1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31#include <asm/local.h>
32
33#include <linux/percpu.h>
34#include <linux/rculist.h>
35#include <linux/workqueue.h>
36#include <linux/dynamic_queue_limits.h>
37
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43
44#include <linux/netdev_features.h>
45#include <linux/neighbour.h>
46#include <uapi/linux/netdevice.h>
47#include <uapi/linux/if_bonding.h>
48#include <uapi/linux/pkt_cls.h>
49#include <uapi/linux/netdev.h>
50#include <linux/hashtable.h>
51#include <linux/rbtree.h>
52#include <net/net_trackers.h>
53#include <net/net_debug.h>
54#include <net/dropreason-core.h>
55
56struct netpoll_info;
57struct device;
58struct ethtool_ops;
59struct kernel_hwtstamp_config;
60struct phy_device;
61struct dsa_port;
62struct ip_tunnel_parm;
63struct macsec_context;
64struct macsec_ops;
65struct netdev_name_node;
66struct sd_flow_limit;
67struct sfp_bus;
68/* 802.11 specific */
69struct wireless_dev;
70/* 802.15.4 specific */
71struct wpan_dev;
72struct mpls_dev;
73/* UDP Tunnel offloads */
74struct udp_tunnel_info;
75struct udp_tunnel_nic_info;
76struct udp_tunnel_nic;
77struct bpf_prog;
78struct xdp_buff;
79struct xdp_frame;
80struct xdp_metadata_ops;
81struct xdp_md;
82/* DPLL specific */
83struct dpll_pin;
84
85typedef u32 xdp_features_t;
86
87void synchronize_net(void);
88void netdev_set_default_ethtool_ops(struct net_device *dev,
89 const struct ethtool_ops *ops);
90void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91
92/* Backlog congestion levels */
93#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
94#define NET_RX_DROP 1 /* packet dropped */
95
96#define MAX_NEST_DEV 8
97
98/*
99 * Transmit return codes: transmit return codes originate from three different
100 * namespaces:
101 *
102 * - qdisc return codes
103 * - driver transmit return codes
104 * - errno values
105 *
106 * Drivers are allowed to return any one of those in their hard_start_xmit()
107 * function. Real network devices commonly used with qdiscs should only return
108 * the driver transmit return codes though - when qdiscs are used, the actual
109 * transmission happens asynchronously, so the value is not propagated to
110 * higher layers. Virtual network devices transmit synchronously; in this case
111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112 * others are propagated to higher layers.
113 */
114
115/* qdisc ->enqueue() return codes. */
116#define NET_XMIT_SUCCESS 0x00
117#define NET_XMIT_DROP 0x01 /* skb dropped */
118#define NET_XMIT_CN 0x02 /* congestion notification */
119#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
120
121/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122 * indicates that the device will soon be dropping packets, or already drops
123 * some packets of the same priority; prompting us to send less aggressively. */
124#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
125#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126
127/* Driver transmit return codes */
128#define NETDEV_TX_MASK 0xf0
129
130enum netdev_tx {
131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
132 NETDEV_TX_OK = 0x00, /* driver took care of packet */
133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
134};
135typedef enum netdev_tx netdev_tx_t;
136
137/*
138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140 */
141static inline bool dev_xmit_complete(int rc)
142{
143 /*
144 * Positive cases with an skb consumed by a driver:
145 * - successful transmission (rc == NETDEV_TX_OK)
146 * - error while transmitting (rc < 0)
147 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 */
149 if (likely(rc < NET_XMIT_MASK))
150 return true;
151
152 return false;
153}
154
155/*
156 * Compute the worst-case header length according to the protocols
157 * used.
158 */
159
160#if defined(CONFIG_HYPERV_NET)
161# define LL_MAX_HEADER 128
162#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163# if defined(CONFIG_MAC80211_MESH)
164# define LL_MAX_HEADER 128
165# else
166# define LL_MAX_HEADER 96
167# endif
168#else
169# define LL_MAX_HEADER 32
170#endif
171
172#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174#define MAX_HEADER LL_MAX_HEADER
175#else
176#define MAX_HEADER (LL_MAX_HEADER + 48)
177#endif
178
179/*
180 * Old network device statistics. Fields are native words
181 * (unsigned long) so they can be read and written atomically.
182 */
183
184#define NET_DEV_STAT(FIELD) \
185 union { \
186 unsigned long FIELD; \
187 atomic_long_t __##FIELD; \
188 }
189
190struct net_device_stats {
191 NET_DEV_STAT(rx_packets);
192 NET_DEV_STAT(tx_packets);
193 NET_DEV_STAT(rx_bytes);
194 NET_DEV_STAT(tx_bytes);
195 NET_DEV_STAT(rx_errors);
196 NET_DEV_STAT(tx_errors);
197 NET_DEV_STAT(rx_dropped);
198 NET_DEV_STAT(tx_dropped);
199 NET_DEV_STAT(multicast);
200 NET_DEV_STAT(collisions);
201 NET_DEV_STAT(rx_length_errors);
202 NET_DEV_STAT(rx_over_errors);
203 NET_DEV_STAT(rx_crc_errors);
204 NET_DEV_STAT(rx_frame_errors);
205 NET_DEV_STAT(rx_fifo_errors);
206 NET_DEV_STAT(rx_missed_errors);
207 NET_DEV_STAT(tx_aborted_errors);
208 NET_DEV_STAT(tx_carrier_errors);
209 NET_DEV_STAT(tx_fifo_errors);
210 NET_DEV_STAT(tx_heartbeat_errors);
211 NET_DEV_STAT(tx_window_errors);
212 NET_DEV_STAT(rx_compressed);
213 NET_DEV_STAT(tx_compressed);
214};
215#undef NET_DEV_STAT
216
217/* per-cpu stats, allocated on demand.
218 * Try to fit them in a single cache line, for dev_get_stats() sake.
219 */
220struct net_device_core_stats {
221 unsigned long rx_dropped;
222 unsigned long tx_dropped;
223 unsigned long rx_nohandler;
224 unsigned long rx_otherhost_dropped;
225} __aligned(4 * sizeof(unsigned long));
226
227#include <linux/cache.h>
228#include <linux/skbuff.h>
229
230#ifdef CONFIG_RPS
231#include <linux/static_key.h>
232extern struct static_key_false rps_needed;
233extern struct static_key_false rfs_needed;
234#endif
235
236struct neighbour;
237struct neigh_parms;
238struct sk_buff;
239
240struct netdev_hw_addr {
241 struct list_head list;
242 struct rb_node node;
243 unsigned char addr[MAX_ADDR_LEN];
244 unsigned char type;
245#define NETDEV_HW_ADDR_T_LAN 1
246#define NETDEV_HW_ADDR_T_SAN 2
247#define NETDEV_HW_ADDR_T_UNICAST 3
248#define NETDEV_HW_ADDR_T_MULTICAST 4
249 bool global_use;
250 int sync_cnt;
251 int refcount;
252 int synced;
253 struct rcu_head rcu_head;
254};
255
256struct netdev_hw_addr_list {
257 struct list_head list;
258 int count;
259
260 /* Auxiliary tree for faster lookup on addition and deletion */
261 struct rb_root tree;
262};
263
264#define netdev_hw_addr_list_count(l) ((l)->count)
265#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
266#define netdev_hw_addr_list_for_each(ha, l) \
267 list_for_each_entry(ha, &(l)->list, list)
268
269#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
270#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
271#define netdev_for_each_uc_addr(ha, dev) \
272 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
273#define netdev_for_each_synced_uc_addr(_ha, _dev) \
274 netdev_for_each_uc_addr((_ha), (_dev)) \
275 if ((_ha)->sync_cnt)
276
277#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
278#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
279#define netdev_for_each_mc_addr(ha, dev) \
280 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
281#define netdev_for_each_synced_mc_addr(_ha, _dev) \
282 netdev_for_each_mc_addr((_ha), (_dev)) \
283 if ((_ha)->sync_cnt)
284
285struct hh_cache {
286 unsigned int hh_len;
287 seqlock_t hh_lock;
288
289 /* cached hardware header; allow for machine alignment needs. */
290#define HH_DATA_MOD 16
291#define HH_DATA_OFF(__len) \
292 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
293#define HH_DATA_ALIGN(__len) \
294 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
295 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
296};
297
298/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
299 * Alternative is:
300 * dev->hard_header_len ? (dev->hard_header_len +
301 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
302 *
303 * We could use other alignment values, but we must maintain the
304 * relationship HH alignment <= LL alignment.
305 */
306#define LL_RESERVED_SPACE(dev) \
307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
310 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
311 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
312
313struct header_ops {
314 int (*create) (struct sk_buff *skb, struct net_device *dev,
315 unsigned short type, const void *daddr,
316 const void *saddr, unsigned int len);
317 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
319 void (*cache_update)(struct hh_cache *hh,
320 const struct net_device *dev,
321 const unsigned char *haddr);
322 bool (*validate)(const char *ll_header, unsigned int len);
323 __be16 (*parse_protocol)(const struct sk_buff *skb);
324};
325
326/* These flag bits are private to the generic network queueing
327 * layer; they may not be explicitly referenced by any other
328 * code.
329 */
330
331enum netdev_state_t {
332 __LINK_STATE_START,
333 __LINK_STATE_PRESENT,
334 __LINK_STATE_NOCARRIER,
335 __LINK_STATE_LINKWATCH_PENDING,
336 __LINK_STATE_DORMANT,
337 __LINK_STATE_TESTING,
338};
339
340struct gro_list {
341 struct list_head list;
342 int count;
343};
344
345/*
346 * size of gro hash buckets, must less than bit number of
347 * napi_struct::gro_bitmask
348 */
349#define GRO_HASH_BUCKETS 8
350
351/*
352 * Structure for NAPI scheduling similar to tasklet but with weighting
353 */
354struct napi_struct {
355 /* The poll_list must only be managed by the entity which
356 * changes the state of the NAPI_STATE_SCHED bit. This means
357 * whoever atomically sets that bit can add this napi_struct
358 * to the per-CPU poll_list, and whoever clears that bit
359 * can remove from the list right before clearing the bit.
360 */
361 struct list_head poll_list;
362
363 unsigned long state;
364 int weight;
365 int defer_hard_irqs_count;
366 unsigned long gro_bitmask;
367 int (*poll)(struct napi_struct *, int);
368#ifdef CONFIG_NETPOLL
369 /* CPU actively polling if netpoll is configured */
370 int poll_owner;
371#endif
372 /* CPU on which NAPI has been scheduled for processing */
373 int list_owner;
374 struct net_device *dev;
375 struct gro_list gro_hash[GRO_HASH_BUCKETS];
376 struct sk_buff *skb;
377 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
378 int rx_count; /* length of rx_list */
379 unsigned int napi_id;
380 struct hrtimer timer;
381 struct task_struct *thread;
382 /* control-path-only fields follow */
383 struct list_head dev_list;
384 struct hlist_node napi_hash_node;
385};
386
387enum {
388 NAPI_STATE_SCHED, /* Poll is scheduled */
389 NAPI_STATE_MISSED, /* reschedule a napi */
390 NAPI_STATE_DISABLE, /* Disable pending */
391 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
392 NAPI_STATE_LISTED, /* NAPI added to system lists */
393 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
394 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
395 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
396 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
397 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
398};
399
400enum {
401 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
402 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
403 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
404 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
405 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
406 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
407 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
408 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
409 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
410 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
411};
412
413enum gro_result {
414 GRO_MERGED,
415 GRO_MERGED_FREE,
416 GRO_HELD,
417 GRO_NORMAL,
418 GRO_CONSUMED,
419};
420typedef enum gro_result gro_result_t;
421
422/*
423 * enum rx_handler_result - Possible return values for rx_handlers.
424 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
425 * further.
426 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
427 * case skb->dev was changed by rx_handler.
428 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
429 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
430 *
431 * rx_handlers are functions called from inside __netif_receive_skb(), to do
432 * special processing of the skb, prior to delivery to protocol handlers.
433 *
434 * Currently, a net_device can only have a single rx_handler registered. Trying
435 * to register a second rx_handler will return -EBUSY.
436 *
437 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
438 * To unregister a rx_handler on a net_device, use
439 * netdev_rx_handler_unregister().
440 *
441 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
442 * do with the skb.
443 *
444 * If the rx_handler consumed the skb in some way, it should return
445 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
446 * the skb to be delivered in some other way.
447 *
448 * If the rx_handler changed skb->dev, to divert the skb to another
449 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
450 * new device will be called if it exists.
451 *
452 * If the rx_handler decides the skb should be ignored, it should return
453 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
454 * are registered on exact device (ptype->dev == skb->dev).
455 *
456 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
457 * delivered, it should return RX_HANDLER_PASS.
458 *
459 * A device without a registered rx_handler will behave as if rx_handler
460 * returned RX_HANDLER_PASS.
461 */
462
463enum rx_handler_result {
464 RX_HANDLER_CONSUMED,
465 RX_HANDLER_ANOTHER,
466 RX_HANDLER_EXACT,
467 RX_HANDLER_PASS,
468};
469typedef enum rx_handler_result rx_handler_result_t;
470typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
471
472void __napi_schedule(struct napi_struct *n);
473void __napi_schedule_irqoff(struct napi_struct *n);
474
475static inline bool napi_disable_pending(struct napi_struct *n)
476{
477 return test_bit(NAPI_STATE_DISABLE, &n->state);
478}
479
480static inline bool napi_prefer_busy_poll(struct napi_struct *n)
481{
482 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
483}
484
485/**
486 * napi_is_scheduled - test if NAPI is scheduled
487 * @n: NAPI context
488 *
489 * This check is "best-effort". With no locking implemented,
490 * a NAPI can be scheduled or terminate right after this check
491 * and produce not precise results.
492 *
493 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
494 * should not be used normally and napi_schedule should be
495 * used instead.
496 *
497 * Use only if the driver really needs to check if a NAPI
498 * is scheduled for example in the context of delayed timer
499 * that can be skipped if a NAPI is already scheduled.
500 *
501 * Return True if NAPI is scheduled, False otherwise.
502 */
503static inline bool napi_is_scheduled(struct napi_struct *n)
504{
505 return test_bit(NAPI_STATE_SCHED, &n->state);
506}
507
508bool napi_schedule_prep(struct napi_struct *n);
509
510/**
511 * napi_schedule - schedule NAPI poll
512 * @n: NAPI context
513 *
514 * Schedule NAPI poll routine to be called if it is not already
515 * running.
516 * Return true if we schedule a NAPI or false if not.
517 * Refer to napi_schedule_prep() for additional reason on why
518 * a NAPI might not be scheduled.
519 */
520static inline bool napi_schedule(struct napi_struct *n)
521{
522 if (napi_schedule_prep(n)) {
523 __napi_schedule(n);
524 return true;
525 }
526
527 return false;
528}
529
530/**
531 * napi_schedule_irqoff - schedule NAPI poll
532 * @n: NAPI context
533 *
534 * Variant of napi_schedule(), assuming hard irqs are masked.
535 */
536static inline void napi_schedule_irqoff(struct napi_struct *n)
537{
538 if (napi_schedule_prep(n))
539 __napi_schedule_irqoff(n);
540}
541
542/**
543 * napi_complete_done - NAPI processing complete
544 * @n: NAPI context
545 * @work_done: number of packets processed
546 *
547 * Mark NAPI processing as complete. Should only be called if poll budget
548 * has not been completely consumed.
549 * Prefer over napi_complete().
550 * Return false if device should avoid rearming interrupts.
551 */
552bool napi_complete_done(struct napi_struct *n, int work_done);
553
554static inline bool napi_complete(struct napi_struct *n)
555{
556 return napi_complete_done(n, work_done: 0);
557}
558
559int dev_set_threaded(struct net_device *dev, bool threaded);
560
561/**
562 * napi_disable - prevent NAPI from scheduling
563 * @n: NAPI context
564 *
565 * Stop NAPI from being scheduled on this context.
566 * Waits till any outstanding processing completes.
567 */
568void napi_disable(struct napi_struct *n);
569
570void napi_enable(struct napi_struct *n);
571
572/**
573 * napi_synchronize - wait until NAPI is not running
574 * @n: NAPI context
575 *
576 * Wait until NAPI is done being scheduled on this context.
577 * Waits till any outstanding processing completes but
578 * does not disable future activations.
579 */
580static inline void napi_synchronize(const struct napi_struct *n)
581{
582 if (IS_ENABLED(CONFIG_SMP))
583 while (test_bit(NAPI_STATE_SCHED, &n->state))
584 msleep(msecs: 1);
585 else
586 barrier();
587}
588
589/**
590 * napi_if_scheduled_mark_missed - if napi is running, set the
591 * NAPIF_STATE_MISSED
592 * @n: NAPI context
593 *
594 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
595 * NAPI is scheduled.
596 **/
597static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
598{
599 unsigned long val, new;
600
601 val = READ_ONCE(n->state);
602 do {
603 if (val & NAPIF_STATE_DISABLE)
604 return true;
605
606 if (!(val & NAPIF_STATE_SCHED))
607 return false;
608
609 new = val | NAPIF_STATE_MISSED;
610 } while (!try_cmpxchg(&n->state, &val, new));
611
612 return true;
613}
614
615enum netdev_queue_state_t {
616 __QUEUE_STATE_DRV_XOFF,
617 __QUEUE_STATE_STACK_XOFF,
618 __QUEUE_STATE_FROZEN,
619};
620
621#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
622#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
623#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
624
625#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
626#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
627 QUEUE_STATE_FROZEN)
628#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
629 QUEUE_STATE_FROZEN)
630
631/*
632 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
633 * netif_tx_* functions below are used to manipulate this flag. The
634 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
635 * queue independently. The netif_xmit_*stopped functions below are called
636 * to check if the queue has been stopped by the driver or stack (either
637 * of the XOFF bits are set in the state). Drivers should not need to call
638 * netif_xmit*stopped functions, they should only be using netif_tx_*.
639 */
640
641struct netdev_queue {
642/*
643 * read-mostly part
644 */
645 struct net_device *dev;
646 netdevice_tracker dev_tracker;
647
648 struct Qdisc __rcu *qdisc;
649 struct Qdisc __rcu *qdisc_sleeping;
650#ifdef CONFIG_SYSFS
651 struct kobject kobj;
652#endif
653#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
654 int numa_node;
655#endif
656 unsigned long tx_maxrate;
657 /*
658 * Number of TX timeouts for this queue
659 * (/sys/class/net/DEV/Q/trans_timeout)
660 */
661 atomic_long_t trans_timeout;
662
663 /* Subordinate device that the queue has been assigned to */
664 struct net_device *sb_dev;
665#ifdef CONFIG_XDP_SOCKETS
666 struct xsk_buff_pool *pool;
667#endif
668/*
669 * write-mostly part
670 */
671 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
672 int xmit_lock_owner;
673 /*
674 * Time (in jiffies) of last Tx
675 */
676 unsigned long trans_start;
677
678 unsigned long state;
679
680#ifdef CONFIG_BQL
681 struct dql dql;
682#endif
683} ____cacheline_aligned_in_smp;
684
685extern int sysctl_fb_tunnels_only_for_init_net;
686extern int sysctl_devconf_inherit_init_net;
687
688/*
689 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
690 * == 1 : For initns only
691 * == 2 : For none.
692 */
693static inline bool net_has_fallback_tunnels(const struct net *net)
694{
695#if IS_ENABLED(CONFIG_SYSCTL)
696 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
697
698 return !fb_tunnels_only_for_init_net ||
699 (net_eq(net1: net, net2: &init_net) && fb_tunnels_only_for_init_net == 1);
700#else
701 return true;
702#endif
703}
704
705static inline int net_inherit_devconf(void)
706{
707#if IS_ENABLED(CONFIG_SYSCTL)
708 return READ_ONCE(sysctl_devconf_inherit_init_net);
709#else
710 return 0;
711#endif
712}
713
714static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
715{
716#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
717 return q->numa_node;
718#else
719 return NUMA_NO_NODE;
720#endif
721}
722
723static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
724{
725#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
726 q->numa_node = node;
727#endif
728}
729
730#ifdef CONFIG_RPS
731/*
732 * This structure holds an RPS map which can be of variable length. The
733 * map is an array of CPUs.
734 */
735struct rps_map {
736 unsigned int len;
737 struct rcu_head rcu;
738 u16 cpus[];
739};
740#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
741
742/*
743 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
744 * tail pointer for that CPU's input queue at the time of last enqueue, and
745 * a hardware filter index.
746 */
747struct rps_dev_flow {
748 u16 cpu;
749 u16 filter;
750 unsigned int last_qtail;
751};
752#define RPS_NO_FILTER 0xffff
753
754/*
755 * The rps_dev_flow_table structure contains a table of flow mappings.
756 */
757struct rps_dev_flow_table {
758 unsigned int mask;
759 struct rcu_head rcu;
760 struct rps_dev_flow flows[];
761};
762#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
763 ((_num) * sizeof(struct rps_dev_flow)))
764
765/*
766 * The rps_sock_flow_table contains mappings of flows to the last CPU
767 * on which they were processed by the application (set in recvmsg).
768 * Each entry is a 32bit value. Upper part is the high-order bits
769 * of flow hash, lower part is CPU number.
770 * rps_cpu_mask is used to partition the space, depending on number of
771 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
772 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
773 * meaning we use 32-6=26 bits for the hash.
774 */
775struct rps_sock_flow_table {
776 u32 mask;
777
778 u32 ents[] ____cacheline_aligned_in_smp;
779};
780#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
781
782#define RPS_NO_CPU 0xffff
783
784extern u32 rps_cpu_mask;
785extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
786
787static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
788 u32 hash)
789{
790 if (table && hash) {
791 unsigned int index = hash & table->mask;
792 u32 val = hash & ~rps_cpu_mask;
793
794 /* We only give a hint, preemption can change CPU under us */
795 val |= raw_smp_processor_id();
796
797 /* The following WRITE_ONCE() is paired with the READ_ONCE()
798 * here, and another one in get_rps_cpu().
799 */
800 if (READ_ONCE(table->ents[index]) != val)
801 WRITE_ONCE(table->ents[index], val);
802 }
803}
804
805#ifdef CONFIG_RFS_ACCEL
806bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
807 u16 filter_id);
808#endif
809#endif /* CONFIG_RPS */
810
811/* XPS map type and offset of the xps map within net_device->xps_maps[]. */
812enum xps_map_type {
813 XPS_CPUS = 0,
814 XPS_RXQS,
815 XPS_MAPS_MAX,
816};
817
818#ifdef CONFIG_XPS
819/*
820 * This structure holds an XPS map which can be of variable length. The
821 * map is an array of queues.
822 */
823struct xps_map {
824 unsigned int len;
825 unsigned int alloc_len;
826 struct rcu_head rcu;
827 u16 queues[];
828};
829#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
830#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
831 - sizeof(struct xps_map)) / sizeof(u16))
832
833/*
834 * This structure holds all XPS maps for device. Maps are indexed by CPU.
835 *
836 * We keep track of the number of cpus/rxqs used when the struct is allocated,
837 * in nr_ids. This will help not accessing out-of-bound memory.
838 *
839 * We keep track of the number of traffic classes used when the struct is
840 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
841 * not crossing its upper bound, as the original dev->num_tc can be updated in
842 * the meantime.
843 */
844struct xps_dev_maps {
845 struct rcu_head rcu;
846 unsigned int nr_ids;
847 s16 num_tc;
848 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
849};
850
851#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
852 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
853
854#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
855 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
856
857#endif /* CONFIG_XPS */
858
859#define TC_MAX_QUEUE 16
860#define TC_BITMASK 15
861/* HW offloaded queuing disciplines txq count and offset maps */
862struct netdev_tc_txq {
863 u16 count;
864 u16 offset;
865};
866
867#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
868/*
869 * This structure is to hold information about the device
870 * configured to run FCoE protocol stack.
871 */
872struct netdev_fcoe_hbainfo {
873 char manufacturer[64];
874 char serial_number[64];
875 char hardware_version[64];
876 char driver_version[64];
877 char optionrom_version[64];
878 char firmware_version[64];
879 char model[256];
880 char model_description[256];
881};
882#endif
883
884#define MAX_PHYS_ITEM_ID_LEN 32
885
886/* This structure holds a unique identifier to identify some
887 * physical item (port for example) used by a netdevice.
888 */
889struct netdev_phys_item_id {
890 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
891 unsigned char id_len;
892};
893
894static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
895 struct netdev_phys_item_id *b)
896{
897 return a->id_len == b->id_len &&
898 memcmp(p: a->id, q: b->id, size: a->id_len) == 0;
899}
900
901typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
902 struct sk_buff *skb,
903 struct net_device *sb_dev);
904
905enum net_device_path_type {
906 DEV_PATH_ETHERNET = 0,
907 DEV_PATH_VLAN,
908 DEV_PATH_BRIDGE,
909 DEV_PATH_PPPOE,
910 DEV_PATH_DSA,
911 DEV_PATH_MTK_WDMA,
912};
913
914struct net_device_path {
915 enum net_device_path_type type;
916 const struct net_device *dev;
917 union {
918 struct {
919 u16 id;
920 __be16 proto;
921 u8 h_dest[ETH_ALEN];
922 } encap;
923 struct {
924 enum {
925 DEV_PATH_BR_VLAN_KEEP,
926 DEV_PATH_BR_VLAN_TAG,
927 DEV_PATH_BR_VLAN_UNTAG,
928 DEV_PATH_BR_VLAN_UNTAG_HW,
929 } vlan_mode;
930 u16 vlan_id;
931 __be16 vlan_proto;
932 } bridge;
933 struct {
934 int port;
935 u16 proto;
936 } dsa;
937 struct {
938 u8 wdma_idx;
939 u8 queue;
940 u16 wcid;
941 u8 bss;
942 u8 amsdu;
943 } mtk_wdma;
944 };
945};
946
947#define NET_DEVICE_PATH_STACK_MAX 5
948#define NET_DEVICE_PATH_VLAN_MAX 2
949
950struct net_device_path_stack {
951 int num_paths;
952 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
953};
954
955struct net_device_path_ctx {
956 const struct net_device *dev;
957 u8 daddr[ETH_ALEN];
958
959 int num_vlans;
960 struct {
961 u16 id;
962 __be16 proto;
963 } vlan[NET_DEVICE_PATH_VLAN_MAX];
964};
965
966enum tc_setup_type {
967 TC_QUERY_CAPS,
968 TC_SETUP_QDISC_MQPRIO,
969 TC_SETUP_CLSU32,
970 TC_SETUP_CLSFLOWER,
971 TC_SETUP_CLSMATCHALL,
972 TC_SETUP_CLSBPF,
973 TC_SETUP_BLOCK,
974 TC_SETUP_QDISC_CBS,
975 TC_SETUP_QDISC_RED,
976 TC_SETUP_QDISC_PRIO,
977 TC_SETUP_QDISC_MQ,
978 TC_SETUP_QDISC_ETF,
979 TC_SETUP_ROOT_QDISC,
980 TC_SETUP_QDISC_GRED,
981 TC_SETUP_QDISC_TAPRIO,
982 TC_SETUP_FT,
983 TC_SETUP_QDISC_ETS,
984 TC_SETUP_QDISC_TBF,
985 TC_SETUP_QDISC_FIFO,
986 TC_SETUP_QDISC_HTB,
987 TC_SETUP_ACT,
988};
989
990/* These structures hold the attributes of bpf state that are being passed
991 * to the netdevice through the bpf op.
992 */
993enum bpf_netdev_command {
994 /* Set or clear a bpf program used in the earliest stages of packet
995 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
996 * is responsible for calling bpf_prog_put on any old progs that are
997 * stored. In case of error, the callee need not release the new prog
998 * reference, but on success it takes ownership and must bpf_prog_put
999 * when it is no longer used.
1000 */
1001 XDP_SETUP_PROG,
1002 XDP_SETUP_PROG_HW,
1003 /* BPF program for offload callbacks, invoked at program load time. */
1004 BPF_OFFLOAD_MAP_ALLOC,
1005 BPF_OFFLOAD_MAP_FREE,
1006 XDP_SETUP_XSK_POOL,
1007};
1008
1009struct bpf_prog_offload_ops;
1010struct netlink_ext_ack;
1011struct xdp_umem;
1012struct xdp_dev_bulk_queue;
1013struct bpf_xdp_link;
1014
1015enum bpf_xdp_mode {
1016 XDP_MODE_SKB = 0,
1017 XDP_MODE_DRV = 1,
1018 XDP_MODE_HW = 2,
1019 __MAX_XDP_MODE
1020};
1021
1022struct bpf_xdp_entity {
1023 struct bpf_prog *prog;
1024 struct bpf_xdp_link *link;
1025};
1026
1027struct netdev_bpf {
1028 enum bpf_netdev_command command;
1029 union {
1030 /* XDP_SETUP_PROG */
1031 struct {
1032 u32 flags;
1033 struct bpf_prog *prog;
1034 struct netlink_ext_ack *extack;
1035 };
1036 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1037 struct {
1038 struct bpf_offloaded_map *offmap;
1039 };
1040 /* XDP_SETUP_XSK_POOL */
1041 struct {
1042 struct xsk_buff_pool *pool;
1043 u16 queue_id;
1044 } xsk;
1045 };
1046};
1047
1048/* Flags for ndo_xsk_wakeup. */
1049#define XDP_WAKEUP_RX (1 << 0)
1050#define XDP_WAKEUP_TX (1 << 1)
1051
1052#ifdef CONFIG_XFRM_OFFLOAD
1053struct xfrmdev_ops {
1054 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1055 void (*xdo_dev_state_delete) (struct xfrm_state *x);
1056 void (*xdo_dev_state_free) (struct xfrm_state *x);
1057 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
1058 struct xfrm_state *x);
1059 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1060 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1061 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1062 void (*xdo_dev_policy_delete) (struct xfrm_policy *x);
1063 void (*xdo_dev_policy_free) (struct xfrm_policy *x);
1064};
1065#endif
1066
1067struct dev_ifalias {
1068 struct rcu_head rcuhead;
1069 char ifalias[];
1070};
1071
1072struct devlink;
1073struct tlsdev_ops;
1074
1075struct netdev_net_notifier {
1076 struct list_head list;
1077 struct notifier_block *nb;
1078};
1079
1080/*
1081 * This structure defines the management hooks for network devices.
1082 * The following hooks can be defined; unless noted otherwise, they are
1083 * optional and can be filled with a null pointer.
1084 *
1085 * int (*ndo_init)(struct net_device *dev);
1086 * This function is called once when a network device is registered.
1087 * The network device can use this for any late stage initialization
1088 * or semantic validation. It can fail with an error code which will
1089 * be propagated back to register_netdev.
1090 *
1091 * void (*ndo_uninit)(struct net_device *dev);
1092 * This function is called when device is unregistered or when registration
1093 * fails. It is not called if init fails.
1094 *
1095 * int (*ndo_open)(struct net_device *dev);
1096 * This function is called when a network device transitions to the up
1097 * state.
1098 *
1099 * int (*ndo_stop)(struct net_device *dev);
1100 * This function is called when a network device transitions to the down
1101 * state.
1102 *
1103 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1104 * struct net_device *dev);
1105 * Called when a packet needs to be transmitted.
1106 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1107 * the queue before that can happen; it's for obsolete devices and weird
1108 * corner cases, but the stack really does a non-trivial amount
1109 * of useless work if you return NETDEV_TX_BUSY.
1110 * Required; cannot be NULL.
1111 *
1112 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1113 * struct net_device *dev
1114 * netdev_features_t features);
1115 * Called by core transmit path to determine if device is capable of
1116 * performing offload operations on a given packet. This is to give
1117 * the device an opportunity to implement any restrictions that cannot
1118 * be otherwise expressed by feature flags. The check is called with
1119 * the set of features that the stack has calculated and it returns
1120 * those the driver believes to be appropriate.
1121 *
1122 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1123 * struct net_device *sb_dev);
1124 * Called to decide which queue to use when device supports multiple
1125 * transmit queues.
1126 *
1127 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1128 * This function is called to allow device receiver to make
1129 * changes to configuration when multicast or promiscuous is enabled.
1130 *
1131 * void (*ndo_set_rx_mode)(struct net_device *dev);
1132 * This function is called device changes address list filtering.
1133 * If driver handles unicast address filtering, it should set
1134 * IFF_UNICAST_FLT in its priv_flags.
1135 *
1136 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1137 * This function is called when the Media Access Control address
1138 * needs to be changed. If this interface is not defined, the
1139 * MAC address can not be changed.
1140 *
1141 * int (*ndo_validate_addr)(struct net_device *dev);
1142 * Test if Media Access Control address is valid for the device.
1143 *
1144 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1145 * Old-style ioctl entry point. This is used internally by the
1146 * appletalk and ieee802154 subsystems but is no longer called by
1147 * the device ioctl handler.
1148 *
1149 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1150 * Used by the bonding driver for its device specific ioctls:
1151 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1152 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1153 *
1154 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1155 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1156 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1157 *
1158 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1159 * Used to set network devices bus interface parameters. This interface
1160 * is retained for legacy reasons; new devices should use the bus
1161 * interface (PCI) for low level management.
1162 *
1163 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1164 * Called when a user wants to change the Maximum Transfer Unit
1165 * of a device.
1166 *
1167 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1168 * Callback used when the transmitter has not made any progress
1169 * for dev->watchdog ticks.
1170 *
1171 * void (*ndo_get_stats64)(struct net_device *dev,
1172 * struct rtnl_link_stats64 *storage);
1173 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1174 * Called when a user wants to get the network device usage
1175 * statistics. Drivers must do one of the following:
1176 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1177 * rtnl_link_stats64 structure passed by the caller.
1178 * 2. Define @ndo_get_stats to update a net_device_stats structure
1179 * (which should normally be dev->stats) and return a pointer to
1180 * it. The structure may be changed asynchronously only if each
1181 * field is written atomically.
1182 * 3. Update dev->stats asynchronously and atomically, and define
1183 * neither operation.
1184 *
1185 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1186 * Return true if this device supports offload stats of this attr_id.
1187 *
1188 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1189 * void *attr_data)
1190 * Get statistics for offload operations by attr_id. Write it into the
1191 * attr_data pointer.
1192 *
1193 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1194 * If device supports VLAN filtering this function is called when a
1195 * VLAN id is registered.
1196 *
1197 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1198 * If device supports VLAN filtering this function is called when a
1199 * VLAN id is unregistered.
1200 *
1201 * void (*ndo_poll_controller)(struct net_device *dev);
1202 *
1203 * SR-IOV management functions.
1204 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1205 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1206 * u8 qos, __be16 proto);
1207 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1208 * int max_tx_rate);
1209 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1210 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1211 * int (*ndo_get_vf_config)(struct net_device *dev,
1212 * int vf, struct ifla_vf_info *ivf);
1213 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1214 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1215 * struct nlattr *port[]);
1216 *
1217 * Enable or disable the VF ability to query its RSS Redirection Table and
1218 * Hash Key. This is needed since on some devices VF share this information
1219 * with PF and querying it may introduce a theoretical security risk.
1220 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1221 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1222 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1223 * void *type_data);
1224 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1225 * This is always called from the stack with the rtnl lock held and netif
1226 * tx queues stopped. This allows the netdevice to perform queue
1227 * management safely.
1228 *
1229 * Fiber Channel over Ethernet (FCoE) offload functions.
1230 * int (*ndo_fcoe_enable)(struct net_device *dev);
1231 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1232 * so the underlying device can perform whatever needed configuration or
1233 * initialization to support acceleration of FCoE traffic.
1234 *
1235 * int (*ndo_fcoe_disable)(struct net_device *dev);
1236 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1237 * so the underlying device can perform whatever needed clean-ups to
1238 * stop supporting acceleration of FCoE traffic.
1239 *
1240 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1241 * struct scatterlist *sgl, unsigned int sgc);
1242 * Called when the FCoE Initiator wants to initialize an I/O that
1243 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1244 * perform necessary setup and returns 1 to indicate the device is set up
1245 * successfully to perform DDP on this I/O, otherwise this returns 0.
1246 *
1247 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1248 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1249 * indicated by the FC exchange id 'xid', so the underlying device can
1250 * clean up and reuse resources for later DDP requests.
1251 *
1252 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1253 * struct scatterlist *sgl, unsigned int sgc);
1254 * Called when the FCoE Target wants to initialize an I/O that
1255 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1256 * perform necessary setup and returns 1 to indicate the device is set up
1257 * successfully to perform DDP on this I/O, otherwise this returns 0.
1258 *
1259 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1260 * struct netdev_fcoe_hbainfo *hbainfo);
1261 * Called when the FCoE Protocol stack wants information on the underlying
1262 * device. This information is utilized by the FCoE protocol stack to
1263 * register attributes with Fiber Channel management service as per the
1264 * FC-GS Fabric Device Management Information(FDMI) specification.
1265 *
1266 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1267 * Called when the underlying device wants to override default World Wide
1268 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1269 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1270 * protocol stack to use.
1271 *
1272 * RFS acceleration.
1273 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1274 * u16 rxq_index, u32 flow_id);
1275 * Set hardware filter for RFS. rxq_index is the target queue index;
1276 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1277 * Return the filter ID on success, or a negative error code.
1278 *
1279 * Slave management functions (for bridge, bonding, etc).
1280 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1281 * Called to make another netdev an underling.
1282 *
1283 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1284 * Called to release previously enslaved netdev.
1285 *
1286 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1287 * struct sk_buff *skb,
1288 * bool all_slaves);
1289 * Get the xmit slave of master device. If all_slaves is true, function
1290 * assume all the slaves can transmit.
1291 *
1292 * Feature/offload setting functions.
1293 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1294 * netdev_features_t features);
1295 * Adjusts the requested feature flags according to device-specific
1296 * constraints, and returns the resulting flags. Must not modify
1297 * the device state.
1298 *
1299 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1300 * Called to update device configuration to new features. Passed
1301 * feature set might be less than what was returned by ndo_fix_features()).
1302 * Must return >0 or -errno if it changed dev->features itself.
1303 *
1304 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1305 * struct net_device *dev,
1306 * const unsigned char *addr, u16 vid, u16 flags,
1307 * struct netlink_ext_ack *extack);
1308 * Adds an FDB entry to dev for addr.
1309 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1310 * struct net_device *dev,
1311 * const unsigned char *addr, u16 vid)
1312 * Deletes the FDB entry from dev coresponding to addr.
1313 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1314 * struct netlink_ext_ack *extack);
1315 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1316 * struct net_device *dev, struct net_device *filter_dev,
1317 * int *idx)
1318 * Used to add FDB entries to dump requests. Implementers should add
1319 * entries to skb and update idx with the number of entries.
1320 *
1321 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1322 * u16 nlmsg_flags, struct netlink_ext_ack *extack);
1323 * Adds an MDB entry to dev.
1324 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1325 * struct netlink_ext_ack *extack);
1326 * Deletes the MDB entry from dev.
1327 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1328 * struct netlink_callback *cb);
1329 * Dumps MDB entries from dev. The first argument (marker) in the netlink
1330 * callback is used by core rtnetlink code.
1331 *
1332 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1333 * u16 flags, struct netlink_ext_ack *extack)
1334 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1335 * struct net_device *dev, u32 filter_mask,
1336 * int nlflags)
1337 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1338 * u16 flags);
1339 *
1340 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1341 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1342 * which do not represent real hardware may define this to allow their
1343 * userspace components to manage their virtual carrier state. Devices
1344 * that determine carrier state from physical hardware properties (eg
1345 * network cables) or protocol-dependent mechanisms (eg
1346 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1347 *
1348 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1349 * struct netdev_phys_item_id *ppid);
1350 * Called to get ID of physical port of this device. If driver does
1351 * not implement this, it is assumed that the hw is not able to have
1352 * multiple net devices on single physical port.
1353 *
1354 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1355 * struct netdev_phys_item_id *ppid)
1356 * Called to get the parent ID of the physical port of this device.
1357 *
1358 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1359 * struct net_device *dev)
1360 * Called by upper layer devices to accelerate switching or other
1361 * station functionality into hardware. 'pdev is the lowerdev
1362 * to use for the offload and 'dev' is the net device that will
1363 * back the offload. Returns a pointer to the private structure
1364 * the upper layer will maintain.
1365 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1366 * Called by upper layer device to delete the station created
1367 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1368 * the station and priv is the structure returned by the add
1369 * operation.
1370 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1371 * int queue_index, u32 maxrate);
1372 * Called when a user wants to set a max-rate limitation of specific
1373 * TX queue.
1374 * int (*ndo_get_iflink)(const struct net_device *dev);
1375 * Called to get the iflink value of this device.
1376 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1377 * This function is used to get egress tunnel information for given skb.
1378 * This is useful for retrieving outer tunnel header parameters while
1379 * sampling packet.
1380 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1381 * This function is used to specify the headroom that the skb must
1382 * consider when allocation skb during packet reception. Setting
1383 * appropriate rx headroom value allows avoiding skb head copy on
1384 * forward. Setting a negative value resets the rx headroom to the
1385 * default value.
1386 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1387 * This function is used to set or query state related to XDP on the
1388 * netdevice and manage BPF offload. See definition of
1389 * enum bpf_netdev_command for details.
1390 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1391 * u32 flags);
1392 * This function is used to submit @n XDP packets for transmit on a
1393 * netdevice. Returns number of frames successfully transmitted, frames
1394 * that got dropped are freed/returned via xdp_return_frame().
1395 * Returns negative number, means general error invoking ndo, meaning
1396 * no frames were xmit'ed and core-caller will free all frames.
1397 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1398 * struct xdp_buff *xdp);
1399 * Get the xmit slave of master device based on the xdp_buff.
1400 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1401 * This function is used to wake up the softirq, ksoftirqd or kthread
1402 * responsible for sending and/or receiving packets on a specific
1403 * queue id bound to an AF_XDP socket. The flags field specifies if
1404 * only RX, only Tx, or both should be woken up using the flags
1405 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1406 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1407 * int cmd);
1408 * Add, change, delete or get information on an IPv4 tunnel.
1409 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1410 * If a device is paired with a peer device, return the peer instance.
1411 * The caller must be under RCU read context.
1412 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1413 * Get the forwarding path to reach the real device from the HW destination address
1414 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1415 * const struct skb_shared_hwtstamps *hwtstamps,
1416 * bool cycles);
1417 * Get hardware timestamp based on normal/adjustable time or free running
1418 * cycle counter. This function is required if physical clock supports a
1419 * free running cycle counter.
1420 *
1421 * int (*ndo_hwtstamp_get)(struct net_device *dev,
1422 * struct kernel_hwtstamp_config *kernel_config);
1423 * Get the currently configured hardware timestamping parameters for the
1424 * NIC device.
1425 *
1426 * int (*ndo_hwtstamp_set)(struct net_device *dev,
1427 * struct kernel_hwtstamp_config *kernel_config,
1428 * struct netlink_ext_ack *extack);
1429 * Change the hardware timestamping parameters for NIC device.
1430 */
1431struct net_device_ops {
1432 int (*ndo_init)(struct net_device *dev);
1433 void (*ndo_uninit)(struct net_device *dev);
1434 int (*ndo_open)(struct net_device *dev);
1435 int (*ndo_stop)(struct net_device *dev);
1436 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1437 struct net_device *dev);
1438 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1439 struct net_device *dev,
1440 netdev_features_t features);
1441 u16 (*ndo_select_queue)(struct net_device *dev,
1442 struct sk_buff *skb,
1443 struct net_device *sb_dev);
1444 void (*ndo_change_rx_flags)(struct net_device *dev,
1445 int flags);
1446 void (*ndo_set_rx_mode)(struct net_device *dev);
1447 int (*ndo_set_mac_address)(struct net_device *dev,
1448 void *addr);
1449 int (*ndo_validate_addr)(struct net_device *dev);
1450 int (*ndo_do_ioctl)(struct net_device *dev,
1451 struct ifreq *ifr, int cmd);
1452 int (*ndo_eth_ioctl)(struct net_device *dev,
1453 struct ifreq *ifr, int cmd);
1454 int (*ndo_siocbond)(struct net_device *dev,
1455 struct ifreq *ifr, int cmd);
1456 int (*ndo_siocwandev)(struct net_device *dev,
1457 struct if_settings *ifs);
1458 int (*ndo_siocdevprivate)(struct net_device *dev,
1459 struct ifreq *ifr,
1460 void __user *data, int cmd);
1461 int (*ndo_set_config)(struct net_device *dev,
1462 struct ifmap *map);
1463 int (*ndo_change_mtu)(struct net_device *dev,
1464 int new_mtu);
1465 int (*ndo_neigh_setup)(struct net_device *dev,
1466 struct neigh_parms *);
1467 void (*ndo_tx_timeout) (struct net_device *dev,
1468 unsigned int txqueue);
1469
1470 void (*ndo_get_stats64)(struct net_device *dev,
1471 struct rtnl_link_stats64 *storage);
1472 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1473 int (*ndo_get_offload_stats)(int attr_id,
1474 const struct net_device *dev,
1475 void *attr_data);
1476 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1477
1478 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1479 __be16 proto, u16 vid);
1480 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1481 __be16 proto, u16 vid);
1482#ifdef CONFIG_NET_POLL_CONTROLLER
1483 void (*ndo_poll_controller)(struct net_device *dev);
1484 int (*ndo_netpoll_setup)(struct net_device *dev,
1485 struct netpoll_info *info);
1486 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1487#endif
1488 int (*ndo_set_vf_mac)(struct net_device *dev,
1489 int queue, u8 *mac);
1490 int (*ndo_set_vf_vlan)(struct net_device *dev,
1491 int queue, u16 vlan,
1492 u8 qos, __be16 proto);
1493 int (*ndo_set_vf_rate)(struct net_device *dev,
1494 int vf, int min_tx_rate,
1495 int max_tx_rate);
1496 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1497 int vf, bool setting);
1498 int (*ndo_set_vf_trust)(struct net_device *dev,
1499 int vf, bool setting);
1500 int (*ndo_get_vf_config)(struct net_device *dev,
1501 int vf,
1502 struct ifla_vf_info *ivf);
1503 int (*ndo_set_vf_link_state)(struct net_device *dev,
1504 int vf, int link_state);
1505 int (*ndo_get_vf_stats)(struct net_device *dev,
1506 int vf,
1507 struct ifla_vf_stats
1508 *vf_stats);
1509 int (*ndo_set_vf_port)(struct net_device *dev,
1510 int vf,
1511 struct nlattr *port[]);
1512 int (*ndo_get_vf_port)(struct net_device *dev,
1513 int vf, struct sk_buff *skb);
1514 int (*ndo_get_vf_guid)(struct net_device *dev,
1515 int vf,
1516 struct ifla_vf_guid *node_guid,
1517 struct ifla_vf_guid *port_guid);
1518 int (*ndo_set_vf_guid)(struct net_device *dev,
1519 int vf, u64 guid,
1520 int guid_type);
1521 int (*ndo_set_vf_rss_query_en)(
1522 struct net_device *dev,
1523 int vf, bool setting);
1524 int (*ndo_setup_tc)(struct net_device *dev,
1525 enum tc_setup_type type,
1526 void *type_data);
1527#if IS_ENABLED(CONFIG_FCOE)
1528 int (*ndo_fcoe_enable)(struct net_device *dev);
1529 int (*ndo_fcoe_disable)(struct net_device *dev);
1530 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1531 u16 xid,
1532 struct scatterlist *sgl,
1533 unsigned int sgc);
1534 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1535 u16 xid);
1536 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1537 u16 xid,
1538 struct scatterlist *sgl,
1539 unsigned int sgc);
1540 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1541 struct netdev_fcoe_hbainfo *hbainfo);
1542#endif
1543
1544#if IS_ENABLED(CONFIG_LIBFCOE)
1545#define NETDEV_FCOE_WWNN 0
1546#define NETDEV_FCOE_WWPN 1
1547 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1548 u64 *wwn, int type);
1549#endif
1550
1551#ifdef CONFIG_RFS_ACCEL
1552 int (*ndo_rx_flow_steer)(struct net_device *dev,
1553 const struct sk_buff *skb,
1554 u16 rxq_index,
1555 u32 flow_id);
1556#endif
1557 int (*ndo_add_slave)(struct net_device *dev,
1558 struct net_device *slave_dev,
1559 struct netlink_ext_ack *extack);
1560 int (*ndo_del_slave)(struct net_device *dev,
1561 struct net_device *slave_dev);
1562 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1563 struct sk_buff *skb,
1564 bool all_slaves);
1565 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1566 struct sock *sk);
1567 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1568 netdev_features_t features);
1569 int (*ndo_set_features)(struct net_device *dev,
1570 netdev_features_t features);
1571 int (*ndo_neigh_construct)(struct net_device *dev,
1572 struct neighbour *n);
1573 void (*ndo_neigh_destroy)(struct net_device *dev,
1574 struct neighbour *n);
1575
1576 int (*ndo_fdb_add)(struct ndmsg *ndm,
1577 struct nlattr *tb[],
1578 struct net_device *dev,
1579 const unsigned char *addr,
1580 u16 vid,
1581 u16 flags,
1582 struct netlink_ext_ack *extack);
1583 int (*ndo_fdb_del)(struct ndmsg *ndm,
1584 struct nlattr *tb[],
1585 struct net_device *dev,
1586 const unsigned char *addr,
1587 u16 vid, struct netlink_ext_ack *extack);
1588 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1589 struct net_device *dev,
1590 struct netlink_ext_ack *extack);
1591 int (*ndo_fdb_dump)(struct sk_buff *skb,
1592 struct netlink_callback *cb,
1593 struct net_device *dev,
1594 struct net_device *filter_dev,
1595 int *idx);
1596 int (*ndo_fdb_get)(struct sk_buff *skb,
1597 struct nlattr *tb[],
1598 struct net_device *dev,
1599 const unsigned char *addr,
1600 u16 vid, u32 portid, u32 seq,
1601 struct netlink_ext_ack *extack);
1602 int (*ndo_mdb_add)(struct net_device *dev,
1603 struct nlattr *tb[],
1604 u16 nlmsg_flags,
1605 struct netlink_ext_ack *extack);
1606 int (*ndo_mdb_del)(struct net_device *dev,
1607 struct nlattr *tb[],
1608 struct netlink_ext_ack *extack);
1609 int (*ndo_mdb_dump)(struct net_device *dev,
1610 struct sk_buff *skb,
1611 struct netlink_callback *cb);
1612 int (*ndo_mdb_get)(struct net_device *dev,
1613 struct nlattr *tb[], u32 portid,
1614 u32 seq,
1615 struct netlink_ext_ack *extack);
1616 int (*ndo_bridge_setlink)(struct net_device *dev,
1617 struct nlmsghdr *nlh,
1618 u16 flags,
1619 struct netlink_ext_ack *extack);
1620 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1621 u32 pid, u32 seq,
1622 struct net_device *dev,
1623 u32 filter_mask,
1624 int nlflags);
1625 int (*ndo_bridge_dellink)(struct net_device *dev,
1626 struct nlmsghdr *nlh,
1627 u16 flags);
1628 int (*ndo_change_carrier)(struct net_device *dev,
1629 bool new_carrier);
1630 int (*ndo_get_phys_port_id)(struct net_device *dev,
1631 struct netdev_phys_item_id *ppid);
1632 int (*ndo_get_port_parent_id)(struct net_device *dev,
1633 struct netdev_phys_item_id *ppid);
1634 int (*ndo_get_phys_port_name)(struct net_device *dev,
1635 char *name, size_t len);
1636 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1637 struct net_device *dev);
1638 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1639 void *priv);
1640
1641 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1642 int queue_index,
1643 u32 maxrate);
1644 int (*ndo_get_iflink)(const struct net_device *dev);
1645 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1646 struct sk_buff *skb);
1647 void (*ndo_set_rx_headroom)(struct net_device *dev,
1648 int needed_headroom);
1649 int (*ndo_bpf)(struct net_device *dev,
1650 struct netdev_bpf *bpf);
1651 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1652 struct xdp_frame **xdp,
1653 u32 flags);
1654 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1655 struct xdp_buff *xdp);
1656 int (*ndo_xsk_wakeup)(struct net_device *dev,
1657 u32 queue_id, u32 flags);
1658 int (*ndo_tunnel_ctl)(struct net_device *dev,
1659 struct ip_tunnel_parm *p, int cmd);
1660 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1661 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1662 struct net_device_path *path);
1663 ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1664 const struct skb_shared_hwtstamps *hwtstamps,
1665 bool cycles);
1666 int (*ndo_hwtstamp_get)(struct net_device *dev,
1667 struct kernel_hwtstamp_config *kernel_config);
1668 int (*ndo_hwtstamp_set)(struct net_device *dev,
1669 struct kernel_hwtstamp_config *kernel_config,
1670 struct netlink_ext_ack *extack);
1671};
1672
1673/**
1674 * enum netdev_priv_flags - &struct net_device priv_flags
1675 *
1676 * These are the &struct net_device, they are only set internally
1677 * by drivers and used in the kernel. These flags are invisible to
1678 * userspace; this means that the order of these flags can change
1679 * during any kernel release.
1680 *
1681 * You should have a pretty good reason to be extending these flags.
1682 *
1683 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1684 * @IFF_EBRIDGE: Ethernet bridging device
1685 * @IFF_BONDING: bonding master or slave
1686 * @IFF_ISATAP: ISATAP interface (RFC4214)
1687 * @IFF_WAN_HDLC: WAN HDLC device
1688 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1689 * release skb->dst
1690 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1691 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1692 * @IFF_MACVLAN_PORT: device used as macvlan port
1693 * @IFF_BRIDGE_PORT: device used as bridge port
1694 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1695 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1696 * @IFF_UNICAST_FLT: Supports unicast filtering
1697 * @IFF_TEAM_PORT: device used as team port
1698 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1699 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1700 * change when it's running
1701 * @IFF_MACVLAN: Macvlan device
1702 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1703 * underlying stacked devices
1704 * @IFF_L3MDEV_MASTER: device is an L3 master device
1705 * @IFF_NO_QUEUE: device can run without qdisc attached
1706 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1707 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1708 * @IFF_TEAM: device is a team device
1709 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1710 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1711 * entity (i.e. the master device for bridged veth)
1712 * @IFF_MACSEC: device is a MACsec device
1713 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1714 * @IFF_FAILOVER: device is a failover master device
1715 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1716 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1717 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1718 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1719 * skb_headlen(skb) == 0 (data starts from frag0)
1720 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1721 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1722 * ndo_hwtstamp_set() for all timestamp requests regardless of source,
1723 * even if those aren't HWTSTAMP_SOURCE_NETDEV.
1724 */
1725enum netdev_priv_flags {
1726 IFF_802_1Q_VLAN = 1<<0,
1727 IFF_EBRIDGE = 1<<1,
1728 IFF_BONDING = 1<<2,
1729 IFF_ISATAP = 1<<3,
1730 IFF_WAN_HDLC = 1<<4,
1731 IFF_XMIT_DST_RELEASE = 1<<5,
1732 IFF_DONT_BRIDGE = 1<<6,
1733 IFF_DISABLE_NETPOLL = 1<<7,
1734 IFF_MACVLAN_PORT = 1<<8,
1735 IFF_BRIDGE_PORT = 1<<9,
1736 IFF_OVS_DATAPATH = 1<<10,
1737 IFF_TX_SKB_SHARING = 1<<11,
1738 IFF_UNICAST_FLT = 1<<12,
1739 IFF_TEAM_PORT = 1<<13,
1740 IFF_SUPP_NOFCS = 1<<14,
1741 IFF_LIVE_ADDR_CHANGE = 1<<15,
1742 IFF_MACVLAN = 1<<16,
1743 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1744 IFF_L3MDEV_MASTER = 1<<18,
1745 IFF_NO_QUEUE = 1<<19,
1746 IFF_OPENVSWITCH = 1<<20,
1747 IFF_L3MDEV_SLAVE = 1<<21,
1748 IFF_TEAM = 1<<22,
1749 IFF_RXFH_CONFIGURED = 1<<23,
1750 IFF_PHONY_HEADROOM = 1<<24,
1751 IFF_MACSEC = 1<<25,
1752 IFF_NO_RX_HANDLER = 1<<26,
1753 IFF_FAILOVER = 1<<27,
1754 IFF_FAILOVER_SLAVE = 1<<28,
1755 IFF_L3MDEV_RX_HANDLER = 1<<29,
1756 IFF_NO_ADDRCONF = BIT_ULL(30),
1757 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31),
1758 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32),
1759 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33),
1760};
1761
1762#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1763#define IFF_EBRIDGE IFF_EBRIDGE
1764#define IFF_BONDING IFF_BONDING
1765#define IFF_ISATAP IFF_ISATAP
1766#define IFF_WAN_HDLC IFF_WAN_HDLC
1767#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1768#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1769#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1770#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1771#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1772#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1773#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1774#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1775#define IFF_TEAM_PORT IFF_TEAM_PORT
1776#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1777#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1778#define IFF_MACVLAN IFF_MACVLAN
1779#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1780#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1781#define IFF_NO_QUEUE IFF_NO_QUEUE
1782#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1783#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1784#define IFF_TEAM IFF_TEAM
1785#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1786#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1787#define IFF_MACSEC IFF_MACSEC
1788#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1789#define IFF_FAILOVER IFF_FAILOVER
1790#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1791#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1792#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1793
1794/* Specifies the type of the struct net_device::ml_priv pointer */
1795enum netdev_ml_priv_type {
1796 ML_PRIV_NONE,
1797 ML_PRIV_CAN,
1798};
1799
1800/**
1801 * struct net_device - The DEVICE structure.
1802 *
1803 * Actually, this whole structure is a big mistake. It mixes I/O
1804 * data with strictly "high-level" data, and it has to know about
1805 * almost every data structure used in the INET module.
1806 *
1807 * @name: This is the first field of the "visible" part of this structure
1808 * (i.e. as seen by users in the "Space.c" file). It is the name
1809 * of the interface.
1810 *
1811 * @name_node: Name hashlist node
1812 * @ifalias: SNMP alias
1813 * @mem_end: Shared memory end
1814 * @mem_start: Shared memory start
1815 * @base_addr: Device I/O address
1816 * @irq: Device IRQ number
1817 *
1818 * @state: Generic network queuing layer state, see netdev_state_t
1819 * @dev_list: The global list of network devices
1820 * @napi_list: List entry used for polling NAPI devices
1821 * @unreg_list: List entry when we are unregistering the
1822 * device; see the function unregister_netdev
1823 * @close_list: List entry used when we are closing the device
1824 * @ptype_all: Device-specific packet handlers for all protocols
1825 * @ptype_specific: Device-specific, protocol-specific packet handlers
1826 *
1827 * @adj_list: Directly linked devices, like slaves for bonding
1828 * @features: Currently active device features
1829 * @hw_features: User-changeable features
1830 *
1831 * @wanted_features: User-requested features
1832 * @vlan_features: Mask of features inheritable by VLAN devices
1833 *
1834 * @hw_enc_features: Mask of features inherited by encapsulating devices
1835 * This field indicates what encapsulation
1836 * offloads the hardware is capable of doing,
1837 * and drivers will need to set them appropriately.
1838 *
1839 * @mpls_features: Mask of features inheritable by MPLS
1840 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1841 *
1842 * @ifindex: interface index
1843 * @group: The group the device belongs to
1844 *
1845 * @stats: Statistics struct, which was left as a legacy, use
1846 * rtnl_link_stats64 instead
1847 *
1848 * @core_stats: core networking counters,
1849 * do not use this in drivers
1850 * @carrier_up_count: Number of times the carrier has been up
1851 * @carrier_down_count: Number of times the carrier has been down
1852 *
1853 * @wireless_handlers: List of functions to handle Wireless Extensions,
1854 * instead of ioctl,
1855 * see <net/iw_handler.h> for details.
1856 * @wireless_data: Instance data managed by the core of wireless extensions
1857 *
1858 * @netdev_ops: Includes several pointers to callbacks,
1859 * if one wants to override the ndo_*() functions
1860 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks.
1861 * @ethtool_ops: Management operations
1862 * @l3mdev_ops: Layer 3 master device operations
1863 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1864 * discovery handling. Necessary for e.g. 6LoWPAN.
1865 * @xfrmdev_ops: Transformation offload operations
1866 * @tlsdev_ops: Transport Layer Security offload operations
1867 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1868 * of Layer 2 headers.
1869 *
1870 * @flags: Interface flags (a la BSD)
1871 * @xdp_features: XDP capability supported by the device
1872 * @priv_flags: Like 'flags' but invisible to userspace,
1873 * see if.h for the definitions
1874 * @gflags: Global flags ( kept as legacy )
1875 * @padded: How much padding added by alloc_netdev()
1876 * @operstate: RFC2863 operstate
1877 * @link_mode: Mapping policy to operstate
1878 * @if_port: Selectable AUI, TP, ...
1879 * @dma: DMA channel
1880 * @mtu: Interface MTU value
1881 * @min_mtu: Interface Minimum MTU value
1882 * @max_mtu: Interface Maximum MTU value
1883 * @type: Interface hardware type
1884 * @hard_header_len: Maximum hardware header length.
1885 * @min_header_len: Minimum hardware header length
1886 *
1887 * @needed_headroom: Extra headroom the hardware may need, but not in all
1888 * cases can this be guaranteed
1889 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1890 * cases can this be guaranteed. Some cases also use
1891 * LL_MAX_HEADER instead to allocate the skb
1892 *
1893 * interface address info:
1894 *
1895 * @perm_addr: Permanent hw address
1896 * @addr_assign_type: Hw address assignment type
1897 * @addr_len: Hardware address length
1898 * @upper_level: Maximum depth level of upper devices.
1899 * @lower_level: Maximum depth level of lower devices.
1900 * @neigh_priv_len: Used in neigh_alloc()
1901 * @dev_id: Used to differentiate devices that share
1902 * the same link layer address
1903 * @dev_port: Used to differentiate devices that share
1904 * the same function
1905 * @addr_list_lock: XXX: need comments on this one
1906 * @name_assign_type: network interface name assignment type
1907 * @uc_promisc: Counter that indicates promiscuous mode
1908 * has been enabled due to the need to listen to
1909 * additional unicast addresses in a device that
1910 * does not implement ndo_set_rx_mode()
1911 * @uc: unicast mac addresses
1912 * @mc: multicast mac addresses
1913 * @dev_addrs: list of device hw addresses
1914 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1915 * @promiscuity: Number of times the NIC is told to work in
1916 * promiscuous mode; if it becomes 0 the NIC will
1917 * exit promiscuous mode
1918 * @allmulti: Counter, enables or disables allmulticast mode
1919 *
1920 * @vlan_info: VLAN info
1921 * @dsa_ptr: dsa specific data
1922 * @tipc_ptr: TIPC specific data
1923 * @atalk_ptr: AppleTalk link
1924 * @ip_ptr: IPv4 specific data
1925 * @ip6_ptr: IPv6 specific data
1926 * @ax25_ptr: AX.25 specific data
1927 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1928 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1929 * device struct
1930 * @mpls_ptr: mpls_dev struct pointer
1931 * @mctp_ptr: MCTP specific data
1932 *
1933 * @dev_addr: Hw address (before bcast,
1934 * because most packets are unicast)
1935 *
1936 * @_rx: Array of RX queues
1937 * @num_rx_queues: Number of RX queues
1938 * allocated at register_netdev() time
1939 * @real_num_rx_queues: Number of RX queues currently active in device
1940 * @xdp_prog: XDP sockets filter program pointer
1941 * @gro_flush_timeout: timeout for GRO layer in NAPI
1942 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1943 * allow to avoid NIC hard IRQ, on busy queues.
1944 *
1945 * @rx_handler: handler for received packets
1946 * @rx_handler_data: XXX: need comments on this one
1947 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing
1948 * @ingress_queue: XXX: need comments on this one
1949 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1950 * @broadcast: hw bcast address
1951 *
1952 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1953 * indexed by RX queue number. Assigned by driver.
1954 * This must only be set if the ndo_rx_flow_steer
1955 * operation is defined
1956 * @index_hlist: Device index hash chain
1957 *
1958 * @_tx: Array of TX queues
1959 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1960 * @real_num_tx_queues: Number of TX queues currently active in device
1961 * @qdisc: Root qdisc from userspace point of view
1962 * @tx_queue_len: Max frames per queue allowed
1963 * @tx_global_lock: XXX: need comments on this one
1964 * @xdp_bulkq: XDP device bulk queue
1965 * @xps_maps: all CPUs/RXQs maps for XPS device
1966 *
1967 * @xps_maps: XXX: need comments on this one
1968 * @tcx_egress: BPF & clsact qdisc specific data for egress processing
1969 * @nf_hooks_egress: netfilter hooks executed for egress packets
1970 * @qdisc_hash: qdisc hash table
1971 * @watchdog_timeo: Represents the timeout that is used by
1972 * the watchdog (see dev_watchdog())
1973 * @watchdog_timer: List of timers
1974 *
1975 * @proto_down_reason: reason a netdev interface is held down
1976 * @pcpu_refcnt: Number of references to this device
1977 * @dev_refcnt: Number of references to this device
1978 * @refcnt_tracker: Tracker directory for tracked references to this device
1979 * @todo_list: Delayed register/unregister
1980 * @link_watch_list: XXX: need comments on this one
1981 *
1982 * @reg_state: Register/unregister state machine
1983 * @dismantle: Device is going to be freed
1984 * @rtnl_link_state: This enum represents the phases of creating
1985 * a new link
1986 *
1987 * @needs_free_netdev: Should unregister perform free_netdev?
1988 * @priv_destructor: Called from unregister
1989 * @npinfo: XXX: need comments on this one
1990 * @nd_net: Network namespace this network device is inside
1991 *
1992 * @ml_priv: Mid-layer private
1993 * @ml_priv_type: Mid-layer private type
1994 * @lstats: Loopback statistics
1995 * @tstats: Tunnel statistics
1996 * @dstats: Dummy statistics
1997 * @vstats: Virtual ethernet statistics
1998 *
1999 * @garp_port: GARP
2000 * @mrp_port: MRP
2001 *
2002 * @dm_private: Drop monitor private
2003 *
2004 * @dev: Class/net/name entry
2005 * @sysfs_groups: Space for optional device, statistics and wireless
2006 * sysfs groups
2007 *
2008 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
2009 * @rtnl_link_ops: Rtnl_link_ops
2010 *
2011 * @gso_max_size: Maximum size of generic segmentation offload
2012 * @tso_max_size: Device (as in HW) limit on the max TSO request size
2013 * @gso_max_segs: Maximum number of segments that can be passed to the
2014 * NIC for GSO
2015 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count
2016 * @gso_ipv4_max_size: Maximum size of generic segmentation offload,
2017 * for IPv4.
2018 *
2019 * @dcbnl_ops: Data Center Bridging netlink ops
2020 * @num_tc: Number of traffic classes in the net device
2021 * @tc_to_txq: XXX: need comments on this one
2022 * @prio_tc_map: XXX: need comments on this one
2023 *
2024 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
2025 *
2026 * @priomap: XXX: need comments on this one
2027 * @phydev: Physical device may attach itself
2028 * for hardware timestamping
2029 * @sfp_bus: attached &struct sfp_bus structure.
2030 *
2031 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2032 *
2033 * @proto_down: protocol port state information can be sent to the
2034 * switch driver and used to set the phys state of the
2035 * switch port.
2036 *
2037 * @wol_enabled: Wake-on-LAN is enabled
2038 *
2039 * @threaded: napi threaded mode is enabled
2040 *
2041 * @net_notifier_list: List of per-net netdev notifier block
2042 * that follow this device when it is moved
2043 * to another network namespace.
2044 *
2045 * @macsec_ops: MACsec offloading ops
2046 *
2047 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
2048 * offload capabilities of the device
2049 * @udp_tunnel_nic: UDP tunnel offload state
2050 * @xdp_state: stores info on attached XDP BPF programs
2051 *
2052 * @nested_level: Used as a parameter of spin_lock_nested() of
2053 * dev->addr_list_lock.
2054 * @unlink_list: As netif_addr_lock() can be called recursively,
2055 * keep a list of interfaces to be deleted.
2056 * @gro_max_size: Maximum size of aggregated packet in generic
2057 * receive offload (GRO)
2058 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic
2059 * receive offload (GRO), for IPv4.
2060 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP
2061 * zero copy driver
2062 *
2063 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
2064 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
2065 * @watchdog_dev_tracker: refcount tracker used by watchdog.
2066 * @dev_registered_tracker: tracker for reference held while
2067 * registered
2068 * @offload_xstats_l3: L3 HW stats for this netdevice.
2069 *
2070 * @devlink_port: Pointer to related devlink port structure.
2071 * Assigned by a driver before netdev registration using
2072 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2073 * during the time netdevice is registered.
2074 *
2075 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2076 * where the clock is recovered.
2077 *
2078 * FIXME: cleanup struct net_device such that network protocol info
2079 * moves out.
2080 */
2081
2082struct net_device {
2083 char name[IFNAMSIZ];
2084 struct netdev_name_node *name_node;
2085 struct dev_ifalias __rcu *ifalias;
2086 /*
2087 * I/O specific fields
2088 * FIXME: Merge these and struct ifmap into one
2089 */
2090 unsigned long mem_end;
2091 unsigned long mem_start;
2092 unsigned long base_addr;
2093
2094 /*
2095 * Some hardware also needs these fields (state,dev_list,
2096 * napi_list,unreg_list,close_list) but they are not
2097 * part of the usual set specified in Space.c.
2098 */
2099
2100 unsigned long state;
2101
2102 struct list_head dev_list;
2103 struct list_head napi_list;
2104 struct list_head unreg_list;
2105 struct list_head close_list;
2106 struct list_head ptype_all;
2107 struct list_head ptype_specific;
2108
2109 struct {
2110 struct list_head upper;
2111 struct list_head lower;
2112 } adj_list;
2113
2114 /* Read-mostly cache-line for fast-path access */
2115 unsigned int flags;
2116 xdp_features_t xdp_features;
2117 unsigned long long priv_flags;
2118 const struct net_device_ops *netdev_ops;
2119 const struct xdp_metadata_ops *xdp_metadata_ops;
2120 int ifindex;
2121 unsigned short gflags;
2122 unsigned short hard_header_len;
2123
2124 /* Note : dev->mtu is often read without holding a lock.
2125 * Writers usually hold RTNL.
2126 * It is recommended to use READ_ONCE() to annotate the reads,
2127 * and to use WRITE_ONCE() to annotate the writes.
2128 */
2129 unsigned int mtu;
2130 unsigned short needed_headroom;
2131 unsigned short needed_tailroom;
2132
2133 netdev_features_t features;
2134 netdev_features_t hw_features;
2135 netdev_features_t wanted_features;
2136 netdev_features_t vlan_features;
2137 netdev_features_t hw_enc_features;
2138 netdev_features_t mpls_features;
2139 netdev_features_t gso_partial_features;
2140
2141 unsigned int min_mtu;
2142 unsigned int max_mtu;
2143 unsigned short type;
2144 unsigned char min_header_len;
2145 unsigned char name_assign_type;
2146
2147 int group;
2148
2149 struct net_device_stats stats; /* not used by modern drivers */
2150
2151 struct net_device_core_stats __percpu *core_stats;
2152
2153 /* Stats to monitor link on/off, flapping */
2154 atomic_t carrier_up_count;
2155 atomic_t carrier_down_count;
2156
2157#ifdef CONFIG_WIRELESS_EXT
2158 const struct iw_handler_def *wireless_handlers;
2159 struct iw_public_data *wireless_data;
2160#endif
2161 const struct ethtool_ops *ethtool_ops;
2162#ifdef CONFIG_NET_L3_MASTER_DEV
2163 const struct l3mdev_ops *l3mdev_ops;
2164#endif
2165#if IS_ENABLED(CONFIG_IPV6)
2166 const struct ndisc_ops *ndisc_ops;
2167#endif
2168
2169#ifdef CONFIG_XFRM_OFFLOAD
2170 const struct xfrmdev_ops *xfrmdev_ops;
2171#endif
2172
2173#if IS_ENABLED(CONFIG_TLS_DEVICE)
2174 const struct tlsdev_ops *tlsdev_ops;
2175#endif
2176
2177 const struct header_ops *header_ops;
2178
2179 unsigned char operstate;
2180 unsigned char link_mode;
2181
2182 unsigned char if_port;
2183 unsigned char dma;
2184
2185 /* Interface address info. */
2186 unsigned char perm_addr[MAX_ADDR_LEN];
2187 unsigned char addr_assign_type;
2188 unsigned char addr_len;
2189 unsigned char upper_level;
2190 unsigned char lower_level;
2191
2192 unsigned short neigh_priv_len;
2193 unsigned short dev_id;
2194 unsigned short dev_port;
2195 unsigned short padded;
2196
2197 spinlock_t addr_list_lock;
2198 int irq;
2199
2200 struct netdev_hw_addr_list uc;
2201 struct netdev_hw_addr_list mc;
2202 struct netdev_hw_addr_list dev_addrs;
2203
2204#ifdef CONFIG_SYSFS
2205 struct kset *queues_kset;
2206#endif
2207#ifdef CONFIG_LOCKDEP
2208 struct list_head unlink_list;
2209#endif
2210 unsigned int promiscuity;
2211 unsigned int allmulti;
2212 bool uc_promisc;
2213#ifdef CONFIG_LOCKDEP
2214 unsigned char nested_level;
2215#endif
2216
2217
2218 /* Protocol-specific pointers */
2219
2220 struct in_device __rcu *ip_ptr;
2221 struct inet6_dev __rcu *ip6_ptr;
2222#if IS_ENABLED(CONFIG_VLAN_8021Q)
2223 struct vlan_info __rcu *vlan_info;
2224#endif
2225#if IS_ENABLED(CONFIG_NET_DSA)
2226 struct dsa_port *dsa_ptr;
2227#endif
2228#if IS_ENABLED(CONFIG_TIPC)
2229 struct tipc_bearer __rcu *tipc_ptr;
2230#endif
2231#if IS_ENABLED(CONFIG_ATALK)
2232 void *atalk_ptr;
2233#endif
2234#if IS_ENABLED(CONFIG_AX25)
2235 void *ax25_ptr;
2236#endif
2237#if IS_ENABLED(CONFIG_CFG80211)
2238 struct wireless_dev *ieee80211_ptr;
2239#endif
2240#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2241 struct wpan_dev *ieee802154_ptr;
2242#endif
2243#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2244 struct mpls_dev __rcu *mpls_ptr;
2245#endif
2246#if IS_ENABLED(CONFIG_MCTP)
2247 struct mctp_dev __rcu *mctp_ptr;
2248#endif
2249
2250/*
2251 * Cache lines mostly used on receive path (including eth_type_trans())
2252 */
2253 /* Interface address info used in eth_type_trans() */
2254 const unsigned char *dev_addr;
2255
2256 struct netdev_rx_queue *_rx;
2257 unsigned int num_rx_queues;
2258 unsigned int real_num_rx_queues;
2259
2260 struct bpf_prog __rcu *xdp_prog;
2261 unsigned long gro_flush_timeout;
2262 int napi_defer_hard_irqs;
2263#define GRO_LEGACY_MAX_SIZE 65536u
2264/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2265 * and shinfo->gso_segs is a 16bit field.
2266 */
2267#define GRO_MAX_SIZE (8 * 65535u)
2268 unsigned int gro_max_size;
2269 unsigned int gro_ipv4_max_size;
2270 unsigned int xdp_zc_max_segs;
2271 rx_handler_func_t __rcu *rx_handler;
2272 void __rcu *rx_handler_data;
2273#ifdef CONFIG_NET_XGRESS
2274 struct bpf_mprog_entry __rcu *tcx_ingress;
2275#endif
2276 struct netdev_queue __rcu *ingress_queue;
2277#ifdef CONFIG_NETFILTER_INGRESS
2278 struct nf_hook_entries __rcu *nf_hooks_ingress;
2279#endif
2280
2281 unsigned char broadcast[MAX_ADDR_LEN];
2282#ifdef CONFIG_RFS_ACCEL
2283 struct cpu_rmap *rx_cpu_rmap;
2284#endif
2285 struct hlist_node index_hlist;
2286
2287/*
2288 * Cache lines mostly used on transmit path
2289 */
2290 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2291 unsigned int num_tx_queues;
2292 unsigned int real_num_tx_queues;
2293 struct Qdisc __rcu *qdisc;
2294 unsigned int tx_queue_len;
2295 spinlock_t tx_global_lock;
2296
2297 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2298
2299#ifdef CONFIG_XPS
2300 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2301#endif
2302#ifdef CONFIG_NET_XGRESS
2303 struct bpf_mprog_entry __rcu *tcx_egress;
2304#endif
2305#ifdef CONFIG_NETFILTER_EGRESS
2306 struct nf_hook_entries __rcu *nf_hooks_egress;
2307#endif
2308
2309#ifdef CONFIG_NET_SCHED
2310 DECLARE_HASHTABLE (qdisc_hash, 4);
2311#endif
2312 /* These may be needed for future network-power-down code. */
2313 struct timer_list watchdog_timer;
2314 int watchdog_timeo;
2315
2316 u32 proto_down_reason;
2317
2318 struct list_head todo_list;
2319
2320#ifdef CONFIG_PCPU_DEV_REFCNT
2321 int __percpu *pcpu_refcnt;
2322#else
2323 refcount_t dev_refcnt;
2324#endif
2325 struct ref_tracker_dir refcnt_tracker;
2326
2327 struct list_head link_watch_list;
2328
2329 enum { NETREG_UNINITIALIZED=0,
2330 NETREG_REGISTERED, /* completed register_netdevice */
2331 NETREG_UNREGISTERING, /* called unregister_netdevice */
2332 NETREG_UNREGISTERED, /* completed unregister todo */
2333 NETREG_RELEASED, /* called free_netdev */
2334 NETREG_DUMMY, /* dummy device for NAPI poll */
2335 } reg_state:8;
2336
2337 bool dismantle;
2338
2339 enum {
2340 RTNL_LINK_INITIALIZED,
2341 RTNL_LINK_INITIALIZING,
2342 } rtnl_link_state:16;
2343
2344 bool needs_free_netdev;
2345 void (*priv_destructor)(struct net_device *dev);
2346
2347#ifdef CONFIG_NETPOLL
2348 struct netpoll_info __rcu *npinfo;
2349#endif
2350
2351 possible_net_t nd_net;
2352
2353 /* mid-layer private */
2354 void *ml_priv;
2355 enum netdev_ml_priv_type ml_priv_type;
2356
2357 union {
2358 struct pcpu_lstats __percpu *lstats;
2359 struct pcpu_sw_netstats __percpu *tstats;
2360 struct pcpu_dstats __percpu *dstats;
2361 };
2362
2363#if IS_ENABLED(CONFIG_GARP)
2364 struct garp_port __rcu *garp_port;
2365#endif
2366#if IS_ENABLED(CONFIG_MRP)
2367 struct mrp_port __rcu *mrp_port;
2368#endif
2369#if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2370 struct dm_hw_stat_delta __rcu *dm_private;
2371#endif
2372 struct device dev;
2373 const struct attribute_group *sysfs_groups[4];
2374 const struct attribute_group *sysfs_rx_queue_group;
2375
2376 const struct rtnl_link_ops *rtnl_link_ops;
2377
2378 /* for setting kernel sock attribute on TCP connection setup */
2379#define GSO_MAX_SEGS 65535u
2380#define GSO_LEGACY_MAX_SIZE 65536u
2381/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2382 * and shinfo->gso_segs is a 16bit field.
2383 */
2384#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS)
2385
2386 unsigned int gso_max_size;
2387#define TSO_LEGACY_MAX_SIZE 65536
2388#define TSO_MAX_SIZE UINT_MAX
2389 unsigned int tso_max_size;
2390 u16 gso_max_segs;
2391#define TSO_MAX_SEGS U16_MAX
2392 u16 tso_max_segs;
2393 unsigned int gso_ipv4_max_size;
2394
2395#ifdef CONFIG_DCB
2396 const struct dcbnl_rtnl_ops *dcbnl_ops;
2397#endif
2398 s16 num_tc;
2399 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2400 u8 prio_tc_map[TC_BITMASK + 1];
2401
2402#if IS_ENABLED(CONFIG_FCOE)
2403 unsigned int fcoe_ddp_xid;
2404#endif
2405#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2406 struct netprio_map __rcu *priomap;
2407#endif
2408 struct phy_device *phydev;
2409 struct sfp_bus *sfp_bus;
2410 struct lock_class_key *qdisc_tx_busylock;
2411 bool proto_down;
2412 unsigned wol_enabled:1;
2413 unsigned threaded:1;
2414
2415 struct list_head net_notifier_list;
2416
2417#if IS_ENABLED(CONFIG_MACSEC)
2418 /* MACsec management functions */
2419 const struct macsec_ops *macsec_ops;
2420#endif
2421 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2422 struct udp_tunnel_nic *udp_tunnel_nic;
2423
2424 /* protected by rtnl_lock */
2425 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2426
2427 u8 dev_addr_shadow[MAX_ADDR_LEN];
2428 netdevice_tracker linkwatch_dev_tracker;
2429 netdevice_tracker watchdog_dev_tracker;
2430 netdevice_tracker dev_registered_tracker;
2431 struct rtnl_hw_stats64 *offload_xstats_l3;
2432
2433 struct devlink_port *devlink_port;
2434
2435#if IS_ENABLED(CONFIG_DPLL)
2436 struct dpll_pin *dpll_pin;
2437#endif
2438};
2439#define to_net_dev(d) container_of(d, struct net_device, dev)
2440
2441/*
2442 * Driver should use this to assign devlink port instance to a netdevice
2443 * before it registers the netdevice. Therefore devlink_port is static
2444 * during the netdev lifetime after it is registered.
2445 */
2446#define SET_NETDEV_DEVLINK_PORT(dev, port) \
2447({ \
2448 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \
2449 ((dev)->devlink_port = (port)); \
2450})
2451
2452static inline bool netif_elide_gro(const struct net_device *dev)
2453{
2454 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2455 return true;
2456 return false;
2457}
2458
2459#define NETDEV_ALIGN 32
2460
2461static inline
2462int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2463{
2464 return dev->prio_tc_map[prio & TC_BITMASK];
2465}
2466
2467static inline
2468int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2469{
2470 if (tc >= dev->num_tc)
2471 return -EINVAL;
2472
2473 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2474 return 0;
2475}
2476
2477int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2478void netdev_reset_tc(struct net_device *dev);
2479int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2480int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2481
2482static inline
2483int netdev_get_num_tc(struct net_device *dev)
2484{
2485 return dev->num_tc;
2486}
2487
2488static inline void net_prefetch(void *p)
2489{
2490 prefetch(p);
2491#if L1_CACHE_BYTES < 128
2492 prefetch((u8 *)p + L1_CACHE_BYTES);
2493#endif
2494}
2495
2496static inline void net_prefetchw(void *p)
2497{
2498 prefetchw(x: p);
2499#if L1_CACHE_BYTES < 128
2500 prefetchw(x: (u8 *)p + L1_CACHE_BYTES);
2501#endif
2502}
2503
2504void netdev_unbind_sb_channel(struct net_device *dev,
2505 struct net_device *sb_dev);
2506int netdev_bind_sb_channel_queue(struct net_device *dev,
2507 struct net_device *sb_dev,
2508 u8 tc, u16 count, u16 offset);
2509int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2510static inline int netdev_get_sb_channel(struct net_device *dev)
2511{
2512 return max_t(int, -dev->num_tc, 0);
2513}
2514
2515static inline
2516struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2517 unsigned int index)
2518{
2519 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2520 return &dev->_tx[index];
2521}
2522
2523static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2524 const struct sk_buff *skb)
2525{
2526 return netdev_get_tx_queue(dev, index: skb_get_queue_mapping(skb));
2527}
2528
2529static inline void netdev_for_each_tx_queue(struct net_device *dev,
2530 void (*f)(struct net_device *,
2531 struct netdev_queue *,
2532 void *),
2533 void *arg)
2534{
2535 unsigned int i;
2536
2537 for (i = 0; i < dev->num_tx_queues; i++)
2538 f(dev, &dev->_tx[i], arg);
2539}
2540
2541#define netdev_lockdep_set_classes(dev) \
2542{ \
2543 static struct lock_class_key qdisc_tx_busylock_key; \
2544 static struct lock_class_key qdisc_xmit_lock_key; \
2545 static struct lock_class_key dev_addr_list_lock_key; \
2546 unsigned int i; \
2547 \
2548 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2549 lockdep_set_class(&(dev)->addr_list_lock, \
2550 &dev_addr_list_lock_key); \
2551 for (i = 0; i < (dev)->num_tx_queues; i++) \
2552 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2553 &qdisc_xmit_lock_key); \
2554}
2555
2556u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2557 struct net_device *sb_dev);
2558struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2559 struct sk_buff *skb,
2560 struct net_device *sb_dev);
2561
2562/* returns the headroom that the master device needs to take in account
2563 * when forwarding to this dev
2564 */
2565static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2566{
2567 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2568}
2569
2570static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2571{
2572 if (dev->netdev_ops->ndo_set_rx_headroom)
2573 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2574}
2575
2576/* set the device rx headroom to the dev's default */
2577static inline void netdev_reset_rx_headroom(struct net_device *dev)
2578{
2579 netdev_set_rx_headroom(dev, new_hr: -1);
2580}
2581
2582static inline void *netdev_get_ml_priv(struct net_device *dev,
2583 enum netdev_ml_priv_type type)
2584{
2585 if (dev->ml_priv_type != type)
2586 return NULL;
2587
2588 return dev->ml_priv;
2589}
2590
2591static inline void netdev_set_ml_priv(struct net_device *dev,
2592 void *ml_priv,
2593 enum netdev_ml_priv_type type)
2594{
2595 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2596 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2597 dev->ml_priv_type, type);
2598 WARN(!dev->ml_priv_type && dev->ml_priv,
2599 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2600
2601 dev->ml_priv = ml_priv;
2602 dev->ml_priv_type = type;
2603}
2604
2605/*
2606 * Net namespace inlines
2607 */
2608static inline
2609struct net *dev_net(const struct net_device *dev)
2610{
2611 return read_pnet(pnet: &dev->nd_net);
2612}
2613
2614static inline
2615void dev_net_set(struct net_device *dev, struct net *net)
2616{
2617 write_pnet(pnet: &dev->nd_net, net);
2618}
2619
2620/**
2621 * netdev_priv - access network device private data
2622 * @dev: network device
2623 *
2624 * Get network device private data
2625 */
2626static inline void *netdev_priv(const struct net_device *dev)
2627{
2628 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2629}
2630
2631/* Set the sysfs physical device reference for the network logical device
2632 * if set prior to registration will cause a symlink during initialization.
2633 */
2634#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2635
2636/* Set the sysfs device type for the network logical device to allow
2637 * fine-grained identification of different network device types. For
2638 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2639 */
2640#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2641
2642/* Default NAPI poll() weight
2643 * Device drivers are strongly advised to not use bigger value
2644 */
2645#define NAPI_POLL_WEIGHT 64
2646
2647void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2648 int (*poll)(struct napi_struct *, int), int weight);
2649
2650/**
2651 * netif_napi_add() - initialize a NAPI context
2652 * @dev: network device
2653 * @napi: NAPI context
2654 * @poll: polling function
2655 *
2656 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2657 * *any* of the other NAPI-related functions.
2658 */
2659static inline void
2660netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2661 int (*poll)(struct napi_struct *, int))
2662{
2663 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2664}
2665
2666static inline void
2667netif_napi_add_tx_weight(struct net_device *dev,
2668 struct napi_struct *napi,
2669 int (*poll)(struct napi_struct *, int),
2670 int weight)
2671{
2672 set_bit(nr: NAPI_STATE_NO_BUSY_POLL, addr: &napi->state);
2673 netif_napi_add_weight(dev, napi, poll, weight);
2674}
2675
2676/**
2677 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2678 * @dev: network device
2679 * @napi: NAPI context
2680 * @poll: polling function
2681 *
2682 * This variant of netif_napi_add() should be used from drivers using NAPI
2683 * to exclusively poll a TX queue.
2684 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2685 */
2686static inline void netif_napi_add_tx(struct net_device *dev,
2687 struct napi_struct *napi,
2688 int (*poll)(struct napi_struct *, int))
2689{
2690 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2691}
2692
2693/**
2694 * __netif_napi_del - remove a NAPI context
2695 * @napi: NAPI context
2696 *
2697 * Warning: caller must observe RCU grace period before freeing memory
2698 * containing @napi. Drivers might want to call this helper to combine
2699 * all the needed RCU grace periods into a single one.
2700 */
2701void __netif_napi_del(struct napi_struct *napi);
2702
2703/**
2704 * netif_napi_del - remove a NAPI context
2705 * @napi: NAPI context
2706 *
2707 * netif_napi_del() removes a NAPI context from the network device NAPI list
2708 */
2709static inline void netif_napi_del(struct napi_struct *napi)
2710{
2711 __netif_napi_del(napi);
2712 synchronize_net();
2713}
2714
2715struct packet_type {
2716 __be16 type; /* This is really htons(ether_type). */
2717 bool ignore_outgoing;
2718 struct net_device *dev; /* NULL is wildcarded here */
2719 netdevice_tracker dev_tracker;
2720 int (*func) (struct sk_buff *,
2721 struct net_device *,
2722 struct packet_type *,
2723 struct net_device *);
2724 void (*list_func) (struct list_head *,
2725 struct packet_type *,
2726 struct net_device *);
2727 bool (*id_match)(struct packet_type *ptype,
2728 struct sock *sk);
2729 struct net *af_packet_net;
2730 void *af_packet_priv;
2731 struct list_head list;
2732};
2733
2734struct offload_callbacks {
2735 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2736 netdev_features_t features);
2737 struct sk_buff *(*gro_receive)(struct list_head *head,
2738 struct sk_buff *skb);
2739 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2740};
2741
2742struct packet_offload {
2743 __be16 type; /* This is really htons(ether_type). */
2744 u16 priority;
2745 struct offload_callbacks callbacks;
2746 struct list_head list;
2747};
2748
2749/* often modified stats are per-CPU, other are shared (netdev->stats) */
2750struct pcpu_sw_netstats {
2751 u64_stats_t rx_packets;
2752 u64_stats_t rx_bytes;
2753 u64_stats_t tx_packets;
2754 u64_stats_t tx_bytes;
2755 struct u64_stats_sync syncp;
2756} __aligned(4 * sizeof(u64));
2757
2758struct pcpu_lstats {
2759 u64_stats_t packets;
2760 u64_stats_t bytes;
2761 struct u64_stats_sync syncp;
2762} __aligned(2 * sizeof(u64));
2763
2764void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2765
2766static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2767{
2768 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2769
2770 u64_stats_update_begin(syncp: &tstats->syncp);
2771 u64_stats_add(p: &tstats->rx_bytes, val: len);
2772 u64_stats_inc(p: &tstats->rx_packets);
2773 u64_stats_update_end(syncp: &tstats->syncp);
2774}
2775
2776static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2777 unsigned int packets,
2778 unsigned int len)
2779{
2780 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2781
2782 u64_stats_update_begin(syncp: &tstats->syncp);
2783 u64_stats_add(p: &tstats->tx_bytes, val: len);
2784 u64_stats_add(p: &tstats->tx_packets, val: packets);
2785 u64_stats_update_end(syncp: &tstats->syncp);
2786}
2787
2788static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2789{
2790 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2791
2792 u64_stats_update_begin(syncp: &lstats->syncp);
2793 u64_stats_add(p: &lstats->bytes, val: len);
2794 u64_stats_inc(p: &lstats->packets);
2795 u64_stats_update_end(syncp: &lstats->syncp);
2796}
2797
2798#define __netdev_alloc_pcpu_stats(type, gfp) \
2799({ \
2800 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2801 if (pcpu_stats) { \
2802 int __cpu; \
2803 for_each_possible_cpu(__cpu) { \
2804 typeof(type) *stat; \
2805 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2806 u64_stats_init(&stat->syncp); \
2807 } \
2808 } \
2809 pcpu_stats; \
2810})
2811
2812#define netdev_alloc_pcpu_stats(type) \
2813 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2814
2815#define devm_netdev_alloc_pcpu_stats(dev, type) \
2816({ \
2817 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2818 if (pcpu_stats) { \
2819 int __cpu; \
2820 for_each_possible_cpu(__cpu) { \
2821 typeof(type) *stat; \
2822 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2823 u64_stats_init(&stat->syncp); \
2824 } \
2825 } \
2826 pcpu_stats; \
2827})
2828
2829enum netdev_lag_tx_type {
2830 NETDEV_LAG_TX_TYPE_UNKNOWN,
2831 NETDEV_LAG_TX_TYPE_RANDOM,
2832 NETDEV_LAG_TX_TYPE_BROADCAST,
2833 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2834 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2835 NETDEV_LAG_TX_TYPE_HASH,
2836};
2837
2838enum netdev_lag_hash {
2839 NETDEV_LAG_HASH_NONE,
2840 NETDEV_LAG_HASH_L2,
2841 NETDEV_LAG_HASH_L34,
2842 NETDEV_LAG_HASH_L23,
2843 NETDEV_LAG_HASH_E23,
2844 NETDEV_LAG_HASH_E34,
2845 NETDEV_LAG_HASH_VLAN_SRCMAC,
2846 NETDEV_LAG_HASH_UNKNOWN,
2847};
2848
2849struct netdev_lag_upper_info {
2850 enum netdev_lag_tx_type tx_type;
2851 enum netdev_lag_hash hash_type;
2852};
2853
2854struct netdev_lag_lower_state_info {
2855 u8 link_up : 1,
2856 tx_enabled : 1;
2857};
2858
2859#include <linux/notifier.h>
2860
2861/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2862 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2863 * adding new types.
2864 */
2865enum netdev_cmd {
2866 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2867 NETDEV_DOWN,
2868 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2869 detected a hardware crash and restarted
2870 - we can use this eg to kick tcp sessions
2871 once done */
2872 NETDEV_CHANGE, /* Notify device state change */
2873 NETDEV_REGISTER,
2874 NETDEV_UNREGISTER,
2875 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2876 NETDEV_CHANGEADDR, /* notify after the address change */
2877 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2878 NETDEV_GOING_DOWN,
2879 NETDEV_CHANGENAME,
2880 NETDEV_FEAT_CHANGE,
2881 NETDEV_BONDING_FAILOVER,
2882 NETDEV_PRE_UP,
2883 NETDEV_PRE_TYPE_CHANGE,
2884 NETDEV_POST_TYPE_CHANGE,
2885 NETDEV_POST_INIT,
2886 NETDEV_PRE_UNINIT,
2887 NETDEV_RELEASE,
2888 NETDEV_NOTIFY_PEERS,
2889 NETDEV_JOIN,
2890 NETDEV_CHANGEUPPER,
2891 NETDEV_RESEND_IGMP,
2892 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2893 NETDEV_CHANGEINFODATA,
2894 NETDEV_BONDING_INFO,
2895 NETDEV_PRECHANGEUPPER,
2896 NETDEV_CHANGELOWERSTATE,
2897 NETDEV_UDP_TUNNEL_PUSH_INFO,
2898 NETDEV_UDP_TUNNEL_DROP_INFO,
2899 NETDEV_CHANGE_TX_QUEUE_LEN,
2900 NETDEV_CVLAN_FILTER_PUSH_INFO,
2901 NETDEV_CVLAN_FILTER_DROP_INFO,
2902 NETDEV_SVLAN_FILTER_PUSH_INFO,
2903 NETDEV_SVLAN_FILTER_DROP_INFO,
2904 NETDEV_OFFLOAD_XSTATS_ENABLE,
2905 NETDEV_OFFLOAD_XSTATS_DISABLE,
2906 NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2907 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2908 NETDEV_XDP_FEAT_CHANGE,
2909};
2910const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2911
2912int register_netdevice_notifier(struct notifier_block *nb);
2913int unregister_netdevice_notifier(struct notifier_block *nb);
2914int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2915int unregister_netdevice_notifier_net(struct net *net,
2916 struct notifier_block *nb);
2917int register_netdevice_notifier_dev_net(struct net_device *dev,
2918 struct notifier_block *nb,
2919 struct netdev_net_notifier *nn);
2920int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2921 struct notifier_block *nb,
2922 struct netdev_net_notifier *nn);
2923
2924struct netdev_notifier_info {
2925 struct net_device *dev;
2926 struct netlink_ext_ack *extack;
2927};
2928
2929struct netdev_notifier_info_ext {
2930 struct netdev_notifier_info info; /* must be first */
2931 union {
2932 u32 mtu;
2933 } ext;
2934};
2935
2936struct netdev_notifier_change_info {
2937 struct netdev_notifier_info info; /* must be first */
2938 unsigned int flags_changed;
2939};
2940
2941struct netdev_notifier_changeupper_info {
2942 struct netdev_notifier_info info; /* must be first */
2943 struct net_device *upper_dev; /* new upper dev */
2944 bool master; /* is upper dev master */
2945 bool linking; /* is the notification for link or unlink */
2946 void *upper_info; /* upper dev info */
2947};
2948
2949struct netdev_notifier_changelowerstate_info {
2950 struct netdev_notifier_info info; /* must be first */
2951 void *lower_state_info; /* is lower dev state */
2952};
2953
2954struct netdev_notifier_pre_changeaddr_info {
2955 struct netdev_notifier_info info; /* must be first */
2956 const unsigned char *dev_addr;
2957};
2958
2959enum netdev_offload_xstats_type {
2960 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2961};
2962
2963struct netdev_notifier_offload_xstats_info {
2964 struct netdev_notifier_info info; /* must be first */
2965 enum netdev_offload_xstats_type type;
2966
2967 union {
2968 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2969 struct netdev_notifier_offload_xstats_rd *report_delta;
2970 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2971 struct netdev_notifier_offload_xstats_ru *report_used;
2972 };
2973};
2974
2975int netdev_offload_xstats_enable(struct net_device *dev,
2976 enum netdev_offload_xstats_type type,
2977 struct netlink_ext_ack *extack);
2978int netdev_offload_xstats_disable(struct net_device *dev,
2979 enum netdev_offload_xstats_type type);
2980bool netdev_offload_xstats_enabled(const struct net_device *dev,
2981 enum netdev_offload_xstats_type type);
2982int netdev_offload_xstats_get(struct net_device *dev,
2983 enum netdev_offload_xstats_type type,
2984 struct rtnl_hw_stats64 *stats, bool *used,
2985 struct netlink_ext_ack *extack);
2986void
2987netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2988 const struct rtnl_hw_stats64 *stats);
2989void
2990netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2991void netdev_offload_xstats_push_delta(struct net_device *dev,
2992 enum netdev_offload_xstats_type type,
2993 const struct rtnl_hw_stats64 *stats);
2994
2995static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2996 struct net_device *dev)
2997{
2998 info->dev = dev;
2999 info->extack = NULL;
3000}
3001
3002static inline struct net_device *
3003netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3004{
3005 return info->dev;
3006}
3007
3008static inline struct netlink_ext_ack *
3009netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3010{
3011 return info->extack;
3012}
3013
3014int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3015int call_netdevice_notifiers_info(unsigned long val,
3016 struct netdev_notifier_info *info);
3017
3018extern rwlock_t dev_base_lock; /* Device list lock */
3019
3020#define for_each_netdev(net, d) \
3021 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3022#define for_each_netdev_reverse(net, d) \
3023 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3024#define for_each_netdev_rcu(net, d) \
3025 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3026#define for_each_netdev_safe(net, d, n) \
3027 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3028#define for_each_netdev_continue(net, d) \
3029 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3030#define for_each_netdev_continue_reverse(net, d) \
3031 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3032 dev_list)
3033#define for_each_netdev_continue_rcu(net, d) \
3034 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3035#define for_each_netdev_in_bond_rcu(bond, slave) \
3036 for_each_netdev_rcu(&init_net, slave) \
3037 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3038#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
3039
3040#define for_each_netdev_dump(net, d, ifindex) \
3041 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3042
3043static inline struct net_device *next_net_device(struct net_device *dev)
3044{
3045 struct list_head *lh;
3046 struct net *net;
3047
3048 net = dev_net(dev);
3049 lh = dev->dev_list.next;
3050 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3051}
3052
3053static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3054{
3055 struct list_head *lh;
3056 struct net *net;
3057
3058 net = dev_net(dev);
3059 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3060 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3061}
3062
3063static inline struct net_device *first_net_device(struct net *net)
3064{
3065 return list_empty(head: &net->dev_base_head) ? NULL :
3066 net_device_entry(net->dev_base_head.next);
3067}
3068
3069static inline struct net_device *first_net_device_rcu(struct net *net)
3070{
3071 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3072
3073 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3074}
3075
3076int netdev_boot_setup_check(struct net_device *dev);
3077struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3078 const char *hwaddr);
3079struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3080void dev_add_pack(struct packet_type *pt);
3081void dev_remove_pack(struct packet_type *pt);
3082void __dev_remove_pack(struct packet_type *pt);
3083void dev_add_offload(struct packet_offload *po);
3084void dev_remove_offload(struct packet_offload *po);
3085
3086int dev_get_iflink(const struct net_device *dev);
3087int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3088int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3089 struct net_device_path_stack *stack);
3090struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3091 unsigned short mask);
3092struct net_device *dev_get_by_name(struct net *net, const char *name);
3093struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3094struct net_device *__dev_get_by_name(struct net *net, const char *name);
3095bool netdev_name_in_use(struct net *net, const char *name);
3096int dev_alloc_name(struct net_device *dev, const char *name);
3097int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3098void dev_close(struct net_device *dev);
3099void dev_close_many(struct list_head *head, bool unlink);
3100void dev_disable_lro(struct net_device *dev);
3101int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3102u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3103 struct net_device *sb_dev);
3104u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3105 struct net_device *sb_dev);
3106
3107int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3108int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3109
3110static inline int dev_queue_xmit(struct sk_buff *skb)
3111{
3112 return __dev_queue_xmit(skb, NULL);
3113}
3114
3115static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3116 struct net_device *sb_dev)
3117{
3118 return __dev_queue_xmit(skb, sb_dev);
3119}
3120
3121static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3122{
3123 int ret;
3124
3125 ret = __dev_direct_xmit(skb, queue_id);
3126 if (!dev_xmit_complete(rc: ret))
3127 kfree_skb(skb);
3128 return ret;
3129}
3130
3131int register_netdevice(struct net_device *dev);
3132void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3133void unregister_netdevice_many(struct list_head *head);
3134static inline void unregister_netdevice(struct net_device *dev)
3135{
3136 unregister_netdevice_queue(dev, NULL);
3137}
3138
3139int netdev_refcnt_read(const struct net_device *dev);
3140void free_netdev(struct net_device *dev);
3141void netdev_freemem(struct net_device *dev);
3142int init_dummy_netdev(struct net_device *dev);
3143
3144struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3145 struct sk_buff *skb,
3146 bool all_slaves);
3147struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3148 struct sock *sk);
3149struct net_device *dev_get_by_index(struct net *net, int ifindex);
3150struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3151struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3152 netdevice_tracker *tracker, gfp_t gfp);
3153struct net_device *netdev_get_by_name(struct net *net, const char *name,
3154 netdevice_tracker *tracker, gfp_t gfp);
3155struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3156struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3157
3158static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3159 unsigned short type,
3160 const void *daddr, const void *saddr,
3161 unsigned int len)
3162{
3163 if (!dev->header_ops || !dev->header_ops->create)
3164 return 0;
3165
3166 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3167}
3168
3169static inline int dev_parse_header(const struct sk_buff *skb,
3170 unsigned char *haddr)
3171{
3172 const struct net_device *dev = skb->dev;
3173
3174 if (!dev->header_ops || !dev->header_ops->parse)
3175 return 0;
3176 return dev->header_ops->parse(skb, haddr);
3177}
3178
3179static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3180{
3181 const struct net_device *dev = skb->dev;
3182
3183 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3184 return 0;
3185 return dev->header_ops->parse_protocol(skb);
3186}
3187
3188/* ll_header must have at least hard_header_len allocated */
3189static inline bool dev_validate_header(const struct net_device *dev,
3190 char *ll_header, int len)
3191{
3192 if (likely(len >= dev->hard_header_len))
3193 return true;
3194 if (len < dev->min_header_len)
3195 return false;
3196
3197 if (capable(CAP_SYS_RAWIO)) {
3198 memset(ll_header + len, 0, dev->hard_header_len - len);
3199 return true;
3200 }
3201
3202 if (dev->header_ops && dev->header_ops->validate)
3203 return dev->header_ops->validate(ll_header, len);
3204
3205 return false;
3206}
3207
3208static inline bool dev_has_header(const struct net_device *dev)
3209{
3210 return dev->header_ops && dev->header_ops->create;
3211}
3212
3213/*
3214 * Incoming packets are placed on per-CPU queues
3215 */
3216struct softnet_data {
3217 struct list_head poll_list;
3218 struct sk_buff_head process_queue;
3219
3220 /* stats */
3221 unsigned int processed;
3222 unsigned int time_squeeze;
3223#ifdef CONFIG_RPS
3224 struct softnet_data *rps_ipi_list;
3225#endif
3226
3227 bool in_net_rx_action;
3228 bool in_napi_threaded_poll;
3229
3230#ifdef CONFIG_NET_FLOW_LIMIT
3231 struct sd_flow_limit __rcu *flow_limit;
3232#endif
3233 struct Qdisc *output_queue;
3234 struct Qdisc **output_queue_tailp;
3235 struct sk_buff *completion_queue;
3236#ifdef CONFIG_XFRM_OFFLOAD
3237 struct sk_buff_head xfrm_backlog;
3238#endif
3239 /* written and read only by owning cpu: */
3240 struct {
3241 u16 recursion;
3242 u8 more;
3243#ifdef CONFIG_NET_EGRESS
3244 u8 skip_txqueue;
3245#endif
3246 } xmit;
3247#ifdef CONFIG_RPS
3248 /* input_queue_head should be written by cpu owning this struct,
3249 * and only read by other cpus. Worth using a cache line.
3250 */
3251 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3252
3253 /* Elements below can be accessed between CPUs for RPS/RFS */
3254 call_single_data_t csd ____cacheline_aligned_in_smp;
3255 struct softnet_data *rps_ipi_next;
3256 unsigned int cpu;
3257 unsigned int input_queue_tail;
3258#endif
3259 unsigned int received_rps;
3260 unsigned int dropped;
3261 struct sk_buff_head input_pkt_queue;
3262 struct napi_struct backlog;
3263
3264 /* Another possibly contended cache line */
3265 spinlock_t defer_lock ____cacheline_aligned_in_smp;
3266 int defer_count;
3267 int defer_ipi_scheduled;
3268 struct sk_buff *defer_list;
3269 call_single_data_t defer_csd;
3270};
3271
3272static inline void input_queue_head_incr(struct softnet_data *sd)
3273{
3274#ifdef CONFIG_RPS
3275 sd->input_queue_head++;
3276#endif
3277}
3278
3279static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3280 unsigned int *qtail)
3281{
3282#ifdef CONFIG_RPS
3283 *qtail = ++sd->input_queue_tail;
3284#endif
3285}
3286
3287DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3288
3289static inline int dev_recursion_level(void)
3290{
3291 return this_cpu_read(softnet_data.xmit.recursion);
3292}
3293
3294#define XMIT_RECURSION_LIMIT 8
3295static inline bool dev_xmit_recursion(void)
3296{
3297 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3298 XMIT_RECURSION_LIMIT);
3299}
3300
3301static inline void dev_xmit_recursion_inc(void)
3302{
3303 __this_cpu_inc(softnet_data.xmit.recursion);
3304}
3305
3306static inline void dev_xmit_recursion_dec(void)
3307{
3308 __this_cpu_dec(softnet_data.xmit.recursion);
3309}
3310
3311void __netif_schedule(struct Qdisc *q);
3312void netif_schedule_queue(struct netdev_queue *txq);
3313
3314static inline void netif_tx_schedule_all(struct net_device *dev)
3315{
3316 unsigned int i;
3317
3318 for (i = 0; i < dev->num_tx_queues; i++)
3319 netif_schedule_queue(txq: netdev_get_tx_queue(dev, index: i));
3320}
3321
3322static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3323{
3324 clear_bit(nr: __QUEUE_STATE_DRV_XOFF, addr: &dev_queue->state);
3325}
3326
3327/**
3328 * netif_start_queue - allow transmit
3329 * @dev: network device
3330 *
3331 * Allow upper layers to call the device hard_start_xmit routine.
3332 */
3333static inline void netif_start_queue(struct net_device *dev)
3334{
3335 netif_tx_start_queue(dev_queue: netdev_get_tx_queue(dev, index: 0));
3336}
3337
3338static inline void netif_tx_start_all_queues(struct net_device *dev)
3339{
3340 unsigned int i;
3341
3342 for (i = 0; i < dev->num_tx_queues; i++) {
3343 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: i);
3344 netif_tx_start_queue(dev_queue: txq);
3345 }
3346}
3347
3348void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3349
3350/**
3351 * netif_wake_queue - restart transmit
3352 * @dev: network device
3353 *
3354 * Allow upper layers to call the device hard_start_xmit routine.
3355 * Used for flow control when transmit resources are available.
3356 */
3357static inline void netif_wake_queue(struct net_device *dev)
3358{
3359 netif_tx_wake_queue(dev_queue: netdev_get_tx_queue(dev, index: 0));
3360}
3361
3362static inline void netif_tx_wake_all_queues(struct net_device *dev)
3363{
3364 unsigned int i;
3365
3366 for (i = 0; i < dev->num_tx_queues; i++) {
3367 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: i);
3368 netif_tx_wake_queue(dev_queue: txq);
3369 }
3370}
3371
3372static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3373{
3374 /* Must be an atomic op see netif_txq_try_stop() */
3375 set_bit(nr: __QUEUE_STATE_DRV_XOFF, addr: &dev_queue->state);
3376}
3377
3378/**
3379 * netif_stop_queue - stop transmitted packets
3380 * @dev: network device
3381 *
3382 * Stop upper layers calling the device hard_start_xmit routine.
3383 * Used for flow control when transmit resources are unavailable.
3384 */
3385static inline void netif_stop_queue(struct net_device *dev)
3386{
3387 netif_tx_stop_queue(dev_queue: netdev_get_tx_queue(dev, index: 0));
3388}
3389
3390void netif_tx_stop_all_queues(struct net_device *dev);
3391
3392static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3393{
3394 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3395}
3396
3397/**
3398 * netif_queue_stopped - test if transmit queue is flowblocked
3399 * @dev: network device
3400 *
3401 * Test if transmit queue on device is currently unable to send.
3402 */
3403static inline bool netif_queue_stopped(const struct net_device *dev)
3404{
3405 return netif_tx_queue_stopped(dev_queue: netdev_get_tx_queue(dev, index: 0));
3406}
3407
3408static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3409{
3410 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3411}
3412
3413static inline bool
3414netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3415{
3416 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3417}
3418
3419static inline bool
3420netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3421{
3422 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3423}
3424
3425/**
3426 * netdev_queue_set_dql_min_limit - set dql minimum limit
3427 * @dev_queue: pointer to transmit queue
3428 * @min_limit: dql minimum limit
3429 *
3430 * Forces xmit_more() to return true until the minimum threshold
3431 * defined by @min_limit is reached (or until the tx queue is
3432 * empty). Warning: to be use with care, misuse will impact the
3433 * latency.
3434 */
3435static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3436 unsigned int min_limit)
3437{
3438#ifdef CONFIG_BQL
3439 dev_queue->dql.min_limit = min_limit;
3440#endif
3441}
3442
3443/**
3444 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3445 * @dev_queue: pointer to transmit queue
3446 *
3447 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3448 * to give appropriate hint to the CPU.
3449 */
3450static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3451{
3452#ifdef CONFIG_BQL
3453 prefetchw(x: &dev_queue->dql.num_queued);
3454#endif
3455}
3456
3457/**
3458 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3459 * @dev_queue: pointer to transmit queue
3460 *
3461 * BQL enabled drivers might use this helper in their TX completion path,
3462 * to give appropriate hint to the CPU.
3463 */
3464static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3465{
3466#ifdef CONFIG_BQL
3467 prefetchw(x: &dev_queue->dql.limit);
3468#endif
3469}
3470
3471/**
3472 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3473 * @dev_queue: network device queue
3474 * @bytes: number of bytes queued to the device queue
3475 *
3476 * Report the number of bytes queued for sending/completion to the network
3477 * device hardware queue. @bytes should be a good approximation and should
3478 * exactly match netdev_completed_queue() @bytes.
3479 * This is typically called once per packet, from ndo_start_xmit().
3480 */
3481static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3482 unsigned int bytes)
3483{
3484#ifdef CONFIG_BQL
3485 dql_queued(dql: &dev_queue->dql, count: bytes);
3486
3487 if (likely(dql_avail(&dev_queue->dql) >= 0))
3488 return;
3489
3490 set_bit(nr: __QUEUE_STATE_STACK_XOFF, addr: &dev_queue->state);
3491
3492 /*
3493 * The XOFF flag must be set before checking the dql_avail below,
3494 * because in netdev_tx_completed_queue we update the dql_completed
3495 * before checking the XOFF flag.
3496 */
3497 smp_mb();
3498
3499 /* check again in case another CPU has just made room avail */
3500 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3501 clear_bit(nr: __QUEUE_STATE_STACK_XOFF, addr: &dev_queue->state);
3502#endif
3503}
3504
3505/* Variant of netdev_tx_sent_queue() for drivers that are aware
3506 * that they should not test BQL status themselves.
3507 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3508 * skb of a batch.
3509 * Returns true if the doorbell must be used to kick the NIC.
3510 */
3511static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3512 unsigned int bytes,
3513 bool xmit_more)
3514{
3515 if (xmit_more) {
3516#ifdef CONFIG_BQL
3517 dql_queued(dql: &dev_queue->dql, count: bytes);
3518#endif
3519 return netif_tx_queue_stopped(dev_queue);
3520 }
3521 netdev_tx_sent_queue(dev_queue, bytes);
3522 return true;
3523}
3524
3525/**
3526 * netdev_sent_queue - report the number of bytes queued to hardware
3527 * @dev: network device
3528 * @bytes: number of bytes queued to the hardware device queue
3529 *
3530 * Report the number of bytes queued for sending/completion to the network
3531 * device hardware queue#0. @bytes should be a good approximation and should
3532 * exactly match netdev_completed_queue() @bytes.
3533 * This is typically called once per packet, from ndo_start_xmit().
3534 */
3535static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3536{
3537 netdev_tx_sent_queue(dev_queue: netdev_get_tx_queue(dev, index: 0), bytes);
3538}
3539
3540static inline bool __netdev_sent_queue(struct net_device *dev,
3541 unsigned int bytes,
3542 bool xmit_more)
3543{
3544 return __netdev_tx_sent_queue(dev_queue: netdev_get_tx_queue(dev, index: 0), bytes,
3545 xmit_more);
3546}
3547
3548/**
3549 * netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3550 * @dev_queue: network device queue
3551 * @pkts: number of packets (currently ignored)
3552 * @bytes: number of bytes dequeued from the device queue
3553 *
3554 * Must be called at most once per TX completion round (and not per
3555 * individual packet), so that BQL can adjust its limits appropriately.
3556 */
3557static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3558 unsigned int pkts, unsigned int bytes)
3559{
3560#ifdef CONFIG_BQL
3561 if (unlikely(!bytes))
3562 return;
3563
3564 dql_completed(dql: &dev_queue->dql, count: bytes);
3565
3566 /*
3567 * Without the memory barrier there is a small possiblity that
3568 * netdev_tx_sent_queue will miss the update and cause the queue to
3569 * be stopped forever
3570 */
3571 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3572
3573 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3574 return;
3575
3576 if (test_and_clear_bit(nr: __QUEUE_STATE_STACK_XOFF, addr: &dev_queue->state))
3577 netif_schedule_queue(txq: dev_queue);
3578#endif
3579}
3580
3581/**
3582 * netdev_completed_queue - report bytes and packets completed by device
3583 * @dev: network device
3584 * @pkts: actual number of packets sent over the medium
3585 * @bytes: actual number of bytes sent over the medium
3586 *
3587 * Report the number of bytes and packets transmitted by the network device
3588 * hardware queue over the physical medium, @bytes must exactly match the
3589 * @bytes amount passed to netdev_sent_queue()
3590 */
3591static inline void netdev_completed_queue(struct net_device *dev,
3592 unsigned int pkts, unsigned int bytes)
3593{
3594 netdev_tx_completed_queue(dev_queue: netdev_get_tx_queue(dev, index: 0), pkts, bytes);
3595}
3596
3597static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3598{
3599#ifdef CONFIG_BQL
3600 clear_bit(nr: __QUEUE_STATE_STACK_XOFF, addr: &q->state);
3601 dql_reset(dql: &q->dql);
3602#endif
3603}
3604
3605/**
3606 * netdev_reset_queue - reset the packets and bytes count of a network device
3607 * @dev_queue: network device
3608 *
3609 * Reset the bytes and packet count of a network device and clear the
3610 * software flow control OFF bit for this network device
3611 */
3612static inline void netdev_reset_queue(struct net_device *dev_queue)
3613{
3614 netdev_tx_reset_queue(q: netdev_get_tx_queue(dev: dev_queue, index: 0));
3615}
3616
3617/**
3618 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3619 * @dev: network device
3620 * @queue_index: given tx queue index
3621 *
3622 * Returns 0 if given tx queue index >= number of device tx queues,
3623 * otherwise returns the originally passed tx queue index.
3624 */
3625static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3626{
3627 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3628 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3629 dev->name, queue_index,
3630 dev->real_num_tx_queues);
3631 return 0;
3632 }
3633
3634 return queue_index;
3635}
3636
3637/**
3638 * netif_running - test if up
3639 * @dev: network device
3640 *
3641 * Test if the device has been brought up.
3642 */
3643static inline bool netif_running(const struct net_device *dev)
3644{
3645 return test_bit(__LINK_STATE_START, &dev->state);
3646}
3647
3648/*
3649 * Routines to manage the subqueues on a device. We only need start,
3650 * stop, and a check if it's stopped. All other device management is
3651 * done at the overall netdevice level.
3652 * Also test the device if we're multiqueue.
3653 */
3654
3655/**
3656 * netif_start_subqueue - allow sending packets on subqueue
3657 * @dev: network device
3658 * @queue_index: sub queue index
3659 *
3660 * Start individual transmit queue of a device with multiple transmit queues.
3661 */
3662static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3663{
3664 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: queue_index);
3665
3666 netif_tx_start_queue(dev_queue: txq);
3667}
3668
3669/**
3670 * netif_stop_subqueue - stop sending packets on subqueue
3671 * @dev: network device
3672 * @queue_index: sub queue index
3673 *
3674 * Stop individual transmit queue of a device with multiple transmit queues.
3675 */
3676static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3677{
3678 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: queue_index);
3679 netif_tx_stop_queue(dev_queue: txq);
3680}
3681
3682/**
3683 * __netif_subqueue_stopped - test status of subqueue
3684 * @dev: network device
3685 * @queue_index: sub queue index
3686 *
3687 * Check individual transmit queue of a device with multiple transmit queues.
3688 */
3689static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3690 u16 queue_index)
3691{
3692 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: queue_index);
3693
3694 return netif_tx_queue_stopped(dev_queue: txq);
3695}
3696
3697/**
3698 * netif_subqueue_stopped - test status of subqueue
3699 * @dev: network device
3700 * @skb: sub queue buffer pointer
3701 *
3702 * Check individual transmit queue of a device with multiple transmit queues.
3703 */
3704static inline bool netif_subqueue_stopped(const struct net_device *dev,
3705 struct sk_buff *skb)
3706{
3707 return __netif_subqueue_stopped(dev, queue_index: skb_get_queue_mapping(skb));
3708}
3709
3710/**
3711 * netif_wake_subqueue - allow sending packets on subqueue
3712 * @dev: network device
3713 * @queue_index: sub queue index
3714 *
3715 * Resume individual transmit queue of a device with multiple transmit queues.
3716 */
3717static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3718{
3719 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: queue_index);
3720
3721 netif_tx_wake_queue(dev_queue: txq);
3722}
3723
3724#ifdef CONFIG_XPS
3725int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3726 u16 index);
3727int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3728 u16 index, enum xps_map_type type);
3729
3730/**
3731 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3732 * @j: CPU/Rx queue index
3733 * @mask: bitmask of all cpus/rx queues
3734 * @nr_bits: number of bits in the bitmask
3735 *
3736 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3737 */
3738static inline bool netif_attr_test_mask(unsigned long j,
3739 const unsigned long *mask,
3740 unsigned int nr_bits)
3741{
3742 cpu_max_bits_warn(cpu: j, bits: nr_bits);
3743 return test_bit(j, mask);
3744}
3745
3746/**
3747 * netif_attr_test_online - Test for online CPU/Rx queue
3748 * @j: CPU/Rx queue index
3749 * @online_mask: bitmask for CPUs/Rx queues that are online
3750 * @nr_bits: number of bits in the bitmask
3751 *
3752 * Returns true if a CPU/Rx queue is online.
3753 */
3754static inline bool netif_attr_test_online(unsigned long j,
3755 const unsigned long *online_mask,
3756 unsigned int nr_bits)
3757{
3758 cpu_max_bits_warn(cpu: j, bits: nr_bits);
3759
3760 if (online_mask)
3761 return test_bit(j, online_mask);
3762
3763 return (j < nr_bits);
3764}
3765
3766/**
3767 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3768 * @n: CPU/Rx queue index
3769 * @srcp: the cpumask/Rx queue mask pointer
3770 * @nr_bits: number of bits in the bitmask
3771 *
3772 * Returns >= nr_bits if no further CPUs/Rx queues set.
3773 */
3774static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3775 unsigned int nr_bits)
3776{
3777 /* -1 is a legal arg here. */
3778 if (n != -1)
3779 cpu_max_bits_warn(cpu: n, bits: nr_bits);
3780
3781 if (srcp)
3782 return find_next_bit(addr: srcp, size: nr_bits, offset: n + 1);
3783
3784 return n + 1;
3785}
3786
3787/**
3788 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3789 * @n: CPU/Rx queue index
3790 * @src1p: the first CPUs/Rx queues mask pointer
3791 * @src2p: the second CPUs/Rx queues mask pointer
3792 * @nr_bits: number of bits in the bitmask
3793 *
3794 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3795 */
3796static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3797 const unsigned long *src2p,
3798 unsigned int nr_bits)
3799{
3800 /* -1 is a legal arg here. */
3801 if (n != -1)
3802 cpu_max_bits_warn(cpu: n, bits: nr_bits);
3803
3804 if (src1p && src2p)
3805 return find_next_and_bit(addr1: src1p, addr2: src2p, size: nr_bits, offset: n + 1);
3806 else if (src1p)
3807 return find_next_bit(addr: src1p, size: nr_bits, offset: n + 1);
3808 else if (src2p)
3809 return find_next_bit(addr: src2p, size: nr_bits, offset: n + 1);
3810
3811 return n + 1;
3812}
3813#else
3814static inline int netif_set_xps_queue(struct net_device *dev,
3815 const struct cpumask *mask,
3816 u16 index)
3817{
3818 return 0;
3819}
3820
3821static inline int __netif_set_xps_queue(struct net_device *dev,
3822 const unsigned long *mask,
3823 u16 index, enum xps_map_type type)
3824{
3825 return 0;
3826}
3827#endif
3828
3829/**
3830 * netif_is_multiqueue - test if device has multiple transmit queues
3831 * @dev: network device
3832 *
3833 * Check if device has multiple transmit queues
3834 */
3835static inline bool netif_is_multiqueue(const struct net_device *dev)
3836{
3837 return dev->num_tx_queues > 1;
3838}
3839
3840int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3841
3842#ifdef CONFIG_SYSFS
3843int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3844#else
3845static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3846 unsigned int rxqs)
3847{
3848 dev->real_num_rx_queues = rxqs;
3849 return 0;
3850}
3851#endif
3852int netif_set_real_num_queues(struct net_device *dev,
3853 unsigned int txq, unsigned int rxq);
3854
3855int netif_get_num_default_rss_queues(void);
3856
3857void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3858void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3859
3860/*
3861 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3862 * interrupt context or with hardware interrupts being disabled.
3863 * (in_hardirq() || irqs_disabled())
3864 *
3865 * We provide four helpers that can be used in following contexts :
3866 *
3867 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3868 * replacing kfree_skb(skb)
3869 *
3870 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3871 * Typically used in place of consume_skb(skb) in TX completion path
3872 *
3873 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3874 * replacing kfree_skb(skb)
3875 *
3876 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3877 * and consumed a packet. Used in place of consume_skb(skb)
3878 */
3879static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3880{
3881 dev_kfree_skb_irq_reason(skb, reason: SKB_DROP_REASON_NOT_SPECIFIED);
3882}
3883
3884static inline void dev_consume_skb_irq(struct sk_buff *skb)
3885{
3886 dev_kfree_skb_irq_reason(skb, reason: SKB_CONSUMED);
3887}
3888
3889static inline void dev_kfree_skb_any(struct sk_buff *skb)
3890{
3891 dev_kfree_skb_any_reason(skb, reason: SKB_DROP_REASON_NOT_SPECIFIED);
3892}
3893
3894static inline void dev_consume_skb_any(struct sk_buff *skb)
3895{
3896 dev_kfree_skb_any_reason(skb, reason: SKB_CONSUMED);
3897}
3898
3899u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3900 struct bpf_prog *xdp_prog);
3901void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3902int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3903int netif_rx(struct sk_buff *skb);
3904int __netif_rx(struct sk_buff *skb);
3905
3906int netif_receive_skb(struct sk_buff *skb);
3907int netif_receive_skb_core(struct sk_buff *skb);
3908void netif_receive_skb_list_internal(struct list_head *head);
3909void netif_receive_skb_list(struct list_head *head);
3910gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3911void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3912struct sk_buff *napi_get_frags(struct napi_struct *napi);
3913void napi_get_frags_check(struct napi_struct *napi);
3914gro_result_t napi_gro_frags(struct napi_struct *napi);
3915struct packet_offload *gro_find_receive_by_type(__be16 type);
3916struct packet_offload *gro_find_complete_by_type(__be16 type);
3917
3918static inline void napi_free_frags(struct napi_struct *napi)
3919{
3920 kfree_skb(skb: napi->skb);
3921 napi->skb = NULL;
3922}
3923
3924bool netdev_is_rx_handler_busy(struct net_device *dev);
3925int netdev_rx_handler_register(struct net_device *dev,
3926 rx_handler_func_t *rx_handler,
3927 void *rx_handler_data);
3928void netdev_rx_handler_unregister(struct net_device *dev);
3929
3930bool dev_valid_name(const char *name);
3931static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3932{
3933 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3934}
3935int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3936int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3937int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3938 void __user *data, bool *need_copyout);
3939int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3940int generic_hwtstamp_get_lower(struct net_device *dev,
3941 struct kernel_hwtstamp_config *kernel_cfg);
3942int generic_hwtstamp_set_lower(struct net_device *dev,
3943 struct kernel_hwtstamp_config *kernel_cfg,
3944 struct netlink_ext_ack *extack);
3945int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3946unsigned int dev_get_flags(const struct net_device *);
3947int __dev_change_flags(struct net_device *dev, unsigned int flags,
3948 struct netlink_ext_ack *extack);
3949int dev_change_flags(struct net_device *dev, unsigned int flags,
3950 struct netlink_ext_ack *extack);
3951int dev_set_alias(struct net_device *, const char *, size_t);
3952int dev_get_alias(const struct net_device *, char *, size_t);
3953int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3954 const char *pat, int new_ifindex);
3955static inline
3956int dev_change_net_namespace(struct net_device *dev, struct net *net,
3957 const char *pat)
3958{
3959 return __dev_change_net_namespace(dev, net, pat, new_ifindex: 0);
3960}
3961int __dev_set_mtu(struct net_device *, int);
3962int dev_set_mtu(struct net_device *, int);
3963int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3964 struct netlink_ext_ack *extack);
3965int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3966 struct netlink_ext_ack *extack);
3967int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3968 struct netlink_ext_ack *extack);
3969int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3970int dev_get_port_parent_id(struct net_device *dev,
3971 struct netdev_phys_item_id *ppid, bool recurse);
3972bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3973void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin);
3974void netdev_dpll_pin_clear(struct net_device *dev);
3975
3976static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev)
3977{
3978#if IS_ENABLED(CONFIG_DPLL)
3979 return dev->dpll_pin;
3980#else
3981 return NULL;
3982#endif
3983}
3984
3985struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3986struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3987 struct netdev_queue *txq, int *ret);
3988
3989int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3990u8 dev_xdp_prog_count(struct net_device *dev);
3991u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3992
3993int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3994int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3995int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3996bool is_skb_forwardable(const struct net_device *dev,
3997 const struct sk_buff *skb);
3998
3999static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4000 const struct sk_buff *skb,
4001 const bool check_mtu)
4002{
4003 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4004 unsigned int len;
4005
4006 if (!(dev->flags & IFF_UP))
4007 return false;
4008
4009 if (!check_mtu)
4010 return true;
4011
4012 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4013 if (skb->len <= len)
4014 return true;
4015
4016 /* if TSO is enabled, we don't care about the length as the packet
4017 * could be forwarded without being segmented before
4018 */
4019 if (skb_is_gso(skb))
4020 return true;
4021
4022 return false;
4023}
4024
4025void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4026
4027#define DEV_CORE_STATS_INC(FIELD) \
4028static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \
4029{ \
4030 netdev_core_stats_inc(dev, \
4031 offsetof(struct net_device_core_stats, FIELD)); \
4032}
4033DEV_CORE_STATS_INC(rx_dropped)
4034DEV_CORE_STATS_INC(tx_dropped)
4035DEV_CORE_STATS_INC(rx_nohandler)
4036DEV_CORE_STATS_INC(rx_otherhost_dropped)
4037#undef DEV_CORE_STATS_INC
4038
4039static __always_inline int ____dev_forward_skb(struct net_device *dev,
4040 struct sk_buff *skb,
4041 const bool check_mtu)
4042{
4043 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4044 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4045 dev_core_stats_rx_dropped_inc(dev);
4046 kfree_skb(skb);
4047 return NET_RX_DROP;
4048 }
4049
4050 skb_scrub_packet(skb, xnet: !net_eq(net1: dev_net(dev), net2: dev_net(dev: skb->dev)));
4051 skb->priority = 0;
4052 return 0;
4053}
4054
4055bool dev_nit_active(struct net_device *dev);
4056void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4057
4058static inline void __dev_put(struct net_device *dev)
4059{
4060 if (dev) {
4061#ifdef CONFIG_PCPU_DEV_REFCNT
4062 this_cpu_dec(*dev->pcpu_refcnt);
4063#else
4064 refcount_dec(&dev->dev_refcnt);
4065#endif
4066 }
4067}
4068
4069static inline void __dev_hold(struct net_device *dev)
4070{
4071 if (dev) {
4072#ifdef CONFIG_PCPU_DEV_REFCNT
4073 this_cpu_inc(*dev->pcpu_refcnt);
4074#else
4075 refcount_inc(&dev->dev_refcnt);
4076#endif
4077 }
4078}
4079
4080static inline void __netdev_tracker_alloc(struct net_device *dev,
4081 netdevice_tracker *tracker,
4082 gfp_t gfp)
4083{
4084#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4085 ref_tracker_alloc(dir: &dev->refcnt_tracker, trackerp: tracker, gfp);
4086#endif
4087}
4088
4089/* netdev_tracker_alloc() can upgrade a prior untracked reference
4090 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4091 */
4092static inline void netdev_tracker_alloc(struct net_device *dev,
4093 netdevice_tracker *tracker, gfp_t gfp)
4094{
4095#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4096 refcount_dec(r: &dev->refcnt_tracker.no_tracker);
4097 __netdev_tracker_alloc(dev, tracker, gfp);
4098#endif
4099}
4100
4101static inline void netdev_tracker_free(struct net_device *dev,
4102 netdevice_tracker *tracker)
4103{
4104#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4105 ref_tracker_free(dir: &dev->refcnt_tracker, trackerp: tracker);
4106#endif
4107}
4108
4109static inline void netdev_hold(struct net_device *dev,
4110 netdevice_tracker *tracker, gfp_t gfp)
4111{
4112 if (dev) {
4113 __dev_hold(dev);
4114 __netdev_tracker_alloc(dev, tracker, gfp);
4115 }
4116}
4117
4118static inline void netdev_put(struct net_device *dev,
4119 netdevice_tracker *tracker)
4120{
4121 if (dev) {
4122 netdev_tracker_free(dev, tracker);
4123 __dev_put(dev);
4124 }
4125}
4126
4127/**
4128 * dev_hold - get reference to device
4129 * @dev: network device
4130 *
4131 * Hold reference to device to keep it from being freed.
4132 * Try using netdev_hold() instead.
4133 */
4134static inline void dev_hold(struct net_device *dev)
4135{
4136 netdev_hold(dev, NULL, GFP_ATOMIC);
4137}
4138
4139/**
4140 * dev_put - release reference to device
4141 * @dev: network device
4142 *
4143 * Release reference to device to allow it to be freed.
4144 * Try using netdev_put() instead.
4145 */
4146static inline void dev_put(struct net_device *dev)
4147{
4148 netdev_put(dev, NULL);
4149}
4150
4151static inline void netdev_ref_replace(struct net_device *odev,
4152 struct net_device *ndev,
4153 netdevice_tracker *tracker,
4154 gfp_t gfp)
4155{
4156 if (odev)
4157 netdev_tracker_free(dev: odev, tracker);
4158
4159 __dev_hold(dev: ndev);
4160 __dev_put(dev: odev);
4161
4162 if (ndev)
4163 __netdev_tracker_alloc(dev: ndev, tracker, gfp);
4164}
4165
4166/* Carrier loss detection, dial on demand. The functions netif_carrier_on
4167 * and _off may be called from IRQ context, but it is caller
4168 * who is responsible for serialization of these calls.
4169 *
4170 * The name carrier is inappropriate, these functions should really be
4171 * called netif_lowerlayer_*() because they represent the state of any
4172 * kind of lower layer not just hardware media.
4173 */
4174void linkwatch_fire_event(struct net_device *dev);
4175
4176/**
4177 * netif_carrier_ok - test if carrier present
4178 * @dev: network device
4179 *
4180 * Check if carrier is present on device
4181 */
4182static inline bool netif_carrier_ok(const struct net_device *dev)
4183{
4184 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4185}
4186
4187unsigned long dev_trans_start(struct net_device *dev);
4188
4189void __netdev_watchdog_up(struct net_device *dev);
4190
4191void netif_carrier_on(struct net_device *dev);
4192void netif_carrier_off(struct net_device *dev);
4193void netif_carrier_event(struct net_device *dev);
4194
4195/**
4196 * netif_dormant_on - mark device as dormant.
4197 * @dev: network device
4198 *
4199 * Mark device as dormant (as per RFC2863).
4200 *
4201 * The dormant state indicates that the relevant interface is not
4202 * actually in a condition to pass packets (i.e., it is not 'up') but is
4203 * in a "pending" state, waiting for some external event. For "on-
4204 * demand" interfaces, this new state identifies the situation where the
4205 * interface is waiting for events to place it in the up state.
4206 */
4207static inline void netif_dormant_on(struct net_device *dev)
4208{
4209 if (!test_and_set_bit(nr: __LINK_STATE_DORMANT, addr: &dev->state))
4210 linkwatch_fire_event(dev);
4211}
4212
4213/**
4214 * netif_dormant_off - set device as not dormant.
4215 * @dev: network device
4216 *
4217 * Device is not in dormant state.
4218 */
4219static inline void netif_dormant_off(struct net_device *dev)
4220{
4221 if (test_and_clear_bit(nr: __LINK_STATE_DORMANT, addr: &dev->state))
4222 linkwatch_fire_event(dev);
4223}
4224
4225/**
4226 * netif_dormant - test if device is dormant
4227 * @dev: network device
4228 *
4229 * Check if device is dormant.
4230 */
4231static inline bool netif_dormant(const struct net_device *dev)
4232{
4233 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4234}
4235
4236
4237/**
4238 * netif_testing_on - mark device as under test.
4239 * @dev: network device
4240 *
4241 * Mark device as under test (as per RFC2863).
4242 *
4243 * The testing state indicates that some test(s) must be performed on
4244 * the interface. After completion, of the test, the interface state
4245 * will change to up, dormant, or down, as appropriate.
4246 */
4247static inline void netif_testing_on(struct net_device *dev)
4248{
4249 if (!test_and_set_bit(nr: __LINK_STATE_TESTING, addr: &dev->state))
4250 linkwatch_fire_event(dev);
4251}
4252
4253/**
4254 * netif_testing_off - set device as not under test.
4255 * @dev: network device
4256 *
4257 * Device is not in testing state.
4258 */
4259static inline void netif_testing_off(struct net_device *dev)
4260{
4261 if (test_and_clear_bit(nr: __LINK_STATE_TESTING, addr: &dev->state))
4262 linkwatch_fire_event(dev);
4263}
4264
4265/**
4266 * netif_testing - test if device is under test
4267 * @dev: network device
4268 *
4269 * Check if device is under test
4270 */
4271static inline bool netif_testing(const struct net_device *dev)
4272{
4273 return test_bit(__LINK_STATE_TESTING, &dev->state);
4274}
4275
4276
4277/**
4278 * netif_oper_up - test if device is operational
4279 * @dev: network device
4280 *
4281 * Check if carrier is operational
4282 */
4283static inline bool netif_oper_up(const struct net_device *dev)
4284{
4285 return (dev->operstate == IF_OPER_UP ||
4286 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4287}
4288
4289/**
4290 * netif_device_present - is device available or removed
4291 * @dev: network device
4292 *
4293 * Check if device has not been removed from system.
4294 */
4295static inline bool netif_device_present(const struct net_device *dev)
4296{
4297 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4298}
4299
4300void netif_device_detach(struct net_device *dev);
4301
4302void netif_device_attach(struct net_device *dev);
4303
4304/*
4305 * Network interface message level settings
4306 */
4307
4308enum {
4309 NETIF_MSG_DRV_BIT,
4310 NETIF_MSG_PROBE_BIT,
4311 NETIF_MSG_LINK_BIT,
4312 NETIF_MSG_TIMER_BIT,
4313 NETIF_MSG_IFDOWN_BIT,
4314 NETIF_MSG_IFUP_BIT,
4315 NETIF_MSG_RX_ERR_BIT,
4316 NETIF_MSG_TX_ERR_BIT,
4317 NETIF_MSG_TX_QUEUED_BIT,
4318 NETIF_MSG_INTR_BIT,
4319 NETIF_MSG_TX_DONE_BIT,
4320 NETIF_MSG_RX_STATUS_BIT,
4321 NETIF_MSG_PKTDATA_BIT,
4322 NETIF_MSG_HW_BIT,
4323 NETIF_MSG_WOL_BIT,
4324
4325 /* When you add a new bit above, update netif_msg_class_names array
4326 * in net/ethtool/common.c
4327 */
4328 NETIF_MSG_CLASS_COUNT,
4329};
4330/* Both ethtool_ops interface and internal driver implementation use u32 */
4331static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4332
4333#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4334#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4335
4336#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4337#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4338#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4339#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4340#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4341#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4342#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4343#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4344#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4345#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4346#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4347#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4348#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4349#define NETIF_MSG_HW __NETIF_MSG(HW)
4350#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4351
4352#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4353#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4354#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4355#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4356#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4357#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4358#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4359#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4360#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4361#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4362#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4363#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4364#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4365#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4366#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4367
4368static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4369{
4370 /* use default */
4371 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4372 return default_msg_enable_bits;
4373 if (debug_value == 0) /* no output */
4374 return 0;
4375 /* set low N bits */
4376 return (1U << debug_value) - 1;
4377}
4378
4379static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4380{
4381 spin_lock(lock: &txq->_xmit_lock);
4382 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4383 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4384}
4385
4386static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4387{
4388 __acquire(&txq->_xmit_lock);
4389 return true;
4390}
4391
4392static inline void __netif_tx_release(struct netdev_queue *txq)
4393{
4394 __release(&txq->_xmit_lock);
4395}
4396
4397static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4398{
4399 spin_lock_bh(lock: &txq->_xmit_lock);
4400 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4401 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4402}
4403
4404static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4405{
4406 bool ok = spin_trylock(lock: &txq->_xmit_lock);
4407
4408 if (likely(ok)) {
4409 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4410 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4411 }
4412 return ok;
4413}
4414
4415static inline void __netif_tx_unlock(struct netdev_queue *txq)
4416{
4417 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4418 WRITE_ONCE(txq->xmit_lock_owner, -1);
4419 spin_unlock(lock: &txq->_xmit_lock);
4420}
4421
4422static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4423{
4424 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4425 WRITE_ONCE(txq->xmit_lock_owner, -1);
4426 spin_unlock_bh(lock: &txq->_xmit_lock);
4427}
4428
4429/*
4430 * txq->trans_start can be read locklessly from dev_watchdog()
4431 */
4432static inline void txq_trans_update(struct netdev_queue *txq)
4433{
4434 if (txq->xmit_lock_owner != -1)
4435 WRITE_ONCE(txq->trans_start, jiffies);
4436}
4437
4438static inline void txq_trans_cond_update(struct netdev_queue *txq)
4439{
4440 unsigned long now = jiffies;
4441
4442 if (READ_ONCE(txq->trans_start) != now)
4443 WRITE_ONCE(txq->trans_start, now);
4444}
4445
4446/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4447static inline void netif_trans_update(struct net_device *dev)
4448{
4449 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: 0);
4450
4451 txq_trans_cond_update(txq);
4452}
4453
4454/**
4455 * netif_tx_lock - grab network device transmit lock
4456 * @dev: network device
4457 *
4458 * Get network device transmit lock
4459 */
4460void netif_tx_lock(struct net_device *dev);
4461
4462static inline void netif_tx_lock_bh(struct net_device *dev)
4463{
4464 local_bh_disable();
4465 netif_tx_lock(dev);
4466}
4467
4468void netif_tx_unlock(struct net_device *dev);
4469
4470static inline void netif_tx_unlock_bh(struct net_device *dev)
4471{
4472 netif_tx_unlock(dev);
4473 local_bh_enable();
4474}
4475
4476#define HARD_TX_LOCK(dev, txq, cpu) { \
4477 if ((dev->features & NETIF_F_LLTX) == 0) { \
4478 __netif_tx_lock(txq, cpu); \
4479 } else { \
4480 __netif_tx_acquire(txq); \
4481 } \
4482}
4483
4484#define HARD_TX_TRYLOCK(dev, txq) \
4485 (((dev->features & NETIF_F_LLTX) == 0) ? \
4486 __netif_tx_trylock(txq) : \
4487 __netif_tx_acquire(txq))
4488
4489#define HARD_TX_UNLOCK(dev, txq) { \
4490 if ((dev->features & NETIF_F_LLTX) == 0) { \
4491 __netif_tx_unlock(txq); \
4492 } else { \
4493 __netif_tx_release(txq); \
4494 } \
4495}
4496
4497static inline void netif_tx_disable(struct net_device *dev)
4498{
4499 unsigned int i;
4500 int cpu;
4501
4502 local_bh_disable();
4503 cpu = smp_processor_id();
4504 spin_lock(lock: &dev->tx_global_lock);
4505 for (i = 0; i < dev->num_tx_queues; i++) {
4506 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: i);
4507
4508 __netif_tx_lock(txq, cpu);
4509 netif_tx_stop_queue(dev_queue: txq);
4510 __netif_tx_unlock(txq);
4511 }
4512 spin_unlock(lock: &dev->tx_global_lock);
4513 local_bh_enable();
4514}
4515
4516static inline void netif_addr_lock(struct net_device *dev)
4517{
4518 unsigned char nest_level = 0;
4519
4520#ifdef CONFIG_LOCKDEP
4521 nest_level = dev->nested_level;
4522#endif
4523 spin_lock_nested(&dev->addr_list_lock, nest_level);
4524}
4525
4526static inline void netif_addr_lock_bh(struct net_device *dev)
4527{
4528 unsigned char nest_level = 0;
4529
4530#ifdef CONFIG_LOCKDEP
4531 nest_level = dev->nested_level;
4532#endif
4533 local_bh_disable();
4534 spin_lock_nested(&dev->addr_list_lock, nest_level);
4535}
4536
4537static inline void netif_addr_unlock(struct net_device *dev)
4538{
4539 spin_unlock(lock: &dev->addr_list_lock);
4540}
4541
4542static inline void netif_addr_unlock_bh(struct net_device *dev)
4543{
4544 spin_unlock_bh(lock: &dev->addr_list_lock);
4545}
4546
4547/*
4548 * dev_addrs walker. Should be used only for read access. Call with
4549 * rcu_read_lock held.
4550 */
4551#define for_each_dev_addr(dev, ha) \
4552 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4553
4554/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4555
4556void ether_setup(struct net_device *dev);
4557
4558/* Support for loadable net-drivers */
4559struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4560 unsigned char name_assign_type,
4561 void (*setup)(struct net_device *),
4562 unsigned int txqs, unsigned int rxqs);
4563#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4564 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4565
4566#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4567 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4568 count)
4569
4570int register_netdev(struct net_device *dev);
4571void unregister_netdev(struct net_device *dev);
4572
4573int devm_register_netdev(struct device *dev, struct net_device *ndev);
4574
4575/* General hardware address lists handling functions */
4576int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4577 struct netdev_hw_addr_list *from_list, int addr_len);
4578void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4579 struct netdev_hw_addr_list *from_list, int addr_len);
4580int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4581 struct net_device *dev,
4582 int (*sync)(struct net_device *, const unsigned char *),
4583 int (*unsync)(struct net_device *,
4584 const unsigned char *));
4585int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4586 struct net_device *dev,
4587 int (*sync)(struct net_device *,
4588 const unsigned char *, int),
4589 int (*unsync)(struct net_device *,
4590 const unsigned char *, int));
4591void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4592 struct net_device *dev,
4593 int (*unsync)(struct net_device *,
4594 const unsigned char *, int));
4595void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4596 struct net_device *dev,
4597 int (*unsync)(struct net_device *,
4598 const unsigned char *));
4599void __hw_addr_init(struct netdev_hw_addr_list *list);
4600
4601/* Functions used for device addresses handling */
4602void dev_addr_mod(struct net_device *dev, unsigned int offset,
4603 const void *addr, size_t len);
4604
4605static inline void
4606__dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4607{
4608 dev_addr_mod(dev, offset: 0, addr, len);
4609}
4610
4611static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4612{
4613 __dev_addr_set(dev, addr, len: dev->addr_len);
4614}
4615
4616int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4617 unsigned char addr_type);
4618int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4619 unsigned char addr_type);
4620
4621/* Functions used for unicast addresses handling */
4622int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4623int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4624int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4625int dev_uc_sync(struct net_device *to, struct net_device *from);
4626int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4627void dev_uc_unsync(struct net_device *to, struct net_device *from);
4628void dev_uc_flush(struct net_device *dev);
4629void dev_uc_init(struct net_device *dev);
4630
4631/**
4632 * __dev_uc_sync - Synchonize device's unicast list
4633 * @dev: device to sync
4634 * @sync: function to call if address should be added
4635 * @unsync: function to call if address should be removed
4636 *
4637 * Add newly added addresses to the interface, and release
4638 * addresses that have been deleted.
4639 */
4640static inline int __dev_uc_sync(struct net_device *dev,
4641 int (*sync)(struct net_device *,
4642 const unsigned char *),
4643 int (*unsync)(struct net_device *,
4644 const unsigned char *))
4645{
4646 return __hw_addr_sync_dev(list: &dev->uc, dev, sync, unsync);
4647}
4648
4649/**
4650 * __dev_uc_unsync - Remove synchronized addresses from device
4651 * @dev: device to sync
4652 * @unsync: function to call if address should be removed
4653 *
4654 * Remove all addresses that were added to the device by dev_uc_sync().
4655 */
4656static inline void __dev_uc_unsync(struct net_device *dev,
4657 int (*unsync)(struct net_device *,
4658 const unsigned char *))
4659{
4660 __hw_addr_unsync_dev(list: &dev->uc, dev, unsync);
4661}
4662
4663/* Functions used for multicast addresses handling */
4664int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4665int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4666int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4667int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4668int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4669int dev_mc_sync(struct net_device *to, struct net_device *from);
4670int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4671void dev_mc_unsync(struct net_device *to, struct net_device *from);
4672void dev_mc_flush(struct net_device *dev);
4673void dev_mc_init(struct net_device *dev);
4674
4675/**
4676 * __dev_mc_sync - Synchonize device's multicast list
4677 * @dev: device to sync
4678 * @sync: function to call if address should be added
4679 * @unsync: function to call if address should be removed
4680 *
4681 * Add newly added addresses to the interface, and release
4682 * addresses that have been deleted.
4683 */
4684static inline int __dev_mc_sync(struct net_device *dev,
4685 int (*sync)(struct net_device *,
4686 const unsigned char *),
4687 int (*unsync)(struct net_device *,
4688 const unsigned char *))
4689{
4690 return __hw_addr_sync_dev(list: &dev->mc, dev, sync, unsync);
4691}
4692
4693/**
4694 * __dev_mc_unsync - Remove synchronized addresses from device
4695 * @dev: device to sync
4696 * @unsync: function to call if address should be removed
4697 *
4698 * Remove all addresses that were added to the device by dev_mc_sync().
4699 */
4700static inline void __dev_mc_unsync(struct net_device *dev,
4701 int (*unsync)(struct net_device *,
4702 const unsigned char *))
4703{
4704 __hw_addr_unsync_dev(list: &dev->mc, dev, unsync);
4705}
4706
4707/* Functions used for secondary unicast and multicast support */
4708void dev_set_rx_mode(struct net_device *dev);
4709int dev_set_promiscuity(struct net_device *dev, int inc);
4710int dev_set_allmulti(struct net_device *dev, int inc);
4711void netdev_state_change(struct net_device *dev);
4712void __netdev_notify_peers(struct net_device *dev);
4713void netdev_notify_peers(struct net_device *dev);
4714void netdev_features_change(struct net_device *dev);
4715/* Load a device via the kmod */
4716void dev_load(struct net *net, const char *name);
4717struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4718 struct rtnl_link_stats64 *storage);
4719void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4720 const struct net_device_stats *netdev_stats);
4721void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4722 const struct pcpu_sw_netstats __percpu *netstats);
4723void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4724
4725extern int netdev_max_backlog;
4726extern int dev_rx_weight;
4727extern int dev_tx_weight;
4728extern int gro_normal_batch;
4729
4730enum {
4731 NESTED_SYNC_IMM_BIT,
4732 NESTED_SYNC_TODO_BIT,
4733};
4734
4735#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4736#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4737
4738#define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4739#define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4740
4741struct netdev_nested_priv {
4742 unsigned char flags;
4743 void *data;
4744};
4745
4746bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4747struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4748 struct list_head **iter);
4749
4750/* iterate through upper list, must be called under RCU read lock */
4751#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4752 for (iter = &(dev)->adj_list.upper, \
4753 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4754 updev; \
4755 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4756
4757int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4758 int (*fn)(struct net_device *upper_dev,
4759 struct netdev_nested_priv *priv),
4760 struct netdev_nested_priv *priv);
4761
4762bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4763 struct net_device *upper_dev);
4764
4765bool netdev_has_any_upper_dev(struct net_device *dev);
4766
4767void *netdev_lower_get_next_private(struct net_device *dev,
4768 struct list_head **iter);
4769void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4770 struct list_head **iter);
4771
4772#define netdev_for_each_lower_private(dev, priv, iter) \
4773 for (iter = (dev)->adj_list.lower.next, \
4774 priv = netdev_lower_get_next_private(dev, &(iter)); \
4775 priv; \
4776 priv = netdev_lower_get_next_private(dev, &(iter)))
4777
4778#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4779 for (iter = &(dev)->adj_list.lower, \
4780 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4781 priv; \
4782 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4783
4784void *netdev_lower_get_next(struct net_device *dev,
4785 struct list_head **iter);
4786
4787#define netdev_for_each_lower_dev(dev, ldev, iter) \
4788 for (iter = (dev)->adj_list.lower.next, \
4789 ldev = netdev_lower_get_next(dev, &(iter)); \
4790 ldev; \
4791 ldev = netdev_lower_get_next(dev, &(iter)))
4792
4793struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4794 struct list_head **iter);
4795int netdev_walk_all_lower_dev(struct net_device *dev,
4796 int (*fn)(struct net_device *lower_dev,
4797 struct netdev_nested_priv *priv),
4798 struct netdev_nested_priv *priv);
4799int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4800 int (*fn)(struct net_device *lower_dev,
4801 struct netdev_nested_priv *priv),
4802 struct netdev_nested_priv *priv);
4803
4804void *netdev_adjacent_get_private(struct list_head *adj_list);
4805void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4806struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4807struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4808int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4809 struct netlink_ext_ack *extack);
4810int netdev_master_upper_dev_link(struct net_device *dev,
4811 struct net_device *upper_dev,
4812 void *upper_priv, void *upper_info,
4813 struct netlink_ext_ack *extack);
4814void netdev_upper_dev_unlink(struct net_device *dev,
4815 struct net_device *upper_dev);
4816int netdev_adjacent_change_prepare(struct net_device *old_dev,
4817 struct net_device *new_dev,
4818 struct net_device *dev,
4819 struct netlink_ext_ack *extack);
4820void netdev_adjacent_change_commit(struct net_device *old_dev,
4821 struct net_device *new_dev,
4822 struct net_device *dev);
4823void netdev_adjacent_change_abort(struct net_device *old_dev,
4824 struct net_device *new_dev,
4825 struct net_device *dev);
4826void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4827void *netdev_lower_dev_get_private(struct net_device *dev,
4828 struct net_device *lower_dev);
4829void netdev_lower_state_changed(struct net_device *lower_dev,
4830 void *lower_state_info);
4831
4832/* RSS keys are 40 or 52 bytes long */
4833#define NETDEV_RSS_KEY_LEN 52
4834extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4835void netdev_rss_key_fill(void *buffer, size_t len);
4836
4837int skb_checksum_help(struct sk_buff *skb);
4838int skb_crc32c_csum_help(struct sk_buff *skb);
4839int skb_csum_hwoffload_help(struct sk_buff *skb,
4840 const netdev_features_t features);
4841
4842struct netdev_bonding_info {
4843 ifslave slave;
4844 ifbond master;
4845};
4846
4847struct netdev_notifier_bonding_info {
4848 struct netdev_notifier_info info; /* must be first */
4849 struct netdev_bonding_info bonding_info;
4850};
4851
4852void netdev_bonding_info_change(struct net_device *dev,
4853 struct netdev_bonding_info *bonding_info);
4854
4855#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4856void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4857#else
4858static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4859 const void *data)
4860{
4861}
4862#endif
4863
4864__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4865
4866static inline bool can_checksum_protocol(netdev_features_t features,
4867 __be16 protocol)
4868{
4869 if (protocol == htons(ETH_P_FCOE))
4870 return !!(features & NETIF_F_FCOE_CRC);
4871
4872 /* Assume this is an IP checksum (not SCTP CRC) */
4873
4874 if (features & NETIF_F_HW_CSUM) {
4875 /* Can checksum everything */
4876 return true;
4877 }
4878
4879 switch (protocol) {
4880 case htons(ETH_P_IP):
4881 return !!(features & NETIF_F_IP_CSUM);
4882 case htons(ETH_P_IPV6):
4883 return !!(features & NETIF_F_IPV6_CSUM);
4884 default:
4885 return false;
4886 }
4887}
4888
4889#ifdef CONFIG_BUG
4890void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4891#else
4892static inline void netdev_rx_csum_fault(struct net_device *dev,
4893 struct sk_buff *skb)
4894{
4895}
4896#endif
4897/* rx skb timestamps */
4898void net_enable_timestamp(void);
4899void net_disable_timestamp(void);
4900
4901static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4902 const struct skb_shared_hwtstamps *hwtstamps,
4903 bool cycles)
4904{
4905 const struct net_device_ops *ops = dev->netdev_ops;
4906
4907 if (ops->ndo_get_tstamp)
4908 return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4909
4910 return hwtstamps->hwtstamp;
4911}
4912
4913static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4914 struct sk_buff *skb, struct net_device *dev,
4915 bool more)
4916{
4917 __this_cpu_write(softnet_data.xmit.more, more);
4918 return ops->ndo_start_xmit(skb, dev);
4919}
4920
4921static inline bool netdev_xmit_more(void)
4922{
4923 return __this_cpu_read(softnet_data.xmit.more);
4924}
4925
4926static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4927 struct netdev_queue *txq, bool more)
4928{
4929 const struct net_device_ops *ops = dev->netdev_ops;
4930 netdev_tx_t rc;
4931
4932 rc = __netdev_start_xmit(ops, skb, dev, more);
4933 if (rc == NETDEV_TX_OK)
4934 txq_trans_update(txq);
4935
4936 return rc;
4937}
4938
4939int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4940 const void *ns);
4941void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4942 const void *ns);
4943
4944extern const struct kobj_ns_type_operations net_ns_type_operations;
4945
4946const char *netdev_drivername(const struct net_device *dev);
4947
4948static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4949 netdev_features_t f2)
4950{
4951 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4952 if (f1 & NETIF_F_HW_CSUM)
4953 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4954 else
4955 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4956 }
4957
4958 return f1 & f2;
4959}
4960
4961static inline netdev_features_t netdev_get_wanted_features(
4962 struct net_device *dev)
4963{
4964 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4965}
4966netdev_features_t netdev_increment_features(netdev_features_t all,
4967 netdev_features_t one, netdev_features_t mask);
4968
4969/* Allow TSO being used on stacked device :
4970 * Performing the GSO segmentation before last device
4971 * is a performance improvement.
4972 */
4973static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4974 netdev_features_t mask)
4975{
4976 return netdev_increment_features(all: features, NETIF_F_ALL_TSO, mask);
4977}
4978
4979int __netdev_update_features(struct net_device *dev);
4980void netdev_update_features(struct net_device *dev);
4981void netdev_change_features(struct net_device *dev);
4982
4983void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4984 struct net_device *dev);
4985
4986netdev_features_t passthru_features_check(struct sk_buff *skb,
4987 struct net_device *dev,
4988 netdev_features_t features);
4989netdev_features_t netif_skb_features(struct sk_buff *skb);
4990void skb_warn_bad_offload(const struct sk_buff *skb);
4991
4992static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4993{
4994 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4995
4996 /* check flags correspondence */
4997 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4998 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4999 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5000 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5001 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5002 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5003 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5004 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5005 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5006 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5007 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5008 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5009 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5010 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5011 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5012 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5013 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5014 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5015 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5016
5017 return (features & feature) == feature;
5018}
5019
5020static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5021{
5022 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5023 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5024}
5025
5026static inline bool netif_needs_gso(struct sk_buff *skb,
5027 netdev_features_t features)
5028{
5029 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5030 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5031 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5032}
5033
5034void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5035void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5036void netif_inherit_tso_max(struct net_device *to,
5037 const struct net_device *from);
5038
5039static inline bool netif_is_macsec(const struct net_device *dev)
5040{
5041 return dev->priv_flags & IFF_MACSEC;
5042}
5043
5044static inline bool netif_is_macvlan(const struct net_device *dev)
5045{
5046 return dev->priv_flags & IFF_MACVLAN;
5047}
5048
5049static inline bool netif_is_macvlan_port(const struct net_device *dev)
5050{
5051 return dev->priv_flags & IFF_MACVLAN_PORT;
5052}
5053
5054static inline bool netif_is_bond_master(const struct net_device *dev)
5055{
5056 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5057}
5058
5059static inline bool netif_is_bond_slave(const struct net_device *dev)
5060{
5061 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5062}
5063
5064static inline bool netif_supports_nofcs(struct net_device *dev)
5065{
5066 return dev->priv_flags & IFF_SUPP_NOFCS;
5067}
5068
5069static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5070{
5071 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5072}
5073
5074static inline bool netif_is_l3_master(const struct net_device *dev)
5075{
5076 return dev->priv_flags & IFF_L3MDEV_MASTER;
5077}
5078
5079static inline bool netif_is_l3_slave(const struct net_device *dev)
5080{
5081 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5082}
5083
5084static inline int dev_sdif(const struct net_device *dev)
5085{
5086#ifdef CONFIG_NET_L3_MASTER_DEV
5087 if (netif_is_l3_slave(dev))
5088 return dev->ifindex;
5089#endif
5090 return 0;
5091}
5092
5093static inline bool netif_is_bridge_master(const struct net_device *dev)
5094{
5095 return dev->priv_flags & IFF_EBRIDGE;
5096}
5097
5098static inline bool netif_is_bridge_port(const struct net_device *dev)
5099{
5100 return dev->priv_flags & IFF_BRIDGE_PORT;
5101}
5102
5103static inline bool netif_is_ovs_master(const struct net_device *dev)
5104{
5105 return dev->priv_flags & IFF_OPENVSWITCH;
5106}
5107
5108static inline bool netif_is_ovs_port(const struct net_device *dev)
5109{
5110 return dev->priv_flags & IFF_OVS_DATAPATH;
5111}
5112
5113static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5114{
5115 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5116}
5117
5118static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5119{
5120 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5121}
5122
5123static inline bool netif_is_team_master(const struct net_device *dev)
5124{
5125 return dev->priv_flags & IFF_TEAM;
5126}
5127
5128static inline bool netif_is_team_port(const struct net_device *dev)
5129{
5130 return dev->priv_flags & IFF_TEAM_PORT;
5131}
5132
5133static inline bool netif_is_lag_master(const struct net_device *dev)
5134{
5135 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5136}
5137
5138static inline bool netif_is_lag_port(const struct net_device *dev)
5139{
5140 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5141}
5142
5143static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5144{
5145 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5146}
5147
5148static inline bool netif_is_failover(const struct net_device *dev)
5149{
5150 return dev->priv_flags & IFF_FAILOVER;
5151}
5152
5153static inline bool netif_is_failover_slave(const struct net_device *dev)
5154{
5155 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5156}
5157
5158/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5159static inline void netif_keep_dst(struct net_device *dev)
5160{
5161 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5162}
5163
5164/* return true if dev can't cope with mtu frames that need vlan tag insertion */
5165static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5166{
5167 /* TODO: reserve and use an additional IFF bit, if we get more users */
5168 return netif_is_macsec(dev);
5169}
5170
5171extern struct pernet_operations __net_initdata loopback_net_ops;
5172
5173/* Logging, debugging and troubleshooting/diagnostic helpers. */
5174
5175/* netdev_printk helpers, similar to dev_printk */
5176
5177static inline const char *netdev_name(const struct net_device *dev)
5178{
5179 if (!dev->name[0] || strchr(dev->name, '%'))
5180 return "(unnamed net_device)";
5181 return dev->name;
5182}
5183
5184static inline const char *netdev_reg_state(const struct net_device *dev)
5185{
5186 switch (dev->reg_state) {
5187 case NETREG_UNINITIALIZED: return " (uninitialized)";
5188 case NETREG_REGISTERED: return "";
5189 case NETREG_UNREGISTERING: return " (unregistering)";
5190 case NETREG_UNREGISTERED: return " (unregistered)";
5191 case NETREG_RELEASED: return " (released)";
5192 case NETREG_DUMMY: return " (dummy)";
5193 }
5194
5195 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5196 return " (unknown)";
5197}
5198
5199#define MODULE_ALIAS_NETDEV(device) \
5200 MODULE_ALIAS("netdev-" device)
5201
5202/*
5203 * netdev_WARN() acts like dev_printk(), but with the key difference
5204 * of using a WARN/WARN_ON to get the message out, including the
5205 * file/line information and a backtrace.
5206 */
5207#define netdev_WARN(dev, format, args...) \
5208 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5209 netdev_reg_state(dev), ##args)
5210
5211#define netdev_WARN_ONCE(dev, format, args...) \
5212 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5213 netdev_reg_state(dev), ##args)
5214
5215/*
5216 * The list of packet types we will receive (as opposed to discard)
5217 * and the routines to invoke.
5218 *
5219 * Why 16. Because with 16 the only overlap we get on a hash of the
5220 * low nibble of the protocol value is RARP/SNAP/X.25.
5221 *
5222 * 0800 IP
5223 * 0001 802.3
5224 * 0002 AX.25
5225 * 0004 802.2
5226 * 8035 RARP
5227 * 0005 SNAP
5228 * 0805 X.25
5229 * 0806 ARP
5230 * 8137 IPX
5231 * 0009 Localtalk
5232 * 86DD IPv6
5233 */
5234#define PTYPE_HASH_SIZE (16)
5235#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5236
5237extern struct list_head ptype_all __read_mostly;
5238extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5239
5240extern struct net_device *blackhole_netdev;
5241
5242/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5243#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5244#define DEV_STATS_ADD(DEV, FIELD, VAL) \
5245 atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5246#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5247
5248#endif /* _LINUX_NETDEVICE_H */
5249

source code of linux/include/linux/netdevice.h