1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32#include <linux/clk.h>
33#include <linux/component.h>
34#include <linux/of.h>
35#include <linux/platform_device.h>
36#include <linux/pm_runtime.h>
37
38#include <drm/drm_atomic.h>
39#include <drm/drm_atomic_helper.h>
40#include <drm/drm_atomic_uapi.h>
41#include <drm/drm_fb_dma_helper.h>
42#include <drm/drm_framebuffer.h>
43#include <drm/drm_drv.h>
44#include <drm/drm_print.h>
45#include <drm/drm_probe_helper.h>
46#include <drm/drm_vblank.h>
47
48#include "vc4_drv.h"
49#include "vc4_hdmi.h"
50#include "vc4_regs.h"
51
52#define HVS_FIFO_LATENCY_PIX 6
53
54#define CRTC_WRITE(offset, val) \
55 do { \
56 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
57 writel(val, vc4_crtc->regs + (offset)); \
58 } while (0)
59
60#define CRTC_READ(offset) \
61 ({ \
62 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
63 readl(vc4_crtc->regs + (offset)); \
64 })
65
66static const struct debugfs_reg32 crtc_regs[] = {
67 VC4_REG32(PV_CONTROL),
68 VC4_REG32(PV_V_CONTROL),
69 VC4_REG32(PV_VSYNCD_EVEN),
70 VC4_REG32(PV_HORZA),
71 VC4_REG32(PV_HORZB),
72 VC4_REG32(PV_VERTA),
73 VC4_REG32(PV_VERTB),
74 VC4_REG32(PV_VERTA_EVEN),
75 VC4_REG32(PV_VERTB_EVEN),
76 VC4_REG32(PV_INTEN),
77 VC4_REG32(PV_INTSTAT),
78 VC4_REG32(PV_STAT),
79 VC4_REG32(PV_HACT_ACT),
80};
81
82static unsigned int
83vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
84{
85 struct vc4_hvs *hvs = vc4->hvs;
86 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
87 /* Top/base are supposed to be 4-pixel aligned, but the
88 * Raspberry Pi firmware fills the low bits (which are
89 * presumably ignored).
90 */
91 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
92 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
93
94 return top - base + 4;
95}
96
97static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
98 bool in_vblank_irq,
99 int *vpos, int *hpos,
100 ktime_t *stime, ktime_t *etime,
101 const struct drm_display_mode *mode)
102{
103 struct drm_device *dev = crtc->dev;
104 struct vc4_dev *vc4 = to_vc4_dev(dev);
105 struct vc4_hvs *hvs = vc4->hvs;
106 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
107 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
108 unsigned int cob_size;
109 u32 val;
110 int fifo_lines;
111 int vblank_lines;
112 bool ret = false;
113
114 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
115
116 /* Get optional system timestamp before query. */
117 if (stime)
118 *stime = ktime_get();
119
120 /*
121 * Read vertical scanline which is currently composed for our
122 * pixelvalve by the HVS, and also the scaler status.
123 */
124 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
125
126 /* Get optional system timestamp after query. */
127 if (etime)
128 *etime = ktime_get();
129
130 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
131
132 /* Vertical position of hvs composed scanline. */
133 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
134 *hpos = 0;
135
136 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
137 *vpos /= 2;
138
139 /* Use hpos to correct for field offset in interlaced mode. */
140 if (vc4_hvs_get_fifo_frame_count(hvs, fifo: vc4_crtc_state->assigned_channel) % 2)
141 *hpos += mode->crtc_htotal / 2;
142 }
143
144 cob_size = vc4_crtc_get_cob_allocation(vc4, channel: vc4_crtc_state->assigned_channel);
145 /* This is the offset we need for translating hvs -> pv scanout pos. */
146 fifo_lines = cob_size / mode->crtc_hdisplay;
147
148 if (fifo_lines > 0)
149 ret = true;
150
151 /* HVS more than fifo_lines into frame for compositing? */
152 if (*vpos > fifo_lines) {
153 /*
154 * We are in active scanout and can get some meaningful results
155 * from HVS. The actual PV scanout can not trail behind more
156 * than fifo_lines as that is the fifo's capacity. Assume that
157 * in active scanout the HVS and PV work in lockstep wrt. HVS
158 * refilling the fifo and PV consuming from the fifo, ie.
159 * whenever the PV consumes and frees up a scanline in the
160 * fifo, the HVS will immediately refill it, therefore
161 * incrementing vpos. Therefore we choose HVS read position -
162 * fifo size in scanlines as a estimate of the real scanout
163 * position of the PV.
164 */
165 *vpos -= fifo_lines + 1;
166
167 return ret;
168 }
169
170 /*
171 * Less: This happens when we are in vblank and the HVS, after getting
172 * the VSTART restart signal from the PV, just started refilling its
173 * fifo with new lines from the top-most lines of the new framebuffers.
174 * The PV does not scan out in vblank, so does not remove lines from
175 * the fifo, so the fifo will be full quickly and the HVS has to pause.
176 * We can't get meaningful readings wrt. scanline position of the PV
177 * and need to make things up in a approximative but consistent way.
178 */
179 vblank_lines = mode->vtotal - mode->vdisplay;
180
181 if (in_vblank_irq) {
182 /*
183 * Assume the irq handler got called close to first
184 * line of vblank, so PV has about a full vblank
185 * scanlines to go, and as a base timestamp use the
186 * one taken at entry into vblank irq handler, so it
187 * is not affected by random delays due to lock
188 * contention on event_lock or vblank_time lock in
189 * the core.
190 */
191 *vpos = -vblank_lines;
192
193 if (stime)
194 *stime = vc4_crtc->t_vblank;
195 if (etime)
196 *etime = vc4_crtc->t_vblank;
197
198 /*
199 * If the HVS fifo is not yet full then we know for certain
200 * we are at the very beginning of vblank, as the hvs just
201 * started refilling, and the stime and etime timestamps
202 * truly correspond to start of vblank.
203 *
204 * Unfortunately there's no way to report this to upper levels
205 * and make it more useful.
206 */
207 } else {
208 /*
209 * No clue where we are inside vblank. Return a vpos of zero,
210 * which will cause calling code to just return the etime
211 * timestamp uncorrected. At least this is no worse than the
212 * standard fallback.
213 */
214 *vpos = 0;
215 }
216
217 return ret;
218}
219
220static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
221{
222 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(crtc: vc4_crtc);
223 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(crtc: vc4_crtc);
224 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
225 u32 fifo_len_bytes = pv_data->fifo_depth;
226
227 /*
228 * Pixels are pulled from the HVS if the number of bytes is
229 * lower than the FIFO full level.
230 *
231 * The latency of the pixel fetch mechanism is 6 pixels, so we
232 * need to convert those 6 pixels in bytes, depending on the
233 * format, and then subtract that from the length of the FIFO
234 * to make sure we never end up in a situation where the FIFO
235 * is full.
236 */
237 switch (format) {
238 case PV_CONTROL_FORMAT_DSIV_16:
239 case PV_CONTROL_FORMAT_DSIC_16:
240 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
241 case PV_CONTROL_FORMAT_DSIV_18:
242 return fifo_len_bytes - 14;
243 case PV_CONTROL_FORMAT_24:
244 case PV_CONTROL_FORMAT_DSIV_24:
245 default:
246 /*
247 * For some reason, the pixelvalve4 doesn't work with
248 * the usual formula and will only work with 32.
249 */
250 if (crtc_data->hvs_output == 5)
251 return 32;
252
253 /*
254 * It looks like in some situations, we will overflow
255 * the PixelValve FIFO (with the bit 10 of PV stat being
256 * set) and stall the HVS / PV, eventually resulting in
257 * a page flip timeout.
258 *
259 * Displaying the video overlay during a playback with
260 * Kodi on an RPi3 seems to be a great solution with a
261 * failure rate around 50%.
262 *
263 * Removing 1 from the FIFO full level however
264 * seems to completely remove that issue.
265 */
266 if (!vc4->is_vc5)
267 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
268
269 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
270 }
271}
272
273static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
274 u32 format)
275{
276 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
277 u32 ret = 0;
278
279 ret |= VC4_SET_FIELD((level >> 6),
280 PV5_CONTROL_FIFO_LEVEL_HIGH);
281
282 return ret | VC4_SET_FIELD(level & 0x3f,
283 PV_CONTROL_FIFO_LEVEL);
284}
285
286/*
287 * Returns the encoder attached to the CRTC.
288 *
289 * VC4 can only scan out to one encoder at a time, while the DRM core
290 * allows drivers to push pixels to more than one encoder from the
291 * same CRTC.
292 */
293struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
294 struct drm_crtc_state *state)
295{
296 struct drm_encoder *encoder;
297
298 WARN_ON(hweight32(state->encoder_mask) > 1);
299
300 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
301 return encoder;
302
303 return NULL;
304}
305
306static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
307{
308 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
309 struct drm_device *dev = crtc->dev;
310 int idx;
311
312 if (!drm_dev_enter(dev, idx: &idx))
313 return;
314
315 /* The PV needs to be disabled before it can be flushed */
316 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
317 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
318
319 drm_dev_exit(idx);
320}
321
322static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
323 struct drm_atomic_state *state)
324{
325 struct drm_device *dev = crtc->dev;
326 struct vc4_dev *vc4 = to_vc4_dev(dev);
327 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
328 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
329 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(crtc: vc4_crtc);
330 struct drm_crtc_state *crtc_state = crtc->state;
331 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
332 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
333 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
334 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
335 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
336 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
337 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
338 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
339 bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
340 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
341 u8 ppc = pv_data->pixels_per_clock;
342
343 u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
344 u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
345 u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
346
347 bool debug_dump_regs = false;
348 int idx;
349
350 if (!drm_dev_enter(dev, idx: &idx))
351 return;
352
353 if (debug_dump_regs) {
354 struct drm_printer p = drm_info_printer(dev: &vc4_crtc->pdev->dev);
355 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
356 drm_crtc_index(crtc));
357 drm_print_regset32(p: &p, regset: &vc4_crtc->regset);
358 }
359
360 vc4_crtc_pixelvalve_reset(crtc);
361
362 CRTC_WRITE(PV_HORZA,
363 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
364 PV_HORZA_HBP) |
365 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
366 PV_HORZA_HSYNC));
367
368 CRTC_WRITE(PV_HORZB,
369 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
370 PV_HORZB_HFP) |
371 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
372 PV_HORZB_HACTIVE));
373
374 if (interlace) {
375 bool odd_field_first = false;
376 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
377 u16 vert_bp_even = vert_bp;
378 u16 vert_fp_even = vert_fp;
379
380 if (is_vec) {
381 /* VEC (composite output) */
382 ++field_delay;
383 if (mode->htotal == 858) {
384 /* 525-line mode (NTSC or PAL-M) */
385 odd_field_first = true;
386 }
387 }
388
389 if (odd_field_first)
390 ++vert_fp_even;
391 else
392 ++vert_bp;
393
394 CRTC_WRITE(PV_VERTA_EVEN,
395 VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
396 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
397 CRTC_WRITE(PV_VERTB_EVEN,
398 VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
399 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
400
401 /* We set up first field even mode for HDMI and VEC's PAL.
402 * For NTSC, we need first field odd.
403 */
404 CRTC_WRITE(PV_V_CONTROL,
405 PV_VCONTROL_CONTINUOUS |
406 (is_dsi ? PV_VCONTROL_DSI : 0) |
407 PV_VCONTROL_INTERLACE |
408 (odd_field_first
409 ? PV_VCONTROL_ODD_FIRST
410 : VC4_SET_FIELD(field_delay,
411 PV_VCONTROL_ODD_DELAY)));
412 CRTC_WRITE(PV_VSYNCD_EVEN,
413 (odd_field_first ? field_delay : 0));
414 } else {
415 CRTC_WRITE(PV_V_CONTROL,
416 PV_VCONTROL_CONTINUOUS |
417 (is_dsi ? PV_VCONTROL_DSI : 0));
418 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
419 }
420
421 CRTC_WRITE(PV_VERTA,
422 VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
423 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
424 CRTC_WRITE(PV_VERTB,
425 VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
426 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
427
428 if (is_dsi)
429 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
430
431 if (vc4->is_vc5)
432 CRTC_WRITE(PV_MUX_CFG,
433 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
434 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
435
436 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
437 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
438 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
439 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
440 PV_CONTROL_CLR_AT_START |
441 PV_CONTROL_TRIGGER_UNDERFLOW |
442 PV_CONTROL_WAIT_HSTART |
443 VC4_SET_FIELD(vc4_encoder->clock_select,
444 PV_CONTROL_CLK_SELECT));
445
446 if (debug_dump_regs) {
447 struct drm_printer p = drm_info_printer(dev: &vc4_crtc->pdev->dev);
448 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
449 drm_crtc_index(crtc));
450 drm_print_regset32(p: &p, regset: &vc4_crtc->regset);
451 }
452
453 drm_dev_exit(idx);
454}
455
456static void require_hvs_enabled(struct drm_device *dev)
457{
458 struct vc4_dev *vc4 = to_vc4_dev(dev);
459 struct vc4_hvs *hvs = vc4->hvs;
460
461 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
462 SCALER_DISPCTRL_ENABLE);
463}
464
465static int vc4_crtc_disable(struct drm_crtc *crtc,
466 struct drm_encoder *encoder,
467 struct drm_atomic_state *state,
468 unsigned int channel)
469{
470 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
471 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
472 struct drm_device *dev = crtc->dev;
473 struct vc4_dev *vc4 = to_vc4_dev(dev);
474 int idx, ret;
475
476 if (!drm_dev_enter(dev, idx: &idx))
477 return -ENODEV;
478
479 CRTC_WRITE(PV_V_CONTROL,
480 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
481 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
482 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
483
484 /*
485 * This delay is needed to avoid to get a pixel stuck in an
486 * unflushable FIFO between the pixelvalve and the HDMI
487 * controllers on the BCM2711.
488 *
489 * Timing is fairly sensitive here, so mdelay is the safest
490 * approach.
491 *
492 * If it was to be reworked, the stuck pixel happens on a
493 * BCM2711 when changing mode with a good probability, so a
494 * script that changes mode on a regular basis should trigger
495 * the bug after less than 10 attempts. It manifests itself with
496 * every pixels being shifted by one to the right, and thus the
497 * last pixel of a line actually being displayed as the first
498 * pixel on the next line.
499 */
500 mdelay(20);
501
502 if (vc4_encoder && vc4_encoder->post_crtc_disable)
503 vc4_encoder->post_crtc_disable(encoder, state);
504
505 vc4_crtc_pixelvalve_reset(crtc);
506 vc4_hvs_stop_channel(hvs: vc4->hvs, output: channel);
507
508 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
509 vc4_encoder->post_crtc_powerdown(encoder, state);
510
511 drm_dev_exit(idx);
512
513 return 0;
514}
515
516int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
517{
518 struct drm_device *drm = crtc->dev;
519 struct vc4_dev *vc4 = to_vc4_dev(drm);
520 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
521 enum vc4_encoder_type encoder_type;
522 const struct vc4_pv_data *pv_data;
523 struct drm_encoder *encoder;
524 struct vc4_hdmi *vc4_hdmi;
525 unsigned encoder_sel;
526 int channel;
527 int ret;
528
529 if (!(of_device_is_compatible(device: vc4_crtc->pdev->dev.of_node,
530 "brcm,bcm2711-pixelvalve2") ||
531 of_device_is_compatible(device: vc4_crtc->pdev->dev.of_node,
532 "brcm,bcm2711-pixelvalve4")))
533 return 0;
534
535 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
536 return 0;
537
538 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
539 return 0;
540
541 channel = vc4_hvs_get_fifo_from_output(hvs: vc4->hvs, output: vc4_crtc->data->hvs_output);
542 if (channel < 0)
543 return 0;
544
545 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
546 if (WARN_ON(encoder_sel != 0))
547 return 0;
548
549 pv_data = vc4_crtc_to_vc4_pv_data(crtc: vc4_crtc);
550 encoder_type = pv_data->encoder_types[encoder_sel];
551 encoder = vc4_find_encoder_by_type(drm, type: encoder_type);
552 if (WARN_ON(!encoder))
553 return 0;
554
555 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
556 ret = pm_runtime_resume_and_get(dev: &vc4_hdmi->pdev->dev);
557 if (ret)
558 return ret;
559
560 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
561 if (ret)
562 return ret;
563
564 /*
565 * post_crtc_powerdown will have called pm_runtime_put, so we
566 * don't need it here otherwise we'll get the reference counting
567 * wrong.
568 */
569
570 return 0;
571}
572
573void vc4_crtc_send_vblank(struct drm_crtc *crtc)
574{
575 struct drm_device *dev = crtc->dev;
576 unsigned long flags;
577
578 if (!crtc->state || !crtc->state->event)
579 return;
580
581 spin_lock_irqsave(&dev->event_lock, flags);
582 drm_crtc_send_vblank_event(crtc, e: crtc->state->event);
583 crtc->state->event = NULL;
584 spin_unlock_irqrestore(lock: &dev->event_lock, flags);
585}
586
587static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
588 struct drm_atomic_state *state)
589{
590 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
591 crtc);
592 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
593 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state: old_state);
594 struct drm_device *dev = crtc->dev;
595
596 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
597 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
598
599 require_hvs_enabled(dev);
600
601 /* Disable vblank irq handling before crtc is disabled. */
602 drm_crtc_vblank_off(crtc);
603
604 vc4_crtc_disable(crtc, encoder, state, channel: old_vc4_state->assigned_channel);
605
606 /*
607 * Make sure we issue a vblank event after disabling the CRTC if
608 * someone was waiting it.
609 */
610 vc4_crtc_send_vblank(crtc);
611}
612
613static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
614 struct drm_atomic_state *state)
615{
616 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
617 crtc);
618 struct drm_device *dev = crtc->dev;
619 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
620 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state: new_state);
621 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
622 int idx;
623
624 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
625 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
626
627 if (!drm_dev_enter(dev, idx: &idx))
628 return;
629
630 require_hvs_enabled(dev);
631
632 /* Enable vblank irq handling before crtc is started otherwise
633 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
634 */
635 drm_crtc_vblank_on(crtc);
636
637 vc4_hvs_atomic_enable(crtc, state);
638
639 if (vc4_encoder->pre_crtc_configure)
640 vc4_encoder->pre_crtc_configure(encoder, state);
641
642 vc4_crtc_config_pv(crtc, encoder, state);
643
644 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
645
646 if (vc4_encoder->pre_crtc_enable)
647 vc4_encoder->pre_crtc_enable(encoder, state);
648
649 /* When feeding the transposer block the pixelvalve is unneeded and
650 * should not be enabled.
651 */
652 CRTC_WRITE(PV_V_CONTROL,
653 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
654
655 if (vc4_encoder->post_crtc_enable)
656 vc4_encoder->post_crtc_enable(encoder, state);
657
658 drm_dev_exit(idx);
659}
660
661static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
662 const struct drm_display_mode *mode)
663{
664 /* Do not allow doublescan modes from user space */
665 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
666 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
667 crtc->base.id);
668 return MODE_NO_DBLESCAN;
669 }
670
671 return MODE_OK;
672}
673
674void vc4_crtc_get_margins(struct drm_crtc_state *state,
675 unsigned int *left, unsigned int *right,
676 unsigned int *top, unsigned int *bottom)
677{
678 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
679 struct drm_connector_state *conn_state;
680 struct drm_connector *conn;
681 int i;
682
683 *left = vc4_state->margins.left;
684 *right = vc4_state->margins.right;
685 *top = vc4_state->margins.top;
686 *bottom = vc4_state->margins.bottom;
687
688 /* We have to interate over all new connector states because
689 * vc4_crtc_get_margins() might be called before
690 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
691 * might be outdated.
692 */
693 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
694 if (conn_state->crtc != state->crtc)
695 continue;
696
697 *left = conn_state->tv.margins.left;
698 *right = conn_state->tv.margins.right;
699 *top = conn_state->tv.margins.top;
700 *bottom = conn_state->tv.margins.bottom;
701 break;
702 }
703}
704
705int vc4_crtc_atomic_check(struct drm_crtc *crtc,
706 struct drm_atomic_state *state)
707{
708 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
709 crtc);
710 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
711 struct drm_connector *conn;
712 struct drm_connector_state *conn_state;
713 struct drm_encoder *encoder;
714 int ret, i;
715
716 ret = vc4_hvs_atomic_check(crtc, state);
717 if (ret)
718 return ret;
719
720 encoder = vc4_get_crtc_encoder(crtc, state: crtc_state);
721 if (encoder) {
722 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
723 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
724
725 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
726 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
727 mode->clock * 9 / 10) * 1000;
728 } else {
729 vc4_state->hvs_load = mode->clock * 1000;
730 }
731 }
732
733 for_each_new_connector_in_state(state, conn, conn_state,
734 i) {
735 if (conn_state->crtc != crtc)
736 continue;
737
738 vc4_state->margins.left = conn_state->tv.margins.left;
739 vc4_state->margins.right = conn_state->tv.margins.right;
740 vc4_state->margins.top = conn_state->tv.margins.top;
741 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
742 break;
743 }
744
745 return 0;
746}
747
748static int vc4_enable_vblank(struct drm_crtc *crtc)
749{
750 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
751 struct drm_device *dev = crtc->dev;
752 int idx;
753
754 if (!drm_dev_enter(dev, idx: &idx))
755 return -ENODEV;
756
757 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
758
759 drm_dev_exit(idx);
760
761 return 0;
762}
763
764static void vc4_disable_vblank(struct drm_crtc *crtc)
765{
766 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
767 struct drm_device *dev = crtc->dev;
768 int idx;
769
770 if (!drm_dev_enter(dev, idx: &idx))
771 return;
772
773 CRTC_WRITE(PV_INTEN, 0);
774
775 drm_dev_exit(idx);
776}
777
778static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
779{
780 struct drm_crtc *crtc = &vc4_crtc->base;
781 struct drm_device *dev = crtc->dev;
782 struct vc4_dev *vc4 = to_vc4_dev(dev);
783 struct vc4_hvs *hvs = vc4->hvs;
784 u32 chan = vc4_crtc->current_hvs_channel;
785 unsigned long flags;
786
787 spin_lock_irqsave(&dev->event_lock, flags);
788 spin_lock(lock: &vc4_crtc->irq_lock);
789 if (vc4_crtc->event &&
790 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
791 vc4_crtc->feeds_txp)) {
792 drm_crtc_send_vblank_event(crtc, e: vc4_crtc->event);
793 vc4_crtc->event = NULL;
794 drm_crtc_vblank_put(crtc);
795
796 /* Wait for the page flip to unmask the underrun to ensure that
797 * the display list was updated by the hardware. Before that
798 * happens, the HVS will be using the previous display list with
799 * the CRTC and encoder already reconfigured, leading to
800 * underruns. This can be seen when reconfiguring the CRTC.
801 */
802 vc4_hvs_unmask_underrun(hvs, channel: chan);
803 }
804 spin_unlock(lock: &vc4_crtc->irq_lock);
805 spin_unlock_irqrestore(lock: &dev->event_lock, flags);
806}
807
808void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
809{
810 crtc->t_vblank = ktime_get();
811 drm_crtc_handle_vblank(crtc: &crtc->base);
812 vc4_crtc_handle_page_flip(vc4_crtc: crtc);
813}
814
815static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
816{
817 struct vc4_crtc *vc4_crtc = data;
818 u32 stat = CRTC_READ(PV_INTSTAT);
819 irqreturn_t ret = IRQ_NONE;
820
821 if (stat & PV_INT_VFP_START) {
822 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
823 vc4_crtc_handle_vblank(crtc: vc4_crtc);
824 ret = IRQ_HANDLED;
825 }
826
827 return ret;
828}
829
830struct vc4_async_flip_state {
831 struct drm_crtc *crtc;
832 struct drm_framebuffer *fb;
833 struct drm_framebuffer *old_fb;
834 struct drm_pending_vblank_event *event;
835
836 union {
837 struct dma_fence_cb fence;
838 struct vc4_seqno_cb seqno;
839 } cb;
840};
841
842/* Called when the V3D execution for the BO being flipped to is done, so that
843 * we can actually update the plane's address to point to it.
844 */
845static void
846vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
847{
848 struct drm_crtc *crtc = flip_state->crtc;
849 struct drm_device *dev = crtc->dev;
850 struct drm_plane *plane = crtc->primary;
851
852 vc4_plane_async_set_fb(plane, fb: flip_state->fb);
853 if (flip_state->event) {
854 unsigned long flags;
855
856 spin_lock_irqsave(&dev->event_lock, flags);
857 drm_crtc_send_vblank_event(crtc, e: flip_state->event);
858 spin_unlock_irqrestore(lock: &dev->event_lock, flags);
859 }
860
861 drm_crtc_vblank_put(crtc);
862 drm_framebuffer_put(fb: flip_state->fb);
863
864 if (flip_state->old_fb)
865 drm_framebuffer_put(fb: flip_state->old_fb);
866
867 kfree(objp: flip_state);
868}
869
870static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
871{
872 struct vc4_async_flip_state *flip_state =
873 container_of(cb, struct vc4_async_flip_state, cb.seqno);
874 struct vc4_bo *bo = NULL;
875
876 if (flip_state->old_fb) {
877 struct drm_gem_dma_object *dma_bo =
878 drm_fb_dma_get_gem_obj(fb: flip_state->old_fb, plane: 0);
879 bo = to_vc4_bo(&dma_bo->base);
880 }
881
882 vc4_async_page_flip_complete(flip_state);
883
884 /*
885 * Decrement the BO usecnt in order to keep the inc/dec
886 * calls balanced when the planes are updated through
887 * the async update path.
888 *
889 * FIXME: we should move to generic async-page-flip when
890 * it's available, so that we can get rid of this
891 * hand-made cleanup_fb() logic.
892 */
893 if (bo)
894 vc4_bo_dec_usecnt(bo);
895}
896
897static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
898 struct dma_fence_cb *cb)
899{
900 struct vc4_async_flip_state *flip_state =
901 container_of(cb, struct vc4_async_flip_state, cb.fence);
902
903 vc4_async_page_flip_complete(flip_state);
904 dma_fence_put(fence);
905}
906
907static int vc4_async_set_fence_cb(struct drm_device *dev,
908 struct vc4_async_flip_state *flip_state)
909{
910 struct drm_framebuffer *fb = flip_state->fb;
911 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, plane: 0);
912 struct vc4_dev *vc4 = to_vc4_dev(dev);
913 struct dma_fence *fence;
914 int ret;
915
916 if (!vc4->is_vc5) {
917 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
918
919 return vc4_queue_seqno_cb(dev, cb: &flip_state->cb.seqno, seqno: bo->seqno,
920 func: vc4_async_page_flip_seqno_complete);
921 }
922
923 ret = dma_resv_get_singleton(obj: dma_bo->base.resv, usage: DMA_RESV_USAGE_READ, fence: &fence);
924 if (ret)
925 return ret;
926
927 /* If there's no fence, complete the page flip immediately */
928 if (!fence) {
929 vc4_async_page_flip_fence_complete(fence, cb: &flip_state->cb.fence);
930 return 0;
931 }
932
933 /* If the fence has already been completed, complete the page flip */
934 if (dma_fence_add_callback(fence, cb: &flip_state->cb.fence,
935 func: vc4_async_page_flip_fence_complete))
936 vc4_async_page_flip_fence_complete(fence, cb: &flip_state->cb.fence);
937
938 return 0;
939}
940
941static int
942vc4_async_page_flip_common(struct drm_crtc *crtc,
943 struct drm_framebuffer *fb,
944 struct drm_pending_vblank_event *event,
945 uint32_t flags)
946{
947 struct drm_device *dev = crtc->dev;
948 struct drm_plane *plane = crtc->primary;
949 struct vc4_async_flip_state *flip_state;
950
951 flip_state = kzalloc(size: sizeof(*flip_state), GFP_KERNEL);
952 if (!flip_state)
953 return -ENOMEM;
954
955 drm_framebuffer_get(fb);
956 flip_state->fb = fb;
957 flip_state->crtc = crtc;
958 flip_state->event = event;
959
960 /* Save the current FB before it's replaced by the new one in
961 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
962 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
963 * it consistent.
964 * FIXME: we should move to generic async-page-flip when it's
965 * available, so that we can get rid of this hand-made cleanup_fb()
966 * logic.
967 */
968 flip_state->old_fb = plane->state->fb;
969 if (flip_state->old_fb)
970 drm_framebuffer_get(fb: flip_state->old_fb);
971
972 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
973
974 /* Immediately update the plane's legacy fb pointer, so that later
975 * modeset prep sees the state that will be present when the semaphore
976 * is released.
977 */
978 drm_atomic_set_fb_for_plane(plane_state: plane->state, fb);
979
980 vc4_async_set_fence_cb(dev, flip_state);
981
982 /* Driver takes ownership of state on successful async commit. */
983 return 0;
984}
985
986/* Implements async (non-vblank-synced) page flips.
987 *
988 * The page flip ioctl needs to return immediately, so we grab the
989 * modeset semaphore on the pipe, and queue the address update for
990 * when V3D is done with the BO being flipped to.
991 */
992static int vc4_async_page_flip(struct drm_crtc *crtc,
993 struct drm_framebuffer *fb,
994 struct drm_pending_vblank_event *event,
995 uint32_t flags)
996{
997 struct drm_device *dev = crtc->dev;
998 struct vc4_dev *vc4 = to_vc4_dev(dev);
999 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, plane: 0);
1000 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1001 int ret;
1002
1003 if (WARN_ON_ONCE(vc4->is_vc5))
1004 return -ENODEV;
1005
1006 /*
1007 * Increment the BO usecnt here, so that we never end up with an
1008 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1009 * plane is later updated through the non-async path.
1010 *
1011 * FIXME: we should move to generic async-page-flip when
1012 * it's available, so that we can get rid of this
1013 * hand-made prepare_fb() logic.
1014 */
1015 ret = vc4_bo_inc_usecnt(bo);
1016 if (ret)
1017 return ret;
1018
1019 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1020 if (ret) {
1021 vc4_bo_dec_usecnt(bo);
1022 return ret;
1023 }
1024
1025 return 0;
1026}
1027
1028static int vc5_async_page_flip(struct drm_crtc *crtc,
1029 struct drm_framebuffer *fb,
1030 struct drm_pending_vblank_event *event,
1031 uint32_t flags)
1032{
1033 return vc4_async_page_flip_common(crtc, fb, event, flags);
1034}
1035
1036int vc4_page_flip(struct drm_crtc *crtc,
1037 struct drm_framebuffer *fb,
1038 struct drm_pending_vblank_event *event,
1039 uint32_t flags,
1040 struct drm_modeset_acquire_ctx *ctx)
1041{
1042 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1043 struct drm_device *dev = crtc->dev;
1044 struct vc4_dev *vc4 = to_vc4_dev(dev);
1045
1046 if (vc4->is_vc5)
1047 return vc5_async_page_flip(crtc, fb, event, flags);
1048 else
1049 return vc4_async_page_flip(crtc, fb, event, flags);
1050 } else {
1051 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1052 }
1053}
1054
1055struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1056{
1057 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1058
1059 vc4_state = kzalloc(size: sizeof(*vc4_state), GFP_KERNEL);
1060 if (!vc4_state)
1061 return NULL;
1062
1063 old_vc4_state = to_vc4_crtc_state(crtc->state);
1064 vc4_state->margins = old_vc4_state->margins;
1065 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1066
1067 __drm_atomic_helper_crtc_duplicate_state(crtc, state: &vc4_state->base);
1068 return &vc4_state->base;
1069}
1070
1071void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1072 struct drm_crtc_state *state)
1073{
1074 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1075 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1076
1077 if (drm_mm_node_allocated(node: &vc4_state->mm)) {
1078 unsigned long flags;
1079
1080 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1081 drm_mm_remove_node(node: &vc4_state->mm);
1082 spin_unlock_irqrestore(lock: &vc4->hvs->mm_lock, flags);
1083
1084 }
1085
1086 drm_atomic_helper_crtc_destroy_state(crtc, state);
1087}
1088
1089void vc4_crtc_reset(struct drm_crtc *crtc)
1090{
1091 struct vc4_crtc_state *vc4_crtc_state;
1092
1093 if (crtc->state)
1094 vc4_crtc_destroy_state(crtc, state: crtc->state);
1095
1096 vc4_crtc_state = kzalloc(size: sizeof(*vc4_crtc_state), GFP_KERNEL);
1097 if (!vc4_crtc_state) {
1098 crtc->state = NULL;
1099 return;
1100 }
1101
1102 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1103 __drm_atomic_helper_crtc_reset(crtc, state: &vc4_crtc_state->base);
1104}
1105
1106int vc4_crtc_late_register(struct drm_crtc *crtc)
1107{
1108 struct drm_device *drm = crtc->dev;
1109 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1110 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(crtc: vc4_crtc);
1111
1112 vc4_debugfs_add_regset32(drm, filename: crtc_data->debugfs_name,
1113 regset: &vc4_crtc->regset);
1114
1115 return 0;
1116}
1117
1118static const struct drm_crtc_funcs vc4_crtc_funcs = {
1119 .set_config = drm_atomic_helper_set_config,
1120 .page_flip = vc4_page_flip,
1121 .set_property = NULL,
1122 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1123 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1124 .reset = vc4_crtc_reset,
1125 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1126 .atomic_destroy_state = vc4_crtc_destroy_state,
1127 .enable_vblank = vc4_enable_vblank,
1128 .disable_vblank = vc4_disable_vblank,
1129 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1130 .late_register = vc4_crtc_late_register,
1131};
1132
1133static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1134 .mode_valid = vc4_crtc_mode_valid,
1135 .atomic_check = vc4_crtc_atomic_check,
1136 .atomic_begin = vc4_hvs_atomic_begin,
1137 .atomic_flush = vc4_hvs_atomic_flush,
1138 .atomic_enable = vc4_crtc_atomic_enable,
1139 .atomic_disable = vc4_crtc_atomic_disable,
1140 .get_scanout_position = vc4_crtc_get_scanout_position,
1141};
1142
1143const struct vc4_pv_data bcm2835_pv0_data = {
1144 .base = {
1145 .name = "pixelvalve-0",
1146 .debugfs_name = "crtc0_regs",
1147 .hvs_available_channels = BIT(0),
1148 .hvs_output = 0,
1149 },
1150 .fifo_depth = 64,
1151 .pixels_per_clock = 1,
1152 .encoder_types = {
1153 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1154 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1155 },
1156};
1157
1158const struct vc4_pv_data bcm2835_pv1_data = {
1159 .base = {
1160 .name = "pixelvalve-1",
1161 .debugfs_name = "crtc1_regs",
1162 .hvs_available_channels = BIT(2),
1163 .hvs_output = 2,
1164 },
1165 .fifo_depth = 64,
1166 .pixels_per_clock = 1,
1167 .encoder_types = {
1168 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1169 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1170 },
1171};
1172
1173const struct vc4_pv_data bcm2835_pv2_data = {
1174 .base = {
1175 .name = "pixelvalve-2",
1176 .debugfs_name = "crtc2_regs",
1177 .hvs_available_channels = BIT(1),
1178 .hvs_output = 1,
1179 },
1180 .fifo_depth = 64,
1181 .pixels_per_clock = 1,
1182 .encoder_types = {
1183 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1184 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1185 },
1186};
1187
1188const struct vc4_pv_data bcm2711_pv0_data = {
1189 .base = {
1190 .name = "pixelvalve-0",
1191 .debugfs_name = "crtc0_regs",
1192 .hvs_available_channels = BIT(0),
1193 .hvs_output = 0,
1194 },
1195 .fifo_depth = 64,
1196 .pixels_per_clock = 1,
1197 .encoder_types = {
1198 [0] = VC4_ENCODER_TYPE_DSI0,
1199 [1] = VC4_ENCODER_TYPE_DPI,
1200 },
1201};
1202
1203const struct vc4_pv_data bcm2711_pv1_data = {
1204 .base = {
1205 .name = "pixelvalve-1",
1206 .debugfs_name = "crtc1_regs",
1207 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1208 .hvs_output = 3,
1209 },
1210 .fifo_depth = 64,
1211 .pixels_per_clock = 1,
1212 .encoder_types = {
1213 [0] = VC4_ENCODER_TYPE_DSI1,
1214 [1] = VC4_ENCODER_TYPE_SMI,
1215 },
1216};
1217
1218const struct vc4_pv_data bcm2711_pv2_data = {
1219 .base = {
1220 .name = "pixelvalve-2",
1221 .debugfs_name = "crtc2_regs",
1222 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1223 .hvs_output = 4,
1224 },
1225 .fifo_depth = 256,
1226 .pixels_per_clock = 2,
1227 .encoder_types = {
1228 [0] = VC4_ENCODER_TYPE_HDMI0,
1229 },
1230};
1231
1232const struct vc4_pv_data bcm2711_pv3_data = {
1233 .base = {
1234 .name = "pixelvalve-3",
1235 .debugfs_name = "crtc3_regs",
1236 .hvs_available_channels = BIT(1),
1237 .hvs_output = 1,
1238 },
1239 .fifo_depth = 64,
1240 .pixels_per_clock = 1,
1241 .encoder_types = {
1242 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1243 },
1244};
1245
1246const struct vc4_pv_data bcm2711_pv4_data = {
1247 .base = {
1248 .name = "pixelvalve-4",
1249 .debugfs_name = "crtc4_regs",
1250 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1251 .hvs_output = 5,
1252 },
1253 .fifo_depth = 64,
1254 .pixels_per_clock = 2,
1255 .encoder_types = {
1256 [0] = VC4_ENCODER_TYPE_HDMI1,
1257 },
1258};
1259
1260static const struct of_device_id vc4_crtc_dt_match[] = {
1261 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1262 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1263 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1264 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1265 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1266 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1267 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1268 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1269 {}
1270};
1271
1272static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1273 struct drm_crtc *crtc)
1274{
1275 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1276 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(crtc: vc4_crtc);
1277 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1278 struct drm_encoder *encoder;
1279
1280 drm_for_each_encoder(encoder, drm) {
1281 struct vc4_encoder *vc4_encoder;
1282 int i;
1283
1284 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1285 continue;
1286
1287 vc4_encoder = to_vc4_encoder(encoder);
1288 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1289 if (vc4_encoder->type == encoder_types[i]) {
1290 vc4_encoder->clock_select = i;
1291 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1292 break;
1293 }
1294 }
1295 }
1296}
1297
1298/**
1299 * __vc4_crtc_init - Initializes a CRTC
1300 * @drm: DRM Device
1301 * @pdev: CRTC Platform Device
1302 * @vc4_crtc: CRTC Object to Initialize
1303 * @data: Configuration data associated with this CRTC
1304 * @primary_plane: Primary plane for CRTC
1305 * @crtc_funcs: Callbacks for the new CRTC
1306 * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1307 * @feeds_txp: Is this CRTC connected to the TXP?
1308 *
1309 * Initializes our private CRTC structure. This function is mostly
1310 * relevant for KUnit testing, all other users should use
1311 * vc4_crtc_init() instead.
1312 *
1313 * Returns:
1314 * 0 on success, a negative error code on failure.
1315 */
1316int __vc4_crtc_init(struct drm_device *drm,
1317 struct platform_device *pdev,
1318 struct vc4_crtc *vc4_crtc,
1319 const struct vc4_crtc_data *data,
1320 struct drm_plane *primary_plane,
1321 const struct drm_crtc_funcs *crtc_funcs,
1322 const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1323 bool feeds_txp)
1324{
1325 struct vc4_dev *vc4 = to_vc4_dev(drm);
1326 struct drm_crtc *crtc = &vc4_crtc->base;
1327 unsigned int i;
1328 int ret;
1329
1330 vc4_crtc->data = data;
1331 vc4_crtc->pdev = pdev;
1332 vc4_crtc->feeds_txp = feeds_txp;
1333 spin_lock_init(&vc4_crtc->irq_lock);
1334 ret = drmm_crtc_init_with_planes(dev: drm, crtc, primary: primary_plane, NULL,
1335 funcs: crtc_funcs, name: data->name);
1336 if (ret)
1337 return ret;
1338
1339 drm_crtc_helper_add(crtc, funcs: crtc_helper_funcs);
1340
1341 if (!vc4->is_vc5) {
1342 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1343
1344 drm_crtc_enable_color_mgmt(crtc, degamma_lut_size: 0, has_ctm: false, gamma_lut_size: crtc->gamma_size);
1345
1346 /* We support CTM, but only for one CRTC at a time. It's therefore
1347 * implemented as private driver state in vc4_kms, not here.
1348 */
1349 drm_crtc_enable_color_mgmt(crtc, degamma_lut_size: 0, has_ctm: true, gamma_lut_size: crtc->gamma_size);
1350 }
1351
1352 for (i = 0; i < crtc->gamma_size; i++) {
1353 vc4_crtc->lut_r[i] = i;
1354 vc4_crtc->lut_g[i] = i;
1355 vc4_crtc->lut_b[i] = i;
1356 }
1357
1358 return 0;
1359}
1360
1361int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1362 struct vc4_crtc *vc4_crtc,
1363 const struct vc4_crtc_data *data,
1364 const struct drm_crtc_funcs *crtc_funcs,
1365 const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1366 bool feeds_txp)
1367{
1368 struct drm_plane *primary_plane;
1369
1370 /* For now, we create just the primary and the legacy cursor
1371 * planes. We should be able to stack more planes on easily,
1372 * but to do that we would need to compute the bandwidth
1373 * requirement of the plane configuration, and reject ones
1374 * that will take too much.
1375 */
1376 primary_plane = vc4_plane_init(dev: drm, type: DRM_PLANE_TYPE_PRIMARY, possible_crtcs: 0);
1377 if (IS_ERR(ptr: primary_plane)) {
1378 dev_err(drm->dev, "failed to construct primary plane\n");
1379 return PTR_ERR(ptr: primary_plane);
1380 }
1381
1382 return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1383 crtc_funcs, crtc_helper_funcs, feeds_txp);
1384}
1385
1386static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1387{
1388 struct platform_device *pdev = to_platform_device(dev);
1389 struct drm_device *drm = dev_get_drvdata(dev: master);
1390 const struct vc4_pv_data *pv_data;
1391 struct vc4_crtc *vc4_crtc;
1392 struct drm_crtc *crtc;
1393 int ret;
1394
1395 vc4_crtc = drmm_kzalloc(dev: drm, size: sizeof(*vc4_crtc), GFP_KERNEL);
1396 if (!vc4_crtc)
1397 return -ENOMEM;
1398 crtc = &vc4_crtc->base;
1399
1400 pv_data = of_device_get_match_data(dev);
1401 if (!pv_data)
1402 return -ENODEV;
1403
1404 vc4_crtc->regs = vc4_ioremap_regs(dev: pdev, index: 0);
1405 if (IS_ERR(ptr: vc4_crtc->regs))
1406 return PTR_ERR(ptr: vc4_crtc->regs);
1407
1408 vc4_crtc->regset.base = vc4_crtc->regs;
1409 vc4_crtc->regset.regs = crtc_regs;
1410 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1411
1412 ret = vc4_crtc_init(drm, pdev, vc4_crtc, data: &pv_data->base,
1413 crtc_funcs: &vc4_crtc_funcs, crtc_helper_funcs: &vc4_crtc_helper_funcs,
1414 feeds_txp: false);
1415 if (ret)
1416 return ret;
1417 vc4_set_crtc_possible_masks(drm, crtc);
1418
1419 CRTC_WRITE(PV_INTEN, 0);
1420 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1421 ret = devm_request_irq(dev, irq: platform_get_irq(pdev, 0),
1422 handler: vc4_crtc_irq_handler,
1423 IRQF_SHARED,
1424 devname: "vc4 crtc", dev_id: vc4_crtc);
1425 if (ret)
1426 return ret;
1427
1428 platform_set_drvdata(pdev, data: vc4_crtc);
1429
1430 return 0;
1431}
1432
1433static void vc4_crtc_unbind(struct device *dev, struct device *master,
1434 void *data)
1435{
1436 struct platform_device *pdev = to_platform_device(dev);
1437 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1438
1439 CRTC_WRITE(PV_INTEN, 0);
1440
1441 platform_set_drvdata(pdev, NULL);
1442}
1443
1444static const struct component_ops vc4_crtc_ops = {
1445 .bind = vc4_crtc_bind,
1446 .unbind = vc4_crtc_unbind,
1447};
1448
1449static int vc4_crtc_dev_probe(struct platform_device *pdev)
1450{
1451 return component_add(&pdev->dev, &vc4_crtc_ops);
1452}
1453
1454static void vc4_crtc_dev_remove(struct platform_device *pdev)
1455{
1456 component_del(&pdev->dev, &vc4_crtc_ops);
1457}
1458
1459struct platform_driver vc4_crtc_driver = {
1460 .probe = vc4_crtc_dev_probe,
1461 .remove_new = vc4_crtc_dev_remove,
1462 .driver = {
1463 .name = "vc4_crtc",
1464 .of_match_table = vc4_crtc_dt_match,
1465 },
1466};
1467

source code of linux/drivers/gpu/drm/vc4/vc4_crtc.c