1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Nuvoton NPCM7xx I2C Controller driver
4 *
5 * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6 */
7#include <linux/bitfield.h>
8#include <linux/clk.h>
9#include <linux/debugfs.h>
10#include <linux/errno.h>
11#include <linux/i2c.h>
12#include <linux/interrupt.h>
13#include <linux/iopoll.h>
14#include <linux/irq.h>
15#include <linux/jiffies.h>
16#include <linux/kernel.h>
17#include <linux/mfd/syscon.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/platform_device.h>
21#include <linux/regmap.h>
22
23enum i2c_mode {
24 I2C_MASTER,
25 I2C_SLAVE,
26};
27
28/*
29 * External I2C Interface driver xfer indication values, which indicate status
30 * of the bus.
31 */
32enum i2c_state_ind {
33 I2C_NO_STATUS_IND = 0,
34 I2C_SLAVE_RCV_IND,
35 I2C_SLAVE_XMIT_IND,
36 I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 I2C_SLAVE_RESTART_IND,
38 I2C_SLAVE_DONE_IND,
39 I2C_MASTER_DONE_IND,
40 I2C_NACK_IND,
41 I2C_BUS_ERR_IND,
42 I2C_WAKE_UP_IND,
43 I2C_BLOCK_BYTES_ERR_IND,
44 I2C_SLAVE_RCV_MISSING_DATA_IND,
45};
46
47/*
48 * Operation type values (used to define the operation currently running)
49 * module is interrupt driven, on each interrupt the current operation is
50 * checked to see if the module is currently reading or writing.
51 */
52enum i2c_oper {
53 I2C_NO_OPER = 0,
54 I2C_WRITE_OPER,
55 I2C_READ_OPER,
56};
57
58/* I2C Bank (module had 2 banks of registers) */
59enum i2c_bank {
60 I2C_BANK_0 = 0,
61 I2C_BANK_1,
62};
63
64/* Internal I2C states values (for the I2C module state machine). */
65enum i2c_state {
66 I2C_DISABLE = 0,
67 I2C_IDLE,
68 I2C_MASTER_START,
69 I2C_SLAVE_MATCH,
70 I2C_OPER_STARTED,
71 I2C_STOP_PENDING,
72};
73
74#if IS_ENABLED(CONFIG_I2C_SLAVE)
75/* Module supports setting multiple own slave addresses */
76enum i2c_addr {
77 I2C_SLAVE_ADDR1 = 0,
78 I2C_SLAVE_ADDR2,
79 I2C_SLAVE_ADDR3,
80 I2C_SLAVE_ADDR4,
81 I2C_SLAVE_ADDR5,
82 I2C_SLAVE_ADDR6,
83 I2C_SLAVE_ADDR7,
84 I2C_SLAVE_ADDR8,
85 I2C_SLAVE_ADDR9,
86 I2C_SLAVE_ADDR10,
87 I2C_GC_ADDR,
88 I2C_ARP_ADDR,
89};
90#endif
91
92/* init register and default value required to enable module */
93#define NPCM_I2CSEGCTL 0xE4
94
95/* Common regs */
96#define NPCM_I2CSDA 0x00
97#define NPCM_I2CST 0x02
98#define NPCM_I2CCST 0x04
99#define NPCM_I2CCTL1 0x06
100#define NPCM_I2CADDR1 0x08
101#define NPCM_I2CCTL2 0x0A
102#define NPCM_I2CADDR2 0x0C
103#define NPCM_I2CCTL3 0x0E
104#define NPCM_I2CCST2 0x18
105#define NPCM_I2CCST3 0x19
106#define I2C_VER 0x1F
107
108/* BANK 0 regs */
109#define NPCM_I2CADDR3 0x10
110#define NPCM_I2CADDR7 0x11
111#define NPCM_I2CADDR4 0x12
112#define NPCM_I2CADDR8 0x13
113#define NPCM_I2CADDR5 0x14
114#define NPCM_I2CADDR9 0x15
115#define NPCM_I2CADDR6 0x16
116#define NPCM_I2CADDR10 0x17
117#define NPCM_I2CCTL4 0x1A
118#define NPCM_I2CCTL5 0x1B
119#define NPCM_I2CSCLLT 0x1C /* SCL Low Time */
120#define NPCM_I2CFIF_CTL 0x1D /* FIFO Control */
121#define NPCM_I2CSCLHT 0x1E /* SCL High Time */
122
123/* BANK 1 regs */
124#define NPCM_I2CFIF_CTS 0x10 /* Both FIFOs Control and Status */
125#define NPCM_I2CTXF_CTL 0x12 /* Tx-FIFO Control */
126#define NPCM_I2CT_OUT 0x14 /* Bus T.O. */
127#define NPCM_I2CPEC 0x16 /* PEC Data */
128#define NPCM_I2CTXF_STS 0x1A /* Tx-FIFO Status */
129#define NPCM_I2CRXF_STS 0x1C /* Rx-FIFO Status */
130#define NPCM_I2CRXF_CTL 0x1E /* Rx-FIFO Control */
131
132#if IS_ENABLED(CONFIG_I2C_SLAVE)
133/*
134 * npcm_i2caddr array:
135 * The module supports having multiple own slave addresses.
136 * Since the addr regs are sprinkled all over the address space,
137 * use this array to get the address or each register.
138 */
139#define I2C_NUM_OWN_ADDR 2
140#define I2C_NUM_OWN_ADDR_SUPPORTED 2
141
142static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143 NPCM_I2CADDR1, NPCM_I2CADDR2,
144};
145#endif
146
147/* NPCM_I2CST reg fields */
148#define NPCM_I2CST_XMIT BIT(0) /* Transmit mode */
149#define NPCM_I2CST_MASTER BIT(1) /* Master mode */
150#define NPCM_I2CST_NMATCH BIT(2) /* New match */
151#define NPCM_I2CST_STASTR BIT(3) /* Stall after start */
152#define NPCM_I2CST_NEGACK BIT(4) /* Negative ACK */
153#define NPCM_I2CST_BER BIT(5) /* Bus error */
154#define NPCM_I2CST_SDAST BIT(6) /* SDA status */
155#define NPCM_I2CST_SLVSTP BIT(7) /* Slave stop */
156
157/* NPCM_I2CCST reg fields */
158#define NPCM_I2CCST_BUSY BIT(0) /* Busy */
159#define NPCM_I2CCST_BB BIT(1) /* Bus busy */
160#define NPCM_I2CCST_MATCH BIT(2) /* Address match */
161#define NPCM_I2CCST_GCMATCH BIT(3) /* Global call match */
162#define NPCM_I2CCST_TSDA BIT(4) /* Test SDA line */
163#define NPCM_I2CCST_TGSCL BIT(5) /* Toggle SCL line */
164#define NPCM_I2CCST_MATCHAF BIT(6) /* Match address field */
165#define NPCM_I2CCST_ARPMATCH BIT(7) /* ARP address match */
166
167/* NPCM_I2CCTL1 reg fields */
168#define NPCM_I2CCTL1_START BIT(0) /* Generate start condition */
169#define NPCM_I2CCTL1_STOP BIT(1) /* Generate stop condition */
170#define NPCM_I2CCTL1_INTEN BIT(2) /* Interrupt enable */
171#define NPCM_I2CCTL1_EOBINTE BIT(3)
172#define NPCM_I2CCTL1_ACK BIT(4)
173#define NPCM_I2CCTL1_GCMEN BIT(5) /* Global call match enable */
174#define NPCM_I2CCTL1_NMINTE BIT(6) /* New match interrupt enable */
175#define NPCM_I2CCTL1_STASTRE BIT(7) /* Stall after start enable */
176
177/* RW1S fields (inside a RW reg): */
178#define NPCM_I2CCTL1_RWS \
179 (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
180
181/* npcm_i2caddr reg fields */
182#define NPCM_I2CADDR_A GENMASK(6, 0) /* Address */
183#define NPCM_I2CADDR_SAEN BIT(7) /* Slave address enable */
184
185/* NPCM_I2CCTL2 reg fields */
186#define I2CCTL2_ENABLE BIT(0) /* Module enable */
187#define I2CCTL2_SCLFRQ6_0 GENMASK(7, 1) /* Bits 0:6 of frequency divisor */
188
189/* NPCM_I2CCTL3 reg fields */
190#define I2CCTL3_SCLFRQ8_7 GENMASK(1, 0) /* Bits 7:8 of frequency divisor */
191#define I2CCTL3_ARPMEN BIT(2) /* ARP match enable */
192#define I2CCTL3_IDL_START BIT(3)
193#define I2CCTL3_400K_MODE BIT(4)
194#define I2CCTL3_BNK_SEL BIT(5)
195#define I2CCTL3_SDA_LVL BIT(6)
196#define I2CCTL3_SCL_LVL BIT(7)
197
198/* NPCM_I2CCST2 reg fields */
199#define NPCM_I2CCST2_MATCHA1F BIT(0)
200#define NPCM_I2CCST2_MATCHA2F BIT(1)
201#define NPCM_I2CCST2_MATCHA3F BIT(2)
202#define NPCM_I2CCST2_MATCHA4F BIT(3)
203#define NPCM_I2CCST2_MATCHA5F BIT(4)
204#define NPCM_I2CCST2_MATCHA6F BIT(5)
205#define NPCM_I2CCST2_MATCHA7F BIT(5)
206#define NPCM_I2CCST2_INTSTS BIT(7)
207
208/* NPCM_I2CCST3 reg fields */
209#define NPCM_I2CCST3_MATCHA8F BIT(0)
210#define NPCM_I2CCST3_MATCHA9F BIT(1)
211#define NPCM_I2CCST3_MATCHA10F BIT(2)
212#define NPCM_I2CCST3_EO_BUSY BIT(7)
213
214/* NPCM_I2CCTL4 reg fields */
215#define I2CCTL4_HLDT GENMASK(5, 0)
216#define I2CCTL4_LVL_WE BIT(7)
217
218/* NPCM_I2CCTL5 reg fields */
219#define I2CCTL5_DBNCT GENMASK(3, 0)
220
221/* NPCM_I2CFIF_CTS reg fields */
222#define NPCM_I2CFIF_CTS_RXF_TXE BIT(1)
223#define NPCM_I2CFIF_CTS_RFTE_IE BIT(3)
224#define NPCM_I2CFIF_CTS_CLR_FIFO BIT(6)
225#define NPCM_I2CFIF_CTS_SLVRSTR BIT(7)
226
227/* NPCM_I2CTXF_CTL reg field */
228#define NPCM_I2CTXF_CTL_THR_TXIE BIT(6)
229
230/* NPCM_I2CT_OUT reg fields */
231#define NPCM_I2CT_OUT_TO_CKDIV GENMASK(5, 0)
232#define NPCM_I2CT_OUT_T_OUTIE BIT(6)
233#define NPCM_I2CT_OUT_T_OUTST BIT(7)
234
235/* NPCM_I2CTXF_STS reg fields */
236#define NPCM_I2CTXF_STS_TX_THST BIT(6)
237
238/* NPCM_I2CRXF_STS reg fields */
239#define NPCM_I2CRXF_STS_RX_THST BIT(6)
240
241/* NPCM_I2CFIF_CTL reg fields */
242#define NPCM_I2CFIF_CTL_FIFO_EN BIT(4)
243
244/* NPCM_I2CRXF_CTL reg fields */
245#define NPCM_I2CRXF_CTL_THR_RXIE BIT(6)
246
247#define MAX_I2C_HW_FIFO_SIZE 32
248
249/* I2C_VER reg fields */
250#define I2C_VER_VERSION GENMASK(6, 0)
251#define I2C_VER_FIFO_EN BIT(7)
252
253/* stall/stuck timeout in us */
254#define DEFAULT_STALL_COUNT 25
255
256/* SCLFRQ field position */
257#define SCLFRQ_0_TO_6 GENMASK(6, 0)
258#define SCLFRQ_7_TO_8 GENMASK(8, 7)
259
260/* supported clk settings. values in Hz. */
261#define I2C_FREQ_MIN_HZ 10000
262#define I2C_FREQ_MAX_HZ I2C_MAX_FAST_MODE_PLUS_FREQ
263
264struct npcm_i2c_data {
265 u8 fifo_size;
266 u32 segctl_init_val;
267 u8 txf_sts_tx_bytes;
268 u8 rxf_sts_rx_bytes;
269 u8 rxf_ctl_last_pec;
270};
271
272static const struct npcm_i2c_data npxm7xx_i2c_data = {
273 .fifo_size = 16,
274 .segctl_init_val = 0x0333F000,
275 .txf_sts_tx_bytes = GENMASK(4, 0),
276 .rxf_sts_rx_bytes = GENMASK(4, 0),
277 .rxf_ctl_last_pec = BIT(5),
278};
279
280static const struct npcm_i2c_data npxm8xx_i2c_data = {
281 .fifo_size = 32,
282 .segctl_init_val = 0x9333F000,
283 .txf_sts_tx_bytes = GENMASK(5, 0),
284 .rxf_sts_rx_bytes = GENMASK(5, 0),
285 .rxf_ctl_last_pec = BIT(7),
286};
287
288/* Status of one I2C module */
289struct npcm_i2c {
290 struct i2c_adapter adap;
291 struct device *dev;
292 unsigned char __iomem *reg;
293 const struct npcm_i2c_data *data;
294 spinlock_t lock; /* IRQ synchronization */
295 struct completion cmd_complete;
296 int cmd_err;
297 struct i2c_msg *msgs;
298 int msgs_num;
299 int num;
300 u32 apb_clk;
301 struct i2c_bus_recovery_info rinfo;
302 enum i2c_state state;
303 enum i2c_oper operation;
304 enum i2c_mode master_or_slave;
305 enum i2c_state_ind stop_ind;
306 u8 dest_addr;
307 u8 *rd_buf;
308 u16 rd_size;
309 u16 rd_ind;
310 u8 *wr_buf;
311 u16 wr_size;
312 u16 wr_ind;
313 bool fifo_use;
314 u16 PEC_mask; /* PEC bit mask per slave address */
315 bool PEC_use;
316 bool read_block_use;
317 unsigned long int_time_stamp;
318 unsigned long bus_freq; /* in Hz */
319#if IS_ENABLED(CONFIG_I2C_SLAVE)
320 u8 own_slave_addr;
321 struct i2c_client *slave;
322 int slv_rd_size;
323 int slv_rd_ind;
324 int slv_wr_size;
325 int slv_wr_ind;
326 u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
327 u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
328#endif
329 u64 ber_cnt;
330 u64 rec_succ_cnt;
331 u64 rec_fail_cnt;
332 u64 nack_cnt;
333 u64 timeout_cnt;
334 u64 tx_complete_cnt;
335};
336
337static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
338 enum i2c_bank bank)
339{
340 u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
341
342 if (bank == I2C_BANK_0)
343 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
344 else
345 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
346 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
347}
348
349static void npcm_i2c_init_params(struct npcm_i2c *bus)
350{
351 bus->stop_ind = I2C_NO_STATUS_IND;
352 bus->rd_size = 0;
353 bus->wr_size = 0;
354 bus->rd_ind = 0;
355 bus->wr_ind = 0;
356 bus->read_block_use = false;
357 bus->int_time_stamp = 0;
358 bus->PEC_use = false;
359 bus->PEC_mask = 0;
360#if IS_ENABLED(CONFIG_I2C_SLAVE)
361 if (bus->slave)
362 bus->master_or_slave = I2C_SLAVE;
363#endif
364}
365
366static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
367{
368 iowrite8(data, bus->reg + NPCM_I2CSDA);
369}
370
371static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
372{
373 return ioread8(bus->reg + NPCM_I2CSDA);
374}
375
376static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
377{
378 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
379
380 return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
381}
382
383static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
384{
385 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
386
387 return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
388}
389
390static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
391{
392 if (bus->operation == I2C_READ_OPER)
393 return bus->rd_ind;
394 if (bus->operation == I2C_WRITE_OPER)
395 return bus->wr_ind;
396 return 0;
397}
398
399/* quick protocol (just address) */
400static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
401{
402 return bus->wr_size == 0 && bus->rd_size == 0;
403}
404
405static void npcm_i2c_disable(struct npcm_i2c *bus)
406{
407 u8 i2cctl2;
408
409#if IS_ENABLED(CONFIG_I2C_SLAVE)
410 int i;
411
412 /* Slave addresses removal */
413 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
414 iowrite8(0, bus->reg + npcm_i2caddr[i]);
415
416#endif
417 /* Disable module */
418 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
419 i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
420 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
421
422 bus->state = I2C_DISABLE;
423}
424
425static void npcm_i2c_enable(struct npcm_i2c *bus)
426{
427 u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
428
429 i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
430 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
431 bus->state = I2C_IDLE;
432}
433
434/* enable\disable end of busy (EOB) interrupts */
435static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
436{
437 u8 val;
438
439 /* Clear EO_BUSY pending bit: */
440 val = ioread8(bus->reg + NPCM_I2CCST3);
441 val = val | NPCM_I2CCST3_EO_BUSY;
442 iowrite8(val, bus->reg + NPCM_I2CCST3);
443
444 val = ioread8(bus->reg + NPCM_I2CCTL1);
445 val &= ~NPCM_I2CCTL1_RWS;
446 if (enable)
447 val |= NPCM_I2CCTL1_EOBINTE;
448 else
449 val &= ~NPCM_I2CCTL1_EOBINTE;
450 iowrite8(val, bus->reg + NPCM_I2CCTL1);
451}
452
453static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
454{
455 u8 tx_fifo_sts;
456
457 tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
458 /* check if TX FIFO is not empty */
459 if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
460 return false;
461
462 /* check if TX FIFO status bit is set: */
463 return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
464}
465
466static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
467{
468 u8 rx_fifo_sts;
469
470 rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
471 /* check if RX FIFO is not empty: */
472 if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
473 return false;
474
475 /* check if rx fifo full status is set: */
476 return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
477}
478
479static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
480{
481 u8 val;
482
483 val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
484 val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
485 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
486}
487
488static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
489{
490 u8 val;
491
492 val = ioread8(bus->reg + NPCM_I2CTXF_STS);
493 val = val | NPCM_I2CTXF_STS_TX_THST;
494 iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
495}
496
497static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
498{
499 u8 val;
500
501 val = ioread8(bus->reg + NPCM_I2CRXF_STS);
502 val = val | NPCM_I2CRXF_STS_RX_THST;
503 iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
504}
505
506static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
507{
508 u8 val;
509
510 val = ioread8(bus->reg + NPCM_I2CCTL1);
511 val &= ~NPCM_I2CCTL1_RWS;
512 if (enable)
513 val |= NPCM_I2CCTL1_INTEN;
514 else
515 val &= ~NPCM_I2CCTL1_INTEN;
516 iowrite8(val, bus->reg + NPCM_I2CCTL1);
517}
518
519static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
520{
521 u8 val;
522
523 val = ioread8(bus->reg + NPCM_I2CCTL1);
524 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
525 val |= NPCM_I2CCTL1_START;
526 iowrite8(val, bus->reg + NPCM_I2CCTL1);
527}
528
529static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
530{
531 u8 val;
532
533 /*
534 * override HW issue: I2C may fail to supply stop condition in Master
535 * Write operation.
536 * Need to delay at least 5 us from the last int, before issueing a stop
537 */
538 udelay(10); /* function called from interrupt, can't sleep */
539 val = ioread8(bus->reg + NPCM_I2CCTL1);
540 val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
541 val |= NPCM_I2CCTL1_STOP;
542 iowrite8(val, bus->reg + NPCM_I2CCTL1);
543
544 if (!bus->fifo_use)
545 return;
546
547 npcm_i2c_select_bank(bus, bank: I2C_BANK_1);
548
549 if (bus->operation == I2C_READ_OPER)
550 npcm_i2c_clear_rx_fifo(bus);
551 else
552 npcm_i2c_clear_tx_fifo(bus);
553 npcm_i2c_clear_fifo_int(bus);
554 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
555}
556
557static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
558{
559 u8 val;
560
561 val = ioread8(bus->reg + NPCM_I2CCTL1);
562 val &= ~NPCM_I2CCTL1_RWS;
563 if (stall)
564 val |= NPCM_I2CCTL1_STASTRE;
565 else
566 val &= ~NPCM_I2CCTL1_STASTRE;
567 iowrite8(val, bus->reg + NPCM_I2CCTL1);
568}
569
570static inline void npcm_i2c_nack(struct npcm_i2c *bus)
571{
572 u8 val;
573
574 val = ioread8(bus->reg + NPCM_I2CCTL1);
575 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
576 val |= NPCM_I2CCTL1_ACK;
577 iowrite8(val, bus->reg + NPCM_I2CCTL1);
578}
579
580static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
581{
582 u8 val;
583
584 /* Clear NEGACK, STASTR and BER bits */
585 val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
586 iowrite8(val, bus->reg + NPCM_I2CST);
587}
588
589#if IS_ENABLED(CONFIG_I2C_SLAVE)
590static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
591{
592 u8 i2cctl1;
593
594 /* enable interrupt on slave match: */
595 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
596 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
597 if (enable)
598 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
599 else
600 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
601 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
602}
603
604static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
605 u8 addr, bool enable)
606{
607 u8 i2cctl1;
608 u8 i2cctl3;
609 u8 sa_reg;
610
611 sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
612 if (addr_type == I2C_GC_ADDR) {
613 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
614 if (enable)
615 i2cctl1 |= NPCM_I2CCTL1_GCMEN;
616 else
617 i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
618 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
619 return 0;
620 } else if (addr_type == I2C_ARP_ADDR) {
621 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
622 if (enable)
623 i2cctl3 |= I2CCTL3_ARPMEN;
624 else
625 i2cctl3 &= ~I2CCTL3_ARPMEN;
626 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
627 return 0;
628 }
629 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
630 dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
631
632 if (addr_type >= I2C_ARP_ADDR)
633 return -EFAULT;
634
635 /* Set and enable the address */
636 iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
637 npcm_i2c_slave_int_enable(bus, enable);
638
639 return 0;
640}
641#endif
642
643static void npcm_i2c_reset(struct npcm_i2c *bus)
644{
645 /*
646 * Save I2CCTL1 relevant bits. It is being cleared when the module
647 * is disabled.
648 */
649 u8 i2cctl1;
650#if IS_ENABLED(CONFIG_I2C_SLAVE)
651 u8 addr;
652#endif
653
654 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
655
656 npcm_i2c_disable(bus);
657 npcm_i2c_enable(bus);
658
659 /* Restore NPCM_I2CCTL1 Status */
660 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
661 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
662
663 /* Clear BB (BUS BUSY) bit */
664 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
665 iowrite8(0xFF, bus->reg + NPCM_I2CST);
666
667 /* Clear and disable EOB */
668 npcm_i2c_eob_int(bus, enable: false);
669
670 /* Clear all fifo bits: */
671 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
672
673#if IS_ENABLED(CONFIG_I2C_SLAVE)
674 if (bus->slave) {
675 addr = bus->slave->addr;
676 npcm_i2c_slave_enable(bus, addr_type: I2C_SLAVE_ADDR1, addr, enable: true);
677 }
678#endif
679
680 /* Clear status bits for spurious interrupts */
681 npcm_i2c_clear_master_status(bus);
682
683 bus->state = I2C_IDLE;
684}
685
686static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
687{
688 return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
689}
690
691static void npcm_i2c_callback(struct npcm_i2c *bus,
692 enum i2c_state_ind op_status, u16 info)
693{
694 struct i2c_msg *msgs;
695 int msgs_num;
696 bool do_complete = false;
697
698 msgs = bus->msgs;
699 msgs_num = bus->msgs_num;
700 /*
701 * check that transaction was not timed-out, and msgs still
702 * holds a valid value.
703 */
704 if (!msgs)
705 return;
706
707 if (completion_done(x: &bus->cmd_complete))
708 return;
709
710 switch (op_status) {
711 case I2C_MASTER_DONE_IND:
712 bus->cmd_err = bus->msgs_num;
713 if (bus->tx_complete_cnt < ULLONG_MAX)
714 bus->tx_complete_cnt++;
715 fallthrough;
716 case I2C_BLOCK_BYTES_ERR_IND:
717 /* Master tx finished and all transmit bytes were sent */
718 if (bus->msgs) {
719 if (msgs[0].flags & I2C_M_RD)
720 msgs[0].len = info;
721 else if (msgs_num == 2 &&
722 msgs[1].flags & I2C_M_RD)
723 msgs[1].len = info;
724 }
725 do_complete = true;
726 break;
727 case I2C_NACK_IND:
728 /* MASTER transmit got a NACK before tx all bytes */
729 bus->cmd_err = -ENXIO;
730 do_complete = true;
731 break;
732 case I2C_BUS_ERR_IND:
733 /* Bus error */
734 bus->cmd_err = -EAGAIN;
735 do_complete = true;
736 break;
737 case I2C_WAKE_UP_IND:
738 /* I2C wake up */
739 break;
740 default:
741 break;
742 }
743
744 bus->operation = I2C_NO_OPER;
745#if IS_ENABLED(CONFIG_I2C_SLAVE)
746 if (bus->slave)
747 bus->master_or_slave = I2C_SLAVE;
748#endif
749 if (do_complete)
750 complete(&bus->cmd_complete);
751}
752
753static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
754{
755 if (bus->operation == I2C_WRITE_OPER)
756 return (bus->data->txf_sts_tx_bytes &
757 ioread8(bus->reg + NPCM_I2CTXF_STS));
758 if (bus->operation == I2C_READ_OPER)
759 return (bus->data->rxf_sts_rx_bytes &
760 ioread8(bus->reg + NPCM_I2CRXF_STS));
761 return 0;
762}
763
764static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
765{
766 u8 size_free_fifo;
767
768 /*
769 * Fill the FIFO, while the FIFO is not full and there are more bytes
770 * to write
771 */
772 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
773 while (max_bytes-- && size_free_fifo) {
774 if (bus->wr_ind < bus->wr_size)
775 npcm_i2c_wr_byte(bus, data: bus->wr_buf[bus->wr_ind++]);
776 else
777 npcm_i2c_wr_byte(bus, data: 0xFF);
778 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
779 }
780}
781
782/*
783 * npcm_i2c_set_fifo:
784 * configure the FIFO before using it. If nread is -1 RX FIFO will not be
785 * configured. same for nwrite
786 */
787static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
788{
789 u8 rxf_ctl = 0;
790
791 if (!bus->fifo_use)
792 return;
793 npcm_i2c_select_bank(bus, bank: I2C_BANK_1);
794 npcm_i2c_clear_tx_fifo(bus);
795 npcm_i2c_clear_rx_fifo(bus);
796
797 /* configure RX FIFO */
798 if (nread > 0) {
799 rxf_ctl = min_t(int, nread, bus->data->fifo_size);
800
801 /* set LAST bit. if LAST is set next FIFO packet is nacked */
802 if (nread <= bus->data->fifo_size)
803 rxf_ctl |= bus->data->rxf_ctl_last_pec;
804
805 /*
806 * if we are about to read the first byte in blk rd mode,
807 * don't NACK it. If slave returns zero size HW can't NACK
808 * it immediately, it will read extra byte and then NACK.
809 */
810 if (bus->rd_ind == 0 && bus->read_block_use) {
811 /* set fifo to read one byte, no last: */
812 rxf_ctl = 1;
813 }
814
815 /* set fifo size: */
816 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
817 }
818
819 /* configure TX FIFO */
820 if (nwrite > 0) {
821 if (nwrite > bus->data->fifo_size)
822 /* data to send is more then FIFO size. */
823 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
824 else
825 iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
826
827 npcm_i2c_clear_tx_fifo(bus);
828 }
829}
830
831static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
832{
833 u8 data;
834
835 while (bytes_in_fifo--) {
836 data = npcm_i2c_rd_byte(bus);
837 if (bus->rd_ind < bus->rd_size)
838 bus->rd_buf[bus->rd_ind++] = data;
839 }
840}
841
842static void npcm_i2c_master_abort(struct npcm_i2c *bus)
843{
844 /* Only current master is allowed to issue a stop condition */
845 if (!npcm_i2c_is_master(bus))
846 return;
847
848 npcm_i2c_eob_int(bus, enable: true);
849 npcm_i2c_master_stop(bus);
850 npcm_i2c_clear_master_status(bus);
851}
852
853#if IS_ENABLED(CONFIG_I2C_SLAVE)
854static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
855{
856 u8 slave_add;
857
858 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
859 dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
860
861 slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
862
863 return slave_add;
864}
865
866static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
867{
868 int i;
869
870 /* Set the enable bit */
871 slave_add |= 0x80;
872
873 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
874 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
875 iowrite8(0, bus->reg + npcm_i2caddr[i]);
876 }
877
878 return 0;
879}
880
881static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
882{
883 /*
884 * Fill the FIFO, while the FIFO is not full and there are more bytes
885 * to write
886 */
887 npcm_i2c_clear_fifo_int(bus);
888 npcm_i2c_clear_tx_fifo(bus);
889 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
890 while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
891 if (bus->slv_wr_size <= 0)
892 break;
893 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
894 npcm_i2c_wr_byte(bus, data: bus->slv_wr_buf[bus->slv_wr_ind]);
895 bus->slv_wr_ind++;
896 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
897 bus->slv_wr_size--;
898 }
899}
900
901static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
902{
903 u8 data;
904
905 if (!bus->slave)
906 return;
907
908 while (bytes_in_fifo--) {
909 data = npcm_i2c_rd_byte(bus);
910
911 bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
912 bus->slv_rd_buf[bus->slv_rd_ind] = data;
913 bus->slv_rd_ind++;
914
915 /* 1st byte is length in block protocol: */
916 if (bus->slv_rd_ind == 1 && bus->read_block_use)
917 bus->slv_rd_size = data + bus->PEC_use + 1;
918 }
919}
920
921static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
922{
923 int i;
924 u8 value;
925 int ind;
926 int ret = bus->slv_wr_ind;
927
928 /* fill a cyclic buffer */
929 for (i = 0; i < bus->data->fifo_size; i++) {
930 if (bus->slv_wr_size >= bus->data->fifo_size)
931 break;
932 if (bus->state == I2C_SLAVE_MATCH) {
933 i2c_slave_event(client: bus->slave, event: I2C_SLAVE_READ_REQUESTED, val: &value);
934 bus->state = I2C_OPER_STARTED;
935 } else {
936 i2c_slave_event(client: bus->slave, event: I2C_SLAVE_READ_PROCESSED, val: &value);
937 }
938 ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
939 bus->slv_wr_buf[ind] = value;
940 bus->slv_wr_size++;
941 }
942 return bus->data->fifo_size - ret;
943}
944
945static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
946{
947 int i;
948
949 for (i = 0; i < bus->slv_rd_ind; i++)
950 i2c_slave_event(client: bus->slave, event: I2C_SLAVE_WRITE_RECEIVED,
951 val: &bus->slv_rd_buf[i]);
952 /*
953 * once we send bytes up, need to reset the counter of the wr buf
954 * got data from master (new offset in device), ignore wr fifo:
955 */
956 if (bus->slv_rd_ind) {
957 bus->slv_wr_size = 0;
958 bus->slv_wr_ind = 0;
959 }
960
961 bus->slv_rd_ind = 0;
962 bus->slv_rd_size = bus->adap.quirks->max_read_len;
963
964 npcm_i2c_clear_fifo_int(bus);
965 npcm_i2c_clear_rx_fifo(bus);
966}
967
968static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
969 u8 *read_data)
970{
971 bus->state = I2C_OPER_STARTED;
972 bus->operation = I2C_READ_OPER;
973 bus->slv_rd_size = nread;
974 bus->slv_rd_ind = 0;
975
976 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
977 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
978 npcm_i2c_clear_tx_fifo(bus);
979 npcm_i2c_clear_rx_fifo(bus);
980}
981
982static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
983 u8 *write_data)
984{
985 if (nwrite == 0)
986 return;
987
988 bus->operation = I2C_WRITE_OPER;
989
990 /* get the next buffer */
991 npcm_i2c_slave_get_wr_buf(bus);
992 npcm_i2c_write_fifo_slave(bus, max_bytes: nwrite);
993}
994
995/*
996 * npcm_i2c_slave_wr_buf_sync:
997 * currently slave IF only supports single byte operations.
998 * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
999 * at a time, pack them in buffer, and then transmit them all together
1000 * to the FIFO and onward to the bus.
1001 * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1002 * sending a NACK wherever the backend requests for it is not supported.
1003 * the next two functions allow reading to local buffer before writing it all
1004 * to the HW FIFO.
1005 */
1006static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1007{
1008 int left_in_fifo;
1009
1010 left_in_fifo = bus->data->txf_sts_tx_bytes &
1011 ioread8(bus->reg + NPCM_I2CTXF_STS);
1012
1013 /* fifo already full: */
1014 if (left_in_fifo >= bus->data->fifo_size ||
1015 bus->slv_wr_size >= bus->data->fifo_size)
1016 return;
1017
1018 /* update the wr fifo index back to the untransmitted bytes: */
1019 bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1020 bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1021
1022 if (bus->slv_wr_ind < 0)
1023 bus->slv_wr_ind += bus->data->fifo_size;
1024}
1025
1026static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1027{
1028 if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1029 /*
1030 * Slave got an address match with direction bit 1 so it should
1031 * transmit data. Write till the master will NACK
1032 */
1033 bus->operation = I2C_WRITE_OPER;
1034 npcm_i2c_slave_xmit(bus, nwrite: bus->adap.quirks->max_write_len,
1035 write_data: bus->slv_wr_buf);
1036 } else {
1037 /*
1038 * Slave got an address match with direction bit 0 so it should
1039 * receive data.
1040 * this module does not support saying no to bytes.
1041 * it will always ACK.
1042 */
1043 bus->operation = I2C_READ_OPER;
1044 npcm_i2c_read_fifo_slave(bus, bytes_in_fifo: npcm_i2c_fifo_usage(bus));
1045 bus->stop_ind = I2C_SLAVE_RCV_IND;
1046 npcm_i2c_slave_send_rd_buf(bus);
1047 npcm_i2c_slave_receive(bus, nread: bus->adap.quirks->max_read_len,
1048 read_data: bus->slv_rd_buf);
1049 }
1050}
1051
1052static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1053{
1054 u8 val;
1055 irqreturn_t ret = IRQ_NONE;
1056 u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1057
1058 /* Slave: A NACK has occurred */
1059 if (NPCM_I2CST_NEGACK & i2cst) {
1060 bus->stop_ind = I2C_NACK_IND;
1061 npcm_i2c_slave_wr_buf_sync(bus);
1062 if (bus->fifo_use)
1063 /* clear the FIFO */
1064 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1065 bus->reg + NPCM_I2CFIF_CTS);
1066
1067 /* In slave write, NACK is OK, otherwise it is a problem */
1068 bus->stop_ind = I2C_NO_STATUS_IND;
1069 bus->operation = I2C_NO_OPER;
1070 bus->own_slave_addr = 0xFF;
1071
1072 /*
1073 * Slave has to wait for STOP to decide this is the end
1074 * of the transaction. tx is not yet considered as done
1075 */
1076 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1077
1078 ret = IRQ_HANDLED;
1079 }
1080
1081 /* Slave mode: a Bus Error (BER) has been identified */
1082 if (NPCM_I2CST_BER & i2cst) {
1083 /*
1084 * Check whether bus arbitration or Start or Stop during data
1085 * xfer bus arbitration problem should not result in recovery
1086 */
1087 bus->stop_ind = I2C_BUS_ERR_IND;
1088
1089 /* wait for bus busy before clear fifo */
1090 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1091
1092 bus->state = I2C_IDLE;
1093
1094 /*
1095 * in BER case we might get 2 interrupts: one for slave one for
1096 * master ( for a channel which is master\slave switching)
1097 */
1098 if (completion_done(x: &bus->cmd_complete) == false) {
1099 bus->cmd_err = -EIO;
1100 complete(&bus->cmd_complete);
1101 }
1102 bus->own_slave_addr = 0xFF;
1103 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1104 ret = IRQ_HANDLED;
1105 }
1106
1107 /* A Slave Stop Condition has been identified */
1108 if (NPCM_I2CST_SLVSTP & i2cst) {
1109 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1110
1111 bus->stop_ind = I2C_SLAVE_DONE_IND;
1112
1113 if (bus->operation == I2C_READ_OPER)
1114 npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1115
1116 /* if the buffer is empty nothing will be sent */
1117 npcm_i2c_slave_send_rd_buf(bus);
1118
1119 /* Slave done transmitting or receiving */
1120 bus->stop_ind = I2C_NO_STATUS_IND;
1121
1122 /*
1123 * Note, just because we got here, it doesn't mean we through
1124 * away the wr buffer.
1125 * we keep it until the next received offset.
1126 */
1127 bus->operation = I2C_NO_OPER;
1128 bus->own_slave_addr = 0xFF;
1129 i2c_slave_event(client: bus->slave, event: I2C_SLAVE_STOP, val: 0);
1130 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1131 if (bus->fifo_use) {
1132 npcm_i2c_clear_fifo_int(bus);
1133 npcm_i2c_clear_rx_fifo(bus);
1134 npcm_i2c_clear_tx_fifo(bus);
1135
1136 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1137 bus->reg + NPCM_I2CFIF_CTS);
1138 }
1139 bus->state = I2C_IDLE;
1140 ret = IRQ_HANDLED;
1141 }
1142
1143 /* restart condition occurred and Rx-FIFO was not empty */
1144 if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1145 ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1146 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1147 bus->master_or_slave = I2C_SLAVE;
1148 if (bus->operation == I2C_READ_OPER)
1149 npcm_i2c_read_fifo_slave(bus, bytes_in_fifo: npcm_i2c_fifo_usage(bus));
1150 bus->operation = I2C_WRITE_OPER;
1151 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1152 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1153 NPCM_I2CFIF_CTS_RXF_TXE;
1154 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1155 npcm_i2c_slave_rd_wr(bus);
1156 ret = IRQ_HANDLED;
1157 }
1158
1159 /* A Slave Address Match has been identified */
1160 if (NPCM_I2CST_NMATCH & i2cst) {
1161 u8 info = 0;
1162
1163 /* Address match automatically implies slave mode */
1164 bus->master_or_slave = I2C_SLAVE;
1165 npcm_i2c_clear_fifo_int(bus);
1166 npcm_i2c_clear_rx_fifo(bus);
1167 npcm_i2c_clear_tx_fifo(bus);
1168 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1169 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1170 if (NPCM_I2CST_XMIT & i2cst) {
1171 bus->operation = I2C_WRITE_OPER;
1172 } else {
1173 i2c_slave_event(client: bus->slave, event: I2C_SLAVE_WRITE_REQUESTED,
1174 val: &info);
1175 bus->operation = I2C_READ_OPER;
1176 }
1177 if (bus->own_slave_addr == 0xFF) {
1178 /* Check which type of address match */
1179 val = ioread8(bus->reg + NPCM_I2CCST);
1180 if (NPCM_I2CCST_MATCH & val) {
1181 u16 addr;
1182 enum i2c_addr eaddr;
1183 u8 i2ccst2;
1184 u8 i2ccst3;
1185
1186 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1187 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1188
1189 /*
1190 * the i2c module can response to 10 own SA.
1191 * check which one was addressed by the master.
1192 * respond to the first one.
1193 */
1194 addr = ((i2ccst3 & 0x07) << 7) |
1195 (i2ccst2 & 0x7F);
1196 info = ffs(addr);
1197 eaddr = (enum i2c_addr)info;
1198 addr = npcm_i2c_get_slave_addr(bus, addr_type: eaddr);
1199 addr &= 0x7F;
1200 bus->own_slave_addr = addr;
1201 if (bus->PEC_mask & BIT(info))
1202 bus->PEC_use = true;
1203 else
1204 bus->PEC_use = false;
1205 } else {
1206 if (NPCM_I2CCST_GCMATCH & val)
1207 bus->own_slave_addr = 0;
1208 if (NPCM_I2CCST_ARPMATCH & val)
1209 bus->own_slave_addr = 0x61;
1210 }
1211 } else {
1212 /*
1213 * Slave match can happen in two options:
1214 * 1. Start, SA, read (slave read without further ado)
1215 * 2. Start, SA, read, data, restart, SA, read, ...
1216 * (slave read in fragmented mode)
1217 * 3. Start, SA, write, data, restart, SA, read, ..
1218 * (regular write-read mode)
1219 */
1220 if ((bus->state == I2C_OPER_STARTED &&
1221 bus->operation == I2C_READ_OPER &&
1222 bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1223 bus->stop_ind == I2C_SLAVE_RCV_IND) {
1224 /* slave tx after slave rx w/o STOP */
1225 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1226 }
1227 }
1228
1229 if (NPCM_I2CST_XMIT & i2cst)
1230 bus->stop_ind = I2C_SLAVE_XMIT_IND;
1231 else
1232 bus->stop_ind = I2C_SLAVE_RCV_IND;
1233 bus->state = I2C_SLAVE_MATCH;
1234 npcm_i2c_slave_rd_wr(bus);
1235 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1236 ret = IRQ_HANDLED;
1237 }
1238
1239 /* Slave SDA status is set - tx or rx */
1240 if ((NPCM_I2CST_SDAST & i2cst) ||
1241 (bus->fifo_use &&
1242 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1243 npcm_i2c_slave_rd_wr(bus);
1244 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1245 ret = IRQ_HANDLED;
1246 } /* SDAST */
1247
1248 /*
1249 * If irq is not one of the above, make sure EOB is disabled and all
1250 * status bits are cleared.
1251 */
1252 if (ret == IRQ_NONE) {
1253 npcm_i2c_eob_int(bus, enable: false);
1254 npcm_i2c_clear_master_status(bus);
1255 }
1256
1257 return IRQ_HANDLED;
1258}
1259
1260static int npcm_i2c_reg_slave(struct i2c_client *client)
1261{
1262 unsigned long lock_flags;
1263 struct npcm_i2c *bus = i2c_get_adapdata(adap: client->adapter);
1264
1265 bus->slave = client;
1266
1267 if (client->flags & I2C_CLIENT_TEN)
1268 return -EAFNOSUPPORT;
1269
1270 spin_lock_irqsave(&bus->lock, lock_flags);
1271
1272 npcm_i2c_init_params(bus);
1273 bus->slv_rd_size = 0;
1274 bus->slv_wr_size = 0;
1275 bus->slv_rd_ind = 0;
1276 bus->slv_wr_ind = 0;
1277 if (client->flags & I2C_CLIENT_PEC)
1278 bus->PEC_use = true;
1279
1280 dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1281 client->addr, bus->PEC_use);
1282
1283 npcm_i2c_slave_enable(bus, addr_type: I2C_SLAVE_ADDR1, addr: client->addr, enable: true);
1284 npcm_i2c_clear_fifo_int(bus);
1285 npcm_i2c_clear_rx_fifo(bus);
1286 npcm_i2c_clear_tx_fifo(bus);
1287 npcm_i2c_slave_int_enable(bus, enable: true);
1288
1289 spin_unlock_irqrestore(lock: &bus->lock, flags: lock_flags);
1290 return 0;
1291}
1292
1293static int npcm_i2c_unreg_slave(struct i2c_client *client)
1294{
1295 struct npcm_i2c *bus = client->adapter->algo_data;
1296 unsigned long lock_flags;
1297
1298 spin_lock_irqsave(&bus->lock, lock_flags);
1299 if (!bus->slave) {
1300 spin_unlock_irqrestore(lock: &bus->lock, flags: lock_flags);
1301 return -EINVAL;
1302 }
1303 npcm_i2c_slave_int_enable(bus, enable: false);
1304 npcm_i2c_remove_slave_addr(bus, slave_add: client->addr);
1305 bus->slave = NULL;
1306 spin_unlock_irqrestore(lock: &bus->lock, flags: lock_flags);
1307 return 0;
1308}
1309#endif /* CONFIG_I2C_SLAVE */
1310
1311static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1312{
1313 int rcount;
1314 int fifo_bytes;
1315 enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1316
1317 fifo_bytes = npcm_i2c_fifo_usage(bus);
1318 rcount = bus->rd_size - bus->rd_ind;
1319
1320 /*
1321 * In order not to change the RX_TRH during transaction (we found that
1322 * this might be problematic if it takes too much time to read the FIFO)
1323 * we read the data in the following way. If the number of bytes to
1324 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1325 * and in the next int we read rest of the data.
1326 */
1327 if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1328 fifo_bytes = rcount - bus->data->fifo_size;
1329
1330 if (rcount <= fifo_bytes) {
1331 /* last bytes are about to be read - end of tx */
1332 bus->state = I2C_STOP_PENDING;
1333 bus->stop_ind = ind;
1334 npcm_i2c_eob_int(bus, enable: true);
1335 /* Stop should be set before reading last byte. */
1336 npcm_i2c_master_stop(bus);
1337 npcm_i2c_read_fifo(bus, bytes_in_fifo: fifo_bytes);
1338 } else {
1339 npcm_i2c_read_fifo(bus, bytes_in_fifo: fifo_bytes);
1340 rcount = bus->rd_size - bus->rd_ind;
1341 npcm_i2c_set_fifo(bus, nread: rcount, nwrite: -1);
1342 }
1343}
1344
1345static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1346{
1347 u16 wcount;
1348
1349 if (bus->fifo_use)
1350 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1351
1352 /* Master write operation - last byte handling */
1353 if (bus->wr_ind == bus->wr_size) {
1354 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1355 /*
1356 * No more bytes to send (to add to the FIFO),
1357 * however the FIFO is not empty yet. It is
1358 * still in the middle of tx. Currently there's nothing
1359 * to do except for waiting to the end of the tx
1360 * We will get an int when the FIFO will get empty.
1361 */
1362 return;
1363
1364 if (bus->rd_size == 0) {
1365 /* all bytes have been written, in wr only operation */
1366 npcm_i2c_eob_int(bus, enable: true);
1367 bus->state = I2C_STOP_PENDING;
1368 bus->stop_ind = I2C_MASTER_DONE_IND;
1369 npcm_i2c_master_stop(bus);
1370 /* Clear SDA Status bit (by writing dummy byte) */
1371 npcm_i2c_wr_byte(bus, data: 0xFF);
1372
1373 } else {
1374 /* last write-byte written on previous int - restart */
1375 npcm_i2c_set_fifo(bus, nread: bus->rd_size, nwrite: -1);
1376 /* Generate repeated start upon next write to SDA */
1377 npcm_i2c_master_start(bus);
1378
1379 /*
1380 * Receiving one byte only - stall after successful
1381 * completion of send address byte. If we NACK here, and
1382 * slave doesn't ACK the address, we might
1383 * unintentionally NACK the next multi-byte read.
1384 */
1385 if (bus->rd_size == 1)
1386 npcm_i2c_stall_after_start(bus, stall: true);
1387
1388 /* Next int will occur on read */
1389 bus->operation = I2C_READ_OPER;
1390 /* send the slave address in read direction */
1391 npcm_i2c_wr_byte(bus, data: bus->dest_addr | 0x1);
1392 }
1393 } else {
1394 /* write next byte not last byte and not slave address */
1395 if (!bus->fifo_use || bus->wr_size == 1) {
1396 npcm_i2c_wr_byte(bus, data: bus->wr_buf[bus->wr_ind++]);
1397 } else {
1398 wcount = bus->wr_size - bus->wr_ind;
1399 npcm_i2c_set_fifo(bus, nread: -1, nwrite: wcount);
1400 if (wcount)
1401 npcm_i2c_write_to_fifo_master(bus, max_bytes: wcount);
1402 }
1403 }
1404}
1405
1406static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1407{
1408 u16 block_extra_bytes_size;
1409 u8 data;
1410
1411 /* added bytes to the packet: */
1412 block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1413
1414 /*
1415 * Perform master read, distinguishing between last byte and the rest of
1416 * the bytes. The last byte should be read when the clock is stopped
1417 */
1418 if (bus->rd_ind == 0) { /* first byte handling: */
1419 if (bus->read_block_use) {
1420 /* first byte in block protocol is the size: */
1421 data = npcm_i2c_rd_byte(bus);
1422 data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1423 bus->rd_size = data + block_extra_bytes_size;
1424 bus->rd_buf[bus->rd_ind++] = data;
1425
1426 /* clear RX FIFO interrupt status: */
1427 if (bus->fifo_use) {
1428 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1429 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1430 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1431 }
1432
1433 npcm_i2c_set_fifo(bus, nread: bus->rd_size - 1, nwrite: -1);
1434 npcm_i2c_stall_after_start(bus, stall: false);
1435 } else {
1436 npcm_i2c_clear_tx_fifo(bus);
1437 npcm_i2c_master_fifo_read(bus);
1438 }
1439 } else {
1440 if (bus->rd_size == block_extra_bytes_size &&
1441 bus->read_block_use) {
1442 bus->state = I2C_STOP_PENDING;
1443 bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1444 bus->cmd_err = -EIO;
1445 npcm_i2c_eob_int(bus, enable: true);
1446 npcm_i2c_master_stop(bus);
1447 npcm_i2c_read_fifo(bus, bytes_in_fifo: npcm_i2c_fifo_usage(bus));
1448 } else {
1449 npcm_i2c_master_fifo_read(bus);
1450 }
1451 }
1452}
1453
1454static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1455{
1456 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1457 npcm_i2c_nack(bus);
1458 bus->stop_ind = I2C_BUS_ERR_IND;
1459 npcm_i2c_callback(bus, op_status: bus->stop_ind, info: npcm_i2c_get_index(bus));
1460}
1461
1462/* A NACK has occurred */
1463static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1464{
1465 u8 val;
1466
1467 if (bus->nack_cnt < ULLONG_MAX)
1468 bus->nack_cnt++;
1469
1470 if (bus->fifo_use) {
1471 /*
1472 * if there are still untransmitted bytes in TX FIFO
1473 * reduce them from wr_ind
1474 */
1475 if (bus->operation == I2C_WRITE_OPER)
1476 bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1477
1478 /* clear the FIFO */
1479 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1480 }
1481
1482 /* In master write operation, got unexpected NACK */
1483 bus->stop_ind = I2C_NACK_IND;
1484 /* Only current master is allowed to issue Stop Condition */
1485 if (npcm_i2c_is_master(bus)) {
1486 /* stopping in the middle */
1487 npcm_i2c_eob_int(bus, enable: false);
1488 npcm_i2c_master_stop(bus);
1489
1490 /* Clear SDA Status bit (by reading dummy byte) */
1491 npcm_i2c_rd_byte(bus);
1492
1493 /*
1494 * The bus is released from stall only after the SW clears
1495 * NEGACK bit. Then a Stop condition is sent.
1496 */
1497 npcm_i2c_clear_master_status(bus);
1498 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1499 !(val & NPCM_I2CCST_BUSY), 10, 200);
1500 /* Verify no status bits are still set after bus is released */
1501 npcm_i2c_clear_master_status(bus);
1502 }
1503 bus->state = I2C_IDLE;
1504
1505 /*
1506 * In Master mode, NACK should be cleared only after STOP.
1507 * In such case, the bus is released from stall only after the
1508 * software clears NACK bit. Then a Stop condition is sent.
1509 */
1510 npcm_i2c_callback(bus, op_status: bus->stop_ind, info: bus->wr_ind);
1511}
1512
1513 /* Master mode: a Bus Error has been identified */
1514static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1515{
1516 if (bus->ber_cnt < ULLONG_MAX)
1517 bus->ber_cnt++;
1518 bus->stop_ind = I2C_BUS_ERR_IND;
1519 if (npcm_i2c_is_master(bus)) {
1520 npcm_i2c_master_abort(bus);
1521 } else {
1522 npcm_i2c_clear_master_status(bus);
1523
1524 /* Clear BB (BUS BUSY) bit */
1525 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1526
1527 bus->cmd_err = -EAGAIN;
1528 npcm_i2c_callback(bus, op_status: bus->stop_ind, info: npcm_i2c_get_index(bus));
1529 }
1530 bus->state = I2C_IDLE;
1531}
1532
1533 /* EOB: a master End Of Busy (meaning STOP completed) */
1534static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1535{
1536 npcm_i2c_eob_int(bus, enable: false);
1537 bus->state = I2C_IDLE;
1538 npcm_i2c_callback(bus, op_status: bus->stop_ind, info: bus->rd_ind);
1539}
1540
1541/* Address sent and requested stall occurred (Master mode) */
1542static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1543{
1544 if (npcm_i2c_is_quick(bus)) {
1545 bus->state = I2C_STOP_PENDING;
1546 bus->stop_ind = I2C_MASTER_DONE_IND;
1547 npcm_i2c_eob_int(bus, enable: true);
1548 npcm_i2c_master_stop(bus);
1549 } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1550 /*
1551 * Receiving one byte only - set NACK after ensuring
1552 * slave ACKed the address byte.
1553 */
1554 npcm_i2c_nack(bus);
1555 }
1556
1557 /* Reset stall-after-address-byte */
1558 npcm_i2c_stall_after_start(bus, stall: false);
1559
1560 /* Clear stall only after setting STOP */
1561 iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1562}
1563
1564/* SDA status is set - TX or RX, master */
1565static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1566{
1567 u8 fif_cts;
1568
1569 if (!npcm_i2c_is_master(bus))
1570 return;
1571
1572 if (bus->state == I2C_IDLE) {
1573 bus->stop_ind = I2C_WAKE_UP_IND;
1574
1575 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1576 /*
1577 * Need to stall after successful
1578 * completion of sending address byte
1579 */
1580 npcm_i2c_stall_after_start(bus, stall: true);
1581 else
1582 npcm_i2c_stall_after_start(bus, stall: false);
1583
1584 /*
1585 * Receiving one byte only - stall after successful completion
1586 * of sending address byte If we NACK here, and slave doesn't
1587 * ACK the address, we might unintentionally NACK the next
1588 * multi-byte read
1589 */
1590 if (bus->wr_size == 0 && bus->rd_size == 1)
1591 npcm_i2c_stall_after_start(bus, stall: true);
1592
1593 /* Initiate I2C master tx */
1594
1595 /* select bank 1 for FIFO regs */
1596 npcm_i2c_select_bank(bus, bank: I2C_BANK_1);
1597
1598 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1599 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1600
1601 /* clear FIFO and relevant status bits. */
1602 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1603 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1604
1605 /* re-enable */
1606 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1607 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1608
1609 /*
1610 * Configure the FIFO threshold:
1611 * according to the needed # of bytes to read.
1612 * Note: due to HW limitation can't config the rx fifo before it
1613 * got and ACK on the restart. LAST bit will not be reset unless
1614 * RX completed. It will stay set on the next tx.
1615 */
1616 if (bus->wr_size)
1617 npcm_i2c_set_fifo(bus, nread: -1, nwrite: bus->wr_size);
1618 else
1619 npcm_i2c_set_fifo(bus, nread: bus->rd_size, nwrite: -1);
1620
1621 bus->state = I2C_OPER_STARTED;
1622
1623 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1624 npcm_i2c_wr_byte(bus, data: bus->dest_addr);
1625 else
1626 npcm_i2c_wr_byte(bus, data: bus->dest_addr | BIT(0));
1627 /* SDA interrupt, after start\restart */
1628 } else {
1629 if (NPCM_I2CST_XMIT & i2cst) {
1630 bus->operation = I2C_WRITE_OPER;
1631 npcm_i2c_irq_master_handler_write(bus);
1632 } else {
1633 bus->operation = I2C_READ_OPER;
1634 npcm_i2c_irq_master_handler_read(bus);
1635 }
1636 }
1637}
1638
1639static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1640{
1641 u8 i2cst;
1642 int ret = -EIO;
1643
1644 i2cst = ioread8(bus->reg + NPCM_I2CST);
1645
1646 if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1647 npcm_i2c_irq_handle_nmatch(bus);
1648 return 0;
1649 }
1650 /* A NACK has occurred */
1651 if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1652 npcm_i2c_irq_handle_nack(bus);
1653 return 0;
1654 }
1655
1656 /* Master mode: a Bus Error has been identified */
1657 if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1658 npcm_i2c_irq_handle_ber(bus);
1659 return 0;
1660 }
1661
1662 /* EOB: a master End Of Busy (meaning STOP completed) */
1663 if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1664 ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1665 (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1666 ioread8(bus->reg + NPCM_I2CCST3)))) {
1667 npcm_i2c_irq_handle_eob(bus);
1668 return 0;
1669 }
1670
1671 /* Address sent and requested stall occurred (Master mode) */
1672 if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1673 npcm_i2c_irq_handle_stall_after_start(bus);
1674 ret = 0;
1675 }
1676
1677 /* SDA status is set - TX or RX, master */
1678 if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1679 (bus->fifo_use &&
1680 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1681 npcm_i2c_irq_handle_sda(bus, i2cst);
1682 ret = 0;
1683 }
1684
1685 return ret;
1686}
1687
1688/* recovery using TGCLK functionality of the module */
1689static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1690{
1691 u8 val;
1692 u8 fif_cts;
1693 bool done = false;
1694 int status = -ENOTRECOVERABLE;
1695 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1696 /* Allow 3 bytes (27 toggles) to be read from the slave: */
1697 int iter = 27;
1698
1699 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1700 dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1701 bus->num, bus->dest_addr);
1702 npcm_i2c_reset(bus);
1703 return 0;
1704 }
1705
1706 npcm_i2c_int_enable(bus, enable: false);
1707 npcm_i2c_disable(bus);
1708 npcm_i2c_enable(bus);
1709 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1710 npcm_i2c_clear_tx_fifo(bus);
1711 npcm_i2c_clear_rx_fifo(bus);
1712 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1713 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1714 npcm_i2c_stall_after_start(bus, stall: false);
1715
1716 /* select bank 1 for FIFO regs */
1717 npcm_i2c_select_bank(bus, bank: I2C_BANK_1);
1718
1719 /* clear FIFO and relevant status bits. */
1720 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1721 fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1722 fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1723 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1724 npcm_i2c_set_fifo(bus, nread: -1, nwrite: 0);
1725
1726 /* Repeat the following sequence until SDA is released */
1727 do {
1728 /* Issue a single SCL toggle */
1729 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1730 usleep_range(min: 20, max: 30);
1731 /* If SDA line is inactive (high), stop */
1732 if (npcm_i2c_get_SDA(_adap)) {
1733 done = true;
1734 status = 0;
1735 }
1736 } while (!done && iter--);
1737
1738 /* If SDA line is released: send start-addr-stop, to re-sync. */
1739 if (npcm_i2c_get_SDA(_adap)) {
1740 /* Send an address byte in write direction: */
1741 npcm_i2c_wr_byte(bus, data: bus->dest_addr);
1742 npcm_i2c_master_start(bus);
1743 /* Wait until START condition is sent */
1744 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1745 20, 200);
1746 /* If START condition was sent */
1747 if (npcm_i2c_is_master(bus) > 0) {
1748 usleep_range(min: 20, max: 30);
1749 npcm_i2c_master_stop(bus);
1750 usleep_range(min: 200, max: 500);
1751 }
1752 }
1753 npcm_i2c_reset(bus);
1754 npcm_i2c_int_enable(bus, enable: true);
1755
1756 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1757 status = 0;
1758 else
1759 status = -ENOTRECOVERABLE;
1760 if (status) {
1761 if (bus->rec_fail_cnt < ULLONG_MAX)
1762 bus->rec_fail_cnt++;
1763 } else {
1764 if (bus->rec_succ_cnt < ULLONG_MAX)
1765 bus->rec_succ_cnt++;
1766 }
1767 return status;
1768}
1769
1770/* recovery using bit banging functionality of the module */
1771static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1772{
1773 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1774 struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1775
1776 rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1777
1778 /*
1779 * npcm i2c HW allows direct reading of SCL and SDA.
1780 * However, it does not support setting SCL and SDA directly.
1781 * The recovery function can toggle SCL when SDA is low (but not set)
1782 * Getter functions used internally, and can be used externally.
1783 */
1784 rinfo->get_scl = npcm_i2c_get_SCL;
1785 rinfo->get_sda = npcm_i2c_get_SDA;
1786 _adap->bus_recovery_info = rinfo;
1787}
1788
1789/* SCLFRQ min/max field values */
1790#define SCLFRQ_MIN 10
1791#define SCLFRQ_MAX 511
1792#define clk_coef(freq, mul) DIV_ROUND_UP((freq) * (mul), 1000000)
1793
1794/*
1795 * npcm_i2c_init_clk: init HW timing parameters.
1796 * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1797 * and bus frequency.
1798 * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1799 * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1800 * by the HW designer, given core clock range (equations in comments below).
1801 *
1802 */
1803static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1804{
1805 u32 k1 = 0;
1806 u32 k2 = 0;
1807 u8 dbnct = 0;
1808 u32 sclfrq = 0;
1809 u8 hldt = 7;
1810 u8 fast_mode = 0;
1811 u32 src_clk_khz;
1812 u32 bus_freq_khz;
1813
1814 src_clk_khz = bus->apb_clk / 1000;
1815 bus_freq_khz = bus_freq_hz / 1000;
1816 bus->bus_freq = bus_freq_hz;
1817
1818 /* 100KHz and below: */
1819 if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1820 sclfrq = src_clk_khz / (bus_freq_khz * 4);
1821
1822 if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1823 return -EDOM;
1824
1825 if (src_clk_khz >= 40000)
1826 hldt = 17;
1827 else if (src_clk_khz >= 12500)
1828 hldt = 15;
1829 else
1830 hldt = 7;
1831 }
1832
1833 /* 400KHz: */
1834 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1835 sclfrq = 0;
1836 fast_mode = I2CCTL3_400K_MODE;
1837
1838 if (src_clk_khz < 7500)
1839 /* 400KHZ cannot be supported for core clock < 7.5MHz */
1840 return -EDOM;
1841
1842 else if (src_clk_khz >= 50000) {
1843 k1 = 80;
1844 k2 = 48;
1845 hldt = 12;
1846 dbnct = 7;
1847 }
1848
1849 /* Master or Slave with frequency > 25MHz */
1850 else if (src_clk_khz > 25000) {
1851 hldt = clk_coef(src_clk_khz, 300) + 7;
1852 k1 = clk_coef(src_clk_khz, 1600);
1853 k2 = clk_coef(src_clk_khz, 900);
1854 }
1855 }
1856
1857 /* 1MHz: */
1858 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1859 sclfrq = 0;
1860 fast_mode = I2CCTL3_400K_MODE;
1861
1862 /* 1MHZ cannot be supported for core clock < 24 MHz */
1863 if (src_clk_khz < 24000)
1864 return -EDOM;
1865
1866 k1 = clk_coef(src_clk_khz, 620);
1867 k2 = clk_coef(src_clk_khz, 380);
1868
1869 /* Core clk > 40 MHz */
1870 if (src_clk_khz > 40000) {
1871 /*
1872 * Set HLDT:
1873 * SDA hold time: (HLDT-7) * T(CLK) >= 120
1874 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1875 */
1876 hldt = clk_coef(src_clk_khz, 120) + 7;
1877 } else {
1878 hldt = 7;
1879 dbnct = 2;
1880 }
1881 }
1882
1883 /* Frequency larger than 1 MHz is not supported */
1884 else
1885 return -EINVAL;
1886
1887 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1888 k1 = round_up(k1, 2);
1889 k2 = round_up(k2 + 1, 2);
1890 if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1891 k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1892 return -EDOM;
1893 }
1894
1895 /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1896 iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1897 bus->reg + NPCM_I2CCTL2);
1898
1899 /* bits [8:7] are in I2CCTL3 reg */
1900 iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1901 bus->reg + NPCM_I2CCTL3);
1902
1903 /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1904 npcm_i2c_select_bank(bus, bank: I2C_BANK_0);
1905
1906 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1907 /*
1908 * Set SCL Low/High Time:
1909 * k1 = 2 * SCLLT7-0 -> Low Time = k1 / 2
1910 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1911 */
1912 iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1913 iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1914
1915 iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1916 }
1917
1918 iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1919
1920 /* Return to Bank 1, and stay there by default: */
1921 npcm_i2c_select_bank(bus, bank: I2C_BANK_1);
1922
1923 return 0;
1924}
1925
1926static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1927 u32 bus_freq_hz)
1928{
1929 u8 val;
1930 int ret;
1931
1932 /* Check whether module already enabled or frequency is out of bounds */
1933 if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1934 bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1935 return -EINVAL;
1936
1937 npcm_i2c_int_enable(bus, enable: false);
1938 npcm_i2c_disable(bus);
1939
1940 /* Configure FIFO mode : */
1941 if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1942 bus->fifo_use = true;
1943 npcm_i2c_select_bank(bus, bank: I2C_BANK_0);
1944 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1945 val |= NPCM_I2CFIF_CTL_FIFO_EN;
1946 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1947 npcm_i2c_select_bank(bus, bank: I2C_BANK_1);
1948 } else {
1949 bus->fifo_use = false;
1950 }
1951
1952 /* Configure I2C module clock frequency */
1953 ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1954 if (ret) {
1955 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1956 return ret;
1957 }
1958
1959 /* Enable module (before configuring CTL1) */
1960 npcm_i2c_enable(bus);
1961 bus->state = I2C_IDLE;
1962 val = ioread8(bus->reg + NPCM_I2CCTL1);
1963 val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1964 iowrite8(val, bus->reg + NPCM_I2CCTL1);
1965
1966 npcm_i2c_reset(bus);
1967
1968 /* Check HW is OK: SDA and SCL should be high at this point. */
1969 if ((npcm_i2c_get_SDA(adap: &bus->adap) == 0) || (npcm_i2c_get_SCL(adap: &bus->adap) == 0)) {
1970 dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1971 dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1972 npcm_i2c_get_SCL(&bus->adap));
1973 return -ENXIO;
1974 }
1975
1976 npcm_i2c_int_enable(bus, enable: true);
1977 return 0;
1978}
1979
1980static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1981{
1982 u32 clk_freq_hz;
1983 int ret;
1984
1985 /* Initialize the internal data structures */
1986 bus->state = I2C_DISABLE;
1987 bus->master_or_slave = I2C_SLAVE;
1988 bus->int_time_stamp = 0;
1989#if IS_ENABLED(CONFIG_I2C_SLAVE)
1990 bus->slave = NULL;
1991#endif
1992
1993 ret = device_property_read_u32(dev: &pdev->dev, propname: "clock-frequency",
1994 val: &clk_freq_hz);
1995 if (ret) {
1996 dev_info(&pdev->dev, "Could not read clock-frequency property");
1997 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
1998 }
1999
2000 ret = npcm_i2c_init_module(bus, mode: I2C_MASTER, bus_freq_hz: clk_freq_hz);
2001 if (ret) {
2002 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2003 return ret;
2004 }
2005
2006 return 0;
2007}
2008
2009static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2010{
2011 struct npcm_i2c *bus = dev_id;
2012
2013 if (npcm_i2c_is_master(bus))
2014 bus->master_or_slave = I2C_MASTER;
2015
2016 if (bus->master_or_slave == I2C_MASTER) {
2017 bus->int_time_stamp = jiffies;
2018 if (!npcm_i2c_int_master_handler(bus))
2019 return IRQ_HANDLED;
2020 }
2021#if IS_ENABLED(CONFIG_I2C_SLAVE)
2022 if (bus->slave) {
2023 bus->master_or_slave = I2C_SLAVE;
2024 if (npcm_i2c_int_slave_handler(bus))
2025 return IRQ_HANDLED;
2026 }
2027#endif
2028 /* Clear status bits for spurious interrupts */
2029 npcm_i2c_clear_master_status(bus);
2030
2031 return IRQ_HANDLED;
2032}
2033
2034static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2035 u8 slave_addr, u16 nwrite, u16 nread,
2036 u8 *write_data, u8 *read_data,
2037 bool use_PEC, bool use_read_block)
2038{
2039 if (bus->state != I2C_IDLE) {
2040 bus->cmd_err = -EBUSY;
2041 return false;
2042 }
2043 bus->dest_addr = slave_addr << 1;
2044 bus->wr_buf = write_data;
2045 bus->wr_size = nwrite;
2046 bus->wr_ind = 0;
2047 bus->rd_buf = read_data;
2048 bus->rd_size = nread;
2049 bus->rd_ind = 0;
2050 bus->PEC_use = 0;
2051
2052 /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2053 if (nread)
2054 bus->PEC_use = use_PEC;
2055
2056 bus->read_block_use = use_read_block;
2057 if (nread && !nwrite)
2058 bus->operation = I2C_READ_OPER;
2059 else
2060 bus->operation = I2C_WRITE_OPER;
2061 if (bus->fifo_use) {
2062 u8 i2cfif_cts;
2063
2064 npcm_i2c_select_bank(bus, bank: I2C_BANK_1);
2065 /* clear FIFO and relevant status bits. */
2066 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2067 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2068 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2069 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2070 }
2071
2072 bus->state = I2C_IDLE;
2073 npcm_i2c_stall_after_start(bus, stall: true);
2074 npcm_i2c_master_start(bus);
2075 return true;
2076}
2077
2078static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2079 int num)
2080{
2081 struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2082 struct i2c_msg *msg0, *msg1;
2083 unsigned long time_left, flags;
2084 u16 nwrite, nread;
2085 u8 *write_data, *read_data;
2086 u8 slave_addr;
2087 unsigned long timeout;
2088 bool read_block = false;
2089 bool read_PEC = false;
2090 u8 bus_busy;
2091 unsigned long timeout_usec;
2092
2093 if (bus->state == I2C_DISABLE) {
2094 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2095 return -EINVAL;
2096 }
2097
2098 msg0 = &msgs[0];
2099 slave_addr = msg0->addr;
2100 if (msg0->flags & I2C_M_RD) { /* read */
2101 nwrite = 0;
2102 write_data = NULL;
2103 read_data = msg0->buf;
2104 if (msg0->flags & I2C_M_RECV_LEN) {
2105 nread = 1;
2106 read_block = true;
2107 if (msg0->flags & I2C_CLIENT_PEC)
2108 read_PEC = true;
2109 } else {
2110 nread = msg0->len;
2111 }
2112 } else { /* write */
2113 nwrite = msg0->len;
2114 write_data = msg0->buf;
2115 nread = 0;
2116 read_data = NULL;
2117 if (num == 2) {
2118 msg1 = &msgs[1];
2119 read_data = msg1->buf;
2120 if (msg1->flags & I2C_M_RECV_LEN) {
2121 nread = 1;
2122 read_block = true;
2123 if (msg1->flags & I2C_CLIENT_PEC)
2124 read_PEC = true;
2125 } else {
2126 nread = msg1->len;
2127 read_block = false;
2128 }
2129 }
2130 }
2131
2132 /*
2133 * Adaptive TimeOut: estimated time in usec + 100% margin:
2134 * 2: double the timeout for clock stretching case
2135 * 9: bits per transaction (including the ack/nack)
2136 */
2137 timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2138 timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2139 if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2140 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2141 return -EINVAL;
2142 }
2143
2144 time_left = jiffies + timeout + 1;
2145 do {
2146 /*
2147 * we must clear slave address immediately when the bus is not
2148 * busy, so we spinlock it, but we don't keep the lock for the
2149 * entire while since it is too long.
2150 */
2151 spin_lock_irqsave(&bus->lock, flags);
2152 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2153#if IS_ENABLED(CONFIG_I2C_SLAVE)
2154 if (!bus_busy && bus->slave)
2155 iowrite8((bus->slave->addr & 0x7F),
2156 bus->reg + NPCM_I2CADDR1);
2157#endif
2158 spin_unlock_irqrestore(lock: &bus->lock, flags);
2159
2160 } while (time_is_after_jiffies(time_left) && bus_busy);
2161
2162 if (bus_busy) {
2163 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2164 npcm_i2c_reset(bus);
2165 i2c_recover_bus(adap);
2166 return -EAGAIN;
2167 }
2168
2169 npcm_i2c_init_params(bus);
2170 bus->dest_addr = slave_addr;
2171 bus->msgs = msgs;
2172 bus->msgs_num = num;
2173 bus->cmd_err = 0;
2174 bus->read_block_use = read_block;
2175
2176 reinit_completion(x: &bus->cmd_complete);
2177
2178 npcm_i2c_int_enable(bus, enable: true);
2179
2180 if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2181 write_data, read_data, use_PEC: read_PEC,
2182 use_read_block: read_block)) {
2183 time_left = wait_for_completion_timeout(x: &bus->cmd_complete,
2184 timeout);
2185
2186 if (time_left == 0) {
2187 if (bus->timeout_cnt < ULLONG_MAX)
2188 bus->timeout_cnt++;
2189 if (bus->master_or_slave == I2C_MASTER) {
2190 i2c_recover_bus(adap);
2191 bus->cmd_err = -EIO;
2192 bus->state = I2C_IDLE;
2193 }
2194 }
2195 }
2196
2197 /* if there was BER, check if need to recover the bus: */
2198 if (bus->cmd_err == -EAGAIN)
2199 bus->cmd_err = i2c_recover_bus(adap);
2200
2201 /*
2202 * After any type of error, check if LAST bit is still set,
2203 * due to a HW issue.
2204 * It cannot be cleared without resetting the module.
2205 */
2206 else if (bus->cmd_err &&
2207 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2208 npcm_i2c_reset(bus);
2209
2210 /* After any xfer, successful or not, stall and EOB must be disabled */
2211 npcm_i2c_stall_after_start(bus, stall: false);
2212 npcm_i2c_eob_int(bus, enable: false);
2213
2214#if IS_ENABLED(CONFIG_I2C_SLAVE)
2215 /* reenable slave if it was enabled */
2216 if (bus->slave)
2217 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2218 bus->reg + NPCM_I2CADDR1);
2219#else
2220 npcm_i2c_int_enable(bus, false);
2221#endif
2222 return bus->cmd_err;
2223}
2224
2225static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2226{
2227 return I2C_FUNC_I2C |
2228 I2C_FUNC_SMBUS_EMUL |
2229 I2C_FUNC_SMBUS_BLOCK_DATA |
2230 I2C_FUNC_SMBUS_PEC |
2231 I2C_FUNC_SLAVE;
2232}
2233
2234static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2235 .max_read_len = 32768,
2236 .max_write_len = 32768,
2237 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2238};
2239
2240static const struct i2c_algorithm npcm_i2c_algo = {
2241 .master_xfer = npcm_i2c_master_xfer,
2242 .functionality = npcm_i2c_functionality,
2243#if IS_ENABLED(CONFIG_I2C_SLAVE)
2244 .reg_slave = npcm_i2c_reg_slave,
2245 .unreg_slave = npcm_i2c_unreg_slave,
2246#endif
2247};
2248
2249static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2250 struct npcm_i2c *bus)
2251{
2252 debugfs_create_u64(name: "ber_cnt", mode: 0444, parent: bus->adap.debugfs, value: &bus->ber_cnt);
2253 debugfs_create_u64(name: "nack_cnt", mode: 0444, parent: bus->adap.debugfs, value: &bus->nack_cnt);
2254 debugfs_create_u64(name: "rec_succ_cnt", mode: 0444, parent: bus->adap.debugfs, value: &bus->rec_succ_cnt);
2255 debugfs_create_u64(name: "rec_fail_cnt", mode: 0444, parent: bus->adap.debugfs, value: &bus->rec_fail_cnt);
2256 debugfs_create_u64(name: "timeout_cnt", mode: 0444, parent: bus->adap.debugfs, value: &bus->timeout_cnt);
2257 debugfs_create_u64(name: "tx_complete_cnt", mode: 0444, parent: bus->adap.debugfs, value: &bus->tx_complete_cnt);
2258}
2259
2260static int npcm_i2c_probe_bus(struct platform_device *pdev)
2261{
2262 struct device_node *np = pdev->dev.of_node;
2263 static struct regmap *gcr_regmap;
2264 struct device *dev = &pdev->dev;
2265 struct i2c_adapter *adap;
2266 struct npcm_i2c *bus;
2267 struct clk *i2c_clk;
2268 int irq;
2269 int ret;
2270
2271 bus = devm_kzalloc(dev: &pdev->dev, size: sizeof(*bus), GFP_KERNEL);
2272 if (!bus)
2273 return -ENOMEM;
2274
2275 bus->dev = &pdev->dev;
2276
2277 bus->data = of_device_get_match_data(dev);
2278 if (!bus->data) {
2279 dev_err(dev, "OF data missing\n");
2280 return -EINVAL;
2281 }
2282
2283 bus->num = of_alias_get_id(np: pdev->dev.of_node, stem: "i2c");
2284 /* core clk must be acquired to calculate module timing settings */
2285 i2c_clk = devm_clk_get(dev: &pdev->dev, NULL);
2286 if (IS_ERR(ptr: i2c_clk))
2287 return PTR_ERR(ptr: i2c_clk);
2288 bus->apb_clk = clk_get_rate(clk: i2c_clk);
2289
2290 gcr_regmap = syscon_regmap_lookup_by_phandle(np, property: "nuvoton,sys-mgr");
2291 if (IS_ERR(ptr: gcr_regmap))
2292 gcr_regmap = syscon_regmap_lookup_by_compatible(s: "nuvoton,npcm750-gcr");
2293
2294 if (IS_ERR(ptr: gcr_regmap))
2295 return PTR_ERR(ptr: gcr_regmap);
2296 regmap_write(map: gcr_regmap, NPCM_I2CSEGCTL, val: bus->data->segctl_init_val);
2297
2298 bus->reg = devm_platform_ioremap_resource(pdev, index: 0);
2299 if (IS_ERR(ptr: bus->reg))
2300 return PTR_ERR(ptr: bus->reg);
2301
2302 spin_lock_init(&bus->lock);
2303 init_completion(x: &bus->cmd_complete);
2304
2305 adap = &bus->adap;
2306 adap->owner = THIS_MODULE;
2307 adap->retries = 3;
2308 adap->timeout = msecs_to_jiffies(m: 35);
2309 adap->algo = &npcm_i2c_algo;
2310 adap->quirks = &npcm_i2c_quirks;
2311 adap->algo_data = bus;
2312 adap->dev.parent = &pdev->dev;
2313 adap->dev.of_node = pdev->dev.of_node;
2314 adap->nr = pdev->id;
2315
2316 irq = platform_get_irq(pdev, 0);
2317 if (irq < 0)
2318 return irq;
2319
2320 ret = devm_request_irq(dev: bus->dev, irq, handler: npcm_i2c_bus_irq, irqflags: 0,
2321 devname: dev_name(dev: bus->dev), dev_id: bus);
2322 if (ret)
2323 return ret;
2324
2325 ret = __npcm_i2c_init(bus, pdev);
2326 if (ret)
2327 return ret;
2328
2329 npcm_i2c_recovery_init(adap: adap);
2330
2331 i2c_set_adapdata(adap, data: bus);
2332
2333 snprintf(buf: bus->adap.name, size: sizeof(bus->adap.name), fmt: "npcm_i2c_%d",
2334 bus->num);
2335 ret = i2c_add_numbered_adapter(adap: &bus->adap);
2336 if (ret)
2337 return ret;
2338
2339 platform_set_drvdata(pdev, data: bus);
2340 npcm_i2c_init_debugfs(pdev, bus);
2341 return 0;
2342}
2343
2344static void npcm_i2c_remove_bus(struct platform_device *pdev)
2345{
2346 unsigned long lock_flags;
2347 struct npcm_i2c *bus = platform_get_drvdata(pdev);
2348
2349 spin_lock_irqsave(&bus->lock, lock_flags);
2350 npcm_i2c_disable(bus);
2351 spin_unlock_irqrestore(lock: &bus->lock, flags: lock_flags);
2352 i2c_del_adapter(adap: &bus->adap);
2353}
2354
2355static const struct of_device_id npcm_i2c_bus_of_table[] = {
2356 { .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2357 { .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2358 {}
2359};
2360MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2361
2362static struct platform_driver npcm_i2c_bus_driver = {
2363 .probe = npcm_i2c_probe_bus,
2364 .remove_new = npcm_i2c_remove_bus,
2365 .driver = {
2366 .name = "nuvoton-i2c",
2367 .of_match_table = npcm_i2c_bus_of_table,
2368 }
2369};
2370
2371module_platform_driver(npcm_i2c_bus_driver);
2372
2373MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2374MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2375MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2376MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2377MODULE_LICENSE("GPL v2");
2378

source code of linux/drivers/i2c/busses/i2c-npcm7xx.c