1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com> |
4 | * Copyright (c) 2012 Bosch Sensortec GmbH |
5 | * Copyright (c) 2012 Unixphere AB |
6 | * Copyright (c) 2014 Intel Corporation |
7 | * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org> |
8 | * |
9 | * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. |
10 | * |
11 | * Datasheet: |
12 | * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf |
13 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf |
14 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf |
15 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf |
16 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf |
17 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf |
18 | * |
19 | * Notice: |
20 | * The link to the bmp180 datasheet points to an outdated version missing these changes: |
21 | * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 |
22 | * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 |
23 | * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 |
24 | */ |
25 | |
26 | #define pr_fmt(fmt) "bmp280: " fmt |
27 | |
28 | #include <linux/bitops.h> |
29 | #include <linux/bitfield.h> |
30 | #include <linux/device.h> |
31 | #include <linux/module.h> |
32 | #include <linux/nvmem-provider.h> |
33 | #include <linux/regmap.h> |
34 | #include <linux/delay.h> |
35 | #include <linux/iio/iio.h> |
36 | #include <linux/iio/sysfs.h> |
37 | #include <linux/gpio/consumer.h> |
38 | #include <linux/regulator/consumer.h> |
39 | #include <linux/interrupt.h> |
40 | #include <linux/irq.h> /* For irq_get_irq_data() */ |
41 | #include <linux/completion.h> |
42 | #include <linux/pm_runtime.h> |
43 | #include <linux/random.h> |
44 | |
45 | #include <asm/unaligned.h> |
46 | |
47 | #include "bmp280.h" |
48 | |
49 | /* |
50 | * These enums are used for indexing into the array of calibration |
51 | * coefficients for BMP180. |
52 | */ |
53 | enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; |
54 | |
55 | |
56 | enum bmp380_odr { |
57 | BMP380_ODR_200HZ, |
58 | BMP380_ODR_100HZ, |
59 | BMP380_ODR_50HZ, |
60 | BMP380_ODR_25HZ, |
61 | BMP380_ODR_12_5HZ, |
62 | BMP380_ODR_6_25HZ, |
63 | BMP380_ODR_3_125HZ, |
64 | BMP380_ODR_1_5625HZ, |
65 | BMP380_ODR_0_78HZ, |
66 | BMP380_ODR_0_39HZ, |
67 | BMP380_ODR_0_2HZ, |
68 | BMP380_ODR_0_1HZ, |
69 | BMP380_ODR_0_05HZ, |
70 | BMP380_ODR_0_02HZ, |
71 | BMP380_ODR_0_01HZ, |
72 | BMP380_ODR_0_006HZ, |
73 | BMP380_ODR_0_003HZ, |
74 | BMP380_ODR_0_0015HZ, |
75 | }; |
76 | |
77 | enum bmp580_odr { |
78 | BMP580_ODR_240HZ, |
79 | BMP580_ODR_218HZ, |
80 | BMP580_ODR_199HZ, |
81 | BMP580_ODR_179HZ, |
82 | BMP580_ODR_160HZ, |
83 | BMP580_ODR_149HZ, |
84 | BMP580_ODR_140HZ, |
85 | BMP580_ODR_129HZ, |
86 | BMP580_ODR_120HZ, |
87 | BMP580_ODR_110HZ, |
88 | BMP580_ODR_100HZ, |
89 | BMP580_ODR_89HZ, |
90 | BMP580_ODR_80HZ, |
91 | BMP580_ODR_70HZ, |
92 | BMP580_ODR_60HZ, |
93 | BMP580_ODR_50HZ, |
94 | BMP580_ODR_45HZ, |
95 | BMP580_ODR_40HZ, |
96 | BMP580_ODR_35HZ, |
97 | BMP580_ODR_30HZ, |
98 | BMP580_ODR_25HZ, |
99 | BMP580_ODR_20HZ, |
100 | BMP580_ODR_15HZ, |
101 | BMP580_ODR_10HZ, |
102 | BMP580_ODR_5HZ, |
103 | BMP580_ODR_4HZ, |
104 | BMP580_ODR_3HZ, |
105 | BMP580_ODR_2HZ, |
106 | BMP580_ODR_1HZ, |
107 | BMP580_ODR_0_5HZ, |
108 | BMP580_ODR_0_25HZ, |
109 | BMP580_ODR_0_125HZ, |
110 | }; |
111 | |
112 | /* |
113 | * These enums are used for indexing into the array of compensation |
114 | * parameters for BMP280. |
115 | */ |
116 | enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; |
117 | |
118 | enum { |
119 | /* Temperature calib indexes */ |
120 | BMP380_T1 = 0, |
121 | BMP380_T2 = 2, |
122 | BMP380_T3 = 4, |
123 | /* Pressure calib indexes */ |
124 | BMP380_P1 = 5, |
125 | BMP380_P2 = 7, |
126 | BMP380_P3 = 9, |
127 | BMP380_P4 = 10, |
128 | BMP380_P5 = 11, |
129 | BMP380_P6 = 13, |
130 | BMP380_P7 = 15, |
131 | BMP380_P8 = 16, |
132 | BMP380_P9 = 17, |
133 | BMP380_P10 = 19, |
134 | BMP380_P11 = 20, |
135 | }; |
136 | |
137 | static const struct iio_chan_spec bmp280_channels[] = { |
138 | { |
139 | .type = IIO_PRESSURE, |
140 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
141 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
142 | }, |
143 | { |
144 | .type = IIO_TEMP, |
145 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
146 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
147 | }, |
148 | { |
149 | .type = IIO_HUMIDITYRELATIVE, |
150 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
151 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
152 | }, |
153 | }; |
154 | |
155 | static const struct iio_chan_spec bmp380_channels[] = { |
156 | { |
157 | .type = IIO_PRESSURE, |
158 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
159 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
160 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
161 | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
162 | }, |
163 | { |
164 | .type = IIO_TEMP, |
165 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
166 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
167 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
168 | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
169 | }, |
170 | { |
171 | .type = IIO_HUMIDITYRELATIVE, |
172 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
173 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
174 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
175 | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
176 | }, |
177 | }; |
178 | |
179 | static int bmp280_read_calib(struct bmp280_data *data) |
180 | { |
181 | struct bmp280_calib *calib = &data->calib.bmp280; |
182 | int ret; |
183 | |
184 | |
185 | /* Read temperature and pressure calibration values. */ |
186 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_TEMP_START, |
187 | val: data->bmp280_cal_buf, val_count: sizeof(data->bmp280_cal_buf)); |
188 | if (ret < 0) { |
189 | dev_err(data->dev, |
190 | "failed to read temperature and pressure calibration parameters\n"); |
191 | return ret; |
192 | } |
193 | |
194 | /* Toss the temperature and pressure calibration data into the entropy pool */ |
195 | add_device_randomness(buf: data->bmp280_cal_buf, len: sizeof(data->bmp280_cal_buf)); |
196 | |
197 | /* Parse temperature calibration values. */ |
198 | calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); |
199 | calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); |
200 | calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); |
201 | |
202 | /* Parse pressure calibration values. */ |
203 | calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); |
204 | calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); |
205 | calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); |
206 | calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); |
207 | calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); |
208 | calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); |
209 | calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); |
210 | calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); |
211 | calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); |
212 | |
213 | return 0; |
214 | } |
215 | |
216 | static int bme280_read_calib(struct bmp280_data *data) |
217 | { |
218 | struct bmp280_calib *calib = &data->calib.bmp280; |
219 | struct device *dev = data->dev; |
220 | unsigned int tmp; |
221 | int ret; |
222 | |
223 | /* Load shared calibration params with bmp280 first */ |
224 | ret = bmp280_read_calib(data); |
225 | if (ret < 0) { |
226 | dev_err(dev, "failed to read common bmp280 calibration parameters\n"); |
227 | return ret; |
228 | } |
229 | |
230 | /* |
231 | * Read humidity calibration values. |
232 | * Due to some odd register addressing we cannot just |
233 | * do a big bulk read. Instead, we have to read each Hx |
234 | * value separately and sometimes do some bit shifting... |
235 | * Humidity data is only available on BME280. |
236 | */ |
237 | |
238 | ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H1, val: &tmp); |
239 | if (ret < 0) { |
240 | dev_err(dev, "failed to read H1 comp value\n"); |
241 | return ret; |
242 | } |
243 | calib->H1 = tmp; |
244 | |
245 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H2, |
246 | val: &data->le16, val_count: sizeof(data->le16)); |
247 | if (ret < 0) { |
248 | dev_err(dev, "failed to read H2 comp value\n"); |
249 | return ret; |
250 | } |
251 | calib->H2 = sign_extend32(le16_to_cpu(data->le16), index: 15); |
252 | |
253 | ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H3, val: &tmp); |
254 | if (ret < 0) { |
255 | dev_err(dev, "failed to read H3 comp value\n"); |
256 | return ret; |
257 | } |
258 | calib->H3 = tmp; |
259 | |
260 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H4, |
261 | val: &data->be16, val_count: sizeof(data->be16)); |
262 | if (ret < 0) { |
263 | dev_err(dev, "failed to read H4 comp value\n"); |
264 | return ret; |
265 | } |
266 | calib->H4 = sign_extend32(value: ((be16_to_cpu(data->be16) >> 4) & 0xff0) | |
267 | (be16_to_cpu(data->be16) & 0xf), index: 11); |
268 | |
269 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H5, |
270 | val: &data->le16, val_count: sizeof(data->le16)); |
271 | if (ret < 0) { |
272 | dev_err(dev, "failed to read H5 comp value\n"); |
273 | return ret; |
274 | } |
275 | calib->H5 = sign_extend32(FIELD_GET(BMP280_COMP_H5_MASK, le16_to_cpu(data->le16)), index: 11); |
276 | |
277 | ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H6, val: &tmp); |
278 | if (ret < 0) { |
279 | dev_err(dev, "failed to read H6 comp value\n"); |
280 | return ret; |
281 | } |
282 | calib->H6 = sign_extend32(value: tmp, index: 7); |
283 | |
284 | return 0; |
285 | } |
286 | /* |
287 | * Returns humidity in percent, resolution is 0.01 percent. Output value of |
288 | * "47445" represents 47445/1024 = 46.333 %RH. |
289 | * |
290 | * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". |
291 | */ |
292 | static u32 bmp280_compensate_humidity(struct bmp280_data *data, |
293 | s32 adc_humidity) |
294 | { |
295 | struct bmp280_calib *calib = &data->calib.bmp280; |
296 | s32 var; |
297 | |
298 | var = ((s32)data->t_fine) - (s32)76800; |
299 | var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) |
300 | + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) |
301 | * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) |
302 | + (s32)2097152) * calib->H2 + 8192) >> 14); |
303 | var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; |
304 | |
305 | var = clamp_val(var, 0, 419430400); |
306 | |
307 | return var >> 12; |
308 | }; |
309 | |
310 | /* |
311 | * Returns temperature in DegC, resolution is 0.01 DegC. Output value of |
312 | * "5123" equals 51.23 DegC. t_fine carries fine temperature as global |
313 | * value. |
314 | * |
315 | * Taken from datasheet, Section 3.11.3, "Compensation formula". |
316 | */ |
317 | static s32 bmp280_compensate_temp(struct bmp280_data *data, |
318 | s32 adc_temp) |
319 | { |
320 | struct bmp280_calib *calib = &data->calib.bmp280; |
321 | s32 var1, var2; |
322 | |
323 | var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) * |
324 | ((s32)calib->T2)) >> 11; |
325 | var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) * |
326 | ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) * |
327 | ((s32)calib->T3)) >> 14; |
328 | data->t_fine = var1 + var2; |
329 | |
330 | return (data->t_fine * 5 + 128) >> 8; |
331 | } |
332 | |
333 | /* |
334 | * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 |
335 | * integer bits and 8 fractional bits). Output value of "24674867" |
336 | * represents 24674867/256 = 96386.2 Pa = 963.862 hPa |
337 | * |
338 | * Taken from datasheet, Section 3.11.3, "Compensation formula". |
339 | */ |
340 | static u32 bmp280_compensate_press(struct bmp280_data *data, |
341 | s32 adc_press) |
342 | { |
343 | struct bmp280_calib *calib = &data->calib.bmp280; |
344 | s64 var1, var2, p; |
345 | |
346 | var1 = ((s64)data->t_fine) - 128000; |
347 | var2 = var1 * var1 * (s64)calib->P6; |
348 | var2 += (var1 * (s64)calib->P5) << 17; |
349 | var2 += ((s64)calib->P4) << 35; |
350 | var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + |
351 | ((var1 * (s64)calib->P2) << 12); |
352 | var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; |
353 | |
354 | if (var1 == 0) |
355 | return 0; |
356 | |
357 | p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125; |
358 | p = div64_s64(dividend: p, divisor: var1); |
359 | var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; |
360 | var2 = ((s64)(calib->P8) * p) >> 19; |
361 | p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); |
362 | |
363 | return (u32)p; |
364 | } |
365 | |
366 | static int bmp280_read_temp(struct bmp280_data *data, |
367 | int *val, int *val2) |
368 | { |
369 | s32 adc_temp, comp_temp; |
370 | int ret; |
371 | |
372 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_TEMP_MSB, |
373 | val: data->buf, val_count: sizeof(data->buf)); |
374 | if (ret < 0) { |
375 | dev_err(data->dev, "failed to read temperature\n"); |
376 | return ret; |
377 | } |
378 | |
379 | adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); |
380 | if (adc_temp == BMP280_TEMP_SKIPPED) { |
381 | /* reading was skipped */ |
382 | dev_err(data->dev, "reading temperature skipped\n"); |
383 | return -EIO; |
384 | } |
385 | comp_temp = bmp280_compensate_temp(data, adc_temp); |
386 | |
387 | /* |
388 | * val might be NULL if we're called by the read_press routine, |
389 | * who only cares about the carry over t_fine value. |
390 | */ |
391 | if (val) { |
392 | *val = comp_temp * 10; |
393 | return IIO_VAL_INT; |
394 | } |
395 | |
396 | return 0; |
397 | } |
398 | |
399 | static int bmp280_read_press(struct bmp280_data *data, |
400 | int *val, int *val2) |
401 | { |
402 | u32 comp_press; |
403 | s32 adc_press; |
404 | int ret; |
405 | |
406 | /* Read and compensate temperature so we get a reading of t_fine. */ |
407 | ret = bmp280_read_temp(data, NULL, NULL); |
408 | if (ret < 0) |
409 | return ret; |
410 | |
411 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_PRESS_MSB, |
412 | val: data->buf, val_count: sizeof(data->buf)); |
413 | if (ret < 0) { |
414 | dev_err(data->dev, "failed to read pressure\n"); |
415 | return ret; |
416 | } |
417 | |
418 | adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); |
419 | if (adc_press == BMP280_PRESS_SKIPPED) { |
420 | /* reading was skipped */ |
421 | dev_err(data->dev, "reading pressure skipped\n"); |
422 | return -EIO; |
423 | } |
424 | comp_press = bmp280_compensate_press(data, adc_press); |
425 | |
426 | *val = comp_press; |
427 | *val2 = 256000; |
428 | |
429 | return IIO_VAL_FRACTIONAL; |
430 | } |
431 | |
432 | static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2) |
433 | { |
434 | u32 comp_humidity; |
435 | s32 adc_humidity; |
436 | int ret; |
437 | |
438 | /* Read and compensate temperature so we get a reading of t_fine. */ |
439 | ret = bmp280_read_temp(data, NULL, NULL); |
440 | if (ret < 0) |
441 | return ret; |
442 | |
443 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_HUMIDITY_MSB, |
444 | val: &data->be16, val_count: sizeof(data->be16)); |
445 | if (ret < 0) { |
446 | dev_err(data->dev, "failed to read humidity\n"); |
447 | return ret; |
448 | } |
449 | |
450 | adc_humidity = be16_to_cpu(data->be16); |
451 | if (adc_humidity == BMP280_HUMIDITY_SKIPPED) { |
452 | /* reading was skipped */ |
453 | dev_err(data->dev, "reading humidity skipped\n"); |
454 | return -EIO; |
455 | } |
456 | comp_humidity = bmp280_compensate_humidity(data, adc_humidity); |
457 | |
458 | *val = comp_humidity * 1000 / 1024; |
459 | |
460 | return IIO_VAL_INT; |
461 | } |
462 | |
463 | static int bmp280_read_raw(struct iio_dev *indio_dev, |
464 | struct iio_chan_spec const *chan, |
465 | int *val, int *val2, long mask) |
466 | { |
467 | struct bmp280_data *data = iio_priv(indio_dev); |
468 | int ret; |
469 | |
470 | pm_runtime_get_sync(dev: data->dev); |
471 | mutex_lock(&data->lock); |
472 | |
473 | switch (mask) { |
474 | case IIO_CHAN_INFO_PROCESSED: |
475 | switch (chan->type) { |
476 | case IIO_HUMIDITYRELATIVE: |
477 | ret = data->chip_info->read_humid(data, val, val2); |
478 | break; |
479 | case IIO_PRESSURE: |
480 | ret = data->chip_info->read_press(data, val, val2); |
481 | break; |
482 | case IIO_TEMP: |
483 | ret = data->chip_info->read_temp(data, val, val2); |
484 | break; |
485 | default: |
486 | ret = -EINVAL; |
487 | break; |
488 | } |
489 | break; |
490 | case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
491 | switch (chan->type) { |
492 | case IIO_HUMIDITYRELATIVE: |
493 | *val = 1 << data->oversampling_humid; |
494 | ret = IIO_VAL_INT; |
495 | break; |
496 | case IIO_PRESSURE: |
497 | *val = 1 << data->oversampling_press; |
498 | ret = IIO_VAL_INT; |
499 | break; |
500 | case IIO_TEMP: |
501 | *val = 1 << data->oversampling_temp; |
502 | ret = IIO_VAL_INT; |
503 | break; |
504 | default: |
505 | ret = -EINVAL; |
506 | break; |
507 | } |
508 | break; |
509 | case IIO_CHAN_INFO_SAMP_FREQ: |
510 | if (!data->chip_info->sampling_freq_avail) { |
511 | ret = -EINVAL; |
512 | break; |
513 | } |
514 | |
515 | *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; |
516 | *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; |
517 | ret = IIO_VAL_INT_PLUS_MICRO; |
518 | break; |
519 | case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
520 | if (!data->chip_info->iir_filter_coeffs_avail) { |
521 | ret = -EINVAL; |
522 | break; |
523 | } |
524 | |
525 | *val = (1 << data->iir_filter_coeff) - 1; |
526 | ret = IIO_VAL_INT; |
527 | break; |
528 | default: |
529 | ret = -EINVAL; |
530 | break; |
531 | } |
532 | |
533 | mutex_unlock(lock: &data->lock); |
534 | pm_runtime_mark_last_busy(dev: data->dev); |
535 | pm_runtime_put_autosuspend(dev: data->dev); |
536 | |
537 | return ret; |
538 | } |
539 | |
540 | static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data, |
541 | int val) |
542 | { |
543 | const int *avail = data->chip_info->oversampling_humid_avail; |
544 | const int n = data->chip_info->num_oversampling_humid_avail; |
545 | int ret, prev; |
546 | int i; |
547 | |
548 | for (i = 0; i < n; i++) { |
549 | if (avail[i] == val) { |
550 | prev = data->oversampling_humid; |
551 | data->oversampling_humid = ilog2(val); |
552 | |
553 | ret = data->chip_info->chip_config(data); |
554 | if (ret) { |
555 | data->oversampling_humid = prev; |
556 | data->chip_info->chip_config(data); |
557 | return ret; |
558 | } |
559 | return 0; |
560 | } |
561 | } |
562 | return -EINVAL; |
563 | } |
564 | |
565 | static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, |
566 | int val) |
567 | { |
568 | const int *avail = data->chip_info->oversampling_temp_avail; |
569 | const int n = data->chip_info->num_oversampling_temp_avail; |
570 | int ret, prev; |
571 | int i; |
572 | |
573 | for (i = 0; i < n; i++) { |
574 | if (avail[i] == val) { |
575 | prev = data->oversampling_temp; |
576 | data->oversampling_temp = ilog2(val); |
577 | |
578 | ret = data->chip_info->chip_config(data); |
579 | if (ret) { |
580 | data->oversampling_temp = prev; |
581 | data->chip_info->chip_config(data); |
582 | return ret; |
583 | } |
584 | return 0; |
585 | } |
586 | } |
587 | return -EINVAL; |
588 | } |
589 | |
590 | static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, |
591 | int val) |
592 | { |
593 | const int *avail = data->chip_info->oversampling_press_avail; |
594 | const int n = data->chip_info->num_oversampling_press_avail; |
595 | int ret, prev; |
596 | int i; |
597 | |
598 | for (i = 0; i < n; i++) { |
599 | if (avail[i] == val) { |
600 | prev = data->oversampling_press; |
601 | data->oversampling_press = ilog2(val); |
602 | |
603 | ret = data->chip_info->chip_config(data); |
604 | if (ret) { |
605 | data->oversampling_press = prev; |
606 | data->chip_info->chip_config(data); |
607 | return ret; |
608 | } |
609 | return 0; |
610 | } |
611 | } |
612 | return -EINVAL; |
613 | } |
614 | |
615 | static int bmp280_write_sampling_frequency(struct bmp280_data *data, |
616 | int val, int val2) |
617 | { |
618 | const int (*avail)[2] = data->chip_info->sampling_freq_avail; |
619 | const int n = data->chip_info->num_sampling_freq_avail; |
620 | int ret, prev; |
621 | int i; |
622 | |
623 | for (i = 0; i < n; i++) { |
624 | if (avail[i][0] == val && avail[i][1] == val2) { |
625 | prev = data->sampling_freq; |
626 | data->sampling_freq = i; |
627 | |
628 | ret = data->chip_info->chip_config(data); |
629 | if (ret) { |
630 | data->sampling_freq = prev; |
631 | data->chip_info->chip_config(data); |
632 | return ret; |
633 | } |
634 | return 0; |
635 | } |
636 | } |
637 | return -EINVAL; |
638 | } |
639 | |
640 | static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) |
641 | { |
642 | const int *avail = data->chip_info->iir_filter_coeffs_avail; |
643 | const int n = data->chip_info->num_iir_filter_coeffs_avail; |
644 | int ret, prev; |
645 | int i; |
646 | |
647 | for (i = 0; i < n; i++) { |
648 | if (avail[i] - 1 == val) { |
649 | prev = data->iir_filter_coeff; |
650 | data->iir_filter_coeff = i; |
651 | |
652 | ret = data->chip_info->chip_config(data); |
653 | if (ret) { |
654 | data->iir_filter_coeff = prev; |
655 | data->chip_info->chip_config(data); |
656 | return ret; |
657 | |
658 | } |
659 | return 0; |
660 | } |
661 | } |
662 | return -EINVAL; |
663 | } |
664 | |
665 | static int bmp280_write_raw(struct iio_dev *indio_dev, |
666 | struct iio_chan_spec const *chan, |
667 | int val, int val2, long mask) |
668 | { |
669 | struct bmp280_data *data = iio_priv(indio_dev); |
670 | int ret = 0; |
671 | |
672 | /* |
673 | * Helper functions to update sensor running configuration. |
674 | * If an error happens applying new settings, will try restore |
675 | * previous parameters to ensure the sensor is left in a known |
676 | * working configuration. |
677 | */ |
678 | switch (mask) { |
679 | case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
680 | pm_runtime_get_sync(dev: data->dev); |
681 | mutex_lock(&data->lock); |
682 | switch (chan->type) { |
683 | case IIO_HUMIDITYRELATIVE: |
684 | ret = bmp280_write_oversampling_ratio_humid(data, val); |
685 | break; |
686 | case IIO_PRESSURE: |
687 | ret = bmp280_write_oversampling_ratio_press(data, val); |
688 | break; |
689 | case IIO_TEMP: |
690 | ret = bmp280_write_oversampling_ratio_temp(data, val); |
691 | break; |
692 | default: |
693 | ret = -EINVAL; |
694 | break; |
695 | } |
696 | mutex_unlock(lock: &data->lock); |
697 | pm_runtime_mark_last_busy(dev: data->dev); |
698 | pm_runtime_put_autosuspend(dev: data->dev); |
699 | break; |
700 | case IIO_CHAN_INFO_SAMP_FREQ: |
701 | pm_runtime_get_sync(dev: data->dev); |
702 | mutex_lock(&data->lock); |
703 | ret = bmp280_write_sampling_frequency(data, val, val2); |
704 | mutex_unlock(lock: &data->lock); |
705 | pm_runtime_mark_last_busy(dev: data->dev); |
706 | pm_runtime_put_autosuspend(dev: data->dev); |
707 | break; |
708 | case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
709 | pm_runtime_get_sync(dev: data->dev); |
710 | mutex_lock(&data->lock); |
711 | ret = bmp280_write_iir_filter_coeffs(data, val); |
712 | mutex_unlock(lock: &data->lock); |
713 | pm_runtime_mark_last_busy(dev: data->dev); |
714 | pm_runtime_put_autosuspend(dev: data->dev); |
715 | break; |
716 | default: |
717 | return -EINVAL; |
718 | } |
719 | |
720 | return ret; |
721 | } |
722 | |
723 | static int bmp280_read_avail(struct iio_dev *indio_dev, |
724 | struct iio_chan_spec const *chan, |
725 | const int **vals, int *type, int *length, |
726 | long mask) |
727 | { |
728 | struct bmp280_data *data = iio_priv(indio_dev); |
729 | |
730 | switch (mask) { |
731 | case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
732 | switch (chan->type) { |
733 | case IIO_PRESSURE: |
734 | *vals = data->chip_info->oversampling_press_avail; |
735 | *length = data->chip_info->num_oversampling_press_avail; |
736 | break; |
737 | case IIO_TEMP: |
738 | *vals = data->chip_info->oversampling_temp_avail; |
739 | *length = data->chip_info->num_oversampling_temp_avail; |
740 | break; |
741 | default: |
742 | return -EINVAL; |
743 | } |
744 | *type = IIO_VAL_INT; |
745 | return IIO_AVAIL_LIST; |
746 | case IIO_CHAN_INFO_SAMP_FREQ: |
747 | *vals = (const int *)data->chip_info->sampling_freq_avail; |
748 | *type = IIO_VAL_INT_PLUS_MICRO; |
749 | /* Values are stored in a 2D matrix */ |
750 | *length = data->chip_info->num_sampling_freq_avail; |
751 | return IIO_AVAIL_LIST; |
752 | case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
753 | *vals = data->chip_info->iir_filter_coeffs_avail; |
754 | *type = IIO_VAL_INT; |
755 | *length = data->chip_info->num_iir_filter_coeffs_avail; |
756 | return IIO_AVAIL_LIST; |
757 | default: |
758 | return -EINVAL; |
759 | } |
760 | } |
761 | |
762 | static const struct iio_info bmp280_info = { |
763 | .read_raw = &bmp280_read_raw, |
764 | .read_avail = &bmp280_read_avail, |
765 | .write_raw = &bmp280_write_raw, |
766 | }; |
767 | |
768 | static int bmp280_chip_config(struct bmp280_data *data) |
769 | { |
770 | u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | |
771 | FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); |
772 | int ret; |
773 | |
774 | ret = regmap_write_bits(map: data->regmap, BMP280_REG_CTRL_MEAS, |
775 | BMP280_OSRS_TEMP_MASK | |
776 | BMP280_OSRS_PRESS_MASK | |
777 | BMP280_MODE_MASK, |
778 | val: osrs | BMP280_MODE_NORMAL); |
779 | if (ret < 0) { |
780 | dev_err(data->dev, |
781 | "failed to write ctrl_meas register\n"); |
782 | return ret; |
783 | } |
784 | |
785 | ret = regmap_update_bits(map: data->regmap, BMP280_REG_CONFIG, |
786 | BMP280_FILTER_MASK, |
787 | BMP280_FILTER_4X); |
788 | if (ret < 0) { |
789 | dev_err(data->dev, |
790 | "failed to write config register\n"); |
791 | return ret; |
792 | } |
793 | |
794 | return ret; |
795 | } |
796 | |
797 | static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; |
798 | static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID }; |
799 | |
800 | const struct bmp280_chip_info bmp280_chip_info = { |
801 | .id_reg = BMP280_REG_ID, |
802 | .chip_id = bmp280_chip_ids, |
803 | .num_chip_id = ARRAY_SIZE(bmp280_chip_ids), |
804 | .regmap_config = &bmp280_regmap_config, |
805 | .start_up_time = 2000, |
806 | .channels = bmp280_channels, |
807 | .num_channels = 2, |
808 | |
809 | .oversampling_temp_avail = bmp280_oversampling_avail, |
810 | .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
811 | /* |
812 | * Oversampling config values on BMx280 have one additional setting |
813 | * that other generations of the family don't: |
814 | * The value 0 means the measurement is bypassed instead of |
815 | * oversampling set to x1. |
816 | * |
817 | * To account for this difference, and preserve the same common |
818 | * config logic, this is handled later on chip_config callback |
819 | * incrementing one unit the oversampling setting. |
820 | */ |
821 | .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, |
822 | |
823 | .oversampling_press_avail = bmp280_oversampling_avail, |
824 | .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
825 | .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, |
826 | |
827 | .chip_config = bmp280_chip_config, |
828 | .read_temp = bmp280_read_temp, |
829 | .read_press = bmp280_read_press, |
830 | .read_calib = bmp280_read_calib, |
831 | }; |
832 | EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280); |
833 | |
834 | static int bme280_chip_config(struct bmp280_data *data) |
835 | { |
836 | u8 osrs = FIELD_PREP(BMP280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); |
837 | int ret; |
838 | |
839 | /* |
840 | * Oversampling of humidity must be set before oversampling of |
841 | * temperature/pressure is set to become effective. |
842 | */ |
843 | ret = regmap_update_bits(map: data->regmap, BMP280_REG_CTRL_HUMIDITY, |
844 | BMP280_OSRS_HUMIDITY_MASK, val: osrs); |
845 | |
846 | if (ret < 0) |
847 | return ret; |
848 | |
849 | return bmp280_chip_config(data); |
850 | } |
851 | |
852 | static const u8 bme280_chip_ids[] = { BME280_CHIP_ID }; |
853 | |
854 | const struct bmp280_chip_info bme280_chip_info = { |
855 | .id_reg = BMP280_REG_ID, |
856 | .chip_id = bme280_chip_ids, |
857 | .num_chip_id = ARRAY_SIZE(bme280_chip_ids), |
858 | .regmap_config = &bmp280_regmap_config, |
859 | .start_up_time = 2000, |
860 | .channels = bmp280_channels, |
861 | .num_channels = 3, |
862 | |
863 | .oversampling_temp_avail = bmp280_oversampling_avail, |
864 | .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
865 | .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, |
866 | |
867 | .oversampling_press_avail = bmp280_oversampling_avail, |
868 | .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
869 | .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, |
870 | |
871 | .oversampling_humid_avail = bmp280_oversampling_avail, |
872 | .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
873 | .oversampling_humid_default = BMP280_OSRS_HUMIDITY_16X - 1, |
874 | |
875 | .chip_config = bme280_chip_config, |
876 | .read_temp = bmp280_read_temp, |
877 | .read_press = bmp280_read_press, |
878 | .read_humid = bmp280_read_humid, |
879 | .read_calib = bme280_read_calib, |
880 | }; |
881 | EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280); |
882 | |
883 | /* |
884 | * Helper function to send a command to BMP3XX sensors. |
885 | * |
886 | * Sensor processes commands written to the CMD register and signals |
887 | * execution result through "cmd_rdy" and "cmd_error" flags available on |
888 | * STATUS and ERROR registers. |
889 | */ |
890 | static int bmp380_cmd(struct bmp280_data *data, u8 cmd) |
891 | { |
892 | unsigned int reg; |
893 | int ret; |
894 | |
895 | /* Check if device is ready to process a command */ |
896 | ret = regmap_read(map: data->regmap, BMP380_REG_STATUS, val: ®); |
897 | if (ret) { |
898 | dev_err(data->dev, "failed to read error register\n"); |
899 | return ret; |
900 | } |
901 | if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { |
902 | dev_err(data->dev, "device is not ready to accept commands\n"); |
903 | return -EBUSY; |
904 | } |
905 | |
906 | /* Send command to process */ |
907 | ret = regmap_write(map: data->regmap, BMP380_REG_CMD, val: cmd); |
908 | if (ret) { |
909 | dev_err(data->dev, "failed to send command to device\n"); |
910 | return ret; |
911 | } |
912 | /* Wait for 2ms for command to be processed */ |
913 | usleep_range(min: data->start_up_time, max: data->start_up_time + 100); |
914 | /* Check for command processing error */ |
915 | ret = regmap_read(map: data->regmap, BMP380_REG_ERROR, val: ®); |
916 | if (ret) { |
917 | dev_err(data->dev, "error reading ERROR reg\n"); |
918 | return ret; |
919 | } |
920 | if (reg & BMP380_ERR_CMD_MASK) { |
921 | dev_err(data->dev, "error processing command 0x%X\n", cmd); |
922 | return -EINVAL; |
923 | } |
924 | |
925 | return 0; |
926 | } |
927 | |
928 | /* |
929 | * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value of |
930 | * "5123" equals 51.2º C. t_fine carries fine temperature as global value. |
931 | * |
932 | * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo |
933 | * https://github.com/BoschSensortec/BMP3-Sensor-API. |
934 | */ |
935 | static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) |
936 | { |
937 | s64 var1, var2, var3, var4, var5, var6, comp_temp; |
938 | struct bmp380_calib *calib = &data->calib.bmp380; |
939 | |
940 | var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); |
941 | var2 = var1 * ((s64) calib->T2); |
942 | var3 = var1 * var1; |
943 | var4 = var3 * ((s64) calib->T3); |
944 | var5 = (var2 << 18) + var4; |
945 | var6 = var5 >> 32; |
946 | data->t_fine = (s32) var6; |
947 | comp_temp = (var6 * 25) >> 14; |
948 | |
949 | comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); |
950 | return (s32) comp_temp; |
951 | } |
952 | |
953 | /* |
954 | * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. |
955 | * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. |
956 | * |
957 | * Taken from datasheet, Section 9.3. "Pressure compensation" and repository |
958 | * https://github.com/BoschSensortec/BMP3-Sensor-API. |
959 | */ |
960 | static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press) |
961 | { |
962 | s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; |
963 | struct bmp380_calib *calib = &data->calib.bmp380; |
964 | u32 comp_press; |
965 | |
966 | var1 = (s64)data->t_fine * (s64)data->t_fine; |
967 | var2 = var1 >> 6; |
968 | var3 = (var2 * ((s64) data->t_fine)) >> 8; |
969 | var4 = ((s64)calib->P8 * var3) >> 5; |
970 | var5 = ((s64)calib->P7 * var1) << 4; |
971 | var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22; |
972 | offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; |
973 | var2 = ((s64)calib->P4 * var3) >> 5; |
974 | var4 = ((s64)calib->P3 * var1) << 2; |
975 | var5 = ((s64)calib->P2 - ((s64)1 << 14)) * |
976 | ((s64)data->t_fine << 21); |
977 | sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + |
978 | var2 + var4 + var5; |
979 | var1 = (sensitivity >> 24) * (s64)adc_press; |
980 | var2 = (s64)calib->P10 * (s64)data->t_fine; |
981 | var3 = var2 + ((s64)calib->P9 << 16); |
982 | var4 = (var3 * (s64)adc_press) >> 13; |
983 | |
984 | /* |
985 | * Dividing by 10 followed by multiplying by 10 to avoid |
986 | * possible overflow caused by (uncomp_data->pressure * partial_data4). |
987 | */ |
988 | var5 = ((s64)adc_press * div_s64(dividend: var4, divisor: 10)) >> 9; |
989 | var5 *= 10; |
990 | var6 = (s64)adc_press * (s64)adc_press; |
991 | var2 = ((s64)calib->P11 * var6) >> 16; |
992 | var3 = (var2 * (s64)adc_press) >> 7; |
993 | var4 = (offset >> 2) + var1 + var5 + var3; |
994 | comp_press = ((u64)var4 * 25) >> 40; |
995 | |
996 | comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); |
997 | return comp_press; |
998 | } |
999 | |
1000 | static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2) |
1001 | { |
1002 | s32 comp_temp; |
1003 | u32 adc_temp; |
1004 | int ret; |
1005 | |
1006 | ret = regmap_bulk_read(map: data->regmap, BMP380_REG_TEMP_XLSB, |
1007 | val: data->buf, val_count: sizeof(data->buf)); |
1008 | if (ret) { |
1009 | dev_err(data->dev, "failed to read temperature\n"); |
1010 | return ret; |
1011 | } |
1012 | |
1013 | adc_temp = get_unaligned_le24(p: data->buf); |
1014 | if (adc_temp == BMP380_TEMP_SKIPPED) { |
1015 | dev_err(data->dev, "reading temperature skipped\n"); |
1016 | return -EIO; |
1017 | } |
1018 | comp_temp = bmp380_compensate_temp(data, adc_temp); |
1019 | |
1020 | /* |
1021 | * Val might be NULL if we're called by the read_press routine, |
1022 | * who only cares about the carry over t_fine value. |
1023 | */ |
1024 | if (val) { |
1025 | /* IIO reports temperatures in milli Celsius */ |
1026 | *val = comp_temp * 10; |
1027 | return IIO_VAL_INT; |
1028 | } |
1029 | |
1030 | return 0; |
1031 | } |
1032 | |
1033 | static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2) |
1034 | { |
1035 | s32 comp_press; |
1036 | u32 adc_press; |
1037 | int ret; |
1038 | |
1039 | /* Read and compensate for temperature so we get a reading of t_fine */ |
1040 | ret = bmp380_read_temp(data, NULL, NULL); |
1041 | if (ret) |
1042 | return ret; |
1043 | |
1044 | ret = regmap_bulk_read(map: data->regmap, BMP380_REG_PRESS_XLSB, |
1045 | val: data->buf, val_count: sizeof(data->buf)); |
1046 | if (ret) { |
1047 | dev_err(data->dev, "failed to read pressure\n"); |
1048 | return ret; |
1049 | } |
1050 | |
1051 | adc_press = get_unaligned_le24(p: data->buf); |
1052 | if (adc_press == BMP380_PRESS_SKIPPED) { |
1053 | dev_err(data->dev, "reading pressure skipped\n"); |
1054 | return -EIO; |
1055 | } |
1056 | comp_press = bmp380_compensate_press(data, adc_press); |
1057 | |
1058 | *val = comp_press; |
1059 | /* Compensated pressure is in cPa (centipascals) */ |
1060 | *val2 = 100000; |
1061 | |
1062 | return IIO_VAL_FRACTIONAL; |
1063 | } |
1064 | |
1065 | static int bmp380_read_calib(struct bmp280_data *data) |
1066 | { |
1067 | struct bmp380_calib *calib = &data->calib.bmp380; |
1068 | int ret; |
1069 | |
1070 | /* Read temperature and pressure calibration data */ |
1071 | ret = regmap_bulk_read(map: data->regmap, BMP380_REG_CALIB_TEMP_START, |
1072 | val: data->bmp380_cal_buf, val_count: sizeof(data->bmp380_cal_buf)); |
1073 | if (ret) { |
1074 | dev_err(data->dev, |
1075 | "failed to read temperature calibration parameters\n"); |
1076 | return ret; |
1077 | } |
1078 | |
1079 | /* Toss the temperature calibration data into the entropy pool */ |
1080 | add_device_randomness(buf: data->bmp380_cal_buf, len: sizeof(data->bmp380_cal_buf)); |
1081 | |
1082 | /* Parse calibration values */ |
1083 | calib->T1 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_T1]); |
1084 | calib->T2 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_T2]); |
1085 | calib->T3 = data->bmp380_cal_buf[BMP380_T3]; |
1086 | calib->P1 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P1]); |
1087 | calib->P2 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P2]); |
1088 | calib->P3 = data->bmp380_cal_buf[BMP380_P3]; |
1089 | calib->P4 = data->bmp380_cal_buf[BMP380_P4]; |
1090 | calib->P5 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P5]); |
1091 | calib->P6 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P6]); |
1092 | calib->P7 = data->bmp380_cal_buf[BMP380_P7]; |
1093 | calib->P8 = data->bmp380_cal_buf[BMP380_P8]; |
1094 | calib->P9 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P9]); |
1095 | calib->P10 = data->bmp380_cal_buf[BMP380_P10]; |
1096 | calib->P11 = data->bmp380_cal_buf[BMP380_P11]; |
1097 | |
1098 | return 0; |
1099 | } |
1100 | |
1101 | static const int bmp380_odr_table[][2] = { |
1102 | [BMP380_ODR_200HZ] = {200, 0}, |
1103 | [BMP380_ODR_100HZ] = {100, 0}, |
1104 | [BMP380_ODR_50HZ] = {50, 0}, |
1105 | [BMP380_ODR_25HZ] = {25, 0}, |
1106 | [BMP380_ODR_12_5HZ] = {12, 500000}, |
1107 | [BMP380_ODR_6_25HZ] = {6, 250000}, |
1108 | [BMP380_ODR_3_125HZ] = {3, 125000}, |
1109 | [BMP380_ODR_1_5625HZ] = {1, 562500}, |
1110 | [BMP380_ODR_0_78HZ] = {0, 781250}, |
1111 | [BMP380_ODR_0_39HZ] = {0, 390625}, |
1112 | [BMP380_ODR_0_2HZ] = {0, 195313}, |
1113 | [BMP380_ODR_0_1HZ] = {0, 97656}, |
1114 | [BMP380_ODR_0_05HZ] = {0, 48828}, |
1115 | [BMP380_ODR_0_02HZ] = {0, 24414}, |
1116 | [BMP380_ODR_0_01HZ] = {0, 12207}, |
1117 | [BMP380_ODR_0_006HZ] = {0, 6104}, |
1118 | [BMP380_ODR_0_003HZ] = {0, 3052}, |
1119 | [BMP380_ODR_0_0015HZ] = {0, 1526}, |
1120 | }; |
1121 | |
1122 | static int bmp380_preinit(struct bmp280_data *data) |
1123 | { |
1124 | /* BMP3xx requires soft-reset as part of initialization */ |
1125 | return bmp380_cmd(data, BMP380_CMD_SOFT_RESET); |
1126 | } |
1127 | |
1128 | static int bmp380_chip_config(struct bmp280_data *data) |
1129 | { |
1130 | bool change = false, aux; |
1131 | unsigned int tmp; |
1132 | u8 osrs; |
1133 | int ret; |
1134 | |
1135 | /* Configure power control register */ |
1136 | ret = regmap_update_bits(map: data->regmap, BMP380_REG_POWER_CONTROL, |
1137 | BMP380_CTRL_SENSORS_MASK, |
1138 | BMP380_CTRL_SENSORS_PRESS_EN | |
1139 | BMP380_CTRL_SENSORS_TEMP_EN); |
1140 | if (ret) { |
1141 | dev_err(data->dev, |
1142 | "failed to write operation control register\n"); |
1143 | return ret; |
1144 | } |
1145 | |
1146 | /* Configure oversampling */ |
1147 | osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | |
1148 | FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); |
1149 | |
1150 | ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_OSR, |
1151 | BMP380_OSRS_TEMP_MASK | |
1152 | BMP380_OSRS_PRESS_MASK, |
1153 | val: osrs, change: &aux); |
1154 | if (ret) { |
1155 | dev_err(data->dev, "failed to write oversampling register\n"); |
1156 | return ret; |
1157 | } |
1158 | change = change || aux; |
1159 | |
1160 | /* Configure output data rate */ |
1161 | ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_ODR, |
1162 | BMP380_ODRS_MASK, val: data->sampling_freq, change: &aux); |
1163 | if (ret) { |
1164 | dev_err(data->dev, "failed to write ODR selection register\n"); |
1165 | return ret; |
1166 | } |
1167 | change = change || aux; |
1168 | |
1169 | /* Set filter data */ |
1170 | ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, |
1171 | FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff), |
1172 | change: &aux); |
1173 | if (ret) { |
1174 | dev_err(data->dev, "failed to write config register\n"); |
1175 | return ret; |
1176 | } |
1177 | change = change || aux; |
1178 | |
1179 | if (change) { |
1180 | /* |
1181 | * The configurations errors are detected on the fly during a measurement |
1182 | * cycle. If the sampling frequency is too low, it's faster to reset |
1183 | * the measurement loop than wait until the next measurement is due. |
1184 | * |
1185 | * Resets sensor measurement loop toggling between sleep and normal |
1186 | * operating modes. |
1187 | */ |
1188 | ret = regmap_write_bits(map: data->regmap, BMP380_REG_POWER_CONTROL, |
1189 | BMP380_MODE_MASK, |
1190 | FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP)); |
1191 | if (ret) { |
1192 | dev_err(data->dev, "failed to set sleep mode\n"); |
1193 | return ret; |
1194 | } |
1195 | usleep_range(min: 2000, max: 2500); |
1196 | ret = regmap_write_bits(map: data->regmap, BMP380_REG_POWER_CONTROL, |
1197 | BMP380_MODE_MASK, |
1198 | FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL)); |
1199 | if (ret) { |
1200 | dev_err(data->dev, "failed to set normal mode\n"); |
1201 | return ret; |
1202 | } |
1203 | /* |
1204 | * Waits for measurement before checking configuration error flag. |
1205 | * Selected longest measure time indicated in section 3.9.1 |
1206 | * in the datasheet. |
1207 | */ |
1208 | msleep(msecs: 80); |
1209 | |
1210 | /* Check config error flag */ |
1211 | ret = regmap_read(map: data->regmap, BMP380_REG_ERROR, val: &tmp); |
1212 | if (ret) { |
1213 | dev_err(data->dev, |
1214 | "failed to read error register\n"); |
1215 | return ret; |
1216 | } |
1217 | if (tmp & BMP380_ERR_CONF_MASK) { |
1218 | dev_warn(data->dev, |
1219 | "sensor flagged configuration as incompatible\n"); |
1220 | return -EINVAL; |
1221 | } |
1222 | } |
1223 | |
1224 | return 0; |
1225 | } |
1226 | |
1227 | static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; |
1228 | static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; |
1229 | static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID }; |
1230 | |
1231 | const struct bmp280_chip_info bmp380_chip_info = { |
1232 | .id_reg = BMP380_REG_ID, |
1233 | .chip_id = bmp380_chip_ids, |
1234 | .num_chip_id = ARRAY_SIZE(bmp380_chip_ids), |
1235 | .regmap_config = &bmp380_regmap_config, |
1236 | .start_up_time = 2000, |
1237 | .channels = bmp380_channels, |
1238 | .num_channels = 2, |
1239 | |
1240 | .oversampling_temp_avail = bmp380_oversampling_avail, |
1241 | .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), |
1242 | .oversampling_temp_default = ilog2(1), |
1243 | |
1244 | .oversampling_press_avail = bmp380_oversampling_avail, |
1245 | .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), |
1246 | .oversampling_press_default = ilog2(4), |
1247 | |
1248 | .sampling_freq_avail = bmp380_odr_table, |
1249 | .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, |
1250 | .sampling_freq_default = BMP380_ODR_50HZ, |
1251 | |
1252 | .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, |
1253 | .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), |
1254 | .iir_filter_coeff_default = 2, |
1255 | |
1256 | .chip_config = bmp380_chip_config, |
1257 | .read_temp = bmp380_read_temp, |
1258 | .read_press = bmp380_read_press, |
1259 | .read_calib = bmp380_read_calib, |
1260 | .preinit = bmp380_preinit, |
1261 | }; |
1262 | EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280); |
1263 | |
1264 | static int bmp580_soft_reset(struct bmp280_data *data) |
1265 | { |
1266 | unsigned int reg; |
1267 | int ret; |
1268 | |
1269 | ret = regmap_write(map: data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET); |
1270 | if (ret) { |
1271 | dev_err(data->dev, "failed to send reset command to device\n"); |
1272 | return ret; |
1273 | } |
1274 | usleep_range(min: 2000, max: 2500); |
1275 | |
1276 | /* Dummy read of chip_id */ |
1277 | ret = regmap_read(map: data->regmap, BMP580_REG_CHIP_ID, val: ®); |
1278 | if (ret) { |
1279 | dev_err(data->dev, "failed to reestablish comms after reset\n"); |
1280 | return ret; |
1281 | } |
1282 | |
1283 | ret = regmap_read(map: data->regmap, BMP580_REG_INT_STATUS, val: ®); |
1284 | if (ret) { |
1285 | dev_err(data->dev, "error reading interrupt status register\n"); |
1286 | return ret; |
1287 | } |
1288 | if (!(reg & BMP580_INT_STATUS_POR_MASK)) { |
1289 | dev_err(data->dev, "error resetting sensor\n"); |
1290 | return -EINVAL; |
1291 | } |
1292 | |
1293 | return 0; |
1294 | } |
1295 | |
1296 | /** |
1297 | * bmp580_nvm_operation() - Helper function to commit NVM memory operations |
1298 | * @data: sensor data struct |
1299 | * @is_write: flag to signal write operation |
1300 | */ |
1301 | static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write) |
1302 | { |
1303 | unsigned long timeout, poll; |
1304 | unsigned int reg; |
1305 | int ret; |
1306 | |
1307 | /* Check NVM ready flag */ |
1308 | ret = regmap_read(map: data->regmap, BMP580_REG_STATUS, val: ®); |
1309 | if (ret) { |
1310 | dev_err(data->dev, "failed to check nvm status\n"); |
1311 | return ret; |
1312 | } |
1313 | if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) { |
1314 | dev_err(data->dev, "sensor's nvm is not ready\n"); |
1315 | return -EIO; |
1316 | } |
1317 | |
1318 | /* Start NVM operation sequence */ |
1319 | ret = regmap_write(map: data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_OP_SEQ_0); |
1320 | if (ret) { |
1321 | dev_err(data->dev, "failed to send nvm operation's first sequence\n"); |
1322 | return ret; |
1323 | } |
1324 | if (is_write) { |
1325 | /* Send NVM write sequence */ |
1326 | ret = regmap_write(map: data->regmap, BMP580_REG_CMD, |
1327 | BMP580_CMD_NVM_WRITE_SEQ_1); |
1328 | if (ret) { |
1329 | dev_err(data->dev, "failed to send nvm write sequence\n"); |
1330 | return ret; |
1331 | } |
1332 | /* Datasheet says on 4.8.1.2 it takes approximately 10ms */ |
1333 | poll = 2000; |
1334 | timeout = 12000; |
1335 | } else { |
1336 | /* Send NVM read sequence */ |
1337 | ret = regmap_write(map: data->regmap, BMP580_REG_CMD, |
1338 | BMP580_CMD_NVM_READ_SEQ_1); |
1339 | if (ret) { |
1340 | dev_err(data->dev, "failed to send nvm read sequence\n"); |
1341 | return ret; |
1342 | } |
1343 | /* Datasheet says on 4.8.1.1 it takes approximately 200us */ |
1344 | poll = 50; |
1345 | timeout = 400; |
1346 | } |
1347 | if (ret) { |
1348 | dev_err(data->dev, "failed to write command sequence\n"); |
1349 | return -EIO; |
1350 | } |
1351 | |
1352 | /* Wait until NVM is ready again */ |
1353 | ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg, |
1354 | (reg & BMP580_STATUS_NVM_RDY_MASK), |
1355 | poll, timeout); |
1356 | if (ret) { |
1357 | dev_err(data->dev, "error checking nvm operation status\n"); |
1358 | return ret; |
1359 | } |
1360 | |
1361 | /* Check NVM error flags */ |
1362 | if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) { |
1363 | dev_err(data->dev, "error processing nvm operation\n"); |
1364 | return -EIO; |
1365 | } |
1366 | |
1367 | return 0; |
1368 | } |
1369 | |
1370 | /* |
1371 | * Contrary to previous sensors families, compensation algorithm is builtin. |
1372 | * We are only required to read the register raw data and adapt the ranges |
1373 | * for what is expected on IIO ABI. |
1374 | */ |
1375 | |
1376 | static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2) |
1377 | { |
1378 | s32 raw_temp; |
1379 | int ret; |
1380 | |
1381 | ret = regmap_bulk_read(map: data->regmap, BMP580_REG_TEMP_XLSB, val: data->buf, |
1382 | val_count: sizeof(data->buf)); |
1383 | if (ret) { |
1384 | dev_err(data->dev, "failed to read temperature\n"); |
1385 | return ret; |
1386 | } |
1387 | |
1388 | raw_temp = get_unaligned_le24(p: data->buf); |
1389 | if (raw_temp == BMP580_TEMP_SKIPPED) { |
1390 | dev_err(data->dev, "reading temperature skipped\n"); |
1391 | return -EIO; |
1392 | } |
1393 | |
1394 | /* |
1395 | * Temperature is returned in Celsius degrees in fractional |
1396 | * form down 2^16. We rescale by x1000 to return milli Celsius |
1397 | * to respect IIO ABI. |
1398 | */ |
1399 | *val = raw_temp * 1000; |
1400 | *val2 = 16; |
1401 | return IIO_VAL_FRACTIONAL_LOG2; |
1402 | } |
1403 | |
1404 | static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2) |
1405 | { |
1406 | u32 raw_press; |
1407 | int ret; |
1408 | |
1409 | ret = regmap_bulk_read(map: data->regmap, BMP580_REG_PRESS_XLSB, val: data->buf, |
1410 | val_count: sizeof(data->buf)); |
1411 | if (ret) { |
1412 | dev_err(data->dev, "failed to read pressure\n"); |
1413 | return ret; |
1414 | } |
1415 | |
1416 | raw_press = get_unaligned_le24(p: data->buf); |
1417 | if (raw_press == BMP580_PRESS_SKIPPED) { |
1418 | dev_err(data->dev, "reading pressure skipped\n"); |
1419 | return -EIO; |
1420 | } |
1421 | /* |
1422 | * Pressure is returned in Pascals in fractional form down 2^16. |
1423 | * We rescale /1000 to convert to kilopascal to respect IIO ABI. |
1424 | */ |
1425 | *val = raw_press; |
1426 | *val2 = 64000; /* 2^6 * 1000 */ |
1427 | return IIO_VAL_FRACTIONAL; |
1428 | } |
1429 | |
1430 | static const int bmp580_odr_table[][2] = { |
1431 | [BMP580_ODR_240HZ] = {240, 0}, |
1432 | [BMP580_ODR_218HZ] = {218, 0}, |
1433 | [BMP580_ODR_199HZ] = {199, 0}, |
1434 | [BMP580_ODR_179HZ] = {179, 0}, |
1435 | [BMP580_ODR_160HZ] = {160, 0}, |
1436 | [BMP580_ODR_149HZ] = {149, 0}, |
1437 | [BMP580_ODR_140HZ] = {140, 0}, |
1438 | [BMP580_ODR_129HZ] = {129, 0}, |
1439 | [BMP580_ODR_120HZ] = {120, 0}, |
1440 | [BMP580_ODR_110HZ] = {110, 0}, |
1441 | [BMP580_ODR_100HZ] = {100, 0}, |
1442 | [BMP580_ODR_89HZ] = {89, 0}, |
1443 | [BMP580_ODR_80HZ] = {80, 0}, |
1444 | [BMP580_ODR_70HZ] = {70, 0}, |
1445 | [BMP580_ODR_60HZ] = {60, 0}, |
1446 | [BMP580_ODR_50HZ] = {50, 0}, |
1447 | [BMP580_ODR_45HZ] = {45, 0}, |
1448 | [BMP580_ODR_40HZ] = {40, 0}, |
1449 | [BMP580_ODR_35HZ] = {35, 0}, |
1450 | [BMP580_ODR_30HZ] = {30, 0}, |
1451 | [BMP580_ODR_25HZ] = {25, 0}, |
1452 | [BMP580_ODR_20HZ] = {20, 0}, |
1453 | [BMP580_ODR_15HZ] = {15, 0}, |
1454 | [BMP580_ODR_10HZ] = {10, 0}, |
1455 | [BMP580_ODR_5HZ] = {5, 0}, |
1456 | [BMP580_ODR_4HZ] = {4, 0}, |
1457 | [BMP580_ODR_3HZ] = {3, 0}, |
1458 | [BMP580_ODR_2HZ] = {2, 0}, |
1459 | [BMP580_ODR_1HZ] = {1, 0}, |
1460 | [BMP580_ODR_0_5HZ] = {0, 500000}, |
1461 | [BMP580_ODR_0_25HZ] = {0, 250000}, |
1462 | [BMP580_ODR_0_125HZ] = {0, 125000}, |
1463 | }; |
1464 | |
1465 | static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 }; |
1466 | |
1467 | static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val, |
1468 | size_t bytes) |
1469 | { |
1470 | struct bmp280_data *data = priv; |
1471 | u16 *dst = val; |
1472 | int ret, addr; |
1473 | |
1474 | pm_runtime_get_sync(dev: data->dev); |
1475 | mutex_lock(&data->lock); |
1476 | |
1477 | /* Set sensor in standby mode */ |
1478 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG, |
1479 | BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, |
1480 | BMP580_ODR_DEEPSLEEP_DIS | |
1481 | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); |
1482 | if (ret) { |
1483 | dev_err(data->dev, "failed to change sensor to standby mode\n"); |
1484 | goto exit; |
1485 | } |
1486 | /* Wait standby transition time */ |
1487 | usleep_range(min: 2500, max: 3000); |
1488 | |
1489 | while (bytes >= sizeof(*dst)) { |
1490 | addr = bmp580_nvmem_addrs[offset / sizeof(*dst)]; |
1491 | |
1492 | ret = regmap_write(map: data->regmap, BMP580_REG_NVM_ADDR, |
1493 | FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); |
1494 | if (ret) { |
1495 | dev_err(data->dev, "error writing nvm address\n"); |
1496 | goto exit; |
1497 | } |
1498 | |
1499 | ret = bmp580_nvm_operation(data, is_write: false); |
1500 | if (ret) |
1501 | goto exit; |
1502 | |
1503 | ret = regmap_bulk_read(map: data->regmap, BMP580_REG_NVM_DATA_LSB, val: &data->le16, |
1504 | val_count: sizeof(data->le16)); |
1505 | if (ret) { |
1506 | dev_err(data->dev, "error reading nvm data regs\n"); |
1507 | goto exit; |
1508 | } |
1509 | |
1510 | *dst++ = le16_to_cpu(data->le16); |
1511 | bytes -= sizeof(*dst); |
1512 | offset += sizeof(*dst); |
1513 | } |
1514 | exit: |
1515 | /* Restore chip config */ |
1516 | data->chip_info->chip_config(data); |
1517 | mutex_unlock(lock: &data->lock); |
1518 | pm_runtime_mark_last_busy(dev: data->dev); |
1519 | pm_runtime_put_autosuspend(dev: data->dev); |
1520 | return ret; |
1521 | } |
1522 | |
1523 | static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val, |
1524 | size_t bytes) |
1525 | { |
1526 | struct bmp280_data *data = priv; |
1527 | u16 *buf = val; |
1528 | int ret, addr; |
1529 | |
1530 | pm_runtime_get_sync(dev: data->dev); |
1531 | mutex_lock(&data->lock); |
1532 | |
1533 | /* Set sensor in standby mode */ |
1534 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG, |
1535 | BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, |
1536 | BMP580_ODR_DEEPSLEEP_DIS | |
1537 | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); |
1538 | if (ret) { |
1539 | dev_err(data->dev, "failed to change sensor to standby mode\n"); |
1540 | goto exit; |
1541 | } |
1542 | /* Wait standby transition time */ |
1543 | usleep_range(min: 2500, max: 3000); |
1544 | |
1545 | while (bytes >= sizeof(*buf)) { |
1546 | addr = bmp580_nvmem_addrs[offset / sizeof(*buf)]; |
1547 | |
1548 | ret = regmap_write(map: data->regmap, BMP580_REG_NVM_ADDR, BMP580_NVM_PROG_EN | |
1549 | FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); |
1550 | if (ret) { |
1551 | dev_err(data->dev, "error writing nvm address\n"); |
1552 | goto exit; |
1553 | } |
1554 | data->le16 = cpu_to_le16(*buf++); |
1555 | |
1556 | ret = regmap_bulk_write(map: data->regmap, BMP580_REG_NVM_DATA_LSB, val: &data->le16, |
1557 | val_count: sizeof(data->le16)); |
1558 | if (ret) { |
1559 | dev_err(data->dev, "error writing LSB NVM data regs\n"); |
1560 | goto exit; |
1561 | } |
1562 | |
1563 | ret = bmp580_nvm_operation(data, is_write: true); |
1564 | if (ret) |
1565 | goto exit; |
1566 | |
1567 | /* Disable programming mode bit */ |
1568 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_NVM_ADDR, |
1569 | BMP580_NVM_PROG_EN, val: 0); |
1570 | if (ret) { |
1571 | dev_err(data->dev, "error resetting nvm write\n"); |
1572 | goto exit; |
1573 | } |
1574 | |
1575 | bytes -= sizeof(*buf); |
1576 | offset += sizeof(*buf); |
1577 | } |
1578 | exit: |
1579 | /* Restore chip config */ |
1580 | data->chip_info->chip_config(data); |
1581 | mutex_unlock(lock: &data->lock); |
1582 | pm_runtime_mark_last_busy(dev: data->dev); |
1583 | pm_runtime_put_autosuspend(dev: data->dev); |
1584 | return ret; |
1585 | } |
1586 | |
1587 | static int bmp580_preinit(struct bmp280_data *data) |
1588 | { |
1589 | struct nvmem_config config = { |
1590 | .dev = data->dev, |
1591 | .priv = data, |
1592 | .name = "bmp580_nvmem", |
1593 | .word_size = sizeof(u16), |
1594 | .stride = sizeof(u16), |
1595 | .size = 3 * sizeof(u16), |
1596 | .reg_read = bmp580_nvmem_read, |
1597 | .reg_write = bmp580_nvmem_write, |
1598 | }; |
1599 | unsigned int reg; |
1600 | int ret; |
1601 | |
1602 | /* Issue soft-reset command */ |
1603 | ret = bmp580_soft_reset(data); |
1604 | if (ret) |
1605 | return ret; |
1606 | |
1607 | /* Post powerup sequence */ |
1608 | ret = regmap_read(map: data->regmap, BMP580_REG_CHIP_ID, val: ®); |
1609 | if (ret) |
1610 | return ret; |
1611 | |
1612 | /* Print warn message if we don't know the chip id */ |
1613 | if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT) |
1614 | dev_warn(data->dev, "preinit: unexpected chip_id\n"); |
1615 | |
1616 | ret = regmap_read(map: data->regmap, BMP580_REG_STATUS, val: ®); |
1617 | if (ret) |
1618 | return ret; |
1619 | |
1620 | /* Check nvm status */ |
1621 | if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) { |
1622 | dev_err(data->dev, "preinit: nvm error on powerup sequence\n"); |
1623 | return -EIO; |
1624 | } |
1625 | |
1626 | /* Register nvmem device */ |
1627 | return PTR_ERR_OR_ZERO(ptr: devm_nvmem_register(dev: config.dev, cfg: &config)); |
1628 | } |
1629 | |
1630 | static int bmp580_chip_config(struct bmp280_data *data) |
1631 | { |
1632 | bool change = false, aux; |
1633 | unsigned int tmp; |
1634 | u8 reg_val; |
1635 | int ret; |
1636 | |
1637 | /* Sets sensor in standby mode */ |
1638 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG, |
1639 | BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, |
1640 | BMP580_ODR_DEEPSLEEP_DIS | |
1641 | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); |
1642 | if (ret) { |
1643 | dev_err(data->dev, "failed to change sensor to standby mode\n"); |
1644 | return ret; |
1645 | } |
1646 | /* From datasheet's table 4: electrical characteristics */ |
1647 | usleep_range(min: 2500, max: 3000); |
1648 | |
1649 | /* Set default DSP mode settings */ |
1650 | reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) | |
1651 | BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN; |
1652 | |
1653 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_DSP_CONFIG, |
1654 | BMP580_DSP_COMP_MASK | |
1655 | BMP580_DSP_SHDW_IIR_TEMP_EN | |
1656 | BMP580_DSP_SHDW_IIR_PRESS_EN, val: reg_val); |
1657 | |
1658 | /* Configure oversampling */ |
1659 | reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) | |
1660 | FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) | |
1661 | BMP580_OSR_PRESS_EN; |
1662 | |
1663 | ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_OSR_CONFIG, |
1664 | BMP580_OSR_TEMP_MASK | BMP580_OSR_PRESS_MASK | |
1665 | BMP580_OSR_PRESS_EN, |
1666 | val: reg_val, change: &aux); |
1667 | if (ret) { |
1668 | dev_err(data->dev, "failed to write oversampling register\n"); |
1669 | return ret; |
1670 | } |
1671 | change = change || aux; |
1672 | |
1673 | /* Configure output data rate */ |
1674 | ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK, |
1675 | FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq), |
1676 | change: &aux); |
1677 | if (ret) { |
1678 | dev_err(data->dev, "failed to write ODR configuration register\n"); |
1679 | return ret; |
1680 | } |
1681 | change = change || aux; |
1682 | |
1683 | /* Set filter data */ |
1684 | reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) | |
1685 | FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff); |
1686 | |
1687 | ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_DSP_IIR, |
1688 | BMP580_DSP_IIR_PRESS_MASK | |
1689 | BMP580_DSP_IIR_TEMP_MASK, |
1690 | val: reg_val, change: &aux); |
1691 | if (ret) { |
1692 | dev_err(data->dev, "failed to write config register\n"); |
1693 | return ret; |
1694 | } |
1695 | change = change || aux; |
1696 | |
1697 | /* Restore sensor to normal operation mode */ |
1698 | ret = regmap_write_bits(map: data->regmap, BMP580_REG_ODR_CONFIG, |
1699 | BMP580_MODE_MASK, |
1700 | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL)); |
1701 | if (ret) { |
1702 | dev_err(data->dev, "failed to set normal mode\n"); |
1703 | return ret; |
1704 | } |
1705 | /* From datasheet's table 4: electrical characteristics */ |
1706 | usleep_range(min: 3000, max: 3500); |
1707 | |
1708 | if (change) { |
1709 | /* |
1710 | * Check if ODR and OSR settings are valid or we are |
1711 | * operating in a degraded mode. |
1712 | */ |
1713 | ret = regmap_read(map: data->regmap, BMP580_REG_EFF_OSR, val: &tmp); |
1714 | if (ret) { |
1715 | dev_err(data->dev, "error reading effective OSR register\n"); |
1716 | return ret; |
1717 | } |
1718 | if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) { |
1719 | dev_warn(data->dev, "OSR and ODR incompatible settings detected\n"); |
1720 | /* Set current OSR settings from data on effective OSR */ |
1721 | data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp); |
1722 | data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp); |
1723 | return -EINVAL; |
1724 | } |
1725 | } |
1726 | |
1727 | return 0; |
1728 | } |
1729 | |
1730 | static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 }; |
1731 | static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT }; |
1732 | |
1733 | const struct bmp280_chip_info bmp580_chip_info = { |
1734 | .id_reg = BMP580_REG_CHIP_ID, |
1735 | .chip_id = bmp580_chip_ids, |
1736 | .num_chip_id = ARRAY_SIZE(bmp580_chip_ids), |
1737 | .regmap_config = &bmp580_regmap_config, |
1738 | .start_up_time = 2000, |
1739 | .channels = bmp380_channels, |
1740 | .num_channels = 2, |
1741 | |
1742 | .oversampling_temp_avail = bmp580_oversampling_avail, |
1743 | .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail), |
1744 | .oversampling_temp_default = ilog2(1), |
1745 | |
1746 | .oversampling_press_avail = bmp580_oversampling_avail, |
1747 | .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail), |
1748 | .oversampling_press_default = ilog2(4), |
1749 | |
1750 | .sampling_freq_avail = bmp580_odr_table, |
1751 | .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2, |
1752 | .sampling_freq_default = BMP580_ODR_50HZ, |
1753 | |
1754 | .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, |
1755 | .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), |
1756 | .iir_filter_coeff_default = 2, |
1757 | |
1758 | .chip_config = bmp580_chip_config, |
1759 | .read_temp = bmp580_read_temp, |
1760 | .read_press = bmp580_read_press, |
1761 | .preinit = bmp580_preinit, |
1762 | }; |
1763 | EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280); |
1764 | |
1765 | static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas) |
1766 | { |
1767 | const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; |
1768 | unsigned int delay_us; |
1769 | unsigned int ctrl; |
1770 | int ret; |
1771 | |
1772 | if (data->use_eoc) |
1773 | reinit_completion(x: &data->done); |
1774 | |
1775 | ret = regmap_write(map: data->regmap, BMP280_REG_CTRL_MEAS, val: ctrl_meas); |
1776 | if (ret) |
1777 | return ret; |
1778 | |
1779 | if (data->use_eoc) { |
1780 | /* |
1781 | * If we have a completion interrupt, use it, wait up to |
1782 | * 100ms. The longest conversion time listed is 76.5 ms for |
1783 | * advanced resolution mode. |
1784 | */ |
1785 | ret = wait_for_completion_timeout(x: &data->done, |
1786 | timeout: 1 + msecs_to_jiffies(m: 100)); |
1787 | if (!ret) |
1788 | dev_err(data->dev, "timeout waiting for completion\n"); |
1789 | } else { |
1790 | if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) |
1791 | delay_us = 4500; |
1792 | else |
1793 | delay_us = |
1794 | conversion_time_max[data->oversampling_press]; |
1795 | |
1796 | usleep_range(min: delay_us, max: delay_us + 1000); |
1797 | } |
1798 | |
1799 | ret = regmap_read(map: data->regmap, BMP280_REG_CTRL_MEAS, val: &ctrl); |
1800 | if (ret) |
1801 | return ret; |
1802 | |
1803 | /* The value of this bit reset to "0" after conversion is complete */ |
1804 | if (ctrl & BMP180_MEAS_SCO) |
1805 | return -EIO; |
1806 | |
1807 | return 0; |
1808 | } |
1809 | |
1810 | static int bmp180_read_adc_temp(struct bmp280_data *data, int *val) |
1811 | { |
1812 | int ret; |
1813 | |
1814 | ret = bmp180_measure(data, |
1815 | FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | |
1816 | BMP180_MEAS_SCO); |
1817 | if (ret) |
1818 | return ret; |
1819 | |
1820 | ret = regmap_bulk_read(map: data->regmap, BMP180_REG_OUT_MSB, |
1821 | val: &data->be16, val_count: sizeof(data->be16)); |
1822 | if (ret) |
1823 | return ret; |
1824 | |
1825 | *val = be16_to_cpu(data->be16); |
1826 | |
1827 | return 0; |
1828 | } |
1829 | |
1830 | static int bmp180_read_calib(struct bmp280_data *data) |
1831 | { |
1832 | struct bmp180_calib *calib = &data->calib.bmp180; |
1833 | int ret; |
1834 | int i; |
1835 | |
1836 | ret = regmap_bulk_read(map: data->regmap, BMP180_REG_CALIB_START, |
1837 | val: data->bmp180_cal_buf, val_count: sizeof(data->bmp180_cal_buf)); |
1838 | |
1839 | if (ret < 0) |
1840 | return ret; |
1841 | |
1842 | /* None of the words has the value 0 or 0xFFFF */ |
1843 | for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { |
1844 | if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || |
1845 | data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) |
1846 | return -EIO; |
1847 | } |
1848 | |
1849 | /* Toss the calibration data into the entropy pool */ |
1850 | add_device_randomness(buf: data->bmp180_cal_buf, len: sizeof(data->bmp180_cal_buf)); |
1851 | |
1852 | calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); |
1853 | calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); |
1854 | calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); |
1855 | calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); |
1856 | calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); |
1857 | calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); |
1858 | calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); |
1859 | calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); |
1860 | calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); |
1861 | calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); |
1862 | calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); |
1863 | |
1864 | return 0; |
1865 | } |
1866 | |
1867 | /* |
1868 | * Returns temperature in DegC, resolution is 0.1 DegC. |
1869 | * t_fine carries fine temperature as global value. |
1870 | * |
1871 | * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". |
1872 | */ |
1873 | static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp) |
1874 | { |
1875 | struct bmp180_calib *calib = &data->calib.bmp180; |
1876 | s32 x1, x2; |
1877 | |
1878 | x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15; |
1879 | x2 = (calib->MC << 11) / (x1 + calib->MD); |
1880 | data->t_fine = x1 + x2; |
1881 | |
1882 | return (data->t_fine + 8) >> 4; |
1883 | } |
1884 | |
1885 | static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2) |
1886 | { |
1887 | s32 adc_temp, comp_temp; |
1888 | int ret; |
1889 | |
1890 | ret = bmp180_read_adc_temp(data, val: &adc_temp); |
1891 | if (ret) |
1892 | return ret; |
1893 | |
1894 | comp_temp = bmp180_compensate_temp(data, adc_temp); |
1895 | |
1896 | /* |
1897 | * val might be NULL if we're called by the read_press routine, |
1898 | * who only cares about the carry over t_fine value. |
1899 | */ |
1900 | if (val) { |
1901 | *val = comp_temp * 100; |
1902 | return IIO_VAL_INT; |
1903 | } |
1904 | |
1905 | return 0; |
1906 | } |
1907 | |
1908 | static int bmp180_read_adc_press(struct bmp280_data *data, int *val) |
1909 | { |
1910 | u8 oss = data->oversampling_press; |
1911 | int ret; |
1912 | |
1913 | ret = bmp180_measure(data, |
1914 | FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | |
1915 | FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | |
1916 | BMP180_MEAS_SCO); |
1917 | if (ret) |
1918 | return ret; |
1919 | |
1920 | ret = regmap_bulk_read(map: data->regmap, BMP180_REG_OUT_MSB, |
1921 | val: data->buf, val_count: sizeof(data->buf)); |
1922 | if (ret) |
1923 | return ret; |
1924 | |
1925 | *val = get_unaligned_be24(p: data->buf) >> (8 - oss); |
1926 | |
1927 | return 0; |
1928 | } |
1929 | |
1930 | /* |
1931 | * Returns pressure in Pa, resolution is 1 Pa. |
1932 | * |
1933 | * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". |
1934 | */ |
1935 | static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press) |
1936 | { |
1937 | struct bmp180_calib *calib = &data->calib.bmp180; |
1938 | s32 oss = data->oversampling_press; |
1939 | s32 x1, x2, x3, p; |
1940 | s32 b3, b6; |
1941 | u32 b4, b7; |
1942 | |
1943 | b6 = data->t_fine - 4000; |
1944 | x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; |
1945 | x2 = calib->AC2 * b6 >> 11; |
1946 | x3 = x1 + x2; |
1947 | b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; |
1948 | x1 = calib->AC3 * b6 >> 13; |
1949 | x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; |
1950 | x3 = (x1 + x2 + 2) >> 2; |
1951 | b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; |
1952 | b7 = ((u32)adc_press - b3) * (50000 >> oss); |
1953 | if (b7 < 0x80000000) |
1954 | p = (b7 * 2) / b4; |
1955 | else |
1956 | p = (b7 / b4) * 2; |
1957 | |
1958 | x1 = (p >> 8) * (p >> 8); |
1959 | x1 = (x1 * 3038) >> 16; |
1960 | x2 = (-7357 * p) >> 16; |
1961 | |
1962 | return p + ((x1 + x2 + 3791) >> 4); |
1963 | } |
1964 | |
1965 | static int bmp180_read_press(struct bmp280_data *data, |
1966 | int *val, int *val2) |
1967 | { |
1968 | u32 comp_press; |
1969 | s32 adc_press; |
1970 | int ret; |
1971 | |
1972 | /* Read and compensate temperature so we get a reading of t_fine. */ |
1973 | ret = bmp180_read_temp(data, NULL, NULL); |
1974 | if (ret) |
1975 | return ret; |
1976 | |
1977 | ret = bmp180_read_adc_press(data, val: &adc_press); |
1978 | if (ret) |
1979 | return ret; |
1980 | |
1981 | comp_press = bmp180_compensate_press(data, adc_press); |
1982 | |
1983 | *val = comp_press; |
1984 | *val2 = 1000; |
1985 | |
1986 | return IIO_VAL_FRACTIONAL; |
1987 | } |
1988 | |
1989 | static int bmp180_chip_config(struct bmp280_data *data) |
1990 | { |
1991 | return 0; |
1992 | } |
1993 | |
1994 | static const int bmp180_oversampling_temp_avail[] = { 1 }; |
1995 | static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; |
1996 | static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID }; |
1997 | |
1998 | const struct bmp280_chip_info bmp180_chip_info = { |
1999 | .id_reg = BMP280_REG_ID, |
2000 | .chip_id = bmp180_chip_ids, |
2001 | .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), |
2002 | .regmap_config = &bmp180_regmap_config, |
2003 | .start_up_time = 2000, |
2004 | .channels = bmp280_channels, |
2005 | .num_channels = 2, |
2006 | |
2007 | .oversampling_temp_avail = bmp180_oversampling_temp_avail, |
2008 | .num_oversampling_temp_avail = |
2009 | ARRAY_SIZE(bmp180_oversampling_temp_avail), |
2010 | .oversampling_temp_default = 0, |
2011 | |
2012 | .oversampling_press_avail = bmp180_oversampling_press_avail, |
2013 | .num_oversampling_press_avail = |
2014 | ARRAY_SIZE(bmp180_oversampling_press_avail), |
2015 | .oversampling_press_default = BMP180_MEAS_PRESS_8X, |
2016 | |
2017 | .chip_config = bmp180_chip_config, |
2018 | .read_temp = bmp180_read_temp, |
2019 | .read_press = bmp180_read_press, |
2020 | .read_calib = bmp180_read_calib, |
2021 | }; |
2022 | EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280); |
2023 | |
2024 | static irqreturn_t bmp085_eoc_irq(int irq, void *d) |
2025 | { |
2026 | struct bmp280_data *data = d; |
2027 | |
2028 | complete(&data->done); |
2029 | |
2030 | return IRQ_HANDLED; |
2031 | } |
2032 | |
2033 | static int bmp085_fetch_eoc_irq(struct device *dev, |
2034 | const char *name, |
2035 | int irq, |
2036 | struct bmp280_data *data) |
2037 | { |
2038 | unsigned long irq_trig; |
2039 | int ret; |
2040 | |
2041 | irq_trig = irqd_get_trigger_type(d: irq_get_irq_data(irq)); |
2042 | if (irq_trig != IRQF_TRIGGER_RISING) { |
2043 | dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); |
2044 | irq_trig = IRQF_TRIGGER_RISING; |
2045 | } |
2046 | |
2047 | init_completion(x: &data->done); |
2048 | |
2049 | ret = devm_request_threaded_irq(dev, |
2050 | irq, |
2051 | handler: bmp085_eoc_irq, |
2052 | NULL, |
2053 | irqflags: irq_trig, |
2054 | devname: name, |
2055 | dev_id: data); |
2056 | if (ret) { |
2057 | /* Bail out without IRQ but keep the driver in place */ |
2058 | dev_err(dev, "unable to request DRDY IRQ\n"); |
2059 | return 0; |
2060 | } |
2061 | |
2062 | data->use_eoc = true; |
2063 | return 0; |
2064 | } |
2065 | |
2066 | static void bmp280_pm_disable(void *data) |
2067 | { |
2068 | struct device *dev = data; |
2069 | |
2070 | pm_runtime_get_sync(dev); |
2071 | pm_runtime_put_noidle(dev); |
2072 | pm_runtime_disable(dev); |
2073 | } |
2074 | |
2075 | static void bmp280_regulators_disable(void *data) |
2076 | { |
2077 | struct regulator_bulk_data *supplies = data; |
2078 | |
2079 | regulator_bulk_disable(BMP280_NUM_SUPPLIES, consumers: supplies); |
2080 | } |
2081 | |
2082 | int bmp280_common_probe(struct device *dev, |
2083 | struct regmap *regmap, |
2084 | const struct bmp280_chip_info *chip_info, |
2085 | const char *name, |
2086 | int irq) |
2087 | { |
2088 | struct iio_dev *indio_dev; |
2089 | struct bmp280_data *data; |
2090 | struct gpio_desc *gpiod; |
2091 | unsigned int chip_id; |
2092 | unsigned int i; |
2093 | int ret; |
2094 | |
2095 | indio_dev = devm_iio_device_alloc(parent: dev, sizeof_priv: sizeof(*data)); |
2096 | if (!indio_dev) |
2097 | return -ENOMEM; |
2098 | |
2099 | data = iio_priv(indio_dev); |
2100 | mutex_init(&data->lock); |
2101 | data->dev = dev; |
2102 | |
2103 | indio_dev->name = name; |
2104 | indio_dev->info = &bmp280_info; |
2105 | indio_dev->modes = INDIO_DIRECT_MODE; |
2106 | |
2107 | data->chip_info = chip_info; |
2108 | |
2109 | /* Apply initial values from chip info structure */ |
2110 | indio_dev->channels = chip_info->channels; |
2111 | indio_dev->num_channels = chip_info->num_channels; |
2112 | data->oversampling_press = chip_info->oversampling_press_default; |
2113 | data->oversampling_humid = chip_info->oversampling_humid_default; |
2114 | data->oversampling_temp = chip_info->oversampling_temp_default; |
2115 | data->iir_filter_coeff = chip_info->iir_filter_coeff_default; |
2116 | data->sampling_freq = chip_info->sampling_freq_default; |
2117 | data->start_up_time = chip_info->start_up_time; |
2118 | |
2119 | /* Bring up regulators */ |
2120 | regulator_bulk_set_supply_names(consumers: data->supplies, |
2121 | supply_names: bmp280_supply_names, |
2122 | BMP280_NUM_SUPPLIES); |
2123 | |
2124 | ret = devm_regulator_bulk_get(dev, |
2125 | BMP280_NUM_SUPPLIES, consumers: data->supplies); |
2126 | if (ret) { |
2127 | dev_err(dev, "failed to get regulators\n"); |
2128 | return ret; |
2129 | } |
2130 | |
2131 | ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, consumers: data->supplies); |
2132 | if (ret) { |
2133 | dev_err(dev, "failed to enable regulators\n"); |
2134 | return ret; |
2135 | } |
2136 | |
2137 | ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, |
2138 | data->supplies); |
2139 | if (ret) |
2140 | return ret; |
2141 | |
2142 | /* Wait to make sure we started up properly */ |
2143 | usleep_range(min: data->start_up_time, max: data->start_up_time + 100); |
2144 | |
2145 | /* Bring chip out of reset if there is an assigned GPIO line */ |
2146 | gpiod = devm_gpiod_get_optional(dev, con_id: "reset", flags: GPIOD_OUT_HIGH); |
2147 | /* Deassert the signal */ |
2148 | if (gpiod) { |
2149 | dev_info(dev, "release reset\n"); |
2150 | gpiod_set_value(desc: gpiod, value: 0); |
2151 | } |
2152 | |
2153 | data->regmap = regmap; |
2154 | |
2155 | ret = regmap_read(map: regmap, reg: data->chip_info->id_reg, val: &chip_id); |
2156 | if (ret < 0) |
2157 | return ret; |
2158 | |
2159 | for (i = 0; i < data->chip_info->num_chip_id; i++) { |
2160 | if (chip_id == data->chip_info->chip_id[i]) { |
2161 | dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name); |
2162 | break; |
2163 | } |
2164 | } |
2165 | |
2166 | if (i == data->chip_info->num_chip_id) |
2167 | dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id); |
2168 | |
2169 | if (data->chip_info->preinit) { |
2170 | ret = data->chip_info->preinit(data); |
2171 | if (ret) |
2172 | return dev_err_probe(dev: data->dev, err: ret, |
2173 | fmt: "error running preinit tasks\n"); |
2174 | } |
2175 | |
2176 | ret = data->chip_info->chip_config(data); |
2177 | if (ret < 0) |
2178 | return ret; |
2179 | |
2180 | dev_set_drvdata(dev, data: indio_dev); |
2181 | |
2182 | /* |
2183 | * Some chips have calibration parameters "programmed into the devices' |
2184 | * non-volatile memory during production". Let's read them out at probe |
2185 | * time once. They will not change. |
2186 | */ |
2187 | |
2188 | if (data->chip_info->read_calib) { |
2189 | ret = data->chip_info->read_calib(data); |
2190 | if (ret < 0) |
2191 | return dev_err_probe(dev: data->dev, err: ret, |
2192 | fmt: "failed to read calibration coefficients\n"); |
2193 | } |
2194 | |
2195 | /* |
2196 | * Attempt to grab an optional EOC IRQ - only the BMP085 has this |
2197 | * however as it happens, the BMP085 shares the chip ID of BMP180 |
2198 | * so we look for an IRQ if we have that. |
2199 | */ |
2200 | if (irq > 0 && (chip_id == BMP180_CHIP_ID)) { |
2201 | ret = bmp085_fetch_eoc_irq(dev, name, irq, data); |
2202 | if (ret) |
2203 | return ret; |
2204 | } |
2205 | |
2206 | /* Enable runtime PM */ |
2207 | pm_runtime_get_noresume(dev); |
2208 | pm_runtime_set_active(dev); |
2209 | pm_runtime_enable(dev); |
2210 | /* |
2211 | * Set autosuspend to two orders of magnitude larger than the |
2212 | * start-up time. |
2213 | */ |
2214 | pm_runtime_set_autosuspend_delay(dev, delay: data->start_up_time / 10); |
2215 | pm_runtime_use_autosuspend(dev); |
2216 | pm_runtime_put(dev); |
2217 | |
2218 | ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); |
2219 | if (ret) |
2220 | return ret; |
2221 | |
2222 | return devm_iio_device_register(dev, indio_dev); |
2223 | } |
2224 | EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280); |
2225 | |
2226 | static int bmp280_runtime_suspend(struct device *dev) |
2227 | { |
2228 | struct iio_dev *indio_dev = dev_get_drvdata(dev); |
2229 | struct bmp280_data *data = iio_priv(indio_dev); |
2230 | |
2231 | return regulator_bulk_disable(BMP280_NUM_SUPPLIES, consumers: data->supplies); |
2232 | } |
2233 | |
2234 | static int bmp280_runtime_resume(struct device *dev) |
2235 | { |
2236 | struct iio_dev *indio_dev = dev_get_drvdata(dev); |
2237 | struct bmp280_data *data = iio_priv(indio_dev); |
2238 | int ret; |
2239 | |
2240 | ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, consumers: data->supplies); |
2241 | if (ret) |
2242 | return ret; |
2243 | usleep_range(min: data->start_up_time, max: data->start_up_time + 100); |
2244 | return data->chip_info->chip_config(data); |
2245 | } |
2246 | |
2247 | EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, |
2248 | bmp280_runtime_resume, NULL); |
2249 | |
2250 | MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); |
2251 | MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); |
2252 | MODULE_LICENSE("GPL v2"); |
2253 |
Definitions
- bmp380_odr
- bmp580_odr
- bmp280_channels
- bmp380_channels
- bmp280_read_calib
- bme280_read_calib
- bmp280_compensate_humidity
- bmp280_compensate_temp
- bmp280_compensate_press
- bmp280_read_temp
- bmp280_read_press
- bmp280_read_humid
- bmp280_read_raw
- bmp280_write_oversampling_ratio_humid
- bmp280_write_oversampling_ratio_temp
- bmp280_write_oversampling_ratio_press
- bmp280_write_sampling_frequency
- bmp280_write_iir_filter_coeffs
- bmp280_write_raw
- bmp280_read_avail
- bmp280_info
- bmp280_chip_config
- bmp280_oversampling_avail
- bmp280_chip_ids
- bmp280_chip_info
- bme280_chip_config
- bme280_chip_ids
- bme280_chip_info
- bmp380_cmd
- bmp380_compensate_temp
- bmp380_compensate_press
- bmp380_read_temp
- bmp380_read_press
- bmp380_read_calib
- bmp380_odr_table
- bmp380_preinit
- bmp380_chip_config
- bmp380_oversampling_avail
- bmp380_iir_filter_coeffs_avail
- bmp380_chip_ids
- bmp380_chip_info
- bmp580_soft_reset
- bmp580_nvm_operation
- bmp580_read_temp
- bmp580_read_press
- bmp580_odr_table
- bmp580_nvmem_addrs
- bmp580_nvmem_read
- bmp580_nvmem_write
- bmp580_preinit
- bmp580_chip_config
- bmp580_oversampling_avail
- bmp580_chip_ids
- bmp580_chip_info
- bmp180_measure
- bmp180_read_adc_temp
- bmp180_read_calib
- bmp180_compensate_temp
- bmp180_read_temp
- bmp180_read_adc_press
- bmp180_compensate_press
- bmp180_read_press
- bmp180_chip_config
- bmp180_oversampling_temp_avail
- bmp180_oversampling_press_avail
- bmp180_chip_ids
- bmp180_chip_info
- bmp085_eoc_irq
- bmp085_fetch_eoc_irq
- bmp280_pm_disable
- bmp280_regulators_disable
- bmp280_common_probe
- bmp280_runtime_suspend
- bmp280_runtime_resume
Improve your Profiling and Debugging skills
Find out more