1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4 * Copyright (c) 2012 Bosch Sensortec GmbH
5 * Copyright (c) 2012 Unixphere AB
6 * Copyright (c) 2014 Intel Corporation
7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8 *
9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10 *
11 * Datasheet:
12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf
16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf
17 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf
18 *
19 * Notice:
20 * The link to the bmp180 datasheet points to an outdated version missing these changes:
21 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26
22 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4
23 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26
24 */
25
26#define pr_fmt(fmt) "bmp280: " fmt
27
28#include <linux/bitops.h>
29#include <linux/bitfield.h>
30#include <linux/device.h>
31#include <linux/module.h>
32#include <linux/nvmem-provider.h>
33#include <linux/regmap.h>
34#include <linux/delay.h>
35#include <linux/iio/iio.h>
36#include <linux/iio/sysfs.h>
37#include <linux/gpio/consumer.h>
38#include <linux/regulator/consumer.h>
39#include <linux/interrupt.h>
40#include <linux/irq.h> /* For irq_get_irq_data() */
41#include <linux/completion.h>
42#include <linux/pm_runtime.h>
43#include <linux/random.h>
44
45#include <asm/unaligned.h>
46
47#include "bmp280.h"
48
49/*
50 * These enums are used for indexing into the array of calibration
51 * coefficients for BMP180.
52 */
53enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
54
55
56enum bmp380_odr {
57 BMP380_ODR_200HZ,
58 BMP380_ODR_100HZ,
59 BMP380_ODR_50HZ,
60 BMP380_ODR_25HZ,
61 BMP380_ODR_12_5HZ,
62 BMP380_ODR_6_25HZ,
63 BMP380_ODR_3_125HZ,
64 BMP380_ODR_1_5625HZ,
65 BMP380_ODR_0_78HZ,
66 BMP380_ODR_0_39HZ,
67 BMP380_ODR_0_2HZ,
68 BMP380_ODR_0_1HZ,
69 BMP380_ODR_0_05HZ,
70 BMP380_ODR_0_02HZ,
71 BMP380_ODR_0_01HZ,
72 BMP380_ODR_0_006HZ,
73 BMP380_ODR_0_003HZ,
74 BMP380_ODR_0_0015HZ,
75};
76
77enum bmp580_odr {
78 BMP580_ODR_240HZ,
79 BMP580_ODR_218HZ,
80 BMP580_ODR_199HZ,
81 BMP580_ODR_179HZ,
82 BMP580_ODR_160HZ,
83 BMP580_ODR_149HZ,
84 BMP580_ODR_140HZ,
85 BMP580_ODR_129HZ,
86 BMP580_ODR_120HZ,
87 BMP580_ODR_110HZ,
88 BMP580_ODR_100HZ,
89 BMP580_ODR_89HZ,
90 BMP580_ODR_80HZ,
91 BMP580_ODR_70HZ,
92 BMP580_ODR_60HZ,
93 BMP580_ODR_50HZ,
94 BMP580_ODR_45HZ,
95 BMP580_ODR_40HZ,
96 BMP580_ODR_35HZ,
97 BMP580_ODR_30HZ,
98 BMP580_ODR_25HZ,
99 BMP580_ODR_20HZ,
100 BMP580_ODR_15HZ,
101 BMP580_ODR_10HZ,
102 BMP580_ODR_5HZ,
103 BMP580_ODR_4HZ,
104 BMP580_ODR_3HZ,
105 BMP580_ODR_2HZ,
106 BMP580_ODR_1HZ,
107 BMP580_ODR_0_5HZ,
108 BMP580_ODR_0_25HZ,
109 BMP580_ODR_0_125HZ,
110};
111
112/*
113 * These enums are used for indexing into the array of compensation
114 * parameters for BMP280.
115 */
116enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 };
117
118enum {
119 /* Temperature calib indexes */
120 BMP380_T1 = 0,
121 BMP380_T2 = 2,
122 BMP380_T3 = 4,
123 /* Pressure calib indexes */
124 BMP380_P1 = 5,
125 BMP380_P2 = 7,
126 BMP380_P3 = 9,
127 BMP380_P4 = 10,
128 BMP380_P5 = 11,
129 BMP380_P6 = 13,
130 BMP380_P7 = 15,
131 BMP380_P8 = 16,
132 BMP380_P9 = 17,
133 BMP380_P10 = 19,
134 BMP380_P11 = 20,
135};
136
137static const struct iio_chan_spec bmp280_channels[] = {
138 {
139 .type = IIO_PRESSURE,
140 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
141 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
142 },
143 {
144 .type = IIO_TEMP,
145 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
146 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
147 },
148 {
149 .type = IIO_HUMIDITYRELATIVE,
150 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
151 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
152 },
153};
154
155static const struct iio_chan_spec bmp380_channels[] = {
156 {
157 .type = IIO_PRESSURE,
158 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
159 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
160 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
161 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
162 },
163 {
164 .type = IIO_TEMP,
165 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
166 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
167 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
168 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
169 },
170 {
171 .type = IIO_HUMIDITYRELATIVE,
172 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
173 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
174 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
175 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
176 },
177};
178
179static int bmp280_read_calib(struct bmp280_data *data)
180{
181 struct bmp280_calib *calib = &data->calib.bmp280;
182 int ret;
183
184
185 /* Read temperature and pressure calibration values. */
186 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_TEMP_START,
187 val: data->bmp280_cal_buf, val_count: sizeof(data->bmp280_cal_buf));
188 if (ret < 0) {
189 dev_err(data->dev,
190 "failed to read temperature and pressure calibration parameters\n");
191 return ret;
192 }
193
194 /* Toss the temperature and pressure calibration data into the entropy pool */
195 add_device_randomness(buf: data->bmp280_cal_buf, len: sizeof(data->bmp280_cal_buf));
196
197 /* Parse temperature calibration values. */
198 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]);
199 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]);
200 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]);
201
202 /* Parse pressure calibration values. */
203 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]);
204 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]);
205 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]);
206 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]);
207 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]);
208 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]);
209 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]);
210 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]);
211 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]);
212
213 return 0;
214}
215
216static int bme280_read_calib(struct bmp280_data *data)
217{
218 struct bmp280_calib *calib = &data->calib.bmp280;
219 struct device *dev = data->dev;
220 unsigned int tmp;
221 int ret;
222
223 /* Load shared calibration params with bmp280 first */
224 ret = bmp280_read_calib(data);
225 if (ret < 0) {
226 dev_err(dev, "failed to read common bmp280 calibration parameters\n");
227 return ret;
228 }
229
230 /*
231 * Read humidity calibration values.
232 * Due to some odd register addressing we cannot just
233 * do a big bulk read. Instead, we have to read each Hx
234 * value separately and sometimes do some bit shifting...
235 * Humidity data is only available on BME280.
236 */
237
238 ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H1, val: &tmp);
239 if (ret < 0) {
240 dev_err(dev, "failed to read H1 comp value\n");
241 return ret;
242 }
243 calib->H1 = tmp;
244
245 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H2,
246 val: &data->le16, val_count: sizeof(data->le16));
247 if (ret < 0) {
248 dev_err(dev, "failed to read H2 comp value\n");
249 return ret;
250 }
251 calib->H2 = sign_extend32(le16_to_cpu(data->le16), index: 15);
252
253 ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H3, val: &tmp);
254 if (ret < 0) {
255 dev_err(dev, "failed to read H3 comp value\n");
256 return ret;
257 }
258 calib->H3 = tmp;
259
260 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H4,
261 val: &data->be16, val_count: sizeof(data->be16));
262 if (ret < 0) {
263 dev_err(dev, "failed to read H4 comp value\n");
264 return ret;
265 }
266 calib->H4 = sign_extend32(value: ((be16_to_cpu(data->be16) >> 4) & 0xff0) |
267 (be16_to_cpu(data->be16) & 0xf), index: 11);
268
269 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H5,
270 val: &data->le16, val_count: sizeof(data->le16));
271 if (ret < 0) {
272 dev_err(dev, "failed to read H5 comp value\n");
273 return ret;
274 }
275 calib->H5 = sign_extend32(FIELD_GET(BMP280_COMP_H5_MASK, le16_to_cpu(data->le16)), index: 11);
276
277 ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H6, val: &tmp);
278 if (ret < 0) {
279 dev_err(dev, "failed to read H6 comp value\n");
280 return ret;
281 }
282 calib->H6 = sign_extend32(value: tmp, index: 7);
283
284 return 0;
285}
286/*
287 * Returns humidity in percent, resolution is 0.01 percent. Output value of
288 * "47445" represents 47445/1024 = 46.333 %RH.
289 *
290 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
291 */
292static u32 bmp280_compensate_humidity(struct bmp280_data *data,
293 s32 adc_humidity)
294{
295 struct bmp280_calib *calib = &data->calib.bmp280;
296 s32 var;
297
298 var = ((s32)data->t_fine) - (s32)76800;
299 var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
300 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
301 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
302 + (s32)2097152) * calib->H2 + 8192) >> 14);
303 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
304
305 var = clamp_val(var, 0, 419430400);
306
307 return var >> 12;
308};
309
310/*
311 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of
312 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global
313 * value.
314 *
315 * Taken from datasheet, Section 3.11.3, "Compensation formula".
316 */
317static s32 bmp280_compensate_temp(struct bmp280_data *data,
318 s32 adc_temp)
319{
320 struct bmp280_calib *calib = &data->calib.bmp280;
321 s32 var1, var2;
322
323 var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
324 ((s32)calib->T2)) >> 11;
325 var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
326 ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
327 ((s32)calib->T3)) >> 14;
328 data->t_fine = var1 + var2;
329
330 return (data->t_fine * 5 + 128) >> 8;
331}
332
333/*
334 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
335 * integer bits and 8 fractional bits). Output value of "24674867"
336 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
337 *
338 * Taken from datasheet, Section 3.11.3, "Compensation formula".
339 */
340static u32 bmp280_compensate_press(struct bmp280_data *data,
341 s32 adc_press)
342{
343 struct bmp280_calib *calib = &data->calib.bmp280;
344 s64 var1, var2, p;
345
346 var1 = ((s64)data->t_fine) - 128000;
347 var2 = var1 * var1 * (s64)calib->P6;
348 var2 += (var1 * (s64)calib->P5) << 17;
349 var2 += ((s64)calib->P4) << 35;
350 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
351 ((var1 * (s64)calib->P2) << 12);
352 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
353
354 if (var1 == 0)
355 return 0;
356
357 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
358 p = div64_s64(dividend: p, divisor: var1);
359 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
360 var2 = ((s64)(calib->P8) * p) >> 19;
361 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
362
363 return (u32)p;
364}
365
366static int bmp280_read_temp(struct bmp280_data *data,
367 int *val, int *val2)
368{
369 s32 adc_temp, comp_temp;
370 int ret;
371
372 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_TEMP_MSB,
373 val: data->buf, val_count: sizeof(data->buf));
374 if (ret < 0) {
375 dev_err(data->dev, "failed to read temperature\n");
376 return ret;
377 }
378
379 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
380 if (adc_temp == BMP280_TEMP_SKIPPED) {
381 /* reading was skipped */
382 dev_err(data->dev, "reading temperature skipped\n");
383 return -EIO;
384 }
385 comp_temp = bmp280_compensate_temp(data, adc_temp);
386
387 /*
388 * val might be NULL if we're called by the read_press routine,
389 * who only cares about the carry over t_fine value.
390 */
391 if (val) {
392 *val = comp_temp * 10;
393 return IIO_VAL_INT;
394 }
395
396 return 0;
397}
398
399static int bmp280_read_press(struct bmp280_data *data,
400 int *val, int *val2)
401{
402 u32 comp_press;
403 s32 adc_press;
404 int ret;
405
406 /* Read and compensate temperature so we get a reading of t_fine. */
407 ret = bmp280_read_temp(data, NULL, NULL);
408 if (ret < 0)
409 return ret;
410
411 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_PRESS_MSB,
412 val: data->buf, val_count: sizeof(data->buf));
413 if (ret < 0) {
414 dev_err(data->dev, "failed to read pressure\n");
415 return ret;
416 }
417
418 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
419 if (adc_press == BMP280_PRESS_SKIPPED) {
420 /* reading was skipped */
421 dev_err(data->dev, "reading pressure skipped\n");
422 return -EIO;
423 }
424 comp_press = bmp280_compensate_press(data, adc_press);
425
426 *val = comp_press;
427 *val2 = 256000;
428
429 return IIO_VAL_FRACTIONAL;
430}
431
432static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
433{
434 u32 comp_humidity;
435 s32 adc_humidity;
436 int ret;
437
438 /* Read and compensate temperature so we get a reading of t_fine. */
439 ret = bmp280_read_temp(data, NULL, NULL);
440 if (ret < 0)
441 return ret;
442
443 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_HUMIDITY_MSB,
444 val: &data->be16, val_count: sizeof(data->be16));
445 if (ret < 0) {
446 dev_err(data->dev, "failed to read humidity\n");
447 return ret;
448 }
449
450 adc_humidity = be16_to_cpu(data->be16);
451 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
452 /* reading was skipped */
453 dev_err(data->dev, "reading humidity skipped\n");
454 return -EIO;
455 }
456 comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
457
458 *val = comp_humidity * 1000 / 1024;
459
460 return IIO_VAL_INT;
461}
462
463static int bmp280_read_raw(struct iio_dev *indio_dev,
464 struct iio_chan_spec const *chan,
465 int *val, int *val2, long mask)
466{
467 struct bmp280_data *data = iio_priv(indio_dev);
468 int ret;
469
470 pm_runtime_get_sync(dev: data->dev);
471 mutex_lock(&data->lock);
472
473 switch (mask) {
474 case IIO_CHAN_INFO_PROCESSED:
475 switch (chan->type) {
476 case IIO_HUMIDITYRELATIVE:
477 ret = data->chip_info->read_humid(data, val, val2);
478 break;
479 case IIO_PRESSURE:
480 ret = data->chip_info->read_press(data, val, val2);
481 break;
482 case IIO_TEMP:
483 ret = data->chip_info->read_temp(data, val, val2);
484 break;
485 default:
486 ret = -EINVAL;
487 break;
488 }
489 break;
490 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
491 switch (chan->type) {
492 case IIO_HUMIDITYRELATIVE:
493 *val = 1 << data->oversampling_humid;
494 ret = IIO_VAL_INT;
495 break;
496 case IIO_PRESSURE:
497 *val = 1 << data->oversampling_press;
498 ret = IIO_VAL_INT;
499 break;
500 case IIO_TEMP:
501 *val = 1 << data->oversampling_temp;
502 ret = IIO_VAL_INT;
503 break;
504 default:
505 ret = -EINVAL;
506 break;
507 }
508 break;
509 case IIO_CHAN_INFO_SAMP_FREQ:
510 if (!data->chip_info->sampling_freq_avail) {
511 ret = -EINVAL;
512 break;
513 }
514
515 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0];
516 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1];
517 ret = IIO_VAL_INT_PLUS_MICRO;
518 break;
519 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
520 if (!data->chip_info->iir_filter_coeffs_avail) {
521 ret = -EINVAL;
522 break;
523 }
524
525 *val = (1 << data->iir_filter_coeff) - 1;
526 ret = IIO_VAL_INT;
527 break;
528 default:
529 ret = -EINVAL;
530 break;
531 }
532
533 mutex_unlock(lock: &data->lock);
534 pm_runtime_mark_last_busy(dev: data->dev);
535 pm_runtime_put_autosuspend(dev: data->dev);
536
537 return ret;
538}
539
540static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
541 int val)
542{
543 const int *avail = data->chip_info->oversampling_humid_avail;
544 const int n = data->chip_info->num_oversampling_humid_avail;
545 int ret, prev;
546 int i;
547
548 for (i = 0; i < n; i++) {
549 if (avail[i] == val) {
550 prev = data->oversampling_humid;
551 data->oversampling_humid = ilog2(val);
552
553 ret = data->chip_info->chip_config(data);
554 if (ret) {
555 data->oversampling_humid = prev;
556 data->chip_info->chip_config(data);
557 return ret;
558 }
559 return 0;
560 }
561 }
562 return -EINVAL;
563}
564
565static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
566 int val)
567{
568 const int *avail = data->chip_info->oversampling_temp_avail;
569 const int n = data->chip_info->num_oversampling_temp_avail;
570 int ret, prev;
571 int i;
572
573 for (i = 0; i < n; i++) {
574 if (avail[i] == val) {
575 prev = data->oversampling_temp;
576 data->oversampling_temp = ilog2(val);
577
578 ret = data->chip_info->chip_config(data);
579 if (ret) {
580 data->oversampling_temp = prev;
581 data->chip_info->chip_config(data);
582 return ret;
583 }
584 return 0;
585 }
586 }
587 return -EINVAL;
588}
589
590static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
591 int val)
592{
593 const int *avail = data->chip_info->oversampling_press_avail;
594 const int n = data->chip_info->num_oversampling_press_avail;
595 int ret, prev;
596 int i;
597
598 for (i = 0; i < n; i++) {
599 if (avail[i] == val) {
600 prev = data->oversampling_press;
601 data->oversampling_press = ilog2(val);
602
603 ret = data->chip_info->chip_config(data);
604 if (ret) {
605 data->oversampling_press = prev;
606 data->chip_info->chip_config(data);
607 return ret;
608 }
609 return 0;
610 }
611 }
612 return -EINVAL;
613}
614
615static int bmp280_write_sampling_frequency(struct bmp280_data *data,
616 int val, int val2)
617{
618 const int (*avail)[2] = data->chip_info->sampling_freq_avail;
619 const int n = data->chip_info->num_sampling_freq_avail;
620 int ret, prev;
621 int i;
622
623 for (i = 0; i < n; i++) {
624 if (avail[i][0] == val && avail[i][1] == val2) {
625 prev = data->sampling_freq;
626 data->sampling_freq = i;
627
628 ret = data->chip_info->chip_config(data);
629 if (ret) {
630 data->sampling_freq = prev;
631 data->chip_info->chip_config(data);
632 return ret;
633 }
634 return 0;
635 }
636 }
637 return -EINVAL;
638}
639
640static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val)
641{
642 const int *avail = data->chip_info->iir_filter_coeffs_avail;
643 const int n = data->chip_info->num_iir_filter_coeffs_avail;
644 int ret, prev;
645 int i;
646
647 for (i = 0; i < n; i++) {
648 if (avail[i] - 1 == val) {
649 prev = data->iir_filter_coeff;
650 data->iir_filter_coeff = i;
651
652 ret = data->chip_info->chip_config(data);
653 if (ret) {
654 data->iir_filter_coeff = prev;
655 data->chip_info->chip_config(data);
656 return ret;
657
658 }
659 return 0;
660 }
661 }
662 return -EINVAL;
663}
664
665static int bmp280_write_raw(struct iio_dev *indio_dev,
666 struct iio_chan_spec const *chan,
667 int val, int val2, long mask)
668{
669 struct bmp280_data *data = iio_priv(indio_dev);
670 int ret = 0;
671
672 /*
673 * Helper functions to update sensor running configuration.
674 * If an error happens applying new settings, will try restore
675 * previous parameters to ensure the sensor is left in a known
676 * working configuration.
677 */
678 switch (mask) {
679 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
680 pm_runtime_get_sync(dev: data->dev);
681 mutex_lock(&data->lock);
682 switch (chan->type) {
683 case IIO_HUMIDITYRELATIVE:
684 ret = bmp280_write_oversampling_ratio_humid(data, val);
685 break;
686 case IIO_PRESSURE:
687 ret = bmp280_write_oversampling_ratio_press(data, val);
688 break;
689 case IIO_TEMP:
690 ret = bmp280_write_oversampling_ratio_temp(data, val);
691 break;
692 default:
693 ret = -EINVAL;
694 break;
695 }
696 mutex_unlock(lock: &data->lock);
697 pm_runtime_mark_last_busy(dev: data->dev);
698 pm_runtime_put_autosuspend(dev: data->dev);
699 break;
700 case IIO_CHAN_INFO_SAMP_FREQ:
701 pm_runtime_get_sync(dev: data->dev);
702 mutex_lock(&data->lock);
703 ret = bmp280_write_sampling_frequency(data, val, val2);
704 mutex_unlock(lock: &data->lock);
705 pm_runtime_mark_last_busy(dev: data->dev);
706 pm_runtime_put_autosuspend(dev: data->dev);
707 break;
708 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
709 pm_runtime_get_sync(dev: data->dev);
710 mutex_lock(&data->lock);
711 ret = bmp280_write_iir_filter_coeffs(data, val);
712 mutex_unlock(lock: &data->lock);
713 pm_runtime_mark_last_busy(dev: data->dev);
714 pm_runtime_put_autosuspend(dev: data->dev);
715 break;
716 default:
717 return -EINVAL;
718 }
719
720 return ret;
721}
722
723static int bmp280_read_avail(struct iio_dev *indio_dev,
724 struct iio_chan_spec const *chan,
725 const int **vals, int *type, int *length,
726 long mask)
727{
728 struct bmp280_data *data = iio_priv(indio_dev);
729
730 switch (mask) {
731 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
732 switch (chan->type) {
733 case IIO_PRESSURE:
734 *vals = data->chip_info->oversampling_press_avail;
735 *length = data->chip_info->num_oversampling_press_avail;
736 break;
737 case IIO_TEMP:
738 *vals = data->chip_info->oversampling_temp_avail;
739 *length = data->chip_info->num_oversampling_temp_avail;
740 break;
741 default:
742 return -EINVAL;
743 }
744 *type = IIO_VAL_INT;
745 return IIO_AVAIL_LIST;
746 case IIO_CHAN_INFO_SAMP_FREQ:
747 *vals = (const int *)data->chip_info->sampling_freq_avail;
748 *type = IIO_VAL_INT_PLUS_MICRO;
749 /* Values are stored in a 2D matrix */
750 *length = data->chip_info->num_sampling_freq_avail;
751 return IIO_AVAIL_LIST;
752 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
753 *vals = data->chip_info->iir_filter_coeffs_avail;
754 *type = IIO_VAL_INT;
755 *length = data->chip_info->num_iir_filter_coeffs_avail;
756 return IIO_AVAIL_LIST;
757 default:
758 return -EINVAL;
759 }
760}
761
762static const struct iio_info bmp280_info = {
763 .read_raw = &bmp280_read_raw,
764 .read_avail = &bmp280_read_avail,
765 .write_raw = &bmp280_write_raw,
766};
767
768static int bmp280_chip_config(struct bmp280_data *data)
769{
770 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) |
771 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1);
772 int ret;
773
774 ret = regmap_write_bits(map: data->regmap, BMP280_REG_CTRL_MEAS,
775 BMP280_OSRS_TEMP_MASK |
776 BMP280_OSRS_PRESS_MASK |
777 BMP280_MODE_MASK,
778 val: osrs | BMP280_MODE_NORMAL);
779 if (ret < 0) {
780 dev_err(data->dev,
781 "failed to write ctrl_meas register\n");
782 return ret;
783 }
784
785 ret = regmap_update_bits(map: data->regmap, BMP280_REG_CONFIG,
786 BMP280_FILTER_MASK,
787 BMP280_FILTER_4X);
788 if (ret < 0) {
789 dev_err(data->dev,
790 "failed to write config register\n");
791 return ret;
792 }
793
794 return ret;
795}
796
797static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
798static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID };
799
800const struct bmp280_chip_info bmp280_chip_info = {
801 .id_reg = BMP280_REG_ID,
802 .chip_id = bmp280_chip_ids,
803 .num_chip_id = ARRAY_SIZE(bmp280_chip_ids),
804 .regmap_config = &bmp280_regmap_config,
805 .start_up_time = 2000,
806 .channels = bmp280_channels,
807 .num_channels = 2,
808
809 .oversampling_temp_avail = bmp280_oversampling_avail,
810 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
811 /*
812 * Oversampling config values on BMx280 have one additional setting
813 * that other generations of the family don't:
814 * The value 0 means the measurement is bypassed instead of
815 * oversampling set to x1.
816 *
817 * To account for this difference, and preserve the same common
818 * config logic, this is handled later on chip_config callback
819 * incrementing one unit the oversampling setting.
820 */
821 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
822
823 .oversampling_press_avail = bmp280_oversampling_avail,
824 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
825 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
826
827 .chip_config = bmp280_chip_config,
828 .read_temp = bmp280_read_temp,
829 .read_press = bmp280_read_press,
830 .read_calib = bmp280_read_calib,
831};
832EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280);
833
834static int bme280_chip_config(struct bmp280_data *data)
835{
836 u8 osrs = FIELD_PREP(BMP280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1);
837 int ret;
838
839 /*
840 * Oversampling of humidity must be set before oversampling of
841 * temperature/pressure is set to become effective.
842 */
843 ret = regmap_update_bits(map: data->regmap, BMP280_REG_CTRL_HUMIDITY,
844 BMP280_OSRS_HUMIDITY_MASK, val: osrs);
845
846 if (ret < 0)
847 return ret;
848
849 return bmp280_chip_config(data);
850}
851
852static const u8 bme280_chip_ids[] = { BME280_CHIP_ID };
853
854const struct bmp280_chip_info bme280_chip_info = {
855 .id_reg = BMP280_REG_ID,
856 .chip_id = bme280_chip_ids,
857 .num_chip_id = ARRAY_SIZE(bme280_chip_ids),
858 .regmap_config = &bmp280_regmap_config,
859 .start_up_time = 2000,
860 .channels = bmp280_channels,
861 .num_channels = 3,
862
863 .oversampling_temp_avail = bmp280_oversampling_avail,
864 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
865 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
866
867 .oversampling_press_avail = bmp280_oversampling_avail,
868 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
869 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
870
871 .oversampling_humid_avail = bmp280_oversampling_avail,
872 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
873 .oversampling_humid_default = BMP280_OSRS_HUMIDITY_16X - 1,
874
875 .chip_config = bme280_chip_config,
876 .read_temp = bmp280_read_temp,
877 .read_press = bmp280_read_press,
878 .read_humid = bmp280_read_humid,
879 .read_calib = bme280_read_calib,
880};
881EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280);
882
883/*
884 * Helper function to send a command to BMP3XX sensors.
885 *
886 * Sensor processes commands written to the CMD register and signals
887 * execution result through "cmd_rdy" and "cmd_error" flags available on
888 * STATUS and ERROR registers.
889 */
890static int bmp380_cmd(struct bmp280_data *data, u8 cmd)
891{
892 unsigned int reg;
893 int ret;
894
895 /* Check if device is ready to process a command */
896 ret = regmap_read(map: data->regmap, BMP380_REG_STATUS, val: &reg);
897 if (ret) {
898 dev_err(data->dev, "failed to read error register\n");
899 return ret;
900 }
901 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) {
902 dev_err(data->dev, "device is not ready to accept commands\n");
903 return -EBUSY;
904 }
905
906 /* Send command to process */
907 ret = regmap_write(map: data->regmap, BMP380_REG_CMD, val: cmd);
908 if (ret) {
909 dev_err(data->dev, "failed to send command to device\n");
910 return ret;
911 }
912 /* Wait for 2ms for command to be processed */
913 usleep_range(min: data->start_up_time, max: data->start_up_time + 100);
914 /* Check for command processing error */
915 ret = regmap_read(map: data->regmap, BMP380_REG_ERROR, val: &reg);
916 if (ret) {
917 dev_err(data->dev, "error reading ERROR reg\n");
918 return ret;
919 }
920 if (reg & BMP380_ERR_CMD_MASK) {
921 dev_err(data->dev, "error processing command 0x%X\n", cmd);
922 return -EINVAL;
923 }
924
925 return 0;
926}
927
928/*
929 * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value of
930 * "5123" equals 51.2º C. t_fine carries fine temperature as global value.
931 *
932 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo
933 * https://github.com/BoschSensortec/BMP3-Sensor-API.
934 */
935static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp)
936{
937 s64 var1, var2, var3, var4, var5, var6, comp_temp;
938 struct bmp380_calib *calib = &data->calib.bmp380;
939
940 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8);
941 var2 = var1 * ((s64) calib->T2);
942 var3 = var1 * var1;
943 var4 = var3 * ((s64) calib->T3);
944 var5 = (var2 << 18) + var4;
945 var6 = var5 >> 32;
946 data->t_fine = (s32) var6;
947 comp_temp = (var6 * 25) >> 14;
948
949 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP);
950 return (s32) comp_temp;
951}
952
953/*
954 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal.
955 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa.
956 *
957 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository
958 * https://github.com/BoschSensortec/BMP3-Sensor-API.
959 */
960static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press)
961{
962 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity;
963 struct bmp380_calib *calib = &data->calib.bmp380;
964 u32 comp_press;
965
966 var1 = (s64)data->t_fine * (s64)data->t_fine;
967 var2 = var1 >> 6;
968 var3 = (var2 * ((s64) data->t_fine)) >> 8;
969 var4 = ((s64)calib->P8 * var3) >> 5;
970 var5 = ((s64)calib->P7 * var1) << 4;
971 var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22;
972 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6;
973 var2 = ((s64)calib->P4 * var3) >> 5;
974 var4 = ((s64)calib->P3 * var1) << 2;
975 var5 = ((s64)calib->P2 - ((s64)1 << 14)) *
976 ((s64)data->t_fine << 21);
977 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) +
978 var2 + var4 + var5;
979 var1 = (sensitivity >> 24) * (s64)adc_press;
980 var2 = (s64)calib->P10 * (s64)data->t_fine;
981 var3 = var2 + ((s64)calib->P9 << 16);
982 var4 = (var3 * (s64)adc_press) >> 13;
983
984 /*
985 * Dividing by 10 followed by multiplying by 10 to avoid
986 * possible overflow caused by (uncomp_data->pressure * partial_data4).
987 */
988 var5 = ((s64)adc_press * div_s64(dividend: var4, divisor: 10)) >> 9;
989 var5 *= 10;
990 var6 = (s64)adc_press * (s64)adc_press;
991 var2 = ((s64)calib->P11 * var6) >> 16;
992 var3 = (var2 * (s64)adc_press) >> 7;
993 var4 = (offset >> 2) + var1 + var5 + var3;
994 comp_press = ((u64)var4 * 25) >> 40;
995
996 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES);
997 return comp_press;
998}
999
1000static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2)
1001{
1002 s32 comp_temp;
1003 u32 adc_temp;
1004 int ret;
1005
1006 ret = regmap_bulk_read(map: data->regmap, BMP380_REG_TEMP_XLSB,
1007 val: data->buf, val_count: sizeof(data->buf));
1008 if (ret) {
1009 dev_err(data->dev, "failed to read temperature\n");
1010 return ret;
1011 }
1012
1013 adc_temp = get_unaligned_le24(p: data->buf);
1014 if (adc_temp == BMP380_TEMP_SKIPPED) {
1015 dev_err(data->dev, "reading temperature skipped\n");
1016 return -EIO;
1017 }
1018 comp_temp = bmp380_compensate_temp(data, adc_temp);
1019
1020 /*
1021 * Val might be NULL if we're called by the read_press routine,
1022 * who only cares about the carry over t_fine value.
1023 */
1024 if (val) {
1025 /* IIO reports temperatures in milli Celsius */
1026 *val = comp_temp * 10;
1027 return IIO_VAL_INT;
1028 }
1029
1030 return 0;
1031}
1032
1033static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2)
1034{
1035 s32 comp_press;
1036 u32 adc_press;
1037 int ret;
1038
1039 /* Read and compensate for temperature so we get a reading of t_fine */
1040 ret = bmp380_read_temp(data, NULL, NULL);
1041 if (ret)
1042 return ret;
1043
1044 ret = regmap_bulk_read(map: data->regmap, BMP380_REG_PRESS_XLSB,
1045 val: data->buf, val_count: sizeof(data->buf));
1046 if (ret) {
1047 dev_err(data->dev, "failed to read pressure\n");
1048 return ret;
1049 }
1050
1051 adc_press = get_unaligned_le24(p: data->buf);
1052 if (adc_press == BMP380_PRESS_SKIPPED) {
1053 dev_err(data->dev, "reading pressure skipped\n");
1054 return -EIO;
1055 }
1056 comp_press = bmp380_compensate_press(data, adc_press);
1057
1058 *val = comp_press;
1059 /* Compensated pressure is in cPa (centipascals) */
1060 *val2 = 100000;
1061
1062 return IIO_VAL_FRACTIONAL;
1063}
1064
1065static int bmp380_read_calib(struct bmp280_data *data)
1066{
1067 struct bmp380_calib *calib = &data->calib.bmp380;
1068 int ret;
1069
1070 /* Read temperature and pressure calibration data */
1071 ret = regmap_bulk_read(map: data->regmap, BMP380_REG_CALIB_TEMP_START,
1072 val: data->bmp380_cal_buf, val_count: sizeof(data->bmp380_cal_buf));
1073 if (ret) {
1074 dev_err(data->dev,
1075 "failed to read temperature calibration parameters\n");
1076 return ret;
1077 }
1078
1079 /* Toss the temperature calibration data into the entropy pool */
1080 add_device_randomness(buf: data->bmp380_cal_buf, len: sizeof(data->bmp380_cal_buf));
1081
1082 /* Parse calibration values */
1083 calib->T1 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_T1]);
1084 calib->T2 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_T2]);
1085 calib->T3 = data->bmp380_cal_buf[BMP380_T3];
1086 calib->P1 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P1]);
1087 calib->P2 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P2]);
1088 calib->P3 = data->bmp380_cal_buf[BMP380_P3];
1089 calib->P4 = data->bmp380_cal_buf[BMP380_P4];
1090 calib->P5 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P5]);
1091 calib->P6 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P6]);
1092 calib->P7 = data->bmp380_cal_buf[BMP380_P7];
1093 calib->P8 = data->bmp380_cal_buf[BMP380_P8];
1094 calib->P9 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P9]);
1095 calib->P10 = data->bmp380_cal_buf[BMP380_P10];
1096 calib->P11 = data->bmp380_cal_buf[BMP380_P11];
1097
1098 return 0;
1099}
1100
1101static const int bmp380_odr_table[][2] = {
1102 [BMP380_ODR_200HZ] = {200, 0},
1103 [BMP380_ODR_100HZ] = {100, 0},
1104 [BMP380_ODR_50HZ] = {50, 0},
1105 [BMP380_ODR_25HZ] = {25, 0},
1106 [BMP380_ODR_12_5HZ] = {12, 500000},
1107 [BMP380_ODR_6_25HZ] = {6, 250000},
1108 [BMP380_ODR_3_125HZ] = {3, 125000},
1109 [BMP380_ODR_1_5625HZ] = {1, 562500},
1110 [BMP380_ODR_0_78HZ] = {0, 781250},
1111 [BMP380_ODR_0_39HZ] = {0, 390625},
1112 [BMP380_ODR_0_2HZ] = {0, 195313},
1113 [BMP380_ODR_0_1HZ] = {0, 97656},
1114 [BMP380_ODR_0_05HZ] = {0, 48828},
1115 [BMP380_ODR_0_02HZ] = {0, 24414},
1116 [BMP380_ODR_0_01HZ] = {0, 12207},
1117 [BMP380_ODR_0_006HZ] = {0, 6104},
1118 [BMP380_ODR_0_003HZ] = {0, 3052},
1119 [BMP380_ODR_0_0015HZ] = {0, 1526},
1120};
1121
1122static int bmp380_preinit(struct bmp280_data *data)
1123{
1124 /* BMP3xx requires soft-reset as part of initialization */
1125 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET);
1126}
1127
1128static int bmp380_chip_config(struct bmp280_data *data)
1129{
1130 bool change = false, aux;
1131 unsigned int tmp;
1132 u8 osrs;
1133 int ret;
1134
1135 /* Configure power control register */
1136 ret = regmap_update_bits(map: data->regmap, BMP380_REG_POWER_CONTROL,
1137 BMP380_CTRL_SENSORS_MASK,
1138 BMP380_CTRL_SENSORS_PRESS_EN |
1139 BMP380_CTRL_SENSORS_TEMP_EN);
1140 if (ret) {
1141 dev_err(data->dev,
1142 "failed to write operation control register\n");
1143 return ret;
1144 }
1145
1146 /* Configure oversampling */
1147 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) |
1148 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press);
1149
1150 ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_OSR,
1151 BMP380_OSRS_TEMP_MASK |
1152 BMP380_OSRS_PRESS_MASK,
1153 val: osrs, change: &aux);
1154 if (ret) {
1155 dev_err(data->dev, "failed to write oversampling register\n");
1156 return ret;
1157 }
1158 change = change || aux;
1159
1160 /* Configure output data rate */
1161 ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_ODR,
1162 BMP380_ODRS_MASK, val: data->sampling_freq, change: &aux);
1163 if (ret) {
1164 dev_err(data->dev, "failed to write ODR selection register\n");
1165 return ret;
1166 }
1167 change = change || aux;
1168
1169 /* Set filter data */
1170 ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK,
1171 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff),
1172 change: &aux);
1173 if (ret) {
1174 dev_err(data->dev, "failed to write config register\n");
1175 return ret;
1176 }
1177 change = change || aux;
1178
1179 if (change) {
1180 /*
1181 * The configurations errors are detected on the fly during a measurement
1182 * cycle. If the sampling frequency is too low, it's faster to reset
1183 * the measurement loop than wait until the next measurement is due.
1184 *
1185 * Resets sensor measurement loop toggling between sleep and normal
1186 * operating modes.
1187 */
1188 ret = regmap_write_bits(map: data->regmap, BMP380_REG_POWER_CONTROL,
1189 BMP380_MODE_MASK,
1190 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP));
1191 if (ret) {
1192 dev_err(data->dev, "failed to set sleep mode\n");
1193 return ret;
1194 }
1195 usleep_range(min: 2000, max: 2500);
1196 ret = regmap_write_bits(map: data->regmap, BMP380_REG_POWER_CONTROL,
1197 BMP380_MODE_MASK,
1198 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL));
1199 if (ret) {
1200 dev_err(data->dev, "failed to set normal mode\n");
1201 return ret;
1202 }
1203 /*
1204 * Waits for measurement before checking configuration error flag.
1205 * Selected longest measure time indicated in section 3.9.1
1206 * in the datasheet.
1207 */
1208 msleep(msecs: 80);
1209
1210 /* Check config error flag */
1211 ret = regmap_read(map: data->regmap, BMP380_REG_ERROR, val: &tmp);
1212 if (ret) {
1213 dev_err(data->dev,
1214 "failed to read error register\n");
1215 return ret;
1216 }
1217 if (tmp & BMP380_ERR_CONF_MASK) {
1218 dev_warn(data->dev,
1219 "sensor flagged configuration as incompatible\n");
1220 return -EINVAL;
1221 }
1222 }
1223
1224 return 0;
1225}
1226
1227static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 };
1228static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128};
1229static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID };
1230
1231const struct bmp280_chip_info bmp380_chip_info = {
1232 .id_reg = BMP380_REG_ID,
1233 .chip_id = bmp380_chip_ids,
1234 .num_chip_id = ARRAY_SIZE(bmp380_chip_ids),
1235 .regmap_config = &bmp380_regmap_config,
1236 .start_up_time = 2000,
1237 .channels = bmp380_channels,
1238 .num_channels = 2,
1239
1240 .oversampling_temp_avail = bmp380_oversampling_avail,
1241 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1242 .oversampling_temp_default = ilog2(1),
1243
1244 .oversampling_press_avail = bmp380_oversampling_avail,
1245 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1246 .oversampling_press_default = ilog2(4),
1247
1248 .sampling_freq_avail = bmp380_odr_table,
1249 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2,
1250 .sampling_freq_default = BMP380_ODR_50HZ,
1251
1252 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1253 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1254 .iir_filter_coeff_default = 2,
1255
1256 .chip_config = bmp380_chip_config,
1257 .read_temp = bmp380_read_temp,
1258 .read_press = bmp380_read_press,
1259 .read_calib = bmp380_read_calib,
1260 .preinit = bmp380_preinit,
1261};
1262EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280);
1263
1264static int bmp580_soft_reset(struct bmp280_data *data)
1265{
1266 unsigned int reg;
1267 int ret;
1268
1269 ret = regmap_write(map: data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET);
1270 if (ret) {
1271 dev_err(data->dev, "failed to send reset command to device\n");
1272 return ret;
1273 }
1274 usleep_range(min: 2000, max: 2500);
1275
1276 /* Dummy read of chip_id */
1277 ret = regmap_read(map: data->regmap, BMP580_REG_CHIP_ID, val: &reg);
1278 if (ret) {
1279 dev_err(data->dev, "failed to reestablish comms after reset\n");
1280 return ret;
1281 }
1282
1283 ret = regmap_read(map: data->regmap, BMP580_REG_INT_STATUS, val: &reg);
1284 if (ret) {
1285 dev_err(data->dev, "error reading interrupt status register\n");
1286 return ret;
1287 }
1288 if (!(reg & BMP580_INT_STATUS_POR_MASK)) {
1289 dev_err(data->dev, "error resetting sensor\n");
1290 return -EINVAL;
1291 }
1292
1293 return 0;
1294}
1295
1296/**
1297 * bmp580_nvm_operation() - Helper function to commit NVM memory operations
1298 * @data: sensor data struct
1299 * @is_write: flag to signal write operation
1300 */
1301static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write)
1302{
1303 unsigned long timeout, poll;
1304 unsigned int reg;
1305 int ret;
1306
1307 /* Check NVM ready flag */
1308 ret = regmap_read(map: data->regmap, BMP580_REG_STATUS, val: &reg);
1309 if (ret) {
1310 dev_err(data->dev, "failed to check nvm status\n");
1311 return ret;
1312 }
1313 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) {
1314 dev_err(data->dev, "sensor's nvm is not ready\n");
1315 return -EIO;
1316 }
1317
1318 /* Start NVM operation sequence */
1319 ret = regmap_write(map: data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_OP_SEQ_0);
1320 if (ret) {
1321 dev_err(data->dev, "failed to send nvm operation's first sequence\n");
1322 return ret;
1323 }
1324 if (is_write) {
1325 /* Send NVM write sequence */
1326 ret = regmap_write(map: data->regmap, BMP580_REG_CMD,
1327 BMP580_CMD_NVM_WRITE_SEQ_1);
1328 if (ret) {
1329 dev_err(data->dev, "failed to send nvm write sequence\n");
1330 return ret;
1331 }
1332 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */
1333 poll = 2000;
1334 timeout = 12000;
1335 } else {
1336 /* Send NVM read sequence */
1337 ret = regmap_write(map: data->regmap, BMP580_REG_CMD,
1338 BMP580_CMD_NVM_READ_SEQ_1);
1339 if (ret) {
1340 dev_err(data->dev, "failed to send nvm read sequence\n");
1341 return ret;
1342 }
1343 /* Datasheet says on 4.8.1.1 it takes approximately 200us */
1344 poll = 50;
1345 timeout = 400;
1346 }
1347 if (ret) {
1348 dev_err(data->dev, "failed to write command sequence\n");
1349 return -EIO;
1350 }
1351
1352 /* Wait until NVM is ready again */
1353 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg,
1354 (reg & BMP580_STATUS_NVM_RDY_MASK),
1355 poll, timeout);
1356 if (ret) {
1357 dev_err(data->dev, "error checking nvm operation status\n");
1358 return ret;
1359 }
1360
1361 /* Check NVM error flags */
1362 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) {
1363 dev_err(data->dev, "error processing nvm operation\n");
1364 return -EIO;
1365 }
1366
1367 return 0;
1368}
1369
1370/*
1371 * Contrary to previous sensors families, compensation algorithm is builtin.
1372 * We are only required to read the register raw data and adapt the ranges
1373 * for what is expected on IIO ABI.
1374 */
1375
1376static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2)
1377{
1378 s32 raw_temp;
1379 int ret;
1380
1381 ret = regmap_bulk_read(map: data->regmap, BMP580_REG_TEMP_XLSB, val: data->buf,
1382 val_count: sizeof(data->buf));
1383 if (ret) {
1384 dev_err(data->dev, "failed to read temperature\n");
1385 return ret;
1386 }
1387
1388 raw_temp = get_unaligned_le24(p: data->buf);
1389 if (raw_temp == BMP580_TEMP_SKIPPED) {
1390 dev_err(data->dev, "reading temperature skipped\n");
1391 return -EIO;
1392 }
1393
1394 /*
1395 * Temperature is returned in Celsius degrees in fractional
1396 * form down 2^16. We rescale by x1000 to return milli Celsius
1397 * to respect IIO ABI.
1398 */
1399 *val = raw_temp * 1000;
1400 *val2 = 16;
1401 return IIO_VAL_FRACTIONAL_LOG2;
1402}
1403
1404static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2)
1405{
1406 u32 raw_press;
1407 int ret;
1408
1409 ret = regmap_bulk_read(map: data->regmap, BMP580_REG_PRESS_XLSB, val: data->buf,
1410 val_count: sizeof(data->buf));
1411 if (ret) {
1412 dev_err(data->dev, "failed to read pressure\n");
1413 return ret;
1414 }
1415
1416 raw_press = get_unaligned_le24(p: data->buf);
1417 if (raw_press == BMP580_PRESS_SKIPPED) {
1418 dev_err(data->dev, "reading pressure skipped\n");
1419 return -EIO;
1420 }
1421 /*
1422 * Pressure is returned in Pascals in fractional form down 2^16.
1423 * We rescale /1000 to convert to kilopascal to respect IIO ABI.
1424 */
1425 *val = raw_press;
1426 *val2 = 64000; /* 2^6 * 1000 */
1427 return IIO_VAL_FRACTIONAL;
1428}
1429
1430static const int bmp580_odr_table[][2] = {
1431 [BMP580_ODR_240HZ] = {240, 0},
1432 [BMP580_ODR_218HZ] = {218, 0},
1433 [BMP580_ODR_199HZ] = {199, 0},
1434 [BMP580_ODR_179HZ] = {179, 0},
1435 [BMP580_ODR_160HZ] = {160, 0},
1436 [BMP580_ODR_149HZ] = {149, 0},
1437 [BMP580_ODR_140HZ] = {140, 0},
1438 [BMP580_ODR_129HZ] = {129, 0},
1439 [BMP580_ODR_120HZ] = {120, 0},
1440 [BMP580_ODR_110HZ] = {110, 0},
1441 [BMP580_ODR_100HZ] = {100, 0},
1442 [BMP580_ODR_89HZ] = {89, 0},
1443 [BMP580_ODR_80HZ] = {80, 0},
1444 [BMP580_ODR_70HZ] = {70, 0},
1445 [BMP580_ODR_60HZ] = {60, 0},
1446 [BMP580_ODR_50HZ] = {50, 0},
1447 [BMP580_ODR_45HZ] = {45, 0},
1448 [BMP580_ODR_40HZ] = {40, 0},
1449 [BMP580_ODR_35HZ] = {35, 0},
1450 [BMP580_ODR_30HZ] = {30, 0},
1451 [BMP580_ODR_25HZ] = {25, 0},
1452 [BMP580_ODR_20HZ] = {20, 0},
1453 [BMP580_ODR_15HZ] = {15, 0},
1454 [BMP580_ODR_10HZ] = {10, 0},
1455 [BMP580_ODR_5HZ] = {5, 0},
1456 [BMP580_ODR_4HZ] = {4, 0},
1457 [BMP580_ODR_3HZ] = {3, 0},
1458 [BMP580_ODR_2HZ] = {2, 0},
1459 [BMP580_ODR_1HZ] = {1, 0},
1460 [BMP580_ODR_0_5HZ] = {0, 500000},
1461 [BMP580_ODR_0_25HZ] = {0, 250000},
1462 [BMP580_ODR_0_125HZ] = {0, 125000},
1463};
1464
1465static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 };
1466
1467static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val,
1468 size_t bytes)
1469{
1470 struct bmp280_data *data = priv;
1471 u16 *dst = val;
1472 int ret, addr;
1473
1474 pm_runtime_get_sync(dev: data->dev);
1475 mutex_lock(&data->lock);
1476
1477 /* Set sensor in standby mode */
1478 ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG,
1479 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1480 BMP580_ODR_DEEPSLEEP_DIS |
1481 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1482 if (ret) {
1483 dev_err(data->dev, "failed to change sensor to standby mode\n");
1484 goto exit;
1485 }
1486 /* Wait standby transition time */
1487 usleep_range(min: 2500, max: 3000);
1488
1489 while (bytes >= sizeof(*dst)) {
1490 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)];
1491
1492 ret = regmap_write(map: data->regmap, BMP580_REG_NVM_ADDR,
1493 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1494 if (ret) {
1495 dev_err(data->dev, "error writing nvm address\n");
1496 goto exit;
1497 }
1498
1499 ret = bmp580_nvm_operation(data, is_write: false);
1500 if (ret)
1501 goto exit;
1502
1503 ret = regmap_bulk_read(map: data->regmap, BMP580_REG_NVM_DATA_LSB, val: &data->le16,
1504 val_count: sizeof(data->le16));
1505 if (ret) {
1506 dev_err(data->dev, "error reading nvm data regs\n");
1507 goto exit;
1508 }
1509
1510 *dst++ = le16_to_cpu(data->le16);
1511 bytes -= sizeof(*dst);
1512 offset += sizeof(*dst);
1513 }
1514exit:
1515 /* Restore chip config */
1516 data->chip_info->chip_config(data);
1517 mutex_unlock(lock: &data->lock);
1518 pm_runtime_mark_last_busy(dev: data->dev);
1519 pm_runtime_put_autosuspend(dev: data->dev);
1520 return ret;
1521}
1522
1523static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val,
1524 size_t bytes)
1525{
1526 struct bmp280_data *data = priv;
1527 u16 *buf = val;
1528 int ret, addr;
1529
1530 pm_runtime_get_sync(dev: data->dev);
1531 mutex_lock(&data->lock);
1532
1533 /* Set sensor in standby mode */
1534 ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG,
1535 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1536 BMP580_ODR_DEEPSLEEP_DIS |
1537 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1538 if (ret) {
1539 dev_err(data->dev, "failed to change sensor to standby mode\n");
1540 goto exit;
1541 }
1542 /* Wait standby transition time */
1543 usleep_range(min: 2500, max: 3000);
1544
1545 while (bytes >= sizeof(*buf)) {
1546 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)];
1547
1548 ret = regmap_write(map: data->regmap, BMP580_REG_NVM_ADDR, BMP580_NVM_PROG_EN |
1549 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1550 if (ret) {
1551 dev_err(data->dev, "error writing nvm address\n");
1552 goto exit;
1553 }
1554 data->le16 = cpu_to_le16(*buf++);
1555
1556 ret = regmap_bulk_write(map: data->regmap, BMP580_REG_NVM_DATA_LSB, val: &data->le16,
1557 val_count: sizeof(data->le16));
1558 if (ret) {
1559 dev_err(data->dev, "error writing LSB NVM data regs\n");
1560 goto exit;
1561 }
1562
1563 ret = bmp580_nvm_operation(data, is_write: true);
1564 if (ret)
1565 goto exit;
1566
1567 /* Disable programming mode bit */
1568 ret = regmap_update_bits(map: data->regmap, BMP580_REG_NVM_ADDR,
1569 BMP580_NVM_PROG_EN, val: 0);
1570 if (ret) {
1571 dev_err(data->dev, "error resetting nvm write\n");
1572 goto exit;
1573 }
1574
1575 bytes -= sizeof(*buf);
1576 offset += sizeof(*buf);
1577 }
1578exit:
1579 /* Restore chip config */
1580 data->chip_info->chip_config(data);
1581 mutex_unlock(lock: &data->lock);
1582 pm_runtime_mark_last_busy(dev: data->dev);
1583 pm_runtime_put_autosuspend(dev: data->dev);
1584 return ret;
1585}
1586
1587static int bmp580_preinit(struct bmp280_data *data)
1588{
1589 struct nvmem_config config = {
1590 .dev = data->dev,
1591 .priv = data,
1592 .name = "bmp580_nvmem",
1593 .word_size = sizeof(u16),
1594 .stride = sizeof(u16),
1595 .size = 3 * sizeof(u16),
1596 .reg_read = bmp580_nvmem_read,
1597 .reg_write = bmp580_nvmem_write,
1598 };
1599 unsigned int reg;
1600 int ret;
1601
1602 /* Issue soft-reset command */
1603 ret = bmp580_soft_reset(data);
1604 if (ret)
1605 return ret;
1606
1607 /* Post powerup sequence */
1608 ret = regmap_read(map: data->regmap, BMP580_REG_CHIP_ID, val: &reg);
1609 if (ret)
1610 return ret;
1611
1612 /* Print warn message if we don't know the chip id */
1613 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT)
1614 dev_warn(data->dev, "preinit: unexpected chip_id\n");
1615
1616 ret = regmap_read(map: data->regmap, BMP580_REG_STATUS, val: &reg);
1617 if (ret)
1618 return ret;
1619
1620 /* Check nvm status */
1621 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) {
1622 dev_err(data->dev, "preinit: nvm error on powerup sequence\n");
1623 return -EIO;
1624 }
1625
1626 /* Register nvmem device */
1627 return PTR_ERR_OR_ZERO(ptr: devm_nvmem_register(dev: config.dev, cfg: &config));
1628}
1629
1630static int bmp580_chip_config(struct bmp280_data *data)
1631{
1632 bool change = false, aux;
1633 unsigned int tmp;
1634 u8 reg_val;
1635 int ret;
1636
1637 /* Sets sensor in standby mode */
1638 ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG,
1639 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1640 BMP580_ODR_DEEPSLEEP_DIS |
1641 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1642 if (ret) {
1643 dev_err(data->dev, "failed to change sensor to standby mode\n");
1644 return ret;
1645 }
1646 /* From datasheet's table 4: electrical characteristics */
1647 usleep_range(min: 2500, max: 3000);
1648
1649 /* Set default DSP mode settings */
1650 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) |
1651 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN;
1652
1653 ret = regmap_update_bits(map: data->regmap, BMP580_REG_DSP_CONFIG,
1654 BMP580_DSP_COMP_MASK |
1655 BMP580_DSP_SHDW_IIR_TEMP_EN |
1656 BMP580_DSP_SHDW_IIR_PRESS_EN, val: reg_val);
1657
1658 /* Configure oversampling */
1659 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) |
1660 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) |
1661 BMP580_OSR_PRESS_EN;
1662
1663 ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_OSR_CONFIG,
1664 BMP580_OSR_TEMP_MASK | BMP580_OSR_PRESS_MASK |
1665 BMP580_OSR_PRESS_EN,
1666 val: reg_val, change: &aux);
1667 if (ret) {
1668 dev_err(data->dev, "failed to write oversampling register\n");
1669 return ret;
1670 }
1671 change = change || aux;
1672
1673 /* Configure output data rate */
1674 ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK,
1675 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq),
1676 change: &aux);
1677 if (ret) {
1678 dev_err(data->dev, "failed to write ODR configuration register\n");
1679 return ret;
1680 }
1681 change = change || aux;
1682
1683 /* Set filter data */
1684 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) |
1685 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff);
1686
1687 ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_DSP_IIR,
1688 BMP580_DSP_IIR_PRESS_MASK |
1689 BMP580_DSP_IIR_TEMP_MASK,
1690 val: reg_val, change: &aux);
1691 if (ret) {
1692 dev_err(data->dev, "failed to write config register\n");
1693 return ret;
1694 }
1695 change = change || aux;
1696
1697 /* Restore sensor to normal operation mode */
1698 ret = regmap_write_bits(map: data->regmap, BMP580_REG_ODR_CONFIG,
1699 BMP580_MODE_MASK,
1700 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL));
1701 if (ret) {
1702 dev_err(data->dev, "failed to set normal mode\n");
1703 return ret;
1704 }
1705 /* From datasheet's table 4: electrical characteristics */
1706 usleep_range(min: 3000, max: 3500);
1707
1708 if (change) {
1709 /*
1710 * Check if ODR and OSR settings are valid or we are
1711 * operating in a degraded mode.
1712 */
1713 ret = regmap_read(map: data->regmap, BMP580_REG_EFF_OSR, val: &tmp);
1714 if (ret) {
1715 dev_err(data->dev, "error reading effective OSR register\n");
1716 return ret;
1717 }
1718 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) {
1719 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n");
1720 /* Set current OSR settings from data on effective OSR */
1721 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp);
1722 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp);
1723 return -EINVAL;
1724 }
1725 }
1726
1727 return 0;
1728}
1729
1730static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 };
1731static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT };
1732
1733const struct bmp280_chip_info bmp580_chip_info = {
1734 .id_reg = BMP580_REG_CHIP_ID,
1735 .chip_id = bmp580_chip_ids,
1736 .num_chip_id = ARRAY_SIZE(bmp580_chip_ids),
1737 .regmap_config = &bmp580_regmap_config,
1738 .start_up_time = 2000,
1739 .channels = bmp380_channels,
1740 .num_channels = 2,
1741
1742 .oversampling_temp_avail = bmp580_oversampling_avail,
1743 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1744 .oversampling_temp_default = ilog2(1),
1745
1746 .oversampling_press_avail = bmp580_oversampling_avail,
1747 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1748 .oversampling_press_default = ilog2(4),
1749
1750 .sampling_freq_avail = bmp580_odr_table,
1751 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2,
1752 .sampling_freq_default = BMP580_ODR_50HZ,
1753
1754 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1755 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1756 .iir_filter_coeff_default = 2,
1757
1758 .chip_config = bmp580_chip_config,
1759 .read_temp = bmp580_read_temp,
1760 .read_press = bmp580_read_press,
1761 .preinit = bmp580_preinit,
1762};
1763EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280);
1764
1765static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
1766{
1767 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
1768 unsigned int delay_us;
1769 unsigned int ctrl;
1770 int ret;
1771
1772 if (data->use_eoc)
1773 reinit_completion(x: &data->done);
1774
1775 ret = regmap_write(map: data->regmap, BMP280_REG_CTRL_MEAS, val: ctrl_meas);
1776 if (ret)
1777 return ret;
1778
1779 if (data->use_eoc) {
1780 /*
1781 * If we have a completion interrupt, use it, wait up to
1782 * 100ms. The longest conversion time listed is 76.5 ms for
1783 * advanced resolution mode.
1784 */
1785 ret = wait_for_completion_timeout(x: &data->done,
1786 timeout: 1 + msecs_to_jiffies(m: 100));
1787 if (!ret)
1788 dev_err(data->dev, "timeout waiting for completion\n");
1789 } else {
1790 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP)
1791 delay_us = 4500;
1792 else
1793 delay_us =
1794 conversion_time_max[data->oversampling_press];
1795
1796 usleep_range(min: delay_us, max: delay_us + 1000);
1797 }
1798
1799 ret = regmap_read(map: data->regmap, BMP280_REG_CTRL_MEAS, val: &ctrl);
1800 if (ret)
1801 return ret;
1802
1803 /* The value of this bit reset to "0" after conversion is complete */
1804 if (ctrl & BMP180_MEAS_SCO)
1805 return -EIO;
1806
1807 return 0;
1808}
1809
1810static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
1811{
1812 int ret;
1813
1814 ret = bmp180_measure(data,
1815 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) |
1816 BMP180_MEAS_SCO);
1817 if (ret)
1818 return ret;
1819
1820 ret = regmap_bulk_read(map: data->regmap, BMP180_REG_OUT_MSB,
1821 val: &data->be16, val_count: sizeof(data->be16));
1822 if (ret)
1823 return ret;
1824
1825 *val = be16_to_cpu(data->be16);
1826
1827 return 0;
1828}
1829
1830static int bmp180_read_calib(struct bmp280_data *data)
1831{
1832 struct bmp180_calib *calib = &data->calib.bmp180;
1833 int ret;
1834 int i;
1835
1836 ret = regmap_bulk_read(map: data->regmap, BMP180_REG_CALIB_START,
1837 val: data->bmp180_cal_buf, val_count: sizeof(data->bmp180_cal_buf));
1838
1839 if (ret < 0)
1840 return ret;
1841
1842 /* None of the words has the value 0 or 0xFFFF */
1843 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) {
1844 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) ||
1845 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff))
1846 return -EIO;
1847 }
1848
1849 /* Toss the calibration data into the entropy pool */
1850 add_device_randomness(buf: data->bmp180_cal_buf, len: sizeof(data->bmp180_cal_buf));
1851
1852 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]);
1853 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]);
1854 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]);
1855 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]);
1856 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]);
1857 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]);
1858 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]);
1859 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]);
1860 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]);
1861 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]);
1862 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]);
1863
1864 return 0;
1865}
1866
1867/*
1868 * Returns temperature in DegC, resolution is 0.1 DegC.
1869 * t_fine carries fine temperature as global value.
1870 *
1871 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1872 */
1873static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
1874{
1875 struct bmp180_calib *calib = &data->calib.bmp180;
1876 s32 x1, x2;
1877
1878 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
1879 x2 = (calib->MC << 11) / (x1 + calib->MD);
1880 data->t_fine = x1 + x2;
1881
1882 return (data->t_fine + 8) >> 4;
1883}
1884
1885static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2)
1886{
1887 s32 adc_temp, comp_temp;
1888 int ret;
1889
1890 ret = bmp180_read_adc_temp(data, val: &adc_temp);
1891 if (ret)
1892 return ret;
1893
1894 comp_temp = bmp180_compensate_temp(data, adc_temp);
1895
1896 /*
1897 * val might be NULL if we're called by the read_press routine,
1898 * who only cares about the carry over t_fine value.
1899 */
1900 if (val) {
1901 *val = comp_temp * 100;
1902 return IIO_VAL_INT;
1903 }
1904
1905 return 0;
1906}
1907
1908static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
1909{
1910 u8 oss = data->oversampling_press;
1911 int ret;
1912
1913 ret = bmp180_measure(data,
1914 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) |
1915 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) |
1916 BMP180_MEAS_SCO);
1917 if (ret)
1918 return ret;
1919
1920 ret = regmap_bulk_read(map: data->regmap, BMP180_REG_OUT_MSB,
1921 val: data->buf, val_count: sizeof(data->buf));
1922 if (ret)
1923 return ret;
1924
1925 *val = get_unaligned_be24(p: data->buf) >> (8 - oss);
1926
1927 return 0;
1928}
1929
1930/*
1931 * Returns pressure in Pa, resolution is 1 Pa.
1932 *
1933 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1934 */
1935static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
1936{
1937 struct bmp180_calib *calib = &data->calib.bmp180;
1938 s32 oss = data->oversampling_press;
1939 s32 x1, x2, x3, p;
1940 s32 b3, b6;
1941 u32 b4, b7;
1942
1943 b6 = data->t_fine - 4000;
1944 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
1945 x2 = calib->AC2 * b6 >> 11;
1946 x3 = x1 + x2;
1947 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
1948 x1 = calib->AC3 * b6 >> 13;
1949 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
1950 x3 = (x1 + x2 + 2) >> 2;
1951 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
1952 b7 = ((u32)adc_press - b3) * (50000 >> oss);
1953 if (b7 < 0x80000000)
1954 p = (b7 * 2) / b4;
1955 else
1956 p = (b7 / b4) * 2;
1957
1958 x1 = (p >> 8) * (p >> 8);
1959 x1 = (x1 * 3038) >> 16;
1960 x2 = (-7357 * p) >> 16;
1961
1962 return p + ((x1 + x2 + 3791) >> 4);
1963}
1964
1965static int bmp180_read_press(struct bmp280_data *data,
1966 int *val, int *val2)
1967{
1968 u32 comp_press;
1969 s32 adc_press;
1970 int ret;
1971
1972 /* Read and compensate temperature so we get a reading of t_fine. */
1973 ret = bmp180_read_temp(data, NULL, NULL);
1974 if (ret)
1975 return ret;
1976
1977 ret = bmp180_read_adc_press(data, val: &adc_press);
1978 if (ret)
1979 return ret;
1980
1981 comp_press = bmp180_compensate_press(data, adc_press);
1982
1983 *val = comp_press;
1984 *val2 = 1000;
1985
1986 return IIO_VAL_FRACTIONAL;
1987}
1988
1989static int bmp180_chip_config(struct bmp280_data *data)
1990{
1991 return 0;
1992}
1993
1994static const int bmp180_oversampling_temp_avail[] = { 1 };
1995static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
1996static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID };
1997
1998const struct bmp280_chip_info bmp180_chip_info = {
1999 .id_reg = BMP280_REG_ID,
2000 .chip_id = bmp180_chip_ids,
2001 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids),
2002 .regmap_config = &bmp180_regmap_config,
2003 .start_up_time = 2000,
2004 .channels = bmp280_channels,
2005 .num_channels = 2,
2006
2007 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
2008 .num_oversampling_temp_avail =
2009 ARRAY_SIZE(bmp180_oversampling_temp_avail),
2010 .oversampling_temp_default = 0,
2011
2012 .oversampling_press_avail = bmp180_oversampling_press_avail,
2013 .num_oversampling_press_avail =
2014 ARRAY_SIZE(bmp180_oversampling_press_avail),
2015 .oversampling_press_default = BMP180_MEAS_PRESS_8X,
2016
2017 .chip_config = bmp180_chip_config,
2018 .read_temp = bmp180_read_temp,
2019 .read_press = bmp180_read_press,
2020 .read_calib = bmp180_read_calib,
2021};
2022EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280);
2023
2024static irqreturn_t bmp085_eoc_irq(int irq, void *d)
2025{
2026 struct bmp280_data *data = d;
2027
2028 complete(&data->done);
2029
2030 return IRQ_HANDLED;
2031}
2032
2033static int bmp085_fetch_eoc_irq(struct device *dev,
2034 const char *name,
2035 int irq,
2036 struct bmp280_data *data)
2037{
2038 unsigned long irq_trig;
2039 int ret;
2040
2041 irq_trig = irqd_get_trigger_type(d: irq_get_irq_data(irq));
2042 if (irq_trig != IRQF_TRIGGER_RISING) {
2043 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
2044 irq_trig = IRQF_TRIGGER_RISING;
2045 }
2046
2047 init_completion(x: &data->done);
2048
2049 ret = devm_request_threaded_irq(dev,
2050 irq,
2051 handler: bmp085_eoc_irq,
2052 NULL,
2053 irqflags: irq_trig,
2054 devname: name,
2055 dev_id: data);
2056 if (ret) {
2057 /* Bail out without IRQ but keep the driver in place */
2058 dev_err(dev, "unable to request DRDY IRQ\n");
2059 return 0;
2060 }
2061
2062 data->use_eoc = true;
2063 return 0;
2064}
2065
2066static void bmp280_pm_disable(void *data)
2067{
2068 struct device *dev = data;
2069
2070 pm_runtime_get_sync(dev);
2071 pm_runtime_put_noidle(dev);
2072 pm_runtime_disable(dev);
2073}
2074
2075static void bmp280_regulators_disable(void *data)
2076{
2077 struct regulator_bulk_data *supplies = data;
2078
2079 regulator_bulk_disable(BMP280_NUM_SUPPLIES, consumers: supplies);
2080}
2081
2082int bmp280_common_probe(struct device *dev,
2083 struct regmap *regmap,
2084 const struct bmp280_chip_info *chip_info,
2085 const char *name,
2086 int irq)
2087{
2088 struct iio_dev *indio_dev;
2089 struct bmp280_data *data;
2090 struct gpio_desc *gpiod;
2091 unsigned int chip_id;
2092 unsigned int i;
2093 int ret;
2094
2095 indio_dev = devm_iio_device_alloc(parent: dev, sizeof_priv: sizeof(*data));
2096 if (!indio_dev)
2097 return -ENOMEM;
2098
2099 data = iio_priv(indio_dev);
2100 mutex_init(&data->lock);
2101 data->dev = dev;
2102
2103 indio_dev->name = name;
2104 indio_dev->info = &bmp280_info;
2105 indio_dev->modes = INDIO_DIRECT_MODE;
2106
2107 data->chip_info = chip_info;
2108
2109 /* Apply initial values from chip info structure */
2110 indio_dev->channels = chip_info->channels;
2111 indio_dev->num_channels = chip_info->num_channels;
2112 data->oversampling_press = chip_info->oversampling_press_default;
2113 data->oversampling_humid = chip_info->oversampling_humid_default;
2114 data->oversampling_temp = chip_info->oversampling_temp_default;
2115 data->iir_filter_coeff = chip_info->iir_filter_coeff_default;
2116 data->sampling_freq = chip_info->sampling_freq_default;
2117 data->start_up_time = chip_info->start_up_time;
2118
2119 /* Bring up regulators */
2120 regulator_bulk_set_supply_names(consumers: data->supplies,
2121 supply_names: bmp280_supply_names,
2122 BMP280_NUM_SUPPLIES);
2123
2124 ret = devm_regulator_bulk_get(dev,
2125 BMP280_NUM_SUPPLIES, consumers: data->supplies);
2126 if (ret) {
2127 dev_err(dev, "failed to get regulators\n");
2128 return ret;
2129 }
2130
2131 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, consumers: data->supplies);
2132 if (ret) {
2133 dev_err(dev, "failed to enable regulators\n");
2134 return ret;
2135 }
2136
2137 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
2138 data->supplies);
2139 if (ret)
2140 return ret;
2141
2142 /* Wait to make sure we started up properly */
2143 usleep_range(min: data->start_up_time, max: data->start_up_time + 100);
2144
2145 /* Bring chip out of reset if there is an assigned GPIO line */
2146 gpiod = devm_gpiod_get_optional(dev, con_id: "reset", flags: GPIOD_OUT_HIGH);
2147 /* Deassert the signal */
2148 if (gpiod) {
2149 dev_info(dev, "release reset\n");
2150 gpiod_set_value(desc: gpiod, value: 0);
2151 }
2152
2153 data->regmap = regmap;
2154
2155 ret = regmap_read(map: regmap, reg: data->chip_info->id_reg, val: &chip_id);
2156 if (ret < 0)
2157 return ret;
2158
2159 for (i = 0; i < data->chip_info->num_chip_id; i++) {
2160 if (chip_id == data->chip_info->chip_id[i]) {
2161 dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name);
2162 break;
2163 }
2164 }
2165
2166 if (i == data->chip_info->num_chip_id)
2167 dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id);
2168
2169 if (data->chip_info->preinit) {
2170 ret = data->chip_info->preinit(data);
2171 if (ret)
2172 return dev_err_probe(dev: data->dev, err: ret,
2173 fmt: "error running preinit tasks\n");
2174 }
2175
2176 ret = data->chip_info->chip_config(data);
2177 if (ret < 0)
2178 return ret;
2179
2180 dev_set_drvdata(dev, data: indio_dev);
2181
2182 /*
2183 * Some chips have calibration parameters "programmed into the devices'
2184 * non-volatile memory during production". Let's read them out at probe
2185 * time once. They will not change.
2186 */
2187
2188 if (data->chip_info->read_calib) {
2189 ret = data->chip_info->read_calib(data);
2190 if (ret < 0)
2191 return dev_err_probe(dev: data->dev, err: ret,
2192 fmt: "failed to read calibration coefficients\n");
2193 }
2194
2195 /*
2196 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
2197 * however as it happens, the BMP085 shares the chip ID of BMP180
2198 * so we look for an IRQ if we have that.
2199 */
2200 if (irq > 0 && (chip_id == BMP180_CHIP_ID)) {
2201 ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
2202 if (ret)
2203 return ret;
2204 }
2205
2206 /* Enable runtime PM */
2207 pm_runtime_get_noresume(dev);
2208 pm_runtime_set_active(dev);
2209 pm_runtime_enable(dev);
2210 /*
2211 * Set autosuspend to two orders of magnitude larger than the
2212 * start-up time.
2213 */
2214 pm_runtime_set_autosuspend_delay(dev, delay: data->start_up_time / 10);
2215 pm_runtime_use_autosuspend(dev);
2216 pm_runtime_put(dev);
2217
2218 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
2219 if (ret)
2220 return ret;
2221
2222 return devm_iio_device_register(dev, indio_dev);
2223}
2224EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280);
2225
2226static int bmp280_runtime_suspend(struct device *dev)
2227{
2228 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2229 struct bmp280_data *data = iio_priv(indio_dev);
2230
2231 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, consumers: data->supplies);
2232}
2233
2234static int bmp280_runtime_resume(struct device *dev)
2235{
2236 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2237 struct bmp280_data *data = iio_priv(indio_dev);
2238 int ret;
2239
2240 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, consumers: data->supplies);
2241 if (ret)
2242 return ret;
2243 usleep_range(min: data->start_up_time, max: data->start_up_time + 100);
2244 return data->chip_info->chip_config(data);
2245}
2246
2247EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
2248 bmp280_runtime_resume, NULL);
2249
2250MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
2251MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
2252MODULE_LICENSE("GPL v2");
2253

source code of linux/drivers/iio/pressure/bmp280-core.c