1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright (c) 2022 Red Hat.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Danilo Krummrich <dakr@redhat.com>
25 *
26 */
27
28#include <drm/drm_gpuvm.h>
29
30#include <linux/interval_tree_generic.h>
31#include <linux/mm.h>
32
33/**
34 * DOC: Overview
35 *
36 * The DRM GPU VA Manager, represented by struct drm_gpuvm keeps track of a
37 * GPU's virtual address (VA) space and manages the corresponding virtual
38 * mappings represented by &drm_gpuva objects. It also keeps track of the
39 * mapping's backing &drm_gem_object buffers.
40 *
41 * &drm_gem_object buffers maintain a list of &drm_gpuva objects representing
42 * all existent GPU VA mappings using this &drm_gem_object as backing buffer.
43 *
44 * GPU VAs can be flagged as sparse, such that drivers may use GPU VAs to also
45 * keep track of sparse PTEs in order to support Vulkan 'Sparse Resources'.
46 *
47 * The GPU VA manager internally uses a rb-tree to manage the
48 * &drm_gpuva mappings within a GPU's virtual address space.
49 *
50 * The &drm_gpuvm structure contains a special &drm_gpuva representing the
51 * portion of VA space reserved by the kernel. This node is initialized together
52 * with the GPU VA manager instance and removed when the GPU VA manager is
53 * destroyed.
54 *
55 * In a typical application drivers would embed struct drm_gpuvm and
56 * struct drm_gpuva within their own driver specific structures, there won't be
57 * any memory allocations of its own nor memory allocations of &drm_gpuva
58 * entries.
59 *
60 * The data structures needed to store &drm_gpuvas within the &drm_gpuvm are
61 * contained within struct drm_gpuva already. Hence, for inserting &drm_gpuva
62 * entries from within dma-fence signalling critical sections it is enough to
63 * pre-allocate the &drm_gpuva structures.
64 */
65
66/**
67 * DOC: Split and Merge
68 *
69 * Besides its capability to manage and represent a GPU VA space, the
70 * GPU VA manager also provides functions to let the &drm_gpuvm calculate a
71 * sequence of operations to satisfy a given map or unmap request.
72 *
73 * Therefore the DRM GPU VA manager provides an algorithm implementing splitting
74 * and merging of existent GPU VA mappings with the ones that are requested to
75 * be mapped or unmapped. This feature is required by the Vulkan API to
76 * implement Vulkan 'Sparse Memory Bindings' - drivers UAPIs often refer to this
77 * as VM BIND.
78 *
79 * Drivers can call drm_gpuvm_sm_map() to receive a sequence of callbacks
80 * containing map, unmap and remap operations for a given newly requested
81 * mapping. The sequence of callbacks represents the set of operations to
82 * execute in order to integrate the new mapping cleanly into the current state
83 * of the GPU VA space.
84 *
85 * Depending on how the new GPU VA mapping intersects with the existent mappings
86 * of the GPU VA space the &drm_gpuvm_ops callbacks contain an arbitrary amount
87 * of unmap operations, a maximum of two remap operations and a single map
88 * operation. The caller might receive no callback at all if no operation is
89 * required, e.g. if the requested mapping already exists in the exact same way.
90 *
91 * The single map operation represents the original map operation requested by
92 * the caller.
93 *
94 * &drm_gpuva_op_unmap contains a 'keep' field, which indicates whether the
95 * &drm_gpuva to unmap is physically contiguous with the original mapping
96 * request. Optionally, if 'keep' is set, drivers may keep the actual page table
97 * entries for this &drm_gpuva, adding the missing page table entries only and
98 * update the &drm_gpuvm's view of things accordingly.
99 *
100 * Drivers may do the same optimization, namely delta page table updates, also
101 * for remap operations. This is possible since &drm_gpuva_op_remap consists of
102 * one unmap operation and one or two map operations, such that drivers can
103 * derive the page table update delta accordingly.
104 *
105 * Note that there can't be more than two existent mappings to split up, one at
106 * the beginning and one at the end of the new mapping, hence there is a
107 * maximum of two remap operations.
108 *
109 * Analogous to drm_gpuvm_sm_map() drm_gpuvm_sm_unmap() uses &drm_gpuvm_ops to
110 * call back into the driver in order to unmap a range of GPU VA space. The
111 * logic behind this function is way simpler though: For all existent mappings
112 * enclosed by the given range unmap operations are created. For mappings which
113 * are only partically located within the given range, remap operations are
114 * created such that those mappings are split up and re-mapped partically.
115 *
116 * As an alternative to drm_gpuvm_sm_map() and drm_gpuvm_sm_unmap(),
117 * drm_gpuvm_sm_map_ops_create() and drm_gpuvm_sm_unmap_ops_create() can be used
118 * to directly obtain an instance of struct drm_gpuva_ops containing a list of
119 * &drm_gpuva_op, which can be iterated with drm_gpuva_for_each_op(). This list
120 * contains the &drm_gpuva_ops analogous to the callbacks one would receive when
121 * calling drm_gpuvm_sm_map() or drm_gpuvm_sm_unmap(). While this way requires
122 * more memory (to allocate the &drm_gpuva_ops), it provides drivers a way to
123 * iterate the &drm_gpuva_op multiple times, e.g. once in a context where memory
124 * allocations are possible (e.g. to allocate GPU page tables) and once in the
125 * dma-fence signalling critical path.
126 *
127 * To update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert() and
128 * drm_gpuva_remove() may be used. These functions can safely be used from
129 * &drm_gpuvm_ops callbacks originating from drm_gpuvm_sm_map() or
130 * drm_gpuvm_sm_unmap(). However, it might be more convenient to use the
131 * provided helper functions drm_gpuva_map(), drm_gpuva_remap() and
132 * drm_gpuva_unmap() instead.
133 *
134 * The following diagram depicts the basic relationships of existent GPU VA
135 * mappings, a newly requested mapping and the resulting mappings as implemented
136 * by drm_gpuvm_sm_map() - it doesn't cover any arbitrary combinations of these.
137 *
138 * 1) Requested mapping is identical. Replace it, but indicate the backing PTEs
139 * could be kept.
140 *
141 * ::
142 *
143 * 0 a 1
144 * old: |-----------| (bo_offset=n)
145 *
146 * 0 a 1
147 * req: |-----------| (bo_offset=n)
148 *
149 * 0 a 1
150 * new: |-----------| (bo_offset=n)
151 *
152 *
153 * 2) Requested mapping is identical, except for the BO offset, hence replace
154 * the mapping.
155 *
156 * ::
157 *
158 * 0 a 1
159 * old: |-----------| (bo_offset=n)
160 *
161 * 0 a 1
162 * req: |-----------| (bo_offset=m)
163 *
164 * 0 a 1
165 * new: |-----------| (bo_offset=m)
166 *
167 *
168 * 3) Requested mapping is identical, except for the backing BO, hence replace
169 * the mapping.
170 *
171 * ::
172 *
173 * 0 a 1
174 * old: |-----------| (bo_offset=n)
175 *
176 * 0 b 1
177 * req: |-----------| (bo_offset=n)
178 *
179 * 0 b 1
180 * new: |-----------| (bo_offset=n)
181 *
182 *
183 * 4) Existent mapping is a left aligned subset of the requested one, hence
184 * replace the existent one.
185 *
186 * ::
187 *
188 * 0 a 1
189 * old: |-----| (bo_offset=n)
190 *
191 * 0 a 2
192 * req: |-----------| (bo_offset=n)
193 *
194 * 0 a 2
195 * new: |-----------| (bo_offset=n)
196 *
197 * .. note::
198 * We expect to see the same result for a request with a different BO
199 * and/or non-contiguous BO offset.
200 *
201 *
202 * 5) Requested mapping's range is a left aligned subset of the existent one,
203 * but backed by a different BO. Hence, map the requested mapping and split
204 * the existent one adjusting its BO offset.
205 *
206 * ::
207 *
208 * 0 a 2
209 * old: |-----------| (bo_offset=n)
210 *
211 * 0 b 1
212 * req: |-----| (bo_offset=n)
213 *
214 * 0 b 1 a' 2
215 * new: |-----|-----| (b.bo_offset=n, a.bo_offset=n+1)
216 *
217 * .. note::
218 * We expect to see the same result for a request with a different BO
219 * and/or non-contiguous BO offset.
220 *
221 *
222 * 6) Existent mapping is a superset of the requested mapping. Split it up, but
223 * indicate that the backing PTEs could be kept.
224 *
225 * ::
226 *
227 * 0 a 2
228 * old: |-----------| (bo_offset=n)
229 *
230 * 0 a 1
231 * req: |-----| (bo_offset=n)
232 *
233 * 0 a 1 a' 2
234 * new: |-----|-----| (a.bo_offset=n, a'.bo_offset=n+1)
235 *
236 *
237 * 7) Requested mapping's range is a right aligned subset of the existent one,
238 * but backed by a different BO. Hence, map the requested mapping and split
239 * the existent one, without adjusting the BO offset.
240 *
241 * ::
242 *
243 * 0 a 2
244 * old: |-----------| (bo_offset=n)
245 *
246 * 1 b 2
247 * req: |-----| (bo_offset=m)
248 *
249 * 0 a 1 b 2
250 * new: |-----|-----| (a.bo_offset=n,b.bo_offset=m)
251 *
252 *
253 * 8) Existent mapping is a superset of the requested mapping. Split it up, but
254 * indicate that the backing PTEs could be kept.
255 *
256 * ::
257 *
258 * 0 a 2
259 * old: |-----------| (bo_offset=n)
260 *
261 * 1 a 2
262 * req: |-----| (bo_offset=n+1)
263 *
264 * 0 a' 1 a 2
265 * new: |-----|-----| (a'.bo_offset=n, a.bo_offset=n+1)
266 *
267 *
268 * 9) Existent mapping is overlapped at the end by the requested mapping backed
269 * by a different BO. Hence, map the requested mapping and split up the
270 * existent one, without adjusting the BO offset.
271 *
272 * ::
273 *
274 * 0 a 2
275 * old: |-----------| (bo_offset=n)
276 *
277 * 1 b 3
278 * req: |-----------| (bo_offset=m)
279 *
280 * 0 a 1 b 3
281 * new: |-----|-----------| (a.bo_offset=n,b.bo_offset=m)
282 *
283 *
284 * 10) Existent mapping is overlapped by the requested mapping, both having the
285 * same backing BO with a contiguous offset. Indicate the backing PTEs of
286 * the old mapping could be kept.
287 *
288 * ::
289 *
290 * 0 a 2
291 * old: |-----------| (bo_offset=n)
292 *
293 * 1 a 3
294 * req: |-----------| (bo_offset=n+1)
295 *
296 * 0 a' 1 a 3
297 * new: |-----|-----------| (a'.bo_offset=n, a.bo_offset=n+1)
298 *
299 *
300 * 11) Requested mapping's range is a centered subset of the existent one
301 * having a different backing BO. Hence, map the requested mapping and split
302 * up the existent one in two mappings, adjusting the BO offset of the right
303 * one accordingly.
304 *
305 * ::
306 *
307 * 0 a 3
308 * old: |-----------------| (bo_offset=n)
309 *
310 * 1 b 2
311 * req: |-----| (bo_offset=m)
312 *
313 * 0 a 1 b 2 a' 3
314 * new: |-----|-----|-----| (a.bo_offset=n,b.bo_offset=m,a'.bo_offset=n+2)
315 *
316 *
317 * 12) Requested mapping is a contiguous subset of the existent one. Split it
318 * up, but indicate that the backing PTEs could be kept.
319 *
320 * ::
321 *
322 * 0 a 3
323 * old: |-----------------| (bo_offset=n)
324 *
325 * 1 a 2
326 * req: |-----| (bo_offset=n+1)
327 *
328 * 0 a' 1 a 2 a'' 3
329 * old: |-----|-----|-----| (a'.bo_offset=n, a.bo_offset=n+1, a''.bo_offset=n+2)
330 *
331 *
332 * 13) Existent mapping is a right aligned subset of the requested one, hence
333 * replace the existent one.
334 *
335 * ::
336 *
337 * 1 a 2
338 * old: |-----| (bo_offset=n+1)
339 *
340 * 0 a 2
341 * req: |-----------| (bo_offset=n)
342 *
343 * 0 a 2
344 * new: |-----------| (bo_offset=n)
345 *
346 * .. note::
347 * We expect to see the same result for a request with a different bo
348 * and/or non-contiguous bo_offset.
349 *
350 *
351 * 14) Existent mapping is a centered subset of the requested one, hence
352 * replace the existent one.
353 *
354 * ::
355 *
356 * 1 a 2
357 * old: |-----| (bo_offset=n+1)
358 *
359 * 0 a 3
360 * req: |----------------| (bo_offset=n)
361 *
362 * 0 a 3
363 * new: |----------------| (bo_offset=n)
364 *
365 * .. note::
366 * We expect to see the same result for a request with a different bo
367 * and/or non-contiguous bo_offset.
368 *
369 *
370 * 15) Existent mappings is overlapped at the beginning by the requested mapping
371 * backed by a different BO. Hence, map the requested mapping and split up
372 * the existent one, adjusting its BO offset accordingly.
373 *
374 * ::
375 *
376 * 1 a 3
377 * old: |-----------| (bo_offset=n)
378 *
379 * 0 b 2
380 * req: |-----------| (bo_offset=m)
381 *
382 * 0 b 2 a' 3
383 * new: |-----------|-----| (b.bo_offset=m,a.bo_offset=n+2)
384 */
385
386/**
387 * DOC: Locking
388 *
389 * Generally, the GPU VA manager does not take care of locking itself, it is
390 * the drivers responsibility to take care about locking. Drivers might want to
391 * protect the following operations: inserting, removing and iterating
392 * &drm_gpuva objects as well as generating all kinds of operations, such as
393 * split / merge or prefetch.
394 *
395 * The GPU VA manager also does not take care of the locking of the backing
396 * &drm_gem_object buffers GPU VA lists by itself; drivers are responsible to
397 * enforce mutual exclusion using either the GEMs dma_resv lock or alternatively
398 * a driver specific external lock. For the latter see also
399 * drm_gem_gpuva_set_lock().
400 *
401 * However, the GPU VA manager contains lockdep checks to ensure callers of its
402 * API hold the corresponding lock whenever the &drm_gem_objects GPU VA list is
403 * accessed by functions such as drm_gpuva_link() or drm_gpuva_unlink().
404 */
405
406/**
407 * DOC: Examples
408 *
409 * This section gives two examples on how to let the DRM GPUVA Manager generate
410 * &drm_gpuva_op in order to satisfy a given map or unmap request and how to
411 * make use of them.
412 *
413 * The below code is strictly limited to illustrate the generic usage pattern.
414 * To maintain simplicitly, it doesn't make use of any abstractions for common
415 * code, different (asyncronous) stages with fence signalling critical paths,
416 * any other helpers or error handling in terms of freeing memory and dropping
417 * previously taken locks.
418 *
419 * 1) Obtain a list of &drm_gpuva_op to create a new mapping::
420 *
421 * // Allocates a new &drm_gpuva.
422 * struct drm_gpuva * driver_gpuva_alloc(void);
423 *
424 * // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
425 * // structure in individual driver structures and lock the dma-resv with
426 * // drm_exec or similar helpers.
427 * int driver_mapping_create(struct drm_gpuvm *gpuvm,
428 * u64 addr, u64 range,
429 * struct drm_gem_object *obj, u64 offset)
430 * {
431 * struct drm_gpuva_ops *ops;
432 * struct drm_gpuva_op *op
433 *
434 * driver_lock_va_space();
435 * ops = drm_gpuvm_sm_map_ops_create(gpuvm, addr, range,
436 * obj, offset);
437 * if (IS_ERR(ops))
438 * return PTR_ERR(ops);
439 *
440 * drm_gpuva_for_each_op(op, ops) {
441 * struct drm_gpuva *va;
442 *
443 * switch (op->op) {
444 * case DRM_GPUVA_OP_MAP:
445 * va = driver_gpuva_alloc();
446 * if (!va)
447 * ; // unwind previous VA space updates,
448 * // free memory and unlock
449 *
450 * driver_vm_map();
451 * drm_gpuva_map(gpuvm, va, &op->map);
452 * drm_gpuva_link(va);
453 *
454 * break;
455 * case DRM_GPUVA_OP_REMAP: {
456 * struct drm_gpuva *prev = NULL, *next = NULL;
457 *
458 * va = op->remap.unmap->va;
459 *
460 * if (op->remap.prev) {
461 * prev = driver_gpuva_alloc();
462 * if (!prev)
463 * ; // unwind previous VA space
464 * // updates, free memory and
465 * // unlock
466 * }
467 *
468 * if (op->remap.next) {
469 * next = driver_gpuva_alloc();
470 * if (!next)
471 * ; // unwind previous VA space
472 * // updates, free memory and
473 * // unlock
474 * }
475 *
476 * driver_vm_remap();
477 * drm_gpuva_remap(prev, next, &op->remap);
478 *
479 * drm_gpuva_unlink(va);
480 * if (prev)
481 * drm_gpuva_link(prev);
482 * if (next)
483 * drm_gpuva_link(next);
484 *
485 * break;
486 * }
487 * case DRM_GPUVA_OP_UNMAP:
488 * va = op->unmap->va;
489 *
490 * driver_vm_unmap();
491 * drm_gpuva_unlink(va);
492 * drm_gpuva_unmap(&op->unmap);
493 *
494 * break;
495 * default:
496 * break;
497 * }
498 * }
499 * driver_unlock_va_space();
500 *
501 * return 0;
502 * }
503 *
504 * 2) Receive a callback for each &drm_gpuva_op to create a new mapping::
505 *
506 * struct driver_context {
507 * struct drm_gpuvm *gpuvm;
508 * struct drm_gpuva *new_va;
509 * struct drm_gpuva *prev_va;
510 * struct drm_gpuva *next_va;
511 * };
512 *
513 * // ops to pass to drm_gpuvm_init()
514 * static const struct drm_gpuvm_ops driver_gpuvm_ops = {
515 * .sm_step_map = driver_gpuva_map,
516 * .sm_step_remap = driver_gpuva_remap,
517 * .sm_step_unmap = driver_gpuva_unmap,
518 * };
519 *
520 * // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
521 * // structure in individual driver structures and lock the dma-resv with
522 * // drm_exec or similar helpers.
523 * int driver_mapping_create(struct drm_gpuvm *gpuvm,
524 * u64 addr, u64 range,
525 * struct drm_gem_object *obj, u64 offset)
526 * {
527 * struct driver_context ctx;
528 * struct drm_gpuva_ops *ops;
529 * struct drm_gpuva_op *op;
530 * int ret = 0;
531 *
532 * ctx.gpuvm = gpuvm;
533 *
534 * ctx.new_va = kzalloc(sizeof(*ctx.new_va), GFP_KERNEL);
535 * ctx.prev_va = kzalloc(sizeof(*ctx.prev_va), GFP_KERNEL);
536 * ctx.next_va = kzalloc(sizeof(*ctx.next_va), GFP_KERNEL);
537 * if (!ctx.new_va || !ctx.prev_va || !ctx.next_va) {
538 * ret = -ENOMEM;
539 * goto out;
540 * }
541 *
542 * driver_lock_va_space();
543 * ret = drm_gpuvm_sm_map(gpuvm, &ctx, addr, range, obj, offset);
544 * driver_unlock_va_space();
545 *
546 * out:
547 * kfree(ctx.new_va);
548 * kfree(ctx.prev_va);
549 * kfree(ctx.next_va);
550 * return ret;
551 * }
552 *
553 * int driver_gpuva_map(struct drm_gpuva_op *op, void *__ctx)
554 * {
555 * struct driver_context *ctx = __ctx;
556 *
557 * drm_gpuva_map(ctx->vm, ctx->new_va, &op->map);
558 *
559 * drm_gpuva_link(ctx->new_va);
560 *
561 * // prevent the new GPUVA from being freed in
562 * // driver_mapping_create()
563 * ctx->new_va = NULL;
564 *
565 * return 0;
566 * }
567 *
568 * int driver_gpuva_remap(struct drm_gpuva_op *op, void *__ctx)
569 * {
570 * struct driver_context *ctx = __ctx;
571 *
572 * drm_gpuva_remap(ctx->prev_va, ctx->next_va, &op->remap);
573 *
574 * drm_gpuva_unlink(op->remap.unmap->va);
575 * kfree(op->remap.unmap->va);
576 *
577 * if (op->remap.prev) {
578 * drm_gpuva_link(ctx->prev_va);
579 * ctx->prev_va = NULL;
580 * }
581 *
582 * if (op->remap.next) {
583 * drm_gpuva_link(ctx->next_va);
584 * ctx->next_va = NULL;
585 * }
586 *
587 * return 0;
588 * }
589 *
590 * int driver_gpuva_unmap(struct drm_gpuva_op *op, void *__ctx)
591 * {
592 * drm_gpuva_unlink(op->unmap.va);
593 * drm_gpuva_unmap(&op->unmap);
594 * kfree(op->unmap.va);
595 *
596 * return 0;
597 * }
598 */
599
600#define to_drm_gpuva(__node) container_of((__node), struct drm_gpuva, rb.node)
601
602#define GPUVA_START(node) ((node)->va.addr)
603#define GPUVA_LAST(node) ((node)->va.addr + (node)->va.range - 1)
604
605/* We do not actually use drm_gpuva_it_next(), tell the compiler to not complain
606 * about this.
607 */
608INTERVAL_TREE_DEFINE(struct drm_gpuva, rb.node, u64, rb.__subtree_last,
609 GPUVA_START, GPUVA_LAST, static __maybe_unused,
610 drm_gpuva_it)
611
612static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm,
613 struct drm_gpuva *va);
614static void __drm_gpuva_remove(struct drm_gpuva *va);
615
616static bool
617drm_gpuvm_check_overflow(u64 addr, u64 range)
618{
619 u64 end;
620
621 return WARN(check_add_overflow(addr, range, &end),
622 "GPUVA address limited to %zu bytes.\n", sizeof(end));
623}
624
625static bool
626drm_gpuvm_in_mm_range(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
627{
628 u64 end = addr + range;
629 u64 mm_start = gpuvm->mm_start;
630 u64 mm_end = mm_start + gpuvm->mm_range;
631
632 return addr >= mm_start && end <= mm_end;
633}
634
635static bool
636drm_gpuvm_in_kernel_node(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
637{
638 u64 end = addr + range;
639 u64 kstart = gpuvm->kernel_alloc_node.va.addr;
640 u64 krange = gpuvm->kernel_alloc_node.va.range;
641 u64 kend = kstart + krange;
642
643 return krange && addr < kend && kstart < end;
644}
645
646static bool
647drm_gpuvm_range_valid(struct drm_gpuvm *gpuvm,
648 u64 addr, u64 range)
649{
650 return !drm_gpuvm_check_overflow(addr, range) &&
651 drm_gpuvm_in_mm_range(gpuvm, addr, range) &&
652 !drm_gpuvm_in_kernel_node(gpuvm, addr, range);
653}
654
655/**
656 * drm_gpuvm_init() - initialize a &drm_gpuvm
657 * @gpuvm: pointer to the &drm_gpuvm to initialize
658 * @name: the name of the GPU VA space
659 * @start_offset: the start offset of the GPU VA space
660 * @range: the size of the GPU VA space
661 * @reserve_offset: the start of the kernel reserved GPU VA area
662 * @reserve_range: the size of the kernel reserved GPU VA area
663 * @ops: &drm_gpuvm_ops called on &drm_gpuvm_sm_map / &drm_gpuvm_sm_unmap
664 *
665 * The &drm_gpuvm must be initialized with this function before use.
666 *
667 * Note that @gpuvm must be cleared to 0 before calling this function. The given
668 * &name is expected to be managed by the surrounding driver structures.
669 */
670void
671drm_gpuvm_init(struct drm_gpuvm *gpuvm,
672 const char *name,
673 u64 start_offset, u64 range,
674 u64 reserve_offset, u64 reserve_range,
675 const struct drm_gpuvm_ops *ops)
676{
677 gpuvm->rb.tree = RB_ROOT_CACHED;
678 INIT_LIST_HEAD(list: &gpuvm->rb.list);
679
680 drm_gpuvm_check_overflow(addr: start_offset, range);
681 gpuvm->mm_start = start_offset;
682 gpuvm->mm_range = range;
683
684 gpuvm->name = name ? name : "unknown";
685 gpuvm->ops = ops;
686
687 memset(&gpuvm->kernel_alloc_node, 0, sizeof(struct drm_gpuva));
688
689 if (reserve_range) {
690 gpuvm->kernel_alloc_node.va.addr = reserve_offset;
691 gpuvm->kernel_alloc_node.va.range = reserve_range;
692
693 if (likely(!drm_gpuvm_check_overflow(reserve_offset,
694 reserve_range)))
695 __drm_gpuva_insert(gpuvm, va: &gpuvm->kernel_alloc_node);
696 }
697}
698EXPORT_SYMBOL_GPL(drm_gpuvm_init);
699
700/**
701 * drm_gpuvm_destroy() - cleanup a &drm_gpuvm
702 * @gpuvm: pointer to the &drm_gpuvm to clean up
703 *
704 * Note that it is a bug to call this function on a manager that still
705 * holds GPU VA mappings.
706 */
707void
708drm_gpuvm_destroy(struct drm_gpuvm *gpuvm)
709{
710 gpuvm->name = NULL;
711
712 if (gpuvm->kernel_alloc_node.va.range)
713 __drm_gpuva_remove(va: &gpuvm->kernel_alloc_node);
714
715 WARN(!RB_EMPTY_ROOT(&gpuvm->rb.tree.rb_root),
716 "GPUVA tree is not empty, potentially leaking memory.");
717}
718EXPORT_SYMBOL_GPL(drm_gpuvm_destroy);
719
720static int
721__drm_gpuva_insert(struct drm_gpuvm *gpuvm,
722 struct drm_gpuva *va)
723{
724 struct rb_node *node;
725 struct list_head *head;
726
727 if (drm_gpuva_it_iter_first(root: &gpuvm->rb.tree,
728 GPUVA_START(va),
729 GPUVA_LAST(va)))
730 return -EEXIST;
731
732 va->vm = gpuvm;
733
734 drm_gpuva_it_insert(node: va, root: &gpuvm->rb.tree);
735
736 node = rb_prev(&va->rb.node);
737 if (node)
738 head = &(to_drm_gpuva(node))->rb.entry;
739 else
740 head = &gpuvm->rb.list;
741
742 list_add(new: &va->rb.entry, head);
743
744 return 0;
745}
746
747/**
748 * drm_gpuva_insert() - insert a &drm_gpuva
749 * @gpuvm: the &drm_gpuvm to insert the &drm_gpuva in
750 * @va: the &drm_gpuva to insert
751 *
752 * Insert a &drm_gpuva with a given address and range into a
753 * &drm_gpuvm.
754 *
755 * It is safe to use this function using the safe versions of iterating the GPU
756 * VA space, such as drm_gpuvm_for_each_va_safe() and
757 * drm_gpuvm_for_each_va_range_safe().
758 *
759 * Returns: 0 on success, negative error code on failure.
760 */
761int
762drm_gpuva_insert(struct drm_gpuvm *gpuvm,
763 struct drm_gpuva *va)
764{
765 u64 addr = va->va.addr;
766 u64 range = va->va.range;
767
768 if (unlikely(!drm_gpuvm_range_valid(gpuvm, addr, range)))
769 return -EINVAL;
770
771 return __drm_gpuva_insert(gpuvm, va);
772}
773EXPORT_SYMBOL_GPL(drm_gpuva_insert);
774
775static void
776__drm_gpuva_remove(struct drm_gpuva *va)
777{
778 drm_gpuva_it_remove(node: va, root: &va->vm->rb.tree);
779 list_del_init(entry: &va->rb.entry);
780}
781
782/**
783 * drm_gpuva_remove() - remove a &drm_gpuva
784 * @va: the &drm_gpuva to remove
785 *
786 * This removes the given &va from the underlaying tree.
787 *
788 * It is safe to use this function using the safe versions of iterating the GPU
789 * VA space, such as drm_gpuvm_for_each_va_safe() and
790 * drm_gpuvm_for_each_va_range_safe().
791 */
792void
793drm_gpuva_remove(struct drm_gpuva *va)
794{
795 struct drm_gpuvm *gpuvm = va->vm;
796
797 if (unlikely(va == &gpuvm->kernel_alloc_node)) {
798 WARN(1, "Can't destroy kernel reserved node.\n");
799 return;
800 }
801
802 __drm_gpuva_remove(va);
803}
804EXPORT_SYMBOL_GPL(drm_gpuva_remove);
805
806/**
807 * drm_gpuva_link() - link a &drm_gpuva
808 * @va: the &drm_gpuva to link
809 *
810 * This adds the given &va to the GPU VA list of the &drm_gem_object it is
811 * associated with.
812 *
813 * This function expects the caller to protect the GEM's GPUVA list against
814 * concurrent access using the GEMs dma_resv lock.
815 */
816void
817drm_gpuva_link(struct drm_gpuva *va)
818{
819 struct drm_gem_object *obj = va->gem.obj;
820
821 if (unlikely(!obj))
822 return;
823
824 drm_gem_gpuva_assert_lock_held(obj);
825
826 list_add_tail(new: &va->gem.entry, head: &obj->gpuva.list);
827}
828EXPORT_SYMBOL_GPL(drm_gpuva_link);
829
830/**
831 * drm_gpuva_unlink() - unlink a &drm_gpuva
832 * @va: the &drm_gpuva to unlink
833 *
834 * This removes the given &va from the GPU VA list of the &drm_gem_object it is
835 * associated with.
836 *
837 * This function expects the caller to protect the GEM's GPUVA list against
838 * concurrent access using the GEMs dma_resv lock.
839 */
840void
841drm_gpuva_unlink(struct drm_gpuva *va)
842{
843 struct drm_gem_object *obj = va->gem.obj;
844
845 if (unlikely(!obj))
846 return;
847
848 drm_gem_gpuva_assert_lock_held(obj);
849
850 list_del_init(entry: &va->gem.entry);
851}
852EXPORT_SYMBOL_GPL(drm_gpuva_unlink);
853
854/**
855 * drm_gpuva_find_first() - find the first &drm_gpuva in the given range
856 * @gpuvm: the &drm_gpuvm to search in
857 * @addr: the &drm_gpuvas address
858 * @range: the &drm_gpuvas range
859 *
860 * Returns: the first &drm_gpuva within the given range
861 */
862struct drm_gpuva *
863drm_gpuva_find_first(struct drm_gpuvm *gpuvm,
864 u64 addr, u64 range)
865{
866 u64 last = addr + range - 1;
867
868 return drm_gpuva_it_iter_first(root: &gpuvm->rb.tree, start: addr, last);
869}
870EXPORT_SYMBOL_GPL(drm_gpuva_find_first);
871
872/**
873 * drm_gpuva_find() - find a &drm_gpuva
874 * @gpuvm: the &drm_gpuvm to search in
875 * @addr: the &drm_gpuvas address
876 * @range: the &drm_gpuvas range
877 *
878 * Returns: the &drm_gpuva at a given &addr and with a given &range
879 */
880struct drm_gpuva *
881drm_gpuva_find(struct drm_gpuvm *gpuvm,
882 u64 addr, u64 range)
883{
884 struct drm_gpuva *va;
885
886 va = drm_gpuva_find_first(gpuvm, addr, range);
887 if (!va)
888 goto out;
889
890 if (va->va.addr != addr ||
891 va->va.range != range)
892 goto out;
893
894 return va;
895
896out:
897 return NULL;
898}
899EXPORT_SYMBOL_GPL(drm_gpuva_find);
900
901/**
902 * drm_gpuva_find_prev() - find the &drm_gpuva before the given address
903 * @gpuvm: the &drm_gpuvm to search in
904 * @start: the given GPU VA's start address
905 *
906 * Find the adjacent &drm_gpuva before the GPU VA with given &start address.
907 *
908 * Note that if there is any free space between the GPU VA mappings no mapping
909 * is returned.
910 *
911 * Returns: a pointer to the found &drm_gpuva or NULL if none was found
912 */
913struct drm_gpuva *
914drm_gpuva_find_prev(struct drm_gpuvm *gpuvm, u64 start)
915{
916 if (!drm_gpuvm_range_valid(gpuvm, addr: start - 1, range: 1))
917 return NULL;
918
919 return drm_gpuva_it_iter_first(root: &gpuvm->rb.tree, start: start - 1, last: start);
920}
921EXPORT_SYMBOL_GPL(drm_gpuva_find_prev);
922
923/**
924 * drm_gpuva_find_next() - find the &drm_gpuva after the given address
925 * @gpuvm: the &drm_gpuvm to search in
926 * @end: the given GPU VA's end address
927 *
928 * Find the adjacent &drm_gpuva after the GPU VA with given &end address.
929 *
930 * Note that if there is any free space between the GPU VA mappings no mapping
931 * is returned.
932 *
933 * Returns: a pointer to the found &drm_gpuva or NULL if none was found
934 */
935struct drm_gpuva *
936drm_gpuva_find_next(struct drm_gpuvm *gpuvm, u64 end)
937{
938 if (!drm_gpuvm_range_valid(gpuvm, addr: end, range: 1))
939 return NULL;
940
941 return drm_gpuva_it_iter_first(root: &gpuvm->rb.tree, start: end, last: end + 1);
942}
943EXPORT_SYMBOL_GPL(drm_gpuva_find_next);
944
945/**
946 * drm_gpuvm_interval_empty() - indicate whether a given interval of the VA space
947 * is empty
948 * @gpuvm: the &drm_gpuvm to check the range for
949 * @addr: the start address of the range
950 * @range: the range of the interval
951 *
952 * Returns: true if the interval is empty, false otherwise
953 */
954bool
955drm_gpuvm_interval_empty(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
956{
957 return !drm_gpuva_find_first(gpuvm, addr, range);
958}
959EXPORT_SYMBOL_GPL(drm_gpuvm_interval_empty);
960
961/**
962 * drm_gpuva_map() - helper to insert a &drm_gpuva according to a
963 * &drm_gpuva_op_map
964 * @gpuvm: the &drm_gpuvm
965 * @va: the &drm_gpuva to insert
966 * @op: the &drm_gpuva_op_map to initialize @va with
967 *
968 * Initializes the @va from the @op and inserts it into the given @gpuvm.
969 */
970void
971drm_gpuva_map(struct drm_gpuvm *gpuvm,
972 struct drm_gpuva *va,
973 struct drm_gpuva_op_map *op)
974{
975 drm_gpuva_init_from_op(va, op);
976 drm_gpuva_insert(gpuvm, va);
977}
978EXPORT_SYMBOL_GPL(drm_gpuva_map);
979
980/**
981 * drm_gpuva_remap() - helper to remap a &drm_gpuva according to a
982 * &drm_gpuva_op_remap
983 * @prev: the &drm_gpuva to remap when keeping the start of a mapping
984 * @next: the &drm_gpuva to remap when keeping the end of a mapping
985 * @op: the &drm_gpuva_op_remap to initialize @prev and @next with
986 *
987 * Removes the currently mapped &drm_gpuva and remaps it using @prev and/or
988 * @next.
989 */
990void
991drm_gpuva_remap(struct drm_gpuva *prev,
992 struct drm_gpuva *next,
993 struct drm_gpuva_op_remap *op)
994{
995 struct drm_gpuva *curr = op->unmap->va;
996 struct drm_gpuvm *gpuvm = curr->vm;
997
998 drm_gpuva_remove(curr);
999
1000 if (op->prev) {
1001 drm_gpuva_init_from_op(va: prev, op: op->prev);
1002 drm_gpuva_insert(gpuvm, prev);
1003 }
1004
1005 if (op->next) {
1006 drm_gpuva_init_from_op(va: next, op: op->next);
1007 drm_gpuva_insert(gpuvm, next);
1008 }
1009}
1010EXPORT_SYMBOL_GPL(drm_gpuva_remap);
1011
1012/**
1013 * drm_gpuva_unmap() - helper to remove a &drm_gpuva according to a
1014 * &drm_gpuva_op_unmap
1015 * @op: the &drm_gpuva_op_unmap specifying the &drm_gpuva to remove
1016 *
1017 * Removes the &drm_gpuva associated with the &drm_gpuva_op_unmap.
1018 */
1019void
1020drm_gpuva_unmap(struct drm_gpuva_op_unmap *op)
1021{
1022 drm_gpuva_remove(op->va);
1023}
1024EXPORT_SYMBOL_GPL(drm_gpuva_unmap);
1025
1026static int
1027op_map_cb(const struct drm_gpuvm_ops *fn, void *priv,
1028 u64 addr, u64 range,
1029 struct drm_gem_object *obj, u64 offset)
1030{
1031 struct drm_gpuva_op op = {};
1032
1033 op.op = DRM_GPUVA_OP_MAP;
1034 op.map.va.addr = addr;
1035 op.map.va.range = range;
1036 op.map.gem.obj = obj;
1037 op.map.gem.offset = offset;
1038
1039 return fn->sm_step_map(&op, priv);
1040}
1041
1042static int
1043op_remap_cb(const struct drm_gpuvm_ops *fn, void *priv,
1044 struct drm_gpuva_op_map *prev,
1045 struct drm_gpuva_op_map *next,
1046 struct drm_gpuva_op_unmap *unmap)
1047{
1048 struct drm_gpuva_op op = {};
1049 struct drm_gpuva_op_remap *r;
1050
1051 op.op = DRM_GPUVA_OP_REMAP;
1052 r = &op.remap;
1053 r->prev = prev;
1054 r->next = next;
1055 r->unmap = unmap;
1056
1057 return fn->sm_step_remap(&op, priv);
1058}
1059
1060static int
1061op_unmap_cb(const struct drm_gpuvm_ops *fn, void *priv,
1062 struct drm_gpuva *va, bool merge)
1063{
1064 struct drm_gpuva_op op = {};
1065
1066 op.op = DRM_GPUVA_OP_UNMAP;
1067 op.unmap.va = va;
1068 op.unmap.keep = merge;
1069
1070 return fn->sm_step_unmap(&op, priv);
1071}
1072
1073static int
1074__drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm,
1075 const struct drm_gpuvm_ops *ops, void *priv,
1076 u64 req_addr, u64 req_range,
1077 struct drm_gem_object *req_obj, u64 req_offset)
1078{
1079 struct drm_gpuva *va, *next;
1080 u64 req_end = req_addr + req_range;
1081 int ret;
1082
1083 if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
1084 return -EINVAL;
1085
1086 drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
1087 struct drm_gem_object *obj = va->gem.obj;
1088 u64 offset = va->gem.offset;
1089 u64 addr = va->va.addr;
1090 u64 range = va->va.range;
1091 u64 end = addr + range;
1092 bool merge = !!va->gem.obj;
1093
1094 if (addr == req_addr) {
1095 merge &= obj == req_obj &&
1096 offset == req_offset;
1097
1098 if (end == req_end) {
1099 ret = op_unmap_cb(fn: ops, priv, va, merge);
1100 if (ret)
1101 return ret;
1102 break;
1103 }
1104
1105 if (end < req_end) {
1106 ret = op_unmap_cb(fn: ops, priv, va, merge);
1107 if (ret)
1108 return ret;
1109 continue;
1110 }
1111
1112 if (end > req_end) {
1113 struct drm_gpuva_op_map n = {
1114 .va.addr = req_end,
1115 .va.range = range - req_range,
1116 .gem.obj = obj,
1117 .gem.offset = offset + req_range,
1118 };
1119 struct drm_gpuva_op_unmap u = {
1120 .va = va,
1121 .keep = merge,
1122 };
1123
1124 ret = op_remap_cb(fn: ops, priv, NULL, next: &n, unmap: &u);
1125 if (ret)
1126 return ret;
1127 break;
1128 }
1129 } else if (addr < req_addr) {
1130 u64 ls_range = req_addr - addr;
1131 struct drm_gpuva_op_map p = {
1132 .va.addr = addr,
1133 .va.range = ls_range,
1134 .gem.obj = obj,
1135 .gem.offset = offset,
1136 };
1137 struct drm_gpuva_op_unmap u = { .va = va };
1138
1139 merge &= obj == req_obj &&
1140 offset + ls_range == req_offset;
1141 u.keep = merge;
1142
1143 if (end == req_end) {
1144 ret = op_remap_cb(fn: ops, priv, prev: &p, NULL, unmap: &u);
1145 if (ret)
1146 return ret;
1147 break;
1148 }
1149
1150 if (end < req_end) {
1151 ret = op_remap_cb(fn: ops, priv, prev: &p, NULL, unmap: &u);
1152 if (ret)
1153 return ret;
1154 continue;
1155 }
1156
1157 if (end > req_end) {
1158 struct drm_gpuva_op_map n = {
1159 .va.addr = req_end,
1160 .va.range = end - req_end,
1161 .gem.obj = obj,
1162 .gem.offset = offset + ls_range +
1163 req_range,
1164 };
1165
1166 ret = op_remap_cb(fn: ops, priv, prev: &p, next: &n, unmap: &u);
1167 if (ret)
1168 return ret;
1169 break;
1170 }
1171 } else if (addr > req_addr) {
1172 merge &= obj == req_obj &&
1173 offset == req_offset +
1174 (addr - req_addr);
1175
1176 if (end == req_end) {
1177 ret = op_unmap_cb(fn: ops, priv, va, merge);
1178 if (ret)
1179 return ret;
1180 break;
1181 }
1182
1183 if (end < req_end) {
1184 ret = op_unmap_cb(fn: ops, priv, va, merge);
1185 if (ret)
1186 return ret;
1187 continue;
1188 }
1189
1190 if (end > req_end) {
1191 struct drm_gpuva_op_map n = {
1192 .va.addr = req_end,
1193 .va.range = end - req_end,
1194 .gem.obj = obj,
1195 .gem.offset = offset + req_end - addr,
1196 };
1197 struct drm_gpuva_op_unmap u = {
1198 .va = va,
1199 .keep = merge,
1200 };
1201
1202 ret = op_remap_cb(fn: ops, priv, NULL, next: &n, unmap: &u);
1203 if (ret)
1204 return ret;
1205 break;
1206 }
1207 }
1208 }
1209
1210 return op_map_cb(fn: ops, priv,
1211 addr: req_addr, range: req_range,
1212 obj: req_obj, offset: req_offset);
1213}
1214
1215static int
1216__drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm,
1217 const struct drm_gpuvm_ops *ops, void *priv,
1218 u64 req_addr, u64 req_range)
1219{
1220 struct drm_gpuva *va, *next;
1221 u64 req_end = req_addr + req_range;
1222 int ret;
1223
1224 if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
1225 return -EINVAL;
1226
1227 drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
1228 struct drm_gpuva_op_map prev = {}, next = {};
1229 bool prev_split = false, next_split = false;
1230 struct drm_gem_object *obj = va->gem.obj;
1231 u64 offset = va->gem.offset;
1232 u64 addr = va->va.addr;
1233 u64 range = va->va.range;
1234 u64 end = addr + range;
1235
1236 if (addr < req_addr) {
1237 prev.va.addr = addr;
1238 prev.va.range = req_addr - addr;
1239 prev.gem.obj = obj;
1240 prev.gem.offset = offset;
1241
1242 prev_split = true;
1243 }
1244
1245 if (end > req_end) {
1246 next.va.addr = req_end;
1247 next.va.range = end - req_end;
1248 next.gem.obj = obj;
1249 next.gem.offset = offset + (req_end - addr);
1250
1251 next_split = true;
1252 }
1253
1254 if (prev_split || next_split) {
1255 struct drm_gpuva_op_unmap unmap = { .va = va };
1256
1257 ret = op_remap_cb(fn: ops, priv,
1258 prev: prev_split ? &prev : NULL,
1259 next: next_split ? &next : NULL,
1260 unmap: &unmap);
1261 if (ret)
1262 return ret;
1263 } else {
1264 ret = op_unmap_cb(fn: ops, priv, va, merge: false);
1265 if (ret)
1266 return ret;
1267 }
1268 }
1269
1270 return 0;
1271}
1272
1273/**
1274 * drm_gpuvm_sm_map() - creates the &drm_gpuva_op split/merge steps
1275 * @gpuvm: the &drm_gpuvm representing the GPU VA space
1276 * @req_addr: the start address of the new mapping
1277 * @req_range: the range of the new mapping
1278 * @req_obj: the &drm_gem_object to map
1279 * @req_offset: the offset within the &drm_gem_object
1280 * @priv: pointer to a driver private data structure
1281 *
1282 * This function iterates the given range of the GPU VA space. It utilizes the
1283 * &drm_gpuvm_ops to call back into the driver providing the split and merge
1284 * steps.
1285 *
1286 * Drivers may use these callbacks to update the GPU VA space right away within
1287 * the callback. In case the driver decides to copy and store the operations for
1288 * later processing neither this function nor &drm_gpuvm_sm_unmap is allowed to
1289 * be called before the &drm_gpuvm's view of the GPU VA space was
1290 * updated with the previous set of operations. To update the
1291 * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
1292 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
1293 * used.
1294 *
1295 * A sequence of callbacks can contain map, unmap and remap operations, but
1296 * the sequence of callbacks might also be empty if no operation is required,
1297 * e.g. if the requested mapping already exists in the exact same way.
1298 *
1299 * There can be an arbitrary amount of unmap operations, a maximum of two remap
1300 * operations and a single map operation. The latter one represents the original
1301 * map operation requested by the caller.
1302 *
1303 * Returns: 0 on success or a negative error code
1304 */
1305int
1306drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, void *priv,
1307 u64 req_addr, u64 req_range,
1308 struct drm_gem_object *req_obj, u64 req_offset)
1309{
1310 const struct drm_gpuvm_ops *ops = gpuvm->ops;
1311
1312 if (unlikely(!(ops && ops->sm_step_map &&
1313 ops->sm_step_remap &&
1314 ops->sm_step_unmap)))
1315 return -EINVAL;
1316
1317 return __drm_gpuvm_sm_map(gpuvm, ops, priv,
1318 req_addr, req_range,
1319 req_obj, req_offset);
1320}
1321EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map);
1322
1323/**
1324 * drm_gpuvm_sm_unmap() - creates the &drm_gpuva_ops to split on unmap
1325 * @gpuvm: the &drm_gpuvm representing the GPU VA space
1326 * @priv: pointer to a driver private data structure
1327 * @req_addr: the start address of the range to unmap
1328 * @req_range: the range of the mappings to unmap
1329 *
1330 * This function iterates the given range of the GPU VA space. It utilizes the
1331 * &drm_gpuvm_ops to call back into the driver providing the operations to
1332 * unmap and, if required, split existent mappings.
1333 *
1334 * Drivers may use these callbacks to update the GPU VA space right away within
1335 * the callback. In case the driver decides to copy and store the operations for
1336 * later processing neither this function nor &drm_gpuvm_sm_map is allowed to be
1337 * called before the &drm_gpuvm's view of the GPU VA space was updated
1338 * with the previous set of operations. To update the &drm_gpuvm's view
1339 * of the GPU VA space drm_gpuva_insert(), drm_gpuva_destroy_locked() and/or
1340 * drm_gpuva_destroy_unlocked() should be used.
1341 *
1342 * A sequence of callbacks can contain unmap and remap operations, depending on
1343 * whether there are actual overlapping mappings to split.
1344 *
1345 * There can be an arbitrary amount of unmap operations and a maximum of two
1346 * remap operations.
1347 *
1348 * Returns: 0 on success or a negative error code
1349 */
1350int
1351drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, void *priv,
1352 u64 req_addr, u64 req_range)
1353{
1354 const struct drm_gpuvm_ops *ops = gpuvm->ops;
1355
1356 if (unlikely(!(ops && ops->sm_step_remap &&
1357 ops->sm_step_unmap)))
1358 return -EINVAL;
1359
1360 return __drm_gpuvm_sm_unmap(gpuvm, ops, priv,
1361 req_addr, req_range);
1362}
1363EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap);
1364
1365static struct drm_gpuva_op *
1366gpuva_op_alloc(struct drm_gpuvm *gpuvm)
1367{
1368 const struct drm_gpuvm_ops *fn = gpuvm->ops;
1369 struct drm_gpuva_op *op;
1370
1371 if (fn && fn->op_alloc)
1372 op = fn->op_alloc();
1373 else
1374 op = kzalloc(size: sizeof(*op), GFP_KERNEL);
1375
1376 if (unlikely(!op))
1377 return NULL;
1378
1379 return op;
1380}
1381
1382static void
1383gpuva_op_free(struct drm_gpuvm *gpuvm,
1384 struct drm_gpuva_op *op)
1385{
1386 const struct drm_gpuvm_ops *fn = gpuvm->ops;
1387
1388 if (fn && fn->op_free)
1389 fn->op_free(op);
1390 else
1391 kfree(objp: op);
1392}
1393
1394static int
1395drm_gpuva_sm_step(struct drm_gpuva_op *__op,
1396 void *priv)
1397{
1398 struct {
1399 struct drm_gpuvm *vm;
1400 struct drm_gpuva_ops *ops;
1401 } *args = priv;
1402 struct drm_gpuvm *gpuvm = args->vm;
1403 struct drm_gpuva_ops *ops = args->ops;
1404 struct drm_gpuva_op *op;
1405
1406 op = gpuva_op_alloc(gpuvm);
1407 if (unlikely(!op))
1408 goto err;
1409
1410 memcpy(op, __op, sizeof(*op));
1411
1412 if (op->op == DRM_GPUVA_OP_REMAP) {
1413 struct drm_gpuva_op_remap *__r = &__op->remap;
1414 struct drm_gpuva_op_remap *r = &op->remap;
1415
1416 r->unmap = kmemdup(p: __r->unmap, size: sizeof(*r->unmap),
1417 GFP_KERNEL);
1418 if (unlikely(!r->unmap))
1419 goto err_free_op;
1420
1421 if (__r->prev) {
1422 r->prev = kmemdup(p: __r->prev, size: sizeof(*r->prev),
1423 GFP_KERNEL);
1424 if (unlikely(!r->prev))
1425 goto err_free_unmap;
1426 }
1427
1428 if (__r->next) {
1429 r->next = kmemdup(p: __r->next, size: sizeof(*r->next),
1430 GFP_KERNEL);
1431 if (unlikely(!r->next))
1432 goto err_free_prev;
1433 }
1434 }
1435
1436 list_add_tail(new: &op->entry, head: &ops->list);
1437
1438 return 0;
1439
1440err_free_unmap:
1441 kfree(objp: op->remap.unmap);
1442err_free_prev:
1443 kfree(objp: op->remap.prev);
1444err_free_op:
1445 gpuva_op_free(gpuvm, op);
1446err:
1447 return -ENOMEM;
1448}
1449
1450static const struct drm_gpuvm_ops gpuvm_list_ops = {
1451 .sm_step_map = drm_gpuva_sm_step,
1452 .sm_step_remap = drm_gpuva_sm_step,
1453 .sm_step_unmap = drm_gpuva_sm_step,
1454};
1455
1456/**
1457 * drm_gpuvm_sm_map_ops_create() - creates the &drm_gpuva_ops to split and merge
1458 * @gpuvm: the &drm_gpuvm representing the GPU VA space
1459 * @req_addr: the start address of the new mapping
1460 * @req_range: the range of the new mapping
1461 * @req_obj: the &drm_gem_object to map
1462 * @req_offset: the offset within the &drm_gem_object
1463 *
1464 * This function creates a list of operations to perform splitting and merging
1465 * of existent mapping(s) with the newly requested one.
1466 *
1467 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
1468 * in the given order. It can contain map, unmap and remap operations, but it
1469 * also can be empty if no operation is required, e.g. if the requested mapping
1470 * already exists is the exact same way.
1471 *
1472 * There can be an arbitrary amount of unmap operations, a maximum of two remap
1473 * operations and a single map operation. The latter one represents the original
1474 * map operation requested by the caller.
1475 *
1476 * Note that before calling this function again with another mapping request it
1477 * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
1478 * previously obtained operations must be either processed or abandoned. To
1479 * update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
1480 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
1481 * used.
1482 *
1483 * After the caller finished processing the returned &drm_gpuva_ops, they must
1484 * be freed with &drm_gpuva_ops_free.
1485 *
1486 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
1487 */
1488struct drm_gpuva_ops *
1489drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm,
1490 u64 req_addr, u64 req_range,
1491 struct drm_gem_object *req_obj, u64 req_offset)
1492{
1493 struct drm_gpuva_ops *ops;
1494 struct {
1495 struct drm_gpuvm *vm;
1496 struct drm_gpuva_ops *ops;
1497 } args;
1498 int ret;
1499
1500 ops = kzalloc(size: sizeof(*ops), GFP_KERNEL);
1501 if (unlikely(!ops))
1502 return ERR_PTR(error: -ENOMEM);
1503
1504 INIT_LIST_HEAD(list: &ops->list);
1505
1506 args.vm = gpuvm;
1507 args.ops = ops;
1508
1509 ret = __drm_gpuvm_sm_map(gpuvm, ops: &gpuvm_list_ops, priv: &args,
1510 req_addr, req_range,
1511 req_obj, req_offset);
1512 if (ret)
1513 goto err_free_ops;
1514
1515 return ops;
1516
1517err_free_ops:
1518 drm_gpuva_ops_free(gpuvm, ops);
1519 return ERR_PTR(error: ret);
1520}
1521EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_ops_create);
1522
1523/**
1524 * drm_gpuvm_sm_unmap_ops_create() - creates the &drm_gpuva_ops to split on
1525 * unmap
1526 * @gpuvm: the &drm_gpuvm representing the GPU VA space
1527 * @req_addr: the start address of the range to unmap
1528 * @req_range: the range of the mappings to unmap
1529 *
1530 * This function creates a list of operations to perform unmapping and, if
1531 * required, splitting of the mappings overlapping the unmap range.
1532 *
1533 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
1534 * in the given order. It can contain unmap and remap operations, depending on
1535 * whether there are actual overlapping mappings to split.
1536 *
1537 * There can be an arbitrary amount of unmap operations and a maximum of two
1538 * remap operations.
1539 *
1540 * Note that before calling this function again with another range to unmap it
1541 * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
1542 * previously obtained operations must be processed or abandoned. To update the
1543 * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
1544 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
1545 * used.
1546 *
1547 * After the caller finished processing the returned &drm_gpuva_ops, they must
1548 * be freed with &drm_gpuva_ops_free.
1549 *
1550 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
1551 */
1552struct drm_gpuva_ops *
1553drm_gpuvm_sm_unmap_ops_create(struct drm_gpuvm *gpuvm,
1554 u64 req_addr, u64 req_range)
1555{
1556 struct drm_gpuva_ops *ops;
1557 struct {
1558 struct drm_gpuvm *vm;
1559 struct drm_gpuva_ops *ops;
1560 } args;
1561 int ret;
1562
1563 ops = kzalloc(size: sizeof(*ops), GFP_KERNEL);
1564 if (unlikely(!ops))
1565 return ERR_PTR(error: -ENOMEM);
1566
1567 INIT_LIST_HEAD(list: &ops->list);
1568
1569 args.vm = gpuvm;
1570 args.ops = ops;
1571
1572 ret = __drm_gpuvm_sm_unmap(gpuvm, ops: &gpuvm_list_ops, priv: &args,
1573 req_addr, req_range);
1574 if (ret)
1575 goto err_free_ops;
1576
1577 return ops;
1578
1579err_free_ops:
1580 drm_gpuva_ops_free(gpuvm, ops);
1581 return ERR_PTR(error: ret);
1582}
1583EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_ops_create);
1584
1585/**
1586 * drm_gpuvm_prefetch_ops_create() - creates the &drm_gpuva_ops to prefetch
1587 * @gpuvm: the &drm_gpuvm representing the GPU VA space
1588 * @addr: the start address of the range to prefetch
1589 * @range: the range of the mappings to prefetch
1590 *
1591 * This function creates a list of operations to perform prefetching.
1592 *
1593 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
1594 * in the given order. It can contain prefetch operations.
1595 *
1596 * There can be an arbitrary amount of prefetch operations.
1597 *
1598 * After the caller finished processing the returned &drm_gpuva_ops, they must
1599 * be freed with &drm_gpuva_ops_free.
1600 *
1601 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
1602 */
1603struct drm_gpuva_ops *
1604drm_gpuvm_prefetch_ops_create(struct drm_gpuvm *gpuvm,
1605 u64 addr, u64 range)
1606{
1607 struct drm_gpuva_ops *ops;
1608 struct drm_gpuva_op *op;
1609 struct drm_gpuva *va;
1610 u64 end = addr + range;
1611 int ret;
1612
1613 ops = kzalloc(size: sizeof(*ops), GFP_KERNEL);
1614 if (!ops)
1615 return ERR_PTR(error: -ENOMEM);
1616
1617 INIT_LIST_HEAD(list: &ops->list);
1618
1619 drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
1620 op = gpuva_op_alloc(gpuvm);
1621 if (!op) {
1622 ret = -ENOMEM;
1623 goto err_free_ops;
1624 }
1625
1626 op->op = DRM_GPUVA_OP_PREFETCH;
1627 op->prefetch.va = va;
1628 list_add_tail(new: &op->entry, head: &ops->list);
1629 }
1630
1631 return ops;
1632
1633err_free_ops:
1634 drm_gpuva_ops_free(gpuvm, ops);
1635 return ERR_PTR(error: ret);
1636}
1637EXPORT_SYMBOL_GPL(drm_gpuvm_prefetch_ops_create);
1638
1639/**
1640 * drm_gpuvm_gem_unmap_ops_create() - creates the &drm_gpuva_ops to unmap a GEM
1641 * @gpuvm: the &drm_gpuvm representing the GPU VA space
1642 * @obj: the &drm_gem_object to unmap
1643 *
1644 * This function creates a list of operations to perform unmapping for every
1645 * GPUVA attached to a GEM.
1646 *
1647 * The list can be iterated with &drm_gpuva_for_each_op and consists out of an
1648 * arbitrary amount of unmap operations.
1649 *
1650 * After the caller finished processing the returned &drm_gpuva_ops, they must
1651 * be freed with &drm_gpuva_ops_free.
1652 *
1653 * It is the callers responsibility to protect the GEMs GPUVA list against
1654 * concurrent access using the GEMs dma_resv lock.
1655 *
1656 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
1657 */
1658struct drm_gpuva_ops *
1659drm_gpuvm_gem_unmap_ops_create(struct drm_gpuvm *gpuvm,
1660 struct drm_gem_object *obj)
1661{
1662 struct drm_gpuva_ops *ops;
1663 struct drm_gpuva_op *op;
1664 struct drm_gpuva *va;
1665 int ret;
1666
1667 drm_gem_gpuva_assert_lock_held(obj);
1668
1669 ops = kzalloc(size: sizeof(*ops), GFP_KERNEL);
1670 if (!ops)
1671 return ERR_PTR(error: -ENOMEM);
1672
1673 INIT_LIST_HEAD(list: &ops->list);
1674
1675 drm_gem_for_each_gpuva(va, obj) {
1676 op = gpuva_op_alloc(gpuvm);
1677 if (!op) {
1678 ret = -ENOMEM;
1679 goto err_free_ops;
1680 }
1681
1682 op->op = DRM_GPUVA_OP_UNMAP;
1683 op->unmap.va = va;
1684 list_add_tail(new: &op->entry, head: &ops->list);
1685 }
1686
1687 return ops;
1688
1689err_free_ops:
1690 drm_gpuva_ops_free(gpuvm, ops);
1691 return ERR_PTR(error: ret);
1692}
1693EXPORT_SYMBOL_GPL(drm_gpuvm_gem_unmap_ops_create);
1694
1695/**
1696 * drm_gpuva_ops_free() - free the given &drm_gpuva_ops
1697 * @gpuvm: the &drm_gpuvm the ops were created for
1698 * @ops: the &drm_gpuva_ops to free
1699 *
1700 * Frees the given &drm_gpuva_ops structure including all the ops associated
1701 * with it.
1702 */
1703void
1704drm_gpuva_ops_free(struct drm_gpuvm *gpuvm,
1705 struct drm_gpuva_ops *ops)
1706{
1707 struct drm_gpuva_op *op, *next;
1708
1709 drm_gpuva_for_each_op_safe(op, next, ops) {
1710 list_del(entry: &op->entry);
1711
1712 if (op->op == DRM_GPUVA_OP_REMAP) {
1713 kfree(objp: op->remap.prev);
1714 kfree(objp: op->remap.next);
1715 kfree(objp: op->remap.unmap);
1716 }
1717
1718 gpuva_op_free(gpuvm, op);
1719 }
1720
1721 kfree(objp: ops);
1722}
1723EXPORT_SYMBOL_GPL(drm_gpuva_ops_free);
1724
1725MODULE_DESCRIPTION("DRM GPUVM");
1726MODULE_LICENSE("GPL");
1727

source code of linux/drivers/gpu/drm/drm_gpuvm.c