1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * hid-ft260.c - FTDI FT260 USB HID to I2C host bridge |
4 | * |
5 | * Copyright (c) 2021, Michael Zaidman <michaelz@xsightlabs.com> |
6 | * |
7 | * Data Sheet: |
8 | * https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT260.pdf |
9 | */ |
10 | |
11 | #include "hid-ids.h" |
12 | #include <linux/hidraw.h> |
13 | #include <linux/i2c.h> |
14 | #include <linux/module.h> |
15 | #include <linux/usb.h> |
16 | |
17 | #ifdef DEBUG |
18 | static int ft260_debug = 1; |
19 | #else |
20 | static int ft260_debug; |
21 | #endif |
22 | module_param_named(debug, ft260_debug, int, 0600); |
23 | MODULE_PARM_DESC(debug, "Toggle FT260 debugging messages" ); |
24 | |
25 | #define ft260_dbg(format, arg...) \ |
26 | do { \ |
27 | if (ft260_debug) \ |
28 | pr_info("%s: " format, __func__, ##arg); \ |
29 | } while (0) |
30 | |
31 | #define FT260_REPORT_MAX_LENGTH (64) |
32 | #define FT260_I2C_DATA_REPORT_ID(len) (FT260_I2C_REPORT_MIN + (len - 1) / 4) |
33 | |
34 | #define FT260_WAKEUP_NEEDED_AFTER_MS (4800) /* 5s minus 200ms margin */ |
35 | |
36 | /* |
37 | * The ft260 input report format defines 62 bytes for the data payload, but |
38 | * when requested 62 bytes, the controller returns 60 and 2 in separate input |
39 | * reports. To achieve better performance with the multi-report read data |
40 | * transfers, we set the maximum read payload length to a multiple of 60. |
41 | * With a 100 kHz I2C clock, one 240 bytes read takes about 1/27 second, |
42 | * which is excessive; On the other hand, some higher layer drivers like at24 |
43 | * or optoe limit the i2c reads to 128 bytes. To not block other drivers out |
44 | * of I2C for potentially troublesome amounts of time, we select the maximum |
45 | * read payload length to be 180 bytes. |
46 | */ |
47 | #define FT260_RD_DATA_MAX (180) |
48 | #define FT260_WR_DATA_MAX (60) |
49 | |
50 | /* |
51 | * Device interface configuration. |
52 | * The FT260 has 2 interfaces that are controlled by DCNF0 and DCNF1 pins. |
53 | * First implementes USB HID to I2C bridge function and |
54 | * second - USB HID to UART bridge function. |
55 | */ |
56 | enum { |
57 | FT260_MODE_ALL = 0x00, |
58 | FT260_MODE_I2C = 0x01, |
59 | FT260_MODE_UART = 0x02, |
60 | FT260_MODE_BOTH = 0x03, |
61 | }; |
62 | |
63 | /* Control pipe */ |
64 | enum { |
65 | FT260_GET_RQST_TYPE = 0xA1, |
66 | FT260_GET_REPORT = 0x01, |
67 | FT260_SET_RQST_TYPE = 0x21, |
68 | FT260_SET_REPORT = 0x09, |
69 | FT260_FEATURE = 0x03, |
70 | }; |
71 | |
72 | /* Report IDs / Feature In */ |
73 | enum { |
74 | FT260_CHIP_VERSION = 0xA0, |
75 | FT260_SYSTEM_SETTINGS = 0xA1, |
76 | FT260_I2C_STATUS = 0xC0, |
77 | FT260_I2C_READ_REQ = 0xC2, |
78 | FT260_I2C_REPORT_MIN = 0xD0, |
79 | FT260_I2C_REPORT_MAX = 0xDE, |
80 | FT260_GPIO = 0xB0, |
81 | FT260_UART_INTERRUPT_STATUS = 0xB1, |
82 | FT260_UART_STATUS = 0xE0, |
83 | FT260_UART_RI_DCD_STATUS = 0xE1, |
84 | FT260_UART_REPORT = 0xF0, |
85 | }; |
86 | |
87 | /* Feature Out */ |
88 | enum { |
89 | FT260_SET_CLOCK = 0x01, |
90 | FT260_SET_I2C_MODE = 0x02, |
91 | FT260_SET_UART_MODE = 0x03, |
92 | FT260_ENABLE_INTERRUPT = 0x05, |
93 | FT260_SELECT_GPIO2_FUNC = 0x06, |
94 | FT260_ENABLE_UART_DCD_RI = 0x07, |
95 | FT260_SELECT_GPIOA_FUNC = 0x08, |
96 | FT260_SELECT_GPIOG_FUNC = 0x09, |
97 | FT260_SET_INTERRUPT_TRIGGER = 0x0A, |
98 | FT260_SET_SUSPEND_OUT_POLAR = 0x0B, |
99 | FT260_ENABLE_UART_RI_WAKEUP = 0x0C, |
100 | FT260_SET_UART_RI_WAKEUP_CFG = 0x0D, |
101 | FT260_SET_I2C_RESET = 0x20, |
102 | FT260_SET_I2C_CLOCK_SPEED = 0x22, |
103 | FT260_SET_UART_RESET = 0x40, |
104 | FT260_SET_UART_CONFIG = 0x41, |
105 | FT260_SET_UART_BAUD_RATE = 0x42, |
106 | FT260_SET_UART_DATA_BIT = 0x43, |
107 | FT260_SET_UART_PARITY = 0x44, |
108 | FT260_SET_UART_STOP_BIT = 0x45, |
109 | FT260_SET_UART_BREAKING = 0x46, |
110 | FT260_SET_UART_XON_XOFF = 0x49, |
111 | }; |
112 | |
113 | /* Response codes in I2C status report */ |
114 | enum { |
115 | FT260_I2C_STATUS_SUCCESS = 0x00, |
116 | FT260_I2C_STATUS_CTRL_BUSY = 0x01, |
117 | FT260_I2C_STATUS_ERROR = 0x02, |
118 | FT260_I2C_STATUS_ADDR_NO_ACK = 0x04, |
119 | FT260_I2C_STATUS_DATA_NO_ACK = 0x08, |
120 | FT260_I2C_STATUS_ARBITR_LOST = 0x10, |
121 | FT260_I2C_STATUS_CTRL_IDLE = 0x20, |
122 | FT260_I2C_STATUS_BUS_BUSY = 0x40, |
123 | }; |
124 | |
125 | /* I2C Conditions flags */ |
126 | enum { |
127 | FT260_FLAG_NONE = 0x00, |
128 | FT260_FLAG_START = 0x02, |
129 | FT260_FLAG_START_REPEATED = 0x03, |
130 | FT260_FLAG_STOP = 0x04, |
131 | FT260_FLAG_START_STOP = 0x06, |
132 | FT260_FLAG_START_STOP_REPEATED = 0x07, |
133 | }; |
134 | |
135 | #define FT260_SET_REQUEST_VALUE(report_id) ((FT260_FEATURE << 8) | report_id) |
136 | |
137 | /* Feature In reports */ |
138 | |
139 | struct ft260_get_chip_version_report { |
140 | u8 report; /* FT260_CHIP_VERSION */ |
141 | u8 chip_code[4]; /* FTDI chip identification code */ |
142 | u8 reserved[8]; |
143 | } __packed; |
144 | |
145 | struct ft260_get_system_status_report { |
146 | u8 report; /* FT260_SYSTEM_SETTINGS */ |
147 | u8 chip_mode; /* DCNF0 and DCNF1 status, bits 0-1 */ |
148 | u8 clock_ctl; /* 0 - 12MHz, 1 - 24MHz, 2 - 48MHz */ |
149 | u8 suspend_status; /* 0 - not suspended, 1 - suspended */ |
150 | u8 pwren_status; /* 0 - FT260 is not ready, 1 - ready */ |
151 | u8 i2c_enable; /* 0 - disabled, 1 - enabled */ |
152 | u8 uart_mode; /* 0 - OFF; 1 - RTS_CTS, 2 - DTR_DSR, */ |
153 | /* 3 - XON_XOFF, 4 - No flow control */ |
154 | u8 hid_over_i2c_en; /* 0 - disabled, 1 - enabled */ |
155 | u8 gpio2_function; /* 0 - GPIO, 1 - SUSPOUT, */ |
156 | /* 2 - PWREN, 4 - TX_LED */ |
157 | u8 gpioA_function; /* 0 - GPIO, 3 - TX_ACTIVE, 4 - TX_LED */ |
158 | u8 gpioG_function; /* 0 - GPIO, 2 - PWREN, */ |
159 | /* 5 - RX_LED, 6 - BCD_DET */ |
160 | u8 suspend_out_pol; /* 0 - active-high, 1 - active-low */ |
161 | u8 enable_wakeup_int; /* 0 - disabled, 1 - enabled */ |
162 | u8 intr_cond; /* Interrupt trigger conditions */ |
163 | u8 power_saving_en; /* 0 - disabled, 1 - enabled */ |
164 | u8 reserved[10]; |
165 | } __packed; |
166 | |
167 | struct ft260_get_i2c_status_report { |
168 | u8 report; /* FT260_I2C_STATUS */ |
169 | u8 bus_status; /* I2C bus status */ |
170 | __le16 clock; /* I2C bus clock in range 60-3400 KHz */ |
171 | u8 reserved; |
172 | } __packed; |
173 | |
174 | /* Feature Out reports */ |
175 | |
176 | struct ft260_set_system_clock_report { |
177 | u8 report; /* FT260_SYSTEM_SETTINGS */ |
178 | u8 request; /* FT260_SET_CLOCK */ |
179 | u8 clock_ctl; /* 0 - 12MHz, 1 - 24MHz, 2 - 48MHz */ |
180 | } __packed; |
181 | |
182 | struct ft260_set_i2c_mode_report { |
183 | u8 report; /* FT260_SYSTEM_SETTINGS */ |
184 | u8 request; /* FT260_SET_I2C_MODE */ |
185 | u8 i2c_enable; /* 0 - disabled, 1 - enabled */ |
186 | } __packed; |
187 | |
188 | struct ft260_set_uart_mode_report { |
189 | u8 report; /* FT260_SYSTEM_SETTINGS */ |
190 | u8 request; /* FT260_SET_UART_MODE */ |
191 | u8 uart_mode; /* 0 - OFF; 1 - RTS_CTS, 2 - DTR_DSR, */ |
192 | /* 3 - XON_XOFF, 4 - No flow control */ |
193 | } __packed; |
194 | |
195 | struct ft260_set_i2c_reset_report { |
196 | u8 report; /* FT260_SYSTEM_SETTINGS */ |
197 | u8 request; /* FT260_SET_I2C_RESET */ |
198 | } __packed; |
199 | |
200 | struct ft260_set_i2c_speed_report { |
201 | u8 report; /* FT260_SYSTEM_SETTINGS */ |
202 | u8 request; /* FT260_SET_I2C_CLOCK_SPEED */ |
203 | __le16 clock; /* I2C bus clock in range 60-3400 KHz */ |
204 | } __packed; |
205 | |
206 | /* Data transfer reports */ |
207 | |
208 | struct ft260_i2c_write_request_report { |
209 | u8 report; /* FT260_I2C_REPORT */ |
210 | u8 address; /* 7-bit I2C address */ |
211 | u8 flag; /* I2C transaction condition */ |
212 | u8 length; /* data payload length */ |
213 | u8 data[FT260_WR_DATA_MAX]; /* data payload */ |
214 | } __packed; |
215 | |
216 | struct ft260_i2c_read_request_report { |
217 | u8 report; /* FT260_I2C_READ_REQ */ |
218 | u8 address; /* 7-bit I2C address */ |
219 | u8 flag; /* I2C transaction condition */ |
220 | __le16 length; /* data payload length */ |
221 | } __packed; |
222 | |
223 | struct ft260_i2c_input_report { |
224 | u8 report; /* FT260_I2C_REPORT */ |
225 | u8 length; /* data payload length */ |
226 | u8 data[2]; /* data payload */ |
227 | } __packed; |
228 | |
229 | static const struct hid_device_id ft260_devices[] = { |
230 | { HID_USB_DEVICE(USB_VENDOR_ID_FUTURE_TECHNOLOGY, |
231 | USB_DEVICE_ID_FT260) }, |
232 | { /* END OF LIST */ } |
233 | }; |
234 | MODULE_DEVICE_TABLE(hid, ft260_devices); |
235 | |
236 | struct ft260_device { |
237 | struct i2c_adapter adap; |
238 | struct hid_device *hdev; |
239 | struct completion wait; |
240 | struct mutex lock; |
241 | u8 write_buf[FT260_REPORT_MAX_LENGTH]; |
242 | unsigned long need_wakeup_at; |
243 | u8 *read_buf; |
244 | u16 read_idx; |
245 | u16 read_len; |
246 | u16 clock; |
247 | }; |
248 | |
249 | static int ft260_hid_feature_report_get(struct hid_device *hdev, |
250 | unsigned char report_id, u8 *data, |
251 | size_t len) |
252 | { |
253 | u8 *buf; |
254 | int ret; |
255 | |
256 | buf = kmalloc(size: len, GFP_KERNEL); |
257 | if (!buf) |
258 | return -ENOMEM; |
259 | |
260 | ret = hid_hw_raw_request(hdev, reportnum: report_id, buf, len, rtype: HID_FEATURE_REPORT, |
261 | reqtype: HID_REQ_GET_REPORT); |
262 | if (likely(ret == len)) |
263 | memcpy(data, buf, len); |
264 | else if (ret >= 0) |
265 | ret = -EIO; |
266 | kfree(objp: buf); |
267 | return ret; |
268 | } |
269 | |
270 | static int ft260_hid_feature_report_set(struct hid_device *hdev, u8 *data, |
271 | size_t len) |
272 | { |
273 | u8 *buf; |
274 | int ret; |
275 | |
276 | buf = kmemdup(p: data, size: len, GFP_KERNEL); |
277 | if (!buf) |
278 | return -ENOMEM; |
279 | |
280 | buf[0] = FT260_SYSTEM_SETTINGS; |
281 | |
282 | ret = hid_hw_raw_request(hdev, reportnum: buf[0], buf, len, rtype: HID_FEATURE_REPORT, |
283 | reqtype: HID_REQ_SET_REPORT); |
284 | |
285 | kfree(objp: buf); |
286 | return ret; |
287 | } |
288 | |
289 | static int ft260_i2c_reset(struct hid_device *hdev) |
290 | { |
291 | struct ft260_set_i2c_reset_report report; |
292 | int ret; |
293 | |
294 | report.request = FT260_SET_I2C_RESET; |
295 | |
296 | ret = ft260_hid_feature_report_set(hdev, data: (u8 *)&report, len: sizeof(report)); |
297 | if (ret < 0) { |
298 | hid_err(hdev, "failed to reset I2C controller: %d\n" , ret); |
299 | return ret; |
300 | } |
301 | |
302 | ft260_dbg("done\n" ); |
303 | return ret; |
304 | } |
305 | |
306 | static int ft260_xfer_status(struct ft260_device *dev, u8 bus_busy) |
307 | { |
308 | struct hid_device *hdev = dev->hdev; |
309 | struct ft260_get_i2c_status_report report; |
310 | int ret; |
311 | |
312 | if (time_is_before_jiffies(dev->need_wakeup_at)) { |
313 | ret = ft260_hid_feature_report_get(hdev, report_id: FT260_I2C_STATUS, |
314 | data: (u8 *)&report, len: sizeof(report)); |
315 | if (unlikely(ret < 0)) { |
316 | hid_err(hdev, "failed to retrieve status: %d, no wakeup\n" , |
317 | ret); |
318 | } else { |
319 | dev->need_wakeup_at = jiffies + |
320 | msecs_to_jiffies(FT260_WAKEUP_NEEDED_AFTER_MS); |
321 | ft260_dbg("bus_status %#02x, wakeup\n" , |
322 | report.bus_status); |
323 | } |
324 | } |
325 | |
326 | ret = ft260_hid_feature_report_get(hdev, report_id: FT260_I2C_STATUS, |
327 | data: (u8 *)&report, len: sizeof(report)); |
328 | if (unlikely(ret < 0)) { |
329 | hid_err(hdev, "failed to retrieve status: %d\n" , ret); |
330 | return ret; |
331 | } |
332 | |
333 | dev->clock = le16_to_cpu(report.clock); |
334 | ft260_dbg("bus_status %#02x, clock %u\n" , report.bus_status, |
335 | dev->clock); |
336 | |
337 | if (report.bus_status & (FT260_I2C_STATUS_CTRL_BUSY | bus_busy)) |
338 | return -EAGAIN; |
339 | |
340 | /* |
341 | * The error condition (bit 1) is a status bit reflecting any |
342 | * error conditions. When any of the bits 2, 3, or 4 are raised |
343 | * to 1, bit 1 is also set to 1. |
344 | */ |
345 | if (report.bus_status & FT260_I2C_STATUS_ERROR) { |
346 | hid_err(hdev, "i2c bus error: %#02x\n" , report.bus_status); |
347 | return -EIO; |
348 | } |
349 | |
350 | return 0; |
351 | } |
352 | |
353 | static int ft260_hid_output_report(struct hid_device *hdev, u8 *data, |
354 | size_t len) |
355 | { |
356 | u8 *buf; |
357 | int ret; |
358 | |
359 | buf = kmemdup(p: data, size: len, GFP_KERNEL); |
360 | if (!buf) |
361 | return -ENOMEM; |
362 | |
363 | ret = hid_hw_output_report(hdev, buf, len); |
364 | |
365 | kfree(objp: buf); |
366 | return ret; |
367 | } |
368 | |
369 | static int ft260_hid_output_report_check_status(struct ft260_device *dev, |
370 | u8 *data, int len) |
371 | { |
372 | u8 bus_busy; |
373 | int ret, usec, try = 100; |
374 | struct hid_device *hdev = dev->hdev; |
375 | struct ft260_i2c_write_request_report *rep = |
376 | (struct ft260_i2c_write_request_report *)data; |
377 | |
378 | ret = ft260_hid_output_report(hdev, data, len); |
379 | if (ret < 0) { |
380 | hid_err(hdev, "%s: failed to start transfer, ret %d\n" , |
381 | __func__, ret); |
382 | ft260_i2c_reset(hdev); |
383 | return ret; |
384 | } |
385 | |
386 | /* transfer time = 1 / clock(KHz) * 9 bits * bytes */ |
387 | usec = len * 9000 / dev->clock; |
388 | if (usec > 2000) { |
389 | usec -= 1500; |
390 | usleep_range(min: usec, max: usec + 100); |
391 | ft260_dbg("wait %d usec, len %d\n" , usec, len); |
392 | } |
393 | |
394 | /* |
395 | * Do not check the busy bit for combined transactions |
396 | * since the controller keeps the bus busy between writing |
397 | * and reading IOs to ensure an atomic operation. |
398 | */ |
399 | if (rep->flag == FT260_FLAG_START) |
400 | bus_busy = 0; |
401 | else |
402 | bus_busy = FT260_I2C_STATUS_BUS_BUSY; |
403 | |
404 | do { |
405 | ret = ft260_xfer_status(dev, bus_busy); |
406 | if (ret != -EAGAIN) |
407 | break; |
408 | } while (--try); |
409 | |
410 | if (ret == 0) |
411 | return 0; |
412 | |
413 | ft260_i2c_reset(hdev); |
414 | return -EIO; |
415 | } |
416 | |
417 | static int ft260_i2c_write(struct ft260_device *dev, u8 addr, u8 *data, |
418 | int len, u8 flag) |
419 | { |
420 | int ret, wr_len, idx = 0; |
421 | struct hid_device *hdev = dev->hdev; |
422 | struct ft260_i2c_write_request_report *rep = |
423 | (struct ft260_i2c_write_request_report *)dev->write_buf; |
424 | |
425 | if (len < 1) |
426 | return -EINVAL; |
427 | |
428 | rep->flag = FT260_FLAG_START; |
429 | |
430 | do { |
431 | if (len <= FT260_WR_DATA_MAX) { |
432 | wr_len = len; |
433 | if (flag == FT260_FLAG_START_STOP) |
434 | rep->flag |= FT260_FLAG_STOP; |
435 | } else { |
436 | wr_len = FT260_WR_DATA_MAX; |
437 | } |
438 | |
439 | rep->report = FT260_I2C_DATA_REPORT_ID(wr_len); |
440 | rep->address = addr; |
441 | rep->length = wr_len; |
442 | |
443 | memcpy(rep->data, &data[idx], wr_len); |
444 | |
445 | ft260_dbg("rep %#02x addr %#02x off %d len %d wlen %d flag %#x d[0] %#02x\n" , |
446 | rep->report, addr, idx, len, wr_len, |
447 | rep->flag, data[0]); |
448 | |
449 | ret = ft260_hid_output_report_check_status(dev, data: (u8 *)rep, |
450 | len: wr_len + 4); |
451 | if (ret < 0) { |
452 | hid_err(hdev, "%s: failed with %d\n" , __func__, ret); |
453 | return ret; |
454 | } |
455 | |
456 | len -= wr_len; |
457 | idx += wr_len; |
458 | rep->flag = 0; |
459 | |
460 | } while (len > 0); |
461 | |
462 | return 0; |
463 | } |
464 | |
465 | static int ft260_smbus_write(struct ft260_device *dev, u8 addr, u8 cmd, |
466 | u8 *data, u8 data_len, u8 flag) |
467 | { |
468 | int ret = 0; |
469 | int len = 4; |
470 | |
471 | struct ft260_i2c_write_request_report *rep = |
472 | (struct ft260_i2c_write_request_report *)dev->write_buf; |
473 | |
474 | if (data_len >= sizeof(rep->data)) |
475 | return -EINVAL; |
476 | |
477 | rep->address = addr; |
478 | rep->data[0] = cmd; |
479 | rep->length = data_len + 1; |
480 | rep->flag = flag; |
481 | len += rep->length; |
482 | |
483 | rep->report = FT260_I2C_DATA_REPORT_ID(len); |
484 | |
485 | if (data_len > 0) |
486 | memcpy(&rep->data[1], data, data_len); |
487 | |
488 | ft260_dbg("rep %#02x addr %#02x cmd %#02x datlen %d replen %d\n" , |
489 | rep->report, addr, cmd, rep->length, len); |
490 | |
491 | ret = ft260_hid_output_report_check_status(dev, data: (u8 *)rep, len); |
492 | |
493 | return ret; |
494 | } |
495 | |
496 | static int ft260_i2c_read(struct ft260_device *dev, u8 addr, u8 *data, |
497 | u16 len, u8 flag) |
498 | { |
499 | u16 rd_len; |
500 | u16 rd_data_max = 60; |
501 | int timeout, ret = 0; |
502 | struct ft260_i2c_read_request_report rep; |
503 | struct hid_device *hdev = dev->hdev; |
504 | u8 bus_busy = 0; |
505 | |
506 | if ((flag & FT260_FLAG_START_REPEATED) == FT260_FLAG_START_REPEATED) |
507 | flag = FT260_FLAG_START_REPEATED; |
508 | else |
509 | flag = FT260_FLAG_START; |
510 | do { |
511 | if (len <= rd_data_max) { |
512 | rd_len = len; |
513 | flag |= FT260_FLAG_STOP; |
514 | } else { |
515 | rd_len = rd_data_max; |
516 | } |
517 | rd_data_max = FT260_RD_DATA_MAX; |
518 | |
519 | rep.report = FT260_I2C_READ_REQ; |
520 | rep.length = cpu_to_le16(rd_len); |
521 | rep.address = addr; |
522 | rep.flag = flag; |
523 | |
524 | ft260_dbg("rep %#02x addr %#02x len %d rlen %d flag %#x\n" , |
525 | rep.report, rep.address, len, rd_len, flag); |
526 | |
527 | reinit_completion(x: &dev->wait); |
528 | |
529 | dev->read_idx = 0; |
530 | dev->read_buf = data; |
531 | dev->read_len = rd_len; |
532 | |
533 | ret = ft260_hid_output_report(hdev, data: (u8 *)&rep, len: sizeof(rep)); |
534 | if (ret < 0) { |
535 | hid_err(hdev, "%s: failed with %d\n" , __func__, ret); |
536 | goto ft260_i2c_read_exit; |
537 | } |
538 | |
539 | timeout = msecs_to_jiffies(m: 5000); |
540 | if (!wait_for_completion_timeout(x: &dev->wait, timeout)) { |
541 | ret = -ETIMEDOUT; |
542 | ft260_i2c_reset(hdev); |
543 | goto ft260_i2c_read_exit; |
544 | } |
545 | |
546 | dev->read_buf = NULL; |
547 | |
548 | if (flag & FT260_FLAG_STOP) |
549 | bus_busy = FT260_I2C_STATUS_BUS_BUSY; |
550 | |
551 | ret = ft260_xfer_status(dev, bus_busy); |
552 | if (ret < 0) { |
553 | ret = -EIO; |
554 | ft260_i2c_reset(hdev); |
555 | goto ft260_i2c_read_exit; |
556 | } |
557 | |
558 | len -= rd_len; |
559 | data += rd_len; |
560 | flag = 0; |
561 | |
562 | } while (len > 0); |
563 | |
564 | ft260_i2c_read_exit: |
565 | dev->read_buf = NULL; |
566 | return ret; |
567 | } |
568 | |
569 | /* |
570 | * A random read operation is implemented as a dummy write operation, followed |
571 | * by a current address read operation. The dummy write operation is used to |
572 | * load the target byte address into the current byte address counter, from |
573 | * which the subsequent current address read operation then reads. |
574 | */ |
575 | static int ft260_i2c_write_read(struct ft260_device *dev, struct i2c_msg *msgs) |
576 | { |
577 | int ret; |
578 | int wr_len = msgs[0].len; |
579 | int rd_len = msgs[1].len; |
580 | struct hid_device *hdev = dev->hdev; |
581 | u8 addr = msgs[0].addr; |
582 | u16 read_off = 0; |
583 | |
584 | if (wr_len > 2) { |
585 | hid_err(hdev, "%s: invalid wr_len: %d\n" , __func__, wr_len); |
586 | return -EOPNOTSUPP; |
587 | } |
588 | |
589 | if (ft260_debug) { |
590 | if (wr_len == 2) |
591 | read_off = be16_to_cpu(*(__be16 *)msgs[0].buf); |
592 | else |
593 | read_off = *msgs[0].buf; |
594 | |
595 | pr_info("%s: off %#x rlen %d wlen %d\n" , __func__, |
596 | read_off, rd_len, wr_len); |
597 | } |
598 | |
599 | ret = ft260_i2c_write(dev, addr, data: msgs[0].buf, len: wr_len, |
600 | flag: FT260_FLAG_START); |
601 | if (ret < 0) |
602 | return ret; |
603 | |
604 | ret = ft260_i2c_read(dev, addr, data: msgs[1].buf, len: rd_len, |
605 | flag: FT260_FLAG_START_STOP_REPEATED); |
606 | if (ret < 0) |
607 | return ret; |
608 | |
609 | return 0; |
610 | } |
611 | |
612 | static int ft260_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, |
613 | int num) |
614 | { |
615 | int ret; |
616 | struct ft260_device *dev = i2c_get_adapdata(adap: adapter); |
617 | struct hid_device *hdev = dev->hdev; |
618 | |
619 | mutex_lock(&dev->lock); |
620 | |
621 | ret = hid_hw_power(hdev, PM_HINT_FULLON); |
622 | if (ret < 0) { |
623 | hid_err(hdev, "failed to enter FULLON power mode: %d\n" , ret); |
624 | mutex_unlock(lock: &dev->lock); |
625 | return ret; |
626 | } |
627 | |
628 | if (num == 1) { |
629 | if (msgs->flags & I2C_M_RD) |
630 | ret = ft260_i2c_read(dev, addr: msgs->addr, data: msgs->buf, |
631 | len: msgs->len, flag: FT260_FLAG_START_STOP); |
632 | else |
633 | ret = ft260_i2c_write(dev, addr: msgs->addr, data: msgs->buf, |
634 | len: msgs->len, flag: FT260_FLAG_START_STOP); |
635 | if (ret < 0) |
636 | goto i2c_exit; |
637 | |
638 | } else { |
639 | /* Combined write then read message */ |
640 | ret = ft260_i2c_write_read(dev, msgs); |
641 | if (ret < 0) |
642 | goto i2c_exit; |
643 | } |
644 | |
645 | ret = num; |
646 | i2c_exit: |
647 | hid_hw_power(hdev, PM_HINT_NORMAL); |
648 | mutex_unlock(lock: &dev->lock); |
649 | return ret; |
650 | } |
651 | |
652 | static int ft260_smbus_xfer(struct i2c_adapter *adapter, u16 addr, u16 flags, |
653 | char read_write, u8 cmd, int size, |
654 | union i2c_smbus_data *data) |
655 | { |
656 | int ret; |
657 | struct ft260_device *dev = i2c_get_adapdata(adap: adapter); |
658 | struct hid_device *hdev = dev->hdev; |
659 | |
660 | ft260_dbg("smbus size %d\n" , size); |
661 | |
662 | mutex_lock(&dev->lock); |
663 | |
664 | ret = hid_hw_power(hdev, PM_HINT_FULLON); |
665 | if (ret < 0) { |
666 | hid_err(hdev, "power management error: %d\n" , ret); |
667 | mutex_unlock(lock: &dev->lock); |
668 | return ret; |
669 | } |
670 | |
671 | switch (size) { |
672 | case I2C_SMBUS_BYTE: |
673 | if (read_write == I2C_SMBUS_READ) |
674 | ret = ft260_i2c_read(dev, addr, data: &data->byte, len: 1, |
675 | flag: FT260_FLAG_START_STOP); |
676 | else |
677 | ret = ft260_smbus_write(dev, addr, cmd, NULL, data_len: 0, |
678 | flag: FT260_FLAG_START_STOP); |
679 | break; |
680 | case I2C_SMBUS_BYTE_DATA: |
681 | if (read_write == I2C_SMBUS_READ) { |
682 | ret = ft260_smbus_write(dev, addr, cmd, NULL, data_len: 0, |
683 | flag: FT260_FLAG_START); |
684 | if (ret) |
685 | goto smbus_exit; |
686 | |
687 | ret = ft260_i2c_read(dev, addr, data: &data->byte, len: 1, |
688 | flag: FT260_FLAG_START_STOP_REPEATED); |
689 | } else { |
690 | ret = ft260_smbus_write(dev, addr, cmd, data: &data->byte, data_len: 1, |
691 | flag: FT260_FLAG_START_STOP); |
692 | } |
693 | break; |
694 | case I2C_SMBUS_WORD_DATA: |
695 | if (read_write == I2C_SMBUS_READ) { |
696 | ret = ft260_smbus_write(dev, addr, cmd, NULL, data_len: 0, |
697 | flag: FT260_FLAG_START); |
698 | if (ret) |
699 | goto smbus_exit; |
700 | |
701 | ret = ft260_i2c_read(dev, addr, data: (u8 *)&data->word, len: 2, |
702 | flag: FT260_FLAG_START_STOP_REPEATED); |
703 | } else { |
704 | ret = ft260_smbus_write(dev, addr, cmd, |
705 | data: (u8 *)&data->word, data_len: 2, |
706 | flag: FT260_FLAG_START_STOP); |
707 | } |
708 | break; |
709 | case I2C_SMBUS_BLOCK_DATA: |
710 | if (read_write == I2C_SMBUS_READ) { |
711 | ret = ft260_smbus_write(dev, addr, cmd, NULL, data_len: 0, |
712 | flag: FT260_FLAG_START); |
713 | if (ret) |
714 | goto smbus_exit; |
715 | |
716 | ret = ft260_i2c_read(dev, addr, data: data->block, |
717 | len: data->block[0] + 1, |
718 | flag: FT260_FLAG_START_STOP_REPEATED); |
719 | } else { |
720 | ret = ft260_smbus_write(dev, addr, cmd, data: data->block, |
721 | data_len: data->block[0] + 1, |
722 | flag: FT260_FLAG_START_STOP); |
723 | } |
724 | break; |
725 | case I2C_SMBUS_I2C_BLOCK_DATA: |
726 | if (read_write == I2C_SMBUS_READ) { |
727 | ret = ft260_smbus_write(dev, addr, cmd, NULL, data_len: 0, |
728 | flag: FT260_FLAG_START); |
729 | if (ret) |
730 | goto smbus_exit; |
731 | |
732 | ret = ft260_i2c_read(dev, addr, data: data->block + 1, |
733 | len: data->block[0], |
734 | flag: FT260_FLAG_START_STOP_REPEATED); |
735 | } else { |
736 | ret = ft260_smbus_write(dev, addr, cmd, data: data->block + 1, |
737 | data_len: data->block[0], |
738 | flag: FT260_FLAG_START_STOP); |
739 | } |
740 | break; |
741 | default: |
742 | hid_err(hdev, "unsupported smbus transaction size %d\n" , size); |
743 | ret = -EOPNOTSUPP; |
744 | } |
745 | |
746 | smbus_exit: |
747 | hid_hw_power(hdev, PM_HINT_NORMAL); |
748 | mutex_unlock(lock: &dev->lock); |
749 | return ret; |
750 | } |
751 | |
752 | static u32 ft260_functionality(struct i2c_adapter *adap) |
753 | { |
754 | return I2C_FUNC_I2C | I2C_FUNC_SMBUS_BYTE | |
755 | I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA | |
756 | I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_I2C_BLOCK; |
757 | } |
758 | |
759 | static const struct i2c_adapter_quirks ft260_i2c_quirks = { |
760 | .flags = I2C_AQ_COMB_WRITE_THEN_READ, |
761 | .max_comb_1st_msg_len = 2, |
762 | }; |
763 | |
764 | static const struct i2c_algorithm ft260_i2c_algo = { |
765 | .master_xfer = ft260_i2c_xfer, |
766 | .smbus_xfer = ft260_smbus_xfer, |
767 | .functionality = ft260_functionality, |
768 | }; |
769 | |
770 | static int ft260_get_system_config(struct hid_device *hdev, |
771 | struct ft260_get_system_status_report *cfg) |
772 | { |
773 | int ret; |
774 | int len = sizeof(struct ft260_get_system_status_report); |
775 | |
776 | ret = ft260_hid_feature_report_get(hdev, report_id: FT260_SYSTEM_SETTINGS, |
777 | data: (u8 *)cfg, len); |
778 | if (ret < 0) { |
779 | hid_err(hdev, "failed to retrieve system status\n" ); |
780 | return ret; |
781 | } |
782 | return 0; |
783 | } |
784 | |
785 | static int ft260_is_interface_enabled(struct hid_device *hdev) |
786 | { |
787 | struct ft260_get_system_status_report cfg; |
788 | struct usb_interface *usbif = to_usb_interface(hdev->dev.parent); |
789 | int interface = usbif->cur_altsetting->desc.bInterfaceNumber; |
790 | int ret; |
791 | |
792 | ret = ft260_get_system_config(hdev, cfg: &cfg); |
793 | if (ret < 0) |
794 | return ret; |
795 | |
796 | ft260_dbg("interface: 0x%02x\n" , interface); |
797 | ft260_dbg("chip mode: 0x%02x\n" , cfg.chip_mode); |
798 | ft260_dbg("clock_ctl: 0x%02x\n" , cfg.clock_ctl); |
799 | ft260_dbg("i2c_enable: 0x%02x\n" , cfg.i2c_enable); |
800 | ft260_dbg("uart_mode: 0x%02x\n" , cfg.uart_mode); |
801 | |
802 | switch (cfg.chip_mode) { |
803 | case FT260_MODE_ALL: |
804 | case FT260_MODE_BOTH: |
805 | if (interface == 1) |
806 | hid_info(hdev, "uart interface is not supported\n" ); |
807 | else |
808 | ret = 1; |
809 | break; |
810 | case FT260_MODE_UART: |
811 | hid_info(hdev, "uart interface is not supported\n" ); |
812 | break; |
813 | case FT260_MODE_I2C: |
814 | ret = 1; |
815 | break; |
816 | } |
817 | return ret; |
818 | } |
819 | |
820 | static int ft260_byte_show(struct hid_device *hdev, int id, u8 *cfg, int len, |
821 | u8 *field, u8 *buf) |
822 | { |
823 | int ret; |
824 | |
825 | ret = ft260_hid_feature_report_get(hdev, report_id: id, data: cfg, len); |
826 | if (ret < 0) |
827 | return ret; |
828 | |
829 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n" , *field); |
830 | } |
831 | |
832 | static int ft260_word_show(struct hid_device *hdev, int id, u8 *cfg, int len, |
833 | __le16 *field, u8 *buf) |
834 | { |
835 | int ret; |
836 | |
837 | ret = ft260_hid_feature_report_get(hdev, report_id: id, data: cfg, len); |
838 | if (ret < 0) |
839 | return ret; |
840 | |
841 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n" , le16_to_cpu(*field)); |
842 | } |
843 | |
844 | #define FT260_ATTR_SHOW(name, reptype, id, type, func) \ |
845 | static ssize_t name##_show(struct device *kdev, \ |
846 | struct device_attribute *attr, char *buf) \ |
847 | { \ |
848 | struct reptype rep; \ |
849 | struct hid_device *hdev = to_hid_device(kdev); \ |
850 | type *field = &rep.name; \ |
851 | int len = sizeof(rep); \ |
852 | \ |
853 | return func(hdev, id, (u8 *)&rep, len, field, buf); \ |
854 | } |
855 | |
856 | #define FT260_SSTAT_ATTR_SHOW(name) \ |
857 | FT260_ATTR_SHOW(name, ft260_get_system_status_report, \ |
858 | FT260_SYSTEM_SETTINGS, u8, ft260_byte_show) |
859 | |
860 | #define FT260_I2CST_ATTR_SHOW(name) \ |
861 | FT260_ATTR_SHOW(name, ft260_get_i2c_status_report, \ |
862 | FT260_I2C_STATUS, __le16, ft260_word_show) |
863 | |
864 | #define FT260_ATTR_STORE(name, reptype, id, req, type, ctype, func) \ |
865 | static ssize_t name##_store(struct device *kdev, \ |
866 | struct device_attribute *attr, \ |
867 | const char *buf, size_t count) \ |
868 | { \ |
869 | struct reptype rep; \ |
870 | struct hid_device *hdev = to_hid_device(kdev); \ |
871 | type name; \ |
872 | int ret; \ |
873 | \ |
874 | if (!func(buf, 10, (ctype *)&name)) { \ |
875 | rep.name = name; \ |
876 | rep.report = id; \ |
877 | rep.request = req; \ |
878 | ret = ft260_hid_feature_report_set(hdev, (u8 *)&rep, \ |
879 | sizeof(rep)); \ |
880 | if (!ret) \ |
881 | ret = count; \ |
882 | } else { \ |
883 | ret = -EINVAL; \ |
884 | } \ |
885 | return ret; \ |
886 | } |
887 | |
888 | #define FT260_BYTE_ATTR_STORE(name, reptype, req) \ |
889 | FT260_ATTR_STORE(name, reptype, FT260_SYSTEM_SETTINGS, req, \ |
890 | u8, u8, kstrtou8) |
891 | |
892 | #define FT260_WORD_ATTR_STORE(name, reptype, req) \ |
893 | FT260_ATTR_STORE(name, reptype, FT260_SYSTEM_SETTINGS, req, \ |
894 | __le16, u16, kstrtou16) |
895 | |
896 | FT260_SSTAT_ATTR_SHOW(chip_mode); |
897 | static DEVICE_ATTR_RO(chip_mode); |
898 | |
899 | FT260_SSTAT_ATTR_SHOW(pwren_status); |
900 | static DEVICE_ATTR_RO(pwren_status); |
901 | |
902 | FT260_SSTAT_ATTR_SHOW(suspend_status); |
903 | static DEVICE_ATTR_RO(suspend_status); |
904 | |
905 | FT260_SSTAT_ATTR_SHOW(hid_over_i2c_en); |
906 | static DEVICE_ATTR_RO(hid_over_i2c_en); |
907 | |
908 | FT260_SSTAT_ATTR_SHOW(power_saving_en); |
909 | static DEVICE_ATTR_RO(power_saving_en); |
910 | |
911 | FT260_SSTAT_ATTR_SHOW(i2c_enable); |
912 | FT260_BYTE_ATTR_STORE(i2c_enable, ft260_set_i2c_mode_report, |
913 | FT260_SET_I2C_MODE); |
914 | static DEVICE_ATTR_RW(i2c_enable); |
915 | |
916 | FT260_SSTAT_ATTR_SHOW(uart_mode); |
917 | FT260_BYTE_ATTR_STORE(uart_mode, ft260_set_uart_mode_report, |
918 | FT260_SET_UART_MODE); |
919 | static DEVICE_ATTR_RW(uart_mode); |
920 | |
921 | FT260_SSTAT_ATTR_SHOW(clock_ctl); |
922 | FT260_BYTE_ATTR_STORE(clock_ctl, ft260_set_system_clock_report, |
923 | FT260_SET_CLOCK); |
924 | static DEVICE_ATTR_RW(clock_ctl); |
925 | |
926 | FT260_I2CST_ATTR_SHOW(clock); |
927 | FT260_WORD_ATTR_STORE(clock, ft260_set_i2c_speed_report, |
928 | FT260_SET_I2C_CLOCK_SPEED); |
929 | static DEVICE_ATTR_RW(clock); |
930 | |
931 | static ssize_t i2c_reset_store(struct device *kdev, |
932 | struct device_attribute *attr, const char *buf, |
933 | size_t count) |
934 | { |
935 | struct hid_device *hdev = to_hid_device(kdev); |
936 | int ret = ft260_i2c_reset(hdev); |
937 | |
938 | if (ret) |
939 | return ret; |
940 | return count; |
941 | } |
942 | static DEVICE_ATTR_WO(i2c_reset); |
943 | |
944 | static const struct attribute_group ft260_attr_group = { |
945 | .attrs = (struct attribute *[]) { |
946 | &dev_attr_chip_mode.attr, |
947 | &dev_attr_pwren_status.attr, |
948 | &dev_attr_suspend_status.attr, |
949 | &dev_attr_hid_over_i2c_en.attr, |
950 | &dev_attr_power_saving_en.attr, |
951 | &dev_attr_i2c_enable.attr, |
952 | &dev_attr_uart_mode.attr, |
953 | &dev_attr_clock_ctl.attr, |
954 | &dev_attr_i2c_reset.attr, |
955 | &dev_attr_clock.attr, |
956 | NULL |
957 | } |
958 | }; |
959 | |
960 | static int ft260_probe(struct hid_device *hdev, const struct hid_device_id *id) |
961 | { |
962 | struct ft260_device *dev; |
963 | struct ft260_get_chip_version_report version; |
964 | int ret; |
965 | |
966 | if (!hid_is_usb(hdev)) |
967 | return -EINVAL; |
968 | |
969 | dev = devm_kzalloc(dev: &hdev->dev, size: sizeof(*dev), GFP_KERNEL); |
970 | if (!dev) |
971 | return -ENOMEM; |
972 | |
973 | ret = hid_parse(hdev); |
974 | if (ret) { |
975 | hid_err(hdev, "failed to parse HID\n" ); |
976 | return ret; |
977 | } |
978 | |
979 | ret = hid_hw_start(hdev, connect_mask: 0); |
980 | if (ret) { |
981 | hid_err(hdev, "failed to start HID HW\n" ); |
982 | return ret; |
983 | } |
984 | |
985 | ret = hid_hw_open(hdev); |
986 | if (ret) { |
987 | hid_err(hdev, "failed to open HID HW\n" ); |
988 | goto err_hid_stop; |
989 | } |
990 | |
991 | ret = ft260_hid_feature_report_get(hdev, report_id: FT260_CHIP_VERSION, |
992 | data: (u8 *)&version, len: sizeof(version)); |
993 | if (ret < 0) { |
994 | hid_err(hdev, "failed to retrieve chip version\n" ); |
995 | goto err_hid_close; |
996 | } |
997 | |
998 | hid_info(hdev, "chip code: %02x%02x %02x%02x\n" , |
999 | version.chip_code[0], version.chip_code[1], |
1000 | version.chip_code[2], version.chip_code[3]); |
1001 | |
1002 | ret = ft260_is_interface_enabled(hdev); |
1003 | if (ret <= 0) |
1004 | goto err_hid_close; |
1005 | |
1006 | hid_info(hdev, "USB HID v%x.%02x Device [%s] on %s\n" , |
1007 | hdev->version >> 8, hdev->version & 0xff, hdev->name, |
1008 | hdev->phys); |
1009 | |
1010 | hid_set_drvdata(hdev, data: dev); |
1011 | dev->hdev = hdev; |
1012 | dev->adap.owner = THIS_MODULE; |
1013 | dev->adap.class = I2C_CLASS_HWMON; |
1014 | dev->adap.algo = &ft260_i2c_algo; |
1015 | dev->adap.quirks = &ft260_i2c_quirks; |
1016 | dev->adap.dev.parent = &hdev->dev; |
1017 | snprintf(buf: dev->adap.name, size: sizeof(dev->adap.name), |
1018 | fmt: "FT260 usb-i2c bridge" ); |
1019 | |
1020 | mutex_init(&dev->lock); |
1021 | init_completion(x: &dev->wait); |
1022 | |
1023 | ret = ft260_xfer_status(dev, bus_busy: FT260_I2C_STATUS_BUS_BUSY); |
1024 | if (ret) |
1025 | ft260_i2c_reset(hdev); |
1026 | |
1027 | i2c_set_adapdata(adap: &dev->adap, data: dev); |
1028 | ret = i2c_add_adapter(adap: &dev->adap); |
1029 | if (ret) { |
1030 | hid_err(hdev, "failed to add i2c adapter\n" ); |
1031 | goto err_hid_close; |
1032 | } |
1033 | |
1034 | ret = sysfs_create_group(kobj: &hdev->dev.kobj, grp: &ft260_attr_group); |
1035 | if (ret < 0) { |
1036 | hid_err(hdev, "failed to create sysfs attrs\n" ); |
1037 | goto err_i2c_free; |
1038 | } |
1039 | |
1040 | return 0; |
1041 | |
1042 | err_i2c_free: |
1043 | i2c_del_adapter(adap: &dev->adap); |
1044 | err_hid_close: |
1045 | hid_hw_close(hdev); |
1046 | err_hid_stop: |
1047 | hid_hw_stop(hdev); |
1048 | return ret; |
1049 | } |
1050 | |
1051 | static void ft260_remove(struct hid_device *hdev) |
1052 | { |
1053 | struct ft260_device *dev = hid_get_drvdata(hdev); |
1054 | |
1055 | if (!dev) |
1056 | return; |
1057 | |
1058 | sysfs_remove_group(kobj: &hdev->dev.kobj, grp: &ft260_attr_group); |
1059 | i2c_del_adapter(adap: &dev->adap); |
1060 | |
1061 | hid_hw_close(hdev); |
1062 | hid_hw_stop(hdev); |
1063 | } |
1064 | |
1065 | static int ft260_raw_event(struct hid_device *hdev, struct hid_report *report, |
1066 | u8 *data, int size) |
1067 | { |
1068 | struct ft260_device *dev = hid_get_drvdata(hdev); |
1069 | struct ft260_i2c_input_report *xfer = (void *)data; |
1070 | |
1071 | if (xfer->report >= FT260_I2C_REPORT_MIN && |
1072 | xfer->report <= FT260_I2C_REPORT_MAX) { |
1073 | ft260_dbg("i2c resp: rep %#02x len %d\n" , xfer->report, |
1074 | xfer->length); |
1075 | |
1076 | if ((dev->read_buf == NULL) || |
1077 | (xfer->length > dev->read_len - dev->read_idx)) { |
1078 | hid_err(hdev, "unexpected report %#02x, length %d\n" , |
1079 | xfer->report, xfer->length); |
1080 | return -1; |
1081 | } |
1082 | |
1083 | memcpy(&dev->read_buf[dev->read_idx], &xfer->data, |
1084 | xfer->length); |
1085 | dev->read_idx += xfer->length; |
1086 | |
1087 | if (dev->read_idx == dev->read_len) |
1088 | complete(&dev->wait); |
1089 | |
1090 | } else { |
1091 | hid_err(hdev, "unhandled report %#02x\n" , xfer->report); |
1092 | } |
1093 | return 0; |
1094 | } |
1095 | |
1096 | static struct hid_driver ft260_driver = { |
1097 | .name = "ft260" , |
1098 | .id_table = ft260_devices, |
1099 | .probe = ft260_probe, |
1100 | .remove = ft260_remove, |
1101 | .raw_event = ft260_raw_event, |
1102 | }; |
1103 | |
1104 | module_hid_driver(ft260_driver); |
1105 | MODULE_DESCRIPTION("FTDI FT260 USB HID to I2C host bridge" ); |
1106 | MODULE_AUTHOR("Michael Zaidman <michael.zaidman@gmail.com>" ); |
1107 | MODULE_LICENSE("GPL v2" ); |
1108 | |