| 1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| 2 | /* |
| 3 | * Definitions for the 'struct sk_buff' memory handlers. |
| 4 | * |
| 5 | * Authors: |
| 6 | * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| 7 | * Florian La Roche, <rzsfl@rz.uni-sb.de> |
| 8 | */ |
| 9 | |
| 10 | #ifndef _LINUX_SKBUFF_H |
| 11 | #define _LINUX_SKBUFF_H |
| 12 | |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/compiler.h> |
| 15 | #include <linux/time.h> |
| 16 | #include <linux/bug.h> |
| 17 | #include <linux/bvec.h> |
| 18 | #include <linux/cache.h> |
| 19 | #include <linux/rbtree.h> |
| 20 | #include <linux/socket.h> |
| 21 | #include <linux/refcount.h> |
| 22 | |
| 23 | #include <linux/atomic.h> |
| 24 | #include <asm/types.h> |
| 25 | #include <linux/spinlock.h> |
| 26 | #include <net/checksum.h> |
| 27 | #include <linux/rcupdate.h> |
| 28 | #include <linux/dma-mapping.h> |
| 29 | #include <linux/netdev_features.h> |
| 30 | #include <net/flow_dissector.h> |
| 31 | #include <linux/in6.h> |
| 32 | #include <linux/if_packet.h> |
| 33 | #include <linux/llist.h> |
| 34 | #include <linux/page_frag_cache.h> |
| 35 | #include <net/flow.h> |
| 36 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| 37 | #include <linux/netfilter/nf_conntrack_common.h> |
| 38 | #endif |
| 39 | #include <net/net_debug.h> |
| 40 | #include <net/dropreason-core.h> |
| 41 | #include <net/netmem.h> |
| 42 | |
| 43 | /** |
| 44 | * DOC: skb checksums |
| 45 | * |
| 46 | * The interface for checksum offload between the stack and networking drivers |
| 47 | * is as follows... |
| 48 | * |
| 49 | * IP checksum related features |
| 50 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 51 | * |
| 52 | * Drivers advertise checksum offload capabilities in the features of a device. |
| 53 | * From the stack's point of view these are capabilities offered by the driver. |
| 54 | * A driver typically only advertises features that it is capable of offloading |
| 55 | * to its device. |
| 56 | * |
| 57 | * .. flat-table:: Checksum related device features |
| 58 | * :widths: 1 10 |
| 59 | * |
| 60 | * * - %NETIF_F_HW_CSUM |
| 61 | * - The driver (or its device) is able to compute one |
| 62 | * IP (one's complement) checksum for any combination |
| 63 | * of protocols or protocol layering. The checksum is |
| 64 | * computed and set in a packet per the CHECKSUM_PARTIAL |
| 65 | * interface (see below). |
| 66 | * |
| 67 | * * - %NETIF_F_IP_CSUM |
| 68 | * - Driver (device) is only able to checksum plain |
| 69 | * TCP or UDP packets over IPv4. These are specifically |
| 70 | * unencapsulated packets of the form IPv4|TCP or |
| 71 | * IPv4|UDP where the Protocol field in the IPv4 header |
| 72 | * is TCP or UDP. The IPv4 header may contain IP options. |
| 73 | * This feature cannot be set in features for a device |
| 74 | * with NETIF_F_HW_CSUM also set. This feature is being |
| 75 | * DEPRECATED (see below). |
| 76 | * |
| 77 | * * - %NETIF_F_IPV6_CSUM |
| 78 | * - Driver (device) is only able to checksum plain |
| 79 | * TCP or UDP packets over IPv6. These are specifically |
| 80 | * unencapsulated packets of the form IPv6|TCP or |
| 81 | * IPv6|UDP where the Next Header field in the IPv6 |
| 82 | * header is either TCP or UDP. IPv6 extension headers |
| 83 | * are not supported with this feature. This feature |
| 84 | * cannot be set in features for a device with |
| 85 | * NETIF_F_HW_CSUM also set. This feature is being |
| 86 | * DEPRECATED (see below). |
| 87 | * |
| 88 | * * - %NETIF_F_RXCSUM |
| 89 | * - Driver (device) performs receive checksum offload. |
| 90 | * This flag is only used to disable the RX checksum |
| 91 | * feature for a device. The stack will accept receive |
| 92 | * checksum indication in packets received on a device |
| 93 | * regardless of whether NETIF_F_RXCSUM is set. |
| 94 | * |
| 95 | * Checksumming of received packets by device |
| 96 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 97 | * |
| 98 | * Indication of checksum verification is set in &sk_buff.ip_summed. |
| 99 | * Possible values are: |
| 100 | * |
| 101 | * - %CHECKSUM_NONE |
| 102 | * |
| 103 | * Device did not checksum this packet e.g. due to lack of capabilities. |
| 104 | * The packet contains full (though not verified) checksum in packet but |
| 105 | * not in skb->csum. Thus, skb->csum is undefined in this case. |
| 106 | * |
| 107 | * - %CHECKSUM_UNNECESSARY |
| 108 | * |
| 109 | * The hardware you're dealing with doesn't calculate the full checksum |
| 110 | * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums |
| 111 | * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY |
| 112 | * if their checksums are okay. &sk_buff.csum is still undefined in this case |
| 113 | * though. A driver or device must never modify the checksum field in the |
| 114 | * packet even if checksum is verified. |
| 115 | * |
| 116 | * %CHECKSUM_UNNECESSARY is applicable to following protocols: |
| 117 | * |
| 118 | * - TCP: IPv6 and IPv4. |
| 119 | * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a |
| 120 | * zero UDP checksum for either IPv4 or IPv6, the networking stack |
| 121 | * may perform further validation in this case. |
| 122 | * - GRE: only if the checksum is present in the header. |
| 123 | * - SCTP: indicates the CRC in SCTP header has been validated. |
| 124 | * - FCOE: indicates the CRC in FC frame has been validated. |
| 125 | * |
| 126 | * &sk_buff.csum_level indicates the number of consecutive checksums found in |
| 127 | * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. |
| 128 | * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet |
| 129 | * and a device is able to verify the checksums for UDP (possibly zero), |
| 130 | * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to |
| 131 | * two. If the device were only able to verify the UDP checksum and not |
| 132 | * GRE, either because it doesn't support GRE checksum or because GRE |
| 133 | * checksum is bad, skb->csum_level would be set to zero (TCP checksum is |
| 134 | * not considered in this case). |
| 135 | * |
| 136 | * - %CHECKSUM_COMPLETE |
| 137 | * |
| 138 | * This is the most generic way. The device supplied checksum of the _whole_ |
| 139 | * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the |
| 140 | * hardware doesn't need to parse L3/L4 headers to implement this. |
| 141 | * |
| 142 | * Notes: |
| 143 | * |
| 144 | * - Even if device supports only some protocols, but is able to produce |
| 145 | * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. |
| 146 | * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. |
| 147 | * |
| 148 | * - %CHECKSUM_PARTIAL |
| 149 | * |
| 150 | * A checksum is set up to be offloaded to a device as described in the |
| 151 | * output description for CHECKSUM_PARTIAL. This may occur on a packet |
| 152 | * received directly from another Linux OS, e.g., a virtualized Linux kernel |
| 153 | * on the same host, or it may be set in the input path in GRO or remote |
| 154 | * checksum offload. For the purposes of checksum verification, the checksum |
| 155 | * referred to by skb->csum_start + skb->csum_offset and any preceding |
| 156 | * checksums in the packet are considered verified. Any checksums in the |
| 157 | * packet that are after the checksum being offloaded are not considered to |
| 158 | * be verified. |
| 159 | * |
| 160 | * Checksumming on transmit for non-GSO |
| 161 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 162 | * |
| 163 | * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. |
| 164 | * Values are: |
| 165 | * |
| 166 | * - %CHECKSUM_PARTIAL |
| 167 | * |
| 168 | * The driver is required to checksum the packet as seen by hard_start_xmit() |
| 169 | * from &sk_buff.csum_start up to the end, and to record/write the checksum at |
| 170 | * offset &sk_buff.csum_start + &sk_buff.csum_offset. |
| 171 | * A driver may verify that the |
| 172 | * csum_start and csum_offset values are valid values given the length and |
| 173 | * offset of the packet, but it should not attempt to validate that the |
| 174 | * checksum refers to a legitimate transport layer checksum -- it is the |
| 175 | * purview of the stack to validate that csum_start and csum_offset are set |
| 176 | * correctly. |
| 177 | * |
| 178 | * When the stack requests checksum offload for a packet, the driver MUST |
| 179 | * ensure that the checksum is set correctly. A driver can either offload the |
| 180 | * checksum calculation to the device, or call skb_checksum_help (in the case |
| 181 | * that the device does not support offload for a particular checksum). |
| 182 | * |
| 183 | * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of |
| 184 | * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate |
| 185 | * checksum offload capability. |
| 186 | * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based |
| 187 | * on network device checksumming capabilities: if a packet does not match |
| 188 | * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of |
| 189 | * &sk_buff.csum_not_inet, see :ref:`crc`) |
| 190 | * is called to resolve the checksum. |
| 191 | * |
| 192 | * - %CHECKSUM_NONE |
| 193 | * |
| 194 | * The skb was already checksummed by the protocol, or a checksum is not |
| 195 | * required. |
| 196 | * |
| 197 | * - %CHECKSUM_UNNECESSARY |
| 198 | * |
| 199 | * This has the same meaning as CHECKSUM_NONE for checksum offload on |
| 200 | * output. |
| 201 | * |
| 202 | * - %CHECKSUM_COMPLETE |
| 203 | * |
| 204 | * Not used in checksum output. If a driver observes a packet with this value |
| 205 | * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. |
| 206 | * |
| 207 | * .. _crc: |
| 208 | * |
| 209 | * Non-IP checksum (CRC) offloads |
| 210 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 211 | * |
| 212 | * .. flat-table:: |
| 213 | * :widths: 1 10 |
| 214 | * |
| 215 | * * - %NETIF_F_SCTP_CRC |
| 216 | * - This feature indicates that a device is capable of |
| 217 | * offloading the SCTP CRC in a packet. To perform this offload the stack |
| 218 | * will set csum_start and csum_offset accordingly, set ip_summed to |
| 219 | * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication |
| 220 | * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. |
| 221 | * A driver that supports both IP checksum offload and SCTP CRC32c offload |
| 222 | * must verify which offload is configured for a packet by testing the |
| 223 | * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to |
| 224 | * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. |
| 225 | * |
| 226 | * * - %NETIF_F_FCOE_CRC |
| 227 | * - This feature indicates that a device is capable of offloading the FCOE |
| 228 | * CRC in a packet. To perform this offload the stack will set ip_summed |
| 229 | * to %CHECKSUM_PARTIAL and set csum_start and csum_offset |
| 230 | * accordingly. Note that there is no indication in the skbuff that the |
| 231 | * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports |
| 232 | * both IP checksum offload and FCOE CRC offload must verify which offload |
| 233 | * is configured for a packet, presumably by inspecting packet headers. |
| 234 | * |
| 235 | * Checksumming on output with GSO |
| 236 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 237 | * |
| 238 | * In the case of a GSO packet (skb_is_gso() is true), checksum offload |
| 239 | * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the |
| 240 | * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as |
| 241 | * part of the GSO operation is implied. If a checksum is being offloaded |
| 242 | * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and |
| 243 | * csum_offset are set to refer to the outermost checksum being offloaded |
| 244 | * (two offloaded checksums are possible with UDP encapsulation). |
| 245 | */ |
| 246 | |
| 247 | /* Don't change this without changing skb_csum_unnecessary! */ |
| 248 | #define CHECKSUM_NONE 0 |
| 249 | #define CHECKSUM_UNNECESSARY 1 |
| 250 | #define CHECKSUM_COMPLETE 2 |
| 251 | #define CHECKSUM_PARTIAL 3 |
| 252 | |
| 253 | /* Maximum value in skb->csum_level */ |
| 254 | #define SKB_MAX_CSUM_LEVEL 3 |
| 255 | |
| 256 | #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) |
| 257 | #define SKB_WITH_OVERHEAD(X) \ |
| 258 | ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
| 259 | |
| 260 | /* For X bytes available in skb->head, what is the minimal |
| 261 | * allocation needed, knowing struct skb_shared_info needs |
| 262 | * to be aligned. |
| 263 | */ |
| 264 | #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ |
| 265 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
| 266 | |
| 267 | #define SKB_MAX_ORDER(X, ORDER) \ |
| 268 | SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) |
| 269 | #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) |
| 270 | #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) |
| 271 | |
| 272 | /* return minimum truesize of one skb containing X bytes of data */ |
| 273 | #define SKB_TRUESIZE(X) ((X) + \ |
| 274 | SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ |
| 275 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
| 276 | |
| 277 | struct net_device; |
| 278 | struct scatterlist; |
| 279 | struct pipe_inode_info; |
| 280 | struct iov_iter; |
| 281 | struct napi_struct; |
| 282 | struct bpf_prog; |
| 283 | union bpf_attr; |
| 284 | struct skb_ext; |
| 285 | struct ts_config; |
| 286 | |
| 287 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
| 288 | struct nf_bridge_info { |
| 289 | enum { |
| 290 | BRNF_PROTO_UNCHANGED, |
| 291 | BRNF_PROTO_8021Q, |
| 292 | BRNF_PROTO_PPPOE |
| 293 | } orig_proto:8; |
| 294 | u8 pkt_otherhost:1; |
| 295 | u8 in_prerouting:1; |
| 296 | u8 bridged_dnat:1; |
| 297 | u8 sabotage_in_done:1; |
| 298 | __u16 frag_max_size; |
| 299 | int physinif; |
| 300 | |
| 301 | /* always valid & non-NULL from FORWARD on, for physdev match */ |
| 302 | struct net_device *physoutdev; |
| 303 | union { |
| 304 | /* prerouting: detect dnat in orig/reply direction */ |
| 305 | __be32 ipv4_daddr; |
| 306 | struct in6_addr ipv6_daddr; |
| 307 | |
| 308 | /* after prerouting + nat detected: store original source |
| 309 | * mac since neigh resolution overwrites it, only used while |
| 310 | * skb is out in neigh layer. |
| 311 | */ |
| 312 | char [8]; |
| 313 | }; |
| 314 | }; |
| 315 | #endif |
| 316 | |
| 317 | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) |
| 318 | /* Chain in tc_skb_ext will be used to share the tc chain with |
| 319 | * ovs recirc_id. It will be set to the current chain by tc |
| 320 | * and read by ovs to recirc_id. |
| 321 | */ |
| 322 | struct tc_skb_ext { |
| 323 | union { |
| 324 | u64 act_miss_cookie; |
| 325 | __u32 chain; |
| 326 | }; |
| 327 | __u16 mru; |
| 328 | __u16 zone; |
| 329 | u8 post_ct:1; |
| 330 | u8 post_ct_snat:1; |
| 331 | u8 post_ct_dnat:1; |
| 332 | u8 act_miss:1; /* Set if act_miss_cookie is used */ |
| 333 | u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ |
| 334 | }; |
| 335 | #endif |
| 336 | |
| 337 | struct sk_buff_head { |
| 338 | /* These two members must be first to match sk_buff. */ |
| 339 | struct_group_tagged(sk_buff_list, list, |
| 340 | struct sk_buff *next; |
| 341 | struct sk_buff *prev; |
| 342 | ); |
| 343 | |
| 344 | __u32 qlen; |
| 345 | spinlock_t lock; |
| 346 | }; |
| 347 | |
| 348 | struct sk_buff; |
| 349 | |
| 350 | #ifndef CONFIG_MAX_SKB_FRAGS |
| 351 | # define CONFIG_MAX_SKB_FRAGS 17 |
| 352 | #endif |
| 353 | |
| 354 | #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS |
| 355 | |
| 356 | /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to |
| 357 | * segment using its current segmentation instead. |
| 358 | */ |
| 359 | #define GSO_BY_FRAGS 0xFFFF |
| 360 | |
| 361 | typedef struct skb_frag { |
| 362 | netmem_ref netmem; |
| 363 | unsigned int len; |
| 364 | unsigned int offset; |
| 365 | } skb_frag_t; |
| 366 | |
| 367 | /** |
| 368 | * skb_frag_size() - Returns the size of a skb fragment |
| 369 | * @frag: skb fragment |
| 370 | */ |
| 371 | static inline unsigned int skb_frag_size(const skb_frag_t *frag) |
| 372 | { |
| 373 | return frag->len; |
| 374 | } |
| 375 | |
| 376 | /** |
| 377 | * skb_frag_size_set() - Sets the size of a skb fragment |
| 378 | * @frag: skb fragment |
| 379 | * @size: size of fragment |
| 380 | */ |
| 381 | static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) |
| 382 | { |
| 383 | frag->len = size; |
| 384 | } |
| 385 | |
| 386 | /** |
| 387 | * skb_frag_size_add() - Increments the size of a skb fragment by @delta |
| 388 | * @frag: skb fragment |
| 389 | * @delta: value to add |
| 390 | */ |
| 391 | static inline void skb_frag_size_add(skb_frag_t *frag, int delta) |
| 392 | { |
| 393 | frag->len += delta; |
| 394 | } |
| 395 | |
| 396 | /** |
| 397 | * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta |
| 398 | * @frag: skb fragment |
| 399 | * @delta: value to subtract |
| 400 | */ |
| 401 | static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) |
| 402 | { |
| 403 | frag->len -= delta; |
| 404 | } |
| 405 | |
| 406 | /** |
| 407 | * skb_frag_must_loop - Test if %p is a high memory page |
| 408 | * @p: fragment's page |
| 409 | */ |
| 410 | static inline bool skb_frag_must_loop(struct page *p) |
| 411 | { |
| 412 | #if defined(CONFIG_HIGHMEM) |
| 413 | if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) |
| 414 | return true; |
| 415 | #endif |
| 416 | return false; |
| 417 | } |
| 418 | |
| 419 | /** |
| 420 | * skb_frag_foreach_page - loop over pages in a fragment |
| 421 | * |
| 422 | * @f: skb frag to operate on |
| 423 | * @f_off: offset from start of f->netmem |
| 424 | * @f_len: length from f_off to loop over |
| 425 | * @p: (temp var) current page |
| 426 | * @p_off: (temp var) offset from start of current page, |
| 427 | * non-zero only on first page. |
| 428 | * @p_len: (temp var) length in current page, |
| 429 | * < PAGE_SIZE only on first and last page. |
| 430 | * @copied: (temp var) length so far, excluding current p_len. |
| 431 | * |
| 432 | * A fragment can hold a compound page, in which case per-page |
| 433 | * operations, notably kmap_atomic, must be called for each |
| 434 | * regular page. |
| 435 | */ |
| 436 | #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ |
| 437 | for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ |
| 438 | p_off = (f_off) & (PAGE_SIZE - 1), \ |
| 439 | p_len = skb_frag_must_loop(p) ? \ |
| 440 | min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ |
| 441 | copied = 0; \ |
| 442 | copied < f_len; \ |
| 443 | copied += p_len, p++, p_off = 0, \ |
| 444 | p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ |
| 445 | |
| 446 | /** |
| 447 | * struct skb_shared_hwtstamps - hardware time stamps |
| 448 | * @hwtstamp: hardware time stamp transformed into duration |
| 449 | * since arbitrary point in time |
| 450 | * @netdev_data: address/cookie of network device driver used as |
| 451 | * reference to actual hardware time stamp |
| 452 | * |
| 453 | * Software time stamps generated by ktime_get_real() are stored in |
| 454 | * skb->tstamp. |
| 455 | * |
| 456 | * hwtstamps can only be compared against other hwtstamps from |
| 457 | * the same device. |
| 458 | * |
| 459 | * This structure is attached to packets as part of the |
| 460 | * &skb_shared_info. Use skb_hwtstamps() to get a pointer. |
| 461 | */ |
| 462 | struct skb_shared_hwtstamps { |
| 463 | union { |
| 464 | ktime_t hwtstamp; |
| 465 | void *netdev_data; |
| 466 | }; |
| 467 | }; |
| 468 | |
| 469 | /* Definitions for tx_flags in struct skb_shared_info */ |
| 470 | enum { |
| 471 | /* generate hardware time stamp */ |
| 472 | SKBTX_HW_TSTAMP_NOBPF = 1 << 0, |
| 473 | |
| 474 | /* generate software time stamp when queueing packet to NIC */ |
| 475 | SKBTX_SW_TSTAMP = 1 << 1, |
| 476 | |
| 477 | /* device driver is going to provide hardware time stamp */ |
| 478 | SKBTX_IN_PROGRESS = 1 << 2, |
| 479 | |
| 480 | /* generate software time stamp on packet tx completion */ |
| 481 | SKBTX_COMPLETION_TSTAMP = 1 << 3, |
| 482 | |
| 483 | /* determine hardware time stamp based on time or cycles */ |
| 484 | SKBTX_HW_TSTAMP_NETDEV = 1 << 5, |
| 485 | |
| 486 | /* generate software time stamp when entering packet scheduling */ |
| 487 | SKBTX_SCHED_TSTAMP = 1 << 6, |
| 488 | |
| 489 | /* used for bpf extension when a bpf program is loaded */ |
| 490 | SKBTX_BPF = 1 << 7, |
| 491 | }; |
| 492 | |
| 493 | #define SKBTX_HW_TSTAMP (SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF) |
| 494 | |
| 495 | #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ |
| 496 | SKBTX_SCHED_TSTAMP | \ |
| 497 | SKBTX_BPF | \ |
| 498 | SKBTX_COMPLETION_TSTAMP) |
| 499 | #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ |
| 500 | SKBTX_ANY_SW_TSTAMP) |
| 501 | |
| 502 | /* Definitions for flags in struct skb_shared_info */ |
| 503 | enum { |
| 504 | /* use zcopy routines */ |
| 505 | SKBFL_ZEROCOPY_ENABLE = BIT(0), |
| 506 | |
| 507 | /* This indicates at least one fragment might be overwritten |
| 508 | * (as in vmsplice(), sendfile() ...) |
| 509 | * If we need to compute a TX checksum, we'll need to copy |
| 510 | * all frags to avoid possible bad checksum |
| 511 | */ |
| 512 | SKBFL_SHARED_FRAG = BIT(1), |
| 513 | |
| 514 | /* segment contains only zerocopy data and should not be |
| 515 | * charged to the kernel memory. |
| 516 | */ |
| 517 | SKBFL_PURE_ZEROCOPY = BIT(2), |
| 518 | |
| 519 | SKBFL_DONT_ORPHAN = BIT(3), |
| 520 | |
| 521 | /* page references are managed by the ubuf_info, so it's safe to |
| 522 | * use frags only up until ubuf_info is released |
| 523 | */ |
| 524 | SKBFL_MANAGED_FRAG_REFS = BIT(4), |
| 525 | }; |
| 526 | |
| 527 | #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) |
| 528 | #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ |
| 529 | SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) |
| 530 | |
| 531 | struct ubuf_info_ops { |
| 532 | void (*complete)(struct sk_buff *, struct ubuf_info *, |
| 533 | bool zerocopy_success); |
| 534 | /* has to be compatible with skb_zcopy_set() */ |
| 535 | int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); |
| 536 | }; |
| 537 | |
| 538 | /* |
| 539 | * The callback notifies userspace to release buffers when skb DMA is done in |
| 540 | * lower device, the skb last reference should be 0 when calling this. |
| 541 | * The zerocopy_success argument is true if zero copy transmit occurred, |
| 542 | * false on data copy or out of memory error caused by data copy attempt. |
| 543 | * The ctx field is used to track device context. |
| 544 | * The desc field is used to track userspace buffer index. |
| 545 | */ |
| 546 | struct ubuf_info { |
| 547 | const struct ubuf_info_ops *ops; |
| 548 | refcount_t refcnt; |
| 549 | u8 flags; |
| 550 | }; |
| 551 | |
| 552 | struct ubuf_info_msgzc { |
| 553 | struct ubuf_info ubuf; |
| 554 | |
| 555 | union { |
| 556 | struct { |
| 557 | unsigned long desc; |
| 558 | void *ctx; |
| 559 | }; |
| 560 | struct { |
| 561 | u32 id; |
| 562 | u16 len; |
| 563 | u16 zerocopy:1; |
| 564 | u32 bytelen; |
| 565 | }; |
| 566 | }; |
| 567 | |
| 568 | struct mmpin { |
| 569 | struct user_struct *user; |
| 570 | unsigned int num_pg; |
| 571 | } mmp; |
| 572 | }; |
| 573 | |
| 574 | #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) |
| 575 | #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ |
| 576 | ubuf) |
| 577 | |
| 578 | int mm_account_pinned_pages(struct mmpin *mmp, size_t size); |
| 579 | void mm_unaccount_pinned_pages(struct mmpin *mmp); |
| 580 | |
| 581 | /* Preserve some data across TX submission and completion. |
| 582 | * |
| 583 | * Note, this state is stored in the driver. Extending the layout |
| 584 | * might need some special care. |
| 585 | */ |
| 586 | struct xsk_tx_metadata_compl { |
| 587 | __u64 *tx_timestamp; |
| 588 | }; |
| 589 | |
| 590 | /* This data is invariant across clones and lives at |
| 591 | * the end of the header data, ie. at skb->end. |
| 592 | */ |
| 593 | struct skb_shared_info { |
| 594 | __u8 flags; |
| 595 | __u8 meta_len; |
| 596 | __u8 nr_frags; |
| 597 | __u8 tx_flags; |
| 598 | unsigned short gso_size; |
| 599 | /* Warning: this field is not always filled in (UFO)! */ |
| 600 | unsigned short gso_segs; |
| 601 | struct sk_buff *frag_list; |
| 602 | union { |
| 603 | struct skb_shared_hwtstamps hwtstamps; |
| 604 | struct xsk_tx_metadata_compl xsk_meta; |
| 605 | }; |
| 606 | unsigned int gso_type; |
| 607 | u32 tskey; |
| 608 | |
| 609 | /* |
| 610 | * Warning : all fields before dataref are cleared in __alloc_skb() |
| 611 | */ |
| 612 | atomic_t dataref; |
| 613 | |
| 614 | union { |
| 615 | struct { |
| 616 | u32 xdp_frags_size; |
| 617 | u32 xdp_frags_truesize; |
| 618 | }; |
| 619 | |
| 620 | /* |
| 621 | * Intermediate layers must ensure that destructor_arg |
| 622 | * remains valid until skb destructor. |
| 623 | */ |
| 624 | void *destructor_arg; |
| 625 | }; |
| 626 | |
| 627 | /* must be last field, see pskb_expand_head() */ |
| 628 | skb_frag_t frags[MAX_SKB_FRAGS]; |
| 629 | }; |
| 630 | |
| 631 | /** |
| 632 | * DOC: dataref and headerless skbs |
| 633 | * |
| 634 | * Transport layers send out clones of payload skbs they hold for |
| 635 | * retransmissions. To allow lower layers of the stack to prepend their headers |
| 636 | * we split &skb_shared_info.dataref into two halves. |
| 637 | * The lower 16 bits count the overall number of references. |
| 638 | * The higher 16 bits indicate how many of the references are payload-only. |
| 639 | * skb_header_cloned() checks if skb is allowed to add / write the headers. |
| 640 | * |
| 641 | * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr |
| 642 | * (via __skb_header_release()). Any clone created from marked skb will get |
| 643 | * &sk_buff.hdr_len populated with the available headroom. |
| 644 | * If there's the only clone in existence it's able to modify the headroom |
| 645 | * at will. The sequence of calls inside the transport layer is:: |
| 646 | * |
| 647 | * <alloc skb> |
| 648 | * skb_reserve() |
| 649 | * __skb_header_release() |
| 650 | * skb_clone() |
| 651 | * // send the clone down the stack |
| 652 | * |
| 653 | * This is not a very generic construct and it depends on the transport layers |
| 654 | * doing the right thing. In practice there's usually only one payload-only skb. |
| 655 | * Having multiple payload-only skbs with different lengths of hdr_len is not |
| 656 | * possible. The payload-only skbs should never leave their owner. |
| 657 | */ |
| 658 | #define SKB_DATAREF_SHIFT 16 |
| 659 | #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) |
| 660 | |
| 661 | |
| 662 | enum { |
| 663 | SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ |
| 664 | SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ |
| 665 | SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ |
| 666 | }; |
| 667 | |
| 668 | enum { |
| 669 | SKB_GSO_TCPV4 = 1 << 0, |
| 670 | |
| 671 | /* This indicates the skb is from an untrusted source. */ |
| 672 | SKB_GSO_DODGY = 1 << 1, |
| 673 | |
| 674 | /* This indicates the tcp segment has CWR set. */ |
| 675 | SKB_GSO_TCP_ECN = 1 << 2, |
| 676 | |
| 677 | SKB_GSO_TCP_FIXEDID = 1 << 3, |
| 678 | |
| 679 | SKB_GSO_TCPV6 = 1 << 4, |
| 680 | |
| 681 | SKB_GSO_FCOE = 1 << 5, |
| 682 | |
| 683 | SKB_GSO_GRE = 1 << 6, |
| 684 | |
| 685 | SKB_GSO_GRE_CSUM = 1 << 7, |
| 686 | |
| 687 | SKB_GSO_IPXIP4 = 1 << 8, |
| 688 | |
| 689 | SKB_GSO_IPXIP6 = 1 << 9, |
| 690 | |
| 691 | SKB_GSO_UDP_TUNNEL = 1 << 10, |
| 692 | |
| 693 | SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, |
| 694 | |
| 695 | SKB_GSO_PARTIAL = 1 << 12, |
| 696 | |
| 697 | SKB_GSO_TUNNEL_REMCSUM = 1 << 13, |
| 698 | |
| 699 | SKB_GSO_SCTP = 1 << 14, |
| 700 | |
| 701 | SKB_GSO_ESP = 1 << 15, |
| 702 | |
| 703 | SKB_GSO_UDP = 1 << 16, |
| 704 | |
| 705 | SKB_GSO_UDP_L4 = 1 << 17, |
| 706 | |
| 707 | SKB_GSO_FRAGLIST = 1 << 18, |
| 708 | |
| 709 | SKB_GSO_TCP_ACCECN = 1 << 19, |
| 710 | }; |
| 711 | |
| 712 | #if BITS_PER_LONG > 32 |
| 713 | #define NET_SKBUFF_DATA_USES_OFFSET 1 |
| 714 | #endif |
| 715 | |
| 716 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
| 717 | typedef unsigned int sk_buff_data_t; |
| 718 | #else |
| 719 | typedef unsigned char *sk_buff_data_t; |
| 720 | #endif |
| 721 | |
| 722 | enum skb_tstamp_type { |
| 723 | SKB_CLOCK_REALTIME, |
| 724 | SKB_CLOCK_MONOTONIC, |
| 725 | SKB_CLOCK_TAI, |
| 726 | __SKB_CLOCK_MAX = SKB_CLOCK_TAI, |
| 727 | }; |
| 728 | |
| 729 | /** |
| 730 | * DOC: Basic sk_buff geometry |
| 731 | * |
| 732 | * struct sk_buff itself is a metadata structure and does not hold any packet |
| 733 | * data. All the data is held in associated buffers. |
| 734 | * |
| 735 | * &sk_buff.head points to the main "head" buffer. The head buffer is divided |
| 736 | * into two parts: |
| 737 | * |
| 738 | * - data buffer, containing headers and sometimes payload; |
| 739 | * this is the part of the skb operated on by the common helpers |
| 740 | * such as skb_put() or skb_pull(); |
| 741 | * - shared info (struct skb_shared_info) which holds an array of pointers |
| 742 | * to read-only data in the (page, offset, length) format. |
| 743 | * |
| 744 | * Optionally &skb_shared_info.frag_list may point to another skb. |
| 745 | * |
| 746 | * Basic diagram may look like this:: |
| 747 | * |
| 748 | * --------------- |
| 749 | * | sk_buff | |
| 750 | * --------------- |
| 751 | * ,--------------------------- + head |
| 752 | * / ,----------------- + data |
| 753 | * / / ,----------- + tail |
| 754 | * | | | , + end |
| 755 | * | | | | |
| 756 | * v v v v |
| 757 | * ----------------------------------------------- |
| 758 | * | headroom | data | tailroom | skb_shared_info | |
| 759 | * ----------------------------------------------- |
| 760 | * + [page frag] |
| 761 | * + [page frag] |
| 762 | * + [page frag] |
| 763 | * + [page frag] --------- |
| 764 | * + frag_list --> | sk_buff | |
| 765 | * --------- |
| 766 | * |
| 767 | */ |
| 768 | |
| 769 | /** |
| 770 | * struct sk_buff - socket buffer |
| 771 | * @next: Next buffer in list |
| 772 | * @prev: Previous buffer in list |
| 773 | * @tstamp: Time we arrived/left |
| 774 | * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point |
| 775 | * for retransmit timer |
| 776 | * @rbnode: RB tree node, alternative to next/prev for netem/tcp |
| 777 | * @list: queue head |
| 778 | * @ll_node: anchor in an llist (eg socket defer_list) |
| 779 | * @sk: Socket we are owned by |
| 780 | * @dev: Device we arrived on/are leaving by |
| 781 | * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL |
| 782 | * @cb: Control buffer. Free for use by every layer. Put private vars here |
| 783 | * @_skb_refdst: destination entry (with norefcount bit) |
| 784 | * @len: Length of actual data |
| 785 | * @data_len: Data length |
| 786 | * @mac_len: Length of link layer header |
| 787 | * @hdr_len: writable header length of cloned skb |
| 788 | * @csum: Checksum (must include start/offset pair) |
| 789 | * @csum_start: Offset from skb->head where checksumming should start |
| 790 | * @csum_offset: Offset from csum_start where checksum should be stored |
| 791 | * @priority: Packet queueing priority |
| 792 | * @ignore_df: allow local fragmentation |
| 793 | * @cloned: Head may be cloned (check refcnt to be sure) |
| 794 | * @ip_summed: Driver fed us an IP checksum |
| 795 | * @nohdr: Payload reference only, must not modify header |
| 796 | * @pkt_type: Packet class |
| 797 | * @fclone: skbuff clone status |
| 798 | * @ipvs_property: skbuff is owned by ipvs |
| 799 | * @inner_protocol_type: whether the inner protocol is |
| 800 | * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO |
| 801 | * @remcsum_offload: remote checksum offload is enabled |
| 802 | * @offload_fwd_mark: Packet was L2-forwarded in hardware |
| 803 | * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware |
| 804 | * @tc_skip_classify: do not classify packet. set by IFB device |
| 805 | * @tc_at_ingress: used within tc_classify to distinguish in/egress |
| 806 | * @redirected: packet was redirected by packet classifier |
| 807 | * @from_ingress: packet was redirected from the ingress path |
| 808 | * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h |
| 809 | * @peeked: this packet has been seen already, so stats have been |
| 810 | * done for it, don't do them again |
| 811 | * @nf_trace: netfilter packet trace flag |
| 812 | * @protocol: Packet protocol from driver |
| 813 | * @destructor: Destruct function |
| 814 | * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) |
| 815 | * @_sk_redir: socket redirection information for skmsg |
| 816 | * @_nfct: Associated connection, if any (with nfctinfo bits) |
| 817 | * @skb_iif: ifindex of device we arrived on |
| 818 | * @tc_index: Traffic control index |
| 819 | * @hash: the packet hash |
| 820 | * @queue_mapping: Queue mapping for multiqueue devices |
| 821 | * @head_frag: skb was allocated from page fragments, |
| 822 | * not allocated by kmalloc() or vmalloc(). |
| 823 | * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves |
| 824 | * @pp_recycle: mark the packet for recycling instead of freeing (implies |
| 825 | * page_pool support on driver) |
| 826 | * @active_extensions: active extensions (skb_ext_id types) |
| 827 | * @ndisc_nodetype: router type (from link layer) |
| 828 | * @ooo_okay: allow the mapping of a socket to a queue to be changed |
| 829 | * @l4_hash: indicate hash is a canonical 4-tuple hash over transport |
| 830 | * ports. |
| 831 | * @sw_hash: indicates hash was computed in software stack |
| 832 | * @wifi_acked_valid: wifi_acked was set |
| 833 | * @wifi_acked: whether frame was acked on wifi or not |
| 834 | * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS |
| 835 | * @encapsulation: indicates the inner headers in the skbuff are valid |
| 836 | * @encap_hdr_csum: software checksum is needed |
| 837 | * @csum_valid: checksum is already valid |
| 838 | * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL |
| 839 | * @csum_complete_sw: checksum was completed by software |
| 840 | * @csum_level: indicates the number of consecutive checksums found in |
| 841 | * the packet minus one that have been verified as |
| 842 | * CHECKSUM_UNNECESSARY (max 3) |
| 843 | * @unreadable: indicates that at least 1 of the fragments in this skb is |
| 844 | * unreadable. |
| 845 | * @dst_pending_confirm: need to confirm neighbour |
| 846 | * @decrypted: Decrypted SKB |
| 847 | * @slow_gro: state present at GRO time, slower prepare step required |
| 848 | * @tstamp_type: When set, skb->tstamp has the |
| 849 | * delivery_time clock base of skb->tstamp. |
| 850 | * @napi_id: id of the NAPI struct this skb came from |
| 851 | * @sender_cpu: (aka @napi_id) source CPU in XPS |
| 852 | * @alloc_cpu: CPU which did the skb allocation. |
| 853 | * @secmark: security marking |
| 854 | * @mark: Generic packet mark |
| 855 | * @reserved_tailroom: (aka @mark) number of bytes of free space available |
| 856 | * at the tail of an sk_buff |
| 857 | * @vlan_all: vlan fields (proto & tci) |
| 858 | * @vlan_proto: vlan encapsulation protocol |
| 859 | * @vlan_tci: vlan tag control information |
| 860 | * @inner_protocol: Protocol (encapsulation) |
| 861 | * @inner_ipproto: (aka @inner_protocol) stores ipproto when |
| 862 | * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; |
| 863 | * @inner_transport_header: Inner transport layer header (encapsulation) |
| 864 | * @inner_network_header: Network layer header (encapsulation) |
| 865 | * @inner_mac_header: Link layer header (encapsulation) |
| 866 | * @transport_header: Transport layer header |
| 867 | * @network_header: Network layer header |
| 868 | * @mac_header: Link layer header |
| 869 | * @kcov_handle: KCOV remote handle for remote coverage collection |
| 870 | * @tail: Tail pointer |
| 871 | * @end: End pointer |
| 872 | * @head: Head of buffer |
| 873 | * @data: Data head pointer |
| 874 | * @truesize: Buffer size |
| 875 | * @users: User count - see {datagram,tcp}.c |
| 876 | * @extensions: allocated extensions, valid if active_extensions is nonzero |
| 877 | */ |
| 878 | |
| 879 | struct sk_buff { |
| 880 | union { |
| 881 | struct { |
| 882 | /* These two members must be first to match sk_buff_head. */ |
| 883 | struct sk_buff *next; |
| 884 | struct sk_buff *prev; |
| 885 | |
| 886 | union { |
| 887 | struct net_device *dev; |
| 888 | /* Some protocols might use this space to store information, |
| 889 | * while device pointer would be NULL. |
| 890 | * UDP receive path is one user. |
| 891 | */ |
| 892 | unsigned long dev_scratch; |
| 893 | }; |
| 894 | }; |
| 895 | struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ |
| 896 | struct list_head list; |
| 897 | struct llist_node ll_node; |
| 898 | }; |
| 899 | |
| 900 | struct sock *sk; |
| 901 | |
| 902 | union { |
| 903 | ktime_t tstamp; |
| 904 | u64 skb_mstamp_ns; /* earliest departure time */ |
| 905 | }; |
| 906 | /* |
| 907 | * This is the control buffer. It is free to use for every |
| 908 | * layer. Please put your private variables there. If you |
| 909 | * want to keep them across layers you have to do a skb_clone() |
| 910 | * first. This is owned by whoever has the skb queued ATM. |
| 911 | */ |
| 912 | char cb[48] __aligned(8); |
| 913 | |
| 914 | union { |
| 915 | struct { |
| 916 | unsigned long _skb_refdst; |
| 917 | void (*destructor)(struct sk_buff *skb); |
| 918 | }; |
| 919 | struct list_head tcp_tsorted_anchor; |
| 920 | #ifdef CONFIG_NET_SOCK_MSG |
| 921 | unsigned long _sk_redir; |
| 922 | #endif |
| 923 | }; |
| 924 | |
| 925 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
| 926 | unsigned long _nfct; |
| 927 | #endif |
| 928 | unsigned int len, |
| 929 | data_len; |
| 930 | __u16 mac_len, |
| 931 | hdr_len; |
| 932 | |
| 933 | /* Following fields are _not_ copied in __copy_skb_header() |
| 934 | * Note that queue_mapping is here mostly to fill a hole. |
| 935 | */ |
| 936 | __u16 queue_mapping; |
| 937 | |
| 938 | /* if you move cloned around you also must adapt those constants */ |
| 939 | #ifdef __BIG_ENDIAN_BITFIELD |
| 940 | #define CLONED_MASK (1 << 7) |
| 941 | #else |
| 942 | #define CLONED_MASK 1 |
| 943 | #endif |
| 944 | #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) |
| 945 | |
| 946 | /* private: */ |
| 947 | __u8 __cloned_offset[0]; |
| 948 | /* public: */ |
| 949 | __u8 cloned:1, |
| 950 | nohdr:1, |
| 951 | fclone:2, |
| 952 | peeked:1, |
| 953 | head_frag:1, |
| 954 | pfmemalloc:1, |
| 955 | pp_recycle:1; /* page_pool recycle indicator */ |
| 956 | #ifdef CONFIG_SKB_EXTENSIONS |
| 957 | __u8 active_extensions; |
| 958 | #endif |
| 959 | |
| 960 | /* Fields enclosed in headers group are copied |
| 961 | * using a single memcpy() in __copy_skb_header() |
| 962 | */ |
| 963 | struct_group(, |
| 964 | |
| 965 | /* private: */ |
| 966 | __u8 __pkt_type_offset[0]; |
| 967 | /* public: */ |
| 968 | __u8 pkt_type:3; /* see PKT_TYPE_MAX */ |
| 969 | __u8 ignore_df:1; |
| 970 | __u8 dst_pending_confirm:1; |
| 971 | __u8 ip_summed:2; |
| 972 | __u8 ooo_okay:1; |
| 973 | |
| 974 | /* private: */ |
| 975 | __u8 __mono_tc_offset[0]; |
| 976 | /* public: */ |
| 977 | __u8 tstamp_type:2; /* See skb_tstamp_type */ |
| 978 | #ifdef CONFIG_NET_XGRESS |
| 979 | __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ |
| 980 | __u8 tc_skip_classify:1; |
| 981 | #endif |
| 982 | __u8 remcsum_offload:1; |
| 983 | __u8 csum_complete_sw:1; |
| 984 | __u8 csum_level:2; |
| 985 | __u8 inner_protocol_type:1; |
| 986 | |
| 987 | __u8 l4_hash:1; |
| 988 | __u8 sw_hash:1; |
| 989 | #ifdef CONFIG_WIRELESS |
| 990 | __u8 wifi_acked_valid:1; |
| 991 | __u8 wifi_acked:1; |
| 992 | #endif |
| 993 | __u8 no_fcs:1; |
| 994 | /* Indicates the inner headers are valid in the skbuff. */ |
| 995 | __u8 encapsulation:1; |
| 996 | __u8 encap_hdr_csum:1; |
| 997 | __u8 csum_valid:1; |
| 998 | #ifdef CONFIG_IPV6_NDISC_NODETYPE |
| 999 | __u8 ndisc_nodetype:2; |
| 1000 | #endif |
| 1001 | |
| 1002 | #if IS_ENABLED(CONFIG_IP_VS) |
| 1003 | __u8 ipvs_property:1; |
| 1004 | #endif |
| 1005 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) |
| 1006 | __u8 nf_trace:1; |
| 1007 | #endif |
| 1008 | #ifdef CONFIG_NET_SWITCHDEV |
| 1009 | __u8 offload_fwd_mark:1; |
| 1010 | __u8 offload_l3_fwd_mark:1; |
| 1011 | #endif |
| 1012 | __u8 redirected:1; |
| 1013 | #ifdef CONFIG_NET_REDIRECT |
| 1014 | __u8 from_ingress:1; |
| 1015 | #endif |
| 1016 | #ifdef CONFIG_NETFILTER_SKIP_EGRESS |
| 1017 | __u8 nf_skip_egress:1; |
| 1018 | #endif |
| 1019 | #ifdef CONFIG_SKB_DECRYPTED |
| 1020 | __u8 decrypted:1; |
| 1021 | #endif |
| 1022 | __u8 slow_gro:1; |
| 1023 | #if IS_ENABLED(CONFIG_IP_SCTP) |
| 1024 | __u8 csum_not_inet:1; |
| 1025 | #endif |
| 1026 | __u8 unreadable:1; |
| 1027 | #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) |
| 1028 | __u16 tc_index; /* traffic control index */ |
| 1029 | #endif |
| 1030 | |
| 1031 | u16 alloc_cpu; |
| 1032 | |
| 1033 | union { |
| 1034 | __wsum csum; |
| 1035 | struct { |
| 1036 | __u16 csum_start; |
| 1037 | __u16 csum_offset; |
| 1038 | }; |
| 1039 | }; |
| 1040 | __u32 priority; |
| 1041 | int skb_iif; |
| 1042 | __u32 hash; |
| 1043 | union { |
| 1044 | u32 vlan_all; |
| 1045 | struct { |
| 1046 | __be16 vlan_proto; |
| 1047 | __u16 vlan_tci; |
| 1048 | }; |
| 1049 | }; |
| 1050 | #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) |
| 1051 | union { |
| 1052 | unsigned int napi_id; |
| 1053 | unsigned int sender_cpu; |
| 1054 | }; |
| 1055 | #endif |
| 1056 | #ifdef CONFIG_NETWORK_SECMARK |
| 1057 | __u32 secmark; |
| 1058 | #endif |
| 1059 | |
| 1060 | union { |
| 1061 | __u32 mark; |
| 1062 | __u32 reserved_tailroom; |
| 1063 | }; |
| 1064 | |
| 1065 | union { |
| 1066 | __be16 inner_protocol; |
| 1067 | __u8 inner_ipproto; |
| 1068 | }; |
| 1069 | |
| 1070 | __u16 ; |
| 1071 | __u16 ; |
| 1072 | __u16 ; |
| 1073 | |
| 1074 | __be16 protocol; |
| 1075 | __u16 ; |
| 1076 | __u16 ; |
| 1077 | __u16 ; |
| 1078 | |
| 1079 | #ifdef CONFIG_KCOV |
| 1080 | u64 kcov_handle; |
| 1081 | #endif |
| 1082 | |
| 1083 | ); /* end headers group */ |
| 1084 | |
| 1085 | /* These elements must be at the end, see alloc_skb() for details. */ |
| 1086 | sk_buff_data_t tail; |
| 1087 | sk_buff_data_t end; |
| 1088 | unsigned char *head, |
| 1089 | *data; |
| 1090 | unsigned int truesize; |
| 1091 | refcount_t users; |
| 1092 | |
| 1093 | #ifdef CONFIG_SKB_EXTENSIONS |
| 1094 | /* only usable after checking ->active_extensions != 0 */ |
| 1095 | struct skb_ext *extensions; |
| 1096 | #endif |
| 1097 | }; |
| 1098 | |
| 1099 | /* if you move pkt_type around you also must adapt those constants */ |
| 1100 | #ifdef __BIG_ENDIAN_BITFIELD |
| 1101 | #define PKT_TYPE_MAX (7 << 5) |
| 1102 | #else |
| 1103 | #define PKT_TYPE_MAX 7 |
| 1104 | #endif |
| 1105 | #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) |
| 1106 | |
| 1107 | /* if you move tc_at_ingress or tstamp_type |
| 1108 | * around, you also must adapt these constants. |
| 1109 | */ |
| 1110 | #ifdef __BIG_ENDIAN_BITFIELD |
| 1111 | #define SKB_TSTAMP_TYPE_MASK (3 << 6) |
| 1112 | #define SKB_TSTAMP_TYPE_RSHIFT (6) |
| 1113 | #define TC_AT_INGRESS_MASK (1 << 5) |
| 1114 | #else |
| 1115 | #define SKB_TSTAMP_TYPE_MASK (3) |
| 1116 | #define TC_AT_INGRESS_MASK (1 << 2) |
| 1117 | #endif |
| 1118 | #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) |
| 1119 | |
| 1120 | #ifdef __KERNEL__ |
| 1121 | /* |
| 1122 | * Handling routines are only of interest to the kernel |
| 1123 | */ |
| 1124 | |
| 1125 | #define SKB_ALLOC_FCLONE 0x01 |
| 1126 | #define SKB_ALLOC_RX 0x02 |
| 1127 | #define SKB_ALLOC_NAPI 0x04 |
| 1128 | |
| 1129 | /** |
| 1130 | * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves |
| 1131 | * @skb: buffer |
| 1132 | */ |
| 1133 | static inline bool skb_pfmemalloc(const struct sk_buff *skb) |
| 1134 | { |
| 1135 | return unlikely(skb->pfmemalloc); |
| 1136 | } |
| 1137 | |
| 1138 | /* |
| 1139 | * skb might have a dst pointer attached, refcounted or not. |
| 1140 | * _skb_refdst low order bit is set if refcount was _not_ taken |
| 1141 | */ |
| 1142 | #define SKB_DST_NOREF 1UL |
| 1143 | #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) |
| 1144 | |
| 1145 | /** |
| 1146 | * skb_dst - returns skb dst_entry |
| 1147 | * @skb: buffer |
| 1148 | * |
| 1149 | * Returns: skb dst_entry, regardless of reference taken or not. |
| 1150 | */ |
| 1151 | static inline struct dst_entry *skb_dst(const struct sk_buff *skb) |
| 1152 | { |
| 1153 | /* If refdst was not refcounted, check we still are in a |
| 1154 | * rcu_read_lock section |
| 1155 | */ |
| 1156 | WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && |
| 1157 | !rcu_read_lock_held() && |
| 1158 | !rcu_read_lock_bh_held()); |
| 1159 | return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); |
| 1160 | } |
| 1161 | |
| 1162 | /** |
| 1163 | * skb_dst_set - sets skb dst |
| 1164 | * @skb: buffer |
| 1165 | * @dst: dst entry |
| 1166 | * |
| 1167 | * Sets skb dst, assuming a reference was taken on dst and should |
| 1168 | * be released by skb_dst_drop() |
| 1169 | */ |
| 1170 | static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) |
| 1171 | { |
| 1172 | skb->slow_gro |= !!dst; |
| 1173 | skb->_skb_refdst = (unsigned long)dst; |
| 1174 | } |
| 1175 | |
| 1176 | /** |
| 1177 | * skb_dst_set_noref - sets skb dst, hopefully, without taking reference |
| 1178 | * @skb: buffer |
| 1179 | * @dst: dst entry |
| 1180 | * |
| 1181 | * Sets skb dst, assuming a reference was not taken on dst. |
| 1182 | * If dst entry is cached, we do not take reference and dst_release |
| 1183 | * will be avoided by refdst_drop. If dst entry is not cached, we take |
| 1184 | * reference, so that last dst_release can destroy the dst immediately. |
| 1185 | */ |
| 1186 | static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) |
| 1187 | { |
| 1188 | WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
| 1189 | skb->slow_gro |= !!dst; |
| 1190 | skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; |
| 1191 | } |
| 1192 | |
| 1193 | /** |
| 1194 | * skb_dst_is_noref - Test if skb dst isn't refcounted |
| 1195 | * @skb: buffer |
| 1196 | */ |
| 1197 | static inline bool skb_dst_is_noref(const struct sk_buff *skb) |
| 1198 | { |
| 1199 | return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); |
| 1200 | } |
| 1201 | |
| 1202 | /* For mangling skb->pkt_type from user space side from applications |
| 1203 | * such as nft, tc, etc, we only allow a conservative subset of |
| 1204 | * possible pkt_types to be set. |
| 1205 | */ |
| 1206 | static inline bool skb_pkt_type_ok(u32 ptype) |
| 1207 | { |
| 1208 | return ptype <= PACKET_OTHERHOST; |
| 1209 | } |
| 1210 | |
| 1211 | /** |
| 1212 | * skb_napi_id - Returns the skb's NAPI id |
| 1213 | * @skb: buffer |
| 1214 | */ |
| 1215 | static inline unsigned int skb_napi_id(const struct sk_buff *skb) |
| 1216 | { |
| 1217 | #ifdef CONFIG_NET_RX_BUSY_POLL |
| 1218 | return skb->napi_id; |
| 1219 | #else |
| 1220 | return 0; |
| 1221 | #endif |
| 1222 | } |
| 1223 | |
| 1224 | static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) |
| 1225 | { |
| 1226 | #ifdef CONFIG_WIRELESS |
| 1227 | return skb->wifi_acked_valid; |
| 1228 | #else |
| 1229 | return 0; |
| 1230 | #endif |
| 1231 | } |
| 1232 | |
| 1233 | /** |
| 1234 | * skb_unref - decrement the skb's reference count |
| 1235 | * @skb: buffer |
| 1236 | * |
| 1237 | * Returns: true if we can free the skb. |
| 1238 | */ |
| 1239 | static inline bool skb_unref(struct sk_buff *skb) |
| 1240 | { |
| 1241 | if (unlikely(!skb)) |
| 1242 | return false; |
| 1243 | if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1)) |
| 1244 | smp_rmb(); |
| 1245 | else if (likely(!refcount_dec_and_test(&skb->users))) |
| 1246 | return false; |
| 1247 | |
| 1248 | return true; |
| 1249 | } |
| 1250 | |
| 1251 | static inline bool skb_data_unref(const struct sk_buff *skb, |
| 1252 | struct skb_shared_info *shinfo) |
| 1253 | { |
| 1254 | int bias; |
| 1255 | |
| 1256 | if (!skb->cloned) |
| 1257 | return true; |
| 1258 | |
| 1259 | bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; |
| 1260 | |
| 1261 | if (atomic_read(v: &shinfo->dataref) == bias) |
| 1262 | smp_rmb(); |
| 1263 | else if (atomic_sub_return(i: bias, v: &shinfo->dataref)) |
| 1264 | return false; |
| 1265 | |
| 1266 | return true; |
| 1267 | } |
| 1268 | |
| 1269 | void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, |
| 1270 | enum skb_drop_reason reason); |
| 1271 | |
| 1272 | static inline void |
| 1273 | kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) |
| 1274 | { |
| 1275 | sk_skb_reason_drop(NULL, skb, reason); |
| 1276 | } |
| 1277 | |
| 1278 | /** |
| 1279 | * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason |
| 1280 | * @skb: buffer to free |
| 1281 | */ |
| 1282 | static inline void kfree_skb(struct sk_buff *skb) |
| 1283 | { |
| 1284 | kfree_skb_reason(skb, reason: SKB_DROP_REASON_NOT_SPECIFIED); |
| 1285 | } |
| 1286 | |
| 1287 | void skb_release_head_state(struct sk_buff *skb); |
| 1288 | void kfree_skb_list_reason(struct sk_buff *segs, |
| 1289 | enum skb_drop_reason reason); |
| 1290 | void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); |
| 1291 | void skb_tx_error(struct sk_buff *skb); |
| 1292 | |
| 1293 | static inline void kfree_skb_list(struct sk_buff *segs) |
| 1294 | { |
| 1295 | kfree_skb_list_reason(segs, reason: SKB_DROP_REASON_NOT_SPECIFIED); |
| 1296 | } |
| 1297 | |
| 1298 | #ifdef CONFIG_TRACEPOINTS |
| 1299 | void consume_skb(struct sk_buff *skb); |
| 1300 | #else |
| 1301 | static inline void consume_skb(struct sk_buff *skb) |
| 1302 | { |
| 1303 | return kfree_skb(skb); |
| 1304 | } |
| 1305 | #endif |
| 1306 | |
| 1307 | void __consume_stateless_skb(struct sk_buff *skb); |
| 1308 | void __kfree_skb(struct sk_buff *skb); |
| 1309 | |
| 1310 | void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); |
| 1311 | bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, |
| 1312 | bool *fragstolen, int *delta_truesize); |
| 1313 | |
| 1314 | struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, |
| 1315 | int node); |
| 1316 | struct sk_buff *__build_skb(void *data, unsigned int frag_size); |
| 1317 | struct sk_buff *build_skb(void *data, unsigned int frag_size); |
| 1318 | struct sk_buff *build_skb_around(struct sk_buff *skb, |
| 1319 | void *data, unsigned int frag_size); |
| 1320 | void skb_attempt_defer_free(struct sk_buff *skb); |
| 1321 | |
| 1322 | u32 napi_skb_cache_get_bulk(void **skbs, u32 n); |
| 1323 | struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); |
| 1324 | struct sk_buff *slab_build_skb(void *data); |
| 1325 | |
| 1326 | /** |
| 1327 | * alloc_skb - allocate a network buffer |
| 1328 | * @size: size to allocate |
| 1329 | * @priority: allocation mask |
| 1330 | * |
| 1331 | * This function is a convenient wrapper around __alloc_skb(). |
| 1332 | */ |
| 1333 | static inline struct sk_buff *alloc_skb(unsigned int size, |
| 1334 | gfp_t priority) |
| 1335 | { |
| 1336 | return __alloc_skb(size, priority, flags: 0, NUMA_NO_NODE); |
| 1337 | } |
| 1338 | |
| 1339 | struct sk_buff *alloc_skb_with_frags(unsigned long , |
| 1340 | unsigned long data_len, |
| 1341 | int max_page_order, |
| 1342 | int *errcode, |
| 1343 | gfp_t gfp_mask); |
| 1344 | struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); |
| 1345 | |
| 1346 | /* Layout of fast clones : [skb1][skb2][fclone_ref] */ |
| 1347 | struct sk_buff_fclones { |
| 1348 | struct sk_buff skb1; |
| 1349 | |
| 1350 | struct sk_buff skb2; |
| 1351 | |
| 1352 | refcount_t fclone_ref; |
| 1353 | }; |
| 1354 | |
| 1355 | /** |
| 1356 | * skb_fclone_busy - check if fclone is busy |
| 1357 | * @sk: socket |
| 1358 | * @skb: buffer |
| 1359 | * |
| 1360 | * Returns: true if skb is a fast clone, and its clone is not freed. |
| 1361 | * Some drivers call skb_orphan() in their ndo_start_xmit(), |
| 1362 | * so we also check that didn't happen. |
| 1363 | */ |
| 1364 | static inline bool skb_fclone_busy(const struct sock *sk, |
| 1365 | const struct sk_buff *skb) |
| 1366 | { |
| 1367 | const struct sk_buff_fclones *fclones; |
| 1368 | |
| 1369 | fclones = container_of(skb, struct sk_buff_fclones, skb1); |
| 1370 | |
| 1371 | return skb->fclone == SKB_FCLONE_ORIG && |
| 1372 | refcount_read(r: &fclones->fclone_ref) > 1 && |
| 1373 | READ_ONCE(fclones->skb2.sk) == sk; |
| 1374 | } |
| 1375 | |
| 1376 | /** |
| 1377 | * alloc_skb_fclone - allocate a network buffer from fclone cache |
| 1378 | * @size: size to allocate |
| 1379 | * @priority: allocation mask |
| 1380 | * |
| 1381 | * This function is a convenient wrapper around __alloc_skb(). |
| 1382 | */ |
| 1383 | static inline struct sk_buff *alloc_skb_fclone(unsigned int size, |
| 1384 | gfp_t priority) |
| 1385 | { |
| 1386 | return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); |
| 1387 | } |
| 1388 | |
| 1389 | struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); |
| 1390 | void (struct sk_buff *skb, int off); |
| 1391 | int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); |
| 1392 | struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); |
| 1393 | void (struct sk_buff *new, const struct sk_buff *old); |
| 1394 | struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); |
| 1395 | struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, |
| 1396 | gfp_t gfp_mask, bool fclone); |
| 1397 | static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, |
| 1398 | gfp_t gfp_mask) |
| 1399 | { |
| 1400 | return __pskb_copy_fclone(skb, headroom, gfp_mask, fclone: false); |
| 1401 | } |
| 1402 | |
| 1403 | int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); |
| 1404 | struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, |
| 1405 | unsigned int headroom); |
| 1406 | struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); |
| 1407 | struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, |
| 1408 | int newtailroom, gfp_t priority); |
| 1409 | int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, |
| 1410 | int offset, int len); |
| 1411 | int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, |
| 1412 | int offset, int len); |
| 1413 | int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); |
| 1414 | int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); |
| 1415 | |
| 1416 | /** |
| 1417 | * skb_pad - zero pad the tail of an skb |
| 1418 | * @skb: buffer to pad |
| 1419 | * @pad: space to pad |
| 1420 | * |
| 1421 | * Ensure that a buffer is followed by a padding area that is zero |
| 1422 | * filled. Used by network drivers which may DMA or transfer data |
| 1423 | * beyond the buffer end onto the wire. |
| 1424 | * |
| 1425 | * May return error in out of memory cases. The skb is freed on error. |
| 1426 | */ |
| 1427 | static inline int skb_pad(struct sk_buff *skb, int pad) |
| 1428 | { |
| 1429 | return __skb_pad(skb, pad, free_on_error: true); |
| 1430 | } |
| 1431 | #define dev_kfree_skb(a) consume_skb(a) |
| 1432 | |
| 1433 | int skb_append_pagefrags(struct sk_buff *skb, struct page *page, |
| 1434 | int offset, size_t size, size_t max_frags); |
| 1435 | |
| 1436 | struct skb_seq_state { |
| 1437 | __u32 lower_offset; |
| 1438 | __u32 upper_offset; |
| 1439 | __u32 frag_idx; |
| 1440 | __u32 stepped_offset; |
| 1441 | struct sk_buff *root_skb; |
| 1442 | struct sk_buff *cur_skb; |
| 1443 | __u8 *frag_data; |
| 1444 | __u32 frag_off; |
| 1445 | }; |
| 1446 | |
| 1447 | void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, |
| 1448 | unsigned int to, struct skb_seq_state *st); |
| 1449 | unsigned int skb_seq_read(unsigned int consumed, const u8 **data, |
| 1450 | struct skb_seq_state *st); |
| 1451 | void skb_abort_seq_read(struct skb_seq_state *st); |
| 1452 | int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len); |
| 1453 | |
| 1454 | unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, |
| 1455 | unsigned int to, struct ts_config *config); |
| 1456 | |
| 1457 | /* |
| 1458 | * Packet hash types specify the type of hash in skb_set_hash. |
| 1459 | * |
| 1460 | * Hash types refer to the protocol layer addresses which are used to |
| 1461 | * construct a packet's hash. The hashes are used to differentiate or identify |
| 1462 | * flows of the protocol layer for the hash type. Hash types are either |
| 1463 | * layer-2 (L2), layer-3 (L3), or layer-4 (L4). |
| 1464 | * |
| 1465 | * Properties of hashes: |
| 1466 | * |
| 1467 | * 1) Two packets in different flows have different hash values |
| 1468 | * 2) Two packets in the same flow should have the same hash value |
| 1469 | * |
| 1470 | * A hash at a higher layer is considered to be more specific. A driver should |
| 1471 | * set the most specific hash possible. |
| 1472 | * |
| 1473 | * A driver cannot indicate a more specific hash than the layer at which a hash |
| 1474 | * was computed. For instance an L3 hash cannot be set as an L4 hash. |
| 1475 | * |
| 1476 | * A driver may indicate a hash level which is less specific than the |
| 1477 | * actual layer the hash was computed on. For instance, a hash computed |
| 1478 | * at L4 may be considered an L3 hash. This should only be done if the |
| 1479 | * driver can't unambiguously determine that the HW computed the hash at |
| 1480 | * the higher layer. Note that the "should" in the second property above |
| 1481 | * permits this. |
| 1482 | */ |
| 1483 | enum pkt_hash_types { |
| 1484 | PKT_HASH_TYPE_NONE, /* Undefined type */ |
| 1485 | PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ |
| 1486 | PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ |
| 1487 | PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ |
| 1488 | }; |
| 1489 | |
| 1490 | static inline void skb_clear_hash(struct sk_buff *skb) |
| 1491 | { |
| 1492 | skb->hash = 0; |
| 1493 | skb->sw_hash = 0; |
| 1494 | skb->l4_hash = 0; |
| 1495 | } |
| 1496 | |
| 1497 | static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) |
| 1498 | { |
| 1499 | if (!skb->l4_hash) |
| 1500 | skb_clear_hash(skb); |
| 1501 | } |
| 1502 | |
| 1503 | static inline void |
| 1504 | __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) |
| 1505 | { |
| 1506 | skb->l4_hash = is_l4; |
| 1507 | skb->sw_hash = is_sw; |
| 1508 | skb->hash = hash; |
| 1509 | } |
| 1510 | |
| 1511 | static inline void |
| 1512 | skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) |
| 1513 | { |
| 1514 | /* Used by drivers to set hash from HW */ |
| 1515 | __skb_set_hash(skb, hash, is_sw: false, is_l4: type == PKT_HASH_TYPE_L4); |
| 1516 | } |
| 1517 | |
| 1518 | static inline void |
| 1519 | __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) |
| 1520 | { |
| 1521 | __skb_set_hash(skb, hash, is_sw: true, is_l4); |
| 1522 | } |
| 1523 | |
| 1524 | u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); |
| 1525 | |
| 1526 | static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) |
| 1527 | { |
| 1528 | return __skb_get_hash_symmetric_net(NULL, skb); |
| 1529 | } |
| 1530 | |
| 1531 | void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); |
| 1532 | u32 skb_get_poff(const struct sk_buff *skb); |
| 1533 | u32 __skb_get_poff(const struct sk_buff *skb, const void *data, |
| 1534 | const struct flow_keys_basic *keys, int hlen); |
| 1535 | __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, |
| 1536 | const void *data, int hlen_proto); |
| 1537 | |
| 1538 | void skb_flow_dissector_init(struct flow_dissector *flow_dissector, |
| 1539 | const struct flow_dissector_key *key, |
| 1540 | unsigned int key_count); |
| 1541 | |
| 1542 | struct bpf_flow_dissector; |
| 1543 | u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, |
| 1544 | __be16 proto, int nhoff, int hlen, unsigned int flags); |
| 1545 | |
| 1546 | bool __skb_flow_dissect(const struct net *net, |
| 1547 | const struct sk_buff *skb, |
| 1548 | struct flow_dissector *flow_dissector, |
| 1549 | void *target_container, const void *data, |
| 1550 | __be16 proto, int nhoff, int hlen, unsigned int flags); |
| 1551 | |
| 1552 | static inline bool skb_flow_dissect(const struct sk_buff *skb, |
| 1553 | struct flow_dissector *flow_dissector, |
| 1554 | void *target_container, unsigned int flags) |
| 1555 | { |
| 1556 | return __skb_flow_dissect(NULL, skb, flow_dissector, |
| 1557 | target_container, NULL, proto: 0, nhoff: 0, hlen: 0, flags); |
| 1558 | } |
| 1559 | |
| 1560 | static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, |
| 1561 | struct flow_keys *flow, |
| 1562 | unsigned int flags) |
| 1563 | { |
| 1564 | memset(flow, 0, sizeof(*flow)); |
| 1565 | return __skb_flow_dissect(NULL, skb, flow_dissector: &flow_keys_dissector, |
| 1566 | target_container: flow, NULL, proto: 0, nhoff: 0, hlen: 0, flags); |
| 1567 | } |
| 1568 | |
| 1569 | static inline bool |
| 1570 | skb_flow_dissect_flow_keys_basic(const struct net *net, |
| 1571 | const struct sk_buff *skb, |
| 1572 | struct flow_keys_basic *flow, |
| 1573 | const void *data, __be16 proto, |
| 1574 | int nhoff, int hlen, unsigned int flags) |
| 1575 | { |
| 1576 | memset(flow, 0, sizeof(*flow)); |
| 1577 | return __skb_flow_dissect(net, skb, flow_dissector: &flow_keys_basic_dissector, target_container: flow, |
| 1578 | data, proto, nhoff, hlen, flags); |
| 1579 | } |
| 1580 | |
| 1581 | void skb_flow_dissect_meta(const struct sk_buff *skb, |
| 1582 | struct flow_dissector *flow_dissector, |
| 1583 | void *target_container); |
| 1584 | |
| 1585 | /* Gets a skb connection tracking info, ctinfo map should be a |
| 1586 | * map of mapsize to translate enum ip_conntrack_info states |
| 1587 | * to user states. |
| 1588 | */ |
| 1589 | void |
| 1590 | skb_flow_dissect_ct(const struct sk_buff *skb, |
| 1591 | struct flow_dissector *flow_dissector, |
| 1592 | void *target_container, |
| 1593 | u16 *ctinfo_map, size_t mapsize, |
| 1594 | bool post_ct, u16 zone); |
| 1595 | void |
| 1596 | skb_flow_dissect_tunnel_info(const struct sk_buff *skb, |
| 1597 | struct flow_dissector *flow_dissector, |
| 1598 | void *target_container); |
| 1599 | |
| 1600 | void skb_flow_dissect_hash(const struct sk_buff *skb, |
| 1601 | struct flow_dissector *flow_dissector, |
| 1602 | void *target_container); |
| 1603 | |
| 1604 | static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) |
| 1605 | { |
| 1606 | if (!skb->l4_hash && !skb->sw_hash) |
| 1607 | __skb_get_hash_net(net, skb); |
| 1608 | |
| 1609 | return skb->hash; |
| 1610 | } |
| 1611 | |
| 1612 | static inline __u32 skb_get_hash(struct sk_buff *skb) |
| 1613 | { |
| 1614 | if (!skb->l4_hash && !skb->sw_hash) |
| 1615 | __skb_get_hash_net(NULL, skb); |
| 1616 | |
| 1617 | return skb->hash; |
| 1618 | } |
| 1619 | |
| 1620 | static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) |
| 1621 | { |
| 1622 | if (!skb->l4_hash && !skb->sw_hash) { |
| 1623 | struct flow_keys keys; |
| 1624 | __u32 hash = __get_hash_from_flowi6(fl6, keys: &keys); |
| 1625 | |
| 1626 | __skb_set_sw_hash(skb, hash, is_l4: flow_keys_have_l4(keys: &keys)); |
| 1627 | } |
| 1628 | |
| 1629 | return skb->hash; |
| 1630 | } |
| 1631 | |
| 1632 | __u32 skb_get_hash_perturb(const struct sk_buff *skb, |
| 1633 | const siphash_key_t *perturb); |
| 1634 | |
| 1635 | static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) |
| 1636 | { |
| 1637 | return skb->hash; |
| 1638 | } |
| 1639 | |
| 1640 | static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) |
| 1641 | { |
| 1642 | to->hash = from->hash; |
| 1643 | to->sw_hash = from->sw_hash; |
| 1644 | to->l4_hash = from->l4_hash; |
| 1645 | }; |
| 1646 | |
| 1647 | static inline int skb_cmp_decrypted(const struct sk_buff *skb1, |
| 1648 | const struct sk_buff *skb2) |
| 1649 | { |
| 1650 | #ifdef CONFIG_SKB_DECRYPTED |
| 1651 | return skb2->decrypted - skb1->decrypted; |
| 1652 | #else |
| 1653 | return 0; |
| 1654 | #endif |
| 1655 | } |
| 1656 | |
| 1657 | static inline bool skb_is_decrypted(const struct sk_buff *skb) |
| 1658 | { |
| 1659 | #ifdef CONFIG_SKB_DECRYPTED |
| 1660 | return skb->decrypted; |
| 1661 | #else |
| 1662 | return false; |
| 1663 | #endif |
| 1664 | } |
| 1665 | |
| 1666 | static inline void skb_copy_decrypted(struct sk_buff *to, |
| 1667 | const struct sk_buff *from) |
| 1668 | { |
| 1669 | #ifdef CONFIG_SKB_DECRYPTED |
| 1670 | to->decrypted = from->decrypted; |
| 1671 | #endif |
| 1672 | } |
| 1673 | |
| 1674 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
| 1675 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) |
| 1676 | { |
| 1677 | return skb->head + skb->end; |
| 1678 | } |
| 1679 | |
| 1680 | static inline unsigned int skb_end_offset(const struct sk_buff *skb) |
| 1681 | { |
| 1682 | return skb->end; |
| 1683 | } |
| 1684 | |
| 1685 | static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) |
| 1686 | { |
| 1687 | skb->end = offset; |
| 1688 | } |
| 1689 | #else |
| 1690 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) |
| 1691 | { |
| 1692 | return skb->end; |
| 1693 | } |
| 1694 | |
| 1695 | static inline unsigned int skb_end_offset(const struct sk_buff *skb) |
| 1696 | { |
| 1697 | return skb->end - skb->head; |
| 1698 | } |
| 1699 | |
| 1700 | static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) |
| 1701 | { |
| 1702 | skb->end = skb->head + offset; |
| 1703 | } |
| 1704 | #endif |
| 1705 | |
| 1706 | extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; |
| 1707 | |
| 1708 | struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, |
| 1709 | struct ubuf_info *uarg, bool devmem); |
| 1710 | |
| 1711 | void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); |
| 1712 | |
| 1713 | struct net_devmem_dmabuf_binding; |
| 1714 | |
| 1715 | int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, |
| 1716 | struct sk_buff *skb, struct iov_iter *from, |
| 1717 | size_t length, |
| 1718 | struct net_devmem_dmabuf_binding *binding); |
| 1719 | |
| 1720 | int zerocopy_fill_skb_from_iter(struct sk_buff *skb, |
| 1721 | struct iov_iter *from, size_t length); |
| 1722 | |
| 1723 | static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, |
| 1724 | struct msghdr *msg, int len) |
| 1725 | { |
| 1726 | return __zerocopy_sg_from_iter(msg, sk: skb->sk, skb, from: &msg->msg_iter, length: len, |
| 1727 | NULL); |
| 1728 | } |
| 1729 | |
| 1730 | int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, |
| 1731 | struct msghdr *msg, int len, |
| 1732 | struct ubuf_info *uarg, |
| 1733 | struct net_devmem_dmabuf_binding *binding); |
| 1734 | |
| 1735 | /* Internal */ |
| 1736 | #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) |
| 1737 | |
| 1738 | static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) |
| 1739 | { |
| 1740 | return &skb_shinfo(skb)->hwtstamps; |
| 1741 | } |
| 1742 | |
| 1743 | static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) |
| 1744 | { |
| 1745 | bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; |
| 1746 | |
| 1747 | return is_zcopy ? skb_uarg(skb) : NULL; |
| 1748 | } |
| 1749 | |
| 1750 | static inline bool skb_zcopy_pure(const struct sk_buff *skb) |
| 1751 | { |
| 1752 | return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; |
| 1753 | } |
| 1754 | |
| 1755 | static inline bool skb_zcopy_managed(const struct sk_buff *skb) |
| 1756 | { |
| 1757 | return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; |
| 1758 | } |
| 1759 | |
| 1760 | static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, |
| 1761 | const struct sk_buff *skb2) |
| 1762 | { |
| 1763 | return skb_zcopy_pure(skb: skb1) == skb_zcopy_pure(skb: skb2); |
| 1764 | } |
| 1765 | |
| 1766 | static inline void net_zcopy_get(struct ubuf_info *uarg) |
| 1767 | { |
| 1768 | refcount_inc(r: &uarg->refcnt); |
| 1769 | } |
| 1770 | |
| 1771 | static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) |
| 1772 | { |
| 1773 | skb_shinfo(skb)->destructor_arg = uarg; |
| 1774 | skb_shinfo(skb)->flags |= uarg->flags; |
| 1775 | } |
| 1776 | |
| 1777 | static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, |
| 1778 | bool *have_ref) |
| 1779 | { |
| 1780 | if (skb && uarg && !skb_zcopy(skb)) { |
| 1781 | if (unlikely(have_ref && *have_ref)) |
| 1782 | *have_ref = false; |
| 1783 | else |
| 1784 | net_zcopy_get(uarg); |
| 1785 | skb_zcopy_init(skb, uarg); |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) |
| 1790 | { |
| 1791 | skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); |
| 1792 | skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; |
| 1793 | } |
| 1794 | |
| 1795 | static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) |
| 1796 | { |
| 1797 | return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; |
| 1798 | } |
| 1799 | |
| 1800 | static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) |
| 1801 | { |
| 1802 | return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); |
| 1803 | } |
| 1804 | |
| 1805 | static inline void net_zcopy_put(struct ubuf_info *uarg) |
| 1806 | { |
| 1807 | if (uarg) |
| 1808 | uarg->ops->complete(NULL, uarg, true); |
| 1809 | } |
| 1810 | |
| 1811 | static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) |
| 1812 | { |
| 1813 | if (uarg) { |
| 1814 | if (uarg->ops == &msg_zerocopy_ubuf_ops) |
| 1815 | msg_zerocopy_put_abort(uarg, have_uref); |
| 1816 | else if (have_uref) |
| 1817 | net_zcopy_put(uarg); |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | /* Release a reference on a zerocopy structure */ |
| 1822 | static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) |
| 1823 | { |
| 1824 | struct ubuf_info *uarg = skb_zcopy(skb); |
| 1825 | |
| 1826 | if (uarg) { |
| 1827 | if (!skb_zcopy_is_nouarg(skb)) |
| 1828 | uarg->ops->complete(skb, uarg, zerocopy_success); |
| 1829 | |
| 1830 | skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; |
| 1831 | } |
| 1832 | } |
| 1833 | |
| 1834 | void __skb_zcopy_downgrade_managed(struct sk_buff *skb); |
| 1835 | |
| 1836 | static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) |
| 1837 | { |
| 1838 | if (unlikely(skb_zcopy_managed(skb))) |
| 1839 | __skb_zcopy_downgrade_managed(skb); |
| 1840 | } |
| 1841 | |
| 1842 | /* Return true if frags in this skb are readable by the host. */ |
| 1843 | static inline bool skb_frags_readable(const struct sk_buff *skb) |
| 1844 | { |
| 1845 | return !skb->unreadable; |
| 1846 | } |
| 1847 | |
| 1848 | static inline void skb_mark_not_on_list(struct sk_buff *skb) |
| 1849 | { |
| 1850 | skb->next = NULL; |
| 1851 | } |
| 1852 | |
| 1853 | static inline void skb_poison_list(struct sk_buff *skb) |
| 1854 | { |
| 1855 | #ifdef CONFIG_DEBUG_NET |
| 1856 | skb->next = SKB_LIST_POISON_NEXT; |
| 1857 | #endif |
| 1858 | } |
| 1859 | |
| 1860 | /* Iterate through singly-linked GSO fragments of an skb. */ |
| 1861 | #define skb_list_walk_safe(first, skb, next_skb) \ |
| 1862 | for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ |
| 1863 | (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) |
| 1864 | |
| 1865 | static inline void skb_list_del_init(struct sk_buff *skb) |
| 1866 | { |
| 1867 | __list_del_entry(entry: &skb->list); |
| 1868 | skb_mark_not_on_list(skb); |
| 1869 | } |
| 1870 | |
| 1871 | /** |
| 1872 | * skb_queue_empty - check if a queue is empty |
| 1873 | * @list: queue head |
| 1874 | * |
| 1875 | * Returns true if the queue is empty, false otherwise. |
| 1876 | */ |
| 1877 | static inline int skb_queue_empty(const struct sk_buff_head *list) |
| 1878 | { |
| 1879 | return list->next == (const struct sk_buff *) list; |
| 1880 | } |
| 1881 | |
| 1882 | /** |
| 1883 | * skb_queue_empty_lockless - check if a queue is empty |
| 1884 | * @list: queue head |
| 1885 | * |
| 1886 | * Returns true if the queue is empty, false otherwise. |
| 1887 | * This variant can be used in lockless contexts. |
| 1888 | */ |
| 1889 | static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) |
| 1890 | { |
| 1891 | return READ_ONCE(list->next) == (const struct sk_buff *) list; |
| 1892 | } |
| 1893 | |
| 1894 | |
| 1895 | /** |
| 1896 | * skb_queue_is_last - check if skb is the last entry in the queue |
| 1897 | * @list: queue head |
| 1898 | * @skb: buffer |
| 1899 | * |
| 1900 | * Returns true if @skb is the last buffer on the list. |
| 1901 | */ |
| 1902 | static inline bool skb_queue_is_last(const struct sk_buff_head *list, |
| 1903 | const struct sk_buff *skb) |
| 1904 | { |
| 1905 | return skb->next == (const struct sk_buff *) list; |
| 1906 | } |
| 1907 | |
| 1908 | /** |
| 1909 | * skb_queue_is_first - check if skb is the first entry in the queue |
| 1910 | * @list: queue head |
| 1911 | * @skb: buffer |
| 1912 | * |
| 1913 | * Returns true if @skb is the first buffer on the list. |
| 1914 | */ |
| 1915 | static inline bool skb_queue_is_first(const struct sk_buff_head *list, |
| 1916 | const struct sk_buff *skb) |
| 1917 | { |
| 1918 | return skb->prev == (const struct sk_buff *) list; |
| 1919 | } |
| 1920 | |
| 1921 | /** |
| 1922 | * skb_queue_next - return the next packet in the queue |
| 1923 | * @list: queue head |
| 1924 | * @skb: current buffer |
| 1925 | * |
| 1926 | * Return the next packet in @list after @skb. It is only valid to |
| 1927 | * call this if skb_queue_is_last() evaluates to false. |
| 1928 | */ |
| 1929 | static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, |
| 1930 | const struct sk_buff *skb) |
| 1931 | { |
| 1932 | /* This BUG_ON may seem severe, but if we just return then we |
| 1933 | * are going to dereference garbage. |
| 1934 | */ |
| 1935 | BUG_ON(skb_queue_is_last(list, skb)); |
| 1936 | return skb->next; |
| 1937 | } |
| 1938 | |
| 1939 | /** |
| 1940 | * skb_queue_prev - return the prev packet in the queue |
| 1941 | * @list: queue head |
| 1942 | * @skb: current buffer |
| 1943 | * |
| 1944 | * Return the prev packet in @list before @skb. It is only valid to |
| 1945 | * call this if skb_queue_is_first() evaluates to false. |
| 1946 | */ |
| 1947 | static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, |
| 1948 | const struct sk_buff *skb) |
| 1949 | { |
| 1950 | /* This BUG_ON may seem severe, but if we just return then we |
| 1951 | * are going to dereference garbage. |
| 1952 | */ |
| 1953 | BUG_ON(skb_queue_is_first(list, skb)); |
| 1954 | return skb->prev; |
| 1955 | } |
| 1956 | |
| 1957 | /** |
| 1958 | * skb_get - reference buffer |
| 1959 | * @skb: buffer to reference |
| 1960 | * |
| 1961 | * Makes another reference to a socket buffer and returns a pointer |
| 1962 | * to the buffer. |
| 1963 | */ |
| 1964 | static inline struct sk_buff *skb_get(struct sk_buff *skb) |
| 1965 | { |
| 1966 | refcount_inc(r: &skb->users); |
| 1967 | return skb; |
| 1968 | } |
| 1969 | |
| 1970 | /* |
| 1971 | * If users == 1, we are the only owner and can avoid redundant atomic changes. |
| 1972 | */ |
| 1973 | |
| 1974 | /** |
| 1975 | * skb_cloned - is the buffer a clone |
| 1976 | * @skb: buffer to check |
| 1977 | * |
| 1978 | * Returns true if the buffer was generated with skb_clone() and is |
| 1979 | * one of multiple shared copies of the buffer. Cloned buffers are |
| 1980 | * shared data so must not be written to under normal circumstances. |
| 1981 | */ |
| 1982 | static inline int skb_cloned(const struct sk_buff *skb) |
| 1983 | { |
| 1984 | return skb->cloned && |
| 1985 | (atomic_read(v: &skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; |
| 1986 | } |
| 1987 | |
| 1988 | static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) |
| 1989 | { |
| 1990 | might_sleep_if(gfpflags_allow_blocking(pri)); |
| 1991 | |
| 1992 | if (skb_cloned(skb)) |
| 1993 | return pskb_expand_head(skb, nhead: 0, ntail: 0, gfp_mask: pri); |
| 1994 | |
| 1995 | return 0; |
| 1996 | } |
| 1997 | |
| 1998 | /* This variant of skb_unclone() makes sure skb->truesize |
| 1999 | * and skb_end_offset() are not changed, whenever a new skb->head is needed. |
| 2000 | * |
| 2001 | * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) |
| 2002 | * when various debugging features are in place. |
| 2003 | */ |
| 2004 | int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); |
| 2005 | static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) |
| 2006 | { |
| 2007 | might_sleep_if(gfpflags_allow_blocking(pri)); |
| 2008 | |
| 2009 | if (skb_cloned(skb)) |
| 2010 | return __skb_unclone_keeptruesize(skb, pri); |
| 2011 | return 0; |
| 2012 | } |
| 2013 | |
| 2014 | /** |
| 2015 | * skb_header_cloned - is the header a clone |
| 2016 | * @skb: buffer to check |
| 2017 | * |
| 2018 | * Returns true if modifying the header part of the buffer requires |
| 2019 | * the data to be copied. |
| 2020 | */ |
| 2021 | static inline int (const struct sk_buff *skb) |
| 2022 | { |
| 2023 | int dataref; |
| 2024 | |
| 2025 | if (!skb->cloned) |
| 2026 | return 0; |
| 2027 | |
| 2028 | dataref = atomic_read(v: &skb_shinfo(skb)->dataref); |
| 2029 | dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); |
| 2030 | return dataref != 1; |
| 2031 | } |
| 2032 | |
| 2033 | static inline int (struct sk_buff *skb, gfp_t pri) |
| 2034 | { |
| 2035 | might_sleep_if(gfpflags_allow_blocking(pri)); |
| 2036 | |
| 2037 | if (skb_header_cloned(skb)) |
| 2038 | return pskb_expand_head(skb, nhead: 0, ntail: 0, gfp_mask: pri); |
| 2039 | |
| 2040 | return 0; |
| 2041 | } |
| 2042 | |
| 2043 | /** |
| 2044 | * __skb_header_release() - allow clones to use the headroom |
| 2045 | * @skb: buffer to operate on |
| 2046 | * |
| 2047 | * See "DOC: dataref and headerless skbs". |
| 2048 | */ |
| 2049 | static inline void (struct sk_buff *skb) |
| 2050 | { |
| 2051 | skb->nohdr = 1; |
| 2052 | atomic_set(v: &skb_shinfo(skb)->dataref, i: 1 + (1 << SKB_DATAREF_SHIFT)); |
| 2053 | } |
| 2054 | |
| 2055 | |
| 2056 | /** |
| 2057 | * skb_shared - is the buffer shared |
| 2058 | * @skb: buffer to check |
| 2059 | * |
| 2060 | * Returns true if more than one person has a reference to this |
| 2061 | * buffer. |
| 2062 | */ |
| 2063 | static inline int skb_shared(const struct sk_buff *skb) |
| 2064 | { |
| 2065 | return refcount_read(r: &skb->users) != 1; |
| 2066 | } |
| 2067 | |
| 2068 | /** |
| 2069 | * skb_share_check - check if buffer is shared and if so clone it |
| 2070 | * @skb: buffer to check |
| 2071 | * @pri: priority for memory allocation |
| 2072 | * |
| 2073 | * If the buffer is shared the buffer is cloned and the old copy |
| 2074 | * drops a reference. A new clone with a single reference is returned. |
| 2075 | * If the buffer is not shared the original buffer is returned. When |
| 2076 | * being called from interrupt status or with spinlocks held pri must |
| 2077 | * be GFP_ATOMIC. |
| 2078 | * |
| 2079 | * NULL is returned on a memory allocation failure. |
| 2080 | */ |
| 2081 | static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) |
| 2082 | { |
| 2083 | might_sleep_if(gfpflags_allow_blocking(pri)); |
| 2084 | if (skb_shared(skb)) { |
| 2085 | struct sk_buff *nskb = skb_clone(skb, priority: pri); |
| 2086 | |
| 2087 | if (likely(nskb)) |
| 2088 | consume_skb(skb); |
| 2089 | else |
| 2090 | kfree_skb(skb); |
| 2091 | skb = nskb; |
| 2092 | } |
| 2093 | return skb; |
| 2094 | } |
| 2095 | |
| 2096 | /* |
| 2097 | * Copy shared buffers into a new sk_buff. We effectively do COW on |
| 2098 | * packets to handle cases where we have a local reader and forward |
| 2099 | * and a couple of other messy ones. The normal one is tcpdumping |
| 2100 | * a packet that's being forwarded. |
| 2101 | */ |
| 2102 | |
| 2103 | /** |
| 2104 | * skb_unshare - make a copy of a shared buffer |
| 2105 | * @skb: buffer to check |
| 2106 | * @pri: priority for memory allocation |
| 2107 | * |
| 2108 | * If the socket buffer is a clone then this function creates a new |
| 2109 | * copy of the data, drops a reference count on the old copy and returns |
| 2110 | * the new copy with the reference count at 1. If the buffer is not a clone |
| 2111 | * the original buffer is returned. When called with a spinlock held or |
| 2112 | * from interrupt state @pri must be %GFP_ATOMIC |
| 2113 | * |
| 2114 | * %NULL is returned on a memory allocation failure. |
| 2115 | */ |
| 2116 | static inline struct sk_buff *skb_unshare(struct sk_buff *skb, |
| 2117 | gfp_t pri) |
| 2118 | { |
| 2119 | might_sleep_if(gfpflags_allow_blocking(pri)); |
| 2120 | if (skb_cloned(skb)) { |
| 2121 | struct sk_buff *nskb = skb_copy(skb, priority: pri); |
| 2122 | |
| 2123 | /* Free our shared copy */ |
| 2124 | if (likely(nskb)) |
| 2125 | consume_skb(skb); |
| 2126 | else |
| 2127 | kfree_skb(skb); |
| 2128 | skb = nskb; |
| 2129 | } |
| 2130 | return skb; |
| 2131 | } |
| 2132 | |
| 2133 | /** |
| 2134 | * skb_peek - peek at the head of an &sk_buff_head |
| 2135 | * @list_: list to peek at |
| 2136 | * |
| 2137 | * Peek an &sk_buff. Unlike most other operations you _MUST_ |
| 2138 | * be careful with this one. A peek leaves the buffer on the |
| 2139 | * list and someone else may run off with it. You must hold |
| 2140 | * the appropriate locks or have a private queue to do this. |
| 2141 | * |
| 2142 | * Returns %NULL for an empty list or a pointer to the head element. |
| 2143 | * The reference count is not incremented and the reference is therefore |
| 2144 | * volatile. Use with caution. |
| 2145 | */ |
| 2146 | static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) |
| 2147 | { |
| 2148 | struct sk_buff *skb = list_->next; |
| 2149 | |
| 2150 | if (skb == (struct sk_buff *)list_) |
| 2151 | skb = NULL; |
| 2152 | return skb; |
| 2153 | } |
| 2154 | |
| 2155 | /** |
| 2156 | * __skb_peek - peek at the head of a non-empty &sk_buff_head |
| 2157 | * @list_: list to peek at |
| 2158 | * |
| 2159 | * Like skb_peek(), but the caller knows that the list is not empty. |
| 2160 | */ |
| 2161 | static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) |
| 2162 | { |
| 2163 | return list_->next; |
| 2164 | } |
| 2165 | |
| 2166 | /** |
| 2167 | * skb_peek_next - peek skb following the given one from a queue |
| 2168 | * @skb: skb to start from |
| 2169 | * @list_: list to peek at |
| 2170 | * |
| 2171 | * Returns %NULL when the end of the list is met or a pointer to the |
| 2172 | * next element. The reference count is not incremented and the |
| 2173 | * reference is therefore volatile. Use with caution. |
| 2174 | */ |
| 2175 | static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, |
| 2176 | const struct sk_buff_head *list_) |
| 2177 | { |
| 2178 | struct sk_buff *next = skb->next; |
| 2179 | |
| 2180 | if (next == (struct sk_buff *)list_) |
| 2181 | next = NULL; |
| 2182 | return next; |
| 2183 | } |
| 2184 | |
| 2185 | /** |
| 2186 | * skb_peek_tail - peek at the tail of an &sk_buff_head |
| 2187 | * @list_: list to peek at |
| 2188 | * |
| 2189 | * Peek an &sk_buff. Unlike most other operations you _MUST_ |
| 2190 | * be careful with this one. A peek leaves the buffer on the |
| 2191 | * list and someone else may run off with it. You must hold |
| 2192 | * the appropriate locks or have a private queue to do this. |
| 2193 | * |
| 2194 | * Returns %NULL for an empty list or a pointer to the tail element. |
| 2195 | * The reference count is not incremented and the reference is therefore |
| 2196 | * volatile. Use with caution. |
| 2197 | */ |
| 2198 | static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) |
| 2199 | { |
| 2200 | struct sk_buff *skb = READ_ONCE(list_->prev); |
| 2201 | |
| 2202 | if (skb == (struct sk_buff *)list_) |
| 2203 | skb = NULL; |
| 2204 | return skb; |
| 2205 | |
| 2206 | } |
| 2207 | |
| 2208 | /** |
| 2209 | * skb_queue_len - get queue length |
| 2210 | * @list_: list to measure |
| 2211 | * |
| 2212 | * Return the length of an &sk_buff queue. |
| 2213 | */ |
| 2214 | static inline __u32 skb_queue_len(const struct sk_buff_head *list_) |
| 2215 | { |
| 2216 | return list_->qlen; |
| 2217 | } |
| 2218 | |
| 2219 | /** |
| 2220 | * skb_queue_len_lockless - get queue length |
| 2221 | * @list_: list to measure |
| 2222 | * |
| 2223 | * Return the length of an &sk_buff queue. |
| 2224 | * This variant can be used in lockless contexts. |
| 2225 | */ |
| 2226 | static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) |
| 2227 | { |
| 2228 | return READ_ONCE(list_->qlen); |
| 2229 | } |
| 2230 | |
| 2231 | /** |
| 2232 | * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head |
| 2233 | * @list: queue to initialize |
| 2234 | * |
| 2235 | * This initializes only the list and queue length aspects of |
| 2236 | * an sk_buff_head object. This allows to initialize the list |
| 2237 | * aspects of an sk_buff_head without reinitializing things like |
| 2238 | * the spinlock. It can also be used for on-stack sk_buff_head |
| 2239 | * objects where the spinlock is known to not be used. |
| 2240 | */ |
| 2241 | static inline void __skb_queue_head_init(struct sk_buff_head *list) |
| 2242 | { |
| 2243 | list->prev = list->next = (struct sk_buff *)list; |
| 2244 | list->qlen = 0; |
| 2245 | } |
| 2246 | |
| 2247 | /* |
| 2248 | * This function creates a split out lock class for each invocation; |
| 2249 | * this is needed for now since a whole lot of users of the skb-queue |
| 2250 | * infrastructure in drivers have different locking usage (in hardirq) |
| 2251 | * than the networking core (in softirq only). In the long run either the |
| 2252 | * network layer or drivers should need annotation to consolidate the |
| 2253 | * main types of usage into 3 classes. |
| 2254 | */ |
| 2255 | static inline void skb_queue_head_init(struct sk_buff_head *list) |
| 2256 | { |
| 2257 | spin_lock_init(&list->lock); |
| 2258 | __skb_queue_head_init(list); |
| 2259 | } |
| 2260 | |
| 2261 | static inline void skb_queue_head_init_class(struct sk_buff_head *list, |
| 2262 | struct lock_class_key *class) |
| 2263 | { |
| 2264 | skb_queue_head_init(list); |
| 2265 | lockdep_set_class(&list->lock, class); |
| 2266 | } |
| 2267 | |
| 2268 | /* |
| 2269 | * Insert an sk_buff on a list. |
| 2270 | * |
| 2271 | * The "__skb_xxxx()" functions are the non-atomic ones that |
| 2272 | * can only be called with interrupts disabled. |
| 2273 | */ |
| 2274 | static inline void __skb_insert(struct sk_buff *newsk, |
| 2275 | struct sk_buff *prev, struct sk_buff *next, |
| 2276 | struct sk_buff_head *list) |
| 2277 | { |
| 2278 | /* See skb_queue_empty_lockless() and skb_peek_tail() |
| 2279 | * for the opposite READ_ONCE() |
| 2280 | */ |
| 2281 | WRITE_ONCE(newsk->next, next); |
| 2282 | WRITE_ONCE(newsk->prev, prev); |
| 2283 | WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); |
| 2284 | WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); |
| 2285 | WRITE_ONCE(list->qlen, list->qlen + 1); |
| 2286 | } |
| 2287 | |
| 2288 | static inline void __skb_queue_splice(const struct sk_buff_head *list, |
| 2289 | struct sk_buff *prev, |
| 2290 | struct sk_buff *next) |
| 2291 | { |
| 2292 | struct sk_buff *first = list->next; |
| 2293 | struct sk_buff *last = list->prev; |
| 2294 | |
| 2295 | WRITE_ONCE(first->prev, prev); |
| 2296 | WRITE_ONCE(prev->next, first); |
| 2297 | |
| 2298 | WRITE_ONCE(last->next, next); |
| 2299 | WRITE_ONCE(next->prev, last); |
| 2300 | } |
| 2301 | |
| 2302 | /** |
| 2303 | * skb_queue_splice - join two skb lists, this is designed for stacks |
| 2304 | * @list: the new list to add |
| 2305 | * @head: the place to add it in the first list |
| 2306 | */ |
| 2307 | static inline void skb_queue_splice(const struct sk_buff_head *list, |
| 2308 | struct sk_buff_head *head) |
| 2309 | { |
| 2310 | if (!skb_queue_empty(list)) { |
| 2311 | __skb_queue_splice(list, prev: (struct sk_buff *) head, next: head->next); |
| 2312 | head->qlen += list->qlen; |
| 2313 | } |
| 2314 | } |
| 2315 | |
| 2316 | /** |
| 2317 | * skb_queue_splice_init - join two skb lists and reinitialise the emptied list |
| 2318 | * @list: the new list to add |
| 2319 | * @head: the place to add it in the first list |
| 2320 | * |
| 2321 | * The list at @list is reinitialised |
| 2322 | */ |
| 2323 | static inline void skb_queue_splice_init(struct sk_buff_head *list, |
| 2324 | struct sk_buff_head *head) |
| 2325 | { |
| 2326 | if (!skb_queue_empty(list)) { |
| 2327 | __skb_queue_splice(list, prev: (struct sk_buff *) head, next: head->next); |
| 2328 | head->qlen += list->qlen; |
| 2329 | __skb_queue_head_init(list); |
| 2330 | } |
| 2331 | } |
| 2332 | |
| 2333 | /** |
| 2334 | * skb_queue_splice_tail - join two skb lists, each list being a queue |
| 2335 | * @list: the new list to add |
| 2336 | * @head: the place to add it in the first list |
| 2337 | */ |
| 2338 | static inline void skb_queue_splice_tail(const struct sk_buff_head *list, |
| 2339 | struct sk_buff_head *head) |
| 2340 | { |
| 2341 | if (!skb_queue_empty(list)) { |
| 2342 | __skb_queue_splice(list, prev: head->prev, next: (struct sk_buff *) head); |
| 2343 | head->qlen += list->qlen; |
| 2344 | } |
| 2345 | } |
| 2346 | |
| 2347 | /** |
| 2348 | * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list |
| 2349 | * @list: the new list to add |
| 2350 | * @head: the place to add it in the first list |
| 2351 | * |
| 2352 | * Each of the lists is a queue. |
| 2353 | * The list at @list is reinitialised |
| 2354 | */ |
| 2355 | static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, |
| 2356 | struct sk_buff_head *head) |
| 2357 | { |
| 2358 | if (!skb_queue_empty(list)) { |
| 2359 | __skb_queue_splice(list, prev: head->prev, next: (struct sk_buff *) head); |
| 2360 | head->qlen += list->qlen; |
| 2361 | __skb_queue_head_init(list); |
| 2362 | } |
| 2363 | } |
| 2364 | |
| 2365 | /** |
| 2366 | * __skb_queue_after - queue a buffer at the list head |
| 2367 | * @list: list to use |
| 2368 | * @prev: place after this buffer |
| 2369 | * @newsk: buffer to queue |
| 2370 | * |
| 2371 | * Queue a buffer int the middle of a list. This function takes no locks |
| 2372 | * and you must therefore hold required locks before calling it. |
| 2373 | * |
| 2374 | * A buffer cannot be placed on two lists at the same time. |
| 2375 | */ |
| 2376 | static inline void __skb_queue_after(struct sk_buff_head *list, |
| 2377 | struct sk_buff *prev, |
| 2378 | struct sk_buff *newsk) |
| 2379 | { |
| 2380 | __skb_insert(newsk, prev, next: ((struct sk_buff_list *)prev)->next, list); |
| 2381 | } |
| 2382 | |
| 2383 | void skb_append(struct sk_buff *old, struct sk_buff *newsk, |
| 2384 | struct sk_buff_head *list); |
| 2385 | |
| 2386 | static inline void __skb_queue_before(struct sk_buff_head *list, |
| 2387 | struct sk_buff *next, |
| 2388 | struct sk_buff *newsk) |
| 2389 | { |
| 2390 | __skb_insert(newsk, prev: ((struct sk_buff_list *)next)->prev, next, list); |
| 2391 | } |
| 2392 | |
| 2393 | /** |
| 2394 | * __skb_queue_head - queue a buffer at the list head |
| 2395 | * @list: list to use |
| 2396 | * @newsk: buffer to queue |
| 2397 | * |
| 2398 | * Queue a buffer at the start of a list. This function takes no locks |
| 2399 | * and you must therefore hold required locks before calling it. |
| 2400 | * |
| 2401 | * A buffer cannot be placed on two lists at the same time. |
| 2402 | */ |
| 2403 | static inline void __skb_queue_head(struct sk_buff_head *list, |
| 2404 | struct sk_buff *newsk) |
| 2405 | { |
| 2406 | __skb_queue_after(list, prev: (struct sk_buff *)list, newsk); |
| 2407 | } |
| 2408 | void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); |
| 2409 | |
| 2410 | /** |
| 2411 | * __skb_queue_tail - queue a buffer at the list tail |
| 2412 | * @list: list to use |
| 2413 | * @newsk: buffer to queue |
| 2414 | * |
| 2415 | * Queue a buffer at the end of a list. This function takes no locks |
| 2416 | * and you must therefore hold required locks before calling it. |
| 2417 | * |
| 2418 | * A buffer cannot be placed on two lists at the same time. |
| 2419 | */ |
| 2420 | static inline void __skb_queue_tail(struct sk_buff_head *list, |
| 2421 | struct sk_buff *newsk) |
| 2422 | { |
| 2423 | __skb_queue_before(list, next: (struct sk_buff *)list, newsk); |
| 2424 | } |
| 2425 | void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); |
| 2426 | |
| 2427 | /* |
| 2428 | * remove sk_buff from list. _Must_ be called atomically, and with |
| 2429 | * the list known.. |
| 2430 | */ |
| 2431 | void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); |
| 2432 | static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) |
| 2433 | { |
| 2434 | struct sk_buff *next, *prev; |
| 2435 | |
| 2436 | WRITE_ONCE(list->qlen, list->qlen - 1); |
| 2437 | next = skb->next; |
| 2438 | prev = skb->prev; |
| 2439 | skb->next = skb->prev = NULL; |
| 2440 | WRITE_ONCE(next->prev, prev); |
| 2441 | WRITE_ONCE(prev->next, next); |
| 2442 | } |
| 2443 | |
| 2444 | /** |
| 2445 | * __skb_dequeue - remove from the head of the queue |
| 2446 | * @list: list to dequeue from |
| 2447 | * |
| 2448 | * Remove the head of the list. This function does not take any locks |
| 2449 | * so must be used with appropriate locks held only. The head item is |
| 2450 | * returned or %NULL if the list is empty. |
| 2451 | */ |
| 2452 | static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) |
| 2453 | { |
| 2454 | struct sk_buff *skb = skb_peek(list_: list); |
| 2455 | if (skb) |
| 2456 | __skb_unlink(skb, list); |
| 2457 | return skb; |
| 2458 | } |
| 2459 | struct sk_buff *skb_dequeue(struct sk_buff_head *list); |
| 2460 | |
| 2461 | /** |
| 2462 | * __skb_dequeue_tail - remove from the tail of the queue |
| 2463 | * @list: list to dequeue from |
| 2464 | * |
| 2465 | * Remove the tail of the list. This function does not take any locks |
| 2466 | * so must be used with appropriate locks held only. The tail item is |
| 2467 | * returned or %NULL if the list is empty. |
| 2468 | */ |
| 2469 | static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) |
| 2470 | { |
| 2471 | struct sk_buff *skb = skb_peek_tail(list_: list); |
| 2472 | if (skb) |
| 2473 | __skb_unlink(skb, list); |
| 2474 | return skb; |
| 2475 | } |
| 2476 | struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); |
| 2477 | |
| 2478 | |
| 2479 | static inline bool skb_is_nonlinear(const struct sk_buff *skb) |
| 2480 | { |
| 2481 | return skb->data_len; |
| 2482 | } |
| 2483 | |
| 2484 | static inline unsigned int skb_headlen(const struct sk_buff *skb) |
| 2485 | { |
| 2486 | return skb->len - skb->data_len; |
| 2487 | } |
| 2488 | |
| 2489 | static inline unsigned int __skb_pagelen(const struct sk_buff *skb) |
| 2490 | { |
| 2491 | unsigned int i, len = 0; |
| 2492 | |
| 2493 | for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) |
| 2494 | len += skb_frag_size(frag: &skb_shinfo(skb)->frags[i]); |
| 2495 | return len; |
| 2496 | } |
| 2497 | |
| 2498 | static inline unsigned int skb_pagelen(const struct sk_buff *skb) |
| 2499 | { |
| 2500 | return skb_headlen(skb) + __skb_pagelen(skb); |
| 2501 | } |
| 2502 | |
| 2503 | static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, |
| 2504 | netmem_ref netmem, int off, |
| 2505 | int size) |
| 2506 | { |
| 2507 | frag->netmem = netmem; |
| 2508 | frag->offset = off; |
| 2509 | skb_frag_size_set(frag, size); |
| 2510 | } |
| 2511 | |
| 2512 | static inline void skb_frag_fill_page_desc(skb_frag_t *frag, |
| 2513 | struct page *page, |
| 2514 | int off, int size) |
| 2515 | { |
| 2516 | skb_frag_fill_netmem_desc(frag, netmem: page_to_netmem(page), off, size); |
| 2517 | } |
| 2518 | |
| 2519 | static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, |
| 2520 | int i, netmem_ref netmem, |
| 2521 | int off, int size) |
| 2522 | { |
| 2523 | skb_frag_t *frag = &shinfo->frags[i]; |
| 2524 | |
| 2525 | skb_frag_fill_netmem_desc(frag, netmem, off, size); |
| 2526 | } |
| 2527 | |
| 2528 | static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, |
| 2529 | int i, struct page *page, |
| 2530 | int off, int size) |
| 2531 | { |
| 2532 | __skb_fill_netmem_desc_noacc(shinfo, i, netmem: page_to_netmem(page), off, |
| 2533 | size); |
| 2534 | } |
| 2535 | |
| 2536 | /** |
| 2537 | * skb_len_add - adds a number to len fields of skb |
| 2538 | * @skb: buffer to add len to |
| 2539 | * @delta: number of bytes to add |
| 2540 | */ |
| 2541 | static inline void skb_len_add(struct sk_buff *skb, int delta) |
| 2542 | { |
| 2543 | skb->len += delta; |
| 2544 | skb->data_len += delta; |
| 2545 | skb->truesize += delta; |
| 2546 | } |
| 2547 | |
| 2548 | /** |
| 2549 | * __skb_fill_netmem_desc - initialise a fragment in an skb |
| 2550 | * @skb: buffer containing fragment to be initialised |
| 2551 | * @i: fragment index to initialise |
| 2552 | * @netmem: the netmem to use for this fragment |
| 2553 | * @off: the offset to the data with @page |
| 2554 | * @size: the length of the data |
| 2555 | * |
| 2556 | * Initialises the @i'th fragment of @skb to point to &size bytes at |
| 2557 | * offset @off within @page. |
| 2558 | * |
| 2559 | * Does not take any additional reference on the fragment. |
| 2560 | */ |
| 2561 | static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, |
| 2562 | netmem_ref netmem, int off, int size) |
| 2563 | { |
| 2564 | struct page *page; |
| 2565 | |
| 2566 | __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); |
| 2567 | |
| 2568 | if (netmem_is_net_iov(netmem)) { |
| 2569 | skb->unreadable = true; |
| 2570 | return; |
| 2571 | } |
| 2572 | |
| 2573 | page = netmem_to_page(netmem); |
| 2574 | |
| 2575 | /* Propagate page pfmemalloc to the skb if we can. The problem is |
| 2576 | * that not all callers have unique ownership of the page but rely |
| 2577 | * on page_is_pfmemalloc doing the right thing(tm). |
| 2578 | */ |
| 2579 | page = compound_head(page); |
| 2580 | if (page_is_pfmemalloc(page)) |
| 2581 | skb->pfmemalloc = true; |
| 2582 | } |
| 2583 | |
| 2584 | static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, |
| 2585 | struct page *page, int off, int size) |
| 2586 | { |
| 2587 | __skb_fill_netmem_desc(skb, i, netmem: page_to_netmem(page), off, size); |
| 2588 | } |
| 2589 | |
| 2590 | static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, |
| 2591 | netmem_ref netmem, int off, int size) |
| 2592 | { |
| 2593 | __skb_fill_netmem_desc(skb, i, netmem, off, size); |
| 2594 | skb_shinfo(skb)->nr_frags = i + 1; |
| 2595 | } |
| 2596 | |
| 2597 | /** |
| 2598 | * skb_fill_page_desc - initialise a paged fragment in an skb |
| 2599 | * @skb: buffer containing fragment to be initialised |
| 2600 | * @i: paged fragment index to initialise |
| 2601 | * @page: the page to use for this fragment |
| 2602 | * @off: the offset to the data with @page |
| 2603 | * @size: the length of the data |
| 2604 | * |
| 2605 | * As per __skb_fill_page_desc() -- initialises the @i'th fragment of |
| 2606 | * @skb to point to @size bytes at offset @off within @page. In |
| 2607 | * addition updates @skb such that @i is the last fragment. |
| 2608 | * |
| 2609 | * Does not take any additional reference on the fragment. |
| 2610 | */ |
| 2611 | static inline void skb_fill_page_desc(struct sk_buff *skb, int i, |
| 2612 | struct page *page, int off, int size) |
| 2613 | { |
| 2614 | skb_fill_netmem_desc(skb, i, netmem: page_to_netmem(page), off, size); |
| 2615 | } |
| 2616 | |
| 2617 | /** |
| 2618 | * skb_fill_page_desc_noacc - initialise a paged fragment in an skb |
| 2619 | * @skb: buffer containing fragment to be initialised |
| 2620 | * @i: paged fragment index to initialise |
| 2621 | * @page: the page to use for this fragment |
| 2622 | * @off: the offset to the data with @page |
| 2623 | * @size: the length of the data |
| 2624 | * |
| 2625 | * Variant of skb_fill_page_desc() which does not deal with |
| 2626 | * pfmemalloc, if page is not owned by us. |
| 2627 | */ |
| 2628 | static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, |
| 2629 | struct page *page, int off, |
| 2630 | int size) |
| 2631 | { |
| 2632 | struct skb_shared_info *shinfo = skb_shinfo(skb); |
| 2633 | |
| 2634 | __skb_fill_page_desc_noacc(shinfo, i, page, off, size); |
| 2635 | shinfo->nr_frags = i + 1; |
| 2636 | } |
| 2637 | |
| 2638 | void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, |
| 2639 | int off, int size, unsigned int truesize); |
| 2640 | |
| 2641 | static inline void skb_add_rx_frag(struct sk_buff *skb, int i, |
| 2642 | struct page *page, int off, int size, |
| 2643 | unsigned int truesize) |
| 2644 | { |
| 2645 | skb_add_rx_frag_netmem(skb, i, netmem: page_to_netmem(page), off, size, |
| 2646 | truesize); |
| 2647 | } |
| 2648 | |
| 2649 | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, |
| 2650 | unsigned int truesize); |
| 2651 | |
| 2652 | #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) |
| 2653 | |
| 2654 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
| 2655 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) |
| 2656 | { |
| 2657 | return skb->head + skb->tail; |
| 2658 | } |
| 2659 | |
| 2660 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) |
| 2661 | { |
| 2662 | skb->tail = skb->data - skb->head; |
| 2663 | } |
| 2664 | |
| 2665 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) |
| 2666 | { |
| 2667 | skb_reset_tail_pointer(skb); |
| 2668 | skb->tail += offset; |
| 2669 | } |
| 2670 | |
| 2671 | #else /* NET_SKBUFF_DATA_USES_OFFSET */ |
| 2672 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) |
| 2673 | { |
| 2674 | return skb->tail; |
| 2675 | } |
| 2676 | |
| 2677 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) |
| 2678 | { |
| 2679 | skb->tail = skb->data; |
| 2680 | } |
| 2681 | |
| 2682 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) |
| 2683 | { |
| 2684 | skb->tail = skb->data + offset; |
| 2685 | } |
| 2686 | |
| 2687 | #endif /* NET_SKBUFF_DATA_USES_OFFSET */ |
| 2688 | |
| 2689 | static inline void skb_assert_len(struct sk_buff *skb) |
| 2690 | { |
| 2691 | #ifdef CONFIG_DEBUG_NET |
| 2692 | if (WARN_ONCE(!skb->len, "%s\n" , __func__)) |
| 2693 | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); |
| 2694 | #endif /* CONFIG_DEBUG_NET */ |
| 2695 | } |
| 2696 | |
| 2697 | #if defined(CONFIG_FAIL_SKB_REALLOC) |
| 2698 | void skb_might_realloc(struct sk_buff *skb); |
| 2699 | #else |
| 2700 | static inline void skb_might_realloc(struct sk_buff *skb) {} |
| 2701 | #endif |
| 2702 | |
| 2703 | /* |
| 2704 | * Add data to an sk_buff |
| 2705 | */ |
| 2706 | void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); |
| 2707 | void *skb_put(struct sk_buff *skb, unsigned int len); |
| 2708 | static inline void *__skb_put(struct sk_buff *skb, unsigned int len) |
| 2709 | { |
| 2710 | void *tmp = skb_tail_pointer(skb); |
| 2711 | SKB_LINEAR_ASSERT(skb); |
| 2712 | skb->tail += len; |
| 2713 | skb->len += len; |
| 2714 | return tmp; |
| 2715 | } |
| 2716 | |
| 2717 | static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) |
| 2718 | { |
| 2719 | void *tmp = __skb_put(skb, len); |
| 2720 | |
| 2721 | memset(tmp, 0, len); |
| 2722 | return tmp; |
| 2723 | } |
| 2724 | |
| 2725 | static inline void *__skb_put_data(struct sk_buff *skb, const void *data, |
| 2726 | unsigned int len) |
| 2727 | { |
| 2728 | void *tmp = __skb_put(skb, len); |
| 2729 | |
| 2730 | memcpy(tmp, data, len); |
| 2731 | return tmp; |
| 2732 | } |
| 2733 | |
| 2734 | static inline void __skb_put_u8(struct sk_buff *skb, u8 val) |
| 2735 | { |
| 2736 | *(u8 *)__skb_put(skb, len: 1) = val; |
| 2737 | } |
| 2738 | |
| 2739 | static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) |
| 2740 | { |
| 2741 | void *tmp = skb_put(skb, len); |
| 2742 | |
| 2743 | memset(tmp, 0, len); |
| 2744 | |
| 2745 | return tmp; |
| 2746 | } |
| 2747 | |
| 2748 | static inline void *skb_put_data(struct sk_buff *skb, const void *data, |
| 2749 | unsigned int len) |
| 2750 | { |
| 2751 | void *tmp = skb_put(skb, len); |
| 2752 | |
| 2753 | memcpy(tmp, data, len); |
| 2754 | |
| 2755 | return tmp; |
| 2756 | } |
| 2757 | |
| 2758 | static inline void skb_put_u8(struct sk_buff *skb, u8 val) |
| 2759 | { |
| 2760 | *(u8 *)skb_put(skb, len: 1) = val; |
| 2761 | } |
| 2762 | |
| 2763 | void *skb_push(struct sk_buff *skb, unsigned int len); |
| 2764 | static inline void *__skb_push(struct sk_buff *skb, unsigned int len) |
| 2765 | { |
| 2766 | DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); |
| 2767 | |
| 2768 | skb->data -= len; |
| 2769 | skb->len += len; |
| 2770 | return skb->data; |
| 2771 | } |
| 2772 | |
| 2773 | void *skb_pull(struct sk_buff *skb, unsigned int len); |
| 2774 | static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) |
| 2775 | { |
| 2776 | DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); |
| 2777 | |
| 2778 | skb->len -= len; |
| 2779 | if (unlikely(skb->len < skb->data_len)) { |
| 2780 | #if defined(CONFIG_DEBUG_NET) |
| 2781 | skb->len += len; |
| 2782 | pr_err("__skb_pull(len=%u)\n" , len); |
| 2783 | skb_dump(KERN_ERR, skb, full_pkt: false); |
| 2784 | #endif |
| 2785 | BUG(); |
| 2786 | } |
| 2787 | return skb->data += len; |
| 2788 | } |
| 2789 | |
| 2790 | static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) |
| 2791 | { |
| 2792 | return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); |
| 2793 | } |
| 2794 | |
| 2795 | void *skb_pull_data(struct sk_buff *skb, size_t len); |
| 2796 | |
| 2797 | void *__pskb_pull_tail(struct sk_buff *skb, int delta); |
| 2798 | |
| 2799 | static inline enum skb_drop_reason |
| 2800 | pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) |
| 2801 | { |
| 2802 | DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); |
| 2803 | skb_might_realloc(skb); |
| 2804 | |
| 2805 | if (likely(len <= skb_headlen(skb))) |
| 2806 | return SKB_NOT_DROPPED_YET; |
| 2807 | |
| 2808 | if (unlikely(len > skb->len)) |
| 2809 | return SKB_DROP_REASON_PKT_TOO_SMALL; |
| 2810 | |
| 2811 | if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) |
| 2812 | return SKB_DROP_REASON_NOMEM; |
| 2813 | |
| 2814 | return SKB_NOT_DROPPED_YET; |
| 2815 | } |
| 2816 | |
| 2817 | static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) |
| 2818 | { |
| 2819 | return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; |
| 2820 | } |
| 2821 | |
| 2822 | static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) |
| 2823 | { |
| 2824 | if (!pskb_may_pull(skb, len)) |
| 2825 | return NULL; |
| 2826 | |
| 2827 | skb->len -= len; |
| 2828 | return skb->data += len; |
| 2829 | } |
| 2830 | |
| 2831 | void skb_condense(struct sk_buff *skb); |
| 2832 | |
| 2833 | /** |
| 2834 | * skb_headroom - bytes at buffer head |
| 2835 | * @skb: buffer to check |
| 2836 | * |
| 2837 | * Return the number of bytes of free space at the head of an &sk_buff. |
| 2838 | */ |
| 2839 | static inline unsigned int skb_headroom(const struct sk_buff *skb) |
| 2840 | { |
| 2841 | return skb->data - skb->head; |
| 2842 | } |
| 2843 | |
| 2844 | /** |
| 2845 | * skb_tailroom - bytes at buffer end |
| 2846 | * @skb: buffer to check |
| 2847 | * |
| 2848 | * Return the number of bytes of free space at the tail of an sk_buff |
| 2849 | */ |
| 2850 | static inline int skb_tailroom(const struct sk_buff *skb) |
| 2851 | { |
| 2852 | return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; |
| 2853 | } |
| 2854 | |
| 2855 | /** |
| 2856 | * skb_availroom - bytes at buffer end |
| 2857 | * @skb: buffer to check |
| 2858 | * |
| 2859 | * Return the number of bytes of free space at the tail of an sk_buff |
| 2860 | * allocated by sk_stream_alloc() |
| 2861 | */ |
| 2862 | static inline int skb_availroom(const struct sk_buff *skb) |
| 2863 | { |
| 2864 | if (skb_is_nonlinear(skb)) |
| 2865 | return 0; |
| 2866 | |
| 2867 | return skb->end - skb->tail - skb->reserved_tailroom; |
| 2868 | } |
| 2869 | |
| 2870 | /** |
| 2871 | * skb_reserve - adjust headroom |
| 2872 | * @skb: buffer to alter |
| 2873 | * @len: bytes to move |
| 2874 | * |
| 2875 | * Increase the headroom of an empty &sk_buff by reducing the tail |
| 2876 | * room. This is only allowed for an empty buffer. |
| 2877 | */ |
| 2878 | static inline void skb_reserve(struct sk_buff *skb, int len) |
| 2879 | { |
| 2880 | skb->data += len; |
| 2881 | skb->tail += len; |
| 2882 | } |
| 2883 | |
| 2884 | /** |
| 2885 | * skb_tailroom_reserve - adjust reserved_tailroom |
| 2886 | * @skb: buffer to alter |
| 2887 | * @mtu: maximum amount of headlen permitted |
| 2888 | * @needed_tailroom: minimum amount of reserved_tailroom |
| 2889 | * |
| 2890 | * Set reserved_tailroom so that headlen can be as large as possible but |
| 2891 | * not larger than mtu and tailroom cannot be smaller than |
| 2892 | * needed_tailroom. |
| 2893 | * The required headroom should already have been reserved before using |
| 2894 | * this function. |
| 2895 | */ |
| 2896 | static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, |
| 2897 | unsigned int needed_tailroom) |
| 2898 | { |
| 2899 | SKB_LINEAR_ASSERT(skb); |
| 2900 | if (mtu < skb_tailroom(skb) - needed_tailroom) |
| 2901 | /* use at most mtu */ |
| 2902 | skb->reserved_tailroom = skb_tailroom(skb) - mtu; |
| 2903 | else |
| 2904 | /* use up to all available space */ |
| 2905 | skb->reserved_tailroom = needed_tailroom; |
| 2906 | } |
| 2907 | |
| 2908 | #define ENCAP_TYPE_ETHER 0 |
| 2909 | #define ENCAP_TYPE_IPPROTO 1 |
| 2910 | |
| 2911 | static inline void skb_set_inner_protocol(struct sk_buff *skb, |
| 2912 | __be16 protocol) |
| 2913 | { |
| 2914 | skb->inner_protocol = protocol; |
| 2915 | skb->inner_protocol_type = ENCAP_TYPE_ETHER; |
| 2916 | } |
| 2917 | |
| 2918 | static inline void skb_set_inner_ipproto(struct sk_buff *skb, |
| 2919 | __u8 ipproto) |
| 2920 | { |
| 2921 | skb->inner_ipproto = ipproto; |
| 2922 | skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; |
| 2923 | } |
| 2924 | |
| 2925 | static inline void (struct sk_buff *skb) |
| 2926 | { |
| 2927 | skb->inner_mac_header = skb->mac_header; |
| 2928 | skb->inner_network_header = skb->network_header; |
| 2929 | skb->inner_transport_header = skb->transport_header; |
| 2930 | } |
| 2931 | |
| 2932 | static inline int (const struct sk_buff *skb) |
| 2933 | { |
| 2934 | return skb->mac_header != (typeof(skb->mac_header))~0U; |
| 2935 | } |
| 2936 | |
| 2937 | static inline void skb_reset_mac_len(struct sk_buff *skb) |
| 2938 | { |
| 2939 | if (!skb_mac_header_was_set(skb)) { |
| 2940 | DEBUG_NET_WARN_ON_ONCE(1); |
| 2941 | skb->mac_len = 0; |
| 2942 | } else { |
| 2943 | skb->mac_len = skb->network_header - skb->mac_header; |
| 2944 | } |
| 2945 | } |
| 2946 | |
| 2947 | static inline unsigned char *(const struct sk_buff |
| 2948 | *skb) |
| 2949 | { |
| 2950 | return skb->head + skb->inner_transport_header; |
| 2951 | } |
| 2952 | |
| 2953 | static inline int skb_inner_transport_offset(const struct sk_buff *skb) |
| 2954 | { |
| 2955 | return skb_inner_transport_header(skb) - skb->data; |
| 2956 | } |
| 2957 | |
| 2958 | static inline void (struct sk_buff *skb) |
| 2959 | { |
| 2960 | long offset = skb->data - skb->head; |
| 2961 | |
| 2962 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset); |
| 2963 | skb->inner_transport_header = offset; |
| 2964 | } |
| 2965 | |
| 2966 | static inline void (struct sk_buff *skb, |
| 2967 | const int offset) |
| 2968 | { |
| 2969 | skb_reset_inner_transport_header(skb); |
| 2970 | skb->inner_transport_header += offset; |
| 2971 | } |
| 2972 | |
| 2973 | static inline unsigned char *(const struct sk_buff *skb) |
| 2974 | { |
| 2975 | return skb->head + skb->inner_network_header; |
| 2976 | } |
| 2977 | |
| 2978 | static inline void (struct sk_buff *skb) |
| 2979 | { |
| 2980 | long offset = skb->data - skb->head; |
| 2981 | |
| 2982 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset); |
| 2983 | skb->inner_network_header = offset; |
| 2984 | } |
| 2985 | |
| 2986 | static inline void (struct sk_buff *skb, |
| 2987 | const int offset) |
| 2988 | { |
| 2989 | skb_reset_inner_network_header(skb); |
| 2990 | skb->inner_network_header += offset; |
| 2991 | } |
| 2992 | |
| 2993 | static inline bool (const struct sk_buff *skb) |
| 2994 | { |
| 2995 | return skb->inner_network_header > 0; |
| 2996 | } |
| 2997 | |
| 2998 | static inline unsigned char *(const struct sk_buff *skb) |
| 2999 | { |
| 3000 | return skb->head + skb->inner_mac_header; |
| 3001 | } |
| 3002 | |
| 3003 | static inline void (struct sk_buff *skb) |
| 3004 | { |
| 3005 | long offset = skb->data - skb->head; |
| 3006 | |
| 3007 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset); |
| 3008 | skb->inner_mac_header = offset; |
| 3009 | } |
| 3010 | |
| 3011 | static inline void (struct sk_buff *skb, |
| 3012 | const int offset) |
| 3013 | { |
| 3014 | skb_reset_inner_mac_header(skb); |
| 3015 | skb->inner_mac_header += offset; |
| 3016 | } |
| 3017 | static inline bool (const struct sk_buff *skb) |
| 3018 | { |
| 3019 | return skb->transport_header != (typeof(skb->transport_header))~0U; |
| 3020 | } |
| 3021 | |
| 3022 | static inline unsigned char *(const struct sk_buff *skb) |
| 3023 | { |
| 3024 | DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); |
| 3025 | return skb->head + skb->transport_header; |
| 3026 | } |
| 3027 | |
| 3028 | static inline void (struct sk_buff *skb) |
| 3029 | { |
| 3030 | long offset = skb->data - skb->head; |
| 3031 | |
| 3032 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset); |
| 3033 | skb->transport_header = offset; |
| 3034 | } |
| 3035 | |
| 3036 | static inline void (struct sk_buff *skb, |
| 3037 | const int offset) |
| 3038 | { |
| 3039 | skb_reset_transport_header(skb); |
| 3040 | skb->transport_header += offset; |
| 3041 | } |
| 3042 | |
| 3043 | static inline unsigned char *(const struct sk_buff *skb) |
| 3044 | { |
| 3045 | return skb->head + skb->network_header; |
| 3046 | } |
| 3047 | |
| 3048 | static inline void (struct sk_buff *skb) |
| 3049 | { |
| 3050 | long offset = skb->data - skb->head; |
| 3051 | |
| 3052 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset); |
| 3053 | skb->network_header = offset; |
| 3054 | } |
| 3055 | |
| 3056 | static inline void (struct sk_buff *skb, const int offset) |
| 3057 | { |
| 3058 | skb_reset_network_header(skb); |
| 3059 | skb->network_header += offset; |
| 3060 | } |
| 3061 | |
| 3062 | static inline unsigned char *(const struct sk_buff *skb) |
| 3063 | { |
| 3064 | DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); |
| 3065 | return skb->head + skb->mac_header; |
| 3066 | } |
| 3067 | |
| 3068 | static inline int skb_mac_offset(const struct sk_buff *skb) |
| 3069 | { |
| 3070 | return skb_mac_header(skb) - skb->data; |
| 3071 | } |
| 3072 | |
| 3073 | static inline u32 (const struct sk_buff *skb) |
| 3074 | { |
| 3075 | DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); |
| 3076 | return skb->network_header - skb->mac_header; |
| 3077 | } |
| 3078 | |
| 3079 | static inline void (struct sk_buff *skb) |
| 3080 | { |
| 3081 | skb->mac_header = (typeof(skb->mac_header))~0U; |
| 3082 | } |
| 3083 | |
| 3084 | static inline void (struct sk_buff *skb) |
| 3085 | { |
| 3086 | long offset = skb->data - skb->head; |
| 3087 | |
| 3088 | DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset); |
| 3089 | skb->mac_header = offset; |
| 3090 | } |
| 3091 | |
| 3092 | static inline void (struct sk_buff *skb, const int offset) |
| 3093 | { |
| 3094 | skb_reset_mac_header(skb); |
| 3095 | skb->mac_header += offset; |
| 3096 | } |
| 3097 | |
| 3098 | static inline void (struct sk_buff *skb) |
| 3099 | { |
| 3100 | skb->mac_header = skb->network_header; |
| 3101 | } |
| 3102 | |
| 3103 | static inline void (struct sk_buff *skb) |
| 3104 | { |
| 3105 | struct flow_keys_basic keys; |
| 3106 | |
| 3107 | if (skb_transport_header_was_set(skb)) |
| 3108 | return; |
| 3109 | |
| 3110 | if (skb_flow_dissect_flow_keys_basic(NULL, skb, flow: &keys, |
| 3111 | NULL, proto: 0, nhoff: 0, hlen: 0, flags: 0)) |
| 3112 | skb_set_transport_header(skb, offset: keys.control.thoff); |
| 3113 | } |
| 3114 | |
| 3115 | static inline void (struct sk_buff *skb) |
| 3116 | { |
| 3117 | if (skb_mac_header_was_set(skb)) { |
| 3118 | const unsigned char *old_mac = skb_mac_header(skb); |
| 3119 | |
| 3120 | skb_set_mac_header(skb, offset: -skb->mac_len); |
| 3121 | memmove(skb_mac_header(skb), old_mac, skb->mac_len); |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | /* Move the full mac header up to current network_header. |
| 3126 | * Leaves skb->data pointing at offset skb->mac_len into the mac_header. |
| 3127 | * Must be provided the complete mac header length. |
| 3128 | */ |
| 3129 | static inline void (struct sk_buff *skb, u32 full_mac_len) |
| 3130 | { |
| 3131 | if (skb_mac_header_was_set(skb)) { |
| 3132 | const unsigned char *old_mac = skb_mac_header(skb); |
| 3133 | |
| 3134 | skb_set_mac_header(skb, offset: -full_mac_len); |
| 3135 | memmove(skb_mac_header(skb), old_mac, full_mac_len); |
| 3136 | __skb_push(skb, len: full_mac_len - skb->mac_len); |
| 3137 | } |
| 3138 | } |
| 3139 | |
| 3140 | static inline int skb_checksum_start_offset(const struct sk_buff *skb) |
| 3141 | { |
| 3142 | return skb->csum_start - skb_headroom(skb); |
| 3143 | } |
| 3144 | |
| 3145 | static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) |
| 3146 | { |
| 3147 | return skb->head + skb->csum_start; |
| 3148 | } |
| 3149 | |
| 3150 | static inline int skb_transport_offset(const struct sk_buff *skb) |
| 3151 | { |
| 3152 | return skb_transport_header(skb) - skb->data; |
| 3153 | } |
| 3154 | |
| 3155 | static inline u32 (const struct sk_buff *skb) |
| 3156 | { |
| 3157 | DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); |
| 3158 | return skb->transport_header - skb->network_header; |
| 3159 | } |
| 3160 | |
| 3161 | static inline u32 (const struct sk_buff *skb) |
| 3162 | { |
| 3163 | return skb->inner_transport_header - skb->inner_network_header; |
| 3164 | } |
| 3165 | |
| 3166 | static inline int skb_network_offset(const struct sk_buff *skb) |
| 3167 | { |
| 3168 | return skb_network_header(skb) - skb->data; |
| 3169 | } |
| 3170 | |
| 3171 | static inline int skb_inner_network_offset(const struct sk_buff *skb) |
| 3172 | { |
| 3173 | return skb_inner_network_header(skb) - skb->data; |
| 3174 | } |
| 3175 | |
| 3176 | static inline enum skb_drop_reason |
| 3177 | pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len) |
| 3178 | { |
| 3179 | return pskb_may_pull_reason(skb, len: skb_network_offset(skb) + len); |
| 3180 | } |
| 3181 | |
| 3182 | static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) |
| 3183 | { |
| 3184 | return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; |
| 3185 | } |
| 3186 | |
| 3187 | /* |
| 3188 | * CPUs often take a performance hit when accessing unaligned memory |
| 3189 | * locations. The actual performance hit varies, it can be small if the |
| 3190 | * hardware handles it or large if we have to take an exception and fix it |
| 3191 | * in software. |
| 3192 | * |
| 3193 | * Since an ethernet header is 14 bytes network drivers often end up with |
| 3194 | * the IP header at an unaligned offset. The IP header can be aligned by |
| 3195 | * shifting the start of the packet by 2 bytes. Drivers should do this |
| 3196 | * with: |
| 3197 | * |
| 3198 | * skb_reserve(skb, NET_IP_ALIGN); |
| 3199 | * |
| 3200 | * The downside to this alignment of the IP header is that the DMA is now |
| 3201 | * unaligned. On some architectures the cost of an unaligned DMA is high |
| 3202 | * and this cost outweighs the gains made by aligning the IP header. |
| 3203 | * |
| 3204 | * Since this trade off varies between architectures, we allow NET_IP_ALIGN |
| 3205 | * to be overridden. |
| 3206 | */ |
| 3207 | #ifndef NET_IP_ALIGN |
| 3208 | #define NET_IP_ALIGN 2 |
| 3209 | #endif |
| 3210 | |
| 3211 | /* |
| 3212 | * The networking layer reserves some headroom in skb data (via |
| 3213 | * dev_alloc_skb). This is used to avoid having to reallocate skb data when |
| 3214 | * the header has to grow. In the default case, if the header has to grow |
| 3215 | * 32 bytes or less we avoid the reallocation. |
| 3216 | * |
| 3217 | * Unfortunately this headroom changes the DMA alignment of the resulting |
| 3218 | * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive |
| 3219 | * on some architectures. An architecture can override this value, |
| 3220 | * perhaps setting it to a cacheline in size (since that will maintain |
| 3221 | * cacheline alignment of the DMA). It must be a power of 2. |
| 3222 | * |
| 3223 | * Various parts of the networking layer expect at least 32 bytes of |
| 3224 | * headroom, you should not reduce this. |
| 3225 | * |
| 3226 | * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) |
| 3227 | * to reduce average number of cache lines per packet. |
| 3228 | * get_rps_cpu() for example only access one 64 bytes aligned block : |
| 3229 | * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) |
| 3230 | */ |
| 3231 | #ifndef NET_SKB_PAD |
| 3232 | #define NET_SKB_PAD max(32, L1_CACHE_BYTES) |
| 3233 | #endif |
| 3234 | |
| 3235 | int ___pskb_trim(struct sk_buff *skb, unsigned int len); |
| 3236 | |
| 3237 | static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) |
| 3238 | { |
| 3239 | if (WARN_ON(skb_is_nonlinear(skb))) |
| 3240 | return; |
| 3241 | skb->len = len; |
| 3242 | skb_set_tail_pointer(skb, offset: len); |
| 3243 | } |
| 3244 | |
| 3245 | static inline void __skb_trim(struct sk_buff *skb, unsigned int len) |
| 3246 | { |
| 3247 | __skb_set_length(skb, len); |
| 3248 | } |
| 3249 | |
| 3250 | void skb_trim(struct sk_buff *skb, unsigned int len); |
| 3251 | |
| 3252 | static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) |
| 3253 | { |
| 3254 | if (skb->data_len) |
| 3255 | return ___pskb_trim(skb, len); |
| 3256 | __skb_trim(skb, len); |
| 3257 | return 0; |
| 3258 | } |
| 3259 | |
| 3260 | static inline int pskb_trim(struct sk_buff *skb, unsigned int len) |
| 3261 | { |
| 3262 | skb_might_realloc(skb); |
| 3263 | return (len < skb->len) ? __pskb_trim(skb, len) : 0; |
| 3264 | } |
| 3265 | |
| 3266 | /** |
| 3267 | * pskb_trim_unique - remove end from a paged unique (not cloned) buffer |
| 3268 | * @skb: buffer to alter |
| 3269 | * @len: new length |
| 3270 | * |
| 3271 | * This is identical to pskb_trim except that the caller knows that |
| 3272 | * the skb is not cloned so we should never get an error due to out- |
| 3273 | * of-memory. |
| 3274 | */ |
| 3275 | static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) |
| 3276 | { |
| 3277 | int err = pskb_trim(skb, len); |
| 3278 | BUG_ON(err); |
| 3279 | } |
| 3280 | |
| 3281 | static inline int __skb_grow(struct sk_buff *skb, unsigned int len) |
| 3282 | { |
| 3283 | unsigned int diff = len - skb->len; |
| 3284 | |
| 3285 | if (skb_tailroom(skb) < diff) { |
| 3286 | int ret = pskb_expand_head(skb, nhead: 0, ntail: diff - skb_tailroom(skb), |
| 3287 | GFP_ATOMIC); |
| 3288 | if (ret) |
| 3289 | return ret; |
| 3290 | } |
| 3291 | __skb_set_length(skb, len); |
| 3292 | return 0; |
| 3293 | } |
| 3294 | |
| 3295 | /** |
| 3296 | * skb_orphan - orphan a buffer |
| 3297 | * @skb: buffer to orphan |
| 3298 | * |
| 3299 | * If a buffer currently has an owner then we call the owner's |
| 3300 | * destructor function and make the @skb unowned. The buffer continues |
| 3301 | * to exist but is no longer charged to its former owner. |
| 3302 | */ |
| 3303 | static inline void skb_orphan(struct sk_buff *skb) |
| 3304 | { |
| 3305 | if (skb->destructor) { |
| 3306 | skb->destructor(skb); |
| 3307 | skb->destructor = NULL; |
| 3308 | skb->sk = NULL; |
| 3309 | } else { |
| 3310 | BUG_ON(skb->sk); |
| 3311 | } |
| 3312 | } |
| 3313 | |
| 3314 | /** |
| 3315 | * skb_orphan_frags - orphan the frags contained in a buffer |
| 3316 | * @skb: buffer to orphan frags from |
| 3317 | * @gfp_mask: allocation mask for replacement pages |
| 3318 | * |
| 3319 | * For each frag in the SKB which needs a destructor (i.e. has an |
| 3320 | * owner) create a copy of that frag and release the original |
| 3321 | * page by calling the destructor. |
| 3322 | */ |
| 3323 | static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) |
| 3324 | { |
| 3325 | if (likely(!skb_zcopy(skb))) |
| 3326 | return 0; |
| 3327 | if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) |
| 3328 | return 0; |
| 3329 | return skb_copy_ubufs(skb, gfp_mask); |
| 3330 | } |
| 3331 | |
| 3332 | /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ |
| 3333 | static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) |
| 3334 | { |
| 3335 | if (likely(!skb_zcopy(skb))) |
| 3336 | return 0; |
| 3337 | return skb_copy_ubufs(skb, gfp_mask); |
| 3338 | } |
| 3339 | |
| 3340 | /** |
| 3341 | * __skb_queue_purge_reason - empty a list |
| 3342 | * @list: list to empty |
| 3343 | * @reason: drop reason |
| 3344 | * |
| 3345 | * Delete all buffers on an &sk_buff list. Each buffer is removed from |
| 3346 | * the list and one reference dropped. This function does not take the |
| 3347 | * list lock and the caller must hold the relevant locks to use it. |
| 3348 | */ |
| 3349 | static inline void __skb_queue_purge_reason(struct sk_buff_head *list, |
| 3350 | enum skb_drop_reason reason) |
| 3351 | { |
| 3352 | struct sk_buff *skb; |
| 3353 | |
| 3354 | while ((skb = __skb_dequeue(list)) != NULL) |
| 3355 | kfree_skb_reason(skb, reason); |
| 3356 | } |
| 3357 | |
| 3358 | static inline void __skb_queue_purge(struct sk_buff_head *list) |
| 3359 | { |
| 3360 | __skb_queue_purge_reason(list, reason: SKB_DROP_REASON_QUEUE_PURGE); |
| 3361 | } |
| 3362 | |
| 3363 | void skb_queue_purge_reason(struct sk_buff_head *list, |
| 3364 | enum skb_drop_reason reason); |
| 3365 | |
| 3366 | static inline void skb_queue_purge(struct sk_buff_head *list) |
| 3367 | { |
| 3368 | skb_queue_purge_reason(list, reason: SKB_DROP_REASON_QUEUE_PURGE); |
| 3369 | } |
| 3370 | |
| 3371 | unsigned int skb_rbtree_purge(struct rb_root *root); |
| 3372 | void skb_errqueue_purge(struct sk_buff_head *list); |
| 3373 | |
| 3374 | void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); |
| 3375 | |
| 3376 | /** |
| 3377 | * netdev_alloc_frag - allocate a page fragment |
| 3378 | * @fragsz: fragment size |
| 3379 | * |
| 3380 | * Allocates a frag from a page for receive buffer. |
| 3381 | * Uses GFP_ATOMIC allocations. |
| 3382 | */ |
| 3383 | static inline void *netdev_alloc_frag(unsigned int fragsz) |
| 3384 | { |
| 3385 | return __netdev_alloc_frag_align(fragsz, align_mask: ~0u); |
| 3386 | } |
| 3387 | |
| 3388 | static inline void *netdev_alloc_frag_align(unsigned int fragsz, |
| 3389 | unsigned int align) |
| 3390 | { |
| 3391 | WARN_ON_ONCE(!is_power_of_2(align)); |
| 3392 | return __netdev_alloc_frag_align(fragsz, align_mask: -align); |
| 3393 | } |
| 3394 | |
| 3395 | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, |
| 3396 | gfp_t gfp_mask); |
| 3397 | |
| 3398 | /** |
| 3399 | * netdev_alloc_skb - allocate an skbuff for rx on a specific device |
| 3400 | * @dev: network device to receive on |
| 3401 | * @length: length to allocate |
| 3402 | * |
| 3403 | * Allocate a new &sk_buff and assign it a usage count of one. The |
| 3404 | * buffer has unspecified headroom built in. Users should allocate |
| 3405 | * the headroom they think they need without accounting for the |
| 3406 | * built in space. The built in space is used for optimisations. |
| 3407 | * |
| 3408 | * %NULL is returned if there is no free memory. Although this function |
| 3409 | * allocates memory it can be called from an interrupt. |
| 3410 | */ |
| 3411 | static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, |
| 3412 | unsigned int length) |
| 3413 | { |
| 3414 | return __netdev_alloc_skb(dev, length, GFP_ATOMIC); |
| 3415 | } |
| 3416 | |
| 3417 | /* legacy helper around __netdev_alloc_skb() */ |
| 3418 | static inline struct sk_buff *__dev_alloc_skb(unsigned int length, |
| 3419 | gfp_t gfp_mask) |
| 3420 | { |
| 3421 | return __netdev_alloc_skb(NULL, length, gfp_mask); |
| 3422 | } |
| 3423 | |
| 3424 | /* legacy helper around netdev_alloc_skb() */ |
| 3425 | static inline struct sk_buff *dev_alloc_skb(unsigned int length) |
| 3426 | { |
| 3427 | return netdev_alloc_skb(NULL, length); |
| 3428 | } |
| 3429 | |
| 3430 | |
| 3431 | static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, |
| 3432 | unsigned int length, gfp_t gfp) |
| 3433 | { |
| 3434 | struct sk_buff *skb = __netdev_alloc_skb(dev, length: length + NET_IP_ALIGN, gfp_mask: gfp); |
| 3435 | |
| 3436 | if (NET_IP_ALIGN && skb) |
| 3437 | skb_reserve(skb, NET_IP_ALIGN); |
| 3438 | return skb; |
| 3439 | } |
| 3440 | |
| 3441 | static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, |
| 3442 | unsigned int length) |
| 3443 | { |
| 3444 | return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); |
| 3445 | } |
| 3446 | |
| 3447 | static inline void skb_free_frag(void *addr) |
| 3448 | { |
| 3449 | page_frag_free(addr); |
| 3450 | } |
| 3451 | |
| 3452 | void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); |
| 3453 | |
| 3454 | static inline void *napi_alloc_frag(unsigned int fragsz) |
| 3455 | { |
| 3456 | return __napi_alloc_frag_align(fragsz, align_mask: ~0u); |
| 3457 | } |
| 3458 | |
| 3459 | static inline void *napi_alloc_frag_align(unsigned int fragsz, |
| 3460 | unsigned int align) |
| 3461 | { |
| 3462 | WARN_ON_ONCE(!is_power_of_2(align)); |
| 3463 | return __napi_alloc_frag_align(fragsz, align_mask: -align); |
| 3464 | } |
| 3465 | |
| 3466 | struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); |
| 3467 | void napi_consume_skb(struct sk_buff *skb, int budget); |
| 3468 | |
| 3469 | void napi_skb_free_stolen_head(struct sk_buff *skb); |
| 3470 | void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); |
| 3471 | |
| 3472 | /** |
| 3473 | * __dev_alloc_pages - allocate page for network Rx |
| 3474 | * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx |
| 3475 | * @order: size of the allocation |
| 3476 | * |
| 3477 | * Allocate a new page. |
| 3478 | * |
| 3479 | * %NULL is returned if there is no free memory. |
| 3480 | */ |
| 3481 | static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, |
| 3482 | unsigned int order) |
| 3483 | { |
| 3484 | /* This piece of code contains several assumptions. |
| 3485 | * 1. This is for device Rx, therefore a cold page is preferred. |
| 3486 | * 2. The expectation is the user wants a compound page. |
| 3487 | * 3. If requesting a order 0 page it will not be compound |
| 3488 | * due to the check to see if order has a value in prep_new_page |
| 3489 | * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to |
| 3490 | * code in gfp_to_alloc_flags that should be enforcing this. |
| 3491 | */ |
| 3492 | gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; |
| 3493 | |
| 3494 | return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); |
| 3495 | } |
| 3496 | #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) |
| 3497 | |
| 3498 | /* |
| 3499 | * This specialized allocator has to be a macro for its allocations to be |
| 3500 | * accounted separately (to have a separate alloc_tag). |
| 3501 | */ |
| 3502 | #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) |
| 3503 | |
| 3504 | /** |
| 3505 | * __dev_alloc_page - allocate a page for network Rx |
| 3506 | * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx |
| 3507 | * |
| 3508 | * Allocate a new page. |
| 3509 | * |
| 3510 | * %NULL is returned if there is no free memory. |
| 3511 | */ |
| 3512 | static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) |
| 3513 | { |
| 3514 | return __dev_alloc_pages_noprof(gfp_mask, order: 0); |
| 3515 | } |
| 3516 | #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) |
| 3517 | |
| 3518 | /* |
| 3519 | * This specialized allocator has to be a macro for its allocations to be |
| 3520 | * accounted separately (to have a separate alloc_tag). |
| 3521 | */ |
| 3522 | #define dev_alloc_page() dev_alloc_pages(0) |
| 3523 | |
| 3524 | /** |
| 3525 | * dev_page_is_reusable - check whether a page can be reused for network Rx |
| 3526 | * @page: the page to test |
| 3527 | * |
| 3528 | * A page shouldn't be considered for reusing/recycling if it was allocated |
| 3529 | * under memory pressure or at a distant memory node. |
| 3530 | * |
| 3531 | * Returns: false if this page should be returned to page allocator, true |
| 3532 | * otherwise. |
| 3533 | */ |
| 3534 | static inline bool dev_page_is_reusable(const struct page *page) |
| 3535 | { |
| 3536 | return likely(page_to_nid(page) == numa_mem_id() && |
| 3537 | !page_is_pfmemalloc(page)); |
| 3538 | } |
| 3539 | |
| 3540 | /** |
| 3541 | * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page |
| 3542 | * @page: The page that was allocated from skb_alloc_page |
| 3543 | * @skb: The skb that may need pfmemalloc set |
| 3544 | */ |
| 3545 | static inline void skb_propagate_pfmemalloc(const struct page *page, |
| 3546 | struct sk_buff *skb) |
| 3547 | { |
| 3548 | if (page_is_pfmemalloc(page)) |
| 3549 | skb->pfmemalloc = true; |
| 3550 | } |
| 3551 | |
| 3552 | /** |
| 3553 | * skb_frag_off() - Returns the offset of a skb fragment |
| 3554 | * @frag: the paged fragment |
| 3555 | */ |
| 3556 | static inline unsigned int skb_frag_off(const skb_frag_t *frag) |
| 3557 | { |
| 3558 | return frag->offset; |
| 3559 | } |
| 3560 | |
| 3561 | /** |
| 3562 | * skb_frag_off_add() - Increments the offset of a skb fragment by @delta |
| 3563 | * @frag: skb fragment |
| 3564 | * @delta: value to add |
| 3565 | */ |
| 3566 | static inline void skb_frag_off_add(skb_frag_t *frag, int delta) |
| 3567 | { |
| 3568 | frag->offset += delta; |
| 3569 | } |
| 3570 | |
| 3571 | /** |
| 3572 | * skb_frag_off_set() - Sets the offset of a skb fragment |
| 3573 | * @frag: skb fragment |
| 3574 | * @offset: offset of fragment |
| 3575 | */ |
| 3576 | static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) |
| 3577 | { |
| 3578 | frag->offset = offset; |
| 3579 | } |
| 3580 | |
| 3581 | /** |
| 3582 | * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment |
| 3583 | * @fragto: skb fragment where offset is set |
| 3584 | * @fragfrom: skb fragment offset is copied from |
| 3585 | */ |
| 3586 | static inline void skb_frag_off_copy(skb_frag_t *fragto, |
| 3587 | const skb_frag_t *fragfrom) |
| 3588 | { |
| 3589 | fragto->offset = fragfrom->offset; |
| 3590 | } |
| 3591 | |
| 3592 | /* Return: true if the skb_frag contains a net_iov. */ |
| 3593 | static inline bool skb_frag_is_net_iov(const skb_frag_t *frag) |
| 3594 | { |
| 3595 | return netmem_is_net_iov(netmem: frag->netmem); |
| 3596 | } |
| 3597 | |
| 3598 | /** |
| 3599 | * skb_frag_net_iov - retrieve the net_iov referred to by fragment |
| 3600 | * @frag: the fragment |
| 3601 | * |
| 3602 | * Return: the &struct net_iov associated with @frag. Returns NULL if this |
| 3603 | * frag has no associated net_iov. |
| 3604 | */ |
| 3605 | static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag) |
| 3606 | { |
| 3607 | if (!skb_frag_is_net_iov(frag)) |
| 3608 | return NULL; |
| 3609 | |
| 3610 | return netmem_to_net_iov(netmem: frag->netmem); |
| 3611 | } |
| 3612 | |
| 3613 | /** |
| 3614 | * skb_frag_page - retrieve the page referred to by a paged fragment |
| 3615 | * @frag: the paged fragment |
| 3616 | * |
| 3617 | * Return: the &struct page associated with @frag. Returns NULL if this frag |
| 3618 | * has no associated page. |
| 3619 | */ |
| 3620 | static inline struct page *skb_frag_page(const skb_frag_t *frag) |
| 3621 | { |
| 3622 | if (skb_frag_is_net_iov(frag)) |
| 3623 | return NULL; |
| 3624 | |
| 3625 | return netmem_to_page(netmem: frag->netmem); |
| 3626 | } |
| 3627 | |
| 3628 | /** |
| 3629 | * skb_frag_netmem - retrieve the netmem referred to by a fragment |
| 3630 | * @frag: the fragment |
| 3631 | * |
| 3632 | * Return: the &netmem_ref associated with @frag. |
| 3633 | */ |
| 3634 | static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag) |
| 3635 | { |
| 3636 | return frag->netmem; |
| 3637 | } |
| 3638 | |
| 3639 | int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, |
| 3640 | unsigned int headroom); |
| 3641 | int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, |
| 3642 | const struct bpf_prog *prog); |
| 3643 | |
| 3644 | /** |
| 3645 | * skb_frag_address - gets the address of the data contained in a paged fragment |
| 3646 | * @frag: the paged fragment buffer |
| 3647 | * |
| 3648 | * Returns: the address of the data within @frag. The page must already |
| 3649 | * be mapped. |
| 3650 | */ |
| 3651 | static inline void *skb_frag_address(const skb_frag_t *frag) |
| 3652 | { |
| 3653 | if (!skb_frag_page(frag)) |
| 3654 | return NULL; |
| 3655 | |
| 3656 | return page_address(skb_frag_page(frag)) + skb_frag_off(frag); |
| 3657 | } |
| 3658 | |
| 3659 | /** |
| 3660 | * skb_frag_address_safe - gets the address of the data contained in a paged fragment |
| 3661 | * @frag: the paged fragment buffer |
| 3662 | * |
| 3663 | * Returns: the address of the data within @frag. Checks that the page |
| 3664 | * is mapped and returns %NULL otherwise. |
| 3665 | */ |
| 3666 | static inline void *skb_frag_address_safe(const skb_frag_t *frag) |
| 3667 | { |
| 3668 | void *ptr = page_address(skb_frag_page(frag)); |
| 3669 | if (unlikely(!ptr)) |
| 3670 | return NULL; |
| 3671 | |
| 3672 | return ptr + skb_frag_off(frag); |
| 3673 | } |
| 3674 | |
| 3675 | /** |
| 3676 | * skb_frag_page_copy() - sets the page in a fragment from another fragment |
| 3677 | * @fragto: skb fragment where page is set |
| 3678 | * @fragfrom: skb fragment page is copied from |
| 3679 | */ |
| 3680 | static inline void skb_frag_page_copy(skb_frag_t *fragto, |
| 3681 | const skb_frag_t *fragfrom) |
| 3682 | { |
| 3683 | fragto->netmem = fragfrom->netmem; |
| 3684 | } |
| 3685 | |
| 3686 | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); |
| 3687 | |
| 3688 | /** |
| 3689 | * __skb_frag_dma_map - maps a paged fragment via the DMA API |
| 3690 | * @dev: the device to map the fragment to |
| 3691 | * @frag: the paged fragment to map |
| 3692 | * @offset: the offset within the fragment (starting at the |
| 3693 | * fragment's own offset) |
| 3694 | * @size: the number of bytes to map |
| 3695 | * @dir: the direction of the mapping (``PCI_DMA_*``) |
| 3696 | * |
| 3697 | * Maps the page associated with @frag to @device. |
| 3698 | */ |
| 3699 | static inline dma_addr_t __skb_frag_dma_map(struct device *dev, |
| 3700 | const skb_frag_t *frag, |
| 3701 | size_t offset, size_t size, |
| 3702 | enum dma_data_direction dir) |
| 3703 | { |
| 3704 | if (skb_frag_is_net_iov(frag)) { |
| 3705 | return netmem_to_net_iov(netmem: frag->netmem)->dma_addr + offset + |
| 3706 | frag->offset; |
| 3707 | } |
| 3708 | return dma_map_page(dev, skb_frag_page(frag), |
| 3709 | skb_frag_off(frag) + offset, size, dir); |
| 3710 | } |
| 3711 | |
| 3712 | #define skb_frag_dma_map(dev, frag, ...) \ |
| 3713 | CONCATENATE(_skb_frag_dma_map, \ |
| 3714 | COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__) |
| 3715 | |
| 3716 | #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({ \ |
| 3717 | const skb_frag_t *uf = (frag); \ |
| 3718 | size_t uo = (offset); \ |
| 3719 | \ |
| 3720 | __skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo, \ |
| 3721 | DMA_TO_DEVICE); \ |
| 3722 | }) |
| 3723 | #define _skb_frag_dma_map1(dev, frag, offset) \ |
| 3724 | __skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_), \ |
| 3725 | __UNIQUE_ID(offset_)) |
| 3726 | #define _skb_frag_dma_map0(dev, frag) \ |
| 3727 | _skb_frag_dma_map1(dev, frag, 0) |
| 3728 | #define _skb_frag_dma_map2(dev, frag, offset, size) \ |
| 3729 | __skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE) |
| 3730 | #define _skb_frag_dma_map3(dev, frag, offset, size, dir) \ |
| 3731 | __skb_frag_dma_map(dev, frag, offset, size, dir) |
| 3732 | |
| 3733 | static inline struct sk_buff *pskb_copy(struct sk_buff *skb, |
| 3734 | gfp_t gfp_mask) |
| 3735 | { |
| 3736 | return __pskb_copy(skb, headroom: skb_headroom(skb), gfp_mask); |
| 3737 | } |
| 3738 | |
| 3739 | |
| 3740 | static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, |
| 3741 | gfp_t gfp_mask) |
| 3742 | { |
| 3743 | return __pskb_copy_fclone(skb, headroom: skb_headroom(skb), gfp_mask, fclone: true); |
| 3744 | } |
| 3745 | |
| 3746 | |
| 3747 | /** |
| 3748 | * skb_clone_writable - is the header of a clone writable |
| 3749 | * @skb: buffer to check |
| 3750 | * @len: length up to which to write |
| 3751 | * |
| 3752 | * Returns true if modifying the header part of the cloned buffer |
| 3753 | * does not requires the data to be copied. |
| 3754 | */ |
| 3755 | static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) |
| 3756 | { |
| 3757 | return !skb_header_cloned(skb) && |
| 3758 | skb_headroom(skb) + len <= skb->hdr_len; |
| 3759 | } |
| 3760 | |
| 3761 | static inline int skb_try_make_writable(struct sk_buff *skb, |
| 3762 | unsigned int write_len) |
| 3763 | { |
| 3764 | return skb_cloned(skb) && !skb_clone_writable(skb, len: write_len) && |
| 3765 | pskb_expand_head(skb, nhead: 0, ntail: 0, GFP_ATOMIC); |
| 3766 | } |
| 3767 | |
| 3768 | static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, |
| 3769 | int cloned) |
| 3770 | { |
| 3771 | int delta = 0; |
| 3772 | |
| 3773 | if (headroom > skb_headroom(skb)) |
| 3774 | delta = headroom - skb_headroom(skb); |
| 3775 | |
| 3776 | if (delta || cloned) |
| 3777 | return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), ntail: 0, |
| 3778 | GFP_ATOMIC); |
| 3779 | return 0; |
| 3780 | } |
| 3781 | |
| 3782 | /** |
| 3783 | * skb_cow - copy header of skb when it is required |
| 3784 | * @skb: buffer to cow |
| 3785 | * @headroom: needed headroom |
| 3786 | * |
| 3787 | * If the skb passed lacks sufficient headroom or its data part |
| 3788 | * is shared, data is reallocated. If reallocation fails, an error |
| 3789 | * is returned and original skb is not changed. |
| 3790 | * |
| 3791 | * The result is skb with writable area skb->head...skb->tail |
| 3792 | * and at least @headroom of space at head. |
| 3793 | */ |
| 3794 | static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) |
| 3795 | { |
| 3796 | return __skb_cow(skb, headroom, cloned: skb_cloned(skb)); |
| 3797 | } |
| 3798 | |
| 3799 | /** |
| 3800 | * skb_cow_head - skb_cow but only making the head writable |
| 3801 | * @skb: buffer to cow |
| 3802 | * @headroom: needed headroom |
| 3803 | * |
| 3804 | * This function is identical to skb_cow except that we replace the |
| 3805 | * skb_cloned check by skb_header_cloned. It should be used when |
| 3806 | * you only need to push on some header and do not need to modify |
| 3807 | * the data. |
| 3808 | */ |
| 3809 | static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) |
| 3810 | { |
| 3811 | return __skb_cow(skb, headroom, cloned: skb_header_cloned(skb)); |
| 3812 | } |
| 3813 | |
| 3814 | /** |
| 3815 | * skb_padto - pad an skbuff up to a minimal size |
| 3816 | * @skb: buffer to pad |
| 3817 | * @len: minimal length |
| 3818 | * |
| 3819 | * Pads up a buffer to ensure the trailing bytes exist and are |
| 3820 | * blanked. If the buffer already contains sufficient data it |
| 3821 | * is untouched. Otherwise it is extended. Returns zero on |
| 3822 | * success. The skb is freed on error. |
| 3823 | */ |
| 3824 | static inline int skb_padto(struct sk_buff *skb, unsigned int len) |
| 3825 | { |
| 3826 | unsigned int size = skb->len; |
| 3827 | if (likely(size >= len)) |
| 3828 | return 0; |
| 3829 | return skb_pad(skb, pad: len - size); |
| 3830 | } |
| 3831 | |
| 3832 | /** |
| 3833 | * __skb_put_padto - increase size and pad an skbuff up to a minimal size |
| 3834 | * @skb: buffer to pad |
| 3835 | * @len: minimal length |
| 3836 | * @free_on_error: free buffer on error |
| 3837 | * |
| 3838 | * Pads up a buffer to ensure the trailing bytes exist and are |
| 3839 | * blanked. If the buffer already contains sufficient data it |
| 3840 | * is untouched. Otherwise it is extended. Returns zero on |
| 3841 | * success. The skb is freed on error if @free_on_error is true. |
| 3842 | */ |
| 3843 | static inline int __must_check __skb_put_padto(struct sk_buff *skb, |
| 3844 | unsigned int len, |
| 3845 | bool free_on_error) |
| 3846 | { |
| 3847 | unsigned int size = skb->len; |
| 3848 | |
| 3849 | if (unlikely(size < len)) { |
| 3850 | len -= size; |
| 3851 | if (__skb_pad(skb, pad: len, free_on_error)) |
| 3852 | return -ENOMEM; |
| 3853 | __skb_put(skb, len); |
| 3854 | } |
| 3855 | return 0; |
| 3856 | } |
| 3857 | |
| 3858 | /** |
| 3859 | * skb_put_padto - increase size and pad an skbuff up to a minimal size |
| 3860 | * @skb: buffer to pad |
| 3861 | * @len: minimal length |
| 3862 | * |
| 3863 | * Pads up a buffer to ensure the trailing bytes exist and are |
| 3864 | * blanked. If the buffer already contains sufficient data it |
| 3865 | * is untouched. Otherwise it is extended. Returns zero on |
| 3866 | * success. The skb is freed on error. |
| 3867 | */ |
| 3868 | static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) |
| 3869 | { |
| 3870 | return __skb_put_padto(skb, len, free_on_error: true); |
| 3871 | } |
| 3872 | |
| 3873 | bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) |
| 3874 | __must_check; |
| 3875 | |
| 3876 | static inline bool skb_can_coalesce(struct sk_buff *skb, int i, |
| 3877 | const struct page *page, int off) |
| 3878 | { |
| 3879 | if (skb_zcopy(skb)) |
| 3880 | return false; |
| 3881 | if (i) { |
| 3882 | const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; |
| 3883 | |
| 3884 | return page == skb_frag_page(frag) && |
| 3885 | off == skb_frag_off(frag) + skb_frag_size(frag); |
| 3886 | } |
| 3887 | return false; |
| 3888 | } |
| 3889 | |
| 3890 | static inline int __skb_linearize(struct sk_buff *skb) |
| 3891 | { |
| 3892 | return __pskb_pull_tail(skb, delta: skb->data_len) ? 0 : -ENOMEM; |
| 3893 | } |
| 3894 | |
| 3895 | /** |
| 3896 | * skb_linearize - convert paged skb to linear one |
| 3897 | * @skb: buffer to linarize |
| 3898 | * |
| 3899 | * If there is no free memory -ENOMEM is returned, otherwise zero |
| 3900 | * is returned and the old skb data released. |
| 3901 | */ |
| 3902 | static inline int skb_linearize(struct sk_buff *skb) |
| 3903 | { |
| 3904 | return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; |
| 3905 | } |
| 3906 | |
| 3907 | /** |
| 3908 | * skb_has_shared_frag - can any frag be overwritten |
| 3909 | * @skb: buffer to test |
| 3910 | * |
| 3911 | * Return: true if the skb has at least one frag that might be modified |
| 3912 | * by an external entity (as in vmsplice()/sendfile()) |
| 3913 | */ |
| 3914 | static inline bool skb_has_shared_frag(const struct sk_buff *skb) |
| 3915 | { |
| 3916 | return skb_is_nonlinear(skb) && |
| 3917 | skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; |
| 3918 | } |
| 3919 | |
| 3920 | /** |
| 3921 | * skb_linearize_cow - make sure skb is linear and writable |
| 3922 | * @skb: buffer to process |
| 3923 | * |
| 3924 | * If there is no free memory -ENOMEM is returned, otherwise zero |
| 3925 | * is returned and the old skb data released. |
| 3926 | */ |
| 3927 | static inline int skb_linearize_cow(struct sk_buff *skb) |
| 3928 | { |
| 3929 | return skb_is_nonlinear(skb) || skb_cloned(skb) ? |
| 3930 | __skb_linearize(skb) : 0; |
| 3931 | } |
| 3932 | |
| 3933 | static __always_inline void |
| 3934 | __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, |
| 3935 | unsigned int off) |
| 3936 | { |
| 3937 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 3938 | skb->csum = csum_block_sub(csum: skb->csum, |
| 3939 | csum2: csum_partial(buff: start, len, sum: 0), offset: off); |
| 3940 | else if (skb->ip_summed == CHECKSUM_PARTIAL && |
| 3941 | skb_checksum_start_offset(skb) < 0) |
| 3942 | skb->ip_summed = CHECKSUM_NONE; |
| 3943 | } |
| 3944 | |
| 3945 | /** |
| 3946 | * skb_postpull_rcsum - update checksum for received skb after pull |
| 3947 | * @skb: buffer to update |
| 3948 | * @start: start of data before pull |
| 3949 | * @len: length of data pulled |
| 3950 | * |
| 3951 | * After doing a pull on a received packet, you need to call this to |
| 3952 | * update the CHECKSUM_COMPLETE checksum, or set ip_summed to |
| 3953 | * CHECKSUM_NONE so that it can be recomputed from scratch. |
| 3954 | */ |
| 3955 | static inline void skb_postpull_rcsum(struct sk_buff *skb, |
| 3956 | const void *start, unsigned int len) |
| 3957 | { |
| 3958 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 3959 | skb->csum = wsum_negate(val: csum_partial(buff: start, len, |
| 3960 | sum: wsum_negate(val: skb->csum))); |
| 3961 | else if (skb->ip_summed == CHECKSUM_PARTIAL && |
| 3962 | skb_checksum_start_offset(skb) < 0) |
| 3963 | skb->ip_summed = CHECKSUM_NONE; |
| 3964 | } |
| 3965 | |
| 3966 | static __always_inline void |
| 3967 | __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, |
| 3968 | unsigned int off) |
| 3969 | { |
| 3970 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 3971 | skb->csum = csum_block_add(csum: skb->csum, |
| 3972 | csum2: csum_partial(buff: start, len, sum: 0), offset: off); |
| 3973 | } |
| 3974 | |
| 3975 | /** |
| 3976 | * skb_postpush_rcsum - update checksum for received skb after push |
| 3977 | * @skb: buffer to update |
| 3978 | * @start: start of data after push |
| 3979 | * @len: length of data pushed |
| 3980 | * |
| 3981 | * After doing a push on a received packet, you need to call this to |
| 3982 | * update the CHECKSUM_COMPLETE checksum. |
| 3983 | */ |
| 3984 | static inline void skb_postpush_rcsum(struct sk_buff *skb, |
| 3985 | const void *start, unsigned int len) |
| 3986 | { |
| 3987 | __skb_postpush_rcsum(skb, start, len, off: 0); |
| 3988 | } |
| 3989 | |
| 3990 | void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); |
| 3991 | |
| 3992 | /** |
| 3993 | * skb_push_rcsum - push skb and update receive checksum |
| 3994 | * @skb: buffer to update |
| 3995 | * @len: length of data pulled |
| 3996 | * |
| 3997 | * This function performs an skb_push on the packet and updates |
| 3998 | * the CHECKSUM_COMPLETE checksum. It should be used on |
| 3999 | * receive path processing instead of skb_push unless you know |
| 4000 | * that the checksum difference is zero (e.g., a valid IP header) |
| 4001 | * or you are setting ip_summed to CHECKSUM_NONE. |
| 4002 | */ |
| 4003 | static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) |
| 4004 | { |
| 4005 | skb_push(skb, len); |
| 4006 | skb_postpush_rcsum(skb, start: skb->data, len); |
| 4007 | return skb->data; |
| 4008 | } |
| 4009 | |
| 4010 | int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); |
| 4011 | /** |
| 4012 | * pskb_trim_rcsum - trim received skb and update checksum |
| 4013 | * @skb: buffer to trim |
| 4014 | * @len: new length |
| 4015 | * |
| 4016 | * This is exactly the same as pskb_trim except that it ensures the |
| 4017 | * checksum of received packets are still valid after the operation. |
| 4018 | * It can change skb pointers. |
| 4019 | */ |
| 4020 | |
| 4021 | static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) |
| 4022 | { |
| 4023 | skb_might_realloc(skb); |
| 4024 | if (likely(len >= skb->len)) |
| 4025 | return 0; |
| 4026 | return pskb_trim_rcsum_slow(skb, len); |
| 4027 | } |
| 4028 | |
| 4029 | static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) |
| 4030 | { |
| 4031 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 4032 | skb->ip_summed = CHECKSUM_NONE; |
| 4033 | __skb_trim(skb, len); |
| 4034 | return 0; |
| 4035 | } |
| 4036 | |
| 4037 | static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) |
| 4038 | { |
| 4039 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 4040 | skb->ip_summed = CHECKSUM_NONE; |
| 4041 | return __skb_grow(skb, len); |
| 4042 | } |
| 4043 | |
| 4044 | #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) |
| 4045 | #define skb_rb_first(root) rb_to_skb(rb_first(root)) |
| 4046 | #define skb_rb_last(root) rb_to_skb(rb_last(root)) |
| 4047 | #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) |
| 4048 | #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) |
| 4049 | |
| 4050 | #define skb_queue_walk(queue, skb) \ |
| 4051 | for (skb = (queue)->next; \ |
| 4052 | skb != (struct sk_buff *)(queue); \ |
| 4053 | skb = skb->next) |
| 4054 | |
| 4055 | #define skb_queue_walk_safe(queue, skb, tmp) \ |
| 4056 | for (skb = (queue)->next, tmp = skb->next; \ |
| 4057 | skb != (struct sk_buff *)(queue); \ |
| 4058 | skb = tmp, tmp = skb->next) |
| 4059 | |
| 4060 | #define skb_queue_walk_from(queue, skb) \ |
| 4061 | for (; skb != (struct sk_buff *)(queue); \ |
| 4062 | skb = skb->next) |
| 4063 | |
| 4064 | #define skb_rbtree_walk(skb, root) \ |
| 4065 | for (skb = skb_rb_first(root); skb != NULL; \ |
| 4066 | skb = skb_rb_next(skb)) |
| 4067 | |
| 4068 | #define skb_rbtree_walk_from(skb) \ |
| 4069 | for (; skb != NULL; \ |
| 4070 | skb = skb_rb_next(skb)) |
| 4071 | |
| 4072 | #define skb_rbtree_walk_from_safe(skb, tmp) \ |
| 4073 | for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ |
| 4074 | skb = tmp) |
| 4075 | |
| 4076 | #define skb_queue_walk_from_safe(queue, skb, tmp) \ |
| 4077 | for (tmp = skb->next; \ |
| 4078 | skb != (struct sk_buff *)(queue); \ |
| 4079 | skb = tmp, tmp = skb->next) |
| 4080 | |
| 4081 | #define skb_queue_reverse_walk(queue, skb) \ |
| 4082 | for (skb = (queue)->prev; \ |
| 4083 | skb != (struct sk_buff *)(queue); \ |
| 4084 | skb = skb->prev) |
| 4085 | |
| 4086 | #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ |
| 4087 | for (skb = (queue)->prev, tmp = skb->prev; \ |
| 4088 | skb != (struct sk_buff *)(queue); \ |
| 4089 | skb = tmp, tmp = skb->prev) |
| 4090 | |
| 4091 | #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ |
| 4092 | for (tmp = skb->prev; \ |
| 4093 | skb != (struct sk_buff *)(queue); \ |
| 4094 | skb = tmp, tmp = skb->prev) |
| 4095 | |
| 4096 | static inline bool skb_has_frag_list(const struct sk_buff *skb) |
| 4097 | { |
| 4098 | return skb_shinfo(skb)->frag_list != NULL; |
| 4099 | } |
| 4100 | |
| 4101 | static inline void skb_frag_list_init(struct sk_buff *skb) |
| 4102 | { |
| 4103 | skb_shinfo(skb)->frag_list = NULL; |
| 4104 | } |
| 4105 | |
| 4106 | #define skb_walk_frags(skb, iter) \ |
| 4107 | for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) |
| 4108 | |
| 4109 | |
| 4110 | int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, |
| 4111 | int *err, long *timeo_p, |
| 4112 | const struct sk_buff *skb); |
| 4113 | struct sk_buff *__skb_try_recv_from_queue(struct sk_buff_head *queue, |
| 4114 | unsigned int flags, |
| 4115 | int *off, int *err, |
| 4116 | struct sk_buff **last); |
| 4117 | struct sk_buff *__skb_try_recv_datagram(struct sock *sk, |
| 4118 | struct sk_buff_head *queue, |
| 4119 | unsigned int flags, int *off, int *err, |
| 4120 | struct sk_buff **last); |
| 4121 | struct sk_buff *__skb_recv_datagram(struct sock *sk, |
| 4122 | struct sk_buff_head *sk_queue, |
| 4123 | unsigned int flags, int *off, int *err); |
| 4124 | struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); |
| 4125 | __poll_t datagram_poll(struct file *file, struct socket *sock, |
| 4126 | struct poll_table_struct *wait); |
| 4127 | int skb_copy_datagram_iter(const struct sk_buff *from, int offset, |
| 4128 | struct iov_iter *to, int size); |
| 4129 | static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, |
| 4130 | struct msghdr *msg, int size) |
| 4131 | { |
| 4132 | return skb_copy_datagram_iter(from, offset, to: &msg->msg_iter, size); |
| 4133 | } |
| 4134 | int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, |
| 4135 | struct msghdr *msg); |
| 4136 | int skb_copy_and_crc32c_datagram_iter(const struct sk_buff *skb, int offset, |
| 4137 | struct iov_iter *to, int len, u32 *crcp); |
| 4138 | int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, |
| 4139 | struct iov_iter *from, int len); |
| 4140 | int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); |
| 4141 | void skb_free_datagram(struct sock *sk, struct sk_buff *skb); |
| 4142 | int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); |
| 4143 | int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); |
| 4144 | int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); |
| 4145 | __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, |
| 4146 | int len); |
| 4147 | int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, |
| 4148 | struct pipe_inode_info *pipe, unsigned int len, |
| 4149 | unsigned int flags); |
| 4150 | int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, |
| 4151 | int len); |
| 4152 | int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, |
| 4153 | int offset, int len, int flags); |
| 4154 | int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); |
| 4155 | void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); |
| 4156 | unsigned int skb_zerocopy_headlen(const struct sk_buff *from); |
| 4157 | int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, |
| 4158 | int len, int hlen); |
| 4159 | void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); |
| 4160 | int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); |
| 4161 | void skb_scrub_packet(struct sk_buff *skb, bool xnet); |
| 4162 | struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); |
| 4163 | struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, |
| 4164 | unsigned int offset); |
| 4165 | struct sk_buff *skb_vlan_untag(struct sk_buff *skb); |
| 4166 | int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); |
| 4167 | int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); |
| 4168 | int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); |
| 4169 | int skb_vlan_pop(struct sk_buff *skb); |
| 4170 | int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); |
| 4171 | int skb_eth_pop(struct sk_buff *skb); |
| 4172 | int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, |
| 4173 | const unsigned char *src); |
| 4174 | int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, |
| 4175 | int mac_len, bool ethernet); |
| 4176 | int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, |
| 4177 | bool ethernet); |
| 4178 | int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); |
| 4179 | int skb_mpls_dec_ttl(struct sk_buff *skb); |
| 4180 | struct sk_buff *(struct sk_buff *skb, int off, int to_copy, |
| 4181 | gfp_t gfp); |
| 4182 | |
| 4183 | static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) |
| 4184 | { |
| 4185 | return copy_from_iter_full(addr: data, bytes: len, i: &msg->msg_iter) ? 0 : -EFAULT; |
| 4186 | } |
| 4187 | |
| 4188 | static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) |
| 4189 | { |
| 4190 | return copy_to_iter(addr: data, bytes: len, i: &msg->msg_iter) == len ? 0 : -EFAULT; |
| 4191 | } |
| 4192 | |
| 4193 | __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, |
| 4194 | __wsum csum); |
| 4195 | u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc); |
| 4196 | |
| 4197 | static inline void * __must_check |
| 4198 | (const struct sk_buff *skb, int offset, int len, |
| 4199 | const void *data, int hlen, void *buffer) |
| 4200 | { |
| 4201 | if (likely(hlen - offset >= len)) |
| 4202 | return (void *)data + offset; |
| 4203 | |
| 4204 | if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) |
| 4205 | return NULL; |
| 4206 | |
| 4207 | return buffer; |
| 4208 | } |
| 4209 | |
| 4210 | static inline void * __must_check |
| 4211 | (const struct sk_buff *skb, int offset, int len, void *buffer) |
| 4212 | { |
| 4213 | return __skb_header_pointer(skb, offset, len, data: skb->data, |
| 4214 | hlen: skb_headlen(skb), buffer); |
| 4215 | } |
| 4216 | |
| 4217 | static inline void * __must_check |
| 4218 | skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) |
| 4219 | { |
| 4220 | if (likely(skb_headlen(skb) - offset >= len)) |
| 4221 | return skb->data + offset; |
| 4222 | return NULL; |
| 4223 | } |
| 4224 | |
| 4225 | /** |
| 4226 | * skb_needs_linearize - check if we need to linearize a given skb |
| 4227 | * depending on the given device features. |
| 4228 | * @skb: socket buffer to check |
| 4229 | * @features: net device features |
| 4230 | * |
| 4231 | * Returns true if either: |
| 4232 | * 1. skb has frag_list and the device doesn't support FRAGLIST, or |
| 4233 | * 2. skb is fragmented and the device does not support SG. |
| 4234 | */ |
| 4235 | static inline bool skb_needs_linearize(struct sk_buff *skb, |
| 4236 | netdev_features_t features) |
| 4237 | { |
| 4238 | return skb_is_nonlinear(skb) && |
| 4239 | ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || |
| 4240 | (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); |
| 4241 | } |
| 4242 | |
| 4243 | static inline void skb_copy_from_linear_data(const struct sk_buff *skb, |
| 4244 | void *to, |
| 4245 | const unsigned int len) |
| 4246 | { |
| 4247 | memcpy(to, skb->data, len); |
| 4248 | } |
| 4249 | |
| 4250 | static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, |
| 4251 | const int offset, void *to, |
| 4252 | const unsigned int len) |
| 4253 | { |
| 4254 | memcpy(to, skb->data + offset, len); |
| 4255 | } |
| 4256 | |
| 4257 | static inline void skb_copy_to_linear_data(struct sk_buff *skb, |
| 4258 | const void *from, |
| 4259 | const unsigned int len) |
| 4260 | { |
| 4261 | memcpy(skb->data, from, len); |
| 4262 | } |
| 4263 | |
| 4264 | static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, |
| 4265 | const int offset, |
| 4266 | const void *from, |
| 4267 | const unsigned int len) |
| 4268 | { |
| 4269 | memcpy(skb->data + offset, from, len); |
| 4270 | } |
| 4271 | |
| 4272 | void skb_init(void); |
| 4273 | |
| 4274 | static inline ktime_t skb_get_ktime(const struct sk_buff *skb) |
| 4275 | { |
| 4276 | return skb->tstamp; |
| 4277 | } |
| 4278 | |
| 4279 | /** |
| 4280 | * skb_get_timestamp - get timestamp from a skb |
| 4281 | * @skb: skb to get stamp from |
| 4282 | * @stamp: pointer to struct __kernel_old_timeval to store stamp in |
| 4283 | * |
| 4284 | * Timestamps are stored in the skb as offsets to a base timestamp. |
| 4285 | * This function converts the offset back to a struct timeval and stores |
| 4286 | * it in stamp. |
| 4287 | */ |
| 4288 | static inline void skb_get_timestamp(const struct sk_buff *skb, |
| 4289 | struct __kernel_old_timeval *stamp) |
| 4290 | { |
| 4291 | *stamp = ns_to_kernel_old_timeval(nsec: skb->tstamp); |
| 4292 | } |
| 4293 | |
| 4294 | static inline void skb_get_new_timestamp(const struct sk_buff *skb, |
| 4295 | struct __kernel_sock_timeval *stamp) |
| 4296 | { |
| 4297 | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); |
| 4298 | |
| 4299 | stamp->tv_sec = ts.tv_sec; |
| 4300 | stamp->tv_usec = ts.tv_nsec / 1000; |
| 4301 | } |
| 4302 | |
| 4303 | static inline void skb_get_timestampns(const struct sk_buff *skb, |
| 4304 | struct __kernel_old_timespec *stamp) |
| 4305 | { |
| 4306 | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); |
| 4307 | |
| 4308 | stamp->tv_sec = ts.tv_sec; |
| 4309 | stamp->tv_nsec = ts.tv_nsec; |
| 4310 | } |
| 4311 | |
| 4312 | static inline void skb_get_new_timestampns(const struct sk_buff *skb, |
| 4313 | struct __kernel_timespec *stamp) |
| 4314 | { |
| 4315 | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); |
| 4316 | |
| 4317 | stamp->tv_sec = ts.tv_sec; |
| 4318 | stamp->tv_nsec = ts.tv_nsec; |
| 4319 | } |
| 4320 | |
| 4321 | static inline void __net_timestamp(struct sk_buff *skb) |
| 4322 | { |
| 4323 | skb->tstamp = ktime_get_real(); |
| 4324 | skb->tstamp_type = SKB_CLOCK_REALTIME; |
| 4325 | } |
| 4326 | |
| 4327 | static inline ktime_t net_timedelta(ktime_t t) |
| 4328 | { |
| 4329 | return ktime_sub(ktime_get_real(), t); |
| 4330 | } |
| 4331 | |
| 4332 | static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, |
| 4333 | u8 tstamp_type) |
| 4334 | { |
| 4335 | skb->tstamp = kt; |
| 4336 | |
| 4337 | if (kt) |
| 4338 | skb->tstamp_type = tstamp_type; |
| 4339 | else |
| 4340 | skb->tstamp_type = SKB_CLOCK_REALTIME; |
| 4341 | } |
| 4342 | |
| 4343 | static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, |
| 4344 | ktime_t kt, clockid_t clockid) |
| 4345 | { |
| 4346 | u8 tstamp_type = SKB_CLOCK_REALTIME; |
| 4347 | |
| 4348 | switch (clockid) { |
| 4349 | case CLOCK_REALTIME: |
| 4350 | break; |
| 4351 | case CLOCK_MONOTONIC: |
| 4352 | tstamp_type = SKB_CLOCK_MONOTONIC; |
| 4353 | break; |
| 4354 | case CLOCK_TAI: |
| 4355 | tstamp_type = SKB_CLOCK_TAI; |
| 4356 | break; |
| 4357 | default: |
| 4358 | WARN_ON_ONCE(1); |
| 4359 | kt = 0; |
| 4360 | } |
| 4361 | |
| 4362 | skb_set_delivery_time(skb, kt, tstamp_type); |
| 4363 | } |
| 4364 | |
| 4365 | DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); |
| 4366 | |
| 4367 | /* It is used in the ingress path to clear the delivery_time. |
| 4368 | * If needed, set the skb->tstamp to the (rcv) timestamp. |
| 4369 | */ |
| 4370 | static inline void skb_clear_delivery_time(struct sk_buff *skb) |
| 4371 | { |
| 4372 | if (skb->tstamp_type) { |
| 4373 | skb->tstamp_type = SKB_CLOCK_REALTIME; |
| 4374 | if (static_branch_unlikely(&netstamp_needed_key)) |
| 4375 | skb->tstamp = ktime_get_real(); |
| 4376 | else |
| 4377 | skb->tstamp = 0; |
| 4378 | } |
| 4379 | } |
| 4380 | |
| 4381 | static inline void skb_clear_tstamp(struct sk_buff *skb) |
| 4382 | { |
| 4383 | if (skb->tstamp_type) |
| 4384 | return; |
| 4385 | |
| 4386 | skb->tstamp = 0; |
| 4387 | } |
| 4388 | |
| 4389 | static inline ktime_t skb_tstamp(const struct sk_buff *skb) |
| 4390 | { |
| 4391 | if (skb->tstamp_type) |
| 4392 | return 0; |
| 4393 | |
| 4394 | return skb->tstamp; |
| 4395 | } |
| 4396 | |
| 4397 | static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) |
| 4398 | { |
| 4399 | if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) |
| 4400 | return skb->tstamp; |
| 4401 | |
| 4402 | if (static_branch_unlikely(&netstamp_needed_key) || cond) |
| 4403 | return ktime_get_real(); |
| 4404 | |
| 4405 | return 0; |
| 4406 | } |
| 4407 | |
| 4408 | static inline u8 skb_metadata_len(const struct sk_buff *skb) |
| 4409 | { |
| 4410 | return skb_shinfo(skb)->meta_len; |
| 4411 | } |
| 4412 | |
| 4413 | static inline void *skb_metadata_end(const struct sk_buff *skb) |
| 4414 | { |
| 4415 | return skb_mac_header(skb); |
| 4416 | } |
| 4417 | |
| 4418 | static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, |
| 4419 | const struct sk_buff *skb_b, |
| 4420 | u8 meta_len) |
| 4421 | { |
| 4422 | const void *a = skb_metadata_end(skb: skb_a); |
| 4423 | const void *b = skb_metadata_end(skb: skb_b); |
| 4424 | u64 diffs = 0; |
| 4425 | |
| 4426 | if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || |
| 4427 | BITS_PER_LONG != 64) |
| 4428 | goto slow; |
| 4429 | |
| 4430 | /* Using more efficient variant than plain call to memcmp(). */ |
| 4431 | switch (meta_len) { |
| 4432 | #define __it(x, op) (x -= sizeof(u##op)) |
| 4433 | #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) |
| 4434 | case 32: diffs |= __it_diff(a, b, 64); |
| 4435 | fallthrough; |
| 4436 | case 24: diffs |= __it_diff(a, b, 64); |
| 4437 | fallthrough; |
| 4438 | case 16: diffs |= __it_diff(a, b, 64); |
| 4439 | fallthrough; |
| 4440 | case 8: diffs |= __it_diff(a, b, 64); |
| 4441 | break; |
| 4442 | case 28: diffs |= __it_diff(a, b, 64); |
| 4443 | fallthrough; |
| 4444 | case 20: diffs |= __it_diff(a, b, 64); |
| 4445 | fallthrough; |
| 4446 | case 12: diffs |= __it_diff(a, b, 64); |
| 4447 | fallthrough; |
| 4448 | case 4: diffs |= __it_diff(a, b, 32); |
| 4449 | break; |
| 4450 | default: |
| 4451 | slow: |
| 4452 | return memcmp(p: a - meta_len, q: b - meta_len, size: meta_len); |
| 4453 | } |
| 4454 | return diffs; |
| 4455 | } |
| 4456 | |
| 4457 | static inline bool skb_metadata_differs(const struct sk_buff *skb_a, |
| 4458 | const struct sk_buff *skb_b) |
| 4459 | { |
| 4460 | u8 len_a = skb_metadata_len(skb: skb_a); |
| 4461 | u8 len_b = skb_metadata_len(skb: skb_b); |
| 4462 | |
| 4463 | if (!(len_a | len_b)) |
| 4464 | return false; |
| 4465 | |
| 4466 | return len_a != len_b ? |
| 4467 | true : __skb_metadata_differs(skb_a, skb_b, meta_len: len_a); |
| 4468 | } |
| 4469 | |
| 4470 | static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) |
| 4471 | { |
| 4472 | skb_shinfo(skb)->meta_len = meta_len; |
| 4473 | } |
| 4474 | |
| 4475 | static inline void skb_metadata_clear(struct sk_buff *skb) |
| 4476 | { |
| 4477 | skb_metadata_set(skb, meta_len: 0); |
| 4478 | } |
| 4479 | |
| 4480 | struct sk_buff *skb_clone_sk(struct sk_buff *skb); |
| 4481 | |
| 4482 | #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING |
| 4483 | |
| 4484 | void skb_clone_tx_timestamp(struct sk_buff *skb); |
| 4485 | bool skb_defer_rx_timestamp(struct sk_buff *skb); |
| 4486 | |
| 4487 | #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ |
| 4488 | |
| 4489 | static inline void skb_clone_tx_timestamp(struct sk_buff *skb) |
| 4490 | { |
| 4491 | } |
| 4492 | |
| 4493 | static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) |
| 4494 | { |
| 4495 | return false; |
| 4496 | } |
| 4497 | |
| 4498 | #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ |
| 4499 | |
| 4500 | /** |
| 4501 | * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps |
| 4502 | * |
| 4503 | * PHY drivers may accept clones of transmitted packets for |
| 4504 | * timestamping via their phy_driver.txtstamp method. These drivers |
| 4505 | * must call this function to return the skb back to the stack with a |
| 4506 | * timestamp. |
| 4507 | * |
| 4508 | * @skb: clone of the original outgoing packet |
| 4509 | * @hwtstamps: hardware time stamps |
| 4510 | * |
| 4511 | */ |
| 4512 | void skb_complete_tx_timestamp(struct sk_buff *skb, |
| 4513 | struct skb_shared_hwtstamps *hwtstamps); |
| 4514 | |
| 4515 | void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, |
| 4516 | struct skb_shared_hwtstamps *hwtstamps, |
| 4517 | struct sock *sk, int tstype); |
| 4518 | |
| 4519 | /** |
| 4520 | * skb_tstamp_tx - queue clone of skb with send time stamps |
| 4521 | * @orig_skb: the original outgoing packet |
| 4522 | * @hwtstamps: hardware time stamps, may be NULL if not available |
| 4523 | * |
| 4524 | * If the skb has a socket associated, then this function clones the |
| 4525 | * skb (thus sharing the actual data and optional structures), stores |
| 4526 | * the optional hardware time stamping information (if non NULL) or |
| 4527 | * generates a software time stamp (otherwise), then queues the clone |
| 4528 | * to the error queue of the socket. Errors are silently ignored. |
| 4529 | */ |
| 4530 | void skb_tstamp_tx(struct sk_buff *orig_skb, |
| 4531 | struct skb_shared_hwtstamps *hwtstamps); |
| 4532 | |
| 4533 | /** |
| 4534 | * skb_tx_timestamp() - Driver hook for transmit timestamping |
| 4535 | * |
| 4536 | * Ethernet MAC Drivers should call this function in their hard_xmit() |
| 4537 | * function immediately before giving the sk_buff to the MAC hardware. |
| 4538 | * |
| 4539 | * Specifically, one should make absolutely sure that this function is |
| 4540 | * called before TX completion of this packet can trigger. Otherwise |
| 4541 | * the packet could potentially already be freed. |
| 4542 | * |
| 4543 | * @skb: A socket buffer. |
| 4544 | */ |
| 4545 | static inline void skb_tx_timestamp(struct sk_buff *skb) |
| 4546 | { |
| 4547 | skb_clone_tx_timestamp(skb); |
| 4548 | if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF)) |
| 4549 | skb_tstamp_tx(orig_skb: skb, NULL); |
| 4550 | } |
| 4551 | |
| 4552 | /** |
| 4553 | * skb_complete_wifi_ack - deliver skb with wifi status |
| 4554 | * |
| 4555 | * @skb: the original outgoing packet |
| 4556 | * @acked: ack status |
| 4557 | * |
| 4558 | */ |
| 4559 | void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); |
| 4560 | |
| 4561 | __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); |
| 4562 | __sum16 __skb_checksum_complete(struct sk_buff *skb); |
| 4563 | |
| 4564 | static inline int skb_csum_unnecessary(const struct sk_buff *skb) |
| 4565 | { |
| 4566 | return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || |
| 4567 | skb->csum_valid || |
| 4568 | (skb->ip_summed == CHECKSUM_PARTIAL && |
| 4569 | skb_checksum_start_offset(skb) >= 0)); |
| 4570 | } |
| 4571 | |
| 4572 | /** |
| 4573 | * skb_checksum_complete - Calculate checksum of an entire packet |
| 4574 | * @skb: packet to process |
| 4575 | * |
| 4576 | * This function calculates the checksum over the entire packet plus |
| 4577 | * the value of skb->csum. The latter can be used to supply the |
| 4578 | * checksum of a pseudo header as used by TCP/UDP. It returns the |
| 4579 | * checksum. |
| 4580 | * |
| 4581 | * For protocols that contain complete checksums such as ICMP/TCP/UDP, |
| 4582 | * this function can be used to verify that checksum on received |
| 4583 | * packets. In that case the function should return zero if the |
| 4584 | * checksum is correct. In particular, this function will return zero |
| 4585 | * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the |
| 4586 | * hardware has already verified the correctness of the checksum. |
| 4587 | */ |
| 4588 | static inline __sum16 skb_checksum_complete(struct sk_buff *skb) |
| 4589 | { |
| 4590 | return skb_csum_unnecessary(skb) ? |
| 4591 | 0 : __skb_checksum_complete(skb); |
| 4592 | } |
| 4593 | |
| 4594 | static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) |
| 4595 | { |
| 4596 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| 4597 | if (skb->csum_level == 0) |
| 4598 | skb->ip_summed = CHECKSUM_NONE; |
| 4599 | else |
| 4600 | skb->csum_level--; |
| 4601 | } |
| 4602 | } |
| 4603 | |
| 4604 | static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) |
| 4605 | { |
| 4606 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| 4607 | if (skb->csum_level < SKB_MAX_CSUM_LEVEL) |
| 4608 | skb->csum_level++; |
| 4609 | } else if (skb->ip_summed == CHECKSUM_NONE) { |
| 4610 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 4611 | skb->csum_level = 0; |
| 4612 | } |
| 4613 | } |
| 4614 | |
| 4615 | static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) |
| 4616 | { |
| 4617 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| 4618 | skb->ip_summed = CHECKSUM_NONE; |
| 4619 | skb->csum_level = 0; |
| 4620 | } |
| 4621 | } |
| 4622 | |
| 4623 | /* Check if we need to perform checksum complete validation. |
| 4624 | * |
| 4625 | * Returns: true if checksum complete is needed, false otherwise |
| 4626 | * (either checksum is unnecessary or zero checksum is allowed). |
| 4627 | */ |
| 4628 | static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, |
| 4629 | bool zero_okay, |
| 4630 | __sum16 check) |
| 4631 | { |
| 4632 | if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { |
| 4633 | skb->csum_valid = 1; |
| 4634 | __skb_decr_checksum_unnecessary(skb); |
| 4635 | return false; |
| 4636 | } |
| 4637 | |
| 4638 | return true; |
| 4639 | } |
| 4640 | |
| 4641 | /* For small packets <= CHECKSUM_BREAK perform checksum complete directly |
| 4642 | * in checksum_init. |
| 4643 | */ |
| 4644 | #define CHECKSUM_BREAK 76 |
| 4645 | |
| 4646 | /* Unset checksum-complete |
| 4647 | * |
| 4648 | * Unset checksum complete can be done when packet is being modified |
| 4649 | * (uncompressed for instance) and checksum-complete value is |
| 4650 | * invalidated. |
| 4651 | */ |
| 4652 | static inline void skb_checksum_complete_unset(struct sk_buff *skb) |
| 4653 | { |
| 4654 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 4655 | skb->ip_summed = CHECKSUM_NONE; |
| 4656 | } |
| 4657 | |
| 4658 | /* Validate (init) checksum based on checksum complete. |
| 4659 | * |
| 4660 | * Return values: |
| 4661 | * 0: checksum is validated or try to in skb_checksum_complete. In the latter |
| 4662 | * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo |
| 4663 | * checksum is stored in skb->csum for use in __skb_checksum_complete |
| 4664 | * non-zero: value of invalid checksum |
| 4665 | * |
| 4666 | */ |
| 4667 | static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, |
| 4668 | bool complete, |
| 4669 | __wsum psum) |
| 4670 | { |
| 4671 | if (skb->ip_summed == CHECKSUM_COMPLETE) { |
| 4672 | if (!csum_fold(csum: csum_add(csum: psum, addend: skb->csum))) { |
| 4673 | skb->csum_valid = 1; |
| 4674 | return 0; |
| 4675 | } |
| 4676 | } |
| 4677 | |
| 4678 | skb->csum = psum; |
| 4679 | |
| 4680 | if (complete || skb->len <= CHECKSUM_BREAK) { |
| 4681 | __sum16 csum; |
| 4682 | |
| 4683 | csum = __skb_checksum_complete(skb); |
| 4684 | skb->csum_valid = !csum; |
| 4685 | return csum; |
| 4686 | } |
| 4687 | |
| 4688 | return 0; |
| 4689 | } |
| 4690 | |
| 4691 | static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) |
| 4692 | { |
| 4693 | return 0; |
| 4694 | } |
| 4695 | |
| 4696 | /* Perform checksum validate (init). Note that this is a macro since we only |
| 4697 | * want to calculate the pseudo header which is an input function if necessary. |
| 4698 | * First we try to validate without any computation (checksum unnecessary) and |
| 4699 | * then calculate based on checksum complete calling the function to compute |
| 4700 | * pseudo header. |
| 4701 | * |
| 4702 | * Return values: |
| 4703 | * 0: checksum is validated or try to in skb_checksum_complete |
| 4704 | * non-zero: value of invalid checksum |
| 4705 | */ |
| 4706 | #define __skb_checksum_validate(skb, proto, complete, \ |
| 4707 | zero_okay, check, compute_pseudo) \ |
| 4708 | ({ \ |
| 4709 | __sum16 __ret = 0; \ |
| 4710 | skb->csum_valid = 0; \ |
| 4711 | if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ |
| 4712 | __ret = __skb_checksum_validate_complete(skb, \ |
| 4713 | complete, compute_pseudo(skb, proto)); \ |
| 4714 | __ret; \ |
| 4715 | }) |
| 4716 | |
| 4717 | #define skb_checksum_init(skb, proto, compute_pseudo) \ |
| 4718 | __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) |
| 4719 | |
| 4720 | #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ |
| 4721 | __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) |
| 4722 | |
| 4723 | #define skb_checksum_validate(skb, proto, compute_pseudo) \ |
| 4724 | __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) |
| 4725 | |
| 4726 | #define skb_checksum_validate_zero_check(skb, proto, check, \ |
| 4727 | compute_pseudo) \ |
| 4728 | __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) |
| 4729 | |
| 4730 | #define skb_checksum_simple_validate(skb) \ |
| 4731 | __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) |
| 4732 | |
| 4733 | static inline bool __skb_checksum_convert_check(struct sk_buff *skb) |
| 4734 | { |
| 4735 | return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); |
| 4736 | } |
| 4737 | |
| 4738 | static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) |
| 4739 | { |
| 4740 | skb->csum = ~pseudo; |
| 4741 | skb->ip_summed = CHECKSUM_COMPLETE; |
| 4742 | } |
| 4743 | |
| 4744 | #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ |
| 4745 | do { \ |
| 4746 | if (__skb_checksum_convert_check(skb)) \ |
| 4747 | __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ |
| 4748 | } while (0) |
| 4749 | |
| 4750 | static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, |
| 4751 | u16 start, u16 offset) |
| 4752 | { |
| 4753 | skb->ip_summed = CHECKSUM_PARTIAL; |
| 4754 | skb->csum_start = ((unsigned char *)ptr + start) - skb->head; |
| 4755 | skb->csum_offset = offset - start; |
| 4756 | } |
| 4757 | |
| 4758 | /* Update skbuf and packet to reflect the remote checksum offload operation. |
| 4759 | * When called, ptr indicates the starting point for skb->csum when |
| 4760 | * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete |
| 4761 | * here, skb_postpull_rcsum is done so skb->csum start is ptr. |
| 4762 | */ |
| 4763 | static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, |
| 4764 | int start, int offset, bool nopartial) |
| 4765 | { |
| 4766 | __wsum delta; |
| 4767 | |
| 4768 | if (!nopartial) { |
| 4769 | skb_remcsum_adjust_partial(skb, ptr, start, offset); |
| 4770 | return; |
| 4771 | } |
| 4772 | |
| 4773 | if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { |
| 4774 | __skb_checksum_complete(skb); |
| 4775 | skb_postpull_rcsum(skb, start: skb->data, len: ptr - (void *)skb->data); |
| 4776 | } |
| 4777 | |
| 4778 | delta = remcsum_adjust(ptr, csum: skb->csum, start, offset); |
| 4779 | |
| 4780 | /* Adjust skb->csum since we changed the packet */ |
| 4781 | skb->csum = csum_add(csum: skb->csum, addend: delta); |
| 4782 | } |
| 4783 | |
| 4784 | static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) |
| 4785 | { |
| 4786 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| 4787 | return (void *)(skb->_nfct & NFCT_PTRMASK); |
| 4788 | #else |
| 4789 | return NULL; |
| 4790 | #endif |
| 4791 | } |
| 4792 | |
| 4793 | static inline unsigned long skb_get_nfct(const struct sk_buff *skb) |
| 4794 | { |
| 4795 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| 4796 | return skb->_nfct; |
| 4797 | #else |
| 4798 | return 0UL; |
| 4799 | #endif |
| 4800 | } |
| 4801 | |
| 4802 | static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) |
| 4803 | { |
| 4804 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| 4805 | skb->slow_gro |= !!nfct; |
| 4806 | skb->_nfct = nfct; |
| 4807 | #endif |
| 4808 | } |
| 4809 | |
| 4810 | #ifdef CONFIG_SKB_EXTENSIONS |
| 4811 | enum skb_ext_id { |
| 4812 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
| 4813 | SKB_EXT_BRIDGE_NF, |
| 4814 | #endif |
| 4815 | #ifdef CONFIG_XFRM |
| 4816 | SKB_EXT_SEC_PATH, |
| 4817 | #endif |
| 4818 | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) |
| 4819 | TC_SKB_EXT, |
| 4820 | #endif |
| 4821 | #if IS_ENABLED(CONFIG_MPTCP) |
| 4822 | SKB_EXT_MPTCP, |
| 4823 | #endif |
| 4824 | #if IS_ENABLED(CONFIG_MCTP_FLOWS) |
| 4825 | SKB_EXT_MCTP, |
| 4826 | #endif |
| 4827 | SKB_EXT_NUM, /* must be last */ |
| 4828 | }; |
| 4829 | |
| 4830 | /** |
| 4831 | * struct skb_ext - sk_buff extensions |
| 4832 | * @refcnt: 1 on allocation, deallocated on 0 |
| 4833 | * @offset: offset to add to @data to obtain extension address |
| 4834 | * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units |
| 4835 | * @data: start of extension data, variable sized |
| 4836 | * |
| 4837 | * Note: offsets/lengths are stored in chunks of 8 bytes, this allows |
| 4838 | * to use 'u8' types while allowing up to 2kb worth of extension data. |
| 4839 | */ |
| 4840 | struct skb_ext { |
| 4841 | refcount_t refcnt; |
| 4842 | u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ |
| 4843 | u8 chunks; /* same */ |
| 4844 | char data[] __aligned(8); |
| 4845 | }; |
| 4846 | |
| 4847 | struct skb_ext *__skb_ext_alloc(gfp_t flags); |
| 4848 | void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, |
| 4849 | struct skb_ext *ext); |
| 4850 | void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); |
| 4851 | void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); |
| 4852 | void __skb_ext_put(struct skb_ext *ext); |
| 4853 | |
| 4854 | static inline void skb_ext_put(struct sk_buff *skb) |
| 4855 | { |
| 4856 | if (skb->active_extensions) |
| 4857 | __skb_ext_put(ext: skb->extensions); |
| 4858 | } |
| 4859 | |
| 4860 | static inline void __skb_ext_copy(struct sk_buff *dst, |
| 4861 | const struct sk_buff *src) |
| 4862 | { |
| 4863 | dst->active_extensions = src->active_extensions; |
| 4864 | |
| 4865 | if (src->active_extensions) { |
| 4866 | struct skb_ext *ext = src->extensions; |
| 4867 | |
| 4868 | refcount_inc(r: &ext->refcnt); |
| 4869 | dst->extensions = ext; |
| 4870 | } |
| 4871 | } |
| 4872 | |
| 4873 | static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) |
| 4874 | { |
| 4875 | skb_ext_put(skb: dst); |
| 4876 | __skb_ext_copy(dst, src); |
| 4877 | } |
| 4878 | |
| 4879 | static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) |
| 4880 | { |
| 4881 | return !!ext->offset[i]; |
| 4882 | } |
| 4883 | |
| 4884 | static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) |
| 4885 | { |
| 4886 | return skb->active_extensions & (1 << id); |
| 4887 | } |
| 4888 | |
| 4889 | static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) |
| 4890 | { |
| 4891 | if (skb_ext_exist(skb, id)) |
| 4892 | __skb_ext_del(skb, id); |
| 4893 | } |
| 4894 | |
| 4895 | static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) |
| 4896 | { |
| 4897 | if (skb_ext_exist(skb, id)) { |
| 4898 | struct skb_ext *ext = skb->extensions; |
| 4899 | |
| 4900 | return (void *)ext + (ext->offset[id] << 3); |
| 4901 | } |
| 4902 | |
| 4903 | return NULL; |
| 4904 | } |
| 4905 | |
| 4906 | static inline void skb_ext_reset(struct sk_buff *skb) |
| 4907 | { |
| 4908 | if (unlikely(skb->active_extensions)) { |
| 4909 | __skb_ext_put(ext: skb->extensions); |
| 4910 | skb->active_extensions = 0; |
| 4911 | } |
| 4912 | } |
| 4913 | |
| 4914 | static inline bool skb_has_extensions(struct sk_buff *skb) |
| 4915 | { |
| 4916 | return unlikely(skb->active_extensions); |
| 4917 | } |
| 4918 | #else |
| 4919 | static inline void skb_ext_put(struct sk_buff *skb) {} |
| 4920 | static inline void skb_ext_reset(struct sk_buff *skb) {} |
| 4921 | static inline void skb_ext_del(struct sk_buff *skb, int unused) {} |
| 4922 | static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} |
| 4923 | static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} |
| 4924 | static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } |
| 4925 | #endif /* CONFIG_SKB_EXTENSIONS */ |
| 4926 | |
| 4927 | static inline void nf_reset_ct(struct sk_buff *skb) |
| 4928 | { |
| 4929 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
| 4930 | nf_conntrack_put(nfct: skb_nfct(skb)); |
| 4931 | skb->_nfct = 0; |
| 4932 | #endif |
| 4933 | } |
| 4934 | |
| 4935 | static inline void nf_reset_trace(struct sk_buff *skb) |
| 4936 | { |
| 4937 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) |
| 4938 | skb->nf_trace = 0; |
| 4939 | #endif |
| 4940 | } |
| 4941 | |
| 4942 | static inline void ipvs_reset(struct sk_buff *skb) |
| 4943 | { |
| 4944 | #if IS_ENABLED(CONFIG_IP_VS) |
| 4945 | skb->ipvs_property = 0; |
| 4946 | #endif |
| 4947 | } |
| 4948 | |
| 4949 | /* Note: This doesn't put any conntrack info in dst. */ |
| 4950 | static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, |
| 4951 | bool copy) |
| 4952 | { |
| 4953 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
| 4954 | dst->_nfct = src->_nfct; |
| 4955 | nf_conntrack_get(nfct: skb_nfct(skb: src)); |
| 4956 | #endif |
| 4957 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) |
| 4958 | if (copy) |
| 4959 | dst->nf_trace = src->nf_trace; |
| 4960 | #endif |
| 4961 | } |
| 4962 | |
| 4963 | static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) |
| 4964 | { |
| 4965 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
| 4966 | nf_conntrack_put(nfct: skb_nfct(skb: dst)); |
| 4967 | #endif |
| 4968 | dst->slow_gro = src->slow_gro; |
| 4969 | __nf_copy(dst, src, copy: true); |
| 4970 | } |
| 4971 | |
| 4972 | #ifdef CONFIG_NETWORK_SECMARK |
| 4973 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) |
| 4974 | { |
| 4975 | to->secmark = from->secmark; |
| 4976 | } |
| 4977 | |
| 4978 | static inline void skb_init_secmark(struct sk_buff *skb) |
| 4979 | { |
| 4980 | skb->secmark = 0; |
| 4981 | } |
| 4982 | #else |
| 4983 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) |
| 4984 | { } |
| 4985 | |
| 4986 | static inline void skb_init_secmark(struct sk_buff *skb) |
| 4987 | { } |
| 4988 | #endif |
| 4989 | |
| 4990 | static inline int secpath_exists(const struct sk_buff *skb) |
| 4991 | { |
| 4992 | #ifdef CONFIG_XFRM |
| 4993 | return skb_ext_exist(skb, id: SKB_EXT_SEC_PATH); |
| 4994 | #else |
| 4995 | return 0; |
| 4996 | #endif |
| 4997 | } |
| 4998 | |
| 4999 | static inline bool skb_irq_freeable(const struct sk_buff *skb) |
| 5000 | { |
| 5001 | return !skb->destructor && |
| 5002 | !secpath_exists(skb) && |
| 5003 | !skb_nfct(skb) && |
| 5004 | !skb->_skb_refdst && |
| 5005 | !skb_has_frag_list(skb); |
| 5006 | } |
| 5007 | |
| 5008 | static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) |
| 5009 | { |
| 5010 | skb->queue_mapping = queue_mapping; |
| 5011 | } |
| 5012 | |
| 5013 | static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) |
| 5014 | { |
| 5015 | return skb->queue_mapping; |
| 5016 | } |
| 5017 | |
| 5018 | static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) |
| 5019 | { |
| 5020 | to->queue_mapping = from->queue_mapping; |
| 5021 | } |
| 5022 | |
| 5023 | static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) |
| 5024 | { |
| 5025 | skb->queue_mapping = rx_queue + 1; |
| 5026 | } |
| 5027 | |
| 5028 | static inline u16 skb_get_rx_queue(const struct sk_buff *skb) |
| 5029 | { |
| 5030 | return skb->queue_mapping - 1; |
| 5031 | } |
| 5032 | |
| 5033 | static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) |
| 5034 | { |
| 5035 | return skb->queue_mapping != 0; |
| 5036 | } |
| 5037 | |
| 5038 | static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) |
| 5039 | { |
| 5040 | skb->dst_pending_confirm = val; |
| 5041 | } |
| 5042 | |
| 5043 | static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) |
| 5044 | { |
| 5045 | return skb->dst_pending_confirm != 0; |
| 5046 | } |
| 5047 | |
| 5048 | static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) |
| 5049 | { |
| 5050 | #ifdef CONFIG_XFRM |
| 5051 | return skb_ext_find(skb, id: SKB_EXT_SEC_PATH); |
| 5052 | #else |
| 5053 | return NULL; |
| 5054 | #endif |
| 5055 | } |
| 5056 | |
| 5057 | static inline bool skb_is_gso(const struct sk_buff *skb) |
| 5058 | { |
| 5059 | return skb_shinfo(skb)->gso_size; |
| 5060 | } |
| 5061 | |
| 5062 | /* Note: Should be called only if skb_is_gso(skb) is true */ |
| 5063 | static inline bool skb_is_gso_v6(const struct sk_buff *skb) |
| 5064 | { |
| 5065 | return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; |
| 5066 | } |
| 5067 | |
| 5068 | /* Note: Should be called only if skb_is_gso(skb) is true */ |
| 5069 | static inline bool skb_is_gso_sctp(const struct sk_buff *skb) |
| 5070 | { |
| 5071 | return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; |
| 5072 | } |
| 5073 | |
| 5074 | /* Note: Should be called only if skb_is_gso(skb) is true */ |
| 5075 | static inline bool skb_is_gso_tcp(const struct sk_buff *skb) |
| 5076 | { |
| 5077 | return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); |
| 5078 | } |
| 5079 | |
| 5080 | static inline void skb_gso_reset(struct sk_buff *skb) |
| 5081 | { |
| 5082 | skb_shinfo(skb)->gso_size = 0; |
| 5083 | skb_shinfo(skb)->gso_segs = 0; |
| 5084 | skb_shinfo(skb)->gso_type = 0; |
| 5085 | } |
| 5086 | |
| 5087 | static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, |
| 5088 | u16 increment) |
| 5089 | { |
| 5090 | if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) |
| 5091 | return; |
| 5092 | shinfo->gso_size += increment; |
| 5093 | } |
| 5094 | |
| 5095 | static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, |
| 5096 | u16 decrement) |
| 5097 | { |
| 5098 | if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) |
| 5099 | return; |
| 5100 | shinfo->gso_size -= decrement; |
| 5101 | } |
| 5102 | |
| 5103 | void __skb_warn_lro_forwarding(const struct sk_buff *skb); |
| 5104 | |
| 5105 | static inline bool skb_warn_if_lro(const struct sk_buff *skb) |
| 5106 | { |
| 5107 | /* LRO sets gso_size but not gso_type, whereas if GSO is really |
| 5108 | * wanted then gso_type will be set. */ |
| 5109 | const struct skb_shared_info *shinfo = skb_shinfo(skb); |
| 5110 | |
| 5111 | if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && |
| 5112 | unlikely(shinfo->gso_type == 0)) { |
| 5113 | __skb_warn_lro_forwarding(skb); |
| 5114 | return true; |
| 5115 | } |
| 5116 | return false; |
| 5117 | } |
| 5118 | |
| 5119 | static inline void skb_forward_csum(struct sk_buff *skb) |
| 5120 | { |
| 5121 | /* Unfortunately we don't support this one. Any brave souls? */ |
| 5122 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 5123 | skb->ip_summed = CHECKSUM_NONE; |
| 5124 | } |
| 5125 | |
| 5126 | /** |
| 5127 | * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE |
| 5128 | * @skb: skb to check |
| 5129 | * |
| 5130 | * fresh skbs have their ip_summed set to CHECKSUM_NONE. |
| 5131 | * Instead of forcing ip_summed to CHECKSUM_NONE, we can |
| 5132 | * use this helper, to document places where we make this assertion. |
| 5133 | */ |
| 5134 | static inline void skb_checksum_none_assert(const struct sk_buff *skb) |
| 5135 | { |
| 5136 | DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); |
| 5137 | } |
| 5138 | |
| 5139 | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); |
| 5140 | |
| 5141 | int skb_checksum_setup(struct sk_buff *skb, bool recalculate); |
| 5142 | struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, |
| 5143 | unsigned int transport_len, |
| 5144 | __sum16(*skb_chkf)(struct sk_buff *skb)); |
| 5145 | |
| 5146 | /** |
| 5147 | * skb_head_is_locked - Determine if the skb->head is locked down |
| 5148 | * @skb: skb to check |
| 5149 | * |
| 5150 | * The head on skbs build around a head frag can be removed if they are |
| 5151 | * not cloned. This function returns true if the skb head is locked down |
| 5152 | * due to either being allocated via kmalloc, or by being a clone with |
| 5153 | * multiple references to the head. |
| 5154 | */ |
| 5155 | static inline bool skb_head_is_locked(const struct sk_buff *skb) |
| 5156 | { |
| 5157 | return !skb->head_frag || skb_cloned(skb); |
| 5158 | } |
| 5159 | |
| 5160 | /* Local Checksum Offload. |
| 5161 | * Compute outer checksum based on the assumption that the |
| 5162 | * inner checksum will be offloaded later. |
| 5163 | * See Documentation/networking/checksum-offloads.rst for |
| 5164 | * explanation of how this works. |
| 5165 | * Fill in outer checksum adjustment (e.g. with sum of outer |
| 5166 | * pseudo-header) before calling. |
| 5167 | * Also ensure that inner checksum is in linear data area. |
| 5168 | */ |
| 5169 | static inline __wsum lco_csum(struct sk_buff *skb) |
| 5170 | { |
| 5171 | unsigned char *csum_start = skb_checksum_start(skb); |
| 5172 | unsigned char *l4_hdr = skb_transport_header(skb); |
| 5173 | __wsum partial; |
| 5174 | |
| 5175 | /* Start with complement of inner checksum adjustment */ |
| 5176 | partial = ~csum_unfold(n: *(__force __sum16 *)(csum_start + |
| 5177 | skb->csum_offset)); |
| 5178 | |
| 5179 | /* Add in checksum of our headers (incl. outer checksum |
| 5180 | * adjustment filled in by caller) and return result. |
| 5181 | */ |
| 5182 | return csum_partial(buff: l4_hdr, len: csum_start - l4_hdr, sum: partial); |
| 5183 | } |
| 5184 | |
| 5185 | static inline bool skb_is_redirected(const struct sk_buff *skb) |
| 5186 | { |
| 5187 | return skb->redirected; |
| 5188 | } |
| 5189 | |
| 5190 | static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) |
| 5191 | { |
| 5192 | skb->redirected = 1; |
| 5193 | #ifdef CONFIG_NET_REDIRECT |
| 5194 | skb->from_ingress = from_ingress; |
| 5195 | if (skb->from_ingress) |
| 5196 | skb_clear_tstamp(skb); |
| 5197 | #endif |
| 5198 | } |
| 5199 | |
| 5200 | static inline void skb_reset_redirect(struct sk_buff *skb) |
| 5201 | { |
| 5202 | skb->redirected = 0; |
| 5203 | } |
| 5204 | |
| 5205 | static inline void skb_set_redirected_noclear(struct sk_buff *skb, |
| 5206 | bool from_ingress) |
| 5207 | { |
| 5208 | skb->redirected = 1; |
| 5209 | #ifdef CONFIG_NET_REDIRECT |
| 5210 | skb->from_ingress = from_ingress; |
| 5211 | #endif |
| 5212 | } |
| 5213 | |
| 5214 | static inline bool skb_csum_is_sctp(struct sk_buff *skb) |
| 5215 | { |
| 5216 | #if IS_ENABLED(CONFIG_IP_SCTP) |
| 5217 | return skb->csum_not_inet; |
| 5218 | #else |
| 5219 | return 0; |
| 5220 | #endif |
| 5221 | } |
| 5222 | |
| 5223 | static inline void skb_reset_csum_not_inet(struct sk_buff *skb) |
| 5224 | { |
| 5225 | skb->ip_summed = CHECKSUM_NONE; |
| 5226 | #if IS_ENABLED(CONFIG_IP_SCTP) |
| 5227 | skb->csum_not_inet = 0; |
| 5228 | #endif |
| 5229 | } |
| 5230 | |
| 5231 | static inline void skb_set_kcov_handle(struct sk_buff *skb, |
| 5232 | const u64 kcov_handle) |
| 5233 | { |
| 5234 | #ifdef CONFIG_KCOV |
| 5235 | skb->kcov_handle = kcov_handle; |
| 5236 | #endif |
| 5237 | } |
| 5238 | |
| 5239 | static inline u64 skb_get_kcov_handle(struct sk_buff *skb) |
| 5240 | { |
| 5241 | #ifdef CONFIG_KCOV |
| 5242 | return skb->kcov_handle; |
| 5243 | #else |
| 5244 | return 0; |
| 5245 | #endif |
| 5246 | } |
| 5247 | |
| 5248 | static inline void skb_mark_for_recycle(struct sk_buff *skb) |
| 5249 | { |
| 5250 | #ifdef CONFIG_PAGE_POOL |
| 5251 | skb->pp_recycle = 1; |
| 5252 | #endif |
| 5253 | } |
| 5254 | |
| 5255 | ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, |
| 5256 | ssize_t maxsize, gfp_t gfp); |
| 5257 | |
| 5258 | #endif /* __KERNEL__ */ |
| 5259 | #endif /* _LINUX_SKBUFF_H */ |
| 5260 | |