1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/acpi.h>
4#include <linux/bitmap.h>
5#include <linux/cleanup.h>
6#include <linux/compat.h>
7#include <linux/debugfs.h>
8#include <linux/device.h>
9#include <linux/err.h>
10#include <linux/errno.h>
11#include <linux/file.h>
12#include <linux/fs.h>
13#include <linux/idr.h>
14#include <linux/interrupt.h>
15#include <linux/irq.h>
16#include <linux/kernel.h>
17#include <linux/list.h>
18#include <linux/lockdep.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/pinctrl/consumer.h>
22#include <linux/seq_file.h>
23#include <linux/slab.h>
24#include <linux/spinlock.h>
25#include <linux/srcu.h>
26#include <linux/string.h>
27
28#include <linux/gpio.h>
29#include <linux/gpio/driver.h>
30#include <linux/gpio/machine.h>
31
32#include <uapi/linux/gpio.h>
33
34#include "gpiolib-acpi.h"
35#include "gpiolib-cdev.h"
36#include "gpiolib-of.h"
37#include "gpiolib-swnode.h"
38#include "gpiolib-sysfs.h"
39#include "gpiolib.h"
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/gpio.h>
43
44/* Implementation infrastructure for GPIO interfaces.
45 *
46 * The GPIO programming interface allows for inlining speed-critical
47 * get/set operations for common cases, so that access to SOC-integrated
48 * GPIOs can sometimes cost only an instruction or two per bit.
49 */
50
51/* Device and char device-related information */
52static DEFINE_IDA(gpio_ida);
53static dev_t gpio_devt;
54#define GPIO_DEV_MAX 256 /* 256 GPIO chip devices supported */
55
56static int gpio_bus_match(struct device *dev, struct device_driver *drv)
57{
58 struct fwnode_handle *fwnode = dev_fwnode(dev);
59
60 /*
61 * Only match if the fwnode doesn't already have a proper struct device
62 * created for it.
63 */
64 if (fwnode && fwnode->dev != dev)
65 return 0;
66 return 1;
67}
68
69static const struct bus_type gpio_bus_type = {
70 .name = "gpio",
71 .match = gpio_bus_match,
72};
73
74/*
75 * Number of GPIOs to use for the fast path in set array
76 */
77#define FASTPATH_NGPIO CONFIG_GPIOLIB_FASTPATH_LIMIT
78
79static DEFINE_MUTEX(gpio_lookup_lock);
80static LIST_HEAD(gpio_lookup_list);
81
82static LIST_HEAD(gpio_devices);
83/* Protects the GPIO device list against concurrent modifications. */
84static DEFINE_MUTEX(gpio_devices_lock);
85/* Ensures coherence during read-only accesses to the list of GPIO devices. */
86DEFINE_STATIC_SRCU(gpio_devices_srcu);
87
88static DEFINE_MUTEX(gpio_machine_hogs_mutex);
89static LIST_HEAD(gpio_machine_hogs);
90
91static void gpiochip_free_hogs(struct gpio_chip *gc);
92static int gpiochip_add_irqchip(struct gpio_chip *gc,
93 struct lock_class_key *lock_key,
94 struct lock_class_key *request_key);
95static void gpiochip_irqchip_remove(struct gpio_chip *gc);
96static int gpiochip_irqchip_init_hw(struct gpio_chip *gc);
97static int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc);
98static void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc);
99
100static bool gpiolib_initialized;
101
102const char *gpiod_get_label(struct gpio_desc *desc)
103{
104 unsigned long flags;
105
106 flags = READ_ONCE(desc->flags);
107 if (test_bit(FLAG_USED_AS_IRQ, &flags) &&
108 !test_bit(FLAG_REQUESTED, &flags))
109 return "interrupt";
110
111 return test_bit(FLAG_REQUESTED, &flags) ?
112 srcu_dereference(desc->label, &desc->srcu) : NULL;
113}
114
115static int desc_set_label(struct gpio_desc *desc, const char *label)
116{
117 const char *new = NULL, *old;
118
119 if (label) {
120 new = kstrdup_const(s: label, GFP_KERNEL);
121 if (!new)
122 return -ENOMEM;
123 }
124
125 old = rcu_replace_pointer(desc->label, new, 1);
126 synchronize_srcu(ssp: &desc->srcu);
127 kfree_const(x: old);
128
129 return 0;
130}
131
132/**
133 * gpio_to_desc - Convert a GPIO number to its descriptor
134 * @gpio: global GPIO number
135 *
136 * Returns:
137 * The GPIO descriptor associated with the given GPIO, or %NULL if no GPIO
138 * with the given number exists in the system.
139 */
140struct gpio_desc *gpio_to_desc(unsigned gpio)
141{
142 struct gpio_device *gdev;
143
144 scoped_guard(srcu, &gpio_devices_srcu) {
145 list_for_each_entry_srcu(gdev, &gpio_devices, list,
146 srcu_read_lock_held(&gpio_devices_srcu)) {
147 if (gdev->base <= gpio &&
148 gdev->base + gdev->ngpio > gpio)
149 return &gdev->descs[gpio - gdev->base];
150 }
151 }
152
153 if (!gpio_is_valid(number: gpio))
154 pr_warn("invalid GPIO %d\n", gpio);
155
156 return NULL;
157}
158EXPORT_SYMBOL_GPL(gpio_to_desc);
159
160/* This function is deprecated and will be removed soon, don't use. */
161struct gpio_desc *gpiochip_get_desc(struct gpio_chip *gc,
162 unsigned int hwnum)
163{
164 return gpio_device_get_desc(gdev: gc->gpiodev, hwnum);
165}
166EXPORT_SYMBOL_GPL(gpiochip_get_desc);
167
168/**
169 * gpio_device_get_desc() - get the GPIO descriptor corresponding to the given
170 * hardware number for this GPIO device
171 * @gdev: GPIO device to get the descriptor from
172 * @hwnum: hardware number of the GPIO for this chip
173 *
174 * Returns:
175 * A pointer to the GPIO descriptor or %EINVAL if no GPIO exists in the given
176 * chip for the specified hardware number or %ENODEV if the underlying chip
177 * already vanished.
178 *
179 * The reference count of struct gpio_device is *NOT* increased like when the
180 * GPIO is being requested for exclusive usage. It's up to the caller to make
181 * sure the GPIO device will stay alive together with the descriptor returned
182 * by this function.
183 */
184struct gpio_desc *
185gpio_device_get_desc(struct gpio_device *gdev, unsigned int hwnum)
186{
187 if (hwnum >= gdev->ngpio)
188 return ERR_PTR(error: -EINVAL);
189
190 return &gdev->descs[hwnum];
191}
192EXPORT_SYMBOL_GPL(gpio_device_get_desc);
193
194/**
195 * desc_to_gpio - convert a GPIO descriptor to the integer namespace
196 * @desc: GPIO descriptor
197 *
198 * This should disappear in the future but is needed since we still
199 * use GPIO numbers for error messages and sysfs nodes.
200 *
201 * Returns:
202 * The global GPIO number for the GPIO specified by its descriptor.
203 */
204int desc_to_gpio(const struct gpio_desc *desc)
205{
206 return desc->gdev->base + (desc - &desc->gdev->descs[0]);
207}
208EXPORT_SYMBOL_GPL(desc_to_gpio);
209
210
211/**
212 * gpiod_to_chip - Return the GPIO chip to which a GPIO descriptor belongs
213 * @desc: descriptor to return the chip of
214 *
215 * *DEPRECATED*
216 * This function is unsafe and should not be used. Using the chip address
217 * without taking the SRCU read lock may result in dereferencing a dangling
218 * pointer.
219 */
220struct gpio_chip *gpiod_to_chip(const struct gpio_desc *desc)
221{
222 if (!desc)
223 return NULL;
224
225 return gpio_device_get_chip(gdev: desc->gdev);
226}
227EXPORT_SYMBOL_GPL(gpiod_to_chip);
228
229/**
230 * gpiod_to_gpio_device() - Return the GPIO device to which this descriptor
231 * belongs.
232 * @desc: Descriptor for which to return the GPIO device.
233 *
234 * This *DOES NOT* increase the reference count of the GPIO device as it's
235 * expected that the descriptor is requested and the users already holds a
236 * reference to the device.
237 *
238 * Returns:
239 * Address of the GPIO device owning this descriptor.
240 */
241struct gpio_device *gpiod_to_gpio_device(struct gpio_desc *desc)
242{
243 if (!desc)
244 return NULL;
245
246 return desc->gdev;
247}
248EXPORT_SYMBOL_GPL(gpiod_to_gpio_device);
249
250/**
251 * gpio_device_get_base() - Get the base GPIO number allocated by this device
252 * @gdev: GPIO device
253 *
254 * Returns:
255 * First GPIO number in the global GPIO numberspace for this device.
256 */
257int gpio_device_get_base(struct gpio_device *gdev)
258{
259 return gdev->base;
260}
261EXPORT_SYMBOL_GPL(gpio_device_get_base);
262
263/**
264 * gpio_device_get_label() - Get the label of this GPIO device
265 * @gdev: GPIO device
266 *
267 * Returns:
268 * Pointer to the string containing the GPIO device label. The string's
269 * lifetime is tied to that of the underlying GPIO device.
270 */
271const char *gpio_device_get_label(struct gpio_device *gdev)
272{
273 return gdev->label;
274}
275EXPORT_SYMBOL(gpio_device_get_label);
276
277/**
278 * gpio_device_get_chip() - Get the gpio_chip implementation of this GPIO device
279 * @gdev: GPIO device
280 *
281 * Returns:
282 * Address of the GPIO chip backing this device.
283 *
284 * *DEPRECATED*
285 * Until we can get rid of all non-driver users of struct gpio_chip, we must
286 * provide a way of retrieving the pointer to it from struct gpio_device. This
287 * is *NOT* safe as the GPIO API is considered to be hot-unpluggable and the
288 * chip can dissapear at any moment (unlike reference-counted struct
289 * gpio_device).
290 *
291 * Use at your own risk.
292 */
293struct gpio_chip *gpio_device_get_chip(struct gpio_device *gdev)
294{
295 return rcu_dereference_check(gdev->chip, 1);
296}
297EXPORT_SYMBOL_GPL(gpio_device_get_chip);
298
299/* dynamic allocation of GPIOs, e.g. on a hotplugged device */
300static int gpiochip_find_base_unlocked(int ngpio)
301{
302 struct gpio_device *gdev;
303 int base = GPIO_DYNAMIC_BASE;
304
305 list_for_each_entry_srcu(gdev, &gpio_devices, list,
306 lockdep_is_held(&gpio_devices_lock)) {
307 /* found a free space? */
308 if (gdev->base >= base + ngpio)
309 break;
310 /* nope, check the space right after the chip */
311 base = gdev->base + gdev->ngpio;
312 if (base < GPIO_DYNAMIC_BASE)
313 base = GPIO_DYNAMIC_BASE;
314 }
315
316 if (gpio_is_valid(number: base)) {
317 pr_debug("%s: found new base at %d\n", __func__, base);
318 return base;
319 } else {
320 pr_err("%s: cannot find free range\n", __func__);
321 return -ENOSPC;
322 }
323}
324
325/**
326 * gpiod_get_direction - return the current direction of a GPIO
327 * @desc: GPIO to get the direction of
328 *
329 * Returns 0 for output, 1 for input, or an error code in case of error.
330 *
331 * This function may sleep if gpiod_cansleep() is true.
332 */
333int gpiod_get_direction(struct gpio_desc *desc)
334{
335 unsigned long flags;
336 unsigned int offset;
337 int ret;
338
339 /*
340 * We cannot use VALIDATE_DESC() as we must not return 0 for a NULL
341 * descriptor like we usually do.
342 */
343 if (!desc || IS_ERR(ptr: desc))
344 return -EINVAL;
345
346 CLASS(gpio_chip_guard, guard)(desc);
347 if (!guard.gc)
348 return -ENODEV;
349
350 offset = gpio_chip_hwgpio(desc);
351 flags = READ_ONCE(desc->flags);
352
353 /*
354 * Open drain emulation using input mode may incorrectly report
355 * input here, fix that up.
356 */
357 if (test_bit(FLAG_OPEN_DRAIN, &flags) &&
358 test_bit(FLAG_IS_OUT, &flags))
359 return 0;
360
361 if (!guard.gc->get_direction)
362 return -ENOTSUPP;
363
364 ret = guard.gc->get_direction(guard.gc, offset);
365 if (ret < 0)
366 return ret;
367
368 /* GPIOF_DIR_IN or other positive, otherwise GPIOF_DIR_OUT */
369 if (ret > 0)
370 ret = 1;
371
372 assign_bit(FLAG_IS_OUT, addr: &flags, value: !ret);
373 WRITE_ONCE(desc->flags, flags);
374
375 return ret;
376}
377EXPORT_SYMBOL_GPL(gpiod_get_direction);
378
379/*
380 * Add a new chip to the global chips list, keeping the list of chips sorted
381 * by range(means [base, base + ngpio - 1]) order.
382 *
383 * Return -EBUSY if the new chip overlaps with some other chip's integer
384 * space.
385 */
386static int gpiodev_add_to_list_unlocked(struct gpio_device *gdev)
387{
388 struct gpio_device *prev, *next;
389
390 lockdep_assert_held(&gpio_devices_lock);
391
392 if (list_empty(head: &gpio_devices)) {
393 /* initial entry in list */
394 list_add_tail_rcu(new: &gdev->list, head: &gpio_devices);
395 return 0;
396 }
397
398 next = list_first_entry(&gpio_devices, struct gpio_device, list);
399 if (gdev->base + gdev->ngpio <= next->base) {
400 /* add before first entry */
401 list_add_rcu(new: &gdev->list, head: &gpio_devices);
402 return 0;
403 }
404
405 prev = list_last_entry(&gpio_devices, struct gpio_device, list);
406 if (prev->base + prev->ngpio <= gdev->base) {
407 /* add behind last entry */
408 list_add_tail_rcu(new: &gdev->list, head: &gpio_devices);
409 return 0;
410 }
411
412 list_for_each_entry_safe(prev, next, &gpio_devices, list) {
413 /* at the end of the list */
414 if (&next->list == &gpio_devices)
415 break;
416
417 /* add between prev and next */
418 if (prev->base + prev->ngpio <= gdev->base
419 && gdev->base + gdev->ngpio <= next->base) {
420 list_add_rcu(new: &gdev->list, head: &prev->list);
421 return 0;
422 }
423 }
424
425 synchronize_srcu(ssp: &gpio_devices_srcu);
426
427 return -EBUSY;
428}
429
430/*
431 * Convert a GPIO name to its descriptor
432 * Note that there is no guarantee that GPIO names are globally unique!
433 * Hence this function will return, if it exists, a reference to the first GPIO
434 * line found that matches the given name.
435 */
436static struct gpio_desc *gpio_name_to_desc(const char * const name)
437{
438 struct gpio_device *gdev;
439 struct gpio_desc *desc;
440 struct gpio_chip *gc;
441
442 if (!name)
443 return NULL;
444
445 guard(srcu)(l: &gpio_devices_srcu);
446
447 list_for_each_entry_srcu(gdev, &gpio_devices, list,
448 srcu_read_lock_held(&gpio_devices_srcu)) {
449 guard(srcu)(l: &gdev->srcu);
450
451 gc = srcu_dereference(gdev->chip, &gdev->srcu);
452 if (!gc)
453 continue;
454
455 for_each_gpio_desc(gc, desc) {
456 if (desc->name && !strcmp(desc->name, name))
457 return desc;
458 }
459 }
460
461 return NULL;
462}
463
464/*
465 * Take the names from gc->names and assign them to their GPIO descriptors.
466 * Warn if a name is already used for a GPIO line on a different GPIO chip.
467 *
468 * Note that:
469 * 1. Non-unique names are still accepted,
470 * 2. Name collisions within the same GPIO chip are not reported.
471 */
472static int gpiochip_set_desc_names(struct gpio_chip *gc)
473{
474 struct gpio_device *gdev = gc->gpiodev;
475 int i;
476
477 /* First check all names if they are unique */
478 for (i = 0; i != gc->ngpio; ++i) {
479 struct gpio_desc *gpio;
480
481 gpio = gpio_name_to_desc(name: gc->names[i]);
482 if (gpio)
483 dev_warn(&gdev->dev,
484 "Detected name collision for GPIO name '%s'\n",
485 gc->names[i]);
486 }
487
488 /* Then add all names to the GPIO descriptors */
489 for (i = 0; i != gc->ngpio; ++i)
490 gdev->descs[i].name = gc->names[i];
491
492 return 0;
493}
494
495/*
496 * gpiochip_set_names - Set GPIO line names using device properties
497 * @chip: GPIO chip whose lines should be named, if possible
498 *
499 * Looks for device property "gpio-line-names" and if it exists assigns
500 * GPIO line names for the chip. The memory allocated for the assigned
501 * names belong to the underlying firmware node and should not be released
502 * by the caller.
503 */
504static int gpiochip_set_names(struct gpio_chip *chip)
505{
506 struct gpio_device *gdev = chip->gpiodev;
507 struct device *dev = &gdev->dev;
508 const char **names;
509 int ret, i;
510 int count;
511
512 count = device_property_string_array_count(dev, propname: "gpio-line-names");
513 if (count < 0)
514 return 0;
515
516 /*
517 * When offset is set in the driver side we assume the driver internally
518 * is using more than one gpiochip per the same device. We have to stop
519 * setting friendly names if the specified ones with 'gpio-line-names'
520 * are less than the offset in the device itself. This means all the
521 * lines are not present for every single pin within all the internal
522 * gpiochips.
523 */
524 if (count <= chip->offset) {
525 dev_warn(dev, "gpio-line-names too short (length %d), cannot map names for the gpiochip at offset %u\n",
526 count, chip->offset);
527 return 0;
528 }
529
530 names = kcalloc(n: count, size: sizeof(*names), GFP_KERNEL);
531 if (!names)
532 return -ENOMEM;
533
534 ret = device_property_read_string_array(dev, propname: "gpio-line-names",
535 val: names, nval: count);
536 if (ret < 0) {
537 dev_warn(dev, "failed to read GPIO line names\n");
538 kfree(objp: names);
539 return ret;
540 }
541
542 /*
543 * When more that one gpiochip per device is used, 'count' can
544 * contain at most number gpiochips x chip->ngpio. We have to
545 * correctly distribute all defined lines taking into account
546 * chip->offset as starting point from where we will assign
547 * the names to pins from the 'names' array. Since property
548 * 'gpio-line-names' cannot contains gaps, we have to be sure
549 * we only assign those pins that really exists since chip->ngpio
550 * can be different of the chip->offset.
551 */
552 count = (count > chip->offset) ? count - chip->offset : count;
553 if (count > chip->ngpio)
554 count = chip->ngpio;
555
556 for (i = 0; i < count; i++) {
557 /*
558 * Allow overriding "fixed" names provided by the GPIO
559 * provider. The "fixed" names are more often than not
560 * generic and less informative than the names given in
561 * device properties.
562 */
563 if (names[chip->offset + i] && names[chip->offset + i][0])
564 gdev->descs[i].name = names[chip->offset + i];
565 }
566
567 kfree(objp: names);
568
569 return 0;
570}
571
572static unsigned long *gpiochip_allocate_mask(struct gpio_chip *gc)
573{
574 unsigned long *p;
575
576 p = bitmap_alloc(nbits: gc->ngpio, GFP_KERNEL);
577 if (!p)
578 return NULL;
579
580 /* Assume by default all GPIOs are valid */
581 bitmap_fill(dst: p, nbits: gc->ngpio);
582
583 return p;
584}
585
586static void gpiochip_free_mask(unsigned long **p)
587{
588 bitmap_free(bitmap: *p);
589 *p = NULL;
590}
591
592static unsigned int gpiochip_count_reserved_ranges(struct gpio_chip *gc)
593{
594 struct device *dev = &gc->gpiodev->dev;
595 int size;
596
597 /* Format is "start, count, ..." */
598 size = device_property_count_u32(dev, propname: "gpio-reserved-ranges");
599 if (size > 0 && size % 2 == 0)
600 return size;
601
602 return 0;
603}
604
605static int gpiochip_apply_reserved_ranges(struct gpio_chip *gc)
606{
607 struct device *dev = &gc->gpiodev->dev;
608 unsigned int size;
609 u32 *ranges;
610 int ret;
611
612 size = gpiochip_count_reserved_ranges(gc);
613 if (size == 0)
614 return 0;
615
616 ranges = kmalloc_array(n: size, size: sizeof(*ranges), GFP_KERNEL);
617 if (!ranges)
618 return -ENOMEM;
619
620 ret = device_property_read_u32_array(dev, propname: "gpio-reserved-ranges",
621 val: ranges, nval: size);
622 if (ret) {
623 kfree(objp: ranges);
624 return ret;
625 }
626
627 while (size) {
628 u32 count = ranges[--size];
629 u32 start = ranges[--size];
630
631 if (start >= gc->ngpio || start + count > gc->ngpio)
632 continue;
633
634 bitmap_clear(map: gc->valid_mask, start, nbits: count);
635 }
636
637 kfree(objp: ranges);
638 return 0;
639}
640
641static int gpiochip_init_valid_mask(struct gpio_chip *gc)
642{
643 int ret;
644
645 if (!(gpiochip_count_reserved_ranges(gc) || gc->init_valid_mask))
646 return 0;
647
648 gc->valid_mask = gpiochip_allocate_mask(gc);
649 if (!gc->valid_mask)
650 return -ENOMEM;
651
652 ret = gpiochip_apply_reserved_ranges(gc);
653 if (ret)
654 return ret;
655
656 if (gc->init_valid_mask)
657 return gc->init_valid_mask(gc,
658 gc->valid_mask,
659 gc->ngpio);
660
661 return 0;
662}
663
664static void gpiochip_free_valid_mask(struct gpio_chip *gc)
665{
666 gpiochip_free_mask(p: &gc->valid_mask);
667}
668
669static int gpiochip_add_pin_ranges(struct gpio_chip *gc)
670{
671 /*
672 * Device Tree platforms are supposed to use "gpio-ranges"
673 * property. This check ensures that the ->add_pin_ranges()
674 * won't be called for them.
675 */
676 if (device_property_present(dev: &gc->gpiodev->dev, propname: "gpio-ranges"))
677 return 0;
678
679 if (gc->add_pin_ranges)
680 return gc->add_pin_ranges(gc);
681
682 return 0;
683}
684
685bool gpiochip_line_is_valid(const struct gpio_chip *gc,
686 unsigned int offset)
687{
688 /* No mask means all valid */
689 if (likely(!gc->valid_mask))
690 return true;
691 return test_bit(offset, gc->valid_mask);
692}
693EXPORT_SYMBOL_GPL(gpiochip_line_is_valid);
694
695static void gpiodev_release(struct device *dev)
696{
697 struct gpio_device *gdev = to_gpio_device(dev);
698 unsigned int i;
699
700 for (i = 0; i < gdev->ngpio; i++)
701 cleanup_srcu_struct(ssp: &gdev->descs[i].srcu);
702
703 ida_free(&gpio_ida, id: gdev->id);
704 kfree_const(x: gdev->label);
705 kfree(objp: gdev->descs);
706 cleanup_srcu_struct(ssp: &gdev->srcu);
707 kfree(objp: gdev);
708}
709
710static const struct device_type gpio_dev_type = {
711 .name = "gpio_chip",
712 .release = gpiodev_release,
713};
714
715#ifdef CONFIG_GPIO_CDEV
716#define gcdev_register(gdev, devt) gpiolib_cdev_register((gdev), (devt))
717#define gcdev_unregister(gdev) gpiolib_cdev_unregister((gdev))
718#else
719/*
720 * gpiolib_cdev_register() indirectly calls device_add(), which is still
721 * required even when cdev is not selected.
722 */
723#define gcdev_register(gdev, devt) device_add(&(gdev)->dev)
724#define gcdev_unregister(gdev) device_del(&(gdev)->dev)
725#endif
726
727static int gpiochip_setup_dev(struct gpio_device *gdev)
728{
729 struct fwnode_handle *fwnode = dev_fwnode(&gdev->dev);
730 int ret;
731
732 device_initialize(dev: &gdev->dev);
733
734 /*
735 * If fwnode doesn't belong to another device, it's safe to clear its
736 * initialized flag.
737 */
738 if (fwnode && !fwnode->dev)
739 fwnode_dev_initialized(fwnode, initialized: false);
740
741 ret = gcdev_register(gdev, gpio_devt);
742 if (ret)
743 return ret;
744
745 ret = gpiochip_sysfs_register(gdev);
746 if (ret)
747 goto err_remove_device;
748
749 dev_dbg(&gdev->dev, "registered GPIOs %d to %d on %s\n", gdev->base,
750 gdev->base + gdev->ngpio - 1, gdev->label);
751
752 return 0;
753
754err_remove_device:
755 gcdev_unregister(gdev);
756 return ret;
757}
758
759static void gpiochip_machine_hog(struct gpio_chip *gc, struct gpiod_hog *hog)
760{
761 struct gpio_desc *desc;
762 int rv;
763
764 desc = gpiochip_get_desc(gc, hog->chip_hwnum);
765 if (IS_ERR(ptr: desc)) {
766 chip_err(gc, "%s: unable to get GPIO desc: %ld\n", __func__,
767 PTR_ERR(desc));
768 return;
769 }
770
771 rv = gpiod_hog(desc, name: hog->line_name, lflags: hog->lflags, dflags: hog->dflags);
772 if (rv)
773 gpiod_err(desc, "%s: unable to hog GPIO line (%s:%u): %d\n",
774 __func__, gc->label, hog->chip_hwnum, rv);
775}
776
777static void machine_gpiochip_add(struct gpio_chip *gc)
778{
779 struct gpiod_hog *hog;
780
781 mutex_lock(&gpio_machine_hogs_mutex);
782
783 list_for_each_entry(hog, &gpio_machine_hogs, list) {
784 if (!strcmp(gc->label, hog->chip_label))
785 gpiochip_machine_hog(gc, hog);
786 }
787
788 mutex_unlock(lock: &gpio_machine_hogs_mutex);
789}
790
791static void gpiochip_setup_devs(void)
792{
793 struct gpio_device *gdev;
794 int ret;
795
796 guard(srcu)(l: &gpio_devices_srcu);
797
798 list_for_each_entry_srcu(gdev, &gpio_devices, list,
799 srcu_read_lock_held(&gpio_devices_srcu)) {
800 ret = gpiochip_setup_dev(gdev);
801 if (ret)
802 dev_err(&gdev->dev,
803 "Failed to initialize gpio device (%d)\n", ret);
804 }
805}
806
807static void gpiochip_set_data(struct gpio_chip *gc, void *data)
808{
809 gc->gpiodev->data = data;
810}
811
812/**
813 * gpiochip_get_data() - get per-subdriver data for the chip
814 * @gc: GPIO chip
815 *
816 * Returns:
817 * The per-subdriver data for the chip.
818 */
819void *gpiochip_get_data(struct gpio_chip *gc)
820{
821 return gc->gpiodev->data;
822}
823EXPORT_SYMBOL_GPL(gpiochip_get_data);
824
825int gpiochip_get_ngpios(struct gpio_chip *gc, struct device *dev)
826{
827 u32 ngpios = gc->ngpio;
828 int ret;
829
830 if (ngpios == 0) {
831 ret = device_property_read_u32(dev, propname: "ngpios", val: &ngpios);
832 if (ret == -ENODATA)
833 /*
834 * -ENODATA means that there is no property found and
835 * we want to issue the error message to the user.
836 * Besides that, we want to return different error code
837 * to state that supplied value is not valid.
838 */
839 ngpios = 0;
840 else if (ret)
841 return ret;
842
843 gc->ngpio = ngpios;
844 }
845
846 if (gc->ngpio == 0) {
847 chip_err(gc, "tried to insert a GPIO chip with zero lines\n");
848 return -EINVAL;
849 }
850
851 if (gc->ngpio > FASTPATH_NGPIO)
852 chip_warn(gc, "line cnt %u is greater than fast path cnt %u\n",
853 gc->ngpio, FASTPATH_NGPIO);
854
855 return 0;
856}
857EXPORT_SYMBOL_GPL(gpiochip_get_ngpios);
858
859int gpiochip_add_data_with_key(struct gpio_chip *gc, void *data,
860 struct lock_class_key *lock_key,
861 struct lock_class_key *request_key)
862{
863 struct gpio_device *gdev;
864 unsigned int desc_index;
865 int base = 0;
866 int ret = 0;
867
868 /*
869 * First: allocate and populate the internal stat container, and
870 * set up the struct device.
871 */
872 gdev = kzalloc(size: sizeof(*gdev), GFP_KERNEL);
873 if (!gdev)
874 return -ENOMEM;
875
876 gdev->dev.type = &gpio_dev_type;
877 gdev->dev.bus = &gpio_bus_type;
878 gdev->dev.parent = gc->parent;
879 rcu_assign_pointer(gdev->chip, gc);
880
881 gc->gpiodev = gdev;
882 gpiochip_set_data(gc, data);
883
884 /*
885 * If the calling driver did not initialize firmware node,
886 * do it here using the parent device, if any.
887 */
888 if (gc->fwnode)
889 device_set_node(dev: &gdev->dev, fwnode: gc->fwnode);
890 else if (gc->parent)
891 device_set_node(dev: &gdev->dev, dev_fwnode(gc->parent));
892
893 gdev->id = ida_alloc(ida: &gpio_ida, GFP_KERNEL);
894 if (gdev->id < 0) {
895 ret = gdev->id;
896 goto err_free_gdev;
897 }
898
899 ret = dev_set_name(dev: &gdev->dev, GPIOCHIP_NAME "%d", gdev->id);
900 if (ret)
901 goto err_free_ida;
902
903 if (gc->parent && gc->parent->driver)
904 gdev->owner = gc->parent->driver->owner;
905 else if (gc->owner)
906 /* TODO: remove chip->owner */
907 gdev->owner = gc->owner;
908 else
909 gdev->owner = THIS_MODULE;
910
911 ret = gpiochip_get_ngpios(gc, &gdev->dev);
912 if (ret)
913 goto err_free_dev_name;
914
915 gdev->descs = kcalloc(n: gc->ngpio, size: sizeof(*gdev->descs), GFP_KERNEL);
916 if (!gdev->descs) {
917 ret = -ENOMEM;
918 goto err_free_dev_name;
919 }
920
921 gdev->label = kstrdup_const(s: gc->label ?: "unknown", GFP_KERNEL);
922 if (!gdev->label) {
923 ret = -ENOMEM;
924 goto err_free_descs;
925 }
926
927 gdev->ngpio = gc->ngpio;
928 gdev->can_sleep = gc->can_sleep;
929
930 scoped_guard(mutex, &gpio_devices_lock) {
931 /*
932 * TODO: this allocates a Linux GPIO number base in the global
933 * GPIO numberspace for this chip. In the long run we want to
934 * get *rid* of this numberspace and use only descriptors, but
935 * it may be a pipe dream. It will not happen before we get rid
936 * of the sysfs interface anyways.
937 */
938 base = gc->base;
939 if (base < 0) {
940 base = gpiochip_find_base_unlocked(ngpio: gc->ngpio);
941 if (base < 0) {
942 ret = base;
943 base = 0;
944 goto err_free_label;
945 }
946
947 /*
948 * TODO: it should not be necessary to reflect the
949 * assigned base outside of the GPIO subsystem. Go over
950 * drivers and see if anyone makes use of this, else
951 * drop this and assign a poison instead.
952 */
953 gc->base = base;
954 } else {
955 dev_warn(&gdev->dev,
956 "Static allocation of GPIO base is deprecated, use dynamic allocation.\n");
957 }
958
959 gdev->base = base;
960
961 ret = gpiodev_add_to_list_unlocked(gdev);
962 if (ret) {
963 chip_err(gc, "GPIO integer space overlap, cannot add chip\n");
964 goto err_free_label;
965 }
966 }
967
968 for (desc_index = 0; desc_index < gc->ngpio; desc_index++)
969 gdev->descs[desc_index].gdev = gdev;
970
971 BLOCKING_INIT_NOTIFIER_HEAD(&gdev->line_state_notifier);
972 BLOCKING_INIT_NOTIFIER_HEAD(&gdev->device_notifier);
973
974 ret = init_srcu_struct(&gdev->srcu);
975 if (ret)
976 goto err_remove_from_list;
977
978#ifdef CONFIG_PINCTRL
979 INIT_LIST_HEAD(list: &gdev->pin_ranges);
980#endif
981
982 if (gc->names) {
983 ret = gpiochip_set_desc_names(gc);
984 if (ret)
985 goto err_cleanup_gdev_srcu;
986 }
987 ret = gpiochip_set_names(chip: gc);
988 if (ret)
989 goto err_cleanup_gdev_srcu;
990
991 ret = gpiochip_init_valid_mask(gc);
992 if (ret)
993 goto err_cleanup_gdev_srcu;
994
995 for (desc_index = 0; desc_index < gc->ngpio; desc_index++) {
996 struct gpio_desc *desc = &gdev->descs[desc_index];
997
998 ret = init_srcu_struct(&desc->srcu);
999 if (ret)
1000 goto err_cleanup_desc_srcu;
1001
1002 if (gc->get_direction && gpiochip_line_is_valid(gc, desc_index)) {
1003 assign_bit(FLAG_IS_OUT,
1004 addr: &desc->flags, value: !gc->get_direction(gc, desc_index));
1005 } else {
1006 assign_bit(FLAG_IS_OUT,
1007 addr: &desc->flags, value: !gc->direction_input);
1008 }
1009 }
1010
1011 ret = of_gpiochip_add(gc);
1012 if (ret)
1013 goto err_cleanup_desc_srcu;
1014
1015 ret = gpiochip_add_pin_ranges(gc);
1016 if (ret)
1017 goto err_remove_of_chip;
1018
1019 acpi_gpiochip_add(chip: gc);
1020
1021 machine_gpiochip_add(gc);
1022
1023 ret = gpiochip_irqchip_init_valid_mask(gc);
1024 if (ret)
1025 goto err_free_hogs;
1026
1027 ret = gpiochip_irqchip_init_hw(gc);
1028 if (ret)
1029 goto err_remove_irqchip_mask;
1030
1031 ret = gpiochip_add_irqchip(gc, lock_key, request_key);
1032 if (ret)
1033 goto err_remove_irqchip_mask;
1034
1035 /*
1036 * By first adding the chardev, and then adding the device,
1037 * we get a device node entry in sysfs under
1038 * /sys/bus/gpio/devices/gpiochipN/dev that can be used for
1039 * coldplug of device nodes and other udev business.
1040 * We can do this only if gpiolib has been initialized.
1041 * Otherwise, defer until later.
1042 */
1043 if (gpiolib_initialized) {
1044 ret = gpiochip_setup_dev(gdev);
1045 if (ret)
1046 goto err_remove_irqchip;
1047 }
1048 return 0;
1049
1050err_remove_irqchip:
1051 gpiochip_irqchip_remove(gc);
1052err_remove_irqchip_mask:
1053 gpiochip_irqchip_free_valid_mask(gc);
1054err_free_hogs:
1055 gpiochip_free_hogs(gc);
1056 acpi_gpiochip_remove(chip: gc);
1057 gpiochip_remove_pin_ranges(gc);
1058err_remove_of_chip:
1059 of_gpiochip_remove(gc);
1060err_cleanup_desc_srcu:
1061 while (desc_index--)
1062 cleanup_srcu_struct(ssp: &gdev->descs[desc_index].srcu);
1063 gpiochip_free_valid_mask(gc);
1064err_cleanup_gdev_srcu:
1065 cleanup_srcu_struct(ssp: &gdev->srcu);
1066err_remove_from_list:
1067 scoped_guard(mutex, &gpio_devices_lock)
1068 list_del_rcu(entry: &gdev->list);
1069 synchronize_srcu(ssp: &gpio_devices_srcu);
1070 if (gdev->dev.release) {
1071 /* release() has been registered by gpiochip_setup_dev() */
1072 gpio_device_put(gdev);
1073 goto err_print_message;
1074 }
1075err_free_label:
1076 kfree_const(x: gdev->label);
1077err_free_descs:
1078 kfree(objp: gdev->descs);
1079err_free_dev_name:
1080 kfree(objp: dev_name(dev: &gdev->dev));
1081err_free_ida:
1082 ida_free(&gpio_ida, id: gdev->id);
1083err_free_gdev:
1084 kfree(objp: gdev);
1085err_print_message:
1086 /* failures here can mean systems won't boot... */
1087 if (ret != -EPROBE_DEFER) {
1088 pr_err("%s: GPIOs %d..%d (%s) failed to register, %d\n", __func__,
1089 base, base + (int)gc->ngpio - 1,
1090 gc->label ? : "generic", ret);
1091 }
1092 return ret;
1093}
1094EXPORT_SYMBOL_GPL(gpiochip_add_data_with_key);
1095
1096/**
1097 * gpiochip_remove() - unregister a gpio_chip
1098 * @gc: the chip to unregister
1099 *
1100 * A gpio_chip with any GPIOs still requested may not be removed.
1101 */
1102void gpiochip_remove(struct gpio_chip *gc)
1103{
1104 struct gpio_device *gdev = gc->gpiodev;
1105
1106 /* FIXME: should the legacy sysfs handling be moved to gpio_device? */
1107 gpiochip_sysfs_unregister(gdev);
1108 gpiochip_free_hogs(gc);
1109
1110 scoped_guard(mutex, &gpio_devices_lock)
1111 list_del_rcu(entry: &gdev->list);
1112 synchronize_srcu(ssp: &gpio_devices_srcu);
1113
1114 /* Numb the device, cancelling all outstanding operations */
1115 rcu_assign_pointer(gdev->chip, NULL);
1116 synchronize_srcu(ssp: &gdev->srcu);
1117 gpiochip_irqchip_remove(gc);
1118 acpi_gpiochip_remove(chip: gc);
1119 of_gpiochip_remove(gc);
1120 gpiochip_remove_pin_ranges(gc);
1121 gpiochip_free_valid_mask(gc);
1122 /*
1123 * We accept no more calls into the driver from this point, so
1124 * NULL the driver data pointer.
1125 */
1126 gpiochip_set_data(gc, NULL);
1127
1128 /*
1129 * The gpiochip side puts its use of the device to rest here:
1130 * if there are no userspace clients, the chardev and device will
1131 * be removed, else it will be dangling until the last user is
1132 * gone.
1133 */
1134 gcdev_unregister(gdev);
1135 gpio_device_put(gdev);
1136}
1137EXPORT_SYMBOL_GPL(gpiochip_remove);
1138
1139/**
1140 * gpio_device_find() - find a specific GPIO device
1141 * @data: data to pass to match function
1142 * @match: Callback function to check gpio_chip
1143 *
1144 * Returns:
1145 * New reference to struct gpio_device.
1146 *
1147 * Similar to bus_find_device(). It returns a reference to a gpio_device as
1148 * determined by a user supplied @match callback. The callback should return
1149 * 0 if the device doesn't match and non-zero if it does. If the callback
1150 * returns non-zero, this function will return to the caller and not iterate
1151 * over any more gpio_devices.
1152 *
1153 * The callback takes the GPIO chip structure as argument. During the execution
1154 * of the callback function the chip is protected from being freed. TODO: This
1155 * actually has yet to be implemented.
1156 *
1157 * If the function returns non-NULL, the returned reference must be freed by
1158 * the caller using gpio_device_put().
1159 */
1160struct gpio_device *gpio_device_find(const void *data,
1161 int (*match)(struct gpio_chip *gc,
1162 const void *data))
1163{
1164 struct gpio_device *gdev;
1165 struct gpio_chip *gc;
1166
1167 /*
1168 * Not yet but in the future the spinlock below will become a mutex.
1169 * Annotate this function before anyone tries to use it in interrupt
1170 * context like it happened with gpiochip_find().
1171 */
1172 might_sleep();
1173
1174 guard(srcu)(l: &gpio_devices_srcu);
1175
1176 list_for_each_entry_srcu(gdev, &gpio_devices, list,
1177 srcu_read_lock_held(&gpio_devices_srcu)) {
1178 if (!device_is_registered(dev: &gdev->dev))
1179 continue;
1180
1181 guard(srcu)(l: &gdev->srcu);
1182
1183 gc = srcu_dereference(gdev->chip, &gdev->srcu);
1184
1185 if (gc && match(gc, data))
1186 return gpio_device_get(gdev);
1187 }
1188
1189 return NULL;
1190}
1191EXPORT_SYMBOL_GPL(gpio_device_find);
1192
1193static int gpio_chip_match_by_label(struct gpio_chip *gc, const void *label)
1194{
1195 return gc->label && !strcmp(gc->label, label);
1196}
1197
1198/**
1199 * gpio_device_find_by_label() - wrapper around gpio_device_find() finding the
1200 * GPIO device by its backing chip's label
1201 * @label: Label to lookup
1202 *
1203 * Returns:
1204 * Reference to the GPIO device or NULL. Reference must be released with
1205 * gpio_device_put().
1206 */
1207struct gpio_device *gpio_device_find_by_label(const char *label)
1208{
1209 return gpio_device_find((void *)label, gpio_chip_match_by_label);
1210}
1211EXPORT_SYMBOL_GPL(gpio_device_find_by_label);
1212
1213static int gpio_chip_match_by_fwnode(struct gpio_chip *gc, const void *fwnode)
1214{
1215 return device_match_fwnode(dev: &gc->gpiodev->dev, fwnode);
1216}
1217
1218/**
1219 * gpio_device_find_by_fwnode() - wrapper around gpio_device_find() finding
1220 * the GPIO device by its fwnode
1221 * @fwnode: Firmware node to lookup
1222 *
1223 * Returns:
1224 * Reference to the GPIO device or NULL. Reference must be released with
1225 * gpio_device_put().
1226 */
1227struct gpio_device *gpio_device_find_by_fwnode(const struct fwnode_handle *fwnode)
1228{
1229 return gpio_device_find((void *)fwnode, gpio_chip_match_by_fwnode);
1230}
1231EXPORT_SYMBOL_GPL(gpio_device_find_by_fwnode);
1232
1233/**
1234 * gpio_device_get() - Increase the reference count of this GPIO device
1235 * @gdev: GPIO device to increase the refcount for
1236 *
1237 * Returns:
1238 * Pointer to @gdev.
1239 */
1240struct gpio_device *gpio_device_get(struct gpio_device *gdev)
1241{
1242 return to_gpio_device(dev: get_device(dev: &gdev->dev));
1243}
1244EXPORT_SYMBOL_GPL(gpio_device_get);
1245
1246/**
1247 * gpio_device_put() - Decrease the reference count of this GPIO device and
1248 * possibly free all resources associated with it.
1249 * @gdev: GPIO device to decrease the reference count for
1250 */
1251void gpio_device_put(struct gpio_device *gdev)
1252{
1253 put_device(dev: &gdev->dev);
1254}
1255EXPORT_SYMBOL_GPL(gpio_device_put);
1256
1257/**
1258 * gpio_device_to_device() - Retrieve the address of the underlying struct
1259 * device.
1260 * @gdev: GPIO device for which to return the address.
1261 *
1262 * This does not increase the reference count of the GPIO device nor the
1263 * underlying struct device.
1264 *
1265 * Returns:
1266 * Address of struct device backing this GPIO device.
1267 */
1268struct device *gpio_device_to_device(struct gpio_device *gdev)
1269{
1270 return &gdev->dev;
1271}
1272EXPORT_SYMBOL_GPL(gpio_device_to_device);
1273
1274#ifdef CONFIG_GPIOLIB_IRQCHIP
1275
1276/*
1277 * The following is irqchip helper code for gpiochips.
1278 */
1279
1280static int gpiochip_irqchip_init_hw(struct gpio_chip *gc)
1281{
1282 struct gpio_irq_chip *girq = &gc->irq;
1283
1284 if (!girq->init_hw)
1285 return 0;
1286
1287 return girq->init_hw(gc);
1288}
1289
1290static int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc)
1291{
1292 struct gpio_irq_chip *girq = &gc->irq;
1293
1294 if (!girq->init_valid_mask)
1295 return 0;
1296
1297 girq->valid_mask = gpiochip_allocate_mask(gc);
1298 if (!girq->valid_mask)
1299 return -ENOMEM;
1300
1301 girq->init_valid_mask(gc, girq->valid_mask, gc->ngpio);
1302
1303 return 0;
1304}
1305
1306static void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc)
1307{
1308 gpiochip_free_mask(p: &gc->irq.valid_mask);
1309}
1310
1311static bool gpiochip_irqchip_irq_valid(const struct gpio_chip *gc,
1312 unsigned int offset)
1313{
1314 if (!gpiochip_line_is_valid(gc, offset))
1315 return false;
1316 /* No mask means all valid */
1317 if (likely(!gc->irq.valid_mask))
1318 return true;
1319 return test_bit(offset, gc->irq.valid_mask);
1320}
1321
1322#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1323
1324/**
1325 * gpiochip_set_hierarchical_irqchip() - connects a hierarchical irqchip
1326 * to a gpiochip
1327 * @gc: the gpiochip to set the irqchip hierarchical handler to
1328 * @irqchip: the irqchip to handle this level of the hierarchy, the interrupt
1329 * will then percolate up to the parent
1330 */
1331static void gpiochip_set_hierarchical_irqchip(struct gpio_chip *gc,
1332 struct irq_chip *irqchip)
1333{
1334 /* DT will deal with mapping each IRQ as we go along */
1335 if (is_of_node(fwnode: gc->irq.fwnode))
1336 return;
1337
1338 /*
1339 * This is for legacy and boardfile "irqchip" fwnodes: allocate
1340 * irqs upfront instead of dynamically since we don't have the
1341 * dynamic type of allocation that hardware description languages
1342 * provide. Once all GPIO drivers using board files are gone from
1343 * the kernel we can delete this code, but for a transitional period
1344 * it is necessary to keep this around.
1345 */
1346 if (is_fwnode_irqchip(fwnode: gc->irq.fwnode)) {
1347 int i;
1348 int ret;
1349
1350 for (i = 0; i < gc->ngpio; i++) {
1351 struct irq_fwspec fwspec;
1352 unsigned int parent_hwirq;
1353 unsigned int parent_type;
1354 struct gpio_irq_chip *girq = &gc->irq;
1355
1356 /*
1357 * We call the child to parent translation function
1358 * only to check if the child IRQ is valid or not.
1359 * Just pick the rising edge type here as that is what
1360 * we likely need to support.
1361 */
1362 ret = girq->child_to_parent_hwirq(gc, i,
1363 IRQ_TYPE_EDGE_RISING,
1364 &parent_hwirq,
1365 &parent_type);
1366 if (ret) {
1367 chip_err(gc, "skip set-up on hwirq %d\n",
1368 i);
1369 continue;
1370 }
1371
1372 fwspec.fwnode = gc->irq.fwnode;
1373 /* This is the hwirq for the GPIO line side of things */
1374 fwspec.param[0] = girq->child_offset_to_irq(gc, i);
1375 /* Just pick something */
1376 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1377 fwspec.param_count = 2;
1378 ret = irq_domain_alloc_irqs(domain: gc->irq.domain, nr_irqs: 1,
1379 NUMA_NO_NODE, arg: &fwspec);
1380 if (ret < 0) {
1381 chip_err(gc,
1382 "can not allocate irq for GPIO line %d parent hwirq %d in hierarchy domain: %d\n",
1383 i, parent_hwirq,
1384 ret);
1385 }
1386 }
1387 }
1388
1389 chip_err(gc, "%s unknown fwnode type proceed anyway\n", __func__);
1390
1391 return;
1392}
1393
1394static int gpiochip_hierarchy_irq_domain_translate(struct irq_domain *d,
1395 struct irq_fwspec *fwspec,
1396 unsigned long *hwirq,
1397 unsigned int *type)
1398{
1399 /* We support standard DT translation */
1400 if (is_of_node(fwnode: fwspec->fwnode) && fwspec->param_count == 2) {
1401 return irq_domain_translate_twocell(d, fwspec, out_hwirq: hwirq, out_type: type);
1402 }
1403
1404 /* This is for board files and others not using DT */
1405 if (is_fwnode_irqchip(fwnode: fwspec->fwnode)) {
1406 int ret;
1407
1408 ret = irq_domain_translate_twocell(d, fwspec, out_hwirq: hwirq, out_type: type);
1409 if (ret)
1410 return ret;
1411 WARN_ON(*type == IRQ_TYPE_NONE);
1412 return 0;
1413 }
1414 return -EINVAL;
1415}
1416
1417static int gpiochip_hierarchy_irq_domain_alloc(struct irq_domain *d,
1418 unsigned int irq,
1419 unsigned int nr_irqs,
1420 void *data)
1421{
1422 struct gpio_chip *gc = d->host_data;
1423 irq_hw_number_t hwirq;
1424 unsigned int type = IRQ_TYPE_NONE;
1425 struct irq_fwspec *fwspec = data;
1426 union gpio_irq_fwspec gpio_parent_fwspec = {};
1427 unsigned int parent_hwirq;
1428 unsigned int parent_type;
1429 struct gpio_irq_chip *girq = &gc->irq;
1430 int ret;
1431
1432 /*
1433 * The nr_irqs parameter is always one except for PCI multi-MSI
1434 * so this should not happen.
1435 */
1436 WARN_ON(nr_irqs != 1);
1437
1438 ret = gc->irq.child_irq_domain_ops.translate(d, fwspec, &hwirq, &type);
1439 if (ret)
1440 return ret;
1441
1442 chip_dbg(gc, "allocate IRQ %d, hwirq %lu\n", irq, hwirq);
1443
1444 ret = girq->child_to_parent_hwirq(gc, hwirq, type,
1445 &parent_hwirq, &parent_type);
1446 if (ret) {
1447 chip_err(gc, "can't look up hwirq %lu\n", hwirq);
1448 return ret;
1449 }
1450 chip_dbg(gc, "found parent hwirq %u\n", parent_hwirq);
1451
1452 /*
1453 * We set handle_bad_irq because the .set_type() should
1454 * always be invoked and set the right type of handler.
1455 */
1456 irq_domain_set_info(domain: d,
1457 virq: irq,
1458 hwirq,
1459 chip: gc->irq.chip,
1460 chip_data: gc,
1461 handler: girq->handler,
1462 NULL, NULL);
1463 irq_set_probe(irq);
1464
1465 /* This parent only handles asserted level IRQs */
1466 ret = girq->populate_parent_alloc_arg(gc, &gpio_parent_fwspec,
1467 parent_hwirq, parent_type);
1468 if (ret)
1469 return ret;
1470
1471 chip_dbg(gc, "alloc_irqs_parent for %d parent hwirq %d\n",
1472 irq, parent_hwirq);
1473 irq_set_lockdep_class(irq, lock_class: gc->irq.lock_key, request_class: gc->irq.request_key);
1474 ret = irq_domain_alloc_irqs_parent(domain: d, irq_base: irq, nr_irqs: 1, arg: &gpio_parent_fwspec);
1475 /*
1476 * If the parent irqdomain is msi, the interrupts have already
1477 * been allocated, so the EEXIST is good.
1478 */
1479 if (irq_domain_is_msi(domain: d->parent) && (ret == -EEXIST))
1480 ret = 0;
1481 if (ret)
1482 chip_err(gc,
1483 "failed to allocate parent hwirq %d for hwirq %lu\n",
1484 parent_hwirq, hwirq);
1485
1486 return ret;
1487}
1488
1489static unsigned int gpiochip_child_offset_to_irq_noop(struct gpio_chip *gc,
1490 unsigned int offset)
1491{
1492 return offset;
1493}
1494
1495/**
1496 * gpiochip_irq_domain_activate() - Lock a GPIO to be used as an IRQ
1497 * @domain: The IRQ domain used by this IRQ chip
1498 * @data: Outermost irq_data associated with the IRQ
1499 * @reserve: If set, only reserve an interrupt vector instead of assigning one
1500 *
1501 * This function is a wrapper that calls gpiochip_lock_as_irq() and is to be
1502 * used as the activate function for the &struct irq_domain_ops. The host_data
1503 * for the IRQ domain must be the &struct gpio_chip.
1504 */
1505static int gpiochip_irq_domain_activate(struct irq_domain *domain,
1506 struct irq_data *data, bool reserve)
1507{
1508 struct gpio_chip *gc = domain->host_data;
1509 unsigned int hwirq = irqd_to_hwirq(d: data);
1510
1511 return gpiochip_lock_as_irq(gc, offset: hwirq);
1512}
1513
1514/**
1515 * gpiochip_irq_domain_deactivate() - Unlock a GPIO used as an IRQ
1516 * @domain: The IRQ domain used by this IRQ chip
1517 * @data: Outermost irq_data associated with the IRQ
1518 *
1519 * This function is a wrapper that will call gpiochip_unlock_as_irq() and is to
1520 * be used as the deactivate function for the &struct irq_domain_ops. The
1521 * host_data for the IRQ domain must be the &struct gpio_chip.
1522 */
1523static void gpiochip_irq_domain_deactivate(struct irq_domain *domain,
1524 struct irq_data *data)
1525{
1526 struct gpio_chip *gc = domain->host_data;
1527 unsigned int hwirq = irqd_to_hwirq(d: data);
1528
1529 return gpiochip_unlock_as_irq(gc, offset: hwirq);
1530}
1531
1532static void gpiochip_hierarchy_setup_domain_ops(struct irq_domain_ops *ops)
1533{
1534 ops->activate = gpiochip_irq_domain_activate;
1535 ops->deactivate = gpiochip_irq_domain_deactivate;
1536 ops->alloc = gpiochip_hierarchy_irq_domain_alloc;
1537
1538 /*
1539 * We only allow overriding the translate() and free() functions for
1540 * hierarchical chips, and this should only be done if the user
1541 * really need something other than 1:1 translation for translate()
1542 * callback and free if user wants to free up any resources which
1543 * were allocated during callbacks, for example populate_parent_alloc_arg.
1544 */
1545 if (!ops->translate)
1546 ops->translate = gpiochip_hierarchy_irq_domain_translate;
1547 if (!ops->free)
1548 ops->free = irq_domain_free_irqs_common;
1549}
1550
1551static struct irq_domain *gpiochip_hierarchy_create_domain(struct gpio_chip *gc)
1552{
1553 struct irq_domain *domain;
1554
1555 if (!gc->irq.child_to_parent_hwirq ||
1556 !gc->irq.fwnode) {
1557 chip_err(gc, "missing irqdomain vital data\n");
1558 return ERR_PTR(error: -EINVAL);
1559 }
1560
1561 if (!gc->irq.child_offset_to_irq)
1562 gc->irq.child_offset_to_irq = gpiochip_child_offset_to_irq_noop;
1563
1564 if (!gc->irq.populate_parent_alloc_arg)
1565 gc->irq.populate_parent_alloc_arg =
1566 gpiochip_populate_parent_fwspec_twocell;
1567
1568 gpiochip_hierarchy_setup_domain_ops(ops: &gc->irq.child_irq_domain_ops);
1569
1570 domain = irq_domain_create_hierarchy(
1571 parent: gc->irq.parent_domain,
1572 flags: 0,
1573 size: gc->ngpio,
1574 fwnode: gc->irq.fwnode,
1575 ops: &gc->irq.child_irq_domain_ops,
1576 host_data: gc);
1577
1578 if (!domain)
1579 return ERR_PTR(error: -ENOMEM);
1580
1581 gpiochip_set_hierarchical_irqchip(gc, irqchip: gc->irq.chip);
1582
1583 return domain;
1584}
1585
1586static bool gpiochip_hierarchy_is_hierarchical(struct gpio_chip *gc)
1587{
1588 return !!gc->irq.parent_domain;
1589}
1590
1591int gpiochip_populate_parent_fwspec_twocell(struct gpio_chip *gc,
1592 union gpio_irq_fwspec *gfwspec,
1593 unsigned int parent_hwirq,
1594 unsigned int parent_type)
1595{
1596 struct irq_fwspec *fwspec = &gfwspec->fwspec;
1597
1598 fwspec->fwnode = gc->irq.parent_domain->fwnode;
1599 fwspec->param_count = 2;
1600 fwspec->param[0] = parent_hwirq;
1601 fwspec->param[1] = parent_type;
1602
1603 return 0;
1604}
1605EXPORT_SYMBOL_GPL(gpiochip_populate_parent_fwspec_twocell);
1606
1607int gpiochip_populate_parent_fwspec_fourcell(struct gpio_chip *gc,
1608 union gpio_irq_fwspec *gfwspec,
1609 unsigned int parent_hwirq,
1610 unsigned int parent_type)
1611{
1612 struct irq_fwspec *fwspec = &gfwspec->fwspec;
1613
1614 fwspec->fwnode = gc->irq.parent_domain->fwnode;
1615 fwspec->param_count = 4;
1616 fwspec->param[0] = 0;
1617 fwspec->param[1] = parent_hwirq;
1618 fwspec->param[2] = 0;
1619 fwspec->param[3] = parent_type;
1620
1621 return 0;
1622}
1623EXPORT_SYMBOL_GPL(gpiochip_populate_parent_fwspec_fourcell);
1624
1625#else
1626
1627static struct irq_domain *gpiochip_hierarchy_create_domain(struct gpio_chip *gc)
1628{
1629 return ERR_PTR(-EINVAL);
1630}
1631
1632static bool gpiochip_hierarchy_is_hierarchical(struct gpio_chip *gc)
1633{
1634 return false;
1635}
1636
1637#endif /* CONFIG_IRQ_DOMAIN_HIERARCHY */
1638
1639/**
1640 * gpiochip_irq_map() - maps an IRQ into a GPIO irqchip
1641 * @d: the irqdomain used by this irqchip
1642 * @irq: the global irq number used by this GPIO irqchip irq
1643 * @hwirq: the local IRQ/GPIO line offset on this gpiochip
1644 *
1645 * This function will set up the mapping for a certain IRQ line on a
1646 * gpiochip by assigning the gpiochip as chip data, and using the irqchip
1647 * stored inside the gpiochip.
1648 */
1649static int gpiochip_irq_map(struct irq_domain *d, unsigned int irq,
1650 irq_hw_number_t hwirq)
1651{
1652 struct gpio_chip *gc = d->host_data;
1653 int ret = 0;
1654
1655 if (!gpiochip_irqchip_irq_valid(gc, offset: hwirq))
1656 return -ENXIO;
1657
1658 irq_set_chip_data(irq, data: gc);
1659 /*
1660 * This lock class tells lockdep that GPIO irqs are in a different
1661 * category than their parents, so it won't report false recursion.
1662 */
1663 irq_set_lockdep_class(irq, lock_class: gc->irq.lock_key, request_class: gc->irq.request_key);
1664 irq_set_chip_and_handler(irq, chip: gc->irq.chip, handle: gc->irq.handler);
1665 /* Chips that use nested thread handlers have them marked */
1666 if (gc->irq.threaded)
1667 irq_set_nested_thread(irq, nest: 1);
1668 irq_set_noprobe(irq);
1669
1670 if (gc->irq.num_parents == 1)
1671 ret = irq_set_parent(irq, parent_irq: gc->irq.parents[0]);
1672 else if (gc->irq.map)
1673 ret = irq_set_parent(irq, parent_irq: gc->irq.map[hwirq]);
1674
1675 if (ret < 0)
1676 return ret;
1677
1678 /*
1679 * No set-up of the hardware will happen if IRQ_TYPE_NONE
1680 * is passed as default type.
1681 */
1682 if (gc->irq.default_type != IRQ_TYPE_NONE)
1683 irq_set_irq_type(irq, type: gc->irq.default_type);
1684
1685 return 0;
1686}
1687
1688static void gpiochip_irq_unmap(struct irq_domain *d, unsigned int irq)
1689{
1690 struct gpio_chip *gc = d->host_data;
1691
1692 if (gc->irq.threaded)
1693 irq_set_nested_thread(irq, nest: 0);
1694 irq_set_chip_and_handler(irq, NULL, NULL);
1695 irq_set_chip_data(irq, NULL);
1696}
1697
1698static const struct irq_domain_ops gpiochip_domain_ops = {
1699 .map = gpiochip_irq_map,
1700 .unmap = gpiochip_irq_unmap,
1701 /* Virtually all GPIO irqchips are twocell:ed */
1702 .xlate = irq_domain_xlate_twocell,
1703};
1704
1705static struct irq_domain *gpiochip_simple_create_domain(struct gpio_chip *gc)
1706{
1707 struct fwnode_handle *fwnode = dev_fwnode(&gc->gpiodev->dev);
1708 struct irq_domain *domain;
1709
1710 domain = irq_domain_create_simple(fwnode, size: gc->ngpio, first_irq: gc->irq.first,
1711 ops: &gpiochip_domain_ops, host_data: gc);
1712 if (!domain)
1713 return ERR_PTR(error: -EINVAL);
1714
1715 return domain;
1716}
1717
1718static int gpiochip_to_irq(struct gpio_chip *gc, unsigned int offset)
1719{
1720 struct irq_domain *domain = gc->irq.domain;
1721
1722#ifdef CONFIG_GPIOLIB_IRQCHIP
1723 /*
1724 * Avoid race condition with other code, which tries to lookup
1725 * an IRQ before the irqchip has been properly registered,
1726 * i.e. while gpiochip is still being brought up.
1727 */
1728 if (!gc->irq.initialized)
1729 return -EPROBE_DEFER;
1730#endif
1731
1732 if (!gpiochip_irqchip_irq_valid(gc, offset))
1733 return -ENXIO;
1734
1735#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1736 if (irq_domain_is_hierarchy(domain)) {
1737 struct irq_fwspec spec;
1738
1739 spec.fwnode = domain->fwnode;
1740 spec.param_count = 2;
1741 spec.param[0] = gc->irq.child_offset_to_irq(gc, offset);
1742 spec.param[1] = IRQ_TYPE_NONE;
1743
1744 return irq_create_fwspec_mapping(fwspec: &spec);
1745 }
1746#endif
1747
1748 return irq_create_mapping(host: domain, hwirq: offset);
1749}
1750
1751int gpiochip_irq_reqres(struct irq_data *d)
1752{
1753 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1754 unsigned int hwirq = irqd_to_hwirq(d);
1755
1756 return gpiochip_reqres_irq(gc, offset: hwirq);
1757}
1758EXPORT_SYMBOL(gpiochip_irq_reqres);
1759
1760void gpiochip_irq_relres(struct irq_data *d)
1761{
1762 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1763 unsigned int hwirq = irqd_to_hwirq(d);
1764
1765 gpiochip_relres_irq(gc, offset: hwirq);
1766}
1767EXPORT_SYMBOL(gpiochip_irq_relres);
1768
1769static void gpiochip_irq_mask(struct irq_data *d)
1770{
1771 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1772 unsigned int hwirq = irqd_to_hwirq(d);
1773
1774 if (gc->irq.irq_mask)
1775 gc->irq.irq_mask(d);
1776 gpiochip_disable_irq(gc, offset: hwirq);
1777}
1778
1779static void gpiochip_irq_unmask(struct irq_data *d)
1780{
1781 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1782 unsigned int hwirq = irqd_to_hwirq(d);
1783
1784 gpiochip_enable_irq(gc, offset: hwirq);
1785 if (gc->irq.irq_unmask)
1786 gc->irq.irq_unmask(d);
1787}
1788
1789static void gpiochip_irq_enable(struct irq_data *d)
1790{
1791 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1792 unsigned int hwirq = irqd_to_hwirq(d);
1793
1794 gpiochip_enable_irq(gc, offset: hwirq);
1795 gc->irq.irq_enable(d);
1796}
1797
1798static void gpiochip_irq_disable(struct irq_data *d)
1799{
1800 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1801 unsigned int hwirq = irqd_to_hwirq(d);
1802
1803 gc->irq.irq_disable(d);
1804 gpiochip_disable_irq(gc, offset: hwirq);
1805}
1806
1807static void gpiochip_set_irq_hooks(struct gpio_chip *gc)
1808{
1809 struct irq_chip *irqchip = gc->irq.chip;
1810
1811 if (irqchip->flags & IRQCHIP_IMMUTABLE)
1812 return;
1813
1814 chip_warn(gc, "not an immutable chip, please consider fixing it!\n");
1815
1816 if (!irqchip->irq_request_resources &&
1817 !irqchip->irq_release_resources) {
1818 irqchip->irq_request_resources = gpiochip_irq_reqres;
1819 irqchip->irq_release_resources = gpiochip_irq_relres;
1820 }
1821 if (WARN_ON(gc->irq.irq_enable))
1822 return;
1823 /* Check if the irqchip already has this hook... */
1824 if (irqchip->irq_enable == gpiochip_irq_enable ||
1825 irqchip->irq_mask == gpiochip_irq_mask) {
1826 /*
1827 * ...and if so, give a gentle warning that this is bad
1828 * practice.
1829 */
1830 chip_info(gc,
1831 "detected irqchip that is shared with multiple gpiochips: please fix the driver.\n");
1832 return;
1833 }
1834
1835 if (irqchip->irq_disable) {
1836 gc->irq.irq_disable = irqchip->irq_disable;
1837 irqchip->irq_disable = gpiochip_irq_disable;
1838 } else {
1839 gc->irq.irq_mask = irqchip->irq_mask;
1840 irqchip->irq_mask = gpiochip_irq_mask;
1841 }
1842
1843 if (irqchip->irq_enable) {
1844 gc->irq.irq_enable = irqchip->irq_enable;
1845 irqchip->irq_enable = gpiochip_irq_enable;
1846 } else {
1847 gc->irq.irq_unmask = irqchip->irq_unmask;
1848 irqchip->irq_unmask = gpiochip_irq_unmask;
1849 }
1850}
1851
1852static int gpiochip_irqchip_add_allocated_domain(struct gpio_chip *gc,
1853 struct irq_domain *domain,
1854 bool allocated_externally)
1855{
1856 if (!domain)
1857 return -EINVAL;
1858
1859 if (gc->to_irq)
1860 chip_warn(gc, "to_irq is redefined in %s and you shouldn't rely on it\n", __func__);
1861
1862 gc->to_irq = gpiochip_to_irq;
1863 gc->irq.domain = domain;
1864 gc->irq.domain_is_allocated_externally = allocated_externally;
1865
1866 /*
1867 * Using barrier() here to prevent compiler from reordering
1868 * gc->irq.initialized before adding irqdomain.
1869 */
1870 barrier();
1871
1872 gc->irq.initialized = true;
1873
1874 return 0;
1875}
1876
1877/**
1878 * gpiochip_add_irqchip() - adds an IRQ chip to a GPIO chip
1879 * @gc: the GPIO chip to add the IRQ chip to
1880 * @lock_key: lockdep class for IRQ lock
1881 * @request_key: lockdep class for IRQ request
1882 */
1883static int gpiochip_add_irqchip(struct gpio_chip *gc,
1884 struct lock_class_key *lock_key,
1885 struct lock_class_key *request_key)
1886{
1887 struct fwnode_handle *fwnode = dev_fwnode(&gc->gpiodev->dev);
1888 struct irq_chip *irqchip = gc->irq.chip;
1889 struct irq_domain *domain;
1890 unsigned int type;
1891 unsigned int i;
1892 int ret;
1893
1894 if (!irqchip)
1895 return 0;
1896
1897 if (gc->irq.parent_handler && gc->can_sleep) {
1898 chip_err(gc, "you cannot have chained interrupts on a chip that may sleep\n");
1899 return -EINVAL;
1900 }
1901
1902 type = gc->irq.default_type;
1903
1904 /*
1905 * Specifying a default trigger is a terrible idea if DT or ACPI is
1906 * used to configure the interrupts, as you may end up with
1907 * conflicting triggers. Tell the user, and reset to NONE.
1908 */
1909 if (WARN(fwnode && type != IRQ_TYPE_NONE,
1910 "%pfw: Ignoring %u default trigger\n", fwnode, type))
1911 type = IRQ_TYPE_NONE;
1912
1913 gc->irq.default_type = type;
1914 gc->irq.lock_key = lock_key;
1915 gc->irq.request_key = request_key;
1916
1917 /* If a parent irqdomain is provided, let's build a hierarchy */
1918 if (gpiochip_hierarchy_is_hierarchical(gc)) {
1919 domain = gpiochip_hierarchy_create_domain(gc);
1920 } else {
1921 domain = gpiochip_simple_create_domain(gc);
1922 }
1923 if (IS_ERR(ptr: domain))
1924 return PTR_ERR(ptr: domain);
1925
1926 if (gc->irq.parent_handler) {
1927 for (i = 0; i < gc->irq.num_parents; i++) {
1928 void *data;
1929
1930 if (gc->irq.per_parent_data)
1931 data = gc->irq.parent_handler_data_array[i];
1932 else
1933 data = gc->irq.parent_handler_data ?: gc;
1934
1935 /*
1936 * The parent IRQ chip is already using the chip_data
1937 * for this IRQ chip, so our callbacks simply use the
1938 * handler_data.
1939 */
1940 irq_set_chained_handler_and_data(irq: gc->irq.parents[i],
1941 handle: gc->irq.parent_handler,
1942 data);
1943 }
1944 }
1945
1946 gpiochip_set_irq_hooks(gc);
1947
1948 ret = gpiochip_irqchip_add_allocated_domain(gc, domain, allocated_externally: false);
1949 if (ret)
1950 return ret;
1951
1952 acpi_gpiochip_request_interrupts(chip: gc);
1953
1954 return 0;
1955}
1956
1957/**
1958 * gpiochip_irqchip_remove() - removes an irqchip added to a gpiochip
1959 * @gc: the gpiochip to remove the irqchip from
1960 *
1961 * This is called only from gpiochip_remove()
1962 */
1963static void gpiochip_irqchip_remove(struct gpio_chip *gc)
1964{
1965 struct irq_chip *irqchip = gc->irq.chip;
1966 unsigned int offset;
1967
1968 acpi_gpiochip_free_interrupts(chip: gc);
1969
1970 if (irqchip && gc->irq.parent_handler) {
1971 struct gpio_irq_chip *irq = &gc->irq;
1972 unsigned int i;
1973
1974 for (i = 0; i < irq->num_parents; i++)
1975 irq_set_chained_handler_and_data(irq: irq->parents[i],
1976 NULL, NULL);
1977 }
1978
1979 /* Remove all IRQ mappings and delete the domain */
1980 if (!gc->irq.domain_is_allocated_externally && gc->irq.domain) {
1981 unsigned int irq;
1982
1983 for (offset = 0; offset < gc->ngpio; offset++) {
1984 if (!gpiochip_irqchip_irq_valid(gc, offset))
1985 continue;
1986
1987 irq = irq_find_mapping(domain: gc->irq.domain, hwirq: offset);
1988 irq_dispose_mapping(virq: irq);
1989 }
1990
1991 irq_domain_remove(host: gc->irq.domain);
1992 }
1993
1994 if (irqchip && !(irqchip->flags & IRQCHIP_IMMUTABLE)) {
1995 if (irqchip->irq_request_resources == gpiochip_irq_reqres) {
1996 irqchip->irq_request_resources = NULL;
1997 irqchip->irq_release_resources = NULL;
1998 }
1999 if (irqchip->irq_enable == gpiochip_irq_enable) {
2000 irqchip->irq_enable = gc->irq.irq_enable;
2001 irqchip->irq_disable = gc->irq.irq_disable;
2002 }
2003 }
2004 gc->irq.irq_enable = NULL;
2005 gc->irq.irq_disable = NULL;
2006 gc->irq.chip = NULL;
2007
2008 gpiochip_irqchip_free_valid_mask(gc);
2009}
2010
2011/**
2012 * gpiochip_irqchip_add_domain() - adds an irqdomain to a gpiochip
2013 * @gc: the gpiochip to add the irqchip to
2014 * @domain: the irqdomain to add to the gpiochip
2015 *
2016 * This function adds an IRQ domain to the gpiochip.
2017 */
2018int gpiochip_irqchip_add_domain(struct gpio_chip *gc,
2019 struct irq_domain *domain)
2020{
2021 return gpiochip_irqchip_add_allocated_domain(gc, domain, allocated_externally: true);
2022}
2023EXPORT_SYMBOL_GPL(gpiochip_irqchip_add_domain);
2024
2025#else /* CONFIG_GPIOLIB_IRQCHIP */
2026
2027static inline int gpiochip_add_irqchip(struct gpio_chip *gc,
2028 struct lock_class_key *lock_key,
2029 struct lock_class_key *request_key)
2030{
2031 return 0;
2032}
2033static void gpiochip_irqchip_remove(struct gpio_chip *gc) {}
2034
2035static inline int gpiochip_irqchip_init_hw(struct gpio_chip *gc)
2036{
2037 return 0;
2038}
2039
2040static inline int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc)
2041{
2042 return 0;
2043}
2044static inline void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc)
2045{ }
2046
2047#endif /* CONFIG_GPIOLIB_IRQCHIP */
2048
2049/**
2050 * gpiochip_generic_request() - request the gpio function for a pin
2051 * @gc: the gpiochip owning the GPIO
2052 * @offset: the offset of the GPIO to request for GPIO function
2053 */
2054int gpiochip_generic_request(struct gpio_chip *gc, unsigned int offset)
2055{
2056#ifdef CONFIG_PINCTRL
2057 if (list_empty(head: &gc->gpiodev->pin_ranges))
2058 return 0;
2059#endif
2060
2061 return pinctrl_gpio_request(gc, offset);
2062}
2063EXPORT_SYMBOL_GPL(gpiochip_generic_request);
2064
2065/**
2066 * gpiochip_generic_free() - free the gpio function from a pin
2067 * @gc: the gpiochip to request the gpio function for
2068 * @offset: the offset of the GPIO to free from GPIO function
2069 */
2070void gpiochip_generic_free(struct gpio_chip *gc, unsigned int offset)
2071{
2072#ifdef CONFIG_PINCTRL
2073 if (list_empty(head: &gc->gpiodev->pin_ranges))
2074 return;
2075#endif
2076
2077 pinctrl_gpio_free(gc, offset);
2078}
2079EXPORT_SYMBOL_GPL(gpiochip_generic_free);
2080
2081/**
2082 * gpiochip_generic_config() - apply configuration for a pin
2083 * @gc: the gpiochip owning the GPIO
2084 * @offset: the offset of the GPIO to apply the configuration
2085 * @config: the configuration to be applied
2086 */
2087int gpiochip_generic_config(struct gpio_chip *gc, unsigned int offset,
2088 unsigned long config)
2089{
2090#ifdef CONFIG_PINCTRL
2091 if (list_empty(head: &gc->gpiodev->pin_ranges))
2092 return -ENOTSUPP;
2093#endif
2094
2095 return pinctrl_gpio_set_config(gc, offset, config);
2096}
2097EXPORT_SYMBOL_GPL(gpiochip_generic_config);
2098
2099#ifdef CONFIG_PINCTRL
2100
2101/**
2102 * gpiochip_add_pingroup_range() - add a range for GPIO <-> pin mapping
2103 * @gc: the gpiochip to add the range for
2104 * @pctldev: the pin controller to map to
2105 * @gpio_offset: the start offset in the current gpio_chip number space
2106 * @pin_group: name of the pin group inside the pin controller
2107 *
2108 * Calling this function directly from a DeviceTree-supported
2109 * pinctrl driver is DEPRECATED. Please see Section 2.1 of
2110 * Documentation/devicetree/bindings/gpio/gpio.txt on how to
2111 * bind pinctrl and gpio drivers via the "gpio-ranges" property.
2112 */
2113int gpiochip_add_pingroup_range(struct gpio_chip *gc,
2114 struct pinctrl_dev *pctldev,
2115 unsigned int gpio_offset, const char *pin_group)
2116{
2117 struct gpio_pin_range *pin_range;
2118 struct gpio_device *gdev = gc->gpiodev;
2119 int ret;
2120
2121 pin_range = kzalloc(size: sizeof(*pin_range), GFP_KERNEL);
2122 if (!pin_range) {
2123 chip_err(gc, "failed to allocate pin ranges\n");
2124 return -ENOMEM;
2125 }
2126
2127 /* Use local offset as range ID */
2128 pin_range->range.id = gpio_offset;
2129 pin_range->range.gc = gc;
2130 pin_range->range.name = gc->label;
2131 pin_range->range.base = gdev->base + gpio_offset;
2132 pin_range->pctldev = pctldev;
2133
2134 ret = pinctrl_get_group_pins(pctldev, pin_group,
2135 pins: &pin_range->range.pins,
2136 num_pins: &pin_range->range.npins);
2137 if (ret < 0) {
2138 kfree(objp: pin_range);
2139 return ret;
2140 }
2141
2142 pinctrl_add_gpio_range(pctldev, range: &pin_range->range);
2143
2144 chip_dbg(gc, "created GPIO range %d->%d ==> %s PINGRP %s\n",
2145 gpio_offset, gpio_offset + pin_range->range.npins - 1,
2146 pinctrl_dev_get_devname(pctldev), pin_group);
2147
2148 list_add_tail(new: &pin_range->node, head: &gdev->pin_ranges);
2149
2150 return 0;
2151}
2152EXPORT_SYMBOL_GPL(gpiochip_add_pingroup_range);
2153
2154/**
2155 * gpiochip_add_pin_range() - add a range for GPIO <-> pin mapping
2156 * @gc: the gpiochip to add the range for
2157 * @pinctl_name: the dev_name() of the pin controller to map to
2158 * @gpio_offset: the start offset in the current gpio_chip number space
2159 * @pin_offset: the start offset in the pin controller number space
2160 * @npins: the number of pins from the offset of each pin space (GPIO and
2161 * pin controller) to accumulate in this range
2162 *
2163 * Returns:
2164 * 0 on success, or a negative error-code on failure.
2165 *
2166 * Calling this function directly from a DeviceTree-supported
2167 * pinctrl driver is DEPRECATED. Please see Section 2.1 of
2168 * Documentation/devicetree/bindings/gpio/gpio.txt on how to
2169 * bind pinctrl and gpio drivers via the "gpio-ranges" property.
2170 */
2171int gpiochip_add_pin_range(struct gpio_chip *gc, const char *pinctl_name,
2172 unsigned int gpio_offset, unsigned int pin_offset,
2173 unsigned int npins)
2174{
2175 struct gpio_pin_range *pin_range;
2176 struct gpio_device *gdev = gc->gpiodev;
2177 int ret;
2178
2179 pin_range = kzalloc(size: sizeof(*pin_range), GFP_KERNEL);
2180 if (!pin_range) {
2181 chip_err(gc, "failed to allocate pin ranges\n");
2182 return -ENOMEM;
2183 }
2184
2185 /* Use local offset as range ID */
2186 pin_range->range.id = gpio_offset;
2187 pin_range->range.gc = gc;
2188 pin_range->range.name = gc->label;
2189 pin_range->range.base = gdev->base + gpio_offset;
2190 pin_range->range.pin_base = pin_offset;
2191 pin_range->range.npins = npins;
2192 pin_range->pctldev = pinctrl_find_and_add_gpio_range(devname: pinctl_name,
2193 range: &pin_range->range);
2194 if (IS_ERR(ptr: pin_range->pctldev)) {
2195 ret = PTR_ERR(ptr: pin_range->pctldev);
2196 chip_err(gc, "could not create pin range\n");
2197 kfree(objp: pin_range);
2198 return ret;
2199 }
2200 chip_dbg(gc, "created GPIO range %d->%d ==> %s PIN %d->%d\n",
2201 gpio_offset, gpio_offset + npins - 1,
2202 pinctl_name,
2203 pin_offset, pin_offset + npins - 1);
2204
2205 list_add_tail(new: &pin_range->node, head: &gdev->pin_ranges);
2206
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(gpiochip_add_pin_range);
2210
2211/**
2212 * gpiochip_remove_pin_ranges() - remove all the GPIO <-> pin mappings
2213 * @gc: the chip to remove all the mappings for
2214 */
2215void gpiochip_remove_pin_ranges(struct gpio_chip *gc)
2216{
2217 struct gpio_pin_range *pin_range, *tmp;
2218 struct gpio_device *gdev = gc->gpiodev;
2219
2220 list_for_each_entry_safe(pin_range, tmp, &gdev->pin_ranges, node) {
2221 list_del(entry: &pin_range->node);
2222 pinctrl_remove_gpio_range(pctldev: pin_range->pctldev,
2223 range: &pin_range->range);
2224 kfree(objp: pin_range);
2225 }
2226}
2227EXPORT_SYMBOL_GPL(gpiochip_remove_pin_ranges);
2228
2229#endif /* CONFIG_PINCTRL */
2230
2231/* These "optional" allocation calls help prevent drivers from stomping
2232 * on each other, and help provide better diagnostics in debugfs.
2233 * They're called even less than the "set direction" calls.
2234 */
2235static int gpiod_request_commit(struct gpio_desc *desc, const char *label)
2236{
2237 unsigned int offset;
2238 int ret;
2239
2240 CLASS(gpio_chip_guard, guard)(desc);
2241 if (!guard.gc)
2242 return -ENODEV;
2243
2244 if (test_and_set_bit(FLAG_REQUESTED, addr: &desc->flags))
2245 return -EBUSY;
2246
2247 /* NOTE: gpio_request() can be called in early boot,
2248 * before IRQs are enabled, for non-sleeping (SOC) GPIOs.
2249 */
2250
2251 if (guard.gc->request) {
2252 offset = gpio_chip_hwgpio(desc);
2253 if (gpiochip_line_is_valid(guard.gc, offset))
2254 ret = guard.gc->request(guard.gc, offset);
2255 else
2256 ret = -EINVAL;
2257 if (ret)
2258 goto out_clear_bit;
2259 }
2260
2261 if (guard.gc->get_direction)
2262 gpiod_get_direction(desc);
2263
2264 ret = desc_set_label(desc, label: label ? : "?");
2265 if (ret)
2266 goto out_clear_bit;
2267
2268 return 0;
2269
2270out_clear_bit:
2271 clear_bit(FLAG_REQUESTED, addr: &desc->flags);
2272 return ret;
2273}
2274
2275/*
2276 * This descriptor validation needs to be inserted verbatim into each
2277 * function taking a descriptor, so we need to use a preprocessor
2278 * macro to avoid endless duplication. If the desc is NULL it is an
2279 * optional GPIO and calls should just bail out.
2280 */
2281static int validate_desc(const struct gpio_desc *desc, const char *func)
2282{
2283 if (!desc)
2284 return 0;
2285
2286 if (IS_ERR(ptr: desc)) {
2287 pr_warn("%s: invalid GPIO (errorpointer)\n", func);
2288 return PTR_ERR(ptr: desc);
2289 }
2290
2291 return 1;
2292}
2293
2294#define VALIDATE_DESC(desc) do { \
2295 int __valid = validate_desc(desc, __func__); \
2296 if (__valid <= 0) \
2297 return __valid; \
2298 } while (0)
2299
2300#define VALIDATE_DESC_VOID(desc) do { \
2301 int __valid = validate_desc(desc, __func__); \
2302 if (__valid <= 0) \
2303 return; \
2304 } while (0)
2305
2306int gpiod_request(struct gpio_desc *desc, const char *label)
2307{
2308 int ret = -EPROBE_DEFER;
2309
2310 VALIDATE_DESC(desc);
2311
2312 if (try_module_get(module: desc->gdev->owner)) {
2313 ret = gpiod_request_commit(desc, label);
2314 if (ret)
2315 module_put(module: desc->gdev->owner);
2316 else
2317 gpio_device_get(desc->gdev);
2318 }
2319
2320 if (ret)
2321 gpiod_dbg(desc, "%s: status %d\n", __func__, ret);
2322
2323 return ret;
2324}
2325
2326static void gpiod_free_commit(struct gpio_desc *desc)
2327{
2328 unsigned long flags;
2329
2330 might_sleep();
2331
2332 CLASS(gpio_chip_guard, guard)(desc);
2333
2334 flags = READ_ONCE(desc->flags);
2335
2336 if (guard.gc && test_bit(FLAG_REQUESTED, &flags)) {
2337 if (guard.gc->free)
2338 guard.gc->free(guard.gc, gpio_chip_hwgpio(desc));
2339
2340 clear_bit(FLAG_ACTIVE_LOW, addr: &flags);
2341 clear_bit(FLAG_REQUESTED, addr: &flags);
2342 clear_bit(FLAG_OPEN_DRAIN, addr: &flags);
2343 clear_bit(FLAG_OPEN_SOURCE, addr: &flags);
2344 clear_bit(FLAG_PULL_UP, addr: &flags);
2345 clear_bit(FLAG_PULL_DOWN, addr: &flags);
2346 clear_bit(FLAG_BIAS_DISABLE, addr: &flags);
2347 clear_bit(FLAG_EDGE_RISING, addr: &flags);
2348 clear_bit(FLAG_EDGE_FALLING, addr: &flags);
2349 clear_bit(FLAG_IS_HOGGED, addr: &flags);
2350#ifdef CONFIG_OF_DYNAMIC
2351 WRITE_ONCE(desc->hog, NULL);
2352#endif
2353 desc_set_label(desc, NULL);
2354 WRITE_ONCE(desc->flags, flags);
2355
2356 gpiod_line_state_notify(desc, action: GPIOLINE_CHANGED_RELEASED);
2357 }
2358}
2359
2360void gpiod_free(struct gpio_desc *desc)
2361{
2362 VALIDATE_DESC_VOID(desc);
2363
2364 gpiod_free_commit(desc);
2365 module_put(module: desc->gdev->owner);
2366 gpio_device_put(desc->gdev);
2367}
2368
2369/**
2370 * gpiochip_dup_line_label - Get a copy of the consumer label.
2371 * @gc: GPIO chip controlling this line.
2372 * @offset: Hardware offset of the line.
2373 *
2374 * Returns:
2375 * Pointer to a copy of the consumer label if the line is requested or NULL
2376 * if it's not. If a valid pointer was returned, it must be freed using
2377 * kfree(). In case of a memory allocation error, the function returns %ENOMEM.
2378 *
2379 * Must not be called from atomic context.
2380 */
2381char *gpiochip_dup_line_label(struct gpio_chip *gc, unsigned int offset)
2382{
2383 struct gpio_desc *desc;
2384 char *label;
2385
2386 desc = gpiochip_get_desc(gc, offset);
2387 if (IS_ERR(ptr: desc))
2388 return NULL;
2389
2390 if (!test_bit(FLAG_REQUESTED, &desc->flags))
2391 return NULL;
2392
2393 guard(srcu)(l: &desc->srcu);
2394
2395 label = kstrdup(s: gpiod_get_label(desc), GFP_KERNEL);
2396 if (!label)
2397 return ERR_PTR(error: -ENOMEM);
2398
2399 return label;
2400}
2401EXPORT_SYMBOL_GPL(gpiochip_dup_line_label);
2402
2403static inline const char *function_name_or_default(const char *con_id)
2404{
2405 return con_id ?: "(default)";
2406}
2407
2408/**
2409 * gpiochip_request_own_desc - Allow GPIO chip to request its own descriptor
2410 * @gc: GPIO chip
2411 * @hwnum: hardware number of the GPIO for which to request the descriptor
2412 * @label: label for the GPIO
2413 * @lflags: lookup flags for this GPIO or 0 if default, this can be used to
2414 * specify things like line inversion semantics with the machine flags
2415 * such as GPIO_OUT_LOW
2416 * @dflags: descriptor request flags for this GPIO or 0 if default, this
2417 * can be used to specify consumer semantics such as open drain
2418 *
2419 * Function allows GPIO chip drivers to request and use their own GPIO
2420 * descriptors via gpiolib API. Difference to gpiod_request() is that this
2421 * function will not increase reference count of the GPIO chip module. This
2422 * allows the GPIO chip module to be unloaded as needed (we assume that the
2423 * GPIO chip driver handles freeing the GPIOs it has requested).
2424 *
2425 * Returns:
2426 * A pointer to the GPIO descriptor, or an ERR_PTR()-encoded negative error
2427 * code on failure.
2428 */
2429struct gpio_desc *gpiochip_request_own_desc(struct gpio_chip *gc,
2430 unsigned int hwnum,
2431 const char *label,
2432 enum gpio_lookup_flags lflags,
2433 enum gpiod_flags dflags)
2434{
2435 struct gpio_desc *desc = gpiochip_get_desc(gc, hwnum);
2436 const char *name = function_name_or_default(con_id: label);
2437 int ret;
2438
2439 if (IS_ERR(ptr: desc)) {
2440 chip_err(gc, "failed to get GPIO %s descriptor\n", name);
2441 return desc;
2442 }
2443
2444 ret = gpiod_request_commit(desc, label);
2445 if (ret < 0)
2446 return ERR_PTR(error: ret);
2447
2448 ret = gpiod_configure_flags(desc, con_id: label, lflags, dflags);
2449 if (ret) {
2450 gpiod_free_commit(desc);
2451 chip_err(gc, "setup of own GPIO %s failed\n", name);
2452 return ERR_PTR(error: ret);
2453 }
2454
2455 return desc;
2456}
2457EXPORT_SYMBOL_GPL(gpiochip_request_own_desc);
2458
2459/**
2460 * gpiochip_free_own_desc - Free GPIO requested by the chip driver
2461 * @desc: GPIO descriptor to free
2462 *
2463 * Function frees the given GPIO requested previously with
2464 * gpiochip_request_own_desc().
2465 */
2466void gpiochip_free_own_desc(struct gpio_desc *desc)
2467{
2468 if (desc)
2469 gpiod_free_commit(desc);
2470}
2471EXPORT_SYMBOL_GPL(gpiochip_free_own_desc);
2472
2473/*
2474 * Drivers MUST set GPIO direction before making get/set calls. In
2475 * some cases this is done in early boot, before IRQs are enabled.
2476 *
2477 * As a rule these aren't called more than once (except for drivers
2478 * using the open-drain emulation idiom) so these are natural places
2479 * to accumulate extra debugging checks. Note that we can't (yet)
2480 * rely on gpio_request() having been called beforehand.
2481 */
2482
2483static int gpio_do_set_config(struct gpio_chip *gc, unsigned int offset,
2484 unsigned long config)
2485{
2486 if (!gc->set_config)
2487 return -ENOTSUPP;
2488
2489 return gc->set_config(gc, offset, config);
2490}
2491
2492static int gpio_set_config_with_argument(struct gpio_desc *desc,
2493 enum pin_config_param mode,
2494 u32 argument)
2495{
2496 unsigned long config;
2497
2498 CLASS(gpio_chip_guard, guard)(desc);
2499 if (!guard.gc)
2500 return -ENODEV;
2501
2502 config = pinconf_to_config_packed(param: mode, argument);
2503 return gpio_do_set_config(gc: guard.gc, offset: gpio_chip_hwgpio(desc), config);
2504}
2505
2506static int gpio_set_config_with_argument_optional(struct gpio_desc *desc,
2507 enum pin_config_param mode,
2508 u32 argument)
2509{
2510 struct device *dev = &desc->gdev->dev;
2511 int gpio = gpio_chip_hwgpio(desc);
2512 int ret;
2513
2514 ret = gpio_set_config_with_argument(desc, mode, argument);
2515 if (ret != -ENOTSUPP)
2516 return ret;
2517
2518 switch (mode) {
2519 case PIN_CONFIG_PERSIST_STATE:
2520 dev_dbg(dev, "Persistence not supported for GPIO %d\n", gpio);
2521 break;
2522 default:
2523 break;
2524 }
2525
2526 return 0;
2527}
2528
2529static int gpio_set_config(struct gpio_desc *desc, enum pin_config_param mode)
2530{
2531 return gpio_set_config_with_argument(desc, mode, argument: 0);
2532}
2533
2534static int gpio_set_bias(struct gpio_desc *desc)
2535{
2536 enum pin_config_param bias;
2537 unsigned long flags;
2538 unsigned int arg;
2539
2540 flags = READ_ONCE(desc->flags);
2541
2542 if (test_bit(FLAG_BIAS_DISABLE, &flags))
2543 bias = PIN_CONFIG_BIAS_DISABLE;
2544 else if (test_bit(FLAG_PULL_UP, &flags))
2545 bias = PIN_CONFIG_BIAS_PULL_UP;
2546 else if (test_bit(FLAG_PULL_DOWN, &flags))
2547 bias = PIN_CONFIG_BIAS_PULL_DOWN;
2548 else
2549 return 0;
2550
2551 switch (bias) {
2552 case PIN_CONFIG_BIAS_PULL_DOWN:
2553 case PIN_CONFIG_BIAS_PULL_UP:
2554 arg = 1;
2555 break;
2556
2557 default:
2558 arg = 0;
2559 break;
2560 }
2561
2562 return gpio_set_config_with_argument_optional(desc, mode: bias, argument: arg);
2563}
2564
2565/**
2566 * gpio_set_debounce_timeout() - Set debounce timeout
2567 * @desc: GPIO descriptor to set the debounce timeout
2568 * @debounce: Debounce timeout in microseconds
2569 *
2570 * The function calls the certain GPIO driver to set debounce timeout
2571 * in the hardware.
2572 *
2573 * Returns 0 on success, or negative error code otherwise.
2574 */
2575int gpio_set_debounce_timeout(struct gpio_desc *desc, unsigned int debounce)
2576{
2577 return gpio_set_config_with_argument_optional(desc,
2578 mode: PIN_CONFIG_INPUT_DEBOUNCE,
2579 argument: debounce);
2580}
2581
2582/**
2583 * gpiod_direction_input - set the GPIO direction to input
2584 * @desc: GPIO to set to input
2585 *
2586 * Set the direction of the passed GPIO to input, such as gpiod_get_value() can
2587 * be called safely on it.
2588 *
2589 * Return 0 in case of success, else an error code.
2590 */
2591int gpiod_direction_input(struct gpio_desc *desc)
2592{
2593 int ret = 0;
2594
2595 VALIDATE_DESC(desc);
2596
2597 CLASS(gpio_chip_guard, guard)(desc);
2598 if (!guard.gc)
2599 return -ENODEV;
2600
2601 /*
2602 * It is legal to have no .get() and .direction_input() specified if
2603 * the chip is output-only, but you can't specify .direction_input()
2604 * and not support the .get() operation, that doesn't make sense.
2605 */
2606 if (!guard.gc->get && guard.gc->direction_input) {
2607 gpiod_warn(desc,
2608 "%s: missing get() but have direction_input()\n",
2609 __func__);
2610 return -EIO;
2611 }
2612
2613 /*
2614 * If we have a .direction_input() callback, things are simple,
2615 * just call it. Else we are some input-only chip so try to check the
2616 * direction (if .get_direction() is supported) else we silently
2617 * assume we are in input mode after this.
2618 */
2619 if (guard.gc->direction_input) {
2620 ret = guard.gc->direction_input(guard.gc,
2621 gpio_chip_hwgpio(desc));
2622 } else if (guard.gc->get_direction &&
2623 (guard.gc->get_direction(guard.gc,
2624 gpio_chip_hwgpio(desc)) != 1)) {
2625 gpiod_warn(desc,
2626 "%s: missing direction_input() operation and line is output\n",
2627 __func__);
2628 return -EIO;
2629 }
2630 if (ret == 0) {
2631 clear_bit(FLAG_IS_OUT, addr: &desc->flags);
2632 ret = gpio_set_bias(desc);
2633 }
2634
2635 trace_gpio_direction(gpio: desc_to_gpio(desc), in: 1, err: ret);
2636
2637 return ret;
2638}
2639EXPORT_SYMBOL_GPL(gpiod_direction_input);
2640
2641static int gpiod_direction_output_raw_commit(struct gpio_desc *desc, int value)
2642{
2643 int val = !!value, ret = 0;
2644
2645 CLASS(gpio_chip_guard, guard)(desc);
2646 if (!guard.gc)
2647 return -ENODEV;
2648
2649 /*
2650 * It's OK not to specify .direction_output() if the gpiochip is
2651 * output-only, but if there is then not even a .set() operation it
2652 * is pretty tricky to drive the output line.
2653 */
2654 if (!guard.gc->set && !guard.gc->direction_output) {
2655 gpiod_warn(desc,
2656 "%s: missing set() and direction_output() operations\n",
2657 __func__);
2658 return -EIO;
2659 }
2660
2661 if (guard.gc->direction_output) {
2662 ret = guard.gc->direction_output(guard.gc,
2663 gpio_chip_hwgpio(desc), val);
2664 } else {
2665 /* Check that we are in output mode if we can */
2666 if (guard.gc->get_direction &&
2667 guard.gc->get_direction(guard.gc, gpio_chip_hwgpio(desc))) {
2668 gpiod_warn(desc,
2669 "%s: missing direction_output() operation\n",
2670 __func__);
2671 return -EIO;
2672 }
2673 /*
2674 * If we can't actively set the direction, we are some
2675 * output-only chip, so just drive the output as desired.
2676 */
2677 guard.gc->set(guard.gc, gpio_chip_hwgpio(desc), val);
2678 }
2679
2680 if (!ret)
2681 set_bit(FLAG_IS_OUT, addr: &desc->flags);
2682 trace_gpio_value(gpio: desc_to_gpio(desc), get: 0, value: val);
2683 trace_gpio_direction(gpio: desc_to_gpio(desc), in: 0, err: ret);
2684 return ret;
2685}
2686
2687/**
2688 * gpiod_direction_output_raw - set the GPIO direction to output
2689 * @desc: GPIO to set to output
2690 * @value: initial output value of the GPIO
2691 *
2692 * Set the direction of the passed GPIO to output, such as gpiod_set_value() can
2693 * be called safely on it. The initial value of the output must be specified
2694 * as raw value on the physical line without regard for the ACTIVE_LOW status.
2695 *
2696 * Return 0 in case of success, else an error code.
2697 */
2698int gpiod_direction_output_raw(struct gpio_desc *desc, int value)
2699{
2700 VALIDATE_DESC(desc);
2701 return gpiod_direction_output_raw_commit(desc, value);
2702}
2703EXPORT_SYMBOL_GPL(gpiod_direction_output_raw);
2704
2705/**
2706 * gpiod_direction_output - set the GPIO direction to output
2707 * @desc: GPIO to set to output
2708 * @value: initial output value of the GPIO
2709 *
2710 * Set the direction of the passed GPIO to output, such as gpiod_set_value() can
2711 * be called safely on it. The initial value of the output must be specified
2712 * as the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into
2713 * account.
2714 *
2715 * Return 0 in case of success, else an error code.
2716 */
2717int gpiod_direction_output(struct gpio_desc *desc, int value)
2718{
2719 unsigned long flags;
2720 int ret;
2721
2722 VALIDATE_DESC(desc);
2723
2724 flags = READ_ONCE(desc->flags);
2725
2726 if (test_bit(FLAG_ACTIVE_LOW, &flags))
2727 value = !value;
2728 else
2729 value = !!value;
2730
2731 /* GPIOs used for enabled IRQs shall not be set as output */
2732 if (test_bit(FLAG_USED_AS_IRQ, &flags) &&
2733 test_bit(FLAG_IRQ_IS_ENABLED, &flags)) {
2734 gpiod_err(desc,
2735 "%s: tried to set a GPIO tied to an IRQ as output\n",
2736 __func__);
2737 return -EIO;
2738 }
2739
2740 if (test_bit(FLAG_OPEN_DRAIN, &flags)) {
2741 /* First see if we can enable open drain in hardware */
2742 ret = gpio_set_config(desc, mode: PIN_CONFIG_DRIVE_OPEN_DRAIN);
2743 if (!ret)
2744 goto set_output_value;
2745 /* Emulate open drain by not actively driving the line high */
2746 if (value) {
2747 ret = gpiod_direction_input(desc);
2748 goto set_output_flag;
2749 }
2750 } else if (test_bit(FLAG_OPEN_SOURCE, &flags)) {
2751 ret = gpio_set_config(desc, mode: PIN_CONFIG_DRIVE_OPEN_SOURCE);
2752 if (!ret)
2753 goto set_output_value;
2754 /* Emulate open source by not actively driving the line low */
2755 if (!value) {
2756 ret = gpiod_direction_input(desc);
2757 goto set_output_flag;
2758 }
2759 } else {
2760 gpio_set_config(desc, mode: PIN_CONFIG_DRIVE_PUSH_PULL);
2761 }
2762
2763set_output_value:
2764 ret = gpio_set_bias(desc);
2765 if (ret)
2766 return ret;
2767 return gpiod_direction_output_raw_commit(desc, value);
2768
2769set_output_flag:
2770 /*
2771 * When emulating open-source or open-drain functionalities by not
2772 * actively driving the line (setting mode to input) we still need to
2773 * set the IS_OUT flag or otherwise we won't be able to set the line
2774 * value anymore.
2775 */
2776 if (ret == 0)
2777 set_bit(FLAG_IS_OUT, addr: &desc->flags);
2778 return ret;
2779}
2780EXPORT_SYMBOL_GPL(gpiod_direction_output);
2781
2782/**
2783 * gpiod_enable_hw_timestamp_ns - Enable hardware timestamp in nanoseconds.
2784 *
2785 * @desc: GPIO to enable.
2786 * @flags: Flags related to GPIO edge.
2787 *
2788 * Return 0 in case of success, else negative error code.
2789 */
2790int gpiod_enable_hw_timestamp_ns(struct gpio_desc *desc, unsigned long flags)
2791{
2792 int ret = 0;
2793
2794 VALIDATE_DESC(desc);
2795
2796 CLASS(gpio_chip_guard, guard)(desc);
2797 if (!guard.gc)
2798 return -ENODEV;
2799
2800 if (!guard.gc->en_hw_timestamp) {
2801 gpiod_warn(desc, "%s: hw ts not supported\n", __func__);
2802 return -ENOTSUPP;
2803 }
2804
2805 ret = guard.gc->en_hw_timestamp(guard.gc,
2806 gpio_chip_hwgpio(desc), flags);
2807 if (ret)
2808 gpiod_warn(desc, "%s: hw ts request failed\n", __func__);
2809
2810 return ret;
2811}
2812EXPORT_SYMBOL_GPL(gpiod_enable_hw_timestamp_ns);
2813
2814/**
2815 * gpiod_disable_hw_timestamp_ns - Disable hardware timestamp.
2816 *
2817 * @desc: GPIO to disable.
2818 * @flags: Flags related to GPIO edge, same value as used during enable call.
2819 *
2820 * Return 0 in case of success, else negative error code.
2821 */
2822int gpiod_disable_hw_timestamp_ns(struct gpio_desc *desc, unsigned long flags)
2823{
2824 int ret = 0;
2825
2826 VALIDATE_DESC(desc);
2827
2828 CLASS(gpio_chip_guard, guard)(desc);
2829 if (!guard.gc)
2830 return -ENODEV;
2831
2832 if (!guard.gc->dis_hw_timestamp) {
2833 gpiod_warn(desc, "%s: hw ts not supported\n", __func__);
2834 return -ENOTSUPP;
2835 }
2836
2837 ret = guard.gc->dis_hw_timestamp(guard.gc, gpio_chip_hwgpio(desc),
2838 flags);
2839 if (ret)
2840 gpiod_warn(desc, "%s: hw ts release failed\n", __func__);
2841
2842 return ret;
2843}
2844EXPORT_SYMBOL_GPL(gpiod_disable_hw_timestamp_ns);
2845
2846/**
2847 * gpiod_set_config - sets @config for a GPIO
2848 * @desc: descriptor of the GPIO for which to set the configuration
2849 * @config: Same packed config format as generic pinconf
2850 *
2851 * Returns:
2852 * 0 on success, %-ENOTSUPP if the controller doesn't support setting the
2853 * configuration.
2854 */
2855int gpiod_set_config(struct gpio_desc *desc, unsigned long config)
2856{
2857 VALIDATE_DESC(desc);
2858
2859 CLASS(gpio_chip_guard, guard)(desc);
2860 if (!guard.gc)
2861 return -ENODEV;
2862
2863 return gpio_do_set_config(gc: guard.gc, offset: gpio_chip_hwgpio(desc), config);
2864}
2865EXPORT_SYMBOL_GPL(gpiod_set_config);
2866
2867/**
2868 * gpiod_set_debounce - sets @debounce time for a GPIO
2869 * @desc: descriptor of the GPIO for which to set debounce time
2870 * @debounce: debounce time in microseconds
2871 *
2872 * Returns:
2873 * 0 on success, %-ENOTSUPP if the controller doesn't support setting the
2874 * debounce time.
2875 */
2876int gpiod_set_debounce(struct gpio_desc *desc, unsigned int debounce)
2877{
2878 unsigned long config;
2879
2880 config = pinconf_to_config_packed(param: PIN_CONFIG_INPUT_DEBOUNCE, argument: debounce);
2881 return gpiod_set_config(desc, config);
2882}
2883EXPORT_SYMBOL_GPL(gpiod_set_debounce);
2884
2885/**
2886 * gpiod_set_transitory - Lose or retain GPIO state on suspend or reset
2887 * @desc: descriptor of the GPIO for which to configure persistence
2888 * @transitory: True to lose state on suspend or reset, false for persistence
2889 *
2890 * Returns:
2891 * 0 on success, otherwise a negative error code.
2892 */
2893int gpiod_set_transitory(struct gpio_desc *desc, bool transitory)
2894{
2895 VALIDATE_DESC(desc);
2896 /*
2897 * Handle FLAG_TRANSITORY first, enabling queries to gpiolib for
2898 * persistence state.
2899 */
2900 assign_bit(FLAG_TRANSITORY, addr: &desc->flags, value: transitory);
2901
2902 /* If the driver supports it, set the persistence state now */
2903 return gpio_set_config_with_argument_optional(desc,
2904 mode: PIN_CONFIG_PERSIST_STATE,
2905 argument: !transitory);
2906}
2907
2908/**
2909 * gpiod_is_active_low - test whether a GPIO is active-low or not
2910 * @desc: the gpio descriptor to test
2911 *
2912 * Returns 1 if the GPIO is active-low, 0 otherwise.
2913 */
2914int gpiod_is_active_low(const struct gpio_desc *desc)
2915{
2916 VALIDATE_DESC(desc);
2917 return test_bit(FLAG_ACTIVE_LOW, &desc->flags);
2918}
2919EXPORT_SYMBOL_GPL(gpiod_is_active_low);
2920
2921/**
2922 * gpiod_toggle_active_low - toggle whether a GPIO is active-low or not
2923 * @desc: the gpio descriptor to change
2924 */
2925void gpiod_toggle_active_low(struct gpio_desc *desc)
2926{
2927 VALIDATE_DESC_VOID(desc);
2928 change_bit(FLAG_ACTIVE_LOW, addr: &desc->flags);
2929}
2930EXPORT_SYMBOL_GPL(gpiod_toggle_active_low);
2931
2932static int gpio_chip_get_value(struct gpio_chip *gc, const struct gpio_desc *desc)
2933{
2934 return gc->get ? gc->get(gc, gpio_chip_hwgpio(desc)) : -EIO;
2935}
2936
2937/* I/O calls are only valid after configuration completed; the relevant
2938 * "is this a valid GPIO" error checks should already have been done.
2939 *
2940 * "Get" operations are often inlinable as reading a pin value register,
2941 * and masking the relevant bit in that register.
2942 *
2943 * When "set" operations are inlinable, they involve writing that mask to
2944 * one register to set a low value, or a different register to set it high.
2945 * Otherwise locking is needed, so there may be little value to inlining.
2946 *
2947 *------------------------------------------------------------------------
2948 *
2949 * IMPORTANT!!! The hot paths -- get/set value -- assume that callers
2950 * have requested the GPIO. That can include implicit requesting by
2951 * a direction setting call. Marking a gpio as requested locks its chip
2952 * in memory, guaranteeing that these table lookups need no more locking
2953 * and that gpiochip_remove() will fail.
2954 *
2955 * REVISIT when debugging, consider adding some instrumentation to ensure
2956 * that the GPIO was actually requested.
2957 */
2958
2959static int gpiod_get_raw_value_commit(const struct gpio_desc *desc)
2960{
2961 struct gpio_device *gdev;
2962 struct gpio_chip *gc;
2963 int value;
2964
2965 /* FIXME Unable to use gpio_chip_guard due to const desc. */
2966 gdev = desc->gdev;
2967
2968 guard(srcu)(l: &gdev->srcu);
2969
2970 gc = srcu_dereference(gdev->chip, &gdev->srcu);
2971 if (!gc)
2972 return -ENODEV;
2973
2974 value = gpio_chip_get_value(gc, desc);
2975 value = value < 0 ? value : !!value;
2976 trace_gpio_value(gpio: desc_to_gpio(desc), get: 1, value);
2977 return value;
2978}
2979
2980static int gpio_chip_get_multiple(struct gpio_chip *gc,
2981 unsigned long *mask, unsigned long *bits)
2982{
2983 if (gc->get_multiple)
2984 return gc->get_multiple(gc, mask, bits);
2985 if (gc->get) {
2986 int i, value;
2987
2988 for_each_set_bit(i, mask, gc->ngpio) {
2989 value = gc->get(gc, i);
2990 if (value < 0)
2991 return value;
2992 __assign_bit(nr: i, addr: bits, value);
2993 }
2994 return 0;
2995 }
2996 return -EIO;
2997}
2998
2999/* The 'other' chip must be protected with its GPIO device's SRCU. */
3000static bool gpio_device_chip_cmp(struct gpio_device *gdev, struct gpio_chip *gc)
3001{
3002 guard(srcu)(l: &gdev->srcu);
3003
3004 return gc == srcu_dereference(gdev->chip, &gdev->srcu);
3005}
3006
3007int gpiod_get_array_value_complex(bool raw, bool can_sleep,
3008 unsigned int array_size,
3009 struct gpio_desc **desc_array,
3010 struct gpio_array *array_info,
3011 unsigned long *value_bitmap)
3012{
3013 int ret, i = 0;
3014
3015 /*
3016 * Validate array_info against desc_array and its size.
3017 * It should immediately follow desc_array if both
3018 * have been obtained from the same gpiod_get_array() call.
3019 */
3020 if (array_info && array_info->desc == desc_array &&
3021 array_size <= array_info->size &&
3022 (void *)array_info == desc_array + array_info->size) {
3023 if (!can_sleep)
3024 WARN_ON(array_info->chip->can_sleep);
3025
3026 ret = gpio_chip_get_multiple(gc: array_info->chip,
3027 mask: array_info->get_mask,
3028 bits: value_bitmap);
3029 if (ret)
3030 return ret;
3031
3032 if (!raw && !bitmap_empty(src: array_info->invert_mask, nbits: array_size))
3033 bitmap_xor(dst: value_bitmap, src1: value_bitmap,
3034 src2: array_info->invert_mask, nbits: array_size);
3035
3036 i = find_first_zero_bit(addr: array_info->get_mask, size: array_size);
3037 if (i == array_size)
3038 return 0;
3039 } else {
3040 array_info = NULL;
3041 }
3042
3043 while (i < array_size) {
3044 DECLARE_BITMAP(fastpath_mask, FASTPATH_NGPIO);
3045 DECLARE_BITMAP(fastpath_bits, FASTPATH_NGPIO);
3046 unsigned long *mask, *bits;
3047 int first, j;
3048
3049 CLASS(gpio_chip_guard, guard)(desc: desc_array[i]);
3050 if (!guard.gc)
3051 return -ENODEV;
3052
3053 if (likely(guard.gc->ngpio <= FASTPATH_NGPIO)) {
3054 mask = fastpath_mask;
3055 bits = fastpath_bits;
3056 } else {
3057 gfp_t flags = can_sleep ? GFP_KERNEL : GFP_ATOMIC;
3058
3059 mask = bitmap_alloc(nbits: guard.gc->ngpio, flags);
3060 if (!mask)
3061 return -ENOMEM;
3062
3063 bits = bitmap_alloc(nbits: guard.gc->ngpio, flags);
3064 if (!bits) {
3065 bitmap_free(bitmap: mask);
3066 return -ENOMEM;
3067 }
3068 }
3069
3070 bitmap_zero(dst: mask, nbits: guard.gc->ngpio);
3071
3072 if (!can_sleep)
3073 WARN_ON(guard.gc->can_sleep);
3074
3075 /* collect all inputs belonging to the same chip */
3076 first = i;
3077 do {
3078 const struct gpio_desc *desc = desc_array[i];
3079 int hwgpio = gpio_chip_hwgpio(desc);
3080
3081 __set_bit(hwgpio, mask);
3082 i++;
3083
3084 if (array_info)
3085 i = find_next_zero_bit(addr: array_info->get_mask,
3086 size: array_size, offset: i);
3087 } while ((i < array_size) &&
3088 gpio_device_chip_cmp(gdev: desc_array[i]->gdev, gc: guard.gc));
3089
3090 ret = gpio_chip_get_multiple(gc: guard.gc, mask, bits);
3091 if (ret) {
3092 if (mask != fastpath_mask)
3093 bitmap_free(bitmap: mask);
3094 if (bits != fastpath_bits)
3095 bitmap_free(bitmap: bits);
3096 return ret;
3097 }
3098
3099 for (j = first; j < i; ) {
3100 const struct gpio_desc *desc = desc_array[j];
3101 int hwgpio = gpio_chip_hwgpio(desc);
3102 int value = test_bit(hwgpio, bits);
3103
3104 if (!raw && test_bit(FLAG_ACTIVE_LOW, &desc->flags))
3105 value = !value;
3106 __assign_bit(nr: j, addr: value_bitmap, value);
3107 trace_gpio_value(gpio: desc_to_gpio(desc), get: 1, value);
3108 j++;
3109
3110 if (array_info)
3111 j = find_next_zero_bit(addr: array_info->get_mask, size: i,
3112 offset: j);
3113 }
3114
3115 if (mask != fastpath_mask)
3116 bitmap_free(bitmap: mask);
3117 if (bits != fastpath_bits)
3118 bitmap_free(bitmap: bits);
3119 }
3120 return 0;
3121}
3122
3123/**
3124 * gpiod_get_raw_value() - return a gpio's raw value
3125 * @desc: gpio whose value will be returned
3126 *
3127 * Return the GPIO's raw value, i.e. the value of the physical line disregarding
3128 * its ACTIVE_LOW status, or negative errno on failure.
3129 *
3130 * This function can be called from contexts where we cannot sleep, and will
3131 * complain if the GPIO chip functions potentially sleep.
3132 */
3133int gpiod_get_raw_value(const struct gpio_desc *desc)
3134{
3135 VALIDATE_DESC(desc);
3136 /* Should be using gpiod_get_raw_value_cansleep() */
3137 WARN_ON(desc->gdev->can_sleep);
3138 return gpiod_get_raw_value_commit(desc);
3139}
3140EXPORT_SYMBOL_GPL(gpiod_get_raw_value);
3141
3142/**
3143 * gpiod_get_value() - return a gpio's value
3144 * @desc: gpio whose value will be returned
3145 *
3146 * Return the GPIO's logical value, i.e. taking the ACTIVE_LOW status into
3147 * account, or negative errno on failure.
3148 *
3149 * This function can be called from contexts where we cannot sleep, and will
3150 * complain if the GPIO chip functions potentially sleep.
3151 */
3152int gpiod_get_value(const struct gpio_desc *desc)
3153{
3154 int value;
3155
3156 VALIDATE_DESC(desc);
3157 /* Should be using gpiod_get_value_cansleep() */
3158 WARN_ON(desc->gdev->can_sleep);
3159
3160 value = gpiod_get_raw_value_commit(desc);
3161 if (value < 0)
3162 return value;
3163
3164 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags))
3165 value = !value;
3166
3167 return value;
3168}
3169EXPORT_SYMBOL_GPL(gpiod_get_value);
3170
3171/**
3172 * gpiod_get_raw_array_value() - read raw values from an array of GPIOs
3173 * @array_size: number of elements in the descriptor array / value bitmap
3174 * @desc_array: array of GPIO descriptors whose values will be read
3175 * @array_info: information on applicability of fast bitmap processing path
3176 * @value_bitmap: bitmap to store the read values
3177 *
3178 * Read the raw values of the GPIOs, i.e. the values of the physical lines
3179 * without regard for their ACTIVE_LOW status. Return 0 in case of success,
3180 * else an error code.
3181 *
3182 * This function can be called from contexts where we cannot sleep,
3183 * and it will complain if the GPIO chip functions potentially sleep.
3184 */
3185int gpiod_get_raw_array_value(unsigned int array_size,
3186 struct gpio_desc **desc_array,
3187 struct gpio_array *array_info,
3188 unsigned long *value_bitmap)
3189{
3190 if (!desc_array)
3191 return -EINVAL;
3192 return gpiod_get_array_value_complex(raw: true, can_sleep: false, array_size,
3193 desc_array, array_info,
3194 value_bitmap);
3195}
3196EXPORT_SYMBOL_GPL(gpiod_get_raw_array_value);
3197
3198/**
3199 * gpiod_get_array_value() - read values from an array of GPIOs
3200 * @array_size: number of elements in the descriptor array / value bitmap
3201 * @desc_array: array of GPIO descriptors whose values will be read
3202 * @array_info: information on applicability of fast bitmap processing path
3203 * @value_bitmap: bitmap to store the read values
3204 *
3205 * Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status
3206 * into account. Return 0 in case of success, else an error code.
3207 *
3208 * This function can be called from contexts where we cannot sleep,
3209 * and it will complain if the GPIO chip functions potentially sleep.
3210 */
3211int gpiod_get_array_value(unsigned int array_size,
3212 struct gpio_desc **desc_array,
3213 struct gpio_array *array_info,
3214 unsigned long *value_bitmap)
3215{
3216 if (!desc_array)
3217 return -EINVAL;
3218 return gpiod_get_array_value_complex(raw: false, can_sleep: false, array_size,
3219 desc_array, array_info,
3220 value_bitmap);
3221}
3222EXPORT_SYMBOL_GPL(gpiod_get_array_value);
3223
3224/*
3225 * gpio_set_open_drain_value_commit() - Set the open drain gpio's value.
3226 * @desc: gpio descriptor whose state need to be set.
3227 * @value: Non-zero for setting it HIGH otherwise it will set to LOW.
3228 */
3229static void gpio_set_open_drain_value_commit(struct gpio_desc *desc, bool value)
3230{
3231 int ret = 0, offset = gpio_chip_hwgpio(desc);
3232
3233 CLASS(gpio_chip_guard, guard)(desc);
3234 if (!guard.gc)
3235 return;
3236
3237 if (value) {
3238 ret = guard.gc->direction_input(guard.gc, offset);
3239 } else {
3240 ret = guard.gc->direction_output(guard.gc, offset, 0);
3241 if (!ret)
3242 set_bit(FLAG_IS_OUT, addr: &desc->flags);
3243 }
3244 trace_gpio_direction(gpio: desc_to_gpio(desc), in: value, err: ret);
3245 if (ret < 0)
3246 gpiod_err(desc,
3247 "%s: Error in set_value for open drain err %d\n",
3248 __func__, ret);
3249}
3250
3251/*
3252 * _gpio_set_open_source_value() - Set the open source gpio's value.
3253 * @desc: gpio descriptor whose state need to be set.
3254 * @value: Non-zero for setting it HIGH otherwise it will set to LOW.
3255 */
3256static void gpio_set_open_source_value_commit(struct gpio_desc *desc, bool value)
3257{
3258 int ret = 0, offset = gpio_chip_hwgpio(desc);
3259
3260 CLASS(gpio_chip_guard, guard)(desc);
3261 if (!guard.gc)
3262 return;
3263
3264 if (value) {
3265 ret = guard.gc->direction_output(guard.gc, offset, 1);
3266 if (!ret)
3267 set_bit(FLAG_IS_OUT, addr: &desc->flags);
3268 } else {
3269 ret = guard.gc->direction_input(guard.gc, offset);
3270 }
3271 trace_gpio_direction(gpio: desc_to_gpio(desc), in: !value, err: ret);
3272 if (ret < 0)
3273 gpiod_err(desc,
3274 "%s: Error in set_value for open source err %d\n",
3275 __func__, ret);
3276}
3277
3278static void gpiod_set_raw_value_commit(struct gpio_desc *desc, bool value)
3279{
3280 CLASS(gpio_chip_guard, guard)(desc);
3281 if (!guard.gc)
3282 return;
3283
3284 trace_gpio_value(gpio: desc_to_gpio(desc), get: 0, value);
3285 guard.gc->set(guard.gc, gpio_chip_hwgpio(desc), value);
3286}
3287
3288/*
3289 * set multiple outputs on the same chip;
3290 * use the chip's set_multiple function if available;
3291 * otherwise set the outputs sequentially;
3292 * @chip: the GPIO chip we operate on
3293 * @mask: bit mask array; one bit per output; BITS_PER_LONG bits per word
3294 * defines which outputs are to be changed
3295 * @bits: bit value array; one bit per output; BITS_PER_LONG bits per word
3296 * defines the values the outputs specified by mask are to be set to
3297 */
3298static void gpio_chip_set_multiple(struct gpio_chip *gc,
3299 unsigned long *mask, unsigned long *bits)
3300{
3301 if (gc->set_multiple) {
3302 gc->set_multiple(gc, mask, bits);
3303 } else {
3304 unsigned int i;
3305
3306 /* set outputs if the corresponding mask bit is set */
3307 for_each_set_bit(i, mask, gc->ngpio)
3308 gc->set(gc, i, test_bit(i, bits));
3309 }
3310}
3311
3312int gpiod_set_array_value_complex(bool raw, bool can_sleep,
3313 unsigned int array_size,
3314 struct gpio_desc **desc_array,
3315 struct gpio_array *array_info,
3316 unsigned long *value_bitmap)
3317{
3318 int i = 0;
3319
3320 /*
3321 * Validate array_info against desc_array and its size.
3322 * It should immediately follow desc_array if both
3323 * have been obtained from the same gpiod_get_array() call.
3324 */
3325 if (array_info && array_info->desc == desc_array &&
3326 array_size <= array_info->size &&
3327 (void *)array_info == desc_array + array_info->size) {
3328 if (!can_sleep)
3329 WARN_ON(array_info->chip->can_sleep);
3330
3331 if (!raw && !bitmap_empty(src: array_info->invert_mask, nbits: array_size))
3332 bitmap_xor(dst: value_bitmap, src1: value_bitmap,
3333 src2: array_info->invert_mask, nbits: array_size);
3334
3335 gpio_chip_set_multiple(gc: array_info->chip, mask: array_info->set_mask,
3336 bits: value_bitmap);
3337
3338 i = find_first_zero_bit(addr: array_info->set_mask, size: array_size);
3339 if (i == array_size)
3340 return 0;
3341 } else {
3342 array_info = NULL;
3343 }
3344
3345 while (i < array_size) {
3346 DECLARE_BITMAP(fastpath_mask, FASTPATH_NGPIO);
3347 DECLARE_BITMAP(fastpath_bits, FASTPATH_NGPIO);
3348 unsigned long *mask, *bits;
3349 int count = 0;
3350
3351 CLASS(gpio_chip_guard, guard)(desc: desc_array[i]);
3352 if (!guard.gc)
3353 return -ENODEV;
3354
3355 if (likely(guard.gc->ngpio <= FASTPATH_NGPIO)) {
3356 mask = fastpath_mask;
3357 bits = fastpath_bits;
3358 } else {
3359 gfp_t flags = can_sleep ? GFP_KERNEL : GFP_ATOMIC;
3360
3361 mask = bitmap_alloc(nbits: guard.gc->ngpio, flags);
3362 if (!mask)
3363 return -ENOMEM;
3364
3365 bits = bitmap_alloc(nbits: guard.gc->ngpio, flags);
3366 if (!bits) {
3367 bitmap_free(bitmap: mask);
3368 return -ENOMEM;
3369 }
3370 }
3371
3372 bitmap_zero(dst: mask, nbits: guard.gc->ngpio);
3373
3374 if (!can_sleep)
3375 WARN_ON(guard.gc->can_sleep);
3376
3377 do {
3378 struct gpio_desc *desc = desc_array[i];
3379 int hwgpio = gpio_chip_hwgpio(desc);
3380 int value = test_bit(i, value_bitmap);
3381
3382 /*
3383 * Pins applicable for fast input but not for
3384 * fast output processing may have been already
3385 * inverted inside the fast path, skip them.
3386 */
3387 if (!raw && !(array_info &&
3388 test_bit(i, array_info->invert_mask)) &&
3389 test_bit(FLAG_ACTIVE_LOW, &desc->flags))
3390 value = !value;
3391 trace_gpio_value(gpio: desc_to_gpio(desc), get: 0, value);
3392 /*
3393 * collect all normal outputs belonging to the same chip
3394 * open drain and open source outputs are set individually
3395 */
3396 if (test_bit(FLAG_OPEN_DRAIN, &desc->flags) && !raw) {
3397 gpio_set_open_drain_value_commit(desc, value);
3398 } else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags) && !raw) {
3399 gpio_set_open_source_value_commit(desc, value);
3400 } else {
3401 __set_bit(hwgpio, mask);
3402 __assign_bit(nr: hwgpio, addr: bits, value);
3403 count++;
3404 }
3405 i++;
3406
3407 if (array_info)
3408 i = find_next_zero_bit(addr: array_info->set_mask,
3409 size: array_size, offset: i);
3410 } while ((i < array_size) &&
3411 gpio_device_chip_cmp(gdev: desc_array[i]->gdev, gc: guard.gc));
3412 /* push collected bits to outputs */
3413 if (count != 0)
3414 gpio_chip_set_multiple(gc: guard.gc, mask, bits);
3415
3416 if (mask != fastpath_mask)
3417 bitmap_free(bitmap: mask);
3418 if (bits != fastpath_bits)
3419 bitmap_free(bitmap: bits);
3420 }
3421 return 0;
3422}
3423
3424/**
3425 * gpiod_set_raw_value() - assign a gpio's raw value
3426 * @desc: gpio whose value will be assigned
3427 * @value: value to assign
3428 *
3429 * Set the raw value of the GPIO, i.e. the value of its physical line without
3430 * regard for its ACTIVE_LOW status.
3431 *
3432 * This function can be called from contexts where we cannot sleep, and will
3433 * complain if the GPIO chip functions potentially sleep.
3434 */
3435void gpiod_set_raw_value(struct gpio_desc *desc, int value)
3436{
3437 VALIDATE_DESC_VOID(desc);
3438 /* Should be using gpiod_set_raw_value_cansleep() */
3439 WARN_ON(desc->gdev->can_sleep);
3440 gpiod_set_raw_value_commit(desc, value);
3441}
3442EXPORT_SYMBOL_GPL(gpiod_set_raw_value);
3443
3444/**
3445 * gpiod_set_value_nocheck() - set a GPIO line value without checking
3446 * @desc: the descriptor to set the value on
3447 * @value: value to set
3448 *
3449 * This sets the value of a GPIO line backing a descriptor, applying
3450 * different semantic quirks like active low and open drain/source
3451 * handling.
3452 */
3453static void gpiod_set_value_nocheck(struct gpio_desc *desc, int value)
3454{
3455 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags))
3456 value = !value;
3457 if (test_bit(FLAG_OPEN_DRAIN, &desc->flags))
3458 gpio_set_open_drain_value_commit(desc, value);
3459 else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags))
3460 gpio_set_open_source_value_commit(desc, value);
3461 else
3462 gpiod_set_raw_value_commit(desc, value);
3463}
3464
3465/**
3466 * gpiod_set_value() - assign a gpio's value
3467 * @desc: gpio whose value will be assigned
3468 * @value: value to assign
3469 *
3470 * Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW,
3471 * OPEN_DRAIN and OPEN_SOURCE flags into account.
3472 *
3473 * This function can be called from contexts where we cannot sleep, and will
3474 * complain if the GPIO chip functions potentially sleep.
3475 */
3476void gpiod_set_value(struct gpio_desc *desc, int value)
3477{
3478 VALIDATE_DESC_VOID(desc);
3479 /* Should be using gpiod_set_value_cansleep() */
3480 WARN_ON(desc->gdev->can_sleep);
3481 gpiod_set_value_nocheck(desc, value);
3482}
3483EXPORT_SYMBOL_GPL(gpiod_set_value);
3484
3485/**
3486 * gpiod_set_raw_array_value() - assign values to an array of GPIOs
3487 * @array_size: number of elements in the descriptor array / value bitmap
3488 * @desc_array: array of GPIO descriptors whose values will be assigned
3489 * @array_info: information on applicability of fast bitmap processing path
3490 * @value_bitmap: bitmap of values to assign
3491 *
3492 * Set the raw values of the GPIOs, i.e. the values of the physical lines
3493 * without regard for their ACTIVE_LOW status.
3494 *
3495 * This function can be called from contexts where we cannot sleep, and will
3496 * complain if the GPIO chip functions potentially sleep.
3497 */
3498int gpiod_set_raw_array_value(unsigned int array_size,
3499 struct gpio_desc **desc_array,
3500 struct gpio_array *array_info,
3501 unsigned long *value_bitmap)
3502{
3503 if (!desc_array)
3504 return -EINVAL;
3505 return gpiod_set_array_value_complex(raw: true, can_sleep: false, array_size,
3506 desc_array, array_info, value_bitmap);
3507}
3508EXPORT_SYMBOL_GPL(gpiod_set_raw_array_value);
3509
3510/**
3511 * gpiod_set_array_value() - assign values to an array of GPIOs
3512 * @array_size: number of elements in the descriptor array / value bitmap
3513 * @desc_array: array of GPIO descriptors whose values will be assigned
3514 * @array_info: information on applicability of fast bitmap processing path
3515 * @value_bitmap: bitmap of values to assign
3516 *
3517 * Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status
3518 * into account.
3519 *
3520 * This function can be called from contexts where we cannot sleep, and will
3521 * complain if the GPIO chip functions potentially sleep.
3522 */
3523int gpiod_set_array_value(unsigned int array_size,
3524 struct gpio_desc **desc_array,
3525 struct gpio_array *array_info,
3526 unsigned long *value_bitmap)
3527{
3528 if (!desc_array)
3529 return -EINVAL;
3530 return gpiod_set_array_value_complex(raw: false, can_sleep: false, array_size,
3531 desc_array, array_info,
3532 value_bitmap);
3533}
3534EXPORT_SYMBOL_GPL(gpiod_set_array_value);
3535
3536/**
3537 * gpiod_cansleep() - report whether gpio value access may sleep
3538 * @desc: gpio to check
3539 *
3540 */
3541int gpiod_cansleep(const struct gpio_desc *desc)
3542{
3543 VALIDATE_DESC(desc);
3544 return desc->gdev->can_sleep;
3545}
3546EXPORT_SYMBOL_GPL(gpiod_cansleep);
3547
3548/**
3549 * gpiod_set_consumer_name() - set the consumer name for the descriptor
3550 * @desc: gpio to set the consumer name on
3551 * @name: the new consumer name
3552 */
3553int gpiod_set_consumer_name(struct gpio_desc *desc, const char *name)
3554{
3555 VALIDATE_DESC(desc);
3556
3557 return desc_set_label(desc, label: name);
3558}
3559EXPORT_SYMBOL_GPL(gpiod_set_consumer_name);
3560
3561/**
3562 * gpiod_to_irq() - return the IRQ corresponding to a GPIO
3563 * @desc: gpio whose IRQ will be returned (already requested)
3564 *
3565 * Return the IRQ corresponding to the passed GPIO, or an error code in case of
3566 * error.
3567 */
3568int gpiod_to_irq(const struct gpio_desc *desc)
3569{
3570 struct gpio_device *gdev;
3571 struct gpio_chip *gc;
3572 int offset;
3573
3574 /*
3575 * Cannot VALIDATE_DESC() here as gpiod_to_irq() consumer semantics
3576 * requires this function to not return zero on an invalid descriptor
3577 * but rather a negative error number.
3578 */
3579 if (!desc || IS_ERR(ptr: desc))
3580 return -EINVAL;
3581
3582 gdev = desc->gdev;
3583 /* FIXME Cannot use gpio_chip_guard due to const desc. */
3584 guard(srcu)(l: &gdev->srcu);
3585 gc = srcu_dereference(gdev->chip, &gdev->srcu);
3586 if (!gc)
3587 return -ENODEV;
3588
3589 offset = gpio_chip_hwgpio(desc);
3590 if (gc->to_irq) {
3591 int retirq = gc->to_irq(gc, offset);
3592
3593 /* Zero means NO_IRQ */
3594 if (!retirq)
3595 return -ENXIO;
3596
3597 return retirq;
3598 }
3599#ifdef CONFIG_GPIOLIB_IRQCHIP
3600 if (gc->irq.chip) {
3601 /*
3602 * Avoid race condition with other code, which tries to lookup
3603 * an IRQ before the irqchip has been properly registered,
3604 * i.e. while gpiochip is still being brought up.
3605 */
3606 return -EPROBE_DEFER;
3607 }
3608#endif
3609 return -ENXIO;
3610}
3611EXPORT_SYMBOL_GPL(gpiod_to_irq);
3612
3613/**
3614 * gpiochip_lock_as_irq() - lock a GPIO to be used as IRQ
3615 * @gc: the chip the GPIO to lock belongs to
3616 * @offset: the offset of the GPIO to lock as IRQ
3617 *
3618 * This is used directly by GPIO drivers that want to lock down
3619 * a certain GPIO line to be used for IRQs.
3620 */
3621int gpiochip_lock_as_irq(struct gpio_chip *gc, unsigned int offset)
3622{
3623 struct gpio_desc *desc;
3624
3625 desc = gpiochip_get_desc(gc, offset);
3626 if (IS_ERR(ptr: desc))
3627 return PTR_ERR(ptr: desc);
3628
3629 /*
3630 * If it's fast: flush the direction setting if something changed
3631 * behind our back
3632 */
3633 if (!gc->can_sleep && gc->get_direction) {
3634 int dir = gpiod_get_direction(desc);
3635
3636 if (dir < 0) {
3637 chip_err(gc, "%s: cannot get GPIO direction\n",
3638 __func__);
3639 return dir;
3640 }
3641 }
3642
3643 /* To be valid for IRQ the line needs to be input or open drain */
3644 if (test_bit(FLAG_IS_OUT, &desc->flags) &&
3645 !test_bit(FLAG_OPEN_DRAIN, &desc->flags)) {
3646 chip_err(gc,
3647 "%s: tried to flag a GPIO set as output for IRQ\n",
3648 __func__);
3649 return -EIO;
3650 }
3651
3652 set_bit(FLAG_USED_AS_IRQ, addr: &desc->flags);
3653 set_bit(FLAG_IRQ_IS_ENABLED, addr: &desc->flags);
3654
3655 return 0;
3656}
3657EXPORT_SYMBOL_GPL(gpiochip_lock_as_irq);
3658
3659/**
3660 * gpiochip_unlock_as_irq() - unlock a GPIO used as IRQ
3661 * @gc: the chip the GPIO to lock belongs to
3662 * @offset: the offset of the GPIO to lock as IRQ
3663 *
3664 * This is used directly by GPIO drivers that want to indicate
3665 * that a certain GPIO is no longer used exclusively for IRQ.
3666 */
3667void gpiochip_unlock_as_irq(struct gpio_chip *gc, unsigned int offset)
3668{
3669 struct gpio_desc *desc;
3670
3671 desc = gpiochip_get_desc(gc, offset);
3672 if (IS_ERR(ptr: desc))
3673 return;
3674
3675 clear_bit(FLAG_USED_AS_IRQ, addr: &desc->flags);
3676 clear_bit(FLAG_IRQ_IS_ENABLED, addr: &desc->flags);
3677}
3678EXPORT_SYMBOL_GPL(gpiochip_unlock_as_irq);
3679
3680void gpiochip_disable_irq(struct gpio_chip *gc, unsigned int offset)
3681{
3682 struct gpio_desc *desc = gpiochip_get_desc(gc, offset);
3683
3684 if (!IS_ERR(ptr: desc) &&
3685 !WARN_ON(!test_bit(FLAG_USED_AS_IRQ, &desc->flags)))
3686 clear_bit(FLAG_IRQ_IS_ENABLED, addr: &desc->flags);
3687}
3688EXPORT_SYMBOL_GPL(gpiochip_disable_irq);
3689
3690void gpiochip_enable_irq(struct gpio_chip *gc, unsigned int offset)
3691{
3692 struct gpio_desc *desc = gpiochip_get_desc(gc, offset);
3693
3694 if (!IS_ERR(ptr: desc) &&
3695 !WARN_ON(!test_bit(FLAG_USED_AS_IRQ, &desc->flags))) {
3696 /*
3697 * We must not be output when using IRQ UNLESS we are
3698 * open drain.
3699 */
3700 WARN_ON(test_bit(FLAG_IS_OUT, &desc->flags) &&
3701 !test_bit(FLAG_OPEN_DRAIN, &desc->flags));
3702 set_bit(FLAG_IRQ_IS_ENABLED, addr: &desc->flags);
3703 }
3704}
3705EXPORT_SYMBOL_GPL(gpiochip_enable_irq);
3706
3707bool gpiochip_line_is_irq(struct gpio_chip *gc, unsigned int offset)
3708{
3709 if (offset >= gc->ngpio)
3710 return false;
3711
3712 return test_bit(FLAG_USED_AS_IRQ, &gc->gpiodev->descs[offset].flags);
3713}
3714EXPORT_SYMBOL_GPL(gpiochip_line_is_irq);
3715
3716int gpiochip_reqres_irq(struct gpio_chip *gc, unsigned int offset)
3717{
3718 int ret;
3719
3720 if (!try_module_get(module: gc->gpiodev->owner))
3721 return -ENODEV;
3722
3723 ret = gpiochip_lock_as_irq(gc, offset);
3724 if (ret) {
3725 chip_err(gc, "unable to lock HW IRQ %u for IRQ\n", offset);
3726 module_put(module: gc->gpiodev->owner);
3727 return ret;
3728 }
3729 return 0;
3730}
3731EXPORT_SYMBOL_GPL(gpiochip_reqres_irq);
3732
3733void gpiochip_relres_irq(struct gpio_chip *gc, unsigned int offset)
3734{
3735 gpiochip_unlock_as_irq(gc, offset);
3736 module_put(module: gc->gpiodev->owner);
3737}
3738EXPORT_SYMBOL_GPL(gpiochip_relres_irq);
3739
3740bool gpiochip_line_is_open_drain(struct gpio_chip *gc, unsigned int offset)
3741{
3742 if (offset >= gc->ngpio)
3743 return false;
3744
3745 return test_bit(FLAG_OPEN_DRAIN, &gc->gpiodev->descs[offset].flags);
3746}
3747EXPORT_SYMBOL_GPL(gpiochip_line_is_open_drain);
3748
3749bool gpiochip_line_is_open_source(struct gpio_chip *gc, unsigned int offset)
3750{
3751 if (offset >= gc->ngpio)
3752 return false;
3753
3754 return test_bit(FLAG_OPEN_SOURCE, &gc->gpiodev->descs[offset].flags);
3755}
3756EXPORT_SYMBOL_GPL(gpiochip_line_is_open_source);
3757
3758bool gpiochip_line_is_persistent(struct gpio_chip *gc, unsigned int offset)
3759{
3760 if (offset >= gc->ngpio)
3761 return false;
3762
3763 return !test_bit(FLAG_TRANSITORY, &gc->gpiodev->descs[offset].flags);
3764}
3765EXPORT_SYMBOL_GPL(gpiochip_line_is_persistent);
3766
3767/**
3768 * gpiod_get_raw_value_cansleep() - return a gpio's raw value
3769 * @desc: gpio whose value will be returned
3770 *
3771 * Return the GPIO's raw value, i.e. the value of the physical line disregarding
3772 * its ACTIVE_LOW status, or negative errno on failure.
3773 *
3774 * This function is to be called from contexts that can sleep.
3775 */
3776int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc)
3777{
3778 might_sleep();
3779 VALIDATE_DESC(desc);
3780 return gpiod_get_raw_value_commit(desc);
3781}
3782EXPORT_SYMBOL_GPL(gpiod_get_raw_value_cansleep);
3783
3784/**
3785 * gpiod_get_value_cansleep() - return a gpio's value
3786 * @desc: gpio whose value will be returned
3787 *
3788 * Return the GPIO's logical value, i.e. taking the ACTIVE_LOW status into
3789 * account, or negative errno on failure.
3790 *
3791 * This function is to be called from contexts that can sleep.
3792 */
3793int gpiod_get_value_cansleep(const struct gpio_desc *desc)
3794{
3795 int value;
3796
3797 might_sleep();
3798 VALIDATE_DESC(desc);
3799 value = gpiod_get_raw_value_commit(desc);
3800 if (value < 0)
3801 return value;
3802
3803 if (test_bit(FLAG_ACTIVE_LOW, &desc->flags))
3804 value = !value;
3805
3806 return value;
3807}
3808EXPORT_SYMBOL_GPL(gpiod_get_value_cansleep);
3809
3810/**
3811 * gpiod_get_raw_array_value_cansleep() - read raw values from an array of GPIOs
3812 * @array_size: number of elements in the descriptor array / value bitmap
3813 * @desc_array: array of GPIO descriptors whose values will be read
3814 * @array_info: information on applicability of fast bitmap processing path
3815 * @value_bitmap: bitmap to store the read values
3816 *
3817 * Read the raw values of the GPIOs, i.e. the values of the physical lines
3818 * without regard for their ACTIVE_LOW status. Return 0 in case of success,
3819 * else an error code.
3820 *
3821 * This function is to be called from contexts that can sleep.
3822 */
3823int gpiod_get_raw_array_value_cansleep(unsigned int array_size,
3824 struct gpio_desc **desc_array,
3825 struct gpio_array *array_info,
3826 unsigned long *value_bitmap)
3827{
3828 might_sleep();
3829 if (!desc_array)
3830 return -EINVAL;
3831 return gpiod_get_array_value_complex(raw: true, can_sleep: true, array_size,
3832 desc_array, array_info,
3833 value_bitmap);
3834}
3835EXPORT_SYMBOL_GPL(gpiod_get_raw_array_value_cansleep);
3836
3837/**
3838 * gpiod_get_array_value_cansleep() - read values from an array of GPIOs
3839 * @array_size: number of elements in the descriptor array / value bitmap
3840 * @desc_array: array of GPIO descriptors whose values will be read
3841 * @array_info: information on applicability of fast bitmap processing path
3842 * @value_bitmap: bitmap to store the read values
3843 *
3844 * Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status
3845 * into account. Return 0 in case of success, else an error code.
3846 *
3847 * This function is to be called from contexts that can sleep.
3848 */
3849int gpiod_get_array_value_cansleep(unsigned int array_size,
3850 struct gpio_desc **desc_array,
3851 struct gpio_array *array_info,
3852 unsigned long *value_bitmap)
3853{
3854 might_sleep();
3855 if (!desc_array)
3856 return -EINVAL;
3857 return gpiod_get_array_value_complex(raw: false, can_sleep: true, array_size,
3858 desc_array, array_info,
3859 value_bitmap);
3860}
3861EXPORT_SYMBOL_GPL(gpiod_get_array_value_cansleep);
3862
3863/**
3864 * gpiod_set_raw_value_cansleep() - assign a gpio's raw value
3865 * @desc: gpio whose value will be assigned
3866 * @value: value to assign
3867 *
3868 * Set the raw value of the GPIO, i.e. the value of its physical line without
3869 * regard for its ACTIVE_LOW status.
3870 *
3871 * This function is to be called from contexts that can sleep.
3872 */
3873void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value)
3874{
3875 might_sleep();
3876 VALIDATE_DESC_VOID(desc);
3877 gpiod_set_raw_value_commit(desc, value);
3878}
3879EXPORT_SYMBOL_GPL(gpiod_set_raw_value_cansleep);
3880
3881/**
3882 * gpiod_set_value_cansleep() - assign a gpio's value
3883 * @desc: gpio whose value will be assigned
3884 * @value: value to assign
3885 *
3886 * Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into
3887 * account
3888 *
3889 * This function is to be called from contexts that can sleep.
3890 */
3891void gpiod_set_value_cansleep(struct gpio_desc *desc, int value)
3892{
3893 might_sleep();
3894 VALIDATE_DESC_VOID(desc);
3895 gpiod_set_value_nocheck(desc, value);
3896}
3897EXPORT_SYMBOL_GPL(gpiod_set_value_cansleep);
3898
3899/**
3900 * gpiod_set_raw_array_value_cansleep() - assign values to an array of GPIOs
3901 * @array_size: number of elements in the descriptor array / value bitmap
3902 * @desc_array: array of GPIO descriptors whose values will be assigned
3903 * @array_info: information on applicability of fast bitmap processing path
3904 * @value_bitmap: bitmap of values to assign
3905 *
3906 * Set the raw values of the GPIOs, i.e. the values of the physical lines
3907 * without regard for their ACTIVE_LOW status.
3908 *
3909 * This function is to be called from contexts that can sleep.
3910 */
3911int gpiod_set_raw_array_value_cansleep(unsigned int array_size,
3912 struct gpio_desc **desc_array,
3913 struct gpio_array *array_info,
3914 unsigned long *value_bitmap)
3915{
3916 might_sleep();
3917 if (!desc_array)
3918 return -EINVAL;
3919 return gpiod_set_array_value_complex(raw: true, can_sleep: true, array_size, desc_array,
3920 array_info, value_bitmap);
3921}
3922EXPORT_SYMBOL_GPL(gpiod_set_raw_array_value_cansleep);
3923
3924/**
3925 * gpiod_add_lookup_tables() - register GPIO device consumers
3926 * @tables: list of tables of consumers to register
3927 * @n: number of tables in the list
3928 */
3929void gpiod_add_lookup_tables(struct gpiod_lookup_table **tables, size_t n)
3930{
3931 unsigned int i;
3932
3933 mutex_lock(&gpio_lookup_lock);
3934
3935 for (i = 0; i < n; i++)
3936 list_add_tail(new: &tables[i]->list, head: &gpio_lookup_list);
3937
3938 mutex_unlock(lock: &gpio_lookup_lock);
3939}
3940
3941/**
3942 * gpiod_set_array_value_cansleep() - assign values to an array of GPIOs
3943 * @array_size: number of elements in the descriptor array / value bitmap
3944 * @desc_array: array of GPIO descriptors whose values will be assigned
3945 * @array_info: information on applicability of fast bitmap processing path
3946 * @value_bitmap: bitmap of values to assign
3947 *
3948 * Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status
3949 * into account.
3950 *
3951 * This function is to be called from contexts that can sleep.
3952 */
3953int gpiod_set_array_value_cansleep(unsigned int array_size,
3954 struct gpio_desc **desc_array,
3955 struct gpio_array *array_info,
3956 unsigned long *value_bitmap)
3957{
3958 might_sleep();
3959 if (!desc_array)
3960 return -EINVAL;
3961 return gpiod_set_array_value_complex(raw: false, can_sleep: true, array_size,
3962 desc_array, array_info,
3963 value_bitmap);
3964}
3965EXPORT_SYMBOL_GPL(gpiod_set_array_value_cansleep);
3966
3967void gpiod_line_state_notify(struct gpio_desc *desc, unsigned long action)
3968{
3969 blocking_notifier_call_chain(nh: &desc->gdev->line_state_notifier,
3970 val: action, v: desc);
3971}
3972
3973/**
3974 * gpiod_add_lookup_table() - register GPIO device consumers
3975 * @table: table of consumers to register
3976 */
3977void gpiod_add_lookup_table(struct gpiod_lookup_table *table)
3978{
3979 gpiod_add_lookup_tables(tables: &table, n: 1);
3980}
3981EXPORT_SYMBOL_GPL(gpiod_add_lookup_table);
3982
3983/**
3984 * gpiod_remove_lookup_table() - unregister GPIO device consumers
3985 * @table: table of consumers to unregister
3986 */
3987void gpiod_remove_lookup_table(struct gpiod_lookup_table *table)
3988{
3989 /* Nothing to remove */
3990 if (!table)
3991 return;
3992
3993 mutex_lock(&gpio_lookup_lock);
3994
3995 list_del(entry: &table->list);
3996
3997 mutex_unlock(lock: &gpio_lookup_lock);
3998}
3999EXPORT_SYMBOL_GPL(gpiod_remove_lookup_table);
4000
4001/**
4002 * gpiod_add_hogs() - register a set of GPIO hogs from machine code
4003 * @hogs: table of gpio hog entries with a zeroed sentinel at the end
4004 */
4005void gpiod_add_hogs(struct gpiod_hog *hogs)
4006{
4007 struct gpiod_hog *hog;
4008
4009 mutex_lock(&gpio_machine_hogs_mutex);
4010
4011 for (hog = &hogs[0]; hog->chip_label; hog++) {
4012 list_add_tail(new: &hog->list, head: &gpio_machine_hogs);
4013
4014 /*
4015 * The chip may have been registered earlier, so check if it
4016 * exists and, if so, try to hog the line now.
4017 */
4018 struct gpio_device *gdev __free(gpio_device_put) =
4019 gpio_device_find_by_label(hog->chip_label);
4020 if (gdev)
4021 gpiochip_machine_hog(gc: gpio_device_get_chip(gdev), hog);
4022 }
4023
4024 mutex_unlock(lock: &gpio_machine_hogs_mutex);
4025}
4026EXPORT_SYMBOL_GPL(gpiod_add_hogs);
4027
4028void gpiod_remove_hogs(struct gpiod_hog *hogs)
4029{
4030 struct gpiod_hog *hog;
4031
4032 mutex_lock(&gpio_machine_hogs_mutex);
4033 for (hog = &hogs[0]; hog->chip_label; hog++)
4034 list_del(entry: &hog->list);
4035 mutex_unlock(lock: &gpio_machine_hogs_mutex);
4036}
4037EXPORT_SYMBOL_GPL(gpiod_remove_hogs);
4038
4039static struct gpiod_lookup_table *gpiod_find_lookup_table(struct device *dev)
4040{
4041 const char *dev_id = dev ? dev_name(dev) : NULL;
4042 struct gpiod_lookup_table *table;
4043
4044 list_for_each_entry(table, &gpio_lookup_list, list) {
4045 if (table->dev_id && dev_id) {
4046 /*
4047 * Valid strings on both ends, must be identical to have
4048 * a match
4049 */
4050 if (!strcmp(table->dev_id, dev_id))
4051 return table;
4052 } else {
4053 /*
4054 * One of the pointers is NULL, so both must be to have
4055 * a match
4056 */
4057 if (dev_id == table->dev_id)
4058 return table;
4059 }
4060 }
4061
4062 return NULL;
4063}
4064
4065static struct gpio_desc *gpiod_find(struct device *dev, const char *con_id,
4066 unsigned int idx, unsigned long *flags)
4067{
4068 struct gpio_desc *desc = ERR_PTR(error: -ENOENT);
4069 struct gpiod_lookup_table *table;
4070 struct gpiod_lookup *p;
4071 struct gpio_chip *gc;
4072
4073 guard(mutex)(T: &gpio_lookup_lock);
4074
4075 table = gpiod_find_lookup_table(dev);
4076 if (!table)
4077 return desc;
4078
4079 for (p = &table->table[0]; p->key; p++) {
4080 /* idx must always match exactly */
4081 if (p->idx != idx)
4082 continue;
4083
4084 /* If the lookup entry has a con_id, require exact match */
4085 if (p->con_id && (!con_id || strcmp(p->con_id, con_id)))
4086 continue;
4087
4088 if (p->chip_hwnum == U16_MAX) {
4089 desc = gpio_name_to_desc(name: p->key);
4090 if (desc) {
4091 *flags = p->flags;
4092 return desc;
4093 }
4094
4095 dev_warn(dev, "cannot find GPIO line %s, deferring\n",
4096 p->key);
4097 return ERR_PTR(error: -EPROBE_DEFER);
4098 }
4099
4100 struct gpio_device *gdev __free(gpio_device_put) =
4101 gpio_device_find_by_label(p->key);
4102 if (!gdev) {
4103 /*
4104 * As the lookup table indicates a chip with
4105 * p->key should exist, assume it may
4106 * still appear later and let the interested
4107 * consumer be probed again or let the Deferred
4108 * Probe infrastructure handle the error.
4109 */
4110 dev_warn(dev, "cannot find GPIO chip %s, deferring\n",
4111 p->key);
4112 return ERR_PTR(error: -EPROBE_DEFER);
4113 }
4114
4115 gc = gpio_device_get_chip(gdev);
4116
4117 if (gc->ngpio <= p->chip_hwnum) {
4118 dev_err(dev,
4119 "requested GPIO %u (%u) is out of range [0..%u] for chip %s\n",
4120 idx, p->chip_hwnum, gc->ngpio - 1,
4121 gc->label);
4122 return ERR_PTR(error: -EINVAL);
4123 }
4124
4125 desc = gpio_device_get_desc(gdev, p->chip_hwnum);
4126 *flags = p->flags;
4127
4128 return desc;
4129 }
4130
4131 return desc;
4132}
4133
4134static int platform_gpio_count(struct device *dev, const char *con_id)
4135{
4136 struct gpiod_lookup_table *table;
4137 struct gpiod_lookup *p;
4138 unsigned int count = 0;
4139
4140 scoped_guard(mutex, &gpio_lookup_lock) {
4141 table = gpiod_find_lookup_table(dev);
4142 if (!table)
4143 return -ENOENT;
4144
4145 for (p = &table->table[0]; p->key; p++) {
4146 if ((con_id && p->con_id && !strcmp(con_id, p->con_id)) ||
4147 (!con_id && !p->con_id))
4148 count++;
4149 }
4150 }
4151
4152 if (!count)
4153 return -ENOENT;
4154
4155 return count;
4156}
4157
4158static struct gpio_desc *gpiod_find_by_fwnode(struct fwnode_handle *fwnode,
4159 struct device *consumer,
4160 const char *con_id,
4161 unsigned int idx,
4162 enum gpiod_flags *flags,
4163 unsigned long *lookupflags)
4164{
4165 const char *name = function_name_or_default(con_id);
4166 struct gpio_desc *desc = ERR_PTR(error: -ENOENT);
4167
4168 if (is_of_node(fwnode)) {
4169 dev_dbg(consumer, "using DT '%pfw' for '%s' GPIO lookup\n", fwnode, name);
4170 desc = of_find_gpio(to_of_node(fwnode), con_id, idx, lookupflags);
4171 } else if (is_acpi_node(fwnode)) {
4172 dev_dbg(consumer, "using ACPI '%pfw' for '%s' GPIO lookup\n", fwnode, name);
4173 desc = acpi_find_gpio(fwnode, con_id, idx, dflags: flags, lookupflags);
4174 } else if (is_software_node(fwnode)) {
4175 dev_dbg(consumer, "using swnode '%pfw' for '%s' GPIO lookup\n", fwnode, name);
4176 desc = swnode_find_gpio(fwnode, con_id, idx, flags: lookupflags);
4177 }
4178
4179 return desc;
4180}
4181
4182struct gpio_desc *gpiod_find_and_request(struct device *consumer,
4183 struct fwnode_handle *fwnode,
4184 const char *con_id,
4185 unsigned int idx,
4186 enum gpiod_flags flags,
4187 const char *label,
4188 bool platform_lookup_allowed)
4189{
4190 unsigned long lookupflags = GPIO_LOOKUP_FLAGS_DEFAULT;
4191 const char *name = function_name_or_default(con_id);
4192 /*
4193 * scoped_guard() is implemented as a for loop, meaning static
4194 * analyzers will complain about these two not being initialized.
4195 */
4196 struct gpio_desc *desc = NULL;
4197 int ret = 0;
4198
4199 scoped_guard(srcu, &gpio_devices_srcu) {
4200 desc = gpiod_find_by_fwnode(fwnode, consumer, con_id, idx,
4201 flags: &flags, lookupflags: &lookupflags);
4202 if (gpiod_not_found(desc) && platform_lookup_allowed) {
4203 /*
4204 * Either we are not using DT or ACPI, or their lookup
4205 * did not return a result. In that case, use platform
4206 * lookup as a fallback.
4207 */
4208 dev_dbg(consumer,
4209 "using lookup tables for GPIO lookup\n");
4210 desc = gpiod_find(dev: consumer, con_id, idx, flags: &lookupflags);
4211 }
4212
4213 if (IS_ERR(ptr: desc)) {
4214 dev_dbg(consumer, "No GPIO consumer %s found\n", name);
4215 return desc;
4216 }
4217
4218 /*
4219 * If a connection label was passed use that, else attempt to use
4220 * the device name as label
4221 */
4222 ret = gpiod_request(desc, label);
4223 }
4224 if (ret) {
4225 if (!(ret == -EBUSY && flags & GPIOD_FLAGS_BIT_NONEXCLUSIVE))
4226 return ERR_PTR(error: ret);
4227
4228 /*
4229 * This happens when there are several consumers for
4230 * the same GPIO line: we just return here without
4231 * further initialization. It is a bit of a hack.
4232 * This is necessary to support fixed regulators.
4233 *
4234 * FIXME: Make this more sane and safe.
4235 */
4236 dev_info(consumer, "nonexclusive access to GPIO for %s\n", name);
4237 return desc;
4238 }
4239
4240 ret = gpiod_configure_flags(desc, con_id, lflags: lookupflags, dflags: flags);
4241 if (ret < 0) {
4242 gpiod_put(desc);
4243 dev_dbg(consumer, "setup of GPIO %s failed\n", name);
4244 return ERR_PTR(error: ret);
4245 }
4246
4247 gpiod_line_state_notify(desc, action: GPIOLINE_CHANGED_REQUESTED);
4248
4249 return desc;
4250}
4251
4252/**
4253 * fwnode_gpiod_get_index - obtain a GPIO from firmware node
4254 * @fwnode: handle of the firmware node
4255 * @con_id: function within the GPIO consumer
4256 * @index: index of the GPIO to obtain for the consumer
4257 * @flags: GPIO initialization flags
4258 * @label: label to attach to the requested GPIO
4259 *
4260 * This function can be used for drivers that get their configuration
4261 * from opaque firmware.
4262 *
4263 * The function properly finds the corresponding GPIO using whatever is the
4264 * underlying firmware interface and then makes sure that the GPIO
4265 * descriptor is requested before it is returned to the caller.
4266 *
4267 * Returns:
4268 * On successful request the GPIO pin is configured in accordance with
4269 * provided @flags.
4270 *
4271 * In case of error an ERR_PTR() is returned.
4272 */
4273struct gpio_desc *fwnode_gpiod_get_index(struct fwnode_handle *fwnode,
4274 const char *con_id,
4275 int index,
4276 enum gpiod_flags flags,
4277 const char *label)
4278{
4279 return gpiod_find_and_request(NULL, fwnode, con_id, idx: index, flags, label, platform_lookup_allowed: false);
4280}
4281EXPORT_SYMBOL_GPL(fwnode_gpiod_get_index);
4282
4283/**
4284 * gpiod_count - return the number of GPIOs associated with a device / function
4285 * or -ENOENT if no GPIO has been assigned to the requested function
4286 * @dev: GPIO consumer, can be NULL for system-global GPIOs
4287 * @con_id: function within the GPIO consumer
4288 */
4289int gpiod_count(struct device *dev, const char *con_id)
4290{
4291 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
4292 int count = -ENOENT;
4293
4294 if (is_of_node(fwnode))
4295 count = of_gpio_count(fwnode, con_id);
4296 else if (is_acpi_node(fwnode))
4297 count = acpi_gpio_count(fwnode, con_id);
4298 else if (is_software_node(fwnode))
4299 count = swnode_gpio_count(fwnode, con_id);
4300
4301 if (count < 0)
4302 count = platform_gpio_count(dev, con_id);
4303
4304 return count;
4305}
4306EXPORT_SYMBOL_GPL(gpiod_count);
4307
4308/**
4309 * gpiod_get - obtain a GPIO for a given GPIO function
4310 * @dev: GPIO consumer, can be NULL for system-global GPIOs
4311 * @con_id: function within the GPIO consumer
4312 * @flags: optional GPIO initialization flags
4313 *
4314 * Return the GPIO descriptor corresponding to the function con_id of device
4315 * dev, -ENOENT if no GPIO has been assigned to the requested function, or
4316 * another IS_ERR() code if an error occurred while trying to acquire the GPIO.
4317 */
4318struct gpio_desc *__must_check gpiod_get(struct device *dev, const char *con_id,
4319 enum gpiod_flags flags)
4320{
4321 return gpiod_get_index(dev, con_id, idx: 0, flags);
4322}
4323EXPORT_SYMBOL_GPL(gpiod_get);
4324
4325/**
4326 * gpiod_get_optional - obtain an optional GPIO for a given GPIO function
4327 * @dev: GPIO consumer, can be NULL for system-global GPIOs
4328 * @con_id: function within the GPIO consumer
4329 * @flags: optional GPIO initialization flags
4330 *
4331 * This is equivalent to gpiod_get(), except that when no GPIO was assigned to
4332 * the requested function it will return NULL. This is convenient for drivers
4333 * that need to handle optional GPIOs.
4334 */
4335struct gpio_desc *__must_check gpiod_get_optional(struct device *dev,
4336 const char *con_id,
4337 enum gpiod_flags flags)
4338{
4339 return gpiod_get_index_optional(dev, con_id, index: 0, flags);
4340}
4341EXPORT_SYMBOL_GPL(gpiod_get_optional);
4342
4343
4344/**
4345 * gpiod_configure_flags - helper function to configure a given GPIO
4346 * @desc: gpio whose value will be assigned
4347 * @con_id: function within the GPIO consumer
4348 * @lflags: bitmask of gpio_lookup_flags GPIO_* values - returned from
4349 * of_find_gpio() or of_get_gpio_hog()
4350 * @dflags: gpiod_flags - optional GPIO initialization flags
4351 *
4352 * Return 0 on success, -ENOENT if no GPIO has been assigned to the
4353 * requested function and/or index, or another IS_ERR() code if an error
4354 * occurred while trying to acquire the GPIO.
4355 */
4356int gpiod_configure_flags(struct gpio_desc *desc, const char *con_id,
4357 unsigned long lflags, enum gpiod_flags dflags)
4358{
4359 const char *name = function_name_or_default(con_id);
4360 int ret;
4361
4362 if (lflags & GPIO_ACTIVE_LOW)
4363 set_bit(FLAG_ACTIVE_LOW, addr: &desc->flags);
4364
4365 if (lflags & GPIO_OPEN_DRAIN)
4366 set_bit(FLAG_OPEN_DRAIN, addr: &desc->flags);
4367 else if (dflags & GPIOD_FLAGS_BIT_OPEN_DRAIN) {
4368 /*
4369 * This enforces open drain mode from the consumer side.
4370 * This is necessary for some busses like I2C, but the lookup
4371 * should *REALLY* have specified them as open drain in the
4372 * first place, so print a little warning here.
4373 */
4374 set_bit(FLAG_OPEN_DRAIN, addr: &desc->flags);
4375 gpiod_warn(desc,
4376 "enforced open drain please flag it properly in DT/ACPI DSDT/board file\n");
4377 }
4378
4379 if (lflags & GPIO_OPEN_SOURCE)
4380 set_bit(FLAG_OPEN_SOURCE, addr: &desc->flags);
4381
4382 if (((lflags & GPIO_PULL_UP) && (lflags & GPIO_PULL_DOWN)) ||
4383 ((lflags & GPIO_PULL_UP) && (lflags & GPIO_PULL_DISABLE)) ||
4384 ((lflags & GPIO_PULL_DOWN) && (lflags & GPIO_PULL_DISABLE))) {
4385 gpiod_err(desc,
4386 "multiple pull-up, pull-down or pull-disable enabled, invalid configuration\n");
4387 return -EINVAL;
4388 }
4389
4390 if (lflags & GPIO_PULL_UP)
4391 set_bit(FLAG_PULL_UP, addr: &desc->flags);
4392 else if (lflags & GPIO_PULL_DOWN)
4393 set_bit(FLAG_PULL_DOWN, addr: &desc->flags);
4394 else if (lflags & GPIO_PULL_DISABLE)
4395 set_bit(FLAG_BIAS_DISABLE, addr: &desc->flags);
4396
4397 ret = gpiod_set_transitory(desc, transitory: (lflags & GPIO_TRANSITORY));
4398 if (ret < 0)
4399 return ret;
4400
4401 /* No particular flag request, return here... */
4402 if (!(dflags & GPIOD_FLAGS_BIT_DIR_SET)) {
4403 gpiod_dbg(desc, "no flags found for GPIO %s\n", name);
4404 return 0;
4405 }
4406
4407 /* Process flags */
4408 if (dflags & GPIOD_FLAGS_BIT_DIR_OUT)
4409 ret = gpiod_direction_output(desc,
4410 !!(dflags & GPIOD_FLAGS_BIT_DIR_VAL));
4411 else
4412 ret = gpiod_direction_input(desc);
4413
4414 return ret;
4415}
4416
4417/**
4418 * gpiod_get_index - obtain a GPIO from a multi-index GPIO function
4419 * @dev: GPIO consumer, can be NULL for system-global GPIOs
4420 * @con_id: function within the GPIO consumer
4421 * @idx: index of the GPIO to obtain in the consumer
4422 * @flags: optional GPIO initialization flags
4423 *
4424 * This variant of gpiod_get() allows to access GPIOs other than the first
4425 * defined one for functions that define several GPIOs.
4426 *
4427 * Return a valid GPIO descriptor, -ENOENT if no GPIO has been assigned to the
4428 * requested function and/or index, or another IS_ERR() code if an error
4429 * occurred while trying to acquire the GPIO.
4430 */
4431struct gpio_desc *__must_check gpiod_get_index(struct device *dev,
4432 const char *con_id,
4433 unsigned int idx,
4434 enum gpiod_flags flags)
4435{
4436 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
4437 const char *devname = dev ? dev_name(dev) : "?";
4438 const char *label = con_id ?: devname;
4439
4440 return gpiod_find_and_request(consumer: dev, fwnode, con_id, idx, flags, label, platform_lookup_allowed: true);
4441}
4442EXPORT_SYMBOL_GPL(gpiod_get_index);
4443
4444/**
4445 * gpiod_get_index_optional - obtain an optional GPIO from a multi-index GPIO
4446 * function
4447 * @dev: GPIO consumer, can be NULL for system-global GPIOs
4448 * @con_id: function within the GPIO consumer
4449 * @index: index of the GPIO to obtain in the consumer
4450 * @flags: optional GPIO initialization flags
4451 *
4452 * This is equivalent to gpiod_get_index(), except that when no GPIO with the
4453 * specified index was assigned to the requested function it will return NULL.
4454 * This is convenient for drivers that need to handle optional GPIOs.
4455 */
4456struct gpio_desc *__must_check gpiod_get_index_optional(struct device *dev,
4457 const char *con_id,
4458 unsigned int index,
4459 enum gpiod_flags flags)
4460{
4461 struct gpio_desc *desc;
4462
4463 desc = gpiod_get_index(dev, con_id, index, flags);
4464 if (gpiod_not_found(desc))
4465 return NULL;
4466
4467 return desc;
4468}
4469EXPORT_SYMBOL_GPL(gpiod_get_index_optional);
4470
4471/**
4472 * gpiod_hog - Hog the specified GPIO desc given the provided flags
4473 * @desc: gpio whose value will be assigned
4474 * @name: gpio line name
4475 * @lflags: bitmask of gpio_lookup_flags GPIO_* values - returned from
4476 * of_find_gpio() or of_get_gpio_hog()
4477 * @dflags: gpiod_flags - optional GPIO initialization flags
4478 */
4479int gpiod_hog(struct gpio_desc *desc, const char *name,
4480 unsigned long lflags, enum gpiod_flags dflags)
4481{
4482 struct gpio_device *gdev = desc->gdev;
4483 struct gpio_desc *local_desc;
4484 int hwnum;
4485 int ret;
4486
4487 CLASS(gpio_chip_guard, guard)(desc);
4488 if (!guard.gc)
4489 return -ENODEV;
4490
4491 if (test_and_set_bit(FLAG_IS_HOGGED, addr: &desc->flags))
4492 return 0;
4493
4494 hwnum = gpio_chip_hwgpio(desc);
4495
4496 local_desc = gpiochip_request_own_desc(guard.gc, hwnum, name,
4497 lflags, dflags);
4498 if (IS_ERR(ptr: local_desc)) {
4499 clear_bit(FLAG_IS_HOGGED, addr: &desc->flags);
4500 ret = PTR_ERR(ptr: local_desc);
4501 pr_err("requesting hog GPIO %s (chip %s, offset %d) failed, %d\n",
4502 name, gdev->label, hwnum, ret);
4503 return ret;
4504 }
4505
4506 gpiod_dbg(desc, "hogged as %s%s\n",
4507 (dflags & GPIOD_FLAGS_BIT_DIR_OUT) ? "output" : "input",
4508 (dflags & GPIOD_FLAGS_BIT_DIR_OUT) ?
4509 (dflags & GPIOD_FLAGS_BIT_DIR_VAL) ? "/high" : "/low" : "");
4510
4511 return 0;
4512}
4513
4514/**
4515 * gpiochip_free_hogs - Scan gpio-controller chip and release GPIO hog
4516 * @gc: gpio chip to act on
4517 */
4518static void gpiochip_free_hogs(struct gpio_chip *gc)
4519{
4520 struct gpio_desc *desc;
4521
4522 for_each_gpio_desc_with_flag(gc, desc, FLAG_IS_HOGGED)
4523 gpiochip_free_own_desc(desc);
4524}
4525
4526/**
4527 * gpiod_get_array - obtain multiple GPIOs from a multi-index GPIO function
4528 * @dev: GPIO consumer, can be NULL for system-global GPIOs
4529 * @con_id: function within the GPIO consumer
4530 * @flags: optional GPIO initialization flags
4531 *
4532 * This function acquires all the GPIOs defined under a given function.
4533 *
4534 * Return a struct gpio_descs containing an array of descriptors, -ENOENT if
4535 * no GPIO has been assigned to the requested function, or another IS_ERR()
4536 * code if an error occurred while trying to acquire the GPIOs.
4537 */
4538struct gpio_descs *__must_check gpiod_get_array(struct device *dev,
4539 const char *con_id,
4540 enum gpiod_flags flags)
4541{
4542 struct gpio_desc *desc;
4543 struct gpio_descs *descs;
4544 struct gpio_array *array_info = NULL;
4545 struct gpio_chip *gc;
4546 int count, bitmap_size;
4547 size_t descs_size;
4548
4549 count = gpiod_count(dev, con_id);
4550 if (count < 0)
4551 return ERR_PTR(error: count);
4552
4553 descs_size = struct_size(descs, desc, count);
4554 descs = kzalloc(size: descs_size, GFP_KERNEL);
4555 if (!descs)
4556 return ERR_PTR(error: -ENOMEM);
4557
4558 for (descs->ndescs = 0; descs->ndescs < count; descs->ndescs++) {
4559 desc = gpiod_get_index(dev, con_id, descs->ndescs, flags);
4560 if (IS_ERR(ptr: desc)) {
4561 gpiod_put_array(descs);
4562 return ERR_CAST(ptr: desc);
4563 }
4564
4565 descs->desc[descs->ndescs] = desc;
4566
4567 gc = gpiod_to_chip(desc);
4568 /*
4569 * If pin hardware number of array member 0 is also 0, select
4570 * its chip as a candidate for fast bitmap processing path.
4571 */
4572 if (descs->ndescs == 0 && gpio_chip_hwgpio(desc) == 0) {
4573 struct gpio_descs *array;
4574
4575 bitmap_size = BITS_TO_LONGS(gc->ngpio > count ?
4576 gc->ngpio : count);
4577
4578 array = krealloc(objp: descs, new_size: descs_size +
4579 struct_size(array_info, invert_mask, 3 * bitmap_size),
4580 GFP_KERNEL | __GFP_ZERO);
4581 if (!array) {
4582 gpiod_put_array(descs);
4583 return ERR_PTR(error: -ENOMEM);
4584 }
4585
4586 descs = array;
4587
4588 array_info = (void *)descs + descs_size;
4589 array_info->get_mask = array_info->invert_mask +
4590 bitmap_size;
4591 array_info->set_mask = array_info->get_mask +
4592 bitmap_size;
4593
4594 array_info->desc = descs->desc;
4595 array_info->size = count;
4596 array_info->chip = gc;
4597 bitmap_set(map: array_info->get_mask, start: descs->ndescs,
4598 nbits: count - descs->ndescs);
4599 bitmap_set(map: array_info->set_mask, start: descs->ndescs,
4600 nbits: count - descs->ndescs);
4601 descs->info = array_info;
4602 }
4603
4604 /* If there is no cache for fast bitmap processing path, continue */
4605 if (!array_info)
4606 continue;
4607
4608 /* Unmark array members which don't belong to the 'fast' chip */
4609 if (array_info->chip != gc) {
4610 __clear_bit(descs->ndescs, array_info->get_mask);
4611 __clear_bit(descs->ndescs, array_info->set_mask);
4612 }
4613 /*
4614 * Detect array members which belong to the 'fast' chip
4615 * but their pins are not in hardware order.
4616 */
4617 else if (gpio_chip_hwgpio(desc) != descs->ndescs) {
4618 /*
4619 * Don't use fast path if all array members processed so
4620 * far belong to the same chip as this one but its pin
4621 * hardware number is different from its array index.
4622 */
4623 if (bitmap_full(src: array_info->get_mask, nbits: descs->ndescs)) {
4624 array_info = NULL;
4625 } else {
4626 __clear_bit(descs->ndescs,
4627 array_info->get_mask);
4628 __clear_bit(descs->ndescs,
4629 array_info->set_mask);
4630 }
4631 } else {
4632 /* Exclude open drain or open source from fast output */
4633 if (gpiochip_line_is_open_drain(gc, descs->ndescs) ||
4634 gpiochip_line_is_open_source(gc, descs->ndescs))
4635 __clear_bit(descs->ndescs,
4636 array_info->set_mask);
4637 /* Identify 'fast' pins which require invertion */
4638 if (gpiod_is_active_low(desc))
4639 __set_bit(descs->ndescs,
4640 array_info->invert_mask);
4641 }
4642 }
4643 if (array_info)
4644 dev_dbg(dev,
4645 "GPIO array info: chip=%s, size=%d, get_mask=%lx, set_mask=%lx, invert_mask=%lx\n",
4646 array_info->chip->label, array_info->size,
4647 *array_info->get_mask, *array_info->set_mask,
4648 *array_info->invert_mask);
4649 return descs;
4650}
4651EXPORT_SYMBOL_GPL(gpiod_get_array);
4652
4653/**
4654 * gpiod_get_array_optional - obtain multiple GPIOs from a multi-index GPIO
4655 * function
4656 * @dev: GPIO consumer, can be NULL for system-global GPIOs
4657 * @con_id: function within the GPIO consumer
4658 * @flags: optional GPIO initialization flags
4659 *
4660 * This is equivalent to gpiod_get_array(), except that when no GPIO was
4661 * assigned to the requested function it will return NULL.
4662 */
4663struct gpio_descs *__must_check gpiod_get_array_optional(struct device *dev,
4664 const char *con_id,
4665 enum gpiod_flags flags)
4666{
4667 struct gpio_descs *descs;
4668
4669 descs = gpiod_get_array(dev, con_id, flags);
4670 if (gpiod_not_found(descs))
4671 return NULL;
4672
4673 return descs;
4674}
4675EXPORT_SYMBOL_GPL(gpiod_get_array_optional);
4676
4677/**
4678 * gpiod_put - dispose of a GPIO descriptor
4679 * @desc: GPIO descriptor to dispose of
4680 *
4681 * No descriptor can be used after gpiod_put() has been called on it.
4682 */
4683void gpiod_put(struct gpio_desc *desc)
4684{
4685 if (desc)
4686 gpiod_free(desc);
4687}
4688EXPORT_SYMBOL_GPL(gpiod_put);
4689
4690/**
4691 * gpiod_put_array - dispose of multiple GPIO descriptors
4692 * @descs: struct gpio_descs containing an array of descriptors
4693 */
4694void gpiod_put_array(struct gpio_descs *descs)
4695{
4696 unsigned int i;
4697
4698 for (i = 0; i < descs->ndescs; i++)
4699 gpiod_put(descs->desc[i]);
4700
4701 kfree(objp: descs);
4702}
4703EXPORT_SYMBOL_GPL(gpiod_put_array);
4704
4705static int gpio_stub_drv_probe(struct device *dev)
4706{
4707 /*
4708 * The DT node of some GPIO chips have a "compatible" property, but
4709 * never have a struct device added and probed by a driver to register
4710 * the GPIO chip with gpiolib. In such cases, fw_devlink=on will cause
4711 * the consumers of the GPIO chip to get probe deferred forever because
4712 * they will be waiting for a device associated with the GPIO chip
4713 * firmware node to get added and bound to a driver.
4714 *
4715 * To allow these consumers to probe, we associate the struct
4716 * gpio_device of the GPIO chip with the firmware node and then simply
4717 * bind it to this stub driver.
4718 */
4719 return 0;
4720}
4721
4722static struct device_driver gpio_stub_drv = {
4723 .name = "gpio_stub_drv",
4724 .bus = &gpio_bus_type,
4725 .probe = gpio_stub_drv_probe,
4726};
4727
4728static int __init gpiolib_dev_init(void)
4729{
4730 int ret;
4731
4732 /* Register GPIO sysfs bus */
4733 ret = bus_register(bus: &gpio_bus_type);
4734 if (ret < 0) {
4735 pr_err("gpiolib: could not register GPIO bus type\n");
4736 return ret;
4737 }
4738
4739 ret = driver_register(drv: &gpio_stub_drv);
4740 if (ret < 0) {
4741 pr_err("gpiolib: could not register GPIO stub driver\n");
4742 bus_unregister(bus: &gpio_bus_type);
4743 return ret;
4744 }
4745
4746 ret = alloc_chrdev_region(&gpio_devt, 0, GPIO_DEV_MAX, GPIOCHIP_NAME);
4747 if (ret < 0) {
4748 pr_err("gpiolib: failed to allocate char dev region\n");
4749 driver_unregister(drv: &gpio_stub_drv);
4750 bus_unregister(bus: &gpio_bus_type);
4751 return ret;
4752 }
4753
4754 gpiolib_initialized = true;
4755 gpiochip_setup_devs();
4756
4757#if IS_ENABLED(CONFIG_OF_DYNAMIC) && IS_ENABLED(CONFIG_OF_GPIO)
4758 WARN_ON(of_reconfig_notifier_register(&gpio_of_notifier));
4759#endif /* CONFIG_OF_DYNAMIC && CONFIG_OF_GPIO */
4760
4761 return ret;
4762}
4763core_initcall(gpiolib_dev_init);
4764
4765#ifdef CONFIG_DEBUG_FS
4766
4767static void gpiolib_dbg_show(struct seq_file *s, struct gpio_device *gdev)
4768{
4769 bool active_low, is_irq, is_out;
4770 unsigned int gpio = gdev->base;
4771 struct gpio_desc *desc;
4772 struct gpio_chip *gc;
4773 int value;
4774
4775 guard(srcu)(l: &gdev->srcu);
4776
4777 gc = srcu_dereference(gdev->chip, &gdev->srcu);
4778 if (!gc) {
4779 seq_puts(m: s, s: "Underlying GPIO chip is gone\n");
4780 return;
4781 }
4782
4783 for_each_gpio_desc(gc, desc) {
4784 guard(srcu)(l: &desc->srcu);
4785 if (test_bit(FLAG_REQUESTED, &desc->flags)) {
4786 gpiod_get_direction(desc);
4787 is_out = test_bit(FLAG_IS_OUT, &desc->flags);
4788 value = gpio_chip_get_value(gc, desc);
4789 is_irq = test_bit(FLAG_USED_AS_IRQ, &desc->flags);
4790 active_low = test_bit(FLAG_ACTIVE_LOW, &desc->flags);
4791 seq_printf(m: s, fmt: " gpio-%-3d (%-20.20s|%-20.20s) %s %s %s%s\n",
4792 gpio, desc->name ?: "", gpiod_get_label(desc),
4793 is_out ? "out" : "in ",
4794 value >= 0 ? (value ? "hi" : "lo") : "? ",
4795 is_irq ? "IRQ " : "",
4796 active_low ? "ACTIVE LOW" : "");
4797 } else if (desc->name) {
4798 seq_printf(m: s, fmt: " gpio-%-3d (%-20.20s)\n", gpio, desc->name);
4799 }
4800
4801 gpio++;
4802 }
4803}
4804
4805struct gpiolib_seq_priv {
4806 bool newline;
4807 int idx;
4808};
4809
4810static void *gpiolib_seq_start(struct seq_file *s, loff_t *pos)
4811{
4812 struct gpiolib_seq_priv *priv;
4813 struct gpio_device *gdev;
4814 loff_t index = *pos;
4815
4816 priv = kzalloc(size: sizeof(*priv), GFP_KERNEL);
4817 if (!priv)
4818 return NULL;
4819
4820 s->private = priv;
4821 priv->idx = srcu_read_lock(ssp: &gpio_devices_srcu);
4822
4823 list_for_each_entry_srcu(gdev, &gpio_devices, list,
4824 srcu_read_lock_held(&gpio_devices_srcu)) {
4825 if (index-- == 0)
4826 return gdev;
4827 }
4828
4829 return NULL;
4830}
4831
4832static void *gpiolib_seq_next(struct seq_file *s, void *v, loff_t *pos)
4833{
4834 struct gpiolib_seq_priv *priv = s->private;
4835 struct gpio_device *gdev = v, *next;
4836
4837 next = list_entry_rcu(gdev->list.next, struct gpio_device, list);
4838 gdev = &next->list == &gpio_devices ? NULL : next;
4839 priv->newline = true;
4840 ++*pos;
4841
4842 return gdev;
4843}
4844
4845static void gpiolib_seq_stop(struct seq_file *s, void *v)
4846{
4847 struct gpiolib_seq_priv *priv = s->private;
4848
4849 srcu_read_unlock(ssp: &gpio_devices_srcu, idx: priv->idx);
4850 kfree(objp: priv);
4851}
4852
4853static int gpiolib_seq_show(struct seq_file *s, void *v)
4854{
4855 struct gpiolib_seq_priv *priv = s->private;
4856 struct gpio_device *gdev = v;
4857 struct gpio_chip *gc;
4858 struct device *parent;
4859
4860 guard(srcu)(l: &gdev->srcu);
4861
4862 gc = srcu_dereference(gdev->chip, &gdev->srcu);
4863 if (!gc) {
4864 seq_printf(m: s, fmt: "%s%s: (dangling chip)",
4865 priv->newline ? "\n" : "",
4866 dev_name(dev: &gdev->dev));
4867 return 0;
4868 }
4869
4870 seq_printf(m: s, fmt: "%s%s: GPIOs %d-%d", priv->newline ? "\n" : "",
4871 dev_name(dev: &gdev->dev),
4872 gdev->base, gdev->base + gdev->ngpio - 1);
4873 parent = gc->parent;
4874 if (parent)
4875 seq_printf(m: s, fmt: ", parent: %s/%s",
4876 parent->bus ? parent->bus->name : "no-bus",
4877 dev_name(dev: parent));
4878 if (gc->label)
4879 seq_printf(m: s, fmt: ", %s", gc->label);
4880 if (gc->can_sleep)
4881 seq_printf(m: s, fmt: ", can sleep");
4882 seq_printf(m: s, fmt: ":\n");
4883
4884 if (gc->dbg_show)
4885 gc->dbg_show(s, gc);
4886 else
4887 gpiolib_dbg_show(s, gdev);
4888
4889 return 0;
4890}
4891
4892static const struct seq_operations gpiolib_sops = {
4893 .start = gpiolib_seq_start,
4894 .next = gpiolib_seq_next,
4895 .stop = gpiolib_seq_stop,
4896 .show = gpiolib_seq_show,
4897};
4898DEFINE_SEQ_ATTRIBUTE(gpiolib);
4899
4900static int __init gpiolib_debugfs_init(void)
4901{
4902 /* /sys/kernel/debug/gpio */
4903 debugfs_create_file(name: "gpio", mode: 0444, NULL, NULL, fops: &gpiolib_fops);
4904 return 0;
4905}
4906subsys_initcall(gpiolib_debugfs_init);
4907
4908#endif /* DEBUG_FS */
4909

source code of linux/drivers/gpio/gpiolib.c