1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * comedi/drivers/s626.c
4 * Sensoray s626 Comedi driver
5 *
6 * COMEDI - Linux Control and Measurement Device Interface
7 * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8 *
9 * Based on Sensoray Model 626 Linux driver Version 0.2
10 * Copyright (C) 2002-2004 Sensoray Co., Inc.
11 */
12
13/*
14 * Driver: s626
15 * Description: Sensoray 626 driver
16 * Devices: [Sensoray] 626 (s626)
17 * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
18 * Updated: Fri, 15 Feb 2008 10:28:42 +0000
19 * Status: experimental
20
21 * Configuration options: not applicable, uses PCI auto config
22
23 * INSN_CONFIG instructions:
24 * analog input:
25 * none
26 *
27 * analog output:
28 * none
29 *
30 * digital channel:
31 * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
32 * supported configuration options:
33 * INSN_CONFIG_DIO_QUERY
34 * COMEDI_INPUT
35 * COMEDI_OUTPUT
36 *
37 * encoder:
38 * Every channel must be configured before reading.
39 *
40 * Example code
41 *
42 * insn.insn=INSN_CONFIG; //configuration instruction
43 * insn.n=1; //number of operation (must be 1)
44 * insn.data=&initialvalue; //initial value loaded into encoder
45 * //during configuration
46 * insn.subdev=5; //encoder subdevice
47 * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
48 * //to configure
49 *
50 * comedi_do_insn(cf,&insn); //executing configuration
51 */
52
53#include <linux/module.h>
54#include <linux/delay.h>
55#include <linux/interrupt.h>
56#include <linux/kernel.h>
57#include <linux/types.h>
58#include <linux/comedi/comedi_pci.h>
59
60#include "s626.h"
61
62struct s626_buffer_dma {
63 dma_addr_t physical_base;
64 void *logical_base;
65};
66
67/**
68 * struct s626_private - Working data for s626 driver.
69 * @ai_cmd_running: non-zero if ai_cmd is running.
70 * @ai_sample_timer: time between samples in units of the timer.
71 * @ai_convert_count: conversion counter.
72 * @ai_convert_timer: time between conversion in units of the timer.
73 * @counter_int_enabs: counter interrupt enable mask for MISC2 register.
74 * @adc_items: number of items in ADC poll list.
75 * @rps_buf: DMA buffer used to hold ADC (RPS1) program.
76 * @ana_buf: DMA buffer used to receive ADC data and hold DAC data.
77 * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
78 * @dacpol: image of DAC polarity register.
79 * @trim_setpoint: images of TrimDAC setpoints.
80 * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
81 */
82struct s626_private {
83 u8 ai_cmd_running;
84 unsigned int ai_sample_timer;
85 int ai_convert_count;
86 unsigned int ai_convert_timer;
87 u16 counter_int_enabs;
88 u8 adc_items;
89 struct s626_buffer_dma rps_buf;
90 struct s626_buffer_dma ana_buf;
91 u32 *dac_wbuf;
92 u16 dacpol;
93 u8 trim_setpoint[12];
94 u32 i2c_adrs;
95};
96
97/* Counter overflow/index event flag masks for RDMISC2. */
98#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
99#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
100
101/*
102 * Enable/disable a function or test status bit(s) that are accessed
103 * through Main Control Registers 1 or 2.
104 */
105static void s626_mc_enable(struct comedi_device *dev,
106 unsigned int cmd, unsigned int reg)
107{
108 unsigned int val = (cmd << 16) | cmd;
109
110 writel(val, addr: dev->mmio + reg);
111}
112
113static void s626_mc_disable(struct comedi_device *dev,
114 unsigned int cmd, unsigned int reg)
115{
116 writel(val: cmd << 16, addr: dev->mmio + reg);
117}
118
119static bool s626_mc_test(struct comedi_device *dev,
120 unsigned int cmd, unsigned int reg)
121{
122 unsigned int val;
123
124 val = readl(addr: dev->mmio + reg);
125
126 return (val & cmd) ? true : false;
127}
128
129#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
130
131/* Write a time slot control record to TSL2. */
132#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
133
134static const struct comedi_lrange s626_range_table = {
135 2, {
136 BIP_RANGE(5),
137 BIP_RANGE(10)
138 }
139};
140
141/*
142 * Execute a DEBI transfer. This must be called from within a critical section.
143 */
144static void s626_debi_transfer(struct comedi_device *dev)
145{
146 static const int timeout = 10000;
147 int i;
148
149 /* Initiate upload of shadow RAM to DEBI control register */
150 s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
151
152 /*
153 * Wait for completion of upload from shadow RAM to
154 * DEBI control register.
155 */
156 for (i = 0; i < timeout; i++) {
157 if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
158 break;
159 udelay(1);
160 }
161 if (i == timeout)
162 dev_err(dev->class_dev,
163 "Timeout while uploading to DEBI control register\n");
164
165 /* Wait until DEBI transfer is done */
166 for (i = 0; i < timeout; i++) {
167 if (!(readl(addr: dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
168 break;
169 udelay(1);
170 }
171 if (i == timeout)
172 dev_err(dev->class_dev, "DEBI transfer timeout\n");
173}
174
175/*
176 * Read a value from a gate array register.
177 */
178static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
179{
180 /* Set up DEBI control register value in shadow RAM */
181 writel(S626_DEBI_CMD_RDWORD | addr, addr: dev->mmio + S626_P_DEBICMD);
182
183 /* Execute the DEBI transfer. */
184 s626_debi_transfer(dev);
185
186 return readl(addr: dev->mmio + S626_P_DEBIAD);
187}
188
189/*
190 * Write a value to a gate array register.
191 */
192static void s626_debi_write(struct comedi_device *dev, u16 addr,
193 u16 wdata)
194{
195 /* Set up DEBI control register value in shadow RAM */
196 writel(S626_DEBI_CMD_WRWORD | addr, addr: dev->mmio + S626_P_DEBICMD);
197 writel(val: wdata, addr: dev->mmio + S626_P_DEBIAD);
198
199 /* Execute the DEBI transfer. */
200 s626_debi_transfer(dev);
201}
202
203/*
204 * Replace the specified bits in a gate array register. Imports: mask
205 * specifies bits that are to be preserved, wdata is new value to be
206 * or'd with the masked original.
207 */
208static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
209 unsigned int mask, unsigned int wdata)
210{
211 unsigned int val;
212
213 addr &= 0xffff;
214 writel(S626_DEBI_CMD_RDWORD | addr, addr: dev->mmio + S626_P_DEBICMD);
215 s626_debi_transfer(dev);
216
217 writel(S626_DEBI_CMD_WRWORD | addr, addr: dev->mmio + S626_P_DEBICMD);
218 val = readl(addr: dev->mmio + S626_P_DEBIAD);
219 val &= mask;
220 val |= wdata;
221 writel(val: val & 0xffff, addr: dev->mmio + S626_P_DEBIAD);
222 s626_debi_transfer(dev);
223}
224
225/* ************** EEPROM ACCESS FUNCTIONS ************** */
226
227static int s626_i2c_handshake_eoc(struct comedi_device *dev,
228 struct comedi_subdevice *s,
229 struct comedi_insn *insn,
230 unsigned long context)
231{
232 bool status;
233
234 status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
235 if (status)
236 return 0;
237 return -EBUSY;
238}
239
240static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
241{
242 unsigned int ctrl;
243 int ret;
244
245 /* Write I2C command to I2C Transfer Control shadow register */
246 writel(val, addr: dev->mmio + S626_P_I2CCTRL);
247
248 /*
249 * Upload I2C shadow registers into working registers and
250 * wait for upload confirmation.
251 */
252 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
253 ret = comedi_timeout(dev, NULL, NULL, cb: s626_i2c_handshake_eoc, context: 0);
254 if (ret)
255 return ret;
256
257 /* Wait until I2C bus transfer is finished or an error occurs */
258 do {
259 ctrl = readl(addr: dev->mmio + S626_P_I2CCTRL);
260 } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
261
262 /* Return non-zero if I2C error occurred */
263 return ctrl & S626_I2C_ERR;
264}
265
266/* Read u8 from EEPROM. */
267static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
268{
269 struct s626_private *devpriv = dev->private;
270
271 /*
272 * Send EEPROM target address:
273 * Byte2 = I2C command: write to I2C EEPROM device.
274 * Byte1 = EEPROM internal target address.
275 * Byte0 = Not sent.
276 */
277 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
278 devpriv->i2c_adrs) |
279 S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
280 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
281 /* Abort function and declare error if handshake failed. */
282 return 0;
283
284 /*
285 * Execute EEPROM read:
286 * Byte2 = I2C command: read from I2C EEPROM device.
287 * Byte1 receives uint8_t from EEPROM.
288 * Byte0 = Not sent.
289 */
290 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
291 (devpriv->i2c_adrs | 1)) |
292 S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
293 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
294 /* Abort function and declare error if handshake failed. */
295 return 0;
296
297 return (readl(addr: dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
298}
299
300/* *********** DAC FUNCTIONS *********** */
301
302/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
303static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
304
305/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
306static const u8 s626_trimadrs[] = {
307 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
308};
309
310enum {
311 s626_send_dac_wait_not_mc1_a2out,
312 s626_send_dac_wait_ssr_af2_out,
313 s626_send_dac_wait_fb_buffer2_msb_00,
314 s626_send_dac_wait_fb_buffer2_msb_ff
315};
316
317static int s626_send_dac_eoc(struct comedi_device *dev,
318 struct comedi_subdevice *s,
319 struct comedi_insn *insn,
320 unsigned long context)
321{
322 unsigned int status;
323
324 switch (context) {
325 case s626_send_dac_wait_not_mc1_a2out:
326 status = readl(addr: dev->mmio + S626_P_MC1);
327 if (!(status & S626_MC1_A2OUT))
328 return 0;
329 break;
330 case s626_send_dac_wait_ssr_af2_out:
331 status = readl(addr: dev->mmio + S626_P_SSR);
332 if (status & S626_SSR_AF2_OUT)
333 return 0;
334 break;
335 case s626_send_dac_wait_fb_buffer2_msb_00:
336 status = readl(addr: dev->mmio + S626_P_FB_BUFFER2);
337 if (!(status & 0xff000000))
338 return 0;
339 break;
340 case s626_send_dac_wait_fb_buffer2_msb_ff:
341 status = readl(addr: dev->mmio + S626_P_FB_BUFFER2);
342 if (status & 0xff000000)
343 return 0;
344 break;
345 default:
346 return -EINVAL;
347 }
348 return -EBUSY;
349}
350
351/*
352 * Private helper function: Transmit serial data to DAC via Audio
353 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
354 * dacpol contains valid target image.
355 */
356static int s626_send_dac(struct comedi_device *dev, u32 val)
357{
358 struct s626_private *devpriv = dev->private;
359 int ret;
360
361 /* START THE SERIAL CLOCK RUNNING ------------- */
362
363 /*
364 * Assert DAC polarity control and enable gating of DAC serial clock
365 * and audio bit stream signals. At this point in time we must be
366 * assured of being in time slot 0. If we are not in slot 0, the
367 * serial clock and audio stream signals will be disabled; this is
368 * because the following s626_debi_write statement (which enables
369 * signals to be passed through the gate array) would execute before
370 * the trailing edge of WS1/WS3 (which turns off the signals), thus
371 * causing the signals to be inactive during the DAC write.
372 */
373 s626_debi_write(dev, S626_LP_DACPOL, wdata: devpriv->dacpol);
374
375 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
376
377 /* Copy DAC setpoint value to DAC's output DMA buffer. */
378 /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
379 *devpriv->dac_wbuf = val;
380
381 /*
382 * Enable the output DMA transfer. This will cause the DMAC to copy
383 * the DAC's data value to A2's output FIFO. The DMA transfer will
384 * then immediately terminate because the protection address is
385 * reached upon transfer of the first DWORD value.
386 */
387 s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
388
389 /* While the DMA transfer is executing ... */
390
391 /*
392 * Reset Audio2 output FIFO's underflow flag (along with any
393 * other FIFO underflow/overflow flags). When set, this flag
394 * will indicate that we have emerged from slot 0.
395 */
396 writel(S626_ISR_AFOU, addr: dev->mmio + S626_P_ISR);
397
398 /*
399 * Wait for the DMA transfer to finish so that there will be data
400 * available in the FIFO when time slot 1 tries to transfer a DWORD
401 * from the FIFO to the output buffer register. We test for DMA
402 * Done by polling the DMAC enable flag; this flag is automatically
403 * cleared when the transfer has finished.
404 */
405 ret = comedi_timeout(dev, NULL, NULL, cb: s626_send_dac_eoc,
406 context: s626_send_dac_wait_not_mc1_a2out);
407 if (ret) {
408 dev_err(dev->class_dev, "DMA transfer timeout\n");
409 return ret;
410 }
411
412 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
413
414 /*
415 * FIFO data is now available, so we enable execution of time slots
416 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
417 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
418 * detection.
419 */
420 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
421 addr: dev->mmio + S626_VECTPORT(0));
422
423 /*
424 * Wait for slot 1 to execute to ensure that the Packet will be
425 * transmitted. This is detected by polling the Audio2 output FIFO
426 * underflow flag, which will be set when slot 1 execution has
427 * finished transferring the DAC's data DWORD from the output FIFO
428 * to the output buffer register.
429 */
430 ret = comedi_timeout(dev, NULL, NULL, cb: s626_send_dac_eoc,
431 context: s626_send_dac_wait_ssr_af2_out);
432 if (ret) {
433 dev_err(dev->class_dev,
434 "TSL timeout waiting for slot 1 to execute\n");
435 return ret;
436 }
437
438 /*
439 * Set up to trap execution at slot 0 when the TSL sequencer cycles
440 * back to slot 0 after executing the EOS in slot 5. Also,
441 * simultaneously shift out and in the 0x00 that is ALWAYS the value
442 * stored in the last byte to be shifted out of the FIFO's DWORD
443 * buffer register.
444 */
445 writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
446 addr: dev->mmio + S626_VECTPORT(0));
447
448 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
449
450 /*
451 * Wait for the TSL to finish executing all time slots before
452 * exiting this function. We must do this so that the next DAC
453 * write doesn't start, thereby enabling clock/chip select signals:
454 *
455 * 1. Before the TSL sequence cycles back to slot 0, which disables
456 * the clock/cs signal gating and traps slot // list execution.
457 * we have not yet finished slot 5 then the clock/cs signals are
458 * still gated and we have not finished transmitting the stream.
459 *
460 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
461 * this case, the slot sequence is currently repeating, but with
462 * clock/cs signals disabled. We must wait for slot 0 to trap
463 * execution before setting up the next DAC setpoint DMA transfer
464 * and enabling the clock/cs signals. To detect the end of slot 5,
465 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
466 * the TSL has not yet finished executing slot 5 ...
467 */
468 if (readl(addr: dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
469 /*
470 * The trap was set on time and we are still executing somewhere
471 * in slots 2-5, so we now wait for slot 0 to execute and trap
472 * TSL execution. This is detected when FB_BUFFER2 MSB changes
473 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
474 * out/in on SD2 the 0x00 that is always referenced by slot 5.
475 */
476 ret = comedi_timeout(dev, NULL, NULL, cb: s626_send_dac_eoc,
477 context: s626_send_dac_wait_fb_buffer2_msb_00);
478 if (ret) {
479 dev_err(dev->class_dev,
480 "TSL timeout waiting for slot 0 to execute\n");
481 return ret;
482 }
483 }
484 /*
485 * Either (1) we were too late setting the slot 0 trap; the TSL
486 * sequencer restarted slot 0 before we could set the EOS trap flag,
487 * or (2) we were not late and execution is now trapped at slot 0.
488 * In either case, we must now change slot 0 so that it will store
489 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
490 * In order to do this, we reprogram slot 0 so that it will shift in
491 * SD3, which is driven only by a pull-up resistor.
492 */
493 writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
494 addr: dev->mmio + S626_VECTPORT(0));
495
496 /*
497 * Wait for slot 0 to execute, at which time the TSL is setup for
498 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
499 * from 0x00 to 0xFF.
500 */
501 ret = comedi_timeout(dev, NULL, NULL, cb: s626_send_dac_eoc,
502 context: s626_send_dac_wait_fb_buffer2_msb_ff);
503 if (ret) {
504 dev_err(dev->class_dev,
505 "TSL timeout waiting for slot 0 to execute\n");
506 return ret;
507 }
508 return 0;
509}
510
511/*
512 * Private helper function: Write setpoint to an application DAC channel.
513 */
514static int s626_set_dac(struct comedi_device *dev,
515 u16 chan, int16_t dacdata)
516{
517 struct s626_private *devpriv = dev->private;
518 u16 signmask;
519 u32 ws_image;
520 u32 val;
521
522 /*
523 * Adjust DAC data polarity and set up Polarity Control Register image.
524 */
525 signmask = 1 << chan;
526 if (dacdata < 0) {
527 dacdata = -dacdata;
528 devpriv->dacpol |= signmask;
529 } else {
530 devpriv->dacpol &= ~signmask;
531 }
532
533 /* Limit DAC setpoint value to valid range. */
534 if ((u16)dacdata > 0x1FFF)
535 dacdata = 0x1FFF;
536
537 /*
538 * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
539 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
540 * data to a non-existent TrimDac channel just to keep the clock
541 * running after sending data to the target DAC. This is necessary
542 * to eliminate the clock glitch that would otherwise occur at the
543 * end of the target DAC's serial data stream. When the sequence
544 * restarts at V0 (after executing V5), the gate array automatically
545 * disables gating for the DAC clock and all DAC chip selects.
546 */
547
548 /* Choose DAC chip select to be asserted */
549 ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
550 /* Slot 2: Transmit high data byte to target DAC */
551 writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
552 addr: dev->mmio + S626_VECTPORT(2));
553 /* Slot 3: Transmit low data byte to target DAC */
554 writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
555 addr: dev->mmio + S626_VECTPORT(3));
556 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
557 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
558 addr: dev->mmio + S626_VECTPORT(4));
559 /* Slot 5: running after writing target DAC's low data byte */
560 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
561 addr: dev->mmio + S626_VECTPORT(5));
562
563 /*
564 * Construct and transmit target DAC's serial packet:
565 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
566 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
567 * to a non-existent TrimDac channel) that serves to keep the clock
568 * running after the packet has been sent to the target DAC.
569 */
570 val = 0x0F000000; /* Continue clock after target DAC data
571 * (write to non-existent trimdac).
572 */
573 val |= 0x00004000; /* Address the two main dual-DAC devices
574 * (TSL's chip select enables target device).
575 */
576 val |= ((u32)(chan & 1) << 15); /* Address the DAC channel
577 * within the device.
578 */
579 val |= (u32)dacdata; /* Include DAC setpoint data. */
580 return s626_send_dac(dev, val);
581}
582
583static int s626_write_trim_dac(struct comedi_device *dev,
584 u8 logical_chan, u8 dac_data)
585{
586 struct s626_private *devpriv = dev->private;
587 u32 chan;
588
589 /*
590 * Save the new setpoint in case the application needs to read it back
591 * later.
592 */
593 devpriv->trim_setpoint[logical_chan] = dac_data;
594
595 /* Map logical channel number to physical channel number. */
596 chan = s626_trimchan[logical_chan];
597
598 /*
599 * Set up TSL2 records for TrimDac write operation. All slots shift
600 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
601 * can be detected.
602 */
603
604 /* Slot 2: Send high uint8_t to target TrimDac */
605 writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
606 addr: dev->mmio + S626_VECTPORT(2));
607 /* Slot 3: Send low uint8_t to target TrimDac */
608 writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
609 addr: dev->mmio + S626_VECTPORT(3));
610 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
611 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
612 addr: dev->mmio + S626_VECTPORT(4));
613 /* Slot 5: Send NOP low uint8_t to DAC0 */
614 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
615 addr: dev->mmio + S626_VECTPORT(5));
616
617 /*
618 * Construct and transmit target DAC's serial packet:
619 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
620 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
621 * WORD value (that writes a channel 0 NOP command to a non-existent
622 * main DAC channel) that serves to keep the clock running after the
623 * packet has been sent to the target DAC.
624 */
625
626 /*
627 * Address the DAC channel within the trimdac device.
628 * Include DAC setpoint data.
629 */
630 return s626_send_dac(dev, val: (chan << 8) | dac_data);
631}
632
633static int s626_load_trim_dacs(struct comedi_device *dev)
634{
635 u8 i;
636 int ret;
637
638 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
639 for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
640 ret = s626_write_trim_dac(dev, logical_chan: i,
641 dac_data: s626_i2c_read(dev, addr: s626_trimadrs[i]));
642 if (ret)
643 return ret;
644 }
645 return 0;
646}
647
648/* ****** COUNTER FUNCTIONS ******* */
649
650/*
651 * All counter functions address a specific counter by means of the
652 * "Counter" argument, which is a logical counter number. The Counter
653 * argument may have any of the following legal values: 0=0A, 1=1A,
654 * 2=2A, 3=0B, 4=1B, 5=2B.
655 */
656
657/*
658 * Return/set a counter pair's latch trigger source. 0: On read
659 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
660 * latches B.
661 */
662static void s626_set_latch_source(struct comedi_device *dev,
663 unsigned int chan, u16 value)
664{
665 s626_debi_replace(dev, S626_LP_CRB(chan),
666 mask: ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
667 S626_SET_CRB_LATCHSRC(value));
668}
669
670/*
671 * Write value into counter preload register.
672 */
673static void s626_preload(struct comedi_device *dev,
674 unsigned int chan, u32 value)
675{
676 s626_debi_write(dev, S626_LP_CNTR(chan), wdata: value);
677 s626_debi_write(dev, S626_LP_CNTR(chan) + 2, wdata: value >> 16);
678}
679
680/* ****** PRIVATE COUNTER FUNCTIONS ****** */
681
682/*
683 * Reset a counter's index and overflow event capture flags.
684 */
685static void s626_reset_cap_flags(struct comedi_device *dev,
686 unsigned int chan)
687{
688 u16 set;
689
690 set = S626_SET_CRB_INTRESETCMD(1);
691 if (chan < 3)
692 set |= S626_SET_CRB_INTRESET_A(1);
693 else
694 set |= S626_SET_CRB_INTRESET_B(1);
695
696 s626_debi_replace(dev, S626_LP_CRB(chan), mask: ~S626_CRBMSK_INTCTRL, wdata: set);
697}
698
699/*
700 * Set the operating mode for the specified counter. The setup
701 * parameter is treated as a COUNTER_SETUP data type. The following
702 * parameters are programmable (all other parms are ignored): ClkMult,
703 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
704 */
705static void s626_set_mode_a(struct comedi_device *dev,
706 unsigned int chan, u16 setup,
707 u16 disable_int_src)
708{
709 struct s626_private *devpriv = dev->private;
710 u16 cra;
711 u16 crb;
712 unsigned int cntsrc, clkmult, clkpol;
713
714 /* Initialize CRA and CRB images. */
715 /* Preload trigger is passed through. */
716 cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
717 /* IndexSrc is passed through. */
718 cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
719
720 /* Reset any pending CounterA event captures. */
721 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
722 /* Clock enable is passed through. */
723 crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
724
725 /* Force IntSrc to Disabled if disable_int_src is asserted. */
726 if (!disable_int_src)
727 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
728
729 /* Populate all mode-dependent attributes of CRA & CRB images. */
730 clkpol = S626_GET_STD_CLKPOL(setup);
731 switch (S626_GET_STD_ENCMODE(setup)) {
732 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
733 /* Force to Timer mode (Extender valid only for B counters). */
734 /* Fall through to case S626_ENCMODE_TIMER: */
735 case S626_ENCMODE_TIMER: /* Timer Mode: */
736 /* CntSrcA<1> selects system clock */
737 cntsrc = S626_CNTSRC_SYSCLK;
738 /* Count direction (CntSrcA<0>) obtained from ClkPol. */
739 cntsrc |= clkpol;
740 /* ClkPolA behaves as always-on clock enable. */
741 clkpol = 1;
742 /* ClkMult must be 1x. */
743 clkmult = S626_CLKMULT_1X;
744 break;
745 default: /* Counter Mode: */
746 /* Select ENC_C and ENC_D as clock/direction inputs. */
747 cntsrc = S626_CNTSRC_ENCODER;
748 /* Clock polarity is passed through. */
749 /* Force multiplier to x1 if not legal, else pass through. */
750 clkmult = S626_GET_STD_CLKMULT(setup);
751 if (clkmult == S626_CLKMULT_SPECIAL)
752 clkmult = S626_CLKMULT_1X;
753 break;
754 }
755 cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
756 S626_SET_CRA_CLKMULT_A(clkmult);
757
758 /*
759 * Force positive index polarity if IndxSrc is software-driven only,
760 * otherwise pass it through.
761 */
762 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
763 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
764
765 /*
766 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
767 * enable mask to indicate the counter interrupt is disabled.
768 */
769 if (disable_int_src)
770 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
771 S626_INDXMASK(chan));
772
773 /*
774 * While retaining CounterB and LatchSrc configurations, program the
775 * new counter operating mode.
776 */
777 s626_debi_replace(dev, S626_LP_CRA(chan),
778 S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, wdata: cra);
779 s626_debi_replace(dev, S626_LP_CRB(chan),
780 mask: ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), wdata: crb);
781}
782
783static void s626_set_mode_b(struct comedi_device *dev,
784 unsigned int chan, u16 setup,
785 u16 disable_int_src)
786{
787 struct s626_private *devpriv = dev->private;
788 u16 cra;
789 u16 crb;
790 unsigned int cntsrc, clkmult, clkpol;
791
792 /* Initialize CRA and CRB images. */
793 /* IndexSrc is passed through. */
794 cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
795
796 /* Reset event captures and disable interrupts. */
797 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
798 /* Clock enable is passed through. */
799 crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
800 /* Preload trigger source is passed through. */
801 crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
802
803 /* Force IntSrc to Disabled if disable_int_src is asserted. */
804 if (!disable_int_src)
805 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
806
807 /* Populate all mode-dependent attributes of CRA & CRB images. */
808 clkpol = S626_GET_STD_CLKPOL(setup);
809 switch (S626_GET_STD_ENCMODE(setup)) {
810 case S626_ENCMODE_TIMER: /* Timer Mode: */
811 /* CntSrcB<1> selects system clock */
812 cntsrc = S626_CNTSRC_SYSCLK;
813 /* with direction (CntSrcB<0>) obtained from ClkPol. */
814 cntsrc |= clkpol;
815 /* ClkPolB behaves as always-on clock enable. */
816 clkpol = 1;
817 /* ClkMultB must be 1x. */
818 clkmult = S626_CLKMULT_1X;
819 break;
820 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
821 /* CntSrcB source is OverflowA (same as "timer") */
822 cntsrc = S626_CNTSRC_SYSCLK;
823 /* with direction obtained from ClkPol. */
824 cntsrc |= clkpol;
825 /* ClkPolB controls IndexB -- always set to active. */
826 clkpol = 1;
827 /* ClkMultB selects OverflowA as the clock source. */
828 clkmult = S626_CLKMULT_SPECIAL;
829 break;
830 default: /* Counter Mode: */
831 /* Select ENC_C and ENC_D as clock/direction inputs. */
832 cntsrc = S626_CNTSRC_ENCODER;
833 /* ClkPol is passed through. */
834 /* Force ClkMult to x1 if not legal, otherwise pass through. */
835 clkmult = S626_GET_STD_CLKMULT(setup);
836 if (clkmult == S626_CLKMULT_SPECIAL)
837 clkmult = S626_CLKMULT_1X;
838 break;
839 }
840 cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
841 crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
842
843 /*
844 * Force positive index polarity if IndxSrc is software-driven only,
845 * otherwise pass it through.
846 */
847 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
848 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
849
850 /*
851 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
852 * enable mask to indicate the counter interrupt is disabled.
853 */
854 if (disable_int_src)
855 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
856 S626_INDXMASK(chan));
857
858 /*
859 * While retaining CounterA and LatchSrc configurations, program the
860 * new counter operating mode.
861 */
862 s626_debi_replace(dev, S626_LP_CRA(chan),
863 mask: ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), wdata: cra);
864 s626_debi_replace(dev, S626_LP_CRB(chan),
865 S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, wdata: crb);
866}
867
868static void s626_set_mode(struct comedi_device *dev,
869 unsigned int chan,
870 u16 setup, u16 disable_int_src)
871{
872 if (chan < 3)
873 s626_set_mode_a(dev, chan, setup, disable_int_src);
874 else
875 s626_set_mode_b(dev, chan, setup, disable_int_src);
876}
877
878/*
879 * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
880 */
881static void s626_set_enable(struct comedi_device *dev,
882 unsigned int chan, u16 enab)
883{
884 unsigned int mask = S626_CRBMSK_INTCTRL;
885 unsigned int set;
886
887 if (chan < 3) {
888 mask |= S626_CRBMSK_CLKENAB_A;
889 set = S626_SET_CRB_CLKENAB_A(enab);
890 } else {
891 mask |= S626_CRBMSK_CLKENAB_B;
892 set = S626_SET_CRB_CLKENAB_B(enab);
893 }
894 s626_debi_replace(dev, S626_LP_CRB(chan), mask: ~mask, wdata: set);
895}
896
897/*
898 * Return/set the event that will trigger transfer of the preload
899 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
900 * 2=OverflowA (B counters only), 3=disabled.
901 */
902static void s626_set_load_trig(struct comedi_device *dev,
903 unsigned int chan, u16 trig)
904{
905 u16 reg;
906 u16 mask;
907 u16 set;
908
909 if (chan < 3) {
910 reg = S626_LP_CRA(chan);
911 mask = S626_CRAMSK_LOADSRC_A;
912 set = S626_SET_CRA_LOADSRC_A(trig);
913 } else {
914 reg = S626_LP_CRB(chan);
915 mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
916 set = S626_SET_CRB_LOADSRC_B(trig);
917 }
918 s626_debi_replace(dev, addr: reg, mask: ~mask, wdata: set);
919}
920
921/*
922 * Return/set counter interrupt source and clear any captured
923 * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
924 * 2=IndexOnly, 3=IndexAndOverflow.
925 */
926static void s626_set_int_src(struct comedi_device *dev,
927 unsigned int chan, u16 int_source)
928{
929 struct s626_private *devpriv = dev->private;
930 u16 cra_reg = S626_LP_CRA(chan);
931 u16 crb_reg = S626_LP_CRB(chan);
932
933 if (chan < 3) {
934 /* Reset any pending counter overflow or index captures */
935 s626_debi_replace(dev, addr: crb_reg, mask: ~S626_CRBMSK_INTCTRL,
936 S626_SET_CRB_INTRESETCMD(1) |
937 S626_SET_CRB_INTRESET_A(1));
938
939 /* Program counter interrupt source */
940 s626_debi_replace(dev, addr: cra_reg, mask: ~S626_CRAMSK_INTSRC_A,
941 S626_SET_CRA_INTSRC_A(int_source));
942 } else {
943 u16 crb;
944
945 /* Cache writeable CRB register image */
946 crb = s626_debi_read(dev, addr: crb_reg);
947 crb &= ~S626_CRBMSK_INTCTRL;
948
949 /* Reset any pending counter overflow or index captures */
950 s626_debi_write(dev, addr: crb_reg,
951 wdata: crb | S626_SET_CRB_INTRESETCMD(1) |
952 S626_SET_CRB_INTRESET_B(1));
953
954 /* Program counter interrupt source */
955 s626_debi_write(dev, addr: crb_reg,
956 wdata: (crb & ~S626_CRBMSK_INTSRC_B) |
957 S626_SET_CRB_INTSRC_B(int_source));
958 }
959
960 /* Update MISC2 interrupt enable mask. */
961 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
962 S626_INDXMASK(chan));
963 switch (int_source) {
964 case 0:
965 default:
966 break;
967 case 1:
968 devpriv->counter_int_enabs |= S626_OVERMASK(chan);
969 break;
970 case 2:
971 devpriv->counter_int_enabs |= S626_INDXMASK(chan);
972 break;
973 case 3:
974 devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
975 S626_INDXMASK(chan));
976 break;
977 }
978}
979
980/*
981 * Generate an index pulse.
982 */
983static void s626_pulse_index(struct comedi_device *dev,
984 unsigned int chan)
985{
986 if (chan < 3) {
987 u16 cra;
988
989 cra = s626_debi_read(dev, S626_LP_CRA(chan));
990
991 /* Pulse index */
992 s626_debi_write(dev, S626_LP_CRA(chan),
993 wdata: (cra ^ S626_CRAMSK_INDXPOL_A));
994 s626_debi_write(dev, S626_LP_CRA(chan), wdata: cra);
995 } else {
996 u16 crb;
997
998 crb = s626_debi_read(dev, S626_LP_CRB(chan));
999 crb &= ~S626_CRBMSK_INTCTRL;
1000
1001 /* Pulse index */
1002 s626_debi_write(dev, S626_LP_CRB(chan),
1003 wdata: (crb ^ S626_CRBMSK_INDXPOL_B));
1004 s626_debi_write(dev, S626_LP_CRB(chan), wdata: crb);
1005 }
1006}
1007
1008static unsigned int s626_ai_reg_to_uint(unsigned int data)
1009{
1010 return ((data >> 18) & 0x3fff) ^ 0x2000;
1011}
1012
1013static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1014{
1015 unsigned int group = chan / 16;
1016 unsigned int mask = 1 << (chan - (16 * group));
1017 unsigned int status;
1018
1019 /* set channel to capture positive edge */
1020 status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1021 s626_debi_write(dev, S626_LP_WREDGSEL(group), wdata: mask | status);
1022
1023 /* enable interrupt on selected channel */
1024 status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1025 s626_debi_write(dev, S626_LP_WRINTSEL(group), wdata: mask | status);
1026
1027 /* enable edge capture write command */
1028 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1029
1030 /* enable edge capture on selected channel */
1031 status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1032 s626_debi_write(dev, S626_LP_WRCAPSEL(group), wdata: mask | status);
1033
1034 return 0;
1035}
1036
1037static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1038 unsigned int mask)
1039{
1040 /* disable edge capture write command */
1041 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1042
1043 /* enable edge capture on selected channel */
1044 s626_debi_write(dev, S626_LP_WRCAPSEL(group), wdata: mask);
1045
1046 return 0;
1047}
1048
1049static int s626_dio_clear_irq(struct comedi_device *dev)
1050{
1051 unsigned int group;
1052
1053 /* disable edge capture write command */
1054 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1055
1056 /* clear all dio pending events and interrupt */
1057 for (group = 0; group < S626_DIO_BANKS; group++)
1058 s626_debi_write(dev, S626_LP_WRCAPSEL(group), wdata: 0xffff);
1059
1060 return 0;
1061}
1062
1063static void s626_handle_dio_interrupt(struct comedi_device *dev,
1064 u16 irqbit, u8 group)
1065{
1066 struct s626_private *devpriv = dev->private;
1067 struct comedi_subdevice *s = dev->read_subdev;
1068 struct comedi_cmd *cmd = &s->async->cmd;
1069
1070 s626_dio_reset_irq(dev, group, mask: irqbit);
1071
1072 if (devpriv->ai_cmd_running) {
1073 /* check if interrupt is an ai acquisition start trigger */
1074 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1075 cmd->start_src == TRIG_EXT) {
1076 /* Start executing the RPS program */
1077 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1078
1079 if (cmd->scan_begin_src == TRIG_EXT)
1080 s626_dio_set_irq(dev, chan: cmd->scan_begin_arg);
1081 }
1082 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1083 cmd->scan_begin_src == TRIG_EXT) {
1084 /* Trigger ADC scan loop start */
1085 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1086
1087 if (cmd->convert_src == TRIG_EXT) {
1088 devpriv->ai_convert_count = cmd->chanlist_len;
1089
1090 s626_dio_set_irq(dev, chan: cmd->convert_arg);
1091 }
1092
1093 if (cmd->convert_src == TRIG_TIMER) {
1094 devpriv->ai_convert_count = cmd->chanlist_len;
1095 s626_set_enable(dev, chan: 5, S626_CLKENAB_ALWAYS);
1096 }
1097 }
1098 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1099 cmd->convert_src == TRIG_EXT) {
1100 /* Trigger ADC scan loop start */
1101 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1102
1103 devpriv->ai_convert_count--;
1104 if (devpriv->ai_convert_count > 0)
1105 s626_dio_set_irq(dev, chan: cmd->convert_arg);
1106 }
1107 }
1108}
1109
1110static void s626_check_dio_interrupts(struct comedi_device *dev)
1111{
1112 u16 irqbit;
1113 u8 group;
1114
1115 for (group = 0; group < S626_DIO_BANKS; group++) {
1116 /* read interrupt type */
1117 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1118
1119 /* check if interrupt is generated from dio channels */
1120 if (irqbit) {
1121 s626_handle_dio_interrupt(dev, irqbit, group);
1122 return;
1123 }
1124 }
1125}
1126
1127static void s626_check_counter_interrupts(struct comedi_device *dev)
1128{
1129 struct s626_private *devpriv = dev->private;
1130 struct comedi_subdevice *s = dev->read_subdev;
1131 struct comedi_async *async = s->async;
1132 struct comedi_cmd *cmd = &async->cmd;
1133 u16 irqbit;
1134
1135 /* read interrupt type */
1136 irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1137
1138 /* check interrupt on counters */
1139 if (irqbit & S626_IRQ_COINT1A) {
1140 /* clear interrupt capture flag */
1141 s626_reset_cap_flags(dev, chan: 0);
1142 }
1143 if (irqbit & S626_IRQ_COINT2A) {
1144 /* clear interrupt capture flag */
1145 s626_reset_cap_flags(dev, chan: 1);
1146 }
1147 if (irqbit & S626_IRQ_COINT3A) {
1148 /* clear interrupt capture flag */
1149 s626_reset_cap_flags(dev, chan: 2);
1150 }
1151 if (irqbit & S626_IRQ_COINT1B) {
1152 /* clear interrupt capture flag */
1153 s626_reset_cap_flags(dev, chan: 3);
1154 }
1155 if (irqbit & S626_IRQ_COINT2B) {
1156 /* clear interrupt capture flag */
1157 s626_reset_cap_flags(dev, chan: 4);
1158
1159 if (devpriv->ai_convert_count > 0) {
1160 devpriv->ai_convert_count--;
1161 if (devpriv->ai_convert_count == 0)
1162 s626_set_enable(dev, chan: 4, S626_CLKENAB_INDEX);
1163
1164 if (cmd->convert_src == TRIG_TIMER) {
1165 /* Trigger ADC scan loop start */
1166 s626_mc_enable(dev, S626_MC2_ADC_RPS,
1167 S626_P_MC2);
1168 }
1169 }
1170 }
1171 if (irqbit & S626_IRQ_COINT3B) {
1172 /* clear interrupt capture flag */
1173 s626_reset_cap_flags(dev, chan: 5);
1174
1175 if (cmd->scan_begin_src == TRIG_TIMER) {
1176 /* Trigger ADC scan loop start */
1177 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1178 }
1179
1180 if (cmd->convert_src == TRIG_TIMER) {
1181 devpriv->ai_convert_count = cmd->chanlist_len;
1182 s626_set_enable(dev, chan: 4, S626_CLKENAB_ALWAYS);
1183 }
1184 }
1185}
1186
1187static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1188{
1189 struct s626_private *devpriv = dev->private;
1190 struct comedi_subdevice *s = dev->read_subdev;
1191 struct comedi_async *async = s->async;
1192 struct comedi_cmd *cmd = &async->cmd;
1193 /*
1194 * Init ptr to DMA buffer that holds new ADC data. We skip the
1195 * first uint16_t in the buffer because it contains junk data
1196 * from the final ADC of the previous poll list scan.
1197 */
1198 u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
1199 int i;
1200
1201 /* get the data and hand it over to comedi */
1202 for (i = 0; i < cmd->chanlist_len; i++) {
1203 unsigned short tempdata;
1204
1205 /*
1206 * Convert ADC data to 16-bit integer values and copy
1207 * to application buffer.
1208 */
1209 tempdata = s626_ai_reg_to_uint(data: *readaddr);
1210 readaddr++;
1211
1212 comedi_buf_write_samples(s, data: &tempdata, nsamples: 1);
1213 }
1214
1215 if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1216 async->events |= COMEDI_CB_EOA;
1217
1218 if (async->events & COMEDI_CB_CANCEL_MASK)
1219 devpriv->ai_cmd_running = 0;
1220
1221 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1222 s626_dio_set_irq(dev, chan: cmd->scan_begin_arg);
1223
1224 comedi_handle_events(dev, s);
1225
1226 return !devpriv->ai_cmd_running;
1227}
1228
1229static irqreturn_t s626_irq_handler(int irq, void *d)
1230{
1231 struct comedi_device *dev = d;
1232 unsigned long flags;
1233 u32 irqtype, irqstatus;
1234
1235 if (!dev->attached)
1236 return IRQ_NONE;
1237 /* lock to avoid race with comedi_poll */
1238 spin_lock_irqsave(&dev->spinlock, flags);
1239
1240 /* save interrupt enable register state */
1241 irqstatus = readl(addr: dev->mmio + S626_P_IER);
1242
1243 /* read interrupt type */
1244 irqtype = readl(addr: dev->mmio + S626_P_ISR);
1245
1246 /* disable master interrupt */
1247 writel(val: 0, addr: dev->mmio + S626_P_IER);
1248
1249 /* clear interrupt */
1250 writel(val: irqtype, addr: dev->mmio + S626_P_ISR);
1251
1252 switch (irqtype) {
1253 case S626_IRQ_RPS1: /* end_of_scan occurs */
1254 if (s626_handle_eos_interrupt(dev))
1255 irqstatus = 0;
1256 break;
1257 case S626_IRQ_GPIO3: /* check dio and counter interrupt */
1258 /* s626_dio_clear_irq(dev); */
1259 s626_check_dio_interrupts(dev);
1260 s626_check_counter_interrupts(dev);
1261 break;
1262 }
1263
1264 /* enable interrupt */
1265 writel(val: irqstatus, addr: dev->mmio + S626_P_IER);
1266
1267 spin_unlock_irqrestore(lock: &dev->spinlock, flags);
1268 return IRQ_HANDLED;
1269}
1270
1271/*
1272 * This function builds the RPS program for hardware driven acquisition.
1273 */
1274static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
1275{
1276 struct s626_private *devpriv = dev->private;
1277 struct comedi_subdevice *s = dev->read_subdev;
1278 struct comedi_cmd *cmd = &s->async->cmd;
1279 u32 *rps;
1280 u32 jmp_adrs;
1281 u16 i;
1282 u16 n;
1283 u32 local_ppl;
1284
1285 /* Stop RPS program in case it is currently running */
1286 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1287
1288 /* Set starting logical address to write RPS commands. */
1289 rps = (u32 *)devpriv->rps_buf.logical_base;
1290
1291 /* Initialize RPS instruction pointer */
1292 writel(val: (u32)devpriv->rps_buf.physical_base,
1293 addr: dev->mmio + S626_P_RPSADDR1);
1294
1295 /* Construct RPS program in rps_buf DMA buffer */
1296 if (cmd->scan_begin_src != TRIG_FOLLOW) {
1297 /* Wait for Start trigger. */
1298 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1299 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1300 }
1301
1302 /*
1303 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1304 * because the first RPS DEBI Write following a non-RPS DEBI write
1305 * seems to always fail. If we don't do this dummy write, the ADC
1306 * gain might not be set to the value required for the first slot in
1307 * the poll list; the ADC gain would instead remain unchanged from
1308 * the previously programmed value.
1309 */
1310 /* Write DEBI Write command and address to shadow RAM. */
1311 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1312 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1313 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1314 /* Write DEBI immediate data to shadow RAM: */
1315 *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
1316 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1317 /* Reset "shadow RAM uploaded" flag. */
1318 /* Invoke shadow RAM upload. */
1319 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1320 /* Wait for shadow upload to finish. */
1321 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1322
1323 /*
1324 * Digitize all slots in the poll list. This is implemented as a
1325 * for loop to limit the slot count to 16 in case the application
1326 * forgot to set the S626_EOPL flag in the final slot.
1327 */
1328 for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1329 devpriv->adc_items++) {
1330 /*
1331 * Convert application's poll list item to private board class
1332 * format. Each app poll list item is an uint8_t with form
1333 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1334 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1335 */
1336 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1337 S626_GSEL_BIPOLAR10V);
1338
1339 /* Switch ADC analog gain. */
1340 /* Write DEBI command and address to shadow RAM. */
1341 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1342 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1343 /* Write DEBI immediate data to shadow RAM. */
1344 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1345 *rps++ = local_ppl;
1346 /* Reset "shadow RAM uploaded" flag. */
1347 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1348 /* Invoke shadow RAM upload. */
1349 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1350 /* Wait for shadow upload to finish. */
1351 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1352 /* Select ADC analog input channel. */
1353 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1354 /* Write DEBI command and address to shadow RAM. */
1355 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1356 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1357 /* Write DEBI immediate data to shadow RAM. */
1358 *rps++ = local_ppl;
1359 /* Reset "shadow RAM uploaded" flag. */
1360 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1361 /* Invoke shadow RAM upload. */
1362 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1363 /* Wait for shadow upload to finish. */
1364 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1365
1366 /*
1367 * Delay at least 10 microseconds for analog input settling.
1368 * Instead of padding with NOPs, we use S626_RPS_JUMP
1369 * instructions here; this allows us to produce a longer delay
1370 * than is possible with NOPs because each S626_RPS_JUMP
1371 * flushes the RPS' instruction prefetch pipeline.
1372 */
1373 jmp_adrs =
1374 (u32)devpriv->rps_buf.physical_base +
1375 (u32)((unsigned long)rps -
1376 (unsigned long)devpriv->rps_buf.logical_base);
1377 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1378 jmp_adrs += 8; /* Repeat to implement time delay: */
1379 /* Jump to next RPS instruction. */
1380 *rps++ = S626_RPS_JUMP;
1381 *rps++ = jmp_adrs;
1382 }
1383
1384 if (cmd->convert_src != TRIG_NOW) {
1385 /* Wait for Start trigger. */
1386 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1387 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1388 }
1389 /* Start ADC by pulsing GPIO1. */
1390 /* Begin ADC Start pulse. */
1391 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1392 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1393 *rps++ = S626_RPS_NOP;
1394 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1395 /* End ADC Start pulse. */
1396 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1397 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1398 /*
1399 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1400 * busy) and for data from previous conversion to shift into FB
1401 * BUFFER 1 register.
1402 */
1403 /* Wait for ADC done. */
1404 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1405
1406 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1407 *rps++ = S626_RPS_STREG |
1408 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1409 *rps++ = (u32)devpriv->ana_buf.physical_base +
1410 (devpriv->adc_items << 2);
1411
1412 /*
1413 * If this slot's EndOfPollList flag is set, all channels have
1414 * now been processed.
1415 */
1416 if (*ppl++ & S626_EOPL) {
1417 devpriv->adc_items++; /* Adjust poll list item count. */
1418 break; /* Exit poll list processing loop. */
1419 }
1420 }
1421
1422 /*
1423 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1424 * ADC to stabilize for 2 microseconds before starting the final
1425 * (dummy) conversion. This delay is necessary to allow sufficient
1426 * time between last conversion finished and the start of the dummy
1427 * conversion. Without this delay, the last conversion's data value
1428 * is sometimes set to the previous conversion's data value.
1429 */
1430 for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1431 *rps++ = S626_RPS_NOP;
1432
1433 /*
1434 * Start a dummy conversion to cause the data from the last
1435 * conversion of interest to be shifted in.
1436 */
1437 /* Begin ADC Start pulse. */
1438 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1439 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1440 *rps++ = S626_RPS_NOP;
1441 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1442 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1443 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1444
1445 /*
1446 * Wait for the data from the last conversion of interest to arrive
1447 * in FB BUFFER 1 register.
1448 */
1449 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
1450
1451 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1452 *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1453 *rps++ = (u32)devpriv->ana_buf.physical_base +
1454 (devpriv->adc_items << 2);
1455
1456 /* Indicate ADC scan loop is finished. */
1457 /* Signal ReadADC() that scan is done. */
1458 /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1459
1460 /* invoke interrupt */
1461 if (devpriv->ai_cmd_running == 1)
1462 *rps++ = S626_RPS_IRQ;
1463
1464 /* Restart RPS program at its beginning. */
1465 *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
1466 *rps++ = (u32)devpriv->rps_buf.physical_base;
1467
1468 /* End of RPS program build */
1469}
1470
1471static int s626_ai_eoc(struct comedi_device *dev,
1472 struct comedi_subdevice *s,
1473 struct comedi_insn *insn,
1474 unsigned long context)
1475{
1476 unsigned int status;
1477
1478 status = readl(addr: dev->mmio + S626_P_PSR);
1479 if (status & S626_PSR_GPIO2)
1480 return 0;
1481 return -EBUSY;
1482}
1483
1484static int s626_ai_insn_read(struct comedi_device *dev,
1485 struct comedi_subdevice *s,
1486 struct comedi_insn *insn,
1487 unsigned int *data)
1488{
1489 u16 chan = CR_CHAN(insn->chanspec);
1490 u16 range = CR_RANGE(insn->chanspec);
1491 u16 adc_spec = 0;
1492 u32 gpio_image;
1493 u32 tmp;
1494 int ret;
1495 int n;
1496
1497 /*
1498 * Convert application's ADC specification into form
1499 * appropriate for register programming.
1500 */
1501 if (range == 0)
1502 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1503 else
1504 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1505
1506 /* Switch ADC analog gain. */
1507 s626_debi_write(dev, S626_LP_GSEL, wdata: adc_spec); /* Set gain. */
1508
1509 /* Select ADC analog input channel. */
1510 s626_debi_write(dev, S626_LP_ISEL, wdata: adc_spec); /* Select channel. */
1511
1512 for (n = 0; n < insn->n; n++) {
1513 /* Delay 10 microseconds for analog input settling. */
1514 usleep_range(min: 10, max: 20);
1515
1516 /* Start ADC by pulsing GPIO1 low */
1517 gpio_image = readl(addr: dev->mmio + S626_P_GPIO);
1518 /* Assert ADC Start command */
1519 writel(val: gpio_image & ~S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
1520 /* and stretch it out */
1521 writel(val: gpio_image & ~S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
1522 writel(val: gpio_image & ~S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
1523 /* Negate ADC Start command */
1524 writel(val: gpio_image | S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
1525
1526 /*
1527 * Wait for ADC to complete (GPIO2 is asserted high when
1528 * ADC not busy) and for data from previous conversion to
1529 * shift into FB BUFFER 1 register.
1530 */
1531
1532 /* Wait for ADC done */
1533 ret = comedi_timeout(dev, s, insn, cb: s626_ai_eoc, context: 0);
1534 if (ret)
1535 return ret;
1536
1537 /* Fetch ADC data */
1538 if (n != 0) {
1539 tmp = readl(addr: dev->mmio + S626_P_FB_BUFFER1);
1540 data[n - 1] = s626_ai_reg_to_uint(data: tmp);
1541 }
1542
1543 /*
1544 * Allow the ADC to stabilize for 4 microseconds before
1545 * starting the next (final) conversion. This delay is
1546 * necessary to allow sufficient time between last
1547 * conversion finished and the start of the next
1548 * conversion. Without this delay, the last conversion's
1549 * data value is sometimes set to the previous
1550 * conversion's data value.
1551 */
1552 udelay(4);
1553 }
1554
1555 /*
1556 * Start a dummy conversion to cause the data from the
1557 * previous conversion to be shifted in.
1558 */
1559 gpio_image = readl(addr: dev->mmio + S626_P_GPIO);
1560 /* Assert ADC Start command */
1561 writel(val: gpio_image & ~S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
1562 /* and stretch it out */
1563 writel(val: gpio_image & ~S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
1564 writel(val: gpio_image & ~S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
1565 /* Negate ADC Start command */
1566 writel(val: gpio_image | S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
1567
1568 /* Wait for the data to arrive in FB BUFFER 1 register. */
1569
1570 /* Wait for ADC done */
1571 ret = comedi_timeout(dev, s, insn, cb: s626_ai_eoc, context: 0);
1572 if (ret)
1573 return ret;
1574
1575 /* Fetch ADC data from audio interface's input shift register. */
1576
1577 /* Fetch ADC data */
1578 if (n != 0) {
1579 tmp = readl(addr: dev->mmio + S626_P_FB_BUFFER1);
1580 data[n - 1] = s626_ai_reg_to_uint(data: tmp);
1581 }
1582
1583 return n;
1584}
1585
1586static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
1587{
1588 int n;
1589
1590 for (n = 0; n < cmd->chanlist_len; n++) {
1591 if (CR_RANGE(cmd->chanlist[n]) == 0)
1592 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
1593 else
1594 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
1595 }
1596 if (n != 0)
1597 ppl[n - 1] |= S626_EOPL;
1598
1599 return n;
1600}
1601
1602static int s626_ai_inttrig(struct comedi_device *dev,
1603 struct comedi_subdevice *s,
1604 unsigned int trig_num)
1605{
1606 struct comedi_cmd *cmd = &s->async->cmd;
1607
1608 if (trig_num != cmd->start_arg)
1609 return -EINVAL;
1610
1611 /* Start executing the RPS program */
1612 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1613
1614 s->async->inttrig = NULL;
1615
1616 return 1;
1617}
1618
1619/*
1620 * This function doesn't require a particular form, this is just what
1621 * happens to be used in some of the drivers. It should convert ns
1622 * nanoseconds to a counter value suitable for programming the device.
1623 * Also, it should adjust ns so that it cooresponds to the actual time
1624 * that the device will use.
1625 */
1626static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
1627{
1628 int divider, base;
1629
1630 base = 500; /* 2MHz internal clock */
1631
1632 switch (flags & CMDF_ROUND_MASK) {
1633 case CMDF_ROUND_NEAREST:
1634 default:
1635 divider = DIV_ROUND_CLOSEST(*nanosec, base);
1636 break;
1637 case CMDF_ROUND_DOWN:
1638 divider = (*nanosec) / base;
1639 break;
1640 case CMDF_ROUND_UP:
1641 divider = DIV_ROUND_UP(*nanosec, base);
1642 break;
1643 }
1644
1645 *nanosec = base * divider;
1646 return divider - 1;
1647}
1648
1649static void s626_timer_load(struct comedi_device *dev,
1650 unsigned int chan, int tick)
1651{
1652 u16 setup =
1653 /* Preload upon index. */
1654 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
1655 /* Disable hardware index. */
1656 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
1657 /* Operating mode is Timer. */
1658 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
1659 /* Count direction is Down. */
1660 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
1661 /* Clock multiplier is 1x. */
1662 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1663 /* Enabled by index */
1664 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
1665 u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
1666 /* uint16_t enab = S626_CLKENAB_ALWAYS; */
1667
1668 s626_set_mode(dev, chan, setup, disable_int_src: false);
1669
1670 /* Set the preload register */
1671 s626_preload(dev, chan, value: tick);
1672
1673 /*
1674 * Software index pulse forces the preload register to load
1675 * into the counter
1676 */
1677 s626_set_load_trig(dev, chan, trig: 0);
1678 s626_pulse_index(dev, chan);
1679
1680 /* set reload on counter overflow */
1681 s626_set_load_trig(dev, chan, trig: 1);
1682
1683 /* set interrupt on overflow */
1684 s626_set_int_src(dev, chan, S626_INTSRC_OVER);
1685
1686 s626_set_latch_source(dev, chan, value: value_latchsrc);
1687 /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
1688}
1689
1690/* TO COMPLETE */
1691static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1692{
1693 struct s626_private *devpriv = dev->private;
1694 u8 ppl[16];
1695 struct comedi_cmd *cmd = &s->async->cmd;
1696 int tick;
1697
1698 if (devpriv->ai_cmd_running) {
1699 dev_err(dev->class_dev,
1700 "%s: Another ai_cmd is running\n", __func__);
1701 return -EBUSY;
1702 }
1703 /* disable interrupt */
1704 writel(val: 0, addr: dev->mmio + S626_P_IER);
1705
1706 /* clear interrupt request */
1707 writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, addr: dev->mmio + S626_P_ISR);
1708
1709 /* clear any pending interrupt */
1710 s626_dio_clear_irq(dev);
1711 /* s626_enc_clear_irq(dev); */
1712
1713 /* reset ai_cmd_running flag */
1714 devpriv->ai_cmd_running = 0;
1715
1716 s626_ai_load_polllist(ppl, cmd);
1717 devpriv->ai_cmd_running = 1;
1718 devpriv->ai_convert_count = 0;
1719
1720 switch (cmd->scan_begin_src) {
1721 case TRIG_FOLLOW:
1722 break;
1723 case TRIG_TIMER:
1724 /*
1725 * set a counter to generate adc trigger at scan_begin_arg
1726 * interval
1727 */
1728 tick = s626_ns_to_timer(nanosec: &cmd->scan_begin_arg, flags: cmd->flags);
1729
1730 /* load timer value and enable interrupt */
1731 s626_timer_load(dev, chan: 5, tick);
1732 s626_set_enable(dev, chan: 5, S626_CLKENAB_ALWAYS);
1733 break;
1734 case TRIG_EXT:
1735 /* set the digital line and interrupt for scan trigger */
1736 if (cmd->start_src != TRIG_EXT)
1737 s626_dio_set_irq(dev, chan: cmd->scan_begin_arg);
1738 break;
1739 }
1740
1741 switch (cmd->convert_src) {
1742 case TRIG_NOW:
1743 break;
1744 case TRIG_TIMER:
1745 /*
1746 * set a counter to generate adc trigger at convert_arg
1747 * interval
1748 */
1749 tick = s626_ns_to_timer(nanosec: &cmd->convert_arg, flags: cmd->flags);
1750
1751 /* load timer value and enable interrupt */
1752 s626_timer_load(dev, chan: 4, tick);
1753 s626_set_enable(dev, chan: 4, S626_CLKENAB_INDEX);
1754 break;
1755 case TRIG_EXT:
1756 /* set the digital line and interrupt for convert trigger */
1757 if (cmd->scan_begin_src != TRIG_EXT &&
1758 cmd->start_src == TRIG_EXT)
1759 s626_dio_set_irq(dev, chan: cmd->convert_arg);
1760 break;
1761 }
1762
1763 s626_reset_adc(dev, ppl);
1764
1765 switch (cmd->start_src) {
1766 case TRIG_NOW:
1767 /* Trigger ADC scan loop start */
1768 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
1769
1770 /* Start executing the RPS program */
1771 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1772 s->async->inttrig = NULL;
1773 break;
1774 case TRIG_EXT:
1775 /* configure DIO channel for acquisition trigger */
1776 s626_dio_set_irq(dev, chan: cmd->start_arg);
1777 s->async->inttrig = NULL;
1778 break;
1779 case TRIG_INT:
1780 s->async->inttrig = s626_ai_inttrig;
1781 break;
1782 }
1783
1784 /* enable interrupt */
1785 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, addr: dev->mmio + S626_P_IER);
1786
1787 return 0;
1788}
1789
1790static int s626_ai_cmdtest(struct comedi_device *dev,
1791 struct comedi_subdevice *s, struct comedi_cmd *cmd)
1792{
1793 int err = 0;
1794 unsigned int arg;
1795
1796 /* Step 1 : check if triggers are trivially valid */
1797
1798 err |= comedi_check_trigger_src(src: &cmd->start_src,
1799 TRIG_NOW | TRIG_INT | TRIG_EXT);
1800 err |= comedi_check_trigger_src(src: &cmd->scan_begin_src,
1801 TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1802 err |= comedi_check_trigger_src(src: &cmd->convert_src,
1803 TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1804 err |= comedi_check_trigger_src(src: &cmd->scan_end_src, TRIG_COUNT);
1805 err |= comedi_check_trigger_src(src: &cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1806
1807 if (err)
1808 return 1;
1809
1810 /* Step 2a : make sure trigger sources are unique */
1811
1812 err |= comedi_check_trigger_is_unique(src: cmd->start_src);
1813 err |= comedi_check_trigger_is_unique(src: cmd->scan_begin_src);
1814 err |= comedi_check_trigger_is_unique(src: cmd->convert_src);
1815 err |= comedi_check_trigger_is_unique(src: cmd->stop_src);
1816
1817 /* Step 2b : and mutually compatible */
1818
1819 if (err)
1820 return 2;
1821
1822 /* Step 3: check if arguments are trivially valid */
1823
1824 switch (cmd->start_src) {
1825 case TRIG_NOW:
1826 case TRIG_INT:
1827 err |= comedi_check_trigger_arg_is(arg: &cmd->start_arg, val: 0);
1828 break;
1829 case TRIG_EXT:
1830 err |= comedi_check_trigger_arg_max(arg: &cmd->start_arg, val: 39);
1831 break;
1832 }
1833
1834 if (cmd->scan_begin_src == TRIG_EXT)
1835 err |= comedi_check_trigger_arg_max(arg: &cmd->scan_begin_arg, val: 39);
1836 if (cmd->convert_src == TRIG_EXT)
1837 err |= comedi_check_trigger_arg_max(arg: &cmd->convert_arg, val: 39);
1838
1839#define S626_MAX_SPEED 200000 /* in nanoseconds */
1840#define S626_MIN_SPEED 2000000000 /* in nanoseconds */
1841
1842 if (cmd->scan_begin_src == TRIG_TIMER) {
1843 err |= comedi_check_trigger_arg_min(arg: &cmd->scan_begin_arg,
1844 S626_MAX_SPEED);
1845 err |= comedi_check_trigger_arg_max(arg: &cmd->scan_begin_arg,
1846 S626_MIN_SPEED);
1847 } else {
1848 /*
1849 * external trigger
1850 * should be level/edge, hi/lo specification here
1851 * should specify multiple external triggers
1852 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1853 */
1854 }
1855 if (cmd->convert_src == TRIG_TIMER) {
1856 err |= comedi_check_trigger_arg_min(arg: &cmd->convert_arg,
1857 S626_MAX_SPEED);
1858 err |= comedi_check_trigger_arg_max(arg: &cmd->convert_arg,
1859 S626_MIN_SPEED);
1860 } else {
1861 /*
1862 * external trigger - see above
1863 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1864 */
1865 }
1866
1867 err |= comedi_check_trigger_arg_is(arg: &cmd->scan_end_arg,
1868 val: cmd->chanlist_len);
1869
1870 if (cmd->stop_src == TRIG_COUNT)
1871 err |= comedi_check_trigger_arg_min(arg: &cmd->stop_arg, val: 1);
1872 else /* TRIG_NONE */
1873 err |= comedi_check_trigger_arg_is(arg: &cmd->stop_arg, val: 0);
1874
1875 if (err)
1876 return 3;
1877
1878 /* step 4: fix up any arguments */
1879
1880 if (cmd->scan_begin_src == TRIG_TIMER) {
1881 arg = cmd->scan_begin_arg;
1882 s626_ns_to_timer(nanosec: &arg, flags: cmd->flags);
1883 err |= comedi_check_trigger_arg_is(arg: &cmd->scan_begin_arg, val: arg);
1884 }
1885
1886 if (cmd->convert_src == TRIG_TIMER) {
1887 arg = cmd->convert_arg;
1888 s626_ns_to_timer(nanosec: &arg, flags: cmd->flags);
1889 err |= comedi_check_trigger_arg_is(arg: &cmd->convert_arg, val: arg);
1890
1891 if (cmd->scan_begin_src == TRIG_TIMER) {
1892 arg = cmd->convert_arg * cmd->scan_end_arg;
1893 err |= comedi_check_trigger_arg_min(
1894 arg: &cmd->scan_begin_arg, val: arg);
1895 }
1896 }
1897
1898 if (err)
1899 return 4;
1900
1901 return 0;
1902}
1903
1904static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1905{
1906 struct s626_private *devpriv = dev->private;
1907
1908 /* Stop RPS program in case it is currently running */
1909 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1910
1911 /* disable master interrupt */
1912 writel(val: 0, addr: dev->mmio + S626_P_IER);
1913
1914 devpriv->ai_cmd_running = 0;
1915
1916 return 0;
1917}
1918
1919static int s626_ao_insn_write(struct comedi_device *dev,
1920 struct comedi_subdevice *s,
1921 struct comedi_insn *insn,
1922 unsigned int *data)
1923{
1924 unsigned int chan = CR_CHAN(insn->chanspec);
1925 int i;
1926
1927 for (i = 0; i < insn->n; i++) {
1928 s16 dacdata = (s16)data[i];
1929 int ret;
1930
1931 dacdata -= (0x1fff);
1932
1933 ret = s626_set_dac(dev, chan, dacdata);
1934 if (ret)
1935 return ret;
1936
1937 s->readback[chan] = data[i];
1938 }
1939
1940 return insn->n;
1941}
1942
1943/* *************** DIGITAL I/O FUNCTIONS *************** */
1944
1945/*
1946 * All DIO functions address a group of DIO channels by means of
1947 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
1948 * ports A, B and C, respectively.
1949 */
1950
1951static void s626_dio_init(struct comedi_device *dev)
1952{
1953 u16 group;
1954
1955 /* Prepare to treat writes to WRCapSel as capture disables. */
1956 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1957
1958 /* For each group of sixteen channels ... */
1959 for (group = 0; group < S626_DIO_BANKS; group++) {
1960 /* Disable all interrupts */
1961 s626_debi_write(dev, S626_LP_WRINTSEL(group), wdata: 0);
1962 /* Disable all event captures */
1963 s626_debi_write(dev, S626_LP_WRCAPSEL(group), wdata: 0xffff);
1964 /* Init all DIOs to default edge polarity */
1965 s626_debi_write(dev, S626_LP_WREDGSEL(group), wdata: 0);
1966 /* Program all outputs to inactive state */
1967 s626_debi_write(dev, S626_LP_WRDOUT(group), wdata: 0);
1968 }
1969}
1970
1971static int s626_dio_insn_bits(struct comedi_device *dev,
1972 struct comedi_subdevice *s,
1973 struct comedi_insn *insn,
1974 unsigned int *data)
1975{
1976 unsigned long group = (unsigned long)s->private;
1977
1978 if (comedi_dio_update_state(s, data))
1979 s626_debi_write(dev, S626_LP_WRDOUT(group), wdata: s->state);
1980
1981 data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
1982
1983 return insn->n;
1984}
1985
1986static int s626_dio_insn_config(struct comedi_device *dev,
1987 struct comedi_subdevice *s,
1988 struct comedi_insn *insn,
1989 unsigned int *data)
1990{
1991 unsigned long group = (unsigned long)s->private;
1992 int ret;
1993
1994 ret = comedi_dio_insn_config(dev, s, insn, data, mask: 0);
1995 if (ret)
1996 return ret;
1997
1998 s626_debi_write(dev, S626_LP_WRDOUT(group), wdata: s->io_bits);
1999
2000 return insn->n;
2001}
2002
2003/*
2004 * Now this function initializes the value of the counter (data[0])
2005 * and set the subdevice. To complete with trigger and interrupt
2006 * configuration.
2007 *
2008 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2009 * what is being configured, but this function appears to be using data[0]
2010 * as a variable.
2011 */
2012static int s626_enc_insn_config(struct comedi_device *dev,
2013 struct comedi_subdevice *s,
2014 struct comedi_insn *insn, unsigned int *data)
2015{
2016 unsigned int chan = CR_CHAN(insn->chanspec);
2017 u16 setup =
2018 /* Preload upon index. */
2019 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2020 /* Disable hardware index. */
2021 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2022 /* Operating mode is Counter. */
2023 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2024 /* Active high clock. */
2025 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2026 /* Clock multiplier is 1x. */
2027 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2028 /* Enabled by index */
2029 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2030 /* uint16_t disable_int_src = true; */
2031 /* uint32_t Preloadvalue; //Counter initial value */
2032 u16 value_latchsrc = S626_LATCHSRC_AB_READ;
2033 u16 enab = S626_CLKENAB_ALWAYS;
2034
2035 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2036
2037 s626_set_mode(dev, chan, setup, disable_int_src: true);
2038 s626_preload(dev, chan, value: data[0]);
2039 s626_pulse_index(dev, chan);
2040 s626_set_latch_source(dev, chan, value: value_latchsrc);
2041 s626_set_enable(dev, chan, enab: (enab != 0));
2042
2043 return insn->n;
2044}
2045
2046static int s626_enc_insn_read(struct comedi_device *dev,
2047 struct comedi_subdevice *s,
2048 struct comedi_insn *insn,
2049 unsigned int *data)
2050{
2051 unsigned int chan = CR_CHAN(insn->chanspec);
2052 u16 cntr_latch_reg = S626_LP_CNTR(chan);
2053 int i;
2054
2055 for (i = 0; i < insn->n; i++) {
2056 unsigned int val;
2057
2058 /*
2059 * Read the counter's output latch LSW/MSW.
2060 * Latches on LSW read.
2061 */
2062 val = s626_debi_read(dev, addr: cntr_latch_reg);
2063 val |= (s626_debi_read(dev, addr: cntr_latch_reg + 2) << 16);
2064 data[i] = val;
2065 }
2066
2067 return insn->n;
2068}
2069
2070static int s626_enc_insn_write(struct comedi_device *dev,
2071 struct comedi_subdevice *s,
2072 struct comedi_insn *insn, unsigned int *data)
2073{
2074 unsigned int chan = CR_CHAN(insn->chanspec);
2075
2076 /* Set the preload register */
2077 s626_preload(dev, chan, value: data[0]);
2078
2079 /*
2080 * Software index pulse forces the preload register to load
2081 * into the counter
2082 */
2083 s626_set_load_trig(dev, chan, trig: 0);
2084 s626_pulse_index(dev, chan);
2085 s626_set_load_trig(dev, chan, trig: 2);
2086
2087 return 1;
2088}
2089
2090static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
2091{
2092 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2093 s626_debi_write(dev, S626_LP_WRMISC2, wdata: new_image);
2094 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2095}
2096
2097static void s626_counters_init(struct comedi_device *dev)
2098{
2099 int chan;
2100 u16 setup =
2101 /* Preload upon index. */
2102 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2103 /* Disable hardware index. */
2104 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2105 /* Operating mode is counter. */
2106 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2107 /* Active high clock. */
2108 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2109 /* Clock multiplier is 1x. */
2110 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2111 /* Enabled by index */
2112 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2113
2114 /*
2115 * Disable all counter interrupts and clear any captured counter events.
2116 */
2117 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2118 s626_set_mode(dev, chan, setup, disable_int_src: true);
2119 s626_set_int_src(dev, chan, int_source: 0);
2120 s626_reset_cap_flags(dev, chan);
2121 s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
2122 }
2123}
2124
2125static int s626_allocate_dma_buffers(struct comedi_device *dev)
2126{
2127 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2128 struct s626_private *devpriv = dev->private;
2129 void *addr;
2130 dma_addr_t appdma;
2131
2132 addr = dma_alloc_coherent(dev: &pcidev->dev, S626_DMABUF_SIZE, dma_handle: &appdma,
2133 GFP_KERNEL);
2134 if (!addr)
2135 return -ENOMEM;
2136 devpriv->ana_buf.logical_base = addr;
2137 devpriv->ana_buf.physical_base = appdma;
2138
2139 addr = dma_alloc_coherent(dev: &pcidev->dev, S626_DMABUF_SIZE, dma_handle: &appdma,
2140 GFP_KERNEL);
2141 if (!addr)
2142 return -ENOMEM;
2143 devpriv->rps_buf.logical_base = addr;
2144 devpriv->rps_buf.physical_base = appdma;
2145
2146 return 0;
2147}
2148
2149static void s626_free_dma_buffers(struct comedi_device *dev)
2150{
2151 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2152 struct s626_private *devpriv = dev->private;
2153
2154 if (!devpriv)
2155 return;
2156
2157 if (devpriv->rps_buf.logical_base)
2158 dma_free_coherent(dev: &pcidev->dev, S626_DMABUF_SIZE,
2159 cpu_addr: devpriv->rps_buf.logical_base,
2160 dma_handle: devpriv->rps_buf.physical_base);
2161 if (devpriv->ana_buf.logical_base)
2162 dma_free_coherent(dev: &pcidev->dev, S626_DMABUF_SIZE,
2163 cpu_addr: devpriv->ana_buf.logical_base,
2164 dma_handle: devpriv->ana_buf.physical_base);
2165}
2166
2167static int s626_initialize(struct comedi_device *dev)
2168{
2169 struct s626_private *devpriv = dev->private;
2170 dma_addr_t phys_buf;
2171 u16 chan;
2172 int i;
2173 int ret;
2174
2175 /* Enable DEBI and audio pins, enable I2C interface */
2176 s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2177 S626_P_MC1);
2178
2179 /*
2180 * Configure DEBI operating mode
2181 *
2182 * Local bus is 16 bits wide
2183 * Declare DEBI transfer timeout interval
2184 * Set up byte lane steering
2185 * Intel-compatible local bus (DEBI never times out)
2186 */
2187 writel(S626_DEBI_CFG_SLAVE16 |
2188 (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2189 S626_DEBI_CFG_INTEL, addr: dev->mmio + S626_P_DEBICFG);
2190
2191 /* Disable MMU paging */
2192 writel(S626_DEBI_PAGE_DISABLE, addr: dev->mmio + S626_P_DEBIPAGE);
2193
2194 /* Init GPIO so that ADC Start* is negated */
2195 writel(S626_GPIO_BASE | S626_GPIO1_HI, addr: dev->mmio + S626_P_GPIO);
2196
2197 /* I2C device address for onboard eeprom (revb) */
2198 devpriv->i2c_adrs = 0xA0;
2199
2200 /*
2201 * Issue an I2C ABORT command to halt any I2C
2202 * operation in progress and reset BUSY flag.
2203 */
2204 writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2205 addr: dev->mmio + S626_P_I2CSTAT);
2206 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2207 ret = comedi_timeout(dev, NULL, NULL, cb: s626_i2c_handshake_eoc, context: 0);
2208 if (ret)
2209 return ret;
2210
2211 /*
2212 * Per SAA7146 data sheet, write to STATUS
2213 * reg twice to reset all I2C error flags.
2214 */
2215 for (i = 0; i < 2; i++) {
2216 writel(S626_I2C_CLKSEL, addr: dev->mmio + S626_P_I2CSTAT);
2217 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2218 ret = comedi_timeout(dev, NULL,
2219 NULL, cb: s626_i2c_handshake_eoc, context: 0);
2220 if (ret)
2221 return ret;
2222 }
2223
2224 /*
2225 * Init audio interface functional attributes: set DAC/ADC
2226 * serial clock rates, invert DAC serial clock so that
2227 * DAC data setup times are satisfied, enable DAC serial
2228 * clock out.
2229 */
2230 writel(S626_ACON2_INIT, addr: dev->mmio + S626_P_ACON2);
2231
2232 /*
2233 * Set up TSL1 slot list, which is used to control the
2234 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2235 * S626_SIB_A1 = store data uint8_t at next available location
2236 * in FB BUFFER1 register.
2237 */
2238 writel(S626_RSD1 | S626_SIB_A1, addr: dev->mmio + S626_P_TSL1);
2239 writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2240 addr: dev->mmio + S626_P_TSL1 + 4);
2241
2242 /* Enable TSL1 slot list so that it executes all the time */
2243 writel(S626_ACON1_ADCSTART, addr: dev->mmio + S626_P_ACON1);
2244
2245 /*
2246 * Initialize RPS registers used for ADC
2247 */
2248
2249 /* Physical start of RPS program */
2250 writel(val: (u32)devpriv->rps_buf.physical_base,
2251 addr: dev->mmio + S626_P_RPSADDR1);
2252 /* RPS program performs no explicit mem writes */
2253 writel(val: 0, addr: dev->mmio + S626_P_RPSPAGE1);
2254 /* Disable RPS timeouts */
2255 writel(val: 0, addr: dev->mmio + S626_P_RPS1_TOUT);
2256
2257#if 0
2258 /*
2259 * SAA7146 BUG WORKAROUND
2260 *
2261 * Initialize SAA7146 ADC interface to a known state by
2262 * invoking ADCs until FB BUFFER 1 register shows that it
2263 * is correctly receiving ADC data. This is necessary
2264 * because the SAA7146 ADC interface does not start up in
2265 * a defined state after a PCI reset.
2266 */
2267 {
2268 struct comedi_subdevice *s = dev->read_subdev;
2269 u8 poll_list;
2270 u16 adc_data;
2271 u16 start_val;
2272 u16 index;
2273 unsigned int data[16];
2274
2275 /* Create a simple polling list for analog input channel 0 */
2276 poll_list = S626_EOPL;
2277 s626_reset_adc(dev, &poll_list);
2278
2279 /* Get initial ADC value */
2280 s626_ai_rinsn(dev, s, NULL, data);
2281 start_val = data[0];
2282
2283 /*
2284 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2285 * EXECUTION.
2286 *
2287 * Invoke ADCs until the new ADC value differs from the initial
2288 * value or a timeout occurs. The timeout protects against the
2289 * possibility that the driver is restarting and the ADC data is
2290 * a fixed value resulting from the applied ADC analog input
2291 * being unusually quiet or at the rail.
2292 */
2293 for (index = 0; index < 500; index++) {
2294 s626_ai_rinsn(dev, s, NULL, data);
2295 adc_data = data[0];
2296 if (adc_data != start_val)
2297 break;
2298 }
2299 }
2300#endif /* SAA7146 BUG WORKAROUND */
2301
2302 /*
2303 * Initialize the DAC interface
2304 */
2305
2306 /*
2307 * Init Audio2's output DMAC attributes:
2308 * burst length = 1 DWORD
2309 * threshold = 1 DWORD.
2310 */
2311 writel(val: 0, addr: dev->mmio + S626_P_PCI_BT_A);
2312
2313 /*
2314 * Init Audio2's output DMA physical addresses. The protection
2315 * address is set to 1 DWORD past the base address so that a
2316 * single DWORD will be transferred each time a DMA transfer is
2317 * enabled.
2318 */
2319 phys_buf = devpriv->ana_buf.physical_base +
2320 (S626_DAC_WDMABUF_OS * sizeof(u32));
2321 writel(val: (u32)phys_buf, addr: dev->mmio + S626_P_BASEA2_OUT);
2322 writel(val: (u32)(phys_buf + sizeof(u32)),
2323 addr: dev->mmio + S626_P_PROTA2_OUT);
2324
2325 /*
2326 * Cache Audio2's output DMA buffer logical address. This is
2327 * where DAC data is buffered for A2 output DMA transfers.
2328 */
2329 devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
2330 S626_DAC_WDMABUF_OS;
2331
2332 /*
2333 * Audio2's output channels does not use paging. The
2334 * protection violation handling bit is set so that the
2335 * DMAC will automatically halt and its PCI address pointer
2336 * will be reset when the protection address is reached.
2337 */
2338 writel(val: 8, addr: dev->mmio + S626_P_PAGEA2_OUT);
2339
2340 /*
2341 * Initialize time slot list 2 (TSL2), which is used to control
2342 * the clock generation for and serialization of data to be sent
2343 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
2344 * execution; this permits other slots to be safely modified
2345 * without first turning off the TSL sequencer (which is
2346 * apparently impossible to do). Also, SD3 (which is driven by a
2347 * pull-up resistor) is shifted in and stored to the MSB of
2348 * FB_BUFFER2 to be used as evidence that the slot sequence has
2349 * not yet finished executing.
2350 */
2351
2352 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2353 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2354 addr: dev->mmio + S626_VECTPORT(0));
2355
2356 /*
2357 * Initialize slot 1, which is constant. Slot 1 causes a
2358 * DWORD to be transferred from audio channel 2's output FIFO
2359 * to the FIFO's output buffer so that it can be serialized
2360 * and sent to the DAC during subsequent slots. All remaining
2361 * slots are dynamically populated as required by the target
2362 * DAC device.
2363 */
2364
2365 /* Slot 1: Fetch DWORD from Audio2's output FIFO */
2366 writel(S626_LF_A2, addr: dev->mmio + S626_VECTPORT(1));
2367
2368 /* Start DAC's audio interface (TSL2) running */
2369 writel(S626_ACON1_DACSTART, addr: dev->mmio + S626_P_ACON1);
2370
2371 /*
2372 * Init Trim DACs to calibrated values. Do it twice because the
2373 * SAA7146 audio channel does not always reset properly and
2374 * sometimes causes the first few TrimDAC writes to malfunction.
2375 */
2376 s626_load_trim_dacs(dev);
2377 ret = s626_load_trim_dacs(dev);
2378 if (ret)
2379 return ret;
2380
2381 /*
2382 * Manually init all gate array hardware in case this is a soft
2383 * reset (we have no way of determining whether this is a warm
2384 * or cold start). This is necessary because the gate array will
2385 * reset only in response to a PCI hard reset; there is no soft
2386 * reset function.
2387 */
2388
2389 /*
2390 * Init all DAC outputs to 0V and init all DAC setpoint and
2391 * polarity images.
2392 */
2393 for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2394 ret = s626_set_dac(dev, chan, dacdata: 0);
2395 if (ret)
2396 return ret;
2397 }
2398
2399 /* Init counters */
2400 s626_counters_init(dev);
2401
2402 /*
2403 * Without modifying the state of the Battery Backup enab, disable
2404 * the watchdog timer, set DIO channels 0-5 to operate in the
2405 * standard DIO (vs. counter overflow) mode, disable the battery
2406 * charger, and reset the watchdog interval selector to zero.
2407 */
2408 s626_write_misc2(dev, new_image: (s626_debi_read(dev, S626_LP_RDMISC2) &
2409 S626_MISC2_BATT_ENABLE));
2410
2411 /* Initialize the digital I/O subsystem */
2412 s626_dio_init(dev);
2413
2414 return 0;
2415}
2416
2417static int s626_auto_attach(struct comedi_device *dev,
2418 unsigned long context_unused)
2419{
2420 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2421 struct s626_private *devpriv;
2422 struct comedi_subdevice *s;
2423 int ret;
2424
2425 devpriv = comedi_alloc_devpriv(dev, size: sizeof(*devpriv));
2426 if (!devpriv)
2427 return -ENOMEM;
2428
2429 ret = comedi_pci_enable(dev);
2430 if (ret)
2431 return ret;
2432
2433 dev->mmio = pci_ioremap_bar(pdev: pcidev, bar: 0);
2434 if (!dev->mmio)
2435 return -ENOMEM;
2436
2437 /* disable master interrupt */
2438 writel(val: 0, addr: dev->mmio + S626_P_IER);
2439
2440 /* soft reset */
2441 writel(S626_MC1_SOFT_RESET, addr: dev->mmio + S626_P_MC1);
2442
2443 /* DMA FIXME DMA// */
2444
2445 ret = s626_allocate_dma_buffers(dev);
2446 if (ret)
2447 return ret;
2448
2449 if (pcidev->irq) {
2450 ret = request_irq(irq: pcidev->irq, handler: s626_irq_handler, IRQF_SHARED,
2451 name: dev->board_name, dev);
2452
2453 if (ret == 0)
2454 dev->irq = pcidev->irq;
2455 }
2456
2457 ret = comedi_alloc_subdevices(dev, num_subdevices: 6);
2458 if (ret)
2459 return ret;
2460
2461 s = &dev->subdevices[0];
2462 /* analog input subdevice */
2463 s->type = COMEDI_SUBD_AI;
2464 s->subdev_flags = SDF_READABLE | SDF_DIFF;
2465 s->n_chan = S626_ADC_CHANNELS;
2466 s->maxdata = 0x3fff;
2467 s->range_table = &s626_range_table;
2468 s->len_chanlist = S626_ADC_CHANNELS;
2469 s->insn_read = s626_ai_insn_read;
2470 if (dev->irq) {
2471 dev->read_subdev = s;
2472 s->subdev_flags |= SDF_CMD_READ;
2473 s->do_cmd = s626_ai_cmd;
2474 s->do_cmdtest = s626_ai_cmdtest;
2475 s->cancel = s626_ai_cancel;
2476 }
2477
2478 s = &dev->subdevices[1];
2479 /* analog output subdevice */
2480 s->type = COMEDI_SUBD_AO;
2481 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2482 s->n_chan = S626_DAC_CHANNELS;
2483 s->maxdata = 0x3fff;
2484 s->range_table = &range_bipolar10;
2485 s->insn_write = s626_ao_insn_write;
2486
2487 ret = comedi_alloc_subdev_readback(s);
2488 if (ret)
2489 return ret;
2490
2491 s = &dev->subdevices[2];
2492 /* digital I/O subdevice */
2493 s->type = COMEDI_SUBD_DIO;
2494 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2495 s->n_chan = 16;
2496 s->maxdata = 1;
2497 s->io_bits = 0xffff;
2498 s->private = (void *)0; /* DIO group 0 */
2499 s->range_table = &range_digital;
2500 s->insn_config = s626_dio_insn_config;
2501 s->insn_bits = s626_dio_insn_bits;
2502
2503 s = &dev->subdevices[3];
2504 /* digital I/O subdevice */
2505 s->type = COMEDI_SUBD_DIO;
2506 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2507 s->n_chan = 16;
2508 s->maxdata = 1;
2509 s->io_bits = 0xffff;
2510 s->private = (void *)1; /* DIO group 1 */
2511 s->range_table = &range_digital;
2512 s->insn_config = s626_dio_insn_config;
2513 s->insn_bits = s626_dio_insn_bits;
2514
2515 s = &dev->subdevices[4];
2516 /* digital I/O subdevice */
2517 s->type = COMEDI_SUBD_DIO;
2518 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2519 s->n_chan = 16;
2520 s->maxdata = 1;
2521 s->io_bits = 0xffff;
2522 s->private = (void *)2; /* DIO group 2 */
2523 s->range_table = &range_digital;
2524 s->insn_config = s626_dio_insn_config;
2525 s->insn_bits = s626_dio_insn_bits;
2526
2527 s = &dev->subdevices[5];
2528 /* encoder (counter) subdevice */
2529 s->type = COMEDI_SUBD_COUNTER;
2530 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2531 s->n_chan = S626_ENCODER_CHANNELS;
2532 s->maxdata = 0xffffff;
2533 s->range_table = &range_unknown;
2534 s->insn_config = s626_enc_insn_config;
2535 s->insn_read = s626_enc_insn_read;
2536 s->insn_write = s626_enc_insn_write;
2537
2538 return s626_initialize(dev);
2539}
2540
2541static void s626_detach(struct comedi_device *dev)
2542{
2543 struct s626_private *devpriv = dev->private;
2544
2545 if (devpriv) {
2546 /* stop ai_command */
2547 devpriv->ai_cmd_running = 0;
2548
2549 if (dev->mmio) {
2550 /* interrupt mask */
2551 /* Disable master interrupt */
2552 writel(val: 0, addr: dev->mmio + S626_P_IER);
2553 /* Clear board's IRQ status flag */
2554 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2555 addr: dev->mmio + S626_P_ISR);
2556
2557 /* Disable the watchdog timer and battery charger. */
2558 s626_write_misc2(dev, new_image: 0);
2559
2560 /* Close all interfaces on 7146 device */
2561 writel(S626_MC1_SHUTDOWN, addr: dev->mmio + S626_P_MC1);
2562 writel(S626_ACON1_BASE, addr: dev->mmio + S626_P_ACON1);
2563 }
2564 }
2565 comedi_pci_detach(dev);
2566 s626_free_dma_buffers(dev);
2567}
2568
2569static struct comedi_driver s626_driver = {
2570 .driver_name = "s626",
2571 .module = THIS_MODULE,
2572 .auto_attach = s626_auto_attach,
2573 .detach = s626_detach,
2574};
2575
2576static int s626_pci_probe(struct pci_dev *dev,
2577 const struct pci_device_id *id)
2578{
2579 return comedi_pci_auto_config(pcidev: dev, driver: &s626_driver, context: id->driver_data);
2580}
2581
2582/*
2583 * For devices with vendor:device id == 0x1131:0x7146 you must specify
2584 * also subvendor:subdevice ids, because otherwise it will conflict with
2585 * Philips SAA7146 media/dvb based cards.
2586 */
2587static const struct pci_device_id s626_pci_table[] = {
2588 { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2589 0x6000, 0x0272) },
2590 { 0 }
2591};
2592MODULE_DEVICE_TABLE(pci, s626_pci_table);
2593
2594static struct pci_driver s626_pci_driver = {
2595 .name = "s626",
2596 .id_table = s626_pci_table,
2597 .probe = s626_pci_probe,
2598 .remove = comedi_pci_auto_unconfig,
2599};
2600module_comedi_pci_driver(s626_driver, s626_pci_driver);
2601
2602MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2603MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2604MODULE_LICENSE("GPL");
2605

source code of linux/drivers/comedi/drivers/s626.c