 | skb->csum_valid = 1; |
4674 | return 0; |
4675 | } |
4676 | } |
4677 | |
4678 | skb->csum = psum; |
4679 | |
4680 | if (complete || skb->len <= CHECKSUM_BREAK) { |
4681 | __sum16 csum; |
4682 | |
4683 | csum = __skb_checksum_complete(skb); |
4684 | skb->csum_valid = !csum; |
4685 | return csum; |
4686 | } |
4687 | |
4688 | return 0; |
4689 | } |
4690 | |
4691 | static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) |
4692 | { |
4693 | return 0; |
4694 | } |
4695 | |
4696 | /* Perform checksum validate (init). Note that this is a macro since we only |
4697 | * want to calculate the pseudo header which is an input function if necessary. |
4698 | * First we try to validate without any computation (checksum unnecessary) and |
4699 | * then calculate based on checksum complete calling the function to compute |
4700 | * pseudo header. |
4701 | * |
4702 | * Return values: |
4703 | * 0: checksum is validated or try to in skb_checksum_complete |
4704 | * non-zero: value of invalid checksum |
4705 | */ |
4706 | #define __skb_checksum_validate(skb, proto, complete, \ |
4707 | zero_okay, check, compute_pseudo) \ |
4708 | ({ \ |
4709 | __sum16 __ret = 0; \ |
4710 | skb->csum_valid = 0; \ |
4711 | if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ |
4712 | __ret = __skb_checksum_validate_complete(skb, \ |
4713 | complete, compute_pseudo(skb, proto)); \ |
4714 | __ret; \ |
4715 | }) |
4716 | |
4717 | #define skb_checksum_init(skb, proto, compute_pseudo) \ |
4718 | __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) |
4719 | |
4720 | #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ |
4721 | __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) |
4722 | |
4723 | #define skb_checksum_validate(skb, proto, compute_pseudo) \ |
4724 | __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) |
4725 | |
4726 | #define skb_checksum_validate_zero_check(skb, proto, check, \ |
4727 | compute_pseudo) \ |
4728 | __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) |
4729 | |
4730 | #define skb_checksum_simple_validate(skb) \ |
4731 | __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) |
4732 | |
4733 | static inline bool __skb_checksum_convert_check(struct sk_buff *skb) |
4734 | { |
4735 | return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); |
4736 | } |
4737 | |
4738 | static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) |
4739 | { |
4740 | skb->csum = ~pseudo; |
4741 | skb->ip_summed = CHECKSUM_COMPLETE; |
4742 | } |
4743 | |
4744 | #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ |
4745 | do { \ |
4746 | if (__skb_checksum_convert_check(skb)) \ |
4747 | __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ |
4748 | } while (0) |
4749 | |
4750 | static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, |
4751 | u16 start, u16 offset) |
4752 | { |
4753 | skb->ip_summed = CHECKSUM_PARTIAL; |
4754 | skb->csum_start = ((unsigned char *)ptr + start) - skb->head; |
4755 | skb->csum_offset = offset - start; |
4756 | } |
4757 | |
4758 | /* Update skbuf and packet to reflect the remote checksum offload operation. |
4759 | * When called, ptr indicates the starting point for skb->csum when |
4760 | * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete |
4761 | * here, skb_postpull_rcsum is done so skb->csum start is ptr. |
4762 | */ |
4763 | static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, |
4764 | int start, int offset, bool nopartial) |
4765 | { |
4766 | __wsum delta; |
4767 | |
4768 | if (!nopartial) { |
4769 | skb_remcsum_adjust_partial(skb, ptr, start, offset); |
4770 | return; |
4771 | } |
4772 | |
4773 | if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { |
4774 | __skb_checksum_complete(skb); |
4775 | skb_postpull_rcsum(skb, start: skb->data, len: ptr - (void *)skb->data); |
4776 | } |
4777 | |
4778 | delta = remcsum_adjust(ptr, csum: skb->csum, start, offset); |
4779 | |
4780 | /* Adjust skb->csum since we changed the packet */ |
4781 | skb->csum = csum_add(csum: skb->csum, addend: delta); |
4782 | } |
4783 | |
4784 | static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) |
4785 | { |
4786 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
4787 | return (void *)(skb->_nfct & NFCT_PTRMASK); |
4788 | #else |
4789 | return NULL; |
4790 | #endif |
4791 | } |
4792 | |
4793 | static inline unsigned long skb_get_nfct(const struct sk_buff *skb) |
4794 | { |
4795 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
4796 | return skb->_nfct; |
4797 | #else |
4798 | return 0UL; |
4799 | #endif |
4800 | } |
4801 | |
4802 | static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) |
4803 | { |
4804 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
4805 | skb->slow_gro |= !!nfct; |
4806 | skb->_nfct = nfct; |
4807 | #endif |
4808 | } |
4809 | |
4810 | #ifdef CONFIG_SKB_EXTENSIONS |
4811 | enum skb_ext_id { |
4812 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
4813 | SKB_EXT_BRIDGE_NF, |
4814 | #endif |
4815 | #ifdef CONFIG_XFRM |
4816 | SKB_EXT_SEC_PATH, |
4817 | #endif |
4818 | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) |
4819 | TC_SKB_EXT, |
4820 | #endif |
4821 | #if IS_ENABLED(CONFIG_MPTCP) |
4822 | SKB_EXT_MPTCP, |
4823 | #endif |
4824 | #if IS_ENABLED(CONFIG_MCTP_FLOWS) |
4825 | SKB_EXT_MCTP, |
4826 | #endif |
4827 | SKB_EXT_NUM, /* must be last */ |
4828 | }; |
4829 | |
4830 | /** |
4831 | * struct skb_ext - sk_buff extensions |
4832 | * @refcnt: 1 on allocation, deallocated on 0 |
4833 | * @offset: offset to add to @data to obtain extension address |
4834 | * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units |
4835 | * @data: start of extension data, variable sized |
4836 | * |
4837 | * Note: offsets/lengths are stored in chunks of 8 bytes, this allows |
4838 | * to use 'u8' types while allowing up to 2kb worth of extension data. |
4839 | */ |
4840 | struct skb_ext { |
4841 | refcount_t refcnt; |
4842 | u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ |
4843 | u8 chunks; /* same */ |
4844 | char data[] __aligned(8); |
4845 | }; |
4846 | |
4847 | struct skb_ext *__skb_ext_alloc(gfp_t flags); |
4848 | void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, |
4849 | struct skb_ext *ext); |
4850 | void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); |
4851 | void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); |
4852 | void __skb_ext_put(struct skb_ext *ext); |
4853 | |
4854 | static inline void skb_ext_put(struct sk_buff *skb) |
4855 | { |
4856 | if (skb->active_extensions) |
4857 | __skb_ext_put(ext: skb->extensions); |
4858 | } |
4859 | |
4860 | static inline void __skb_ext_copy(struct sk_buff *dst, |
4861 | const struct sk_buff *src) |
4862 | { |
4863 | dst->active_extensions = src->active_extensions; |
4864 | |
4865 | if (src->active_extensions) { |
4866 | struct skb_ext *ext = src->extensions; |
4867 | |
4868 | refcount_inc(r: &ext->refcnt); |
4869 | dst->extensions = ext; |
4870 | } |
4871 | } |
4872 | |
4873 | static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) |
4874 | { |
4875 | skb_ext_put(skb: dst); |
4876 | __skb_ext_copy(dst, src); |
4877 | } |
4878 | |
4879 | static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) |
4880 | { |
4881 | return !!ext->offset[i]; |
4882 | } |
4883 | |
4884 | static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) |
4885 | { |
4886 | return skb->active_extensions & (1 << id); |
4887 | } |
4888 | |
4889 | static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) |
4890 | { |
4891 | if (skb_ext_exist(skb, id)) |
4892 | __skb_ext_del(skb, id); |
4893 | } |
4894 | |
4895 | static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) |
4896 | { |
4897 | if (skb_ext_exist(skb, id)) { |
4898 | struct skb_ext *ext = skb->extensions; |
4899 | |
4900 | return (void *)ext + (ext->offset[id] << 3); |
4901 | } |
4902 | |
4903 | return NULL; |
4904 | } |
4905 | |
4906 | static inline void skb_ext_reset(struct sk_buff *skb) |
4907 | { |
4908 | if (unlikely(skb->active_extensions)) { |
4909 | __skb_ext_put(ext: skb->extensions); |
4910 | skb->active_extensions = 0; |
4911 | } |
4912 | } |
4913 | |
4914 | static inline bool skb_has_extensions(struct sk_buff *skb) |
4915 | { |
4916 | return unlikely(skb->active_extensions); |
4917 | } |
4918 | #else |
4919 | static inline void skb_ext_put(struct sk_buff *skb) {} |
4920 | static inline void skb_ext_reset(struct sk_buff *skb) {} |
4921 | static inline void skb_ext_del(struct sk_buff *skb, int unused) {} |
4922 | static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} |
4923 | static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} |
4924 | static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } |
4925 | #endif /* CONFIG_SKB_EXTENSIONS */ |
4926 | |
4927 | static inline void nf_reset_ct(struct sk_buff *skb) |
4928 | { |
4929 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
4930 | nf_conntrack_put(nfct: skb_nfct(skb)); |
4931 | skb->_nfct = 0; |
4932 | #endif |
4933 | } |
4934 | |
4935 | static inline void nf_reset_trace(struct sk_buff *skb) |
4936 | { |
4937 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) |
4938 | skb->nf_trace = 0; |
4939 | #endif |
4940 | } |
4941 | |
4942 | static inline void ipvs_reset(struct sk_buff *skb) |
4943 | { |
4944 | #if IS_ENABLED(CONFIG_IP_VS) |
4945 | skb->ipvs_property = 0; |
4946 | #endif |
4947 | } |
4948 | |
4949 | /* Note: This doesn't put any conntrack info in dst. */ |
4950 | static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, |
4951 | bool copy) |
4952 | { |
4953 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
4954 | dst->_nfct = src->_nfct; |
4955 | nf_conntrack_get(nfct: skb_nfct(skb: src)); |
4956 | #endif |
4957 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) |
4958 | if (copy) |
4959 | dst->nf_trace = src->nf_trace; |
4960 | #endif |
4961 | } |
4962 | |
4963 | static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) |
4964 | { |
4965 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
4966 | nf_conntrack_put(nfct: skb_nfct(skb: dst)); |
4967 | #endif |
4968 | dst->slow_gro = src->slow_gro; |
4969 | __nf_copy(dst, src, copy: true); |
4970 | } |
4971 | |
4972 | #ifdef CONFIG_NETWORK_SECMARK |
4973 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) |
4974 | { |
4975 | to->secmark = from->secmark; |
4976 | } |
4977 | |
4978 | static inline void skb_init_secmark(struct sk_buff *skb) |
4979 | { |
4980 | skb->secmark = 0; |
4981 | } |
4982 | #else |
4983 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) |
4984 | { } |
4985 | |
4986 | static inline void skb_init_secmark(struct sk_buff *skb) |
4987 | { } |
4988 | #endif |
4989 | |
4990 | static inline int secpath_exists(const struct sk_buff *skb) |
4991 | { |
4992 | #ifdef CONFIG_XFRM |
4993 | return skb_ext_exist(skb, id: SKB_EXT_SEC_PATH); |
4994 | #else |
4995 | return 0; |
4996 | #endif |
4997 | } |
4998 | |
4999 | static inline bool skb_irq_freeable(const struct sk_buff *skb) |
5000 | { |
5001 | return !skb->destructor && |
5002 | !secpath_exists(skb) && |
5003 | !skb_nfct(skb) && |
5004 | !skb->_skb_refdst && |
5005 | !skb_has_frag_list(skb); |
5006 | } |
5007 | |
5008 | static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) |
5009 | { |
5010 | skb->queue_mapping = queue_mapping; |
5011 | } |
5012 | |
5013 | static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) |
5014 | { |
5015 | return skb->queue_mapping; |
5016 | } |
5017 | |
5018 | static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) |
5019 | { |
5020 | to->queue_mapping = from->queue_mapping; |
5021 | } |
5022 | |
5023 | static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) |
5024 | { |
5025 | skb->queue_mapping = rx_queue + 1; |
5026 | } |
5027 | |
5028 | static inline u16 skb_get_rx_queue(const struct sk_buff *skb) |
5029 | { |
5030 | return skb->queue_mapping - 1; |
5031 | } |
5032 | |
5033 | static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) |
5034 | { |
5035 | return skb->queue_mapping != 0; |
5036 | } |
5037 | |
5038 | static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) |
5039 | { |
5040 | skb->dst_pending_confirm = val; |
5041 | } |
5042 | |
5043 | static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) |
5044 | { |
5045 | return skb->dst_pending_confirm != 0; |
5046 | } |
5047 | |
5048 | static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) |
5049 | { |
5050 | #ifdef CONFIG_XFRM |
5051 | return skb_ext_find(skb, id: SKB_EXT_SEC_PATH); |
5052 | #else |
5053 | return NULL; |
5054 | #endif |
5055 | } |
5056 | |
5057 | static inline bool skb_is_gso(const struct sk_buff *skb) |
5058 | { |
5059 | return skb_shinfo(skb)->gso_size; |
5060 | } |
5061 | |
5062 | /* Note: Should be called only if skb_is_gso(skb) is true */ |
5063 | static inline bool skb_is_gso_v6(const struct sk_buff *skb) |
5064 | { |
5065 | return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; |
5066 | } |
5067 | |
5068 | /* Note: Should be called only if skb_is_gso(skb) is true */ |
5069 | static inline bool skb_is_gso_sctp(const struct sk_buff *skb) |
5070 | { |
5071 | return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; |
5072 | } |
5073 | |
5074 | /* Note: Should be called only if skb_is_gso(skb) is true */ |
5075 | static inline bool skb_is_gso_tcp(const struct sk_buff *skb) |
5076 | { |
5077 | return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); |
5078 | } |
5079 | |
5080 | static inline void skb_gso_reset(struct sk_buff *skb) |
5081 | { |
5082 | skb_shinfo(skb)->gso_size = 0; |
5083 | skb_shinfo(skb)->gso_segs = 0; |
5084 | skb_shinfo(skb)->gso_type = 0; |
5085 | } |
5086 | |
5087 | static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, |
5088 | u16 increment) |
5089 | { |
5090 | if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) |
5091 | return; |
5092 | shinfo->gso_size += increment; |
5093 | } |
5094 | |
5095 | static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, |
5096 | u16 decrement) |
5097 | { |
5098 | if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) |
5099 | return; |
5100 | shinfo->gso_size -= decrement; |
5101 | } |
5102 | |
5103 | void __skb_warn_lro_forwarding(const struct sk_buff *skb); |
5104 | |
5105 | static inline bool skb_warn_if_lro(const struct sk_buff *skb) |
5106 | { |
5107 | /* LRO sets gso_size but not gso_type, whereas if GSO is really |
5108 | * wanted then gso_type will be set. */ |
5109 | const struct skb_shared_info *shinfo = skb_shinfo(skb); |
5110 | |
5111 | if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && |
5112 | unlikely(shinfo->gso_type == 0)) { |
5113 | __skb_warn_lro_forwarding(skb); |
5114 | return true; |
5115 | } |
5116 | return false; |
5117 | } |
5118 | |
5119 | static inline void skb_forward_csum(struct sk_buff *skb) |
5120 | { |
5121 | /* Unfortunately we don't support this one. Any brave souls? */ |
5122 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
5123 | skb->ip_summed = CHECKSUM_NONE; |
5124 | } |
5125 | |
5126 | /** |
5127 | * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE |
5128 | * @skb: skb to check |
5129 | * |
5130 | * fresh skbs have their ip_summed set to CHECKSUM_NONE. |
5131 | * Instead of forcing ip_summed to CHECKSUM_NONE, we can |
5132 | * use this helper, to document places where we make this assertion. |
5133 | */ |
5134 | static inline void skb_checksum_none_assert(const struct sk_buff *skb) |
5135 | { |
5136 | DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); |
5137 | } |
5138 | |
5139 | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); |
5140 | |
5141 | int skb_checksum_setup(struct sk_buff *skb, bool recalculate); |
5142 | struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, |
5143 | unsigned int transport_len, |
5144 | __sum16(*skb_chkf)(struct sk_buff *skb)); |
5145 | |
5146 | /** |
5147 | * skb_head_is_locked - Determine if the skb->head is locked down |
5148 | * @skb: skb to check |
5149 | * |
5150 | * The head on skbs build around a head frag can be removed if they are |
5151 | * not cloned. This function returns true if the skb head is locked down |
5152 | * due to either being allocated via kmalloc, or by being a clone with |
5153 | * multiple references to the head. |
5154 | */ |
5155 | static inline bool skb_head_is_locked(const struct sk_buff *skb) |
5156 | { |
5157 | return !skb->head_frag || skb_cloned(skb); |
5158 | } |
5159 | |
5160 | /* Local Checksum Offload. |
5161 | * Compute outer checksum based on the assumption that the |
5162 | * inner checksum will be offloaded later. |
5163 | * See Documentation/networking/checksum-offloads.rst for |
5164 | * explanation of how this works. |
5165 | * Fill in outer checksum adjustment (e.g. with sum of outer |
5166 | * pseudo-header) before calling. |
5167 | * Also ensure that inner checksum is in linear data area. |
5168 | */ |
5169 | static inline __wsum lco_csum(struct sk_buff *skb) |
5170 | { |
5171 | unsigned char *csum_start = skb_checksum_start(skb); |
5172 | unsigned char *l4_hdr = skb_transport_header(skb); |
5173 | __wsum partial; |
5174 | |
5175 | /* Start with complement of inner checksum adjustment */ |
5176 | partial = ~csum_unfold(n: *(__force __sum16 *)(csum_start + |
5177 | skb->csum_offset)); |
5178 | |
5179 | /* Add in checksum of our headers (incl. outer checksum |
5180 | * adjustment filled in by caller) and return result. |
5181 | */ |
5182 | return csum_partial(buff: l4_hdr, len: csum_start - l4_hdr, sum: partial); |
5183 | } |
5184 | |
5185 | static inline bool skb_is_redirected(const struct sk_buff *skb) |
5186 | { |
5187 | return skb->redirected; |
5188 | } |
5189 | |
5190 | static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) |
5191 | { |
5192 | skb->redirected = 1; |
5193 | #ifdef CONFIG_NET_REDIRECT |
5194 | skb->from_ingress = from_ingress; |
5195 | if (skb->from_ingress) |
5196 | skb_clear_tstamp(skb); |
5197 | #endif |
5198 | } |
5199 | |
5200 | static inline void skb_reset_redirect(struct sk_buff *skb) |
5201 | { |
5202 | skb->redirected = 0; |
5203 | } |
5204 | |
5205 | static inline void skb_set_redirected_noclear(struct sk_buff *skb, |
5206 | bool from_ingress) |
5207 | { |
5208 | skb->redirected = 1; |
5209 | #ifdef CONFIG_NET_REDIRECT |
5210 | skb->from_ingress = from_ingress; |
5211 | #endif |
5212 | } |
5213 | |
5214 | static inline bool skb_csum_is_sctp(struct sk_buff *skb) |
5215 | { |
5216 | #if IS_ENABLED(CONFIG_IP_SCTP) |
5217 | return skb->csum_not_inet; |
5218 | #else |
5219 | return 0; |
5220 | #endif |
5221 | } |
5222 | |
5223 | static inline void skb_reset_csum_not_inet(struct sk_buff *skb) |
5224 | { |
5225 | skb->ip_summed = CHECKSUM_NONE; |
5226 | #if IS_ENABLED(CONFIG_IP_SCTP) |
5227 | skb->csum_not_inet = 0; |
5228 | #endif |
5229 | } |
5230 | |
5231 | static inline void skb_set_kcov_handle(struct sk_buff *skb, |
5232 | const u64 kcov_handle) |
5233 | { |
5234 | #ifdef CONFIG_KCOV |
5235 | skb->kcov_handle = kcov_handle; |
5236 | #endif |
5237 | } |
5238 | |
5239 | static inline u64 skb_get_kcov_handle(struct sk_buff *skb) |
5240 | { |
5241 | #ifdef CONFIG_KCOV |
5242 | return skb->kcov_handle; |
5243 | #else |
5244 | return 0; |
5245 | #endif |
5246 | } |
5247 | |
5248 | static inline void skb_mark_for_recycle(struct sk_buff *skb) |
5249 | { |
5250 | #ifdef CONFIG_PAGE_POOL |
5251 | skb->pp_recycle = 1; |
5252 | #endif |
5253 | } |
5254 | |
5255 | ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, |
5256 | ssize_t maxsize, gfp_t gfp); |
5257 | |
5258 | #endif /* __KERNEL__ */ |
5259 | #endif /* _LINUX_SKBUFF_H */ |
5260 |
Definitions
- nf_bridge_info
- tc_skb_ext
- sk_buff_head
- sk_buff_list
- skb_frag
- skb_frag_size
- skb_frag_size_set
- skb_frag_size_add
- skb_frag_size_sub
- skb_frag_must_loop
- skb_shared_hwtstamps
- ubuf_info_ops
- ubuf_info
- ubuf_info_msgzc
- mmpin
- xsk_tx_metadata_compl
- skb_shared_info
- skb_tstamp_type
- sk_buff
- skb_pfmemalloc
- skb_dst
- skb_dst_set
- skb_dst_set_noref
- skb_dst_is_noref
- skb_pkt_type_ok
- skb_napi_id
- skb_wifi_acked_valid
- skb_unref
- skb_data_unref
- kfree_skb_reason
- kfree_skb
- kfree_skb_list
- alloc_skb
- sk_buff_fclones
- skb_fclone_busy
- alloc_skb_fclone
- __pskb_copy
- skb_pad
- skb_seq_state
- pkt_hash_types
- skb_clear_hash
- skb_clear_hash_if_not_l4
- __skb_set_hash
- skb_set_hash
- __skb_set_sw_hash
- __skb_get_hash_symmetric
- skb_flow_dissect
- skb_flow_dissect_flow_keys
- skb_flow_dissect_flow_keys_basic
- skb_get_hash_net
- skb_get_hash
- skb_get_hash_flowi6
- skb_get_hash_raw
- skb_copy_hash
- skb_cmp_decrypted
- skb_is_decrypted
- skb_copy_decrypted
- skb_end_pointer
- skb_end_offset
- skb_set_end_offset
- skb_zerocopy_iter_dgram
- skb_hwtstamps
- skb_zcopy
- skb_zcopy_pure
- skb_zcopy_managed
- skb_pure_zcopy_same
- net_zcopy_get
- skb_zcopy_init
- skb_zcopy_set
- skb_zcopy_set_nouarg
- skb_zcopy_is_nouarg
- skb_zcopy_get_nouarg
- net_zcopy_put
- net_zcopy_put_abort
- skb_zcopy_clear
- skb_zcopy_downgrade_managed
- skb_frags_readable
- skb_mark_not_on_list
- skb_poison_list
- skb_list_del_init
- skb_queue_empty
- skb_queue_empty_lockless
- skb_queue_is_last
- skb_queue_is_first
- skb_queue_next
- skb_queue_prev
- skb_get
- skb_cloned
- skb_unclone
- skb_unclone_keeptruesize
- skb_header_cloned
- skb_header_unclone
- __skb_header_release
- skb_shared
- skb_share_check
- skb_unshare
- skb_peek
- __skb_peek
- skb_peek_next
- skb_peek_tail
- skb_queue_len
- skb_queue_len_lockless
- __skb_queue_head_init
- skb_queue_head_init
- skb_queue_head_init_class
- __skb_insert
- __skb_queue_splice
- skb_queue_splice
- skb_queue_splice_init
- skb_queue_splice_tail
- skb_queue_splice_tail_init
- __skb_queue_after
- __skb_queue_before
- __skb_queue_head
- __skb_queue_tail
- __skb_unlink
- __skb_dequeue
- __skb_dequeue_tail
- skb_is_nonlinear
- skb_headlen
- __skb_pagelen
- skb_pagelen
- skb_frag_fill_netmem_desc
- skb_frag_fill_page_desc
- __skb_fill_netmem_desc_noacc
- __skb_fill_page_desc_noacc
- skb_len_add
- __skb_fill_netmem_desc
- __skb_fill_page_desc
- skb_fill_netmem_desc
- skb_fill_page_desc
- skb_fill_page_desc_noacc
- skb_add_rx_frag
- skb_tail_pointer
- skb_reset_tail_pointer
- skb_set_tail_pointer
- skb_assert_len
- __skb_put
- __skb_put_zero
- __skb_put_data
- __skb_put_u8
- skb_put_zero
- skb_put_data
- skb_put_u8
- __skb_push
- __skb_pull
- skb_pull_inline
- pskb_may_pull_reason
- pskb_may_pull
- pskb_pull
- skb_headroom
- skb_tailroom
- skb_availroom
- skb_reserve
- skb_tailroom_reserve
- skb_set_inner_protocol
- skb_set_inner_ipproto
- skb_reset_inner_headers
- skb_mac_header_was_set
- skb_reset_mac_len
- skb_inner_transport_header
- skb_inner_transport_offset
- skb_reset_inner_transport_header
- skb_set_inner_transport_header
- skb_inner_network_header
- skb_reset_inner_network_header
- skb_set_inner_network_header
- skb_inner_network_header_was_set
- skb_inner_mac_header
- skb_reset_inner_mac_header
- skb_set_inner_mac_header
- skb_transport_header_was_set
- skb_transport_header
- skb_reset_transport_header
- skb_set_transport_header
- skb_network_header
- skb_reset_network_header
- skb_set_network_header
- skb_mac_header
- skb_mac_offset
- skb_mac_header_len
- skb_unset_mac_header
- skb_reset_mac_header
- skb_set_mac_header
- skb_pop_mac_header
- skb_probe_transport_header
- skb_mac_header_rebuild
- skb_mac_header_rebuild_full
- skb_checksum_start_offset
- skb_checksum_start
- skb_transport_offset
- skb_network_header_len
- skb_inner_network_header_len
- skb_network_offset
- skb_inner_network_offset
- pskb_network_may_pull_reason
- pskb_network_may_pull
- __skb_set_length
- __skb_trim
- __pskb_trim
- pskb_trim
- pskb_trim_unique
- __skb_grow
- skb_orphan
- skb_orphan_frags
- skb_orphan_frags_rx
- __skb_queue_purge_reason
- __skb_queue_purge
- skb_queue_purge
- netdev_alloc_frag
- netdev_alloc_frag_align
- netdev_alloc_skb
- __dev_alloc_skb
- dev_alloc_skb
- __netdev_alloc_skb_ip_align
- netdev_alloc_skb_ip_align
- skb_free_frag
- napi_alloc_frag
- napi_alloc_frag_align
- __dev_alloc_pages_noprof
- __dev_alloc_page_noprof
- dev_page_is_reusable
- skb_propagate_pfmemalloc
- skb_frag_off
- skb_frag_off_add
- skb_frag_off_set
- skb_frag_off_copy
- skb_frag_is_net_iov
- skb_frag_net_iov
- skb_frag_page
- skb_frag_netmem
- skb_frag_address
- skb_frag_address_safe
- skb_frag_page_copy
- __skb_frag_dma_map
- pskb_copy
- pskb_copy_for_clone
- skb_clone_writable
- skb_try_make_writable
- __skb_cow
- skb_cow
- skb_cow_head
- skb_padto
- __skb_put_padto
- skb_put_padto
- skb_can_coalesce
- __skb_linearize
- skb_linearize
- skb_has_shared_frag
- skb_linearize_cow
- __skb_postpull_rcsum
- skb_postpull_rcsum
- __skb_postpush_rcsum
- skb_postpush_rcsum
- skb_push_rcsum
- pskb_trim_rcsum
- __skb_trim_rcsum
- __skb_grow_rcsum
- skb_has_frag_list
- skb_frag_list_init
- skb_copy_datagram_msg
- memcpy_from_msg
- memcpy_to_msg
- __skb_header_pointer
- skb_header_pointer
- skb_pointer_if_linear
- skb_needs_linearize
- skb_copy_from_linear_data
- skb_copy_from_linear_data_offset
- skb_copy_to_linear_data
- skb_copy_to_linear_data_offset
- skb_get_ktime
- skb_get_timestamp
- skb_get_new_timestamp
- skb_get_timestampns
- skb_get_new_timestampns
- __net_timestamp
- net_timedelta
- skb_set_delivery_time
- skb_set_delivery_type_by_clockid
- skb_clear_delivery_time
- skb_clear_tstamp
- skb_tstamp
- skb_tstamp_cond
- skb_metadata_len
- skb_metadata_end
- __skb_metadata_differs
- skb_metadata_differs
- skb_metadata_set
- skb_metadata_clear
- skb_tx_timestamp
- skb_csum_unnecessary
- skb_checksum_complete
- __skb_decr_checksum_unnecessary
- __skb_incr_checksum_unnecessary
- __skb_reset_checksum_unnecessary
- __skb_checksum_validate_needed
- skb_checksum_complete_unset
- __skb_checksum_validate_complete
- null_compute_pseudo
- __skb_checksum_convert_check
- __skb_checksum_convert
- skb_remcsum_adjust_partial
- skb_remcsum_process
- skb_nfct
- skb_get_nfct
- skb_set_nfct
- skb_ext_id
- skb_ext
- skb_ext_put
- __skb_ext_copy
- skb_ext_copy
- __skb_ext_exist
- skb_ext_exist
- skb_ext_del
- skb_ext_find
- skb_ext_reset
- skb_has_extensions
- nf_reset_ct
- nf_reset_trace
- ipvs_reset
- __nf_copy
- nf_copy
- skb_copy_secmark
- skb_init_secmark
- secpath_exists
- skb_irq_freeable
- skb_set_queue_mapping
- skb_get_queue_mapping
- skb_copy_queue_mapping
- skb_record_rx_queue
- skb_get_rx_queue
- skb_rx_queue_recorded
- skb_set_dst_pending_confirm
- skb_get_dst_pending_confirm
- skb_sec_path
- skb_is_gso
- skb_is_gso_v6
- skb_is_gso_sctp
- skb_is_gso_tcp
- skb_gso_reset
- skb_increase_gso_size
- skb_decrease_gso_size
- skb_warn_if_lro
- skb_forward_csum
- skb_checksum_none_assert
- skb_head_is_locked
- lco_csum
- skb_is_redirected
- skb_set_redirected
- skb_reset_redirect
- skb_set_redirected_noclear
- skb_csum_is_sctp
- skb_reset_csum_not_inet
- skb_set_kcov_handle
- skb_get_kcov_handle
Improve your Profiling and Debugging skills
Find out more