1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com> |
4 | * Copyright (c) 2012 Bosch Sensortec GmbH |
5 | * Copyright (c) 2012 Unixphere AB |
6 | * Copyright (c) 2014 Intel Corporation |
7 | * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org> |
8 | * |
9 | * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. |
10 | * |
11 | * Datasheet: |
12 | * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf |
13 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf |
14 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf |
15 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf |
16 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf |
17 | * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf |
18 | * |
19 | * Sensor API: |
20 | * https://github.com/boschsensortec/BME280_SensorAPI |
21 | * https://github.com/boschsensortec/BMP3_SensorAPI |
22 | * https://github.com/boschsensortec/BMP5_SensorAPI |
23 | * |
24 | * Notice: |
25 | * The link to the bmp180 datasheet points to an outdated version missing these changes: |
26 | * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 |
27 | * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 |
28 | * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 |
29 | */ |
30 | |
31 | #define pr_fmt(fmt) "bmp280: " fmt |
32 | |
33 | #include <linux/bitops.h> |
34 | #include <linux/bitfield.h> |
35 | #include <linux/cleanup.h> |
36 | #include <linux/completion.h> |
37 | #include <linux/delay.h> |
38 | #include <linux/device.h> |
39 | #include <linux/gpio/consumer.h> |
40 | #include <linux/interrupt.h> |
41 | #include <linux/irq.h> /* For irq_get_irq_data() */ |
42 | #include <linux/module.h> |
43 | #include <linux/nvmem-provider.h> |
44 | #include <linux/pm_runtime.h> |
45 | #include <linux/property.h> |
46 | #include <linux/random.h> |
47 | #include <linux/regmap.h> |
48 | #include <linux/regulator/consumer.h> |
49 | #include <linux/types.h> |
50 | |
51 | #include <linux/iio/buffer.h> |
52 | #include <linux/iio/iio.h> |
53 | #include <linux/iio/trigger.h> |
54 | #include <linux/iio/trigger_consumer.h> |
55 | #include <linux/iio/triggered_buffer.h> |
56 | |
57 | #include <linux/unaligned.h> |
58 | |
59 | #include "bmp280.h" |
60 | |
61 | /* |
62 | * These enums are used for indexing into the array of calibration |
63 | * coefficients for BMP180. |
64 | */ |
65 | enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; |
66 | |
67 | enum bmp380_odr { |
68 | BMP380_ODR_200HZ, |
69 | BMP380_ODR_100HZ, |
70 | BMP380_ODR_50HZ, |
71 | BMP380_ODR_25HZ, |
72 | BMP380_ODR_12_5HZ, |
73 | BMP380_ODR_6_25HZ, |
74 | BMP380_ODR_3_125HZ, |
75 | BMP380_ODR_1_5625HZ, |
76 | BMP380_ODR_0_78HZ, |
77 | BMP380_ODR_0_39HZ, |
78 | BMP380_ODR_0_2HZ, |
79 | BMP380_ODR_0_1HZ, |
80 | BMP380_ODR_0_05HZ, |
81 | BMP380_ODR_0_02HZ, |
82 | BMP380_ODR_0_01HZ, |
83 | BMP380_ODR_0_006HZ, |
84 | BMP380_ODR_0_003HZ, |
85 | BMP380_ODR_0_0015HZ, |
86 | }; |
87 | |
88 | enum bmp580_odr { |
89 | BMP580_ODR_240HZ, |
90 | BMP580_ODR_218HZ, |
91 | BMP580_ODR_199HZ, |
92 | BMP580_ODR_179HZ, |
93 | BMP580_ODR_160HZ, |
94 | BMP580_ODR_149HZ, |
95 | BMP580_ODR_140HZ, |
96 | BMP580_ODR_129HZ, |
97 | BMP580_ODR_120HZ, |
98 | BMP580_ODR_110HZ, |
99 | BMP580_ODR_100HZ, |
100 | BMP580_ODR_89HZ, |
101 | BMP580_ODR_80HZ, |
102 | BMP580_ODR_70HZ, |
103 | BMP580_ODR_60HZ, |
104 | BMP580_ODR_50HZ, |
105 | BMP580_ODR_45HZ, |
106 | BMP580_ODR_40HZ, |
107 | BMP580_ODR_35HZ, |
108 | BMP580_ODR_30HZ, |
109 | BMP580_ODR_25HZ, |
110 | BMP580_ODR_20HZ, |
111 | BMP580_ODR_15HZ, |
112 | BMP580_ODR_10HZ, |
113 | BMP580_ODR_5HZ, |
114 | BMP580_ODR_4HZ, |
115 | BMP580_ODR_3HZ, |
116 | BMP580_ODR_2HZ, |
117 | BMP580_ODR_1HZ, |
118 | BMP580_ODR_0_5HZ, |
119 | BMP580_ODR_0_25HZ, |
120 | BMP580_ODR_0_125HZ, |
121 | }; |
122 | |
123 | /* |
124 | * These enums are used for indexing into the array of compensation |
125 | * parameters for BMP280. |
126 | */ |
127 | enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; |
128 | |
129 | enum { |
130 | /* Temperature calib indexes */ |
131 | BMP380_T1 = 0, |
132 | BMP380_T2 = 2, |
133 | BMP380_T3 = 4, |
134 | /* Pressure calib indexes */ |
135 | BMP380_P1 = 5, |
136 | BMP380_P2 = 7, |
137 | BMP380_P3 = 9, |
138 | BMP380_P4 = 10, |
139 | BMP380_P5 = 11, |
140 | BMP380_P6 = 13, |
141 | BMP380_P7 = 15, |
142 | BMP380_P8 = 16, |
143 | BMP380_P9 = 17, |
144 | BMP380_P10 = 19, |
145 | BMP380_P11 = 20, |
146 | }; |
147 | |
148 | enum bmp280_scan { |
149 | BMP280_PRESS, |
150 | BMP280_TEMP, |
151 | BME280_HUMID, |
152 | }; |
153 | |
154 | static const struct iio_chan_spec bmp280_channels[] = { |
155 | { |
156 | .type = IIO_PRESSURE, |
157 | /* PROCESSED maintained for ABI backwards compatibility */ |
158 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
159 | BIT(IIO_CHAN_INFO_RAW) | |
160 | BIT(IIO_CHAN_INFO_SCALE) | |
161 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
162 | .scan_index = 0, |
163 | .scan_type = { |
164 | .sign = 'u', |
165 | .realbits = 32, |
166 | .storagebits = 32, |
167 | .endianness = IIO_CPU, |
168 | }, |
169 | }, |
170 | { |
171 | .type = IIO_TEMP, |
172 | /* PROCESSED maintained for ABI backwards compatibility */ |
173 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
174 | BIT(IIO_CHAN_INFO_RAW) | |
175 | BIT(IIO_CHAN_INFO_SCALE) | |
176 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
177 | .scan_index = 1, |
178 | .scan_type = { |
179 | .sign = 's', |
180 | .realbits = 32, |
181 | .storagebits = 32, |
182 | .endianness = IIO_CPU, |
183 | }, |
184 | }, |
185 | IIO_CHAN_SOFT_TIMESTAMP(2), |
186 | }; |
187 | |
188 | static const struct iio_chan_spec bme280_channels[] = { |
189 | { |
190 | .type = IIO_PRESSURE, |
191 | /* PROCESSED maintained for ABI backwards compatibility */ |
192 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
193 | BIT(IIO_CHAN_INFO_RAW) | |
194 | BIT(IIO_CHAN_INFO_SCALE) | |
195 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
196 | .scan_index = 0, |
197 | .scan_type = { |
198 | .sign = 'u', |
199 | .realbits = 32, |
200 | .storagebits = 32, |
201 | .endianness = IIO_CPU, |
202 | }, |
203 | }, |
204 | { |
205 | .type = IIO_TEMP, |
206 | /* PROCESSED maintained for ABI backwards compatibility */ |
207 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
208 | BIT(IIO_CHAN_INFO_RAW) | |
209 | BIT(IIO_CHAN_INFO_SCALE) | |
210 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
211 | .scan_index = 1, |
212 | .scan_type = { |
213 | .sign = 's', |
214 | .realbits = 32, |
215 | .storagebits = 32, |
216 | .endianness = IIO_CPU, |
217 | }, |
218 | }, |
219 | { |
220 | .type = IIO_HUMIDITYRELATIVE, |
221 | /* PROCESSED maintained for ABI backwards compatibility */ |
222 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
223 | BIT(IIO_CHAN_INFO_RAW) | |
224 | BIT(IIO_CHAN_INFO_SCALE) | |
225 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
226 | .scan_index = 2, |
227 | .scan_type = { |
228 | .sign = 'u', |
229 | .realbits = 32, |
230 | .storagebits = 32, |
231 | .endianness = IIO_CPU, |
232 | }, |
233 | }, |
234 | IIO_CHAN_SOFT_TIMESTAMP(3), |
235 | }; |
236 | |
237 | static const struct iio_chan_spec bmp380_channels[] = { |
238 | { |
239 | .type = IIO_PRESSURE, |
240 | /* PROCESSED maintained for ABI backwards compatibility */ |
241 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
242 | BIT(IIO_CHAN_INFO_RAW) | |
243 | BIT(IIO_CHAN_INFO_SCALE) | |
244 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
245 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
246 | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
247 | .scan_index = 0, |
248 | .scan_type = { |
249 | .sign = 'u', |
250 | .realbits = 32, |
251 | .storagebits = 32, |
252 | .endianness = IIO_CPU, |
253 | }, |
254 | }, |
255 | { |
256 | .type = IIO_TEMP, |
257 | /* PROCESSED maintained for ABI backwards compatibility */ |
258 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
259 | BIT(IIO_CHAN_INFO_RAW) | |
260 | BIT(IIO_CHAN_INFO_SCALE) | |
261 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
262 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
263 | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
264 | .scan_index = 1, |
265 | .scan_type = { |
266 | .sign = 's', |
267 | .realbits = 32, |
268 | .storagebits = 32, |
269 | .endianness = IIO_CPU, |
270 | }, |
271 | }, |
272 | IIO_CHAN_SOFT_TIMESTAMP(2), |
273 | }; |
274 | |
275 | static const struct iio_chan_spec bmp580_channels[] = { |
276 | { |
277 | .type = IIO_PRESSURE, |
278 | /* PROCESSED maintained for ABI backwards compatibility */ |
279 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
280 | BIT(IIO_CHAN_INFO_RAW) | |
281 | BIT(IIO_CHAN_INFO_SCALE) | |
282 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
283 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
284 | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
285 | .scan_index = 0, |
286 | .scan_type = { |
287 | .sign = 'u', |
288 | .realbits = 24, |
289 | .storagebits = 32, |
290 | .endianness = IIO_LE, |
291 | }, |
292 | }, |
293 | { |
294 | .type = IIO_TEMP, |
295 | /* PROCESSED maintained for ABI backwards compatibility */ |
296 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
297 | BIT(IIO_CHAN_INFO_RAW) | |
298 | BIT(IIO_CHAN_INFO_SCALE) | |
299 | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
300 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
301 | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
302 | .scan_index = 1, |
303 | .scan_type = { |
304 | .sign = 's', |
305 | .realbits = 24, |
306 | .storagebits = 32, |
307 | .endianness = IIO_LE, |
308 | }, |
309 | }, |
310 | IIO_CHAN_SOFT_TIMESTAMP(2), |
311 | }; |
312 | |
313 | static int bmp280_read_calib(struct bmp280_data *data) |
314 | { |
315 | struct bmp280_calib *calib = &data->calib.bmp280; |
316 | int ret; |
317 | |
318 | /* Read temperature and pressure calibration values. */ |
319 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_TEMP_START, |
320 | val: data->bmp280_cal_buf, |
321 | val_count: sizeof(data->bmp280_cal_buf)); |
322 | if (ret) { |
323 | dev_err(data->dev, |
324 | "failed to read calibration parameters\n"); |
325 | return ret; |
326 | } |
327 | |
328 | /* Toss calibration data into the entropy pool */ |
329 | add_device_randomness(buf: data->bmp280_cal_buf, |
330 | len: sizeof(data->bmp280_cal_buf)); |
331 | |
332 | /* Parse temperature calibration values. */ |
333 | calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); |
334 | calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); |
335 | calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); |
336 | |
337 | /* Parse pressure calibration values. */ |
338 | calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); |
339 | calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); |
340 | calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); |
341 | calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); |
342 | calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); |
343 | calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); |
344 | calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); |
345 | calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); |
346 | calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); |
347 | |
348 | return 0; |
349 | } |
350 | |
351 | /* |
352 | * These enums are used for indexing into the array of humidity parameters |
353 | * for BME280. Due to some weird indexing, unaligned BE/LE accesses co-exist in |
354 | * order to prepare the FIELD_{GET/PREP}() fields. Table 16 in Section 4.2.2 of |
355 | * the datasheet. |
356 | */ |
357 | enum { H2 = 0, H3 = 2, H4 = 3, H5 = 4, H6 = 6 }; |
358 | |
359 | static int bme280_read_calib(struct bmp280_data *data) |
360 | { |
361 | struct bmp280_calib *calib = &data->calib.bmp280; |
362 | struct device *dev = data->dev; |
363 | s16 h4_upper, h4_lower, tmp_1, tmp_2, tmp_3; |
364 | unsigned int tmp; |
365 | int ret; |
366 | |
367 | /* Load shared calibration params with bmp280 first */ |
368 | ret = bmp280_read_calib(data); |
369 | if (ret) |
370 | return ret; |
371 | |
372 | ret = regmap_read(map: data->regmap, BME280_REG_COMP_H1, val: &tmp); |
373 | if (ret) { |
374 | dev_err(dev, "failed to read H1 comp value\n"); |
375 | return ret; |
376 | } |
377 | calib->H1 = tmp; |
378 | |
379 | ret = regmap_bulk_read(map: data->regmap, BME280_REG_COMP_H2, |
380 | val: data->bme280_humid_cal_buf, |
381 | val_count: sizeof(data->bme280_humid_cal_buf)); |
382 | if (ret) { |
383 | dev_err(dev, "failed to read humidity calibration values\n"); |
384 | return ret; |
385 | } |
386 | |
387 | calib->H2 = get_unaligned_le16(p: &data->bme280_humid_cal_buf[H2]); |
388 | calib->H3 = data->bme280_humid_cal_buf[H3]; |
389 | tmp_1 = get_unaligned_be16(p: &data->bme280_humid_cal_buf[H4]); |
390 | tmp_2 = FIELD_GET(BME280_COMP_H4_GET_MASK_UP, tmp_1); |
391 | h4_upper = FIELD_PREP(BME280_COMP_H4_PREP_MASK_UP, tmp_2); |
392 | h4_lower = FIELD_GET(BME280_COMP_H4_MASK_LOW, tmp_1); |
393 | calib->H4 = sign_extend32(value: h4_upper | h4_lower, index: 11); |
394 | tmp_3 = get_unaligned_le16(p: &data->bme280_humid_cal_buf[H5]); |
395 | calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, tmp_3), index: 11); |
396 | calib->H6 = data->bme280_humid_cal_buf[H6]; |
397 | |
398 | return 0; |
399 | } |
400 | |
401 | static int bme280_read_humid_adc(struct bmp280_data *data, u16 *adc_humidity) |
402 | { |
403 | u16 value_humidity; |
404 | int ret; |
405 | |
406 | ret = regmap_bulk_read(map: data->regmap, BME280_REG_HUMIDITY_MSB, |
407 | val: &data->be16, BME280_NUM_HUMIDITY_BYTES); |
408 | if (ret) { |
409 | dev_err(data->dev, "failed to read humidity\n"); |
410 | return ret; |
411 | } |
412 | |
413 | value_humidity = be16_to_cpu(data->be16); |
414 | if (value_humidity == BMP280_HUMIDITY_SKIPPED) { |
415 | dev_err(data->dev, "reading humidity skipped\n"); |
416 | return -EIO; |
417 | } |
418 | *adc_humidity = value_humidity; |
419 | |
420 | return 0; |
421 | } |
422 | |
423 | /* |
424 | * Returns humidity in percent, resolution is 0.01 percent. Output value of |
425 | * "47445" represents 47445/1024 = 46.333 %RH. |
426 | * |
427 | * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". |
428 | */ |
429 | static u32 bme280_compensate_humidity(struct bmp280_data *data, |
430 | u16 adc_humidity, s32 t_fine) |
431 | { |
432 | struct bmp280_calib *calib = &data->calib.bmp280; |
433 | s32 var; |
434 | |
435 | var = t_fine - (s32)76800; |
436 | var = (((((s32)adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) |
437 | + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) |
438 | * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) |
439 | + (s32)2097152) * calib->H2 + 8192) >> 14); |
440 | var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; |
441 | |
442 | var = clamp_val(var, 0, 419430400); |
443 | |
444 | return var >> 12; |
445 | } |
446 | |
447 | static int bmp280_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) |
448 | { |
449 | u32 value_temp; |
450 | int ret; |
451 | |
452 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_TEMP_MSB, |
453 | val: data->buf, BMP280_NUM_TEMP_BYTES); |
454 | if (ret) { |
455 | dev_err(data->dev, "failed to read temperature\n"); |
456 | return ret; |
457 | } |
458 | |
459 | value_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); |
460 | if (value_temp == BMP280_TEMP_SKIPPED) { |
461 | dev_err(data->dev, "reading temperature skipped\n"); |
462 | return -EIO; |
463 | } |
464 | *adc_temp = value_temp; |
465 | |
466 | return 0; |
467 | } |
468 | |
469 | /* |
470 | * Returns temperature in DegC, resolution is 0.01 DegC. Output value of |
471 | * "5123" equals 51.23 DegC. t_fine carries fine temperature as global |
472 | * value. |
473 | * |
474 | * Taken from datasheet, Section 3.11.3, "Compensation formula". |
475 | */ |
476 | static s32 bmp280_calc_t_fine(struct bmp280_data *data, u32 adc_temp) |
477 | { |
478 | struct bmp280_calib *calib = &data->calib.bmp280; |
479 | s32 var1, var2; |
480 | |
481 | var1 = (((((s32)adc_temp) >> 3) - ((s32)calib->T1 << 1)) * |
482 | ((s32)calib->T2)) >> 11; |
483 | var2 = (((((((s32)adc_temp) >> 4) - ((s32)calib->T1)) * |
484 | ((((s32)adc_temp >> 4) - ((s32)calib->T1))) >> 12) * |
485 | ((s32)calib->T3))) >> 14; |
486 | return var1 + var2; /* t_fine = var1 + var2 */ |
487 | } |
488 | |
489 | static int bmp280_get_t_fine(struct bmp280_data *data, s32 *t_fine) |
490 | { |
491 | u32 adc_temp; |
492 | int ret; |
493 | |
494 | ret = bmp280_read_temp_adc(data, adc_temp: &adc_temp); |
495 | if (ret) |
496 | return ret; |
497 | |
498 | *t_fine = bmp280_calc_t_fine(data, adc_temp); |
499 | |
500 | return 0; |
501 | } |
502 | |
503 | static s32 bmp280_compensate_temp(struct bmp280_data *data, u32 adc_temp) |
504 | { |
505 | return (bmp280_calc_t_fine(data, adc_temp) * 5 + 128) / 256; |
506 | } |
507 | |
508 | static int bmp280_read_press_adc(struct bmp280_data *data, u32 *adc_press) |
509 | { |
510 | u32 value_press; |
511 | int ret; |
512 | |
513 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_PRESS_MSB, |
514 | val: data->buf, BMP280_NUM_PRESS_BYTES); |
515 | if (ret) { |
516 | dev_err(data->dev, "failed to read pressure\n"); |
517 | return ret; |
518 | } |
519 | |
520 | value_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); |
521 | if (value_press == BMP280_PRESS_SKIPPED) { |
522 | dev_err(data->dev, "reading pressure skipped\n"); |
523 | return -EIO; |
524 | } |
525 | *adc_press = value_press; |
526 | |
527 | return 0; |
528 | } |
529 | |
530 | /* |
531 | * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 |
532 | * integer bits and 8 fractional bits). Output value of "24674867" |
533 | * represents 24674867/256 = 96386.2 Pa = 963.862 hPa |
534 | * |
535 | * Taken from datasheet, Section 3.11.3, "Compensation formula". |
536 | */ |
537 | static u32 bmp280_compensate_press(struct bmp280_data *data, |
538 | u32 adc_press, s32 t_fine) |
539 | { |
540 | struct bmp280_calib *calib = &data->calib.bmp280; |
541 | s64 var1, var2, p; |
542 | |
543 | var1 = ((s64)t_fine) - 128000; |
544 | var2 = var1 * var1 * (s64)calib->P6; |
545 | var2 += (var1 * (s64)calib->P5) << 17; |
546 | var2 += ((s64)calib->P4) << 35; |
547 | var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + |
548 | ((var1 * (s64)calib->P2) << 12); |
549 | var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; |
550 | |
551 | if (var1 == 0) |
552 | return 0; |
553 | |
554 | p = ((((s64)1048576 - (s32)adc_press) << 31) - var2) * 3125; |
555 | p = div64_s64(dividend: p, divisor: var1); |
556 | var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; |
557 | var2 = ((s64)(calib->P8) * p) >> 19; |
558 | p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); |
559 | |
560 | return (u32)p; |
561 | } |
562 | |
563 | static int bmp280_read_temp(struct bmp280_data *data, s32 *comp_temp) |
564 | { |
565 | u32 adc_temp; |
566 | int ret; |
567 | |
568 | ret = bmp280_read_temp_adc(data, adc_temp: &adc_temp); |
569 | if (ret) |
570 | return ret; |
571 | |
572 | *comp_temp = bmp280_compensate_temp(data, adc_temp); |
573 | |
574 | return 0; |
575 | } |
576 | |
577 | static int bmp280_read_press(struct bmp280_data *data, u32 *comp_press) |
578 | { |
579 | u32 adc_press; |
580 | s32 t_fine; |
581 | int ret; |
582 | |
583 | ret = bmp280_get_t_fine(data, t_fine: &t_fine); |
584 | if (ret) |
585 | return ret; |
586 | |
587 | ret = bmp280_read_press_adc(data, adc_press: &adc_press); |
588 | if (ret) |
589 | return ret; |
590 | |
591 | *comp_press = bmp280_compensate_press(data, adc_press, t_fine); |
592 | |
593 | return 0; |
594 | } |
595 | |
596 | static int bme280_read_humid(struct bmp280_data *data, u32 *comp_humidity) |
597 | { |
598 | u16 adc_humidity; |
599 | s32 t_fine; |
600 | int ret; |
601 | |
602 | ret = bmp280_get_t_fine(data, t_fine: &t_fine); |
603 | if (ret) |
604 | return ret; |
605 | |
606 | ret = bme280_read_humid_adc(data, adc_humidity: &adc_humidity); |
607 | if (ret) |
608 | return ret; |
609 | |
610 | *comp_humidity = bme280_compensate_humidity(data, adc_humidity, t_fine); |
611 | |
612 | return 0; |
613 | } |
614 | |
615 | static int bmp280_read_raw_impl(struct iio_dev *indio_dev, |
616 | struct iio_chan_spec const *chan, |
617 | int *val, int *val2, long mask) |
618 | { |
619 | struct bmp280_data *data = iio_priv(indio_dev); |
620 | int chan_value; |
621 | int ret; |
622 | |
623 | guard(mutex)(T: &data->lock); |
624 | |
625 | switch (mask) { |
626 | case IIO_CHAN_INFO_PROCESSED: |
627 | ret = data->chip_info->set_mode(data, BMP280_FORCED); |
628 | if (ret) |
629 | return ret; |
630 | |
631 | ret = data->chip_info->wait_conv(data); |
632 | if (ret) |
633 | return ret; |
634 | |
635 | switch (chan->type) { |
636 | case IIO_HUMIDITYRELATIVE: |
637 | ret = data->chip_info->read_humid(data, &chan_value); |
638 | if (ret) |
639 | return ret; |
640 | |
641 | *val = data->chip_info->humid_coeffs[0] * chan_value; |
642 | *val2 = data->chip_info->humid_coeffs[1]; |
643 | return data->chip_info->humid_coeffs_type; |
644 | case IIO_PRESSURE: |
645 | ret = data->chip_info->read_press(data, &chan_value); |
646 | if (ret) |
647 | return ret; |
648 | |
649 | *val = data->chip_info->press_coeffs[0] * chan_value; |
650 | *val2 = data->chip_info->press_coeffs[1]; |
651 | return data->chip_info->press_coeffs_type; |
652 | case IIO_TEMP: |
653 | ret = data->chip_info->read_temp(data, &chan_value); |
654 | if (ret) |
655 | return ret; |
656 | |
657 | *val = data->chip_info->temp_coeffs[0] * chan_value; |
658 | *val2 = data->chip_info->temp_coeffs[1]; |
659 | return data->chip_info->temp_coeffs_type; |
660 | default: |
661 | return -EINVAL; |
662 | } |
663 | case IIO_CHAN_INFO_RAW: |
664 | ret = data->chip_info->set_mode(data, BMP280_FORCED); |
665 | if (ret) |
666 | return ret; |
667 | |
668 | ret = data->chip_info->wait_conv(data); |
669 | if (ret) |
670 | return ret; |
671 | |
672 | switch (chan->type) { |
673 | case IIO_HUMIDITYRELATIVE: |
674 | ret = data->chip_info->read_humid(data, &chan_value); |
675 | if (ret) |
676 | return ret; |
677 | |
678 | *val = chan_value; |
679 | return IIO_VAL_INT; |
680 | case IIO_PRESSURE: |
681 | ret = data->chip_info->read_press(data, &chan_value); |
682 | if (ret) |
683 | return ret; |
684 | |
685 | *val = chan_value; |
686 | return IIO_VAL_INT; |
687 | case IIO_TEMP: |
688 | ret = data->chip_info->read_temp(data, &chan_value); |
689 | if (ret) |
690 | return ret; |
691 | |
692 | *val = chan_value; |
693 | return IIO_VAL_INT; |
694 | default: |
695 | return -EINVAL; |
696 | } |
697 | case IIO_CHAN_INFO_SCALE: |
698 | switch (chan->type) { |
699 | case IIO_HUMIDITYRELATIVE: |
700 | *val = data->chip_info->humid_coeffs[0]; |
701 | *val2 = data->chip_info->humid_coeffs[1]; |
702 | return data->chip_info->humid_coeffs_type; |
703 | case IIO_PRESSURE: |
704 | *val = data->chip_info->press_coeffs[0]; |
705 | *val2 = data->chip_info->press_coeffs[1]; |
706 | return data->chip_info->press_coeffs_type; |
707 | case IIO_TEMP: |
708 | *val = data->chip_info->temp_coeffs[0]; |
709 | *val2 = data->chip_info->temp_coeffs[1]; |
710 | return data->chip_info->temp_coeffs_type; |
711 | default: |
712 | return -EINVAL; |
713 | } |
714 | case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
715 | switch (chan->type) { |
716 | case IIO_HUMIDITYRELATIVE: |
717 | *val = 1 << data->oversampling_humid; |
718 | return IIO_VAL_INT; |
719 | case IIO_PRESSURE: |
720 | *val = 1 << data->oversampling_press; |
721 | return IIO_VAL_INT; |
722 | case IIO_TEMP: |
723 | *val = 1 << data->oversampling_temp; |
724 | return IIO_VAL_INT; |
725 | default: |
726 | return -EINVAL; |
727 | } |
728 | case IIO_CHAN_INFO_SAMP_FREQ: |
729 | if (!data->chip_info->sampling_freq_avail) |
730 | return -EINVAL; |
731 | |
732 | *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; |
733 | *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; |
734 | return IIO_VAL_INT_PLUS_MICRO; |
735 | case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
736 | if (!data->chip_info->iir_filter_coeffs_avail) |
737 | return -EINVAL; |
738 | |
739 | *val = (1 << data->iir_filter_coeff) - 1; |
740 | return IIO_VAL_INT; |
741 | default: |
742 | return -EINVAL; |
743 | } |
744 | } |
745 | |
746 | static int bmp280_read_raw(struct iio_dev *indio_dev, |
747 | struct iio_chan_spec const *chan, |
748 | int *val, int *val2, long mask) |
749 | { |
750 | struct bmp280_data *data = iio_priv(indio_dev); |
751 | int ret; |
752 | |
753 | pm_runtime_get_sync(dev: data->dev); |
754 | ret = bmp280_read_raw_impl(indio_dev, chan, val, val2, mask); |
755 | pm_runtime_mark_last_busy(dev: data->dev); |
756 | pm_runtime_put_autosuspend(dev: data->dev); |
757 | |
758 | return ret; |
759 | } |
760 | |
761 | static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data, |
762 | int val) |
763 | { |
764 | const int *avail = data->chip_info->oversampling_humid_avail; |
765 | const int n = data->chip_info->num_oversampling_humid_avail; |
766 | int ret, prev; |
767 | int i; |
768 | |
769 | for (i = 0; i < n; i++) { |
770 | if (avail[i] == val) { |
771 | prev = data->oversampling_humid; |
772 | data->oversampling_humid = ilog2(val); |
773 | |
774 | ret = data->chip_info->chip_config(data); |
775 | if (ret) { |
776 | data->oversampling_humid = prev; |
777 | data->chip_info->chip_config(data); |
778 | return ret; |
779 | } |
780 | return 0; |
781 | } |
782 | } |
783 | return -EINVAL; |
784 | } |
785 | |
786 | static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, |
787 | int val) |
788 | { |
789 | const int *avail = data->chip_info->oversampling_temp_avail; |
790 | const int n = data->chip_info->num_oversampling_temp_avail; |
791 | int ret, prev; |
792 | int i; |
793 | |
794 | for (i = 0; i < n; i++) { |
795 | if (avail[i] == val) { |
796 | prev = data->oversampling_temp; |
797 | data->oversampling_temp = ilog2(val); |
798 | |
799 | ret = data->chip_info->chip_config(data); |
800 | if (ret) { |
801 | data->oversampling_temp = prev; |
802 | data->chip_info->chip_config(data); |
803 | return ret; |
804 | } |
805 | return 0; |
806 | } |
807 | } |
808 | return -EINVAL; |
809 | } |
810 | |
811 | static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, |
812 | int val) |
813 | { |
814 | const int *avail = data->chip_info->oversampling_press_avail; |
815 | const int n = data->chip_info->num_oversampling_press_avail; |
816 | int ret, prev; |
817 | int i; |
818 | |
819 | for (i = 0; i < n; i++) { |
820 | if (avail[i] == val) { |
821 | prev = data->oversampling_press; |
822 | data->oversampling_press = ilog2(val); |
823 | |
824 | ret = data->chip_info->chip_config(data); |
825 | if (ret) { |
826 | data->oversampling_press = prev; |
827 | data->chip_info->chip_config(data); |
828 | return ret; |
829 | } |
830 | return 0; |
831 | } |
832 | } |
833 | return -EINVAL; |
834 | } |
835 | |
836 | static int bmp280_write_sampling_frequency(struct bmp280_data *data, |
837 | int val, int val2) |
838 | { |
839 | const int (*avail)[2] = data->chip_info->sampling_freq_avail; |
840 | const int n = data->chip_info->num_sampling_freq_avail; |
841 | int ret, prev; |
842 | int i; |
843 | |
844 | for (i = 0; i < n; i++) { |
845 | if (avail[i][0] == val && avail[i][1] == val2) { |
846 | prev = data->sampling_freq; |
847 | data->sampling_freq = i; |
848 | |
849 | ret = data->chip_info->chip_config(data); |
850 | if (ret) { |
851 | data->sampling_freq = prev; |
852 | data->chip_info->chip_config(data); |
853 | return ret; |
854 | } |
855 | return 0; |
856 | } |
857 | } |
858 | return -EINVAL; |
859 | } |
860 | |
861 | static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) |
862 | { |
863 | const int *avail = data->chip_info->iir_filter_coeffs_avail; |
864 | const int n = data->chip_info->num_iir_filter_coeffs_avail; |
865 | int ret, prev; |
866 | int i; |
867 | |
868 | for (i = 0; i < n; i++) { |
869 | if (avail[i] - 1 == val) { |
870 | prev = data->iir_filter_coeff; |
871 | data->iir_filter_coeff = i; |
872 | |
873 | ret = data->chip_info->chip_config(data); |
874 | if (ret) { |
875 | data->iir_filter_coeff = prev; |
876 | data->chip_info->chip_config(data); |
877 | return ret; |
878 | |
879 | } |
880 | return 0; |
881 | } |
882 | } |
883 | return -EINVAL; |
884 | } |
885 | |
886 | static int bmp280_write_raw_impl(struct iio_dev *indio_dev, |
887 | struct iio_chan_spec const *chan, |
888 | int val, int val2, long mask) |
889 | { |
890 | struct bmp280_data *data = iio_priv(indio_dev); |
891 | |
892 | guard(mutex)(T: &data->lock); |
893 | |
894 | /* |
895 | * Helper functions to update sensor running configuration. |
896 | * If an error happens applying new settings, will try restore |
897 | * previous parameters to ensure the sensor is left in a known |
898 | * working configuration. |
899 | */ |
900 | switch (mask) { |
901 | case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
902 | switch (chan->type) { |
903 | case IIO_HUMIDITYRELATIVE: |
904 | return bme280_write_oversampling_ratio_humid(data, val); |
905 | case IIO_PRESSURE: |
906 | return bmp280_write_oversampling_ratio_press(data, val); |
907 | case IIO_TEMP: |
908 | return bmp280_write_oversampling_ratio_temp(data, val); |
909 | default: |
910 | return -EINVAL; |
911 | } |
912 | case IIO_CHAN_INFO_SAMP_FREQ: |
913 | return bmp280_write_sampling_frequency(data, val, val2); |
914 | case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
915 | return bmp280_write_iir_filter_coeffs(data, val); |
916 | default: |
917 | return -EINVAL; |
918 | } |
919 | } |
920 | |
921 | static int bmp280_write_raw(struct iio_dev *indio_dev, |
922 | struct iio_chan_spec const *chan, |
923 | int val, int val2, long mask) |
924 | { |
925 | struct bmp280_data *data = iio_priv(indio_dev); |
926 | int ret; |
927 | |
928 | pm_runtime_get_sync(dev: data->dev); |
929 | ret = bmp280_write_raw_impl(indio_dev, chan, val, val2, mask); |
930 | pm_runtime_mark_last_busy(dev: data->dev); |
931 | pm_runtime_put_autosuspend(dev: data->dev); |
932 | |
933 | return ret; |
934 | } |
935 | |
936 | static int bmp280_read_avail(struct iio_dev *indio_dev, |
937 | struct iio_chan_spec const *chan, |
938 | const int **vals, int *type, int *length, |
939 | long mask) |
940 | { |
941 | struct bmp280_data *data = iio_priv(indio_dev); |
942 | |
943 | switch (mask) { |
944 | case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
945 | switch (chan->type) { |
946 | case IIO_PRESSURE: |
947 | *vals = data->chip_info->oversampling_press_avail; |
948 | *length = data->chip_info->num_oversampling_press_avail; |
949 | break; |
950 | case IIO_TEMP: |
951 | *vals = data->chip_info->oversampling_temp_avail; |
952 | *length = data->chip_info->num_oversampling_temp_avail; |
953 | break; |
954 | default: |
955 | return -EINVAL; |
956 | } |
957 | *type = IIO_VAL_INT; |
958 | return IIO_AVAIL_LIST; |
959 | case IIO_CHAN_INFO_SAMP_FREQ: |
960 | *vals = (const int *)data->chip_info->sampling_freq_avail; |
961 | *type = IIO_VAL_INT_PLUS_MICRO; |
962 | /* Values are stored in a 2D matrix */ |
963 | *length = data->chip_info->num_sampling_freq_avail; |
964 | return IIO_AVAIL_LIST; |
965 | case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
966 | *vals = data->chip_info->iir_filter_coeffs_avail; |
967 | *type = IIO_VAL_INT; |
968 | *length = data->chip_info->num_iir_filter_coeffs_avail; |
969 | return IIO_AVAIL_LIST; |
970 | default: |
971 | return -EINVAL; |
972 | } |
973 | } |
974 | |
975 | static const struct iio_info bmp280_info = { |
976 | .read_raw = &bmp280_read_raw, |
977 | .read_avail = &bmp280_read_avail, |
978 | .write_raw = &bmp280_write_raw, |
979 | }; |
980 | |
981 | static const unsigned long bmp280_avail_scan_masks[] = { |
982 | BIT(BMP280_TEMP) | BIT(BMP280_PRESS), |
983 | 0 |
984 | }; |
985 | |
986 | static const unsigned long bme280_avail_scan_masks[] = { |
987 | BIT(BME280_HUMID) | BIT(BMP280_TEMP) | BIT(BMP280_PRESS), |
988 | 0 |
989 | }; |
990 | |
991 | static int bmp280_preinit(struct bmp280_data *data) |
992 | { |
993 | struct device *dev = data->dev; |
994 | unsigned int reg; |
995 | int ret; |
996 | |
997 | ret = regmap_write(map: data->regmap, BMP280_REG_RESET, BMP280_RST_SOFT_CMD); |
998 | if (ret) |
999 | return dev_err_probe(dev, err: ret, fmt: "Failed to reset device.\n"); |
1000 | |
1001 | /* |
1002 | * According to the datasheet in Chapter 1: Specification, Table 2, |
1003 | * after resetting, the device uses the complete power-on sequence so |
1004 | * it needs to wait for the defined start-up time. |
1005 | */ |
1006 | fsleep(usecs: data->start_up_time_us); |
1007 | |
1008 | ret = regmap_read(map: data->regmap, BMP280_REG_STATUS, val: ®); |
1009 | if (ret) |
1010 | return dev_err_probe(dev, err: ret, fmt: "Failed to read status register.\n"); |
1011 | |
1012 | if (reg & BMP280_REG_STATUS_IM_UPDATE) |
1013 | return dev_err_probe(dev, err: -EIO, fmt: "Failed to copy NVM contents.\n"); |
1014 | |
1015 | return 0; |
1016 | } |
1017 | |
1018 | static const u8 bmp280_operation_mode[] = { |
1019 | [BMP280_SLEEP] = BMP280_MODE_SLEEP, |
1020 | [BMP280_FORCED] = BMP280_MODE_FORCED, |
1021 | [BMP280_NORMAL] = BMP280_MODE_NORMAL, |
1022 | }; |
1023 | |
1024 | static int bmp280_set_mode(struct bmp280_data *data, enum bmp280_op_mode mode) |
1025 | { |
1026 | int ret; |
1027 | |
1028 | ret = regmap_write_bits(map: data->regmap, BMP280_REG_CTRL_MEAS, |
1029 | BMP280_MODE_MASK, val: bmp280_operation_mode[mode]); |
1030 | if (ret) { |
1031 | dev_err(data->dev, "failed to write ctrl_meas register.\n"); |
1032 | return ret; |
1033 | } |
1034 | |
1035 | data->op_mode = mode; |
1036 | |
1037 | return 0; |
1038 | } |
1039 | |
1040 | static int bmp280_wait_conv(struct bmp280_data *data) |
1041 | { |
1042 | unsigned int reg, meas_time_us; |
1043 | int ret; |
1044 | |
1045 | /* Check if we are using a BME280 device */ |
1046 | if (data->oversampling_humid) |
1047 | meas_time_us = BMP280_PRESS_HUMID_MEAS_OFFSET + |
1048 | BIT(data->oversampling_humid) * BMP280_MEAS_DUR; |
1049 | |
1050 | else |
1051 | meas_time_us = 0; |
1052 | |
1053 | /* Pressure measurement time */ |
1054 | meas_time_us += BMP280_PRESS_HUMID_MEAS_OFFSET + |
1055 | BIT(data->oversampling_press) * BMP280_MEAS_DUR; |
1056 | |
1057 | /* Temperature measurement time */ |
1058 | meas_time_us += BIT(data->oversampling_temp) * BMP280_MEAS_DUR; |
1059 | |
1060 | /* Waiting time according to the BM(P/E)2 Sensor API */ |
1061 | fsleep(usecs: meas_time_us); |
1062 | |
1063 | ret = regmap_read(map: data->regmap, BMP280_REG_STATUS, val: ®); |
1064 | if (ret) { |
1065 | dev_err(data->dev, "failed to read status register.\n"); |
1066 | return ret; |
1067 | } |
1068 | |
1069 | if (reg & BMP280_REG_STATUS_MEAS_BIT) { |
1070 | dev_err(data->dev, "Measurement cycle didn't complete.\n"); |
1071 | return -EBUSY; |
1072 | } |
1073 | |
1074 | return 0; |
1075 | } |
1076 | |
1077 | static int bmp280_chip_config(struct bmp280_data *data) |
1078 | { |
1079 | u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | |
1080 | FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); |
1081 | int ret; |
1082 | |
1083 | ret = regmap_write_bits(map: data->regmap, BMP280_REG_CTRL_MEAS, |
1084 | BMP280_OSRS_TEMP_MASK | |
1085 | BMP280_OSRS_PRESS_MASK | |
1086 | BMP280_MODE_MASK, |
1087 | val: osrs | BMP280_MODE_SLEEP); |
1088 | if (ret) { |
1089 | dev_err(data->dev, "failed to write ctrl_meas register\n"); |
1090 | return ret; |
1091 | } |
1092 | |
1093 | ret = regmap_update_bits(map: data->regmap, BMP280_REG_CONFIG, |
1094 | BMP280_FILTER_MASK, |
1095 | BMP280_FILTER_4X); |
1096 | if (ret) { |
1097 | dev_err(data->dev, "failed to write config register\n"); |
1098 | return ret; |
1099 | } |
1100 | |
1101 | return ret; |
1102 | } |
1103 | |
1104 | static irqreturn_t bmp280_trigger_handler(int irq, void *p) |
1105 | { |
1106 | struct iio_poll_func *pf = p; |
1107 | struct iio_dev *indio_dev = pf->indio_dev; |
1108 | struct bmp280_data *data = iio_priv(indio_dev); |
1109 | u32 adc_temp, adc_press; |
1110 | s32 t_fine; |
1111 | struct { |
1112 | u32 comp_press; |
1113 | s32 comp_temp; |
1114 | aligned_s64 timestamp; |
1115 | } buffer; |
1116 | int ret; |
1117 | |
1118 | guard(mutex)(T: &data->lock); |
1119 | |
1120 | /* Burst read data registers */ |
1121 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_PRESS_MSB, |
1122 | val: data->buf, BMP280_BURST_READ_BYTES); |
1123 | if (ret) { |
1124 | dev_err(data->dev, "failed to burst read sensor data\n"); |
1125 | goto out; |
1126 | } |
1127 | |
1128 | /* Temperature calculations */ |
1129 | adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3])); |
1130 | if (adc_temp == BMP280_TEMP_SKIPPED) { |
1131 | dev_err(data->dev, "reading temperature skipped\n"); |
1132 | goto out; |
1133 | } |
1134 | |
1135 | buffer.comp_temp = bmp280_compensate_temp(data, adc_temp); |
1136 | |
1137 | /* Pressure calculations */ |
1138 | adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0])); |
1139 | if (adc_press == BMP280_PRESS_SKIPPED) { |
1140 | dev_err(data->dev, "reading pressure skipped\n"); |
1141 | goto out; |
1142 | } |
1143 | |
1144 | t_fine = bmp280_calc_t_fine(data, adc_temp); |
1145 | buffer.comp_press = bmp280_compensate_press(data, adc_press, t_fine); |
1146 | |
1147 | iio_push_to_buffers_with_ts(indio_dev, data: &buffer, data_total_len: sizeof(buffer), |
1148 | timestamp: iio_get_time_ns(indio_dev)); |
1149 | |
1150 | out: |
1151 | iio_trigger_notify_done(trig: indio_dev->trig); |
1152 | |
1153 | return IRQ_HANDLED; |
1154 | } |
1155 | |
1156 | static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; |
1157 | static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID }; |
1158 | static const int bmp280_temp_coeffs[] = { 10, 1 }; |
1159 | static const int bmp280_press_coeffs[] = { 1, 256000 }; |
1160 | |
1161 | const struct bmp280_chip_info bmp280_chip_info = { |
1162 | .id_reg = BMP280_REG_ID, |
1163 | .chip_id = bmp280_chip_ids, |
1164 | .num_chip_id = ARRAY_SIZE(bmp280_chip_ids), |
1165 | .regmap_config = &bmp280_regmap_config, |
1166 | .start_up_time_us = 2000, |
1167 | .channels = bmp280_channels, |
1168 | .num_channels = ARRAY_SIZE(bmp280_channels), |
1169 | .avail_scan_masks = bmp280_avail_scan_masks, |
1170 | |
1171 | .oversampling_temp_avail = bmp280_oversampling_avail, |
1172 | .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
1173 | /* |
1174 | * Oversampling config values on BMx280 have one additional setting |
1175 | * that other generations of the family don't: |
1176 | * The value 0 means the measurement is bypassed instead of |
1177 | * oversampling set to x1. |
1178 | * |
1179 | * To account for this difference, and preserve the same common |
1180 | * config logic, this is handled later on chip_config callback |
1181 | * incrementing one unit the oversampling setting. |
1182 | */ |
1183 | .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, |
1184 | |
1185 | .oversampling_press_avail = bmp280_oversampling_avail, |
1186 | .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
1187 | .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, |
1188 | |
1189 | .temp_coeffs = bmp280_temp_coeffs, |
1190 | .temp_coeffs_type = IIO_VAL_FRACTIONAL, |
1191 | .press_coeffs = bmp280_press_coeffs, |
1192 | .press_coeffs_type = IIO_VAL_FRACTIONAL, |
1193 | |
1194 | .chip_config = bmp280_chip_config, |
1195 | .read_temp = bmp280_read_temp, |
1196 | .read_press = bmp280_read_press, |
1197 | .read_calib = bmp280_read_calib, |
1198 | .set_mode = bmp280_set_mode, |
1199 | .wait_conv = bmp280_wait_conv, |
1200 | .preinit = bmp280_preinit, |
1201 | |
1202 | .trigger_handler = bmp280_trigger_handler, |
1203 | }; |
1204 | EXPORT_SYMBOL_NS(bmp280_chip_info, "IIO_BMP280"); |
1205 | |
1206 | static int bme280_chip_config(struct bmp280_data *data) |
1207 | { |
1208 | u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); |
1209 | int ret; |
1210 | |
1211 | /* |
1212 | * Oversampling of humidity must be set before oversampling of |
1213 | * temperature/pressure is set to become effective. |
1214 | */ |
1215 | ret = regmap_update_bits(map: data->regmap, BME280_REG_CTRL_HUMIDITY, |
1216 | BME280_OSRS_HUMIDITY_MASK, val: osrs); |
1217 | if (ret) { |
1218 | dev_err(data->dev, "failed to set humidity oversampling"); |
1219 | return ret; |
1220 | } |
1221 | |
1222 | return bmp280_chip_config(data); |
1223 | } |
1224 | |
1225 | static irqreturn_t bme280_trigger_handler(int irq, void *p) |
1226 | { |
1227 | struct iio_poll_func *pf = p; |
1228 | struct iio_dev *indio_dev = pf->indio_dev; |
1229 | struct bmp280_data *data = iio_priv(indio_dev); |
1230 | u32 adc_temp, adc_press, adc_humidity; |
1231 | s32 t_fine; |
1232 | struct { |
1233 | u32 comp_press; |
1234 | s32 comp_temp; |
1235 | u32 comp_humidity; |
1236 | aligned_s64 timestamp; |
1237 | } buffer; |
1238 | int ret; |
1239 | |
1240 | /* Don't leak uninitialized stack to userspace. */ |
1241 | memset(&buffer, 0, sizeof(buffer)); |
1242 | |
1243 | guard(mutex)(T: &data->lock); |
1244 | |
1245 | /* Burst read data registers */ |
1246 | ret = regmap_bulk_read(map: data->regmap, BMP280_REG_PRESS_MSB, |
1247 | val: data->buf, BME280_BURST_READ_BYTES); |
1248 | if (ret) { |
1249 | dev_err(data->dev, "failed to burst read sensor data\n"); |
1250 | goto out; |
1251 | } |
1252 | |
1253 | /* Temperature calculations */ |
1254 | adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3])); |
1255 | if (adc_temp == BMP280_TEMP_SKIPPED) { |
1256 | dev_err(data->dev, "reading temperature skipped\n"); |
1257 | goto out; |
1258 | } |
1259 | |
1260 | buffer.comp_temp = bmp280_compensate_temp(data, adc_temp); |
1261 | |
1262 | /* Pressure calculations */ |
1263 | adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0])); |
1264 | if (adc_press == BMP280_PRESS_SKIPPED) { |
1265 | dev_err(data->dev, "reading pressure skipped\n"); |
1266 | goto out; |
1267 | } |
1268 | |
1269 | t_fine = bmp280_calc_t_fine(data, adc_temp); |
1270 | buffer.comp_press = bmp280_compensate_press(data, adc_press, t_fine); |
1271 | |
1272 | /* Humidity calculations */ |
1273 | adc_humidity = get_unaligned_be16(p: &data->buf[6]); |
1274 | |
1275 | if (adc_humidity == BMP280_HUMIDITY_SKIPPED) { |
1276 | dev_err(data->dev, "reading humidity skipped\n"); |
1277 | goto out; |
1278 | } |
1279 | |
1280 | buffer.comp_humidity = bme280_compensate_humidity(data, adc_humidity, |
1281 | t_fine); |
1282 | |
1283 | iio_push_to_buffers_with_ts(indio_dev, data: &buffer, data_total_len: sizeof(buffer), |
1284 | timestamp: iio_get_time_ns(indio_dev)); |
1285 | |
1286 | out: |
1287 | iio_trigger_notify_done(trig: indio_dev->trig); |
1288 | |
1289 | return IRQ_HANDLED; |
1290 | } |
1291 | |
1292 | static int __bmp280_trigger_probe(struct iio_dev *indio_dev, |
1293 | const struct iio_trigger_ops *trigger_ops, |
1294 | int (*int_pin_config)(struct bmp280_data *data), |
1295 | irq_handler_t irq_thread_handler) |
1296 | { |
1297 | struct bmp280_data *data = iio_priv(indio_dev); |
1298 | struct device *dev = data->dev; |
1299 | u32 irq_type; |
1300 | int ret, irq; |
1301 | |
1302 | irq = fwnode_irq_get(dev_fwnode(dev), index: 0); |
1303 | if (irq < 0) |
1304 | return dev_err_probe(dev, err: irq, fmt: "No interrupt found.\n"); |
1305 | |
1306 | irq_type = irq_get_trigger_type(irq); |
1307 | switch (irq_type) { |
1308 | case IRQF_TRIGGER_RISING: |
1309 | data->trig_active_high = true; |
1310 | break; |
1311 | case IRQF_TRIGGER_FALLING: |
1312 | data->trig_active_high = false; |
1313 | break; |
1314 | default: |
1315 | return dev_err_probe(dev, err: -EINVAL, fmt: "Invalid interrupt type specified.\n"); |
1316 | } |
1317 | |
1318 | data->trig_open_drain = |
1319 | fwnode_property_read_bool(dev_fwnode(dev), propname: "int-open-drain"); |
1320 | |
1321 | ret = int_pin_config(data); |
1322 | if (ret) |
1323 | return ret; |
1324 | |
1325 | data->trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d", |
1326 | indio_dev->name, |
1327 | iio_device_id(indio_dev)); |
1328 | if (!data->trig) |
1329 | return -ENOMEM; |
1330 | |
1331 | data->trig->ops = trigger_ops; |
1332 | iio_trigger_set_drvdata(trig: data->trig, data); |
1333 | |
1334 | ret = devm_request_threaded_irq(dev: data->dev, irq, NULL, |
1335 | thread_fn: irq_thread_handler, IRQF_ONESHOT, |
1336 | devname: indio_dev->name, dev_id: indio_dev); |
1337 | if (ret) |
1338 | return dev_err_probe(dev, err: ret, fmt: "request IRQ failed.\n"); |
1339 | |
1340 | ret = devm_iio_trigger_register(dev: data->dev, trig_info: data->trig); |
1341 | if (ret) |
1342 | return dev_err_probe(dev, err: ret, fmt: "iio trigger register failed.\n"); |
1343 | |
1344 | indio_dev->trig = iio_trigger_get(trig: data->trig); |
1345 | |
1346 | return 0; |
1347 | } |
1348 | |
1349 | static const u8 bme280_chip_ids[] = { BME280_CHIP_ID }; |
1350 | static const int bme280_humid_coeffs[] = { 1000, 1024 }; |
1351 | |
1352 | const struct bmp280_chip_info bme280_chip_info = { |
1353 | .id_reg = BMP280_REG_ID, |
1354 | .chip_id = bme280_chip_ids, |
1355 | .num_chip_id = ARRAY_SIZE(bme280_chip_ids), |
1356 | .regmap_config = &bme280_regmap_config, |
1357 | .start_up_time_us = 2000, |
1358 | .channels = bme280_channels, |
1359 | .num_channels = ARRAY_SIZE(bme280_channels), |
1360 | .avail_scan_masks = bme280_avail_scan_masks, |
1361 | |
1362 | .oversampling_temp_avail = bmp280_oversampling_avail, |
1363 | .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
1364 | .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, |
1365 | |
1366 | .oversampling_press_avail = bmp280_oversampling_avail, |
1367 | .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
1368 | .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, |
1369 | |
1370 | .oversampling_humid_avail = bmp280_oversampling_avail, |
1371 | .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
1372 | .oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1, |
1373 | |
1374 | .temp_coeffs = bmp280_temp_coeffs, |
1375 | .temp_coeffs_type = IIO_VAL_FRACTIONAL, |
1376 | .press_coeffs = bmp280_press_coeffs, |
1377 | .press_coeffs_type = IIO_VAL_FRACTIONAL, |
1378 | .humid_coeffs = bme280_humid_coeffs, |
1379 | .humid_coeffs_type = IIO_VAL_FRACTIONAL, |
1380 | |
1381 | .chip_config = bme280_chip_config, |
1382 | .read_temp = bmp280_read_temp, |
1383 | .read_press = bmp280_read_press, |
1384 | .read_humid = bme280_read_humid, |
1385 | .read_calib = bme280_read_calib, |
1386 | .set_mode = bmp280_set_mode, |
1387 | .wait_conv = bmp280_wait_conv, |
1388 | .preinit = bmp280_preinit, |
1389 | |
1390 | .trigger_handler = bme280_trigger_handler, |
1391 | }; |
1392 | EXPORT_SYMBOL_NS(bme280_chip_info, "IIO_BMP280"); |
1393 | |
1394 | /* |
1395 | * Helper function to send a command to BMP3XX sensors. |
1396 | * |
1397 | * Sensor processes commands written to the CMD register and signals |
1398 | * execution result through "cmd_rdy" and "cmd_error" flags available on |
1399 | * STATUS and ERROR registers. |
1400 | */ |
1401 | static int bmp380_cmd(struct bmp280_data *data, u8 cmd) |
1402 | { |
1403 | unsigned int reg; |
1404 | int ret; |
1405 | |
1406 | /* Check if device is ready to process a command */ |
1407 | ret = regmap_read(map: data->regmap, BMP380_REG_STATUS, val: ®); |
1408 | if (ret) { |
1409 | dev_err(data->dev, "failed to read error register\n"); |
1410 | return ret; |
1411 | } |
1412 | if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { |
1413 | dev_err(data->dev, "device is not ready to accept commands\n"); |
1414 | return -EBUSY; |
1415 | } |
1416 | |
1417 | /* Send command to process */ |
1418 | ret = regmap_write(map: data->regmap, BMP380_REG_CMD, val: cmd); |
1419 | if (ret) { |
1420 | dev_err(data->dev, "failed to send command to device\n"); |
1421 | return ret; |
1422 | } |
1423 | /* Wait for 2ms for command to be processed */ |
1424 | fsleep(usecs: data->start_up_time_us); |
1425 | /* Check for command processing error */ |
1426 | ret = regmap_read(map: data->regmap, BMP380_REG_ERROR, val: ®); |
1427 | if (ret) { |
1428 | dev_err(data->dev, "error reading ERROR reg\n"); |
1429 | return ret; |
1430 | } |
1431 | if (reg & BMP380_ERR_CMD_MASK) { |
1432 | dev_err(data->dev, "error processing command 0x%X\n", cmd); |
1433 | return -EINVAL; |
1434 | } |
1435 | |
1436 | return 0; |
1437 | } |
1438 | |
1439 | static int bmp380_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) |
1440 | { |
1441 | u32 value_temp; |
1442 | int ret; |
1443 | |
1444 | ret = regmap_bulk_read(map: data->regmap, BMP380_REG_TEMP_XLSB, |
1445 | val: data->buf, BMP280_NUM_TEMP_BYTES); |
1446 | if (ret) { |
1447 | dev_err(data->dev, "failed to read temperature\n"); |
1448 | return ret; |
1449 | } |
1450 | |
1451 | value_temp = get_unaligned_le24(p: data->buf); |
1452 | if (value_temp == BMP380_TEMP_SKIPPED) { |
1453 | dev_err(data->dev, "reading temperature skipped\n"); |
1454 | return -EIO; |
1455 | } |
1456 | *adc_temp = value_temp; |
1457 | |
1458 | return 0; |
1459 | } |
1460 | |
1461 | /* |
1462 | * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value |
1463 | * of "5123" equals 51.2º C. t_fine carries fine temperature as global value. |
1464 | * |
1465 | * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo |
1466 | * https://github.com/BoschSensortec/BMP3-Sensor-API. |
1467 | */ |
1468 | static s32 bmp380_calc_t_fine(struct bmp280_data *data, u32 adc_temp) |
1469 | { |
1470 | s64 var1, var2, var3, var4, var5, var6; |
1471 | struct bmp380_calib *calib = &data->calib.bmp380; |
1472 | |
1473 | var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); |
1474 | var2 = var1 * ((s64) calib->T2); |
1475 | var3 = var1 * var1; |
1476 | var4 = var3 * ((s64) calib->T3); |
1477 | var5 = (var2 << 18) + var4; |
1478 | var6 = var5 >> 32; |
1479 | return (s32)var6; /* t_fine = var6 */ |
1480 | } |
1481 | |
1482 | static int bmp380_get_t_fine(struct bmp280_data *data, s32 *t_fine) |
1483 | { |
1484 | s32 adc_temp; |
1485 | int ret; |
1486 | |
1487 | ret = bmp380_read_temp_adc(data, adc_temp: &adc_temp); |
1488 | if (ret) |
1489 | return ret; |
1490 | |
1491 | *t_fine = bmp380_calc_t_fine(data, adc_temp); |
1492 | |
1493 | return 0; |
1494 | } |
1495 | |
1496 | static int bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) |
1497 | { |
1498 | s64 comp_temp; |
1499 | s32 var6; |
1500 | |
1501 | var6 = bmp380_calc_t_fine(data, adc_temp); |
1502 | comp_temp = (var6 * 25) >> 14; |
1503 | |
1504 | comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); |
1505 | return (s32) comp_temp; |
1506 | } |
1507 | |
1508 | static int bmp380_read_press_adc(struct bmp280_data *data, u32 *adc_press) |
1509 | { |
1510 | u32 value_press; |
1511 | int ret; |
1512 | |
1513 | ret = regmap_bulk_read(map: data->regmap, BMP380_REG_PRESS_XLSB, |
1514 | val: data->buf, BMP280_NUM_PRESS_BYTES); |
1515 | if (ret) { |
1516 | dev_err(data->dev, "failed to read pressure\n"); |
1517 | return ret; |
1518 | } |
1519 | |
1520 | value_press = get_unaligned_le24(p: data->buf); |
1521 | if (value_press == BMP380_PRESS_SKIPPED) { |
1522 | dev_err(data->dev, "reading pressure skipped\n"); |
1523 | return -EIO; |
1524 | } |
1525 | *adc_press = value_press; |
1526 | |
1527 | return 0; |
1528 | } |
1529 | |
1530 | /* |
1531 | * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. |
1532 | * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. |
1533 | * |
1534 | * Taken from datasheet, Section 9.3. "Pressure compensation" and repository |
1535 | * https://github.com/BoschSensortec/BMP3-Sensor-API. |
1536 | */ |
1537 | static u32 bmp380_compensate_press(struct bmp280_data *data, |
1538 | u32 adc_press, s32 t_fine) |
1539 | { |
1540 | s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; |
1541 | struct bmp380_calib *calib = &data->calib.bmp380; |
1542 | u32 comp_press; |
1543 | |
1544 | var1 = (s64)t_fine * (s64)t_fine; |
1545 | var2 = var1 >> 6; |
1546 | var3 = (var2 * ((s64)t_fine)) >> 8; |
1547 | var4 = ((s64)calib->P8 * var3) >> 5; |
1548 | var5 = ((s64)calib->P7 * var1) << 4; |
1549 | var6 = ((s64)calib->P6 * (s64)t_fine) << 22; |
1550 | offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; |
1551 | var2 = ((s64)calib->P4 * var3) >> 5; |
1552 | var4 = ((s64)calib->P3 * var1) << 2; |
1553 | var5 = ((s64)calib->P2 - ((s64)1 << 14)) * |
1554 | ((s64)t_fine << 21); |
1555 | sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + |
1556 | var2 + var4 + var5; |
1557 | var1 = (sensitivity >> 24) * (s64)adc_press; |
1558 | var2 = (s64)calib->P10 * (s64)t_fine; |
1559 | var3 = var2 + ((s64)calib->P9 << 16); |
1560 | var4 = (var3 * (s64)adc_press) >> 13; |
1561 | |
1562 | /* |
1563 | * Dividing by 10 followed by multiplying by 10 to avoid |
1564 | * possible overflow caused by (uncomp_data->pressure * partial_data4). |
1565 | */ |
1566 | var5 = ((s64)adc_press * div_s64(dividend: var4, divisor: 10)) >> 9; |
1567 | var5 *= 10; |
1568 | var6 = (s64)adc_press * (s64)adc_press; |
1569 | var2 = ((s64)calib->P11 * var6) >> 16; |
1570 | var3 = (var2 * (s64)adc_press) >> 7; |
1571 | var4 = (offset >> 2) + var1 + var5 + var3; |
1572 | comp_press = ((u64)var4 * 25) >> 40; |
1573 | |
1574 | comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); |
1575 | return comp_press; |
1576 | } |
1577 | |
1578 | static int bmp380_read_temp(struct bmp280_data *data, s32 *comp_temp) |
1579 | { |
1580 | u32 adc_temp; |
1581 | int ret; |
1582 | |
1583 | ret = bmp380_read_temp_adc(data, adc_temp: &adc_temp); |
1584 | if (ret) |
1585 | return ret; |
1586 | |
1587 | *comp_temp = bmp380_compensate_temp(data, adc_temp); |
1588 | |
1589 | return 0; |
1590 | } |
1591 | |
1592 | static int bmp380_read_press(struct bmp280_data *data, u32 *comp_press) |
1593 | { |
1594 | u32 adc_press, t_fine; |
1595 | int ret; |
1596 | |
1597 | ret = bmp380_get_t_fine(data, t_fine: &t_fine); |
1598 | if (ret) |
1599 | return ret; |
1600 | |
1601 | ret = bmp380_read_press_adc(data, adc_press: &adc_press); |
1602 | if (ret) |
1603 | return ret; |
1604 | |
1605 | *comp_press = bmp380_compensate_press(data, adc_press, t_fine); |
1606 | |
1607 | return 0; |
1608 | } |
1609 | |
1610 | static int bmp380_read_calib(struct bmp280_data *data) |
1611 | { |
1612 | struct bmp380_calib *calib = &data->calib.bmp380; |
1613 | int ret; |
1614 | |
1615 | /* Read temperature and pressure calibration data */ |
1616 | ret = regmap_bulk_read(map: data->regmap, BMP380_REG_CALIB_TEMP_START, |
1617 | val: data->bmp380_cal_buf, |
1618 | val_count: sizeof(data->bmp380_cal_buf)); |
1619 | if (ret) { |
1620 | dev_err(data->dev, |
1621 | "failed to read calibration parameters\n"); |
1622 | return ret; |
1623 | } |
1624 | |
1625 | /* Toss the temperature calibration data into the entropy pool */ |
1626 | add_device_randomness(buf: data->bmp380_cal_buf, |
1627 | len: sizeof(data->bmp380_cal_buf)); |
1628 | |
1629 | /* Parse calibration values */ |
1630 | calib->T1 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_T1]); |
1631 | calib->T2 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_T2]); |
1632 | calib->T3 = data->bmp380_cal_buf[BMP380_T3]; |
1633 | calib->P1 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P1]); |
1634 | calib->P2 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P2]); |
1635 | calib->P3 = data->bmp380_cal_buf[BMP380_P3]; |
1636 | calib->P4 = data->bmp380_cal_buf[BMP380_P4]; |
1637 | calib->P5 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P5]); |
1638 | calib->P6 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P6]); |
1639 | calib->P7 = data->bmp380_cal_buf[BMP380_P7]; |
1640 | calib->P8 = data->bmp380_cal_buf[BMP380_P8]; |
1641 | calib->P9 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P9]); |
1642 | calib->P10 = data->bmp380_cal_buf[BMP380_P10]; |
1643 | calib->P11 = data->bmp380_cal_buf[BMP380_P11]; |
1644 | |
1645 | return 0; |
1646 | } |
1647 | |
1648 | static const int bmp380_odr_table[][2] = { |
1649 | [BMP380_ODR_200HZ] = {200, 0}, |
1650 | [BMP380_ODR_100HZ] = {100, 0}, |
1651 | [BMP380_ODR_50HZ] = {50, 0}, |
1652 | [BMP380_ODR_25HZ] = {25, 0}, |
1653 | [BMP380_ODR_12_5HZ] = {12, 500000}, |
1654 | [BMP380_ODR_6_25HZ] = {6, 250000}, |
1655 | [BMP380_ODR_3_125HZ] = {3, 125000}, |
1656 | [BMP380_ODR_1_5625HZ] = {1, 562500}, |
1657 | [BMP380_ODR_0_78HZ] = {0, 781250}, |
1658 | [BMP380_ODR_0_39HZ] = {0, 390625}, |
1659 | [BMP380_ODR_0_2HZ] = {0, 195313}, |
1660 | [BMP380_ODR_0_1HZ] = {0, 97656}, |
1661 | [BMP380_ODR_0_05HZ] = {0, 48828}, |
1662 | [BMP380_ODR_0_02HZ] = {0, 24414}, |
1663 | [BMP380_ODR_0_01HZ] = {0, 12207}, |
1664 | [BMP380_ODR_0_006HZ] = {0, 6104}, |
1665 | [BMP380_ODR_0_003HZ] = {0, 3052}, |
1666 | [BMP380_ODR_0_0015HZ] = {0, 1526}, |
1667 | }; |
1668 | |
1669 | static int bmp380_preinit(struct bmp280_data *data) |
1670 | { |
1671 | /* BMP3xx requires soft-reset as part of initialization */ |
1672 | return bmp380_cmd(data, BMP380_CMD_SOFT_RESET); |
1673 | } |
1674 | |
1675 | static const u8 bmp380_operation_mode[] = { |
1676 | [BMP280_SLEEP] = BMP380_MODE_SLEEP, |
1677 | [BMP280_FORCED] = BMP380_MODE_FORCED, |
1678 | [BMP280_NORMAL] = BMP380_MODE_NORMAL, |
1679 | }; |
1680 | |
1681 | static int bmp380_set_mode(struct bmp280_data *data, enum bmp280_op_mode mode) |
1682 | { |
1683 | int ret; |
1684 | |
1685 | ret = regmap_write_bits(map: data->regmap, BMP380_REG_POWER_CONTROL, |
1686 | BMP380_MODE_MASK, |
1687 | FIELD_PREP(BMP380_MODE_MASK, |
1688 | bmp380_operation_mode[mode])); |
1689 | if (ret) { |
1690 | dev_err(data->dev, "failed to write power control register.\n"); |
1691 | return ret; |
1692 | } |
1693 | |
1694 | data->op_mode = mode; |
1695 | |
1696 | return 0; |
1697 | } |
1698 | |
1699 | static int bmp380_wait_conv(struct bmp280_data *data) |
1700 | { |
1701 | unsigned int reg; |
1702 | int ret, meas_time_us; |
1703 | |
1704 | /* Offset measurement time */ |
1705 | meas_time_us = BMP380_MEAS_OFFSET; |
1706 | |
1707 | /* Pressure measurement time */ |
1708 | meas_time_us += BMP380_PRESS_MEAS_OFFSET + |
1709 | BIT(data->oversampling_press) * BMP380_MEAS_DUR; |
1710 | |
1711 | /* Temperature measurement time */ |
1712 | meas_time_us += BMP380_TEMP_MEAS_OFFSET + |
1713 | BIT(data->oversampling_temp) * BMP380_MEAS_DUR; |
1714 | |
1715 | /* Measurement time defined in Datasheet Section 3.9.2 */ |
1716 | fsleep(usecs: meas_time_us); |
1717 | |
1718 | ret = regmap_read(map: data->regmap, BMP380_REG_STATUS, val: ®); |
1719 | if (ret) { |
1720 | dev_err(data->dev, "failed to read status register.\n"); |
1721 | return ret; |
1722 | } |
1723 | |
1724 | if (!((reg & BMP380_STATUS_DRDY_PRESS_MASK) && |
1725 | (reg & BMP380_STATUS_DRDY_TEMP_MASK))) { |
1726 | dev_err(data->dev, "Measurement cycle didn't complete.\n"); |
1727 | return -EBUSY; |
1728 | } |
1729 | |
1730 | return 0; |
1731 | } |
1732 | |
1733 | static int bmp380_chip_config(struct bmp280_data *data) |
1734 | { |
1735 | bool change = false, aux; |
1736 | unsigned int tmp; |
1737 | u8 osrs; |
1738 | int ret; |
1739 | |
1740 | /* Configure power control register */ |
1741 | ret = regmap_update_bits(map: data->regmap, BMP380_REG_POWER_CONTROL, |
1742 | BMP380_CTRL_SENSORS_MASK, |
1743 | BMP380_CTRL_SENSORS_PRESS_EN | |
1744 | BMP380_CTRL_SENSORS_TEMP_EN); |
1745 | if (ret) { |
1746 | dev_err(data->dev, |
1747 | "failed to write operation control register\n"); |
1748 | return ret; |
1749 | } |
1750 | |
1751 | /* Configure oversampling */ |
1752 | osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | |
1753 | FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); |
1754 | |
1755 | ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_OSR, |
1756 | BMP380_OSRS_TEMP_MASK | |
1757 | BMP380_OSRS_PRESS_MASK, |
1758 | val: osrs, change: &aux); |
1759 | if (ret) { |
1760 | dev_err(data->dev, "failed to write oversampling register\n"); |
1761 | return ret; |
1762 | } |
1763 | change = change || aux; |
1764 | |
1765 | /* Configure output data rate */ |
1766 | ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_ODR, |
1767 | BMP380_ODRS_MASK, val: data->sampling_freq, |
1768 | change: &aux); |
1769 | if (ret) { |
1770 | dev_err(data->dev, "failed to write ODR selection register\n"); |
1771 | return ret; |
1772 | } |
1773 | change = change || aux; |
1774 | |
1775 | /* Set filter data */ |
1776 | ret = regmap_update_bits(map: data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, |
1777 | FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff)); |
1778 | if (ret) { |
1779 | dev_err(data->dev, "failed to write config register\n"); |
1780 | return ret; |
1781 | } |
1782 | |
1783 | if (change) { |
1784 | /* |
1785 | * The configurations errors are detected on the fly during a |
1786 | * measurement cycle. If the sampling frequency is too low, it's |
1787 | * faster to reset the measurement loop than wait until the next |
1788 | * measurement is due. |
1789 | * |
1790 | * Resets sensor measurement loop toggling between sleep and |
1791 | * normal operating modes. |
1792 | */ |
1793 | ret = bmp380_set_mode(data, mode: BMP280_SLEEP); |
1794 | if (ret) { |
1795 | dev_err(data->dev, "failed to set sleep mode\n"); |
1796 | return ret; |
1797 | } |
1798 | |
1799 | /* |
1800 | * According to the BMP3 Sensor API, the sensor needs 5ms |
1801 | * in order to go to the sleep mode. |
1802 | */ |
1803 | fsleep(usecs: 5 * USEC_PER_MSEC); |
1804 | |
1805 | ret = bmp380_set_mode(data, mode: BMP280_NORMAL); |
1806 | if (ret) { |
1807 | dev_err(data->dev, "failed to set normal mode\n"); |
1808 | return ret; |
1809 | } |
1810 | /* |
1811 | * Waits for measurement before checking configuration error |
1812 | * flag. Selected longest measurement time, calculated from |
1813 | * formula in datasheet section 3.9.2 with an offset of ~+15% |
1814 | * as it seen as well in table 3.9.1. |
1815 | */ |
1816 | fsleep(usecs: 150 * USEC_PER_MSEC); |
1817 | |
1818 | /* Check config error flag */ |
1819 | ret = regmap_read(map: data->regmap, BMP380_REG_ERROR, val: &tmp); |
1820 | if (ret) { |
1821 | dev_err(data->dev, "failed to read error register\n"); |
1822 | return ret; |
1823 | } |
1824 | if (tmp & BMP380_ERR_CONF_MASK) { |
1825 | dev_warn(data->dev, |
1826 | "sensor flagged configuration as incompatible\n"); |
1827 | return -EINVAL; |
1828 | } |
1829 | } |
1830 | |
1831 | /* Dummy read to empty data registers. */ |
1832 | ret = bmp380_read_press(data, comp_press: &tmp); |
1833 | if (ret) |
1834 | return ret; |
1835 | |
1836 | ret = bmp380_set_mode(data, mode: BMP280_SLEEP); |
1837 | if (ret) |
1838 | dev_err(data->dev, "failed to set sleep mode.\n"); |
1839 | |
1840 | return ret; |
1841 | } |
1842 | |
1843 | static int bmp380_data_rdy_trigger_set_state(struct iio_trigger *trig, |
1844 | bool state) |
1845 | { |
1846 | struct bmp280_data *data = iio_trigger_get_drvdata(trig); |
1847 | int ret; |
1848 | |
1849 | guard(mutex)(T: &data->lock); |
1850 | |
1851 | ret = regmap_update_bits(map: data->regmap, BMP380_REG_INT_CONTROL, |
1852 | BMP380_INT_CTRL_DRDY_EN, |
1853 | FIELD_PREP(BMP380_INT_CTRL_DRDY_EN, !!state)); |
1854 | if (ret) |
1855 | dev_err(data->dev, |
1856 | "Could not %s interrupt.\n", str_enable_disable(state)); |
1857 | return ret; |
1858 | } |
1859 | |
1860 | static const struct iio_trigger_ops bmp380_trigger_ops = { |
1861 | .set_trigger_state = &bmp380_data_rdy_trigger_set_state, |
1862 | }; |
1863 | |
1864 | static int bmp380_int_pin_config(struct bmp280_data *data) |
1865 | { |
1866 | int pin_drive_cfg = FIELD_PREP(BMP380_INT_CTRL_OPEN_DRAIN, |
1867 | data->trig_open_drain); |
1868 | int pin_level_cfg = FIELD_PREP(BMP380_INT_CTRL_LEVEL, |
1869 | data->trig_active_high); |
1870 | int ret, int_pin_cfg = pin_drive_cfg | pin_level_cfg; |
1871 | |
1872 | ret = regmap_update_bits(map: data->regmap, BMP380_REG_INT_CONTROL, |
1873 | BMP380_INT_CTRL_SETTINGS_MASK, val: int_pin_cfg); |
1874 | if (ret) |
1875 | dev_err(data->dev, "Could not set interrupt settings.\n"); |
1876 | |
1877 | return ret; |
1878 | } |
1879 | |
1880 | static irqreturn_t bmp380_irq_thread_handler(int irq, void *p) |
1881 | { |
1882 | struct iio_dev *indio_dev = p; |
1883 | struct bmp280_data *data = iio_priv(indio_dev); |
1884 | unsigned int int_ctrl; |
1885 | int ret; |
1886 | |
1887 | ret = regmap_read(map: data->regmap, BMP380_REG_INT_STATUS, val: &int_ctrl); |
1888 | if (ret) |
1889 | return IRQ_NONE; |
1890 | |
1891 | if (FIELD_GET(BMP380_INT_STATUS_DRDY, int_ctrl)) |
1892 | iio_trigger_poll_nested(trig: data->trig); |
1893 | |
1894 | return IRQ_HANDLED; |
1895 | } |
1896 | |
1897 | static int bmp380_trigger_probe(struct iio_dev *indio_dev) |
1898 | { |
1899 | return __bmp280_trigger_probe(indio_dev, trigger_ops: &bmp380_trigger_ops, |
1900 | int_pin_config: bmp380_int_pin_config, |
1901 | irq_thread_handler: bmp380_irq_thread_handler); |
1902 | } |
1903 | |
1904 | static irqreturn_t bmp380_trigger_handler(int irq, void *p) |
1905 | { |
1906 | struct iio_poll_func *pf = p; |
1907 | struct iio_dev *indio_dev = pf->indio_dev; |
1908 | struct bmp280_data *data = iio_priv(indio_dev); |
1909 | u32 adc_temp, adc_press; |
1910 | s32 t_fine; |
1911 | struct { |
1912 | u32 comp_press; |
1913 | s32 comp_temp; |
1914 | aligned_s64 timestamp; |
1915 | } buffer; |
1916 | int ret; |
1917 | |
1918 | guard(mutex)(T: &data->lock); |
1919 | |
1920 | /* Burst read data registers */ |
1921 | ret = regmap_bulk_read(map: data->regmap, BMP380_REG_PRESS_XLSB, |
1922 | val: data->buf, BMP280_BURST_READ_BYTES); |
1923 | if (ret) { |
1924 | dev_err(data->dev, "failed to burst read sensor data\n"); |
1925 | goto out; |
1926 | } |
1927 | |
1928 | /* Temperature calculations */ |
1929 | adc_temp = get_unaligned_le24(p: &data->buf[3]); |
1930 | if (adc_temp == BMP380_TEMP_SKIPPED) { |
1931 | dev_err(data->dev, "reading temperature skipped\n"); |
1932 | goto out; |
1933 | } |
1934 | |
1935 | buffer.comp_temp = bmp380_compensate_temp(data, adc_temp); |
1936 | |
1937 | /* Pressure calculations */ |
1938 | adc_press = get_unaligned_le24(p: &data->buf[0]); |
1939 | if (adc_press == BMP380_PRESS_SKIPPED) { |
1940 | dev_err(data->dev, "reading pressure skipped\n"); |
1941 | goto out; |
1942 | } |
1943 | |
1944 | t_fine = bmp380_calc_t_fine(data, adc_temp); |
1945 | buffer.comp_press = bmp380_compensate_press(data, adc_press, t_fine); |
1946 | |
1947 | iio_push_to_buffers_with_ts(indio_dev, data: &buffer, data_total_len: sizeof(buffer), |
1948 | timestamp: iio_get_time_ns(indio_dev)); |
1949 | |
1950 | out: |
1951 | iio_trigger_notify_done(trig: indio_dev->trig); |
1952 | |
1953 | return IRQ_HANDLED; |
1954 | } |
1955 | |
1956 | static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; |
1957 | static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; |
1958 | static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID }; |
1959 | static const int bmp380_temp_coeffs[] = { 10, 1 }; |
1960 | static const int bmp380_press_coeffs[] = { 1, 100000 }; |
1961 | |
1962 | const struct bmp280_chip_info bmp380_chip_info = { |
1963 | .id_reg = BMP380_REG_ID, |
1964 | .chip_id = bmp380_chip_ids, |
1965 | .num_chip_id = ARRAY_SIZE(bmp380_chip_ids), |
1966 | .regmap_config = &bmp380_regmap_config, |
1967 | .spi_read_extra_byte = true, |
1968 | .start_up_time_us = 2000, |
1969 | .channels = bmp380_channels, |
1970 | .num_channels = ARRAY_SIZE(bmp380_channels), |
1971 | .avail_scan_masks = bmp280_avail_scan_masks, |
1972 | |
1973 | .oversampling_temp_avail = bmp380_oversampling_avail, |
1974 | .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), |
1975 | .oversampling_temp_default = ilog2(1), |
1976 | |
1977 | .oversampling_press_avail = bmp380_oversampling_avail, |
1978 | .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), |
1979 | .oversampling_press_default = ilog2(4), |
1980 | |
1981 | .sampling_freq_avail = bmp380_odr_table, |
1982 | .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, |
1983 | .sampling_freq_default = BMP380_ODR_50HZ, |
1984 | |
1985 | .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, |
1986 | .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), |
1987 | .iir_filter_coeff_default = 2, |
1988 | |
1989 | .temp_coeffs = bmp380_temp_coeffs, |
1990 | .temp_coeffs_type = IIO_VAL_FRACTIONAL, |
1991 | .press_coeffs = bmp380_press_coeffs, |
1992 | .press_coeffs_type = IIO_VAL_FRACTIONAL, |
1993 | |
1994 | .chip_config = bmp380_chip_config, |
1995 | .read_temp = bmp380_read_temp, |
1996 | .read_press = bmp380_read_press, |
1997 | .read_calib = bmp380_read_calib, |
1998 | .set_mode = bmp380_set_mode, |
1999 | .wait_conv = bmp380_wait_conv, |
2000 | .preinit = bmp380_preinit, |
2001 | |
2002 | .trigger_probe = bmp380_trigger_probe, |
2003 | .trigger_handler = bmp380_trigger_handler, |
2004 | }; |
2005 | EXPORT_SYMBOL_NS(bmp380_chip_info, "IIO_BMP280"); |
2006 | |
2007 | static int bmp580_soft_reset(struct bmp280_data *data) |
2008 | { |
2009 | unsigned int reg; |
2010 | int ret; |
2011 | |
2012 | ret = regmap_write(map: data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET); |
2013 | if (ret) { |
2014 | dev_err(data->dev, "failed to send reset command to device\n"); |
2015 | return ret; |
2016 | } |
2017 | /* From datasheet's table 4: electrical characteristics */ |
2018 | fsleep(usecs: 2000); |
2019 | |
2020 | /* Dummy read of chip_id */ |
2021 | ret = regmap_read(map: data->regmap, BMP580_REG_CHIP_ID, val: ®); |
2022 | if (ret) { |
2023 | dev_err(data->dev, "failed to reestablish comms after reset\n"); |
2024 | return ret; |
2025 | } |
2026 | |
2027 | ret = regmap_read(map: data->regmap, BMP580_REG_INT_STATUS, val: ®); |
2028 | if (ret) { |
2029 | dev_err(data->dev, "error reading interrupt status register\n"); |
2030 | return ret; |
2031 | } |
2032 | if (!(reg & BMP580_INT_STATUS_POR_MASK)) { |
2033 | dev_err(data->dev, "error resetting sensor\n"); |
2034 | return -EINVAL; |
2035 | } |
2036 | |
2037 | return 0; |
2038 | } |
2039 | |
2040 | /** |
2041 | * bmp580_nvm_operation() - Helper function to commit NVM memory operations |
2042 | * @data: sensor data struct |
2043 | * @is_write: flag to signal write operation |
2044 | */ |
2045 | static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write) |
2046 | { |
2047 | unsigned long timeout, poll; |
2048 | unsigned int reg; |
2049 | int ret; |
2050 | |
2051 | /* Check NVM ready flag */ |
2052 | ret = regmap_read(map: data->regmap, BMP580_REG_STATUS, val: ®); |
2053 | if (ret) { |
2054 | dev_err(data->dev, "failed to check nvm status\n"); |
2055 | return ret; |
2056 | } |
2057 | if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) { |
2058 | dev_err(data->dev, "sensor's nvm is not ready\n"); |
2059 | return -EIO; |
2060 | } |
2061 | |
2062 | /* Start NVM operation sequence */ |
2063 | ret = regmap_write(map: data->regmap, BMP580_REG_CMD, |
2064 | BMP580_CMD_NVM_OP_SEQ_0); |
2065 | if (ret) { |
2066 | dev_err(data->dev, |
2067 | "failed to send nvm operation's first sequence\n"); |
2068 | return ret; |
2069 | } |
2070 | if (is_write) { |
2071 | /* Send NVM write sequence */ |
2072 | ret = regmap_write(map: data->regmap, BMP580_REG_CMD, |
2073 | BMP580_CMD_NVM_WRITE_SEQ_1); |
2074 | if (ret) { |
2075 | dev_err(data->dev, |
2076 | "failed to send nvm write sequence\n"); |
2077 | return ret; |
2078 | } |
2079 | /* Datasheet says on 4.8.1.2 it takes approximately 10ms */ |
2080 | poll = 2000; |
2081 | timeout = 12000; |
2082 | } else { |
2083 | /* Send NVM read sequence */ |
2084 | ret = regmap_write(map: data->regmap, BMP580_REG_CMD, |
2085 | BMP580_CMD_NVM_READ_SEQ_1); |
2086 | if (ret) { |
2087 | dev_err(data->dev, |
2088 | "failed to send nvm read sequence\n"); |
2089 | return ret; |
2090 | } |
2091 | /* Datasheet says on 4.8.1.1 it takes approximately 200us */ |
2092 | poll = 50; |
2093 | timeout = 400; |
2094 | } |
2095 | |
2096 | /* Wait until NVM is ready again */ |
2097 | ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg, |
2098 | (reg & BMP580_STATUS_NVM_RDY_MASK), |
2099 | poll, timeout); |
2100 | if (ret) { |
2101 | dev_err(data->dev, "error checking nvm operation status\n"); |
2102 | return ret; |
2103 | } |
2104 | |
2105 | /* Check NVM error flags */ |
2106 | if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) { |
2107 | dev_err(data->dev, "error processing nvm operation\n"); |
2108 | return -EIO; |
2109 | } |
2110 | |
2111 | return 0; |
2112 | } |
2113 | |
2114 | /* |
2115 | * Contrary to previous sensors families, compensation algorithm is builtin. |
2116 | * We are only required to read the register raw data and adapt the ranges |
2117 | * for what is expected on IIO ABI. |
2118 | */ |
2119 | |
2120 | static int bmp580_read_temp(struct bmp280_data *data, s32 *raw_temp) |
2121 | { |
2122 | s32 value_temp; |
2123 | int ret; |
2124 | |
2125 | ret = regmap_bulk_read(map: data->regmap, BMP580_REG_TEMP_XLSB, |
2126 | val: data->buf, BMP280_NUM_TEMP_BYTES); |
2127 | if (ret) { |
2128 | dev_err(data->dev, "failed to read temperature\n"); |
2129 | return ret; |
2130 | } |
2131 | |
2132 | value_temp = get_unaligned_le24(p: data->buf); |
2133 | if (value_temp == BMP580_TEMP_SKIPPED) { |
2134 | dev_err(data->dev, "reading temperature skipped\n"); |
2135 | return -EIO; |
2136 | } |
2137 | *raw_temp = sign_extend32(value: value_temp, index: 23); |
2138 | |
2139 | return 0; |
2140 | } |
2141 | |
2142 | static int bmp580_read_press(struct bmp280_data *data, u32 *raw_press) |
2143 | { |
2144 | u32 value_press; |
2145 | int ret; |
2146 | |
2147 | ret = regmap_bulk_read(map: data->regmap, BMP580_REG_PRESS_XLSB, |
2148 | val: data->buf, BMP280_NUM_PRESS_BYTES); |
2149 | if (ret) { |
2150 | dev_err(data->dev, "failed to read pressure\n"); |
2151 | return ret; |
2152 | } |
2153 | |
2154 | value_press = get_unaligned_le24(p: data->buf); |
2155 | if (value_press == BMP580_PRESS_SKIPPED) { |
2156 | dev_err(data->dev, "reading pressure skipped\n"); |
2157 | return -EIO; |
2158 | } |
2159 | *raw_press = value_press; |
2160 | |
2161 | return 0; |
2162 | } |
2163 | |
2164 | static const int bmp580_odr_table[][2] = { |
2165 | [BMP580_ODR_240HZ] = {240, 0}, |
2166 | [BMP580_ODR_218HZ] = {218, 0}, |
2167 | [BMP580_ODR_199HZ] = {199, 0}, |
2168 | [BMP580_ODR_179HZ] = {179, 0}, |
2169 | [BMP580_ODR_160HZ] = {160, 0}, |
2170 | [BMP580_ODR_149HZ] = {149, 0}, |
2171 | [BMP580_ODR_140HZ] = {140, 0}, |
2172 | [BMP580_ODR_129HZ] = {129, 0}, |
2173 | [BMP580_ODR_120HZ] = {120, 0}, |
2174 | [BMP580_ODR_110HZ] = {110, 0}, |
2175 | [BMP580_ODR_100HZ] = {100, 0}, |
2176 | [BMP580_ODR_89HZ] = {89, 0}, |
2177 | [BMP580_ODR_80HZ] = {80, 0}, |
2178 | [BMP580_ODR_70HZ] = {70, 0}, |
2179 | [BMP580_ODR_60HZ] = {60, 0}, |
2180 | [BMP580_ODR_50HZ] = {50, 0}, |
2181 | [BMP580_ODR_45HZ] = {45, 0}, |
2182 | [BMP580_ODR_40HZ] = {40, 0}, |
2183 | [BMP580_ODR_35HZ] = {35, 0}, |
2184 | [BMP580_ODR_30HZ] = {30, 0}, |
2185 | [BMP580_ODR_25HZ] = {25, 0}, |
2186 | [BMP580_ODR_20HZ] = {20, 0}, |
2187 | [BMP580_ODR_15HZ] = {15, 0}, |
2188 | [BMP580_ODR_10HZ] = {10, 0}, |
2189 | [BMP580_ODR_5HZ] = {5, 0}, |
2190 | [BMP580_ODR_4HZ] = {4, 0}, |
2191 | [BMP580_ODR_3HZ] = {3, 0}, |
2192 | [BMP580_ODR_2HZ] = {2, 0}, |
2193 | [BMP580_ODR_1HZ] = {1, 0}, |
2194 | [BMP580_ODR_0_5HZ] = {0, 500000}, |
2195 | [BMP580_ODR_0_25HZ] = {0, 250000}, |
2196 | [BMP580_ODR_0_125HZ] = {0, 125000}, |
2197 | }; |
2198 | |
2199 | static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 }; |
2200 | |
2201 | static int bmp580_nvmem_read_impl(void *priv, unsigned int offset, void *val, |
2202 | size_t bytes) |
2203 | { |
2204 | struct bmp280_data *data = priv; |
2205 | u16 *dst = val; |
2206 | int ret, addr; |
2207 | |
2208 | guard(mutex)(T: &data->lock); |
2209 | |
2210 | /* Set sensor in standby mode */ |
2211 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG, |
2212 | BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, |
2213 | BMP580_ODR_DEEPSLEEP_DIS | |
2214 | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); |
2215 | if (ret) { |
2216 | dev_err(data->dev, "failed to change sensor to standby mode\n"); |
2217 | goto exit; |
2218 | } |
2219 | /* Wait standby transition time */ |
2220 | fsleep(usecs: 2500); |
2221 | |
2222 | while (bytes >= sizeof(*dst)) { |
2223 | addr = bmp580_nvmem_addrs[offset / sizeof(*dst)]; |
2224 | |
2225 | ret = regmap_write(map: data->regmap, BMP580_REG_NVM_ADDR, |
2226 | FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); |
2227 | if (ret) { |
2228 | dev_err(data->dev, "error writing nvm address\n"); |
2229 | goto exit; |
2230 | } |
2231 | |
2232 | ret = bmp580_nvm_operation(data, is_write: false); |
2233 | if (ret) |
2234 | goto exit; |
2235 | |
2236 | ret = regmap_bulk_read(map: data->regmap, BMP580_REG_NVM_DATA_LSB, |
2237 | val: &data->le16, val_count: sizeof(data->le16)); |
2238 | if (ret) { |
2239 | dev_err(data->dev, "error reading nvm data regs\n"); |
2240 | goto exit; |
2241 | } |
2242 | |
2243 | *dst++ = le16_to_cpu(data->le16); |
2244 | bytes -= sizeof(*dst); |
2245 | offset += sizeof(*dst); |
2246 | } |
2247 | exit: |
2248 | /* Restore chip config */ |
2249 | data->chip_info->chip_config(data); |
2250 | return ret; |
2251 | } |
2252 | |
2253 | static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val, |
2254 | size_t bytes) |
2255 | { |
2256 | struct bmp280_data *data = priv; |
2257 | int ret; |
2258 | |
2259 | pm_runtime_get_sync(dev: data->dev); |
2260 | ret = bmp580_nvmem_read_impl(priv, offset, val, bytes); |
2261 | pm_runtime_mark_last_busy(dev: data->dev); |
2262 | pm_runtime_put_autosuspend(dev: data->dev); |
2263 | |
2264 | return ret; |
2265 | } |
2266 | |
2267 | static int bmp580_nvmem_write_impl(void *priv, unsigned int offset, void *val, |
2268 | size_t bytes) |
2269 | { |
2270 | struct bmp280_data *data = priv; |
2271 | u16 *buf = val; |
2272 | int ret, addr; |
2273 | |
2274 | guard(mutex)(T: &data->lock); |
2275 | |
2276 | /* Set sensor in standby mode */ |
2277 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG, |
2278 | BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, |
2279 | BMP580_ODR_DEEPSLEEP_DIS | |
2280 | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); |
2281 | if (ret) { |
2282 | dev_err(data->dev, "failed to change sensor to standby mode\n"); |
2283 | goto exit; |
2284 | } |
2285 | /* Wait standby transition time */ |
2286 | fsleep(usecs: 2500); |
2287 | |
2288 | while (bytes >= sizeof(*buf)) { |
2289 | addr = bmp580_nvmem_addrs[offset / sizeof(*buf)]; |
2290 | |
2291 | ret = regmap_write(map: data->regmap, BMP580_REG_NVM_ADDR, |
2292 | BMP580_NVM_PROG_EN | |
2293 | FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); |
2294 | if (ret) { |
2295 | dev_err(data->dev, "error writing nvm address\n"); |
2296 | goto exit; |
2297 | } |
2298 | data->le16 = cpu_to_le16(*buf++); |
2299 | |
2300 | ret = regmap_bulk_write(map: data->regmap, BMP580_REG_NVM_DATA_LSB, |
2301 | val: &data->le16, val_count: sizeof(data->le16)); |
2302 | if (ret) { |
2303 | dev_err(data->dev, "error writing LSB NVM data regs\n"); |
2304 | goto exit; |
2305 | } |
2306 | |
2307 | ret = bmp580_nvm_operation(data, is_write: true); |
2308 | if (ret) |
2309 | goto exit; |
2310 | |
2311 | /* Disable programming mode bit */ |
2312 | ret = regmap_clear_bits(map: data->regmap, BMP580_REG_NVM_ADDR, |
2313 | BMP580_NVM_PROG_EN); |
2314 | if (ret) { |
2315 | dev_err(data->dev, "error resetting nvm write\n"); |
2316 | goto exit; |
2317 | } |
2318 | |
2319 | bytes -= sizeof(*buf); |
2320 | offset += sizeof(*buf); |
2321 | } |
2322 | exit: |
2323 | /* Restore chip config */ |
2324 | data->chip_info->chip_config(data); |
2325 | return ret; |
2326 | } |
2327 | |
2328 | static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val, |
2329 | size_t bytes) |
2330 | { |
2331 | struct bmp280_data *data = priv; |
2332 | int ret; |
2333 | |
2334 | pm_runtime_get_sync(dev: data->dev); |
2335 | ret = bmp580_nvmem_write_impl(priv, offset, val, bytes); |
2336 | pm_runtime_mark_last_busy(dev: data->dev); |
2337 | pm_runtime_put_autosuspend(dev: data->dev); |
2338 | |
2339 | return ret; |
2340 | } |
2341 | |
2342 | static int bmp580_preinit(struct bmp280_data *data) |
2343 | { |
2344 | struct nvmem_config config = { |
2345 | .dev = data->dev, |
2346 | .priv = data, |
2347 | .name = "bmp580_nvmem", |
2348 | .word_size = sizeof(u16), |
2349 | .stride = sizeof(u16), |
2350 | .size = 3 * sizeof(u16), |
2351 | .reg_read = bmp580_nvmem_read, |
2352 | .reg_write = bmp580_nvmem_write, |
2353 | }; |
2354 | unsigned int reg; |
2355 | int ret; |
2356 | |
2357 | /* Issue soft-reset command */ |
2358 | ret = bmp580_soft_reset(data); |
2359 | if (ret) |
2360 | return ret; |
2361 | |
2362 | /* Post powerup sequence */ |
2363 | ret = regmap_read(map: data->regmap, BMP580_REG_CHIP_ID, val: ®); |
2364 | if (ret) { |
2365 | dev_err(data->dev, "failed to establish comms with the chip\n"); |
2366 | return ret; |
2367 | } |
2368 | |
2369 | /* Print warn message if we don't know the chip id */ |
2370 | if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT) |
2371 | dev_warn(data->dev, "unexpected chip_id\n"); |
2372 | |
2373 | ret = regmap_read(map: data->regmap, BMP580_REG_STATUS, val: ®); |
2374 | if (ret) { |
2375 | dev_err(data->dev, "failed to read nvm status\n"); |
2376 | return ret; |
2377 | } |
2378 | |
2379 | /* Check nvm status */ |
2380 | if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) { |
2381 | dev_err(data->dev, "nvm error on powerup sequence\n"); |
2382 | return -EIO; |
2383 | } |
2384 | |
2385 | /* Register nvmem device */ |
2386 | return PTR_ERR_OR_ZERO(ptr: devm_nvmem_register(dev: config.dev, cfg: &config)); |
2387 | } |
2388 | |
2389 | static const u8 bmp580_operation_mode[] = { |
2390 | [BMP280_SLEEP] = BMP580_MODE_SLEEP, |
2391 | [BMP280_FORCED] = BMP580_MODE_FORCED, |
2392 | [BMP280_NORMAL] = BMP580_MODE_NORMAL, |
2393 | }; |
2394 | |
2395 | static int bmp580_set_mode(struct bmp280_data *data, enum bmp280_op_mode mode) |
2396 | { |
2397 | struct device *dev = data->dev; |
2398 | int ret; |
2399 | |
2400 | if (mode == BMP280_FORCED) { |
2401 | ret = regmap_set_bits(map: data->regmap, BMP580_REG_DSP_CONFIG, |
2402 | BMP580_DSP_IIR_FORCED_FLUSH); |
2403 | if (ret) { |
2404 | dev_err(dev, "Could not flush IIR filter constants.\n"); |
2405 | return ret; |
2406 | } |
2407 | } |
2408 | |
2409 | ret = regmap_write_bits(map: data->regmap, BMP580_REG_ODR_CONFIG, |
2410 | BMP580_MODE_MASK, |
2411 | FIELD_PREP(BMP580_MODE_MASK, |
2412 | bmp580_operation_mode[mode])); |
2413 | if (ret) { |
2414 | dev_err(dev, "failed to write power control register.\n"); |
2415 | return ret; |
2416 | } |
2417 | |
2418 | data->op_mode = mode; |
2419 | |
2420 | return 0; |
2421 | } |
2422 | |
2423 | static int bmp580_wait_conv(struct bmp280_data *data) |
2424 | { |
2425 | /* |
2426 | * Taken from datasheet, Section 2 "Specification, Table 3 "Electrical |
2427 | * characteristics. |
2428 | */ |
2429 | static const int time_conv_press[] = { |
2430 | 0, 1050, 1785, 3045, 5670, 10920, 21420, 42420, |
2431 | 84420, |
2432 | }; |
2433 | static const int time_conv_temp[] = { |
2434 | 0, 1050, 1105, 1575, 2205, 3465, 6090, 11340, |
2435 | 21840, |
2436 | }; |
2437 | int meas_time_us; |
2438 | |
2439 | meas_time_us = 4 * USEC_PER_MSEC + |
2440 | time_conv_temp[data->oversampling_temp] + |
2441 | time_conv_press[data->oversampling_press]; |
2442 | |
2443 | /* |
2444 | * Measurement time mentioned in Chapter 2, Table 4 of the datasheet. |
2445 | * The extra 4ms is the required mode change to start of measurement |
2446 | * time. |
2447 | */ |
2448 | fsleep(usecs: meas_time_us); |
2449 | |
2450 | return 0; |
2451 | } |
2452 | |
2453 | static int bmp580_chip_config(struct bmp280_data *data) |
2454 | { |
2455 | bool change = false, aux; |
2456 | unsigned int tmp; |
2457 | u8 reg_val; |
2458 | int ret; |
2459 | |
2460 | /* Sets sensor in standby mode */ |
2461 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG, |
2462 | BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, |
2463 | BMP580_ODR_DEEPSLEEP_DIS | |
2464 | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); |
2465 | if (ret) { |
2466 | dev_err(data->dev, "failed to change sensor to standby mode\n"); |
2467 | return ret; |
2468 | } |
2469 | /* From datasheet's table 4: electrical characteristics */ |
2470 | fsleep(usecs: 2500); |
2471 | |
2472 | /* Set default DSP mode settings */ |
2473 | reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) | |
2474 | BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN; |
2475 | |
2476 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_DSP_CONFIG, |
2477 | BMP580_DSP_COMP_MASK | |
2478 | BMP580_DSP_SHDW_IIR_TEMP_EN | |
2479 | BMP580_DSP_SHDW_IIR_PRESS_EN, val: reg_val); |
2480 | if (ret) { |
2481 | dev_err(data->dev, "failed to change DSP mode settings\n"); |
2482 | return ret; |
2483 | } |
2484 | |
2485 | /* Configure oversampling */ |
2486 | reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) | |
2487 | FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) | |
2488 | BMP580_OSR_PRESS_EN; |
2489 | |
2490 | ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_OSR_CONFIG, |
2491 | BMP580_OSR_TEMP_MASK | |
2492 | BMP580_OSR_PRESS_MASK | |
2493 | BMP580_OSR_PRESS_EN, |
2494 | val: reg_val, change: &aux); |
2495 | if (ret) { |
2496 | dev_err(data->dev, "failed to write oversampling register\n"); |
2497 | return ret; |
2498 | } |
2499 | change = change || aux; |
2500 | |
2501 | /* Configure output data rate */ |
2502 | ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK, |
2503 | FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq), |
2504 | change: &aux); |
2505 | if (ret) { |
2506 | dev_err(data->dev, "failed to write ODR configuration register\n"); |
2507 | return ret; |
2508 | } |
2509 | change = change || aux; |
2510 | |
2511 | /* Set filter data */ |
2512 | reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) | |
2513 | FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff); |
2514 | |
2515 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_DSP_IIR, |
2516 | BMP580_DSP_IIR_PRESS_MASK | BMP580_DSP_IIR_TEMP_MASK, |
2517 | val: reg_val); |
2518 | if (ret) { |
2519 | dev_err(data->dev, "failed to write config register\n"); |
2520 | return ret; |
2521 | } |
2522 | |
2523 | if (change) { |
2524 | /* |
2525 | * Check if ODR and OSR settings are valid or we are |
2526 | * operating in a degraded mode. |
2527 | */ |
2528 | ret = regmap_read(map: data->regmap, BMP580_REG_EFF_OSR, val: &tmp); |
2529 | if (ret) { |
2530 | dev_err(data->dev, |
2531 | "error reading effective OSR register\n"); |
2532 | return ret; |
2533 | } |
2534 | if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) { |
2535 | dev_warn(data->dev, "OSR and ODR incompatible settings detected\n"); |
2536 | /* Set current OSR settings from data on effective OSR */ |
2537 | data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp); |
2538 | data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp); |
2539 | return -EINVAL; |
2540 | } |
2541 | } |
2542 | |
2543 | return 0; |
2544 | } |
2545 | |
2546 | static int bmp580_data_rdy_trigger_set_state(struct iio_trigger *trig, |
2547 | bool state) |
2548 | { |
2549 | struct bmp280_data *data = iio_trigger_get_drvdata(trig); |
2550 | int ret; |
2551 | |
2552 | guard(mutex)(T: &data->lock); |
2553 | |
2554 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_INT_CONFIG, |
2555 | BMP580_INT_CONFIG_INT_EN, |
2556 | FIELD_PREP(BMP580_INT_CONFIG_INT_EN, !!state)); |
2557 | if (ret) |
2558 | dev_err(data->dev, |
2559 | "Could not %s interrupt.\n", str_enable_disable(state)); |
2560 | return ret; |
2561 | } |
2562 | |
2563 | static const struct iio_trigger_ops bmp580_trigger_ops = { |
2564 | .set_trigger_state = &bmp580_data_rdy_trigger_set_state, |
2565 | }; |
2566 | |
2567 | static int bmp580_int_pin_config(struct bmp280_data *data) |
2568 | { |
2569 | int pin_drive_cfg = FIELD_PREP(BMP580_INT_CONFIG_OPEN_DRAIN, |
2570 | data->trig_open_drain); |
2571 | int pin_level_cfg = FIELD_PREP(BMP580_INT_CONFIG_LEVEL, |
2572 | data->trig_active_high); |
2573 | int ret, int_pin_cfg = pin_drive_cfg | pin_level_cfg; |
2574 | |
2575 | ret = regmap_update_bits(map: data->regmap, BMP580_REG_INT_CONFIG, |
2576 | BMP580_INT_CONFIG_MASK, val: int_pin_cfg); |
2577 | if (ret) { |
2578 | dev_err(data->dev, "Could not set interrupt settings.\n"); |
2579 | return ret; |
2580 | } |
2581 | |
2582 | ret = regmap_set_bits(map: data->regmap, BMP580_REG_INT_SOURCE, |
2583 | BMP580_INT_SOURCE_DRDY); |
2584 | if (ret) |
2585 | dev_err(data->dev, "Could not set interrupt source.\n"); |
2586 | |
2587 | return ret; |
2588 | } |
2589 | |
2590 | static irqreturn_t bmp580_irq_thread_handler(int irq, void *p) |
2591 | { |
2592 | struct iio_dev *indio_dev = p; |
2593 | struct bmp280_data *data = iio_priv(indio_dev); |
2594 | unsigned int int_ctrl; |
2595 | int ret; |
2596 | |
2597 | ret = regmap_read(map: data->regmap, BMP580_REG_INT_STATUS, val: &int_ctrl); |
2598 | if (ret) |
2599 | return IRQ_NONE; |
2600 | |
2601 | if (FIELD_GET(BMP580_INT_STATUS_DRDY_MASK, int_ctrl)) |
2602 | iio_trigger_poll_nested(trig: data->trig); |
2603 | |
2604 | return IRQ_HANDLED; |
2605 | } |
2606 | |
2607 | static int bmp580_trigger_probe(struct iio_dev *indio_dev) |
2608 | { |
2609 | return __bmp280_trigger_probe(indio_dev, trigger_ops: &bmp580_trigger_ops, |
2610 | int_pin_config: bmp580_int_pin_config, |
2611 | irq_thread_handler: bmp580_irq_thread_handler); |
2612 | } |
2613 | |
2614 | static irqreturn_t bmp580_trigger_handler(int irq, void *p) |
2615 | { |
2616 | struct iio_poll_func *pf = p; |
2617 | struct iio_dev *indio_dev = pf->indio_dev; |
2618 | struct bmp280_data *data = iio_priv(indio_dev); |
2619 | struct { |
2620 | __le32 comp_temp; |
2621 | __le32 comp_press; |
2622 | aligned_s64 timestamp; |
2623 | } buffer; |
2624 | int ret; |
2625 | |
2626 | guard(mutex)(T: &data->lock); |
2627 | |
2628 | /* Burst read data registers */ |
2629 | ret = regmap_bulk_read(map: data->regmap, BMP580_REG_TEMP_XLSB, |
2630 | val: data->buf, BMP280_BURST_READ_BYTES); |
2631 | if (ret) { |
2632 | dev_err(data->dev, "failed to burst read sensor data\n"); |
2633 | goto out; |
2634 | } |
2635 | |
2636 | /* Pressure calculations */ |
2637 | memcpy(&buffer.comp_press, &data->buf[3], 3); |
2638 | |
2639 | /* Temperature calculations */ |
2640 | memcpy(&buffer.comp_temp, &data->buf[0], 3); |
2641 | |
2642 | iio_push_to_buffers_with_ts(indio_dev, data: &buffer, data_total_len: sizeof(buffer), |
2643 | timestamp: iio_get_time_ns(indio_dev)); |
2644 | |
2645 | out: |
2646 | iio_trigger_notify_done(trig: indio_dev->trig); |
2647 | |
2648 | return IRQ_HANDLED; |
2649 | } |
2650 | |
2651 | static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 }; |
2652 | static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT }; |
2653 | /* Instead of { 1000, 16 } we do this, to avoid overflow issues */ |
2654 | static const int bmp580_temp_coeffs[] = { 125, 13 }; |
2655 | static const int bmp580_press_coeffs[] = { 1, 64000}; |
2656 | |
2657 | const struct bmp280_chip_info bmp580_chip_info = { |
2658 | .id_reg = BMP580_REG_CHIP_ID, |
2659 | .chip_id = bmp580_chip_ids, |
2660 | .num_chip_id = ARRAY_SIZE(bmp580_chip_ids), |
2661 | .regmap_config = &bmp580_regmap_config, |
2662 | .start_up_time_us = 2000, |
2663 | .channels = bmp580_channels, |
2664 | .num_channels = ARRAY_SIZE(bmp580_channels), |
2665 | .avail_scan_masks = bmp280_avail_scan_masks, |
2666 | |
2667 | .oversampling_temp_avail = bmp580_oversampling_avail, |
2668 | .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail), |
2669 | .oversampling_temp_default = ilog2(1), |
2670 | |
2671 | .oversampling_press_avail = bmp580_oversampling_avail, |
2672 | .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail), |
2673 | .oversampling_press_default = ilog2(4), |
2674 | |
2675 | .sampling_freq_avail = bmp580_odr_table, |
2676 | .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2, |
2677 | .sampling_freq_default = BMP580_ODR_50HZ, |
2678 | |
2679 | .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, |
2680 | .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), |
2681 | .iir_filter_coeff_default = 2, |
2682 | |
2683 | .temp_coeffs = bmp580_temp_coeffs, |
2684 | .temp_coeffs_type = IIO_VAL_FRACTIONAL_LOG2, |
2685 | .press_coeffs = bmp580_press_coeffs, |
2686 | .press_coeffs_type = IIO_VAL_FRACTIONAL, |
2687 | |
2688 | .chip_config = bmp580_chip_config, |
2689 | .read_temp = bmp580_read_temp, |
2690 | .read_press = bmp580_read_press, |
2691 | .set_mode = bmp580_set_mode, |
2692 | .wait_conv = bmp580_wait_conv, |
2693 | .preinit = bmp580_preinit, |
2694 | |
2695 | .trigger_probe = bmp580_trigger_probe, |
2696 | .trigger_handler = bmp580_trigger_handler, |
2697 | }; |
2698 | EXPORT_SYMBOL_NS(bmp580_chip_info, "IIO_BMP280"); |
2699 | |
2700 | static int bmp180_wait_for_eoc(struct bmp280_data *data, u8 ctrl_meas) |
2701 | { |
2702 | static const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; |
2703 | unsigned int delay_us; |
2704 | unsigned int ctrl; |
2705 | int ret; |
2706 | |
2707 | if (data->use_eoc) |
2708 | reinit_completion(x: &data->done); |
2709 | |
2710 | ret = regmap_write(map: data->regmap, BMP280_REG_CTRL_MEAS, val: ctrl_meas); |
2711 | if (ret) { |
2712 | dev_err(data->dev, "failed to write crtl_meas register\n"); |
2713 | return ret; |
2714 | } |
2715 | |
2716 | if (data->use_eoc) { |
2717 | /* |
2718 | * If we have a completion interrupt, use it, wait up to |
2719 | * 100ms. The longest conversion time listed is 76.5 ms for |
2720 | * advanced resolution mode. |
2721 | */ |
2722 | ret = wait_for_completion_timeout(x: &data->done, |
2723 | timeout: 1 + msecs_to_jiffies(m: 100)); |
2724 | if (!ret) |
2725 | dev_err(data->dev, "timeout waiting for completion\n"); |
2726 | } else { |
2727 | if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) |
2728 | delay_us = 4500; |
2729 | else |
2730 | delay_us = |
2731 | conversion_time_max[data->oversampling_press]; |
2732 | |
2733 | fsleep(usecs: delay_us); |
2734 | } |
2735 | |
2736 | ret = regmap_read(map: data->regmap, BMP280_REG_CTRL_MEAS, val: &ctrl); |
2737 | if (ret) { |
2738 | dev_err(data->dev, "failed to read ctrl_meas register\n"); |
2739 | return ret; |
2740 | } |
2741 | |
2742 | /* The value of this bit reset to "0" after conversion is complete */ |
2743 | if (ctrl & BMP180_MEAS_SCO) { |
2744 | dev_err(data->dev, "conversion didn't complete\n"); |
2745 | return -EIO; |
2746 | } |
2747 | |
2748 | return 0; |
2749 | } |
2750 | |
2751 | static int bmp180_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) |
2752 | { |
2753 | int ret; |
2754 | |
2755 | ret = bmp180_wait_for_eoc(data, |
2756 | FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | |
2757 | BMP180_MEAS_SCO); |
2758 | if (ret) |
2759 | return ret; |
2760 | |
2761 | ret = regmap_bulk_read(map: data->regmap, BMP180_REG_OUT_MSB, |
2762 | val: &data->be16, val_count: sizeof(data->be16)); |
2763 | if (ret) { |
2764 | dev_err(data->dev, "failed to read temperature\n"); |
2765 | return ret; |
2766 | } |
2767 | |
2768 | *adc_temp = be16_to_cpu(data->be16); |
2769 | |
2770 | return 0; |
2771 | } |
2772 | |
2773 | static int bmp180_read_calib(struct bmp280_data *data) |
2774 | { |
2775 | struct bmp180_calib *calib = &data->calib.bmp180; |
2776 | int ret; |
2777 | int i; |
2778 | |
2779 | ret = regmap_bulk_read(map: data->regmap, BMP180_REG_CALIB_START, |
2780 | val: data->bmp180_cal_buf, val_count: sizeof(data->bmp180_cal_buf)); |
2781 | if (ret) { |
2782 | dev_err(data->dev, "failed to read calibration parameters\n"); |
2783 | return ret; |
2784 | } |
2785 | |
2786 | /* None of the words has the value 0 or 0xFFFF */ |
2787 | for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { |
2788 | if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || |
2789 | data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) |
2790 | return -EIO; |
2791 | } |
2792 | |
2793 | /* Toss the calibration data into the entropy pool */ |
2794 | add_device_randomness(buf: data->bmp180_cal_buf, |
2795 | len: sizeof(data->bmp180_cal_buf)); |
2796 | |
2797 | calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); |
2798 | calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); |
2799 | calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); |
2800 | calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); |
2801 | calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); |
2802 | calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); |
2803 | calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); |
2804 | calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); |
2805 | calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); |
2806 | calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); |
2807 | calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); |
2808 | |
2809 | return 0; |
2810 | } |
2811 | |
2812 | /* |
2813 | * Returns temperature in DegC, resolution is 0.1 DegC. |
2814 | * t_fine carries fine temperature as global value. |
2815 | * |
2816 | * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". |
2817 | */ |
2818 | |
2819 | static s32 bmp180_calc_t_fine(struct bmp280_data *data, u32 adc_temp) |
2820 | { |
2821 | struct bmp180_calib *calib = &data->calib.bmp180; |
2822 | s32 x1, x2; |
2823 | |
2824 | x1 = ((((s32)adc_temp) - calib->AC6) * calib->AC5) >> 15; |
2825 | x2 = (calib->MC << 11) / (x1 + calib->MD); |
2826 | return x1 + x2; /* t_fine = x1 + x2; */ |
2827 | } |
2828 | |
2829 | static int bmp180_get_t_fine(struct bmp280_data *data, s32 *t_fine) |
2830 | { |
2831 | s32 adc_temp; |
2832 | int ret; |
2833 | |
2834 | ret = bmp180_read_temp_adc(data, adc_temp: &adc_temp); |
2835 | if (ret) |
2836 | return ret; |
2837 | |
2838 | *t_fine = bmp180_calc_t_fine(data, adc_temp); |
2839 | |
2840 | return 0; |
2841 | } |
2842 | |
2843 | static s32 bmp180_compensate_temp(struct bmp280_data *data, u32 adc_temp) |
2844 | { |
2845 | return (bmp180_calc_t_fine(data, adc_temp) + 8) / 16; |
2846 | } |
2847 | |
2848 | static int bmp180_read_temp(struct bmp280_data *data, s32 *comp_temp) |
2849 | { |
2850 | u32 adc_temp; |
2851 | int ret; |
2852 | |
2853 | ret = bmp180_read_temp_adc(data, adc_temp: &adc_temp); |
2854 | if (ret) |
2855 | return ret; |
2856 | |
2857 | *comp_temp = bmp180_compensate_temp(data, adc_temp); |
2858 | |
2859 | return 0; |
2860 | } |
2861 | |
2862 | static int bmp180_read_press_adc(struct bmp280_data *data, u32 *adc_press) |
2863 | { |
2864 | u8 oss = data->oversampling_press; |
2865 | int ret; |
2866 | |
2867 | ret = bmp180_wait_for_eoc(data, |
2868 | FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | |
2869 | FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | |
2870 | BMP180_MEAS_SCO); |
2871 | if (ret) |
2872 | return ret; |
2873 | |
2874 | ret = regmap_bulk_read(map: data->regmap, BMP180_REG_OUT_MSB, |
2875 | val: data->buf, BMP280_NUM_PRESS_BYTES); |
2876 | if (ret) { |
2877 | dev_err(data->dev, "failed to read pressure\n"); |
2878 | return ret; |
2879 | } |
2880 | |
2881 | *adc_press = get_unaligned_be24(p: data->buf) >> (8 - oss); |
2882 | |
2883 | return 0; |
2884 | } |
2885 | |
2886 | /* |
2887 | * Returns pressure in Pa, resolution is 1 Pa. |
2888 | * |
2889 | * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". |
2890 | */ |
2891 | static u32 bmp180_compensate_press(struct bmp280_data *data, u32 adc_press, |
2892 | s32 t_fine) |
2893 | { |
2894 | struct bmp180_calib *calib = &data->calib.bmp180; |
2895 | s32 oss = data->oversampling_press; |
2896 | s32 x1, x2, x3, p; |
2897 | s32 b3, b6; |
2898 | u32 b4, b7; |
2899 | |
2900 | b6 = t_fine - 4000; |
2901 | x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; |
2902 | x2 = calib->AC2 * b6 >> 11; |
2903 | x3 = x1 + x2; |
2904 | b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; |
2905 | x1 = calib->AC3 * b6 >> 13; |
2906 | x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; |
2907 | x3 = (x1 + x2 + 2) >> 2; |
2908 | b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; |
2909 | b7 = (adc_press - b3) * (50000 >> oss); |
2910 | if (b7 < 0x80000000) |
2911 | p = (b7 * 2) / b4; |
2912 | else |
2913 | p = (b7 / b4) * 2; |
2914 | |
2915 | x1 = (p >> 8) * (p >> 8); |
2916 | x1 = (x1 * 3038) >> 16; |
2917 | x2 = (-7357 * p) >> 16; |
2918 | |
2919 | return p + ((x1 + x2 + 3791) >> 4); |
2920 | } |
2921 | |
2922 | static int bmp180_read_press(struct bmp280_data *data, u32 *comp_press) |
2923 | { |
2924 | u32 adc_press; |
2925 | s32 t_fine; |
2926 | int ret; |
2927 | |
2928 | ret = bmp180_get_t_fine(data, t_fine: &t_fine); |
2929 | if (ret) |
2930 | return ret; |
2931 | |
2932 | ret = bmp180_read_press_adc(data, adc_press: &adc_press); |
2933 | if (ret) |
2934 | return ret; |
2935 | |
2936 | *comp_press = bmp180_compensate_press(data, adc_press, t_fine); |
2937 | |
2938 | return 0; |
2939 | } |
2940 | |
2941 | /* Keep compatibility with newer generations of the sensor */ |
2942 | static int bmp180_set_mode(struct bmp280_data *data, enum bmp280_op_mode mode) |
2943 | { |
2944 | return 0; |
2945 | } |
2946 | |
2947 | /* Keep compatibility with newer generations of the sensor */ |
2948 | static int bmp180_wait_conv(struct bmp280_data *data) |
2949 | { |
2950 | return 0; |
2951 | } |
2952 | |
2953 | /* Keep compatibility with newer generations of the sensor */ |
2954 | static int bmp180_chip_config(struct bmp280_data *data) |
2955 | { |
2956 | return 0; |
2957 | } |
2958 | |
2959 | static irqreturn_t bmp180_trigger_handler(int irq, void *p) |
2960 | { |
2961 | struct iio_poll_func *pf = p; |
2962 | struct iio_dev *indio_dev = pf->indio_dev; |
2963 | struct bmp280_data *data = iio_priv(indio_dev); |
2964 | struct { |
2965 | u32 comp_press; |
2966 | s32 comp_temp; |
2967 | aligned_s64 timestamp; |
2968 | } buffer; |
2969 | int ret; |
2970 | |
2971 | guard(mutex)(T: &data->lock); |
2972 | |
2973 | ret = bmp180_read_temp(data, comp_temp: &buffer.comp_temp); |
2974 | if (ret) |
2975 | goto out; |
2976 | |
2977 | |
2978 | ret = bmp180_read_press(data, comp_press: &buffer.comp_press); |
2979 | if (ret) |
2980 | goto out; |
2981 | |
2982 | iio_push_to_buffers_with_ts(indio_dev, data: &buffer, data_total_len: sizeof(buffer), |
2983 | timestamp: iio_get_time_ns(indio_dev)); |
2984 | |
2985 | out: |
2986 | iio_trigger_notify_done(trig: indio_dev->trig); |
2987 | |
2988 | return IRQ_HANDLED; |
2989 | } |
2990 | |
2991 | static const int bmp180_oversampling_temp_avail[] = { 1 }; |
2992 | static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; |
2993 | static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID }; |
2994 | static const int bmp180_temp_coeffs[] = { 100, 1 }; |
2995 | static const int bmp180_press_coeffs[] = { 1, 1000 }; |
2996 | |
2997 | const struct bmp280_chip_info bmp180_chip_info = { |
2998 | .id_reg = BMP280_REG_ID, |
2999 | .chip_id = bmp180_chip_ids, |
3000 | .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), |
3001 | .regmap_config = &bmp180_regmap_config, |
3002 | .start_up_time_us = 2000, |
3003 | .channels = bmp280_channels, |
3004 | .num_channels = ARRAY_SIZE(bmp280_channels), |
3005 | .avail_scan_masks = bmp280_avail_scan_masks, |
3006 | |
3007 | .oversampling_temp_avail = bmp180_oversampling_temp_avail, |
3008 | .num_oversampling_temp_avail = |
3009 | ARRAY_SIZE(bmp180_oversampling_temp_avail), |
3010 | .oversampling_temp_default = 0, |
3011 | |
3012 | .oversampling_press_avail = bmp180_oversampling_press_avail, |
3013 | .num_oversampling_press_avail = |
3014 | ARRAY_SIZE(bmp180_oversampling_press_avail), |
3015 | .oversampling_press_default = BMP180_MEAS_PRESS_8X, |
3016 | |
3017 | .temp_coeffs = bmp180_temp_coeffs, |
3018 | .temp_coeffs_type = IIO_VAL_FRACTIONAL, |
3019 | .press_coeffs = bmp180_press_coeffs, |
3020 | .press_coeffs_type = IIO_VAL_FRACTIONAL, |
3021 | |
3022 | .chip_config = bmp180_chip_config, |
3023 | .read_temp = bmp180_read_temp, |
3024 | .read_press = bmp180_read_press, |
3025 | .read_calib = bmp180_read_calib, |
3026 | .set_mode = bmp180_set_mode, |
3027 | .wait_conv = bmp180_wait_conv, |
3028 | |
3029 | .trigger_handler = bmp180_trigger_handler, |
3030 | }; |
3031 | EXPORT_SYMBOL_NS(bmp180_chip_info, "IIO_BMP280"); |
3032 | |
3033 | static irqreturn_t bmp085_eoc_irq(int irq, void *d) |
3034 | { |
3035 | struct bmp280_data *data = d; |
3036 | |
3037 | complete(&data->done); |
3038 | |
3039 | return IRQ_HANDLED; |
3040 | } |
3041 | |
3042 | static int bmp085_trigger_probe(struct iio_dev *indio_dev) |
3043 | { |
3044 | struct bmp280_data *data = iio_priv(indio_dev); |
3045 | struct device *dev = data->dev; |
3046 | unsigned long irq_trig; |
3047 | int ret, irq; |
3048 | |
3049 | irq = fwnode_irq_get(dev_fwnode(dev), index: 0); |
3050 | if (irq < 0) |
3051 | return dev_err_probe(dev, err: irq, fmt: "No interrupt found.\n"); |
3052 | |
3053 | irq_trig = irq_get_trigger_type(irq); |
3054 | if (irq_trig != IRQF_TRIGGER_RISING) { |
3055 | dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); |
3056 | irq_trig = IRQF_TRIGGER_RISING; |
3057 | } |
3058 | |
3059 | init_completion(x: &data->done); |
3060 | |
3061 | ret = devm_request_irq(dev, irq, handler: bmp085_eoc_irq, irqflags: irq_trig, |
3062 | devname: indio_dev->name, dev_id: data); |
3063 | if (ret) { |
3064 | /* Bail out without IRQ but keep the driver in place */ |
3065 | dev_err(dev, "unable to request DRDY IRQ\n"); |
3066 | return 0; |
3067 | } |
3068 | |
3069 | data->use_eoc = true; |
3070 | |
3071 | return 0; |
3072 | } |
3073 | |
3074 | /* Identical to bmp180_chip_info + bmp085_trigger_probe */ |
3075 | const struct bmp280_chip_info bmp085_chip_info = { |
3076 | .id_reg = BMP280_REG_ID, |
3077 | .chip_id = bmp180_chip_ids, |
3078 | .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), |
3079 | .regmap_config = &bmp180_regmap_config, |
3080 | .start_up_time_us = 2000, |
3081 | .channels = bmp280_channels, |
3082 | .num_channels = ARRAY_SIZE(bmp280_channels), |
3083 | .avail_scan_masks = bmp280_avail_scan_masks, |
3084 | |
3085 | .oversampling_temp_avail = bmp180_oversampling_temp_avail, |
3086 | .num_oversampling_temp_avail = |
3087 | ARRAY_SIZE(bmp180_oversampling_temp_avail), |
3088 | .oversampling_temp_default = 0, |
3089 | |
3090 | .oversampling_press_avail = bmp180_oversampling_press_avail, |
3091 | .num_oversampling_press_avail = |
3092 | ARRAY_SIZE(bmp180_oversampling_press_avail), |
3093 | .oversampling_press_default = BMP180_MEAS_PRESS_8X, |
3094 | |
3095 | .temp_coeffs = bmp180_temp_coeffs, |
3096 | .temp_coeffs_type = IIO_VAL_FRACTIONAL, |
3097 | .press_coeffs = bmp180_press_coeffs, |
3098 | .press_coeffs_type = IIO_VAL_FRACTIONAL, |
3099 | |
3100 | .chip_config = bmp180_chip_config, |
3101 | .read_temp = bmp180_read_temp, |
3102 | .read_press = bmp180_read_press, |
3103 | .read_calib = bmp180_read_calib, |
3104 | .set_mode = bmp180_set_mode, |
3105 | .wait_conv = bmp180_wait_conv, |
3106 | |
3107 | .trigger_probe = bmp085_trigger_probe, |
3108 | .trigger_handler = bmp180_trigger_handler, |
3109 | }; |
3110 | EXPORT_SYMBOL_NS(bmp085_chip_info, "IIO_BMP280"); |
3111 | |
3112 | static int bmp280_buffer_preenable(struct iio_dev *indio_dev) |
3113 | { |
3114 | struct bmp280_data *data = iio_priv(indio_dev); |
3115 | |
3116 | pm_runtime_get_sync(dev: data->dev); |
3117 | data->chip_info->set_mode(data, BMP280_NORMAL); |
3118 | |
3119 | return 0; |
3120 | } |
3121 | |
3122 | static int bmp280_buffer_postdisable(struct iio_dev *indio_dev) |
3123 | { |
3124 | struct bmp280_data *data = iio_priv(indio_dev); |
3125 | |
3126 | pm_runtime_mark_last_busy(dev: data->dev); |
3127 | pm_runtime_put_autosuspend(dev: data->dev); |
3128 | |
3129 | return 0; |
3130 | } |
3131 | |
3132 | static const struct iio_buffer_setup_ops bmp280_buffer_setup_ops = { |
3133 | .preenable = bmp280_buffer_preenable, |
3134 | .postdisable = bmp280_buffer_postdisable, |
3135 | }; |
3136 | |
3137 | static void bmp280_pm_disable(void *data) |
3138 | { |
3139 | struct device *dev = data; |
3140 | |
3141 | pm_runtime_get_sync(dev); |
3142 | pm_runtime_put_noidle(dev); |
3143 | pm_runtime_disable(dev); |
3144 | } |
3145 | |
3146 | static void bmp280_regulators_disable(void *data) |
3147 | { |
3148 | struct regulator_bulk_data *supplies = data; |
3149 | |
3150 | regulator_bulk_disable(BMP280_NUM_SUPPLIES, consumers: supplies); |
3151 | } |
3152 | |
3153 | int bmp280_common_probe(struct device *dev, |
3154 | struct regmap *regmap, |
3155 | const struct bmp280_chip_info *chip_info, |
3156 | const char *name, |
3157 | int irq) |
3158 | { |
3159 | struct iio_dev *indio_dev; |
3160 | struct bmp280_data *data; |
3161 | struct gpio_desc *gpiod; |
3162 | unsigned int chip_id; |
3163 | unsigned int i; |
3164 | int ret; |
3165 | |
3166 | indio_dev = devm_iio_device_alloc(parent: dev, sizeof_priv: sizeof(*data)); |
3167 | if (!indio_dev) |
3168 | return -ENOMEM; |
3169 | |
3170 | data = iio_priv(indio_dev); |
3171 | mutex_init(&data->lock); |
3172 | data->dev = dev; |
3173 | |
3174 | indio_dev->name = name; |
3175 | indio_dev->info = &bmp280_info; |
3176 | indio_dev->modes = INDIO_DIRECT_MODE; |
3177 | |
3178 | data->chip_info = chip_info; |
3179 | |
3180 | /* Apply initial values from chip info structure */ |
3181 | indio_dev->channels = chip_info->channels; |
3182 | indio_dev->num_channels = chip_info->num_channels; |
3183 | indio_dev->available_scan_masks = chip_info->avail_scan_masks; |
3184 | data->oversampling_press = chip_info->oversampling_press_default; |
3185 | data->oversampling_humid = chip_info->oversampling_humid_default; |
3186 | data->oversampling_temp = chip_info->oversampling_temp_default; |
3187 | data->iir_filter_coeff = chip_info->iir_filter_coeff_default; |
3188 | data->sampling_freq = chip_info->sampling_freq_default; |
3189 | data->start_up_time_us = chip_info->start_up_time_us; |
3190 | |
3191 | /* Bring up regulators */ |
3192 | regulator_bulk_set_supply_names(consumers: data->supplies, |
3193 | supply_names: bmp280_supply_names, |
3194 | BMP280_NUM_SUPPLIES); |
3195 | |
3196 | ret = devm_regulator_bulk_get(dev, |
3197 | BMP280_NUM_SUPPLIES, consumers: data->supplies); |
3198 | if (ret) { |
3199 | dev_err(dev, "failed to get regulators\n"); |
3200 | return ret; |
3201 | } |
3202 | |
3203 | ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, consumers: data->supplies); |
3204 | if (ret) { |
3205 | dev_err(dev, "failed to enable regulators\n"); |
3206 | return ret; |
3207 | } |
3208 | |
3209 | ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, |
3210 | data->supplies); |
3211 | if (ret) |
3212 | return ret; |
3213 | |
3214 | /* Wait to make sure we started up properly */ |
3215 | fsleep(usecs: data->start_up_time_us); |
3216 | |
3217 | /* Bring chip out of reset if there is an assigned GPIO line */ |
3218 | gpiod = devm_gpiod_get_optional(dev, con_id: "reset", flags: GPIOD_OUT_HIGH); |
3219 | /* Deassert the signal */ |
3220 | if (gpiod) { |
3221 | dev_info(dev, "release reset\n"); |
3222 | gpiod_set_value(desc: gpiod, value: 0); |
3223 | } |
3224 | |
3225 | data->regmap = regmap; |
3226 | |
3227 | ret = regmap_read(map: regmap, reg: data->chip_info->id_reg, val: &chip_id); |
3228 | if (ret) { |
3229 | dev_err(data->dev, "failed to read chip id\n"); |
3230 | return ret; |
3231 | } |
3232 | |
3233 | for (i = 0; i < data->chip_info->num_chip_id; i++) { |
3234 | if (chip_id == data->chip_info->chip_id[i]) { |
3235 | dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name); |
3236 | break; |
3237 | } |
3238 | } |
3239 | |
3240 | if (i == data->chip_info->num_chip_id) |
3241 | dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id); |
3242 | |
3243 | if (data->chip_info->preinit) { |
3244 | ret = data->chip_info->preinit(data); |
3245 | if (ret) |
3246 | return dev_err_probe(dev: data->dev, err: ret, |
3247 | fmt: "error running preinit tasks\n"); |
3248 | } |
3249 | |
3250 | ret = data->chip_info->chip_config(data); |
3251 | if (ret) |
3252 | return ret; |
3253 | |
3254 | dev_set_drvdata(dev, data: indio_dev); |
3255 | |
3256 | /* |
3257 | * Some chips have calibration parameters "programmed into the devices' |
3258 | * non-volatile memory during production". Let's read them out at probe |
3259 | * time once. They will not change. |
3260 | */ |
3261 | |
3262 | if (data->chip_info->read_calib) { |
3263 | ret = data->chip_info->read_calib(data); |
3264 | if (ret) |
3265 | return dev_err_probe(dev: data->dev, err: ret, |
3266 | fmt: "failed to read calibration coefficients\n"); |
3267 | } |
3268 | |
3269 | ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev, |
3270 | iio_pollfunc_store_time, |
3271 | data->chip_info->trigger_handler, |
3272 | &bmp280_buffer_setup_ops); |
3273 | if (ret) |
3274 | return dev_err_probe(dev: data->dev, err: ret, |
3275 | fmt: "iio triggered buffer setup failed\n"); |
3276 | |
3277 | /* |
3278 | * Attempt to grab an optional EOC IRQ - only the BMP085 has this |
3279 | * however as it happens, the BMP085 shares the chip ID of BMP180 |
3280 | * so we look for an IRQ if we have that. |
3281 | */ |
3282 | if (irq > 0) { |
3283 | if (data->chip_info->trigger_probe) |
3284 | ret = data->chip_info->trigger_probe(indio_dev); |
3285 | if (ret) |
3286 | return ret; |
3287 | } |
3288 | |
3289 | ret = data->chip_info->set_mode(data, BMP280_SLEEP); |
3290 | if (ret) |
3291 | return dev_err_probe(dev, err: ret, fmt: "Failed to set sleep mode\n"); |
3292 | |
3293 | /* Enable runtime PM */ |
3294 | pm_runtime_get_noresume(dev); |
3295 | pm_runtime_set_active(dev); |
3296 | pm_runtime_enable(dev); |
3297 | /* |
3298 | * Set autosuspend to two orders of magnitude larger than the |
3299 | * start-up time. |
3300 | */ |
3301 | pm_runtime_set_autosuspend_delay(dev, delay: data->start_up_time_us / 10); |
3302 | pm_runtime_use_autosuspend(dev); |
3303 | pm_runtime_put(dev); |
3304 | |
3305 | ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); |
3306 | if (ret) |
3307 | return ret; |
3308 | |
3309 | return devm_iio_device_register(dev, indio_dev); |
3310 | } |
3311 | EXPORT_SYMBOL_NS(bmp280_common_probe, "IIO_BMP280"); |
3312 | |
3313 | static int bmp280_runtime_suspend(struct device *dev) |
3314 | { |
3315 | struct iio_dev *indio_dev = dev_get_drvdata(dev); |
3316 | struct bmp280_data *data = iio_priv(indio_dev); |
3317 | |
3318 | data->chip_info->set_mode(data, BMP280_SLEEP); |
3319 | |
3320 | fsleep(usecs: data->start_up_time_us); |
3321 | return regulator_bulk_disable(BMP280_NUM_SUPPLIES, consumers: data->supplies); |
3322 | } |
3323 | |
3324 | static int bmp280_runtime_resume(struct device *dev) |
3325 | { |
3326 | struct iio_dev *indio_dev = dev_get_drvdata(dev); |
3327 | struct bmp280_data *data = iio_priv(indio_dev); |
3328 | int ret; |
3329 | |
3330 | ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, consumers: data->supplies); |
3331 | if (ret) |
3332 | return ret; |
3333 | |
3334 | fsleep(usecs: data->start_up_time_us); |
3335 | |
3336 | ret = data->chip_info->chip_config(data); |
3337 | if (ret) |
3338 | return ret; |
3339 | |
3340 | return data->chip_info->set_mode(data, data->op_mode); |
3341 | } |
3342 | |
3343 | EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, |
3344 | bmp280_runtime_resume, NULL); |
3345 | |
3346 | MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); |
3347 | MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); |
3348 | MODULE_LICENSE("GPL v2"); |
3349 |
Definitions
- bmp380_odr
- bmp580_odr
- bmp280_scan
- bmp280_channels
- bme280_channels
- bmp380_channels
- bmp580_channels
- bmp280_read_calib
- bme280_read_calib
- bme280_read_humid_adc
- bme280_compensate_humidity
- bmp280_read_temp_adc
- bmp280_calc_t_fine
- bmp280_get_t_fine
- bmp280_compensate_temp
- bmp280_read_press_adc
- bmp280_compensate_press
- bmp280_read_temp
- bmp280_read_press
- bme280_read_humid
- bmp280_read_raw_impl
- bmp280_read_raw
- bme280_write_oversampling_ratio_humid
- bmp280_write_oversampling_ratio_temp
- bmp280_write_oversampling_ratio_press
- bmp280_write_sampling_frequency
- bmp280_write_iir_filter_coeffs
- bmp280_write_raw_impl
- bmp280_write_raw
- bmp280_read_avail
- bmp280_info
- bmp280_avail_scan_masks
- bme280_avail_scan_masks
- bmp280_preinit
- bmp280_operation_mode
- bmp280_set_mode
- bmp280_wait_conv
- bmp280_chip_config
- bmp280_trigger_handler
- bmp280_oversampling_avail
- bmp280_chip_ids
- bmp280_temp_coeffs
- bmp280_press_coeffs
- bmp280_chip_info
- bme280_chip_config
- bme280_trigger_handler
- __bmp280_trigger_probe
- bme280_chip_ids
- bme280_humid_coeffs
- bme280_chip_info
- bmp380_cmd
- bmp380_read_temp_adc
- bmp380_calc_t_fine
- bmp380_get_t_fine
- bmp380_compensate_temp
- bmp380_read_press_adc
- bmp380_compensate_press
- bmp380_read_temp
- bmp380_read_press
- bmp380_read_calib
- bmp380_odr_table
- bmp380_preinit
- bmp380_operation_mode
- bmp380_set_mode
- bmp380_wait_conv
- bmp380_chip_config
- bmp380_data_rdy_trigger_set_state
- bmp380_trigger_ops
- bmp380_int_pin_config
- bmp380_irq_thread_handler
- bmp380_trigger_probe
- bmp380_trigger_handler
- bmp380_oversampling_avail
- bmp380_iir_filter_coeffs_avail
- bmp380_chip_ids
- bmp380_temp_coeffs
- bmp380_press_coeffs
- bmp380_chip_info
- bmp580_soft_reset
- bmp580_nvm_operation
- bmp580_read_temp
- bmp580_read_press
- bmp580_odr_table
- bmp580_nvmem_addrs
- bmp580_nvmem_read_impl
- bmp580_nvmem_read
- bmp580_nvmem_write_impl
- bmp580_nvmem_write
- bmp580_preinit
- bmp580_operation_mode
- bmp580_set_mode
- bmp580_wait_conv
- bmp580_chip_config
- bmp580_data_rdy_trigger_set_state
- bmp580_trigger_ops
- bmp580_int_pin_config
- bmp580_irq_thread_handler
- bmp580_trigger_probe
- bmp580_trigger_handler
- bmp580_oversampling_avail
- bmp580_chip_ids
- bmp580_temp_coeffs
- bmp580_press_coeffs
- bmp580_chip_info
- bmp180_wait_for_eoc
- bmp180_read_temp_adc
- bmp180_read_calib
- bmp180_calc_t_fine
- bmp180_get_t_fine
- bmp180_compensate_temp
- bmp180_read_temp
- bmp180_read_press_adc
- bmp180_compensate_press
- bmp180_read_press
- bmp180_set_mode
- bmp180_wait_conv
- bmp180_chip_config
- bmp180_trigger_handler
- bmp180_oversampling_temp_avail
- bmp180_oversampling_press_avail
- bmp180_chip_ids
- bmp180_temp_coeffs
- bmp180_press_coeffs
- bmp180_chip_info
- bmp085_eoc_irq
- bmp085_trigger_probe
- bmp085_chip_info
- bmp280_buffer_preenable
- bmp280_buffer_postdisable
- bmp280_buffer_setup_ops
- bmp280_pm_disable
- bmp280_regulators_disable
- bmp280_common_probe
- bmp280_runtime_suspend
- bmp280_runtime_resume
Improve your Profiling and Debugging skills
Find out more