| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (c) 2006, Intel Corporation. |
| 4 | * |
| 5 | * Copyright (C) 2006-2008 Intel Corporation |
| 6 | * Author: Ashok Raj <ashok.raj@intel.com> |
| 7 | * Author: Shaohua Li <shaohua.li@intel.com> |
| 8 | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| 9 | * |
| 10 | * This file implements early detection/parsing of Remapping Devices |
| 11 | * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI |
| 12 | * tables. |
| 13 | * |
| 14 | * These routines are used by both DMA-remapping and Interrupt-remapping |
| 15 | */ |
| 16 | |
| 17 | #define pr_fmt(fmt) "DMAR: " fmt |
| 18 | |
| 19 | #include <linux/pci.h> |
| 20 | #include <linux/dmar.h> |
| 21 | #include <linux/iova.h> |
| 22 | #include <linux/timer.h> |
| 23 | #include <linux/irq.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/tboot.h> |
| 26 | #include <linux/dmi.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/iommu.h> |
| 29 | #include <linux/numa.h> |
| 30 | #include <linux/limits.h> |
| 31 | #include <asm/irq_remapping.h> |
| 32 | |
| 33 | #include "iommu.h" |
| 34 | #include "../irq_remapping.h" |
| 35 | #include "../iommu-pages.h" |
| 36 | #include "perf.h" |
| 37 | #include "trace.h" |
| 38 | #include "perfmon.h" |
| 39 | |
| 40 | typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); |
| 41 | struct dmar_res_callback { |
| 42 | dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; |
| 43 | void *arg[ACPI_DMAR_TYPE_RESERVED]; |
| 44 | bool ignore_unhandled; |
| 45 | bool print_entry; |
| 46 | }; |
| 47 | |
| 48 | /* |
| 49 | * Assumptions: |
| 50 | * 1) The hotplug framework guarentees that DMAR unit will be hot-added |
| 51 | * before IO devices managed by that unit. |
| 52 | * 2) The hotplug framework guarantees that DMAR unit will be hot-removed |
| 53 | * after IO devices managed by that unit. |
| 54 | * 3) Hotplug events are rare. |
| 55 | * |
| 56 | * Locking rules for DMA and interrupt remapping related global data structures: |
| 57 | * 1) Use dmar_global_lock in process context |
| 58 | * 2) Use RCU in interrupt context |
| 59 | */ |
| 60 | DECLARE_RWSEM(dmar_global_lock); |
| 61 | LIST_HEAD(dmar_drhd_units); |
| 62 | |
| 63 | struct acpi_table_header * __initdata dmar_tbl; |
| 64 | static int dmar_dev_scope_status = 1; |
| 65 | static DEFINE_IDA(dmar_seq_ids); |
| 66 | |
| 67 | static int alloc_iommu(struct dmar_drhd_unit *drhd); |
| 68 | static void free_iommu(struct intel_iommu *iommu); |
| 69 | |
| 70 | static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) |
| 71 | { |
| 72 | /* |
| 73 | * add INCLUDE_ALL at the tail, so scan the list will find it at |
| 74 | * the very end. |
| 75 | */ |
| 76 | if (drhd->include_all) |
| 77 | list_add_tail_rcu(new: &drhd->list, head: &dmar_drhd_units); |
| 78 | else |
| 79 | list_add_rcu(new: &drhd->list, head: &dmar_drhd_units); |
| 80 | } |
| 81 | |
| 82 | void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) |
| 83 | { |
| 84 | struct acpi_dmar_device_scope *scope; |
| 85 | |
| 86 | *cnt = 0; |
| 87 | while (start < end) { |
| 88 | scope = start; |
| 89 | if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || |
| 90 | scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || |
| 91 | scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) |
| 92 | (*cnt)++; |
| 93 | else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && |
| 94 | scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { |
| 95 | pr_warn("Unsupported device scope\n" ); |
| 96 | } |
| 97 | start += scope->length; |
| 98 | } |
| 99 | if (*cnt == 0) |
| 100 | return NULL; |
| 101 | |
| 102 | return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); |
| 103 | } |
| 104 | |
| 105 | void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) |
| 106 | { |
| 107 | int i; |
| 108 | struct device *tmp_dev; |
| 109 | |
| 110 | if (*devices && *cnt) { |
| 111 | for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) |
| 112 | put_device(dev: tmp_dev); |
| 113 | kfree(objp: *devices); |
| 114 | } |
| 115 | |
| 116 | *devices = NULL; |
| 117 | *cnt = 0; |
| 118 | } |
| 119 | |
| 120 | /* Optimize out kzalloc()/kfree() for normal cases */ |
| 121 | static char dmar_pci_notify_info_buf[64]; |
| 122 | |
| 123 | static struct dmar_pci_notify_info * |
| 124 | dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) |
| 125 | { |
| 126 | int level = 0; |
| 127 | size_t size; |
| 128 | struct pci_dev *tmp; |
| 129 | struct dmar_pci_notify_info *info; |
| 130 | |
| 131 | /* |
| 132 | * Ignore devices that have a domain number higher than what can |
| 133 | * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 |
| 134 | */ |
| 135 | if (pci_domain_nr(bus: dev->bus) > U16_MAX) |
| 136 | return NULL; |
| 137 | |
| 138 | /* Only generate path[] for device addition event */ |
| 139 | if (event == BUS_NOTIFY_ADD_DEVICE) |
| 140 | for (tmp = dev; tmp; tmp = tmp->bus->self) |
| 141 | level++; |
| 142 | |
| 143 | size = struct_size(info, path, level); |
| 144 | if (size <= sizeof(dmar_pci_notify_info_buf)) { |
| 145 | info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; |
| 146 | } else { |
| 147 | info = kzalloc(size, GFP_KERNEL); |
| 148 | if (!info) { |
| 149 | if (dmar_dev_scope_status == 0) |
| 150 | dmar_dev_scope_status = -ENOMEM; |
| 151 | return NULL; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | info->event = event; |
| 156 | info->dev = dev; |
| 157 | info->seg = pci_domain_nr(bus: dev->bus); |
| 158 | info->level = level; |
| 159 | if (event == BUS_NOTIFY_ADD_DEVICE) { |
| 160 | for (tmp = dev; tmp; tmp = tmp->bus->self) { |
| 161 | level--; |
| 162 | info->path[level].bus = tmp->bus->number; |
| 163 | info->path[level].device = PCI_SLOT(tmp->devfn); |
| 164 | info->path[level].function = PCI_FUNC(tmp->devfn); |
| 165 | if (pci_is_root_bus(pbus: tmp->bus)) |
| 166 | info->bus = tmp->bus->number; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | return info; |
| 171 | } |
| 172 | |
| 173 | static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) |
| 174 | { |
| 175 | if ((void *)info != dmar_pci_notify_info_buf) |
| 176 | kfree(objp: info); |
| 177 | } |
| 178 | |
| 179 | static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, |
| 180 | struct acpi_dmar_pci_path *path, int count) |
| 181 | { |
| 182 | int i; |
| 183 | |
| 184 | if (info->bus != bus) |
| 185 | goto fallback; |
| 186 | if (info->level != count) |
| 187 | goto fallback; |
| 188 | |
| 189 | for (i = 0; i < count; i++) { |
| 190 | if (path[i].device != info->path[i].device || |
| 191 | path[i].function != info->path[i].function) |
| 192 | goto fallback; |
| 193 | } |
| 194 | |
| 195 | return true; |
| 196 | |
| 197 | fallback: |
| 198 | |
| 199 | if (count != 1) |
| 200 | return false; |
| 201 | |
| 202 | i = info->level - 1; |
| 203 | if (bus == info->path[i].bus && |
| 204 | path[0].device == info->path[i].device && |
| 205 | path[0].function == info->path[i].function) { |
| 206 | pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n" , |
| 207 | bus, path[0].device, path[0].function); |
| 208 | return true; |
| 209 | } |
| 210 | |
| 211 | return false; |
| 212 | } |
| 213 | |
| 214 | /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ |
| 215 | int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, |
| 216 | void *start, void*end, u16 segment, |
| 217 | struct dmar_dev_scope *devices, |
| 218 | int devices_cnt) |
| 219 | { |
| 220 | int i, level; |
| 221 | struct device *tmp, *dev = &info->dev->dev; |
| 222 | struct acpi_dmar_device_scope *scope; |
| 223 | struct acpi_dmar_pci_path *path; |
| 224 | |
| 225 | if (segment != info->seg) |
| 226 | return 0; |
| 227 | |
| 228 | for (; start < end; start += scope->length) { |
| 229 | scope = start; |
| 230 | if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && |
| 231 | scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) |
| 232 | continue; |
| 233 | |
| 234 | path = (struct acpi_dmar_pci_path *)(scope + 1); |
| 235 | level = (scope->length - sizeof(*scope)) / sizeof(*path); |
| 236 | if (!dmar_match_pci_path(info, bus: scope->bus, path, count: level)) |
| 237 | continue; |
| 238 | |
| 239 | /* |
| 240 | * We expect devices with endpoint scope to have normal PCI |
| 241 | * headers, and devices with bridge scope to have bridge PCI |
| 242 | * headers. However PCI NTB devices may be listed in the |
| 243 | * DMAR table with bridge scope, even though they have a |
| 244 | * normal PCI header. NTB devices are identified by class |
| 245 | * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch |
| 246 | * for this special case. |
| 247 | */ |
| 248 | if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && |
| 249 | info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || |
| 250 | (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && |
| 251 | (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && |
| 252 | info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { |
| 253 | pr_warn("Device scope type does not match for %s\n" , |
| 254 | pci_name(info->dev)); |
| 255 | return -EINVAL; |
| 256 | } |
| 257 | |
| 258 | for_each_dev_scope(devices, devices_cnt, i, tmp) |
| 259 | if (tmp == NULL) { |
| 260 | devices[i].bus = info->dev->bus->number; |
| 261 | devices[i].devfn = info->dev->devfn; |
| 262 | rcu_assign_pointer(devices[i].dev, |
| 263 | get_device(dev)); |
| 264 | return 1; |
| 265 | } |
| 266 | if (WARN_ON(i >= devices_cnt)) |
| 267 | return -EINVAL; |
| 268 | } |
| 269 | |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, |
| 274 | struct dmar_dev_scope *devices, int count) |
| 275 | { |
| 276 | int index; |
| 277 | struct device *tmp; |
| 278 | |
| 279 | if (info->seg != segment) |
| 280 | return 0; |
| 281 | |
| 282 | for_each_active_dev_scope(devices, count, index, tmp) |
| 283 | if (tmp == &info->dev->dev) { |
| 284 | RCU_INIT_POINTER(devices[index].dev, NULL); |
| 285 | synchronize_rcu(); |
| 286 | put_device(dev: tmp); |
| 287 | return 1; |
| 288 | } |
| 289 | |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) |
| 294 | { |
| 295 | int ret = 0; |
| 296 | struct dmar_drhd_unit *dmaru; |
| 297 | struct acpi_dmar_hardware_unit *drhd; |
| 298 | |
| 299 | for_each_drhd_unit(dmaru) { |
| 300 | if (dmaru->include_all) |
| 301 | continue; |
| 302 | |
| 303 | drhd = container_of(dmaru->hdr, |
| 304 | struct acpi_dmar_hardware_unit, header); |
| 305 | ret = dmar_insert_dev_scope(info, start: (void *)(drhd + 1), |
| 306 | end: ((void *)drhd) + drhd->header.length, |
| 307 | segment: dmaru->segment, |
| 308 | devices: dmaru->devices, devices_cnt: dmaru->devices_cnt); |
| 309 | if (ret) |
| 310 | break; |
| 311 | } |
| 312 | if (ret >= 0) |
| 313 | ret = dmar_iommu_notify_scope_dev(info); |
| 314 | if (ret < 0 && dmar_dev_scope_status == 0) |
| 315 | dmar_dev_scope_status = ret; |
| 316 | |
| 317 | if (ret >= 0) |
| 318 | intel_irq_remap_add_device(info); |
| 319 | |
| 320 | return ret; |
| 321 | } |
| 322 | |
| 323 | static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) |
| 324 | { |
| 325 | struct dmar_drhd_unit *dmaru; |
| 326 | |
| 327 | for_each_drhd_unit(dmaru) |
| 328 | if (dmar_remove_dev_scope(info, segment: dmaru->segment, |
| 329 | devices: dmaru->devices, count: dmaru->devices_cnt)) |
| 330 | break; |
| 331 | dmar_iommu_notify_scope_dev(info); |
| 332 | } |
| 333 | |
| 334 | static inline void vf_inherit_msi_domain(struct pci_dev *pdev) |
| 335 | { |
| 336 | struct pci_dev *physfn = pci_physfn(dev: pdev); |
| 337 | |
| 338 | dev_set_msi_domain(dev: &pdev->dev, d: dev_get_msi_domain(dev: &physfn->dev)); |
| 339 | } |
| 340 | |
| 341 | static int dmar_pci_bus_notifier(struct notifier_block *nb, |
| 342 | unsigned long action, void *data) |
| 343 | { |
| 344 | struct pci_dev *pdev = to_pci_dev(data); |
| 345 | struct dmar_pci_notify_info *info; |
| 346 | |
| 347 | /* Only care about add/remove events for physical functions. |
| 348 | * For VFs we actually do the lookup based on the corresponding |
| 349 | * PF in device_to_iommu() anyway. */ |
| 350 | if (pdev->is_virtfn) { |
| 351 | /* |
| 352 | * Ensure that the VF device inherits the irq domain of the |
| 353 | * PF device. Ideally the device would inherit the domain |
| 354 | * from the bus, but DMAR can have multiple units per bus |
| 355 | * which makes this impossible. The VF 'bus' could inherit |
| 356 | * from the PF device, but that's yet another x86'sism to |
| 357 | * inflict on everybody else. |
| 358 | */ |
| 359 | if (action == BUS_NOTIFY_ADD_DEVICE) |
| 360 | vf_inherit_msi_domain(pdev); |
| 361 | return NOTIFY_DONE; |
| 362 | } |
| 363 | |
| 364 | if (action != BUS_NOTIFY_ADD_DEVICE && |
| 365 | action != BUS_NOTIFY_REMOVED_DEVICE) |
| 366 | return NOTIFY_DONE; |
| 367 | |
| 368 | info = dmar_alloc_pci_notify_info(dev: pdev, event: action); |
| 369 | if (!info) |
| 370 | return NOTIFY_DONE; |
| 371 | |
| 372 | down_write(sem: &dmar_global_lock); |
| 373 | if (action == BUS_NOTIFY_ADD_DEVICE) |
| 374 | dmar_pci_bus_add_dev(info); |
| 375 | else if (action == BUS_NOTIFY_REMOVED_DEVICE) |
| 376 | dmar_pci_bus_del_dev(info); |
| 377 | up_write(sem: &dmar_global_lock); |
| 378 | |
| 379 | dmar_free_pci_notify_info(info); |
| 380 | |
| 381 | return NOTIFY_OK; |
| 382 | } |
| 383 | |
| 384 | static struct notifier_block dmar_pci_bus_nb = { |
| 385 | .notifier_call = dmar_pci_bus_notifier, |
| 386 | .priority = 1, |
| 387 | }; |
| 388 | |
| 389 | static struct dmar_drhd_unit * |
| 390 | dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) |
| 391 | { |
| 392 | struct dmar_drhd_unit *dmaru; |
| 393 | |
| 394 | list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, |
| 395 | dmar_rcu_check()) |
| 396 | if (dmaru->segment == drhd->segment && |
| 397 | dmaru->reg_base_addr == drhd->address) |
| 398 | return dmaru; |
| 399 | |
| 400 | return NULL; |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition |
| 405 | * structure which uniquely represent one DMA remapping hardware unit |
| 406 | * present in the platform |
| 407 | */ |
| 408 | static int dmar_parse_one_drhd(struct acpi_dmar_header *, void *arg) |
| 409 | { |
| 410 | struct acpi_dmar_hardware_unit *drhd; |
| 411 | struct dmar_drhd_unit *dmaru; |
| 412 | int ret; |
| 413 | |
| 414 | drhd = (struct acpi_dmar_hardware_unit *)header; |
| 415 | dmaru = dmar_find_dmaru(drhd); |
| 416 | if (dmaru) |
| 417 | goto out; |
| 418 | |
| 419 | dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); |
| 420 | if (!dmaru) |
| 421 | return -ENOMEM; |
| 422 | |
| 423 | /* |
| 424 | * If header is allocated from slab by ACPI _DSM method, we need to |
| 425 | * copy the content because the memory buffer will be freed on return. |
| 426 | */ |
| 427 | dmaru->hdr = (void *)(dmaru + 1); |
| 428 | memcpy(dmaru->hdr, header, header->length); |
| 429 | dmaru->reg_base_addr = drhd->address; |
| 430 | dmaru->segment = drhd->segment; |
| 431 | /* The size of the register set is 2 ^ N 4 KB pages. */ |
| 432 | dmaru->reg_size = 1UL << (drhd->size + 12); |
| 433 | dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ |
| 434 | dmaru->devices = dmar_alloc_dev_scope(start: (void *)(drhd + 1), |
| 435 | end: ((void *)drhd) + drhd->header.length, |
| 436 | cnt: &dmaru->devices_cnt); |
| 437 | if (dmaru->devices_cnt && dmaru->devices == NULL) { |
| 438 | kfree(objp: dmaru); |
| 439 | return -ENOMEM; |
| 440 | } |
| 441 | |
| 442 | ret = alloc_iommu(drhd: dmaru); |
| 443 | if (ret) { |
| 444 | dmar_free_dev_scope(devices: &dmaru->devices, |
| 445 | cnt: &dmaru->devices_cnt); |
| 446 | kfree(objp: dmaru); |
| 447 | return ret; |
| 448 | } |
| 449 | dmar_register_drhd_unit(drhd: dmaru); |
| 450 | |
| 451 | out: |
| 452 | if (arg) |
| 453 | (*(int *)arg)++; |
| 454 | |
| 455 | return 0; |
| 456 | } |
| 457 | |
| 458 | static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) |
| 459 | { |
| 460 | if (dmaru->devices && dmaru->devices_cnt) |
| 461 | dmar_free_dev_scope(devices: &dmaru->devices, cnt: &dmaru->devices_cnt); |
| 462 | if (dmaru->iommu) |
| 463 | free_iommu(iommu: dmaru->iommu); |
| 464 | kfree(objp: dmaru); |
| 465 | } |
| 466 | |
| 467 | static int __init dmar_parse_one_andd(struct acpi_dmar_header *, |
| 468 | void *arg) |
| 469 | { |
| 470 | struct acpi_dmar_andd *andd = (void *)header; |
| 471 | |
| 472 | /* Check for NUL termination within the designated length */ |
| 473 | if (strnlen(p: andd->device_name, maxlen: header->length - 8) == header->length - 8) { |
| 474 | pr_warn(FW_BUG |
| 475 | "Your BIOS is broken; ANDD object name is not NUL-terminated\n" |
| 476 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n" , |
| 477 | dmi_get_system_info(DMI_BIOS_VENDOR), |
| 478 | dmi_get_system_info(DMI_BIOS_VERSION), |
| 479 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| 480 | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| 481 | return -EINVAL; |
| 482 | } |
| 483 | pr_info("ANDD device: %x name: %s\n" , andd->device_number, |
| 484 | andd->device_name); |
| 485 | |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | #ifdef CONFIG_ACPI_NUMA |
| 490 | static int dmar_parse_one_rhsa(struct acpi_dmar_header *, void *arg) |
| 491 | { |
| 492 | struct acpi_dmar_rhsa *rhsa; |
| 493 | struct dmar_drhd_unit *drhd; |
| 494 | |
| 495 | rhsa = (struct acpi_dmar_rhsa *)header; |
| 496 | for_each_drhd_unit(drhd) { |
| 497 | if (drhd->reg_base_addr == rhsa->base_address) { |
| 498 | int node = pxm_to_node(rhsa->proximity_domain); |
| 499 | |
| 500 | if (node != NUMA_NO_NODE && !node_online(node)) |
| 501 | node = NUMA_NO_NODE; |
| 502 | drhd->iommu->node = node; |
| 503 | return 0; |
| 504 | } |
| 505 | } |
| 506 | pr_warn(FW_BUG |
| 507 | "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" |
| 508 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n" , |
| 509 | rhsa->base_address, |
| 510 | dmi_get_system_info(DMI_BIOS_VENDOR), |
| 511 | dmi_get_system_info(DMI_BIOS_VERSION), |
| 512 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| 513 | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| 514 | |
| 515 | return 0; |
| 516 | } |
| 517 | #else |
| 518 | #define dmar_parse_one_rhsa dmar_res_noop |
| 519 | #endif |
| 520 | |
| 521 | static void |
| 522 | dmar_table_print_dmar_entry(struct acpi_dmar_header *) |
| 523 | { |
| 524 | struct acpi_dmar_hardware_unit *drhd; |
| 525 | struct acpi_dmar_reserved_memory *rmrr; |
| 526 | struct acpi_dmar_atsr *atsr; |
| 527 | struct acpi_dmar_rhsa *rhsa; |
| 528 | struct acpi_dmar_satc *satc; |
| 529 | |
| 530 | switch (header->type) { |
| 531 | case ACPI_DMAR_TYPE_HARDWARE_UNIT: |
| 532 | drhd = container_of(header, struct acpi_dmar_hardware_unit, |
| 533 | header); |
| 534 | pr_info("DRHD base: %#016Lx flags: %#x\n" , |
| 535 | (unsigned long long)drhd->address, drhd->flags); |
| 536 | break; |
| 537 | case ACPI_DMAR_TYPE_RESERVED_MEMORY: |
| 538 | rmrr = container_of(header, struct acpi_dmar_reserved_memory, |
| 539 | header); |
| 540 | pr_info("RMRR base: %#016Lx end: %#016Lx\n" , |
| 541 | (unsigned long long)rmrr->base_address, |
| 542 | (unsigned long long)rmrr->end_address); |
| 543 | break; |
| 544 | case ACPI_DMAR_TYPE_ROOT_ATS: |
| 545 | atsr = container_of(header, struct acpi_dmar_atsr, header); |
| 546 | pr_info("ATSR flags: %#x\n" , atsr->flags); |
| 547 | break; |
| 548 | case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: |
| 549 | rhsa = container_of(header, struct acpi_dmar_rhsa, header); |
| 550 | pr_info("RHSA base: %#016Lx proximity domain: %#x\n" , |
| 551 | (unsigned long long)rhsa->base_address, |
| 552 | rhsa->proximity_domain); |
| 553 | break; |
| 554 | case ACPI_DMAR_TYPE_NAMESPACE: |
| 555 | /* We don't print this here because we need to sanity-check |
| 556 | it first. So print it in dmar_parse_one_andd() instead. */ |
| 557 | break; |
| 558 | case ACPI_DMAR_TYPE_SATC: |
| 559 | satc = container_of(header, struct acpi_dmar_satc, header); |
| 560 | pr_info("SATC flags: 0x%x\n" , satc->flags); |
| 561 | break; |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | /** |
| 566 | * dmar_table_detect - checks to see if the platform supports DMAR devices |
| 567 | */ |
| 568 | static int __init dmar_table_detect(void) |
| 569 | { |
| 570 | acpi_status status = AE_OK; |
| 571 | |
| 572 | /* if we could find DMAR table, then there are DMAR devices */ |
| 573 | status = acpi_get_table(ACPI_SIG_DMAR, instance: 0, out_table: &dmar_tbl); |
| 574 | |
| 575 | if (ACPI_SUCCESS(status) && !dmar_tbl) { |
| 576 | pr_warn("Unable to map DMAR\n" ); |
| 577 | status = AE_NOT_FOUND; |
| 578 | } |
| 579 | |
| 580 | return ACPI_SUCCESS(status) ? 0 : -ENOENT; |
| 581 | } |
| 582 | |
| 583 | static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, |
| 584 | size_t len, struct dmar_res_callback *cb) |
| 585 | { |
| 586 | struct acpi_dmar_header *iter, *next; |
| 587 | struct acpi_dmar_header *end = ((void *)start) + len; |
| 588 | |
| 589 | for (iter = start; iter < end; iter = next) { |
| 590 | next = (void *)iter + iter->length; |
| 591 | if (iter->length == 0) { |
| 592 | /* Avoid looping forever on bad ACPI tables */ |
| 593 | pr_debug(FW_BUG "Invalid 0-length structure\n" ); |
| 594 | break; |
| 595 | } else if (next > end) { |
| 596 | /* Avoid passing table end */ |
| 597 | pr_warn(FW_BUG "Record passes table end\n" ); |
| 598 | return -EINVAL; |
| 599 | } |
| 600 | |
| 601 | if (cb->print_entry) |
| 602 | dmar_table_print_dmar_entry(header: iter); |
| 603 | |
| 604 | if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { |
| 605 | /* continue for forward compatibility */ |
| 606 | pr_debug("Unknown DMAR structure type %d\n" , |
| 607 | iter->type); |
| 608 | } else if (cb->cb[iter->type]) { |
| 609 | int ret; |
| 610 | |
| 611 | ret = cb->cb[iter->type](iter, cb->arg[iter->type]); |
| 612 | if (ret) |
| 613 | return ret; |
| 614 | } else if (!cb->ignore_unhandled) { |
| 615 | pr_warn("No handler for DMAR structure type %d\n" , |
| 616 | iter->type); |
| 617 | return -EINVAL; |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, |
| 625 | struct dmar_res_callback *cb) |
| 626 | { |
| 627 | return dmar_walk_remapping_entries(start: (void *)(dmar + 1), |
| 628 | len: dmar->header.length - sizeof(*dmar), cb); |
| 629 | } |
| 630 | |
| 631 | /** |
| 632 | * parse_dmar_table - parses the DMA reporting table |
| 633 | */ |
| 634 | static int __init |
| 635 | parse_dmar_table(void) |
| 636 | { |
| 637 | struct acpi_table_dmar *dmar; |
| 638 | int drhd_count = 0; |
| 639 | int ret; |
| 640 | struct dmar_res_callback cb = { |
| 641 | .print_entry = true, |
| 642 | .ignore_unhandled = true, |
| 643 | .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, |
| 644 | .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, |
| 645 | .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, |
| 646 | .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, |
| 647 | .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, |
| 648 | .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, |
| 649 | .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc, |
| 650 | }; |
| 651 | |
| 652 | /* |
| 653 | * Do it again, earlier dmar_tbl mapping could be mapped with |
| 654 | * fixed map. |
| 655 | */ |
| 656 | dmar_table_detect(); |
| 657 | |
| 658 | /* |
| 659 | * ACPI tables may not be DMA protected by tboot, so use DMAR copy |
| 660 | * SINIT saved in SinitMleData in TXT heap (which is DMA protected) |
| 661 | */ |
| 662 | dmar_tbl = tboot_get_dmar_table(dmar_tbl); |
| 663 | |
| 664 | dmar = (struct acpi_table_dmar *)dmar_tbl; |
| 665 | if (!dmar) |
| 666 | return -ENODEV; |
| 667 | |
| 668 | if (dmar->width < PAGE_SHIFT - 1) { |
| 669 | pr_warn("Invalid DMAR haw\n" ); |
| 670 | return -EINVAL; |
| 671 | } |
| 672 | |
| 673 | pr_info("Host address width %d\n" , dmar->width + 1); |
| 674 | ret = dmar_walk_dmar_table(dmar, cb: &cb); |
| 675 | if (ret == 0 && drhd_count == 0) |
| 676 | pr_warn(FW_BUG "No DRHD structure found in DMAR table\n" ); |
| 677 | |
| 678 | return ret; |
| 679 | } |
| 680 | |
| 681 | static int dmar_pci_device_match(struct dmar_dev_scope devices[], |
| 682 | int cnt, struct pci_dev *dev) |
| 683 | { |
| 684 | int index; |
| 685 | struct device *tmp; |
| 686 | |
| 687 | while (dev) { |
| 688 | for_each_active_dev_scope(devices, cnt, index, tmp) |
| 689 | if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) |
| 690 | return 1; |
| 691 | |
| 692 | /* Check our parent */ |
| 693 | dev = dev->bus->self; |
| 694 | } |
| 695 | |
| 696 | return 0; |
| 697 | } |
| 698 | |
| 699 | struct dmar_drhd_unit * |
| 700 | dmar_find_matched_drhd_unit(struct pci_dev *dev) |
| 701 | { |
| 702 | struct dmar_drhd_unit *dmaru; |
| 703 | struct acpi_dmar_hardware_unit *drhd; |
| 704 | |
| 705 | dev = pci_physfn(dev); |
| 706 | |
| 707 | rcu_read_lock(); |
| 708 | for_each_drhd_unit(dmaru) { |
| 709 | drhd = container_of(dmaru->hdr, |
| 710 | struct acpi_dmar_hardware_unit, |
| 711 | header); |
| 712 | |
| 713 | if (dmaru->include_all && |
| 714 | drhd->segment == pci_domain_nr(bus: dev->bus)) |
| 715 | goto out; |
| 716 | |
| 717 | if (dmar_pci_device_match(devices: dmaru->devices, |
| 718 | cnt: dmaru->devices_cnt, dev)) |
| 719 | goto out; |
| 720 | } |
| 721 | dmaru = NULL; |
| 722 | out: |
| 723 | rcu_read_unlock(); |
| 724 | |
| 725 | return dmaru; |
| 726 | } |
| 727 | |
| 728 | static void __init dmar_acpi_insert_dev_scope(u8 device_number, |
| 729 | struct acpi_device *adev) |
| 730 | { |
| 731 | struct dmar_drhd_unit *dmaru; |
| 732 | struct acpi_dmar_hardware_unit *drhd; |
| 733 | struct acpi_dmar_device_scope *scope; |
| 734 | struct device *tmp; |
| 735 | int i; |
| 736 | struct acpi_dmar_pci_path *path; |
| 737 | |
| 738 | for_each_drhd_unit(dmaru) { |
| 739 | drhd = container_of(dmaru->hdr, |
| 740 | struct acpi_dmar_hardware_unit, |
| 741 | header); |
| 742 | |
| 743 | for (scope = (void *)(drhd + 1); |
| 744 | (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; |
| 745 | scope = ((void *)scope) + scope->length) { |
| 746 | if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) |
| 747 | continue; |
| 748 | if (scope->enumeration_id != device_number) |
| 749 | continue; |
| 750 | |
| 751 | path = (void *)(scope + 1); |
| 752 | pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n" , |
| 753 | dev_name(&adev->dev), dmaru->reg_base_addr, |
| 754 | scope->bus, path->device, path->function); |
| 755 | for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) |
| 756 | if (tmp == NULL) { |
| 757 | dmaru->devices[i].bus = scope->bus; |
| 758 | dmaru->devices[i].devfn = PCI_DEVFN(path->device, |
| 759 | path->function); |
| 760 | rcu_assign_pointer(dmaru->devices[i].dev, |
| 761 | get_device(&adev->dev)); |
| 762 | return; |
| 763 | } |
| 764 | BUG_ON(i >= dmaru->devices_cnt); |
| 765 | } |
| 766 | } |
| 767 | pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n" , |
| 768 | device_number, dev_name(&adev->dev)); |
| 769 | } |
| 770 | |
| 771 | static int __init dmar_acpi_dev_scope_init(void) |
| 772 | { |
| 773 | struct acpi_dmar_andd *andd; |
| 774 | |
| 775 | if (dmar_tbl == NULL) |
| 776 | return -ENODEV; |
| 777 | |
| 778 | for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); |
| 779 | ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; |
| 780 | andd = ((void *)andd) + andd->header.length) { |
| 781 | if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { |
| 782 | acpi_handle h; |
| 783 | struct acpi_device *adev; |
| 784 | |
| 785 | if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, |
| 786 | andd->device_name, |
| 787 | &h))) { |
| 788 | pr_err("Failed to find handle for ACPI object %s\n" , |
| 789 | andd->device_name); |
| 790 | continue; |
| 791 | } |
| 792 | adev = acpi_fetch_acpi_dev(handle: h); |
| 793 | if (!adev) { |
| 794 | pr_err("Failed to get device for ACPI object %s\n" , |
| 795 | andd->device_name); |
| 796 | continue; |
| 797 | } |
| 798 | dmar_acpi_insert_dev_scope(device_number: andd->device_number, adev); |
| 799 | } |
| 800 | } |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | int __init dmar_dev_scope_init(void) |
| 805 | { |
| 806 | struct pci_dev *dev = NULL; |
| 807 | struct dmar_pci_notify_info *info; |
| 808 | |
| 809 | if (dmar_dev_scope_status != 1) |
| 810 | return dmar_dev_scope_status; |
| 811 | |
| 812 | if (list_empty(head: &dmar_drhd_units)) { |
| 813 | dmar_dev_scope_status = -ENODEV; |
| 814 | } else { |
| 815 | dmar_dev_scope_status = 0; |
| 816 | |
| 817 | dmar_acpi_dev_scope_init(); |
| 818 | |
| 819 | for_each_pci_dev(dev) { |
| 820 | if (dev->is_virtfn) |
| 821 | continue; |
| 822 | |
| 823 | info = dmar_alloc_pci_notify_info(dev, |
| 824 | event: BUS_NOTIFY_ADD_DEVICE); |
| 825 | if (!info) { |
| 826 | pci_dev_put(dev); |
| 827 | return dmar_dev_scope_status; |
| 828 | } else { |
| 829 | dmar_pci_bus_add_dev(info); |
| 830 | dmar_free_pci_notify_info(info); |
| 831 | } |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | return dmar_dev_scope_status; |
| 836 | } |
| 837 | |
| 838 | void __init dmar_register_bus_notifier(void) |
| 839 | { |
| 840 | bus_register_notifier(bus: &pci_bus_type, nb: &dmar_pci_bus_nb); |
| 841 | } |
| 842 | |
| 843 | |
| 844 | int __init dmar_table_init(void) |
| 845 | { |
| 846 | static int dmar_table_initialized; |
| 847 | int ret; |
| 848 | |
| 849 | if (dmar_table_initialized == 0) { |
| 850 | ret = parse_dmar_table(); |
| 851 | if (ret < 0) { |
| 852 | if (ret != -ENODEV) |
| 853 | pr_info("Parse DMAR table failure.\n" ); |
| 854 | } else if (list_empty(head: &dmar_drhd_units)) { |
| 855 | pr_info("No DMAR devices found\n" ); |
| 856 | ret = -ENODEV; |
| 857 | } |
| 858 | |
| 859 | if (ret < 0) |
| 860 | dmar_table_initialized = ret; |
| 861 | else |
| 862 | dmar_table_initialized = 1; |
| 863 | } |
| 864 | |
| 865 | return dmar_table_initialized < 0 ? dmar_table_initialized : 0; |
| 866 | } |
| 867 | |
| 868 | static void warn_invalid_dmar(u64 addr, const char *message) |
| 869 | { |
| 870 | pr_warn_once(FW_BUG |
| 871 | "Your BIOS is broken; DMAR reported at address %llx%s!\n" |
| 872 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n" , |
| 873 | addr, message, |
| 874 | dmi_get_system_info(DMI_BIOS_VENDOR), |
| 875 | dmi_get_system_info(DMI_BIOS_VERSION), |
| 876 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| 877 | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| 878 | } |
| 879 | |
| 880 | static int __ref |
| 881 | dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) |
| 882 | { |
| 883 | struct acpi_dmar_hardware_unit *drhd; |
| 884 | void __iomem *addr; |
| 885 | u64 cap, ecap; |
| 886 | |
| 887 | drhd = (void *)entry; |
| 888 | if (!drhd->address) { |
| 889 | warn_invalid_dmar(addr: 0, message: "" ); |
| 890 | return -EINVAL; |
| 891 | } |
| 892 | |
| 893 | if (arg) |
| 894 | addr = ioremap(offset: drhd->address, VTD_PAGE_SIZE); |
| 895 | else |
| 896 | addr = early_ioremap(phys_addr: drhd->address, VTD_PAGE_SIZE); |
| 897 | if (!addr) { |
| 898 | pr_warn("Can't validate DRHD address: %llx\n" , drhd->address); |
| 899 | return -EINVAL; |
| 900 | } |
| 901 | |
| 902 | cap = dmar_readq(addr + DMAR_CAP_REG); |
| 903 | ecap = dmar_readq(addr + DMAR_ECAP_REG); |
| 904 | |
| 905 | if (arg) |
| 906 | iounmap(addr); |
| 907 | else |
| 908 | early_iounmap(addr, VTD_PAGE_SIZE); |
| 909 | |
| 910 | if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { |
| 911 | warn_invalid_dmar(addr: drhd->address, message: " returns all ones" ); |
| 912 | return -EINVAL; |
| 913 | } |
| 914 | |
| 915 | return 0; |
| 916 | } |
| 917 | |
| 918 | void __init detect_intel_iommu(void) |
| 919 | { |
| 920 | int ret; |
| 921 | struct dmar_res_callback validate_drhd_cb = { |
| 922 | .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, |
| 923 | .ignore_unhandled = true, |
| 924 | }; |
| 925 | |
| 926 | down_write(sem: &dmar_global_lock); |
| 927 | ret = dmar_table_detect(); |
| 928 | if (!ret) |
| 929 | ret = dmar_walk_dmar_table(dmar: (struct acpi_table_dmar *)dmar_tbl, |
| 930 | cb: &validate_drhd_cb); |
| 931 | if (!ret && !no_iommu && !iommu_detected && |
| 932 | (!dmar_disabled || dmar_platform_optin())) { |
| 933 | iommu_detected = 1; |
| 934 | /* Make sure ACS will be enabled */ |
| 935 | pci_request_acs(); |
| 936 | } |
| 937 | |
| 938 | #ifdef CONFIG_X86 |
| 939 | if (!ret) { |
| 940 | x86_init.iommu.iommu_init = intel_iommu_init; |
| 941 | x86_platform.iommu_shutdown = intel_iommu_shutdown; |
| 942 | } |
| 943 | |
| 944 | #endif |
| 945 | |
| 946 | if (dmar_tbl) { |
| 947 | acpi_put_table(table: dmar_tbl); |
| 948 | dmar_tbl = NULL; |
| 949 | } |
| 950 | up_write(sem: &dmar_global_lock); |
| 951 | } |
| 952 | |
| 953 | static void unmap_iommu(struct intel_iommu *iommu) |
| 954 | { |
| 955 | iounmap(addr: iommu->reg); |
| 956 | release_mem_region(iommu->reg_phys, iommu->reg_size); |
| 957 | } |
| 958 | |
| 959 | /** |
| 960 | * map_iommu: map the iommu's registers |
| 961 | * @iommu: the iommu to map |
| 962 | * @drhd: DMA remapping hardware definition structure |
| 963 | * |
| 964 | * Memory map the iommu's registers. Start w/ a single page, and |
| 965 | * possibly expand if that turns out to be insufficent. |
| 966 | */ |
| 967 | static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd) |
| 968 | { |
| 969 | u64 phys_addr = drhd->reg_base_addr; |
| 970 | int map_size, err=0; |
| 971 | |
| 972 | iommu->reg_phys = phys_addr; |
| 973 | iommu->reg_size = drhd->reg_size; |
| 974 | |
| 975 | if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { |
| 976 | pr_err("Can't reserve memory\n" ); |
| 977 | err = -EBUSY; |
| 978 | goto out; |
| 979 | } |
| 980 | |
| 981 | iommu->reg = ioremap(offset: iommu->reg_phys, size: iommu->reg_size); |
| 982 | if (!iommu->reg) { |
| 983 | pr_err("Can't map the region\n" ); |
| 984 | err = -ENOMEM; |
| 985 | goto release; |
| 986 | } |
| 987 | |
| 988 | iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); |
| 989 | iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); |
| 990 | |
| 991 | if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { |
| 992 | err = -EINVAL; |
| 993 | warn_invalid_dmar(addr: phys_addr, message: " returns all ones" ); |
| 994 | goto unmap; |
| 995 | } |
| 996 | |
| 997 | /* the registers might be more than one page */ |
| 998 | map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), |
| 999 | cap_max_fault_reg_offset(iommu->cap)); |
| 1000 | map_size = VTD_PAGE_ALIGN(map_size); |
| 1001 | if (map_size > iommu->reg_size) { |
| 1002 | iounmap(addr: iommu->reg); |
| 1003 | release_mem_region(iommu->reg_phys, iommu->reg_size); |
| 1004 | iommu->reg_size = map_size; |
| 1005 | if (!request_mem_region(iommu->reg_phys, iommu->reg_size, |
| 1006 | iommu->name)) { |
| 1007 | pr_err("Can't reserve memory\n" ); |
| 1008 | err = -EBUSY; |
| 1009 | goto out; |
| 1010 | } |
| 1011 | iommu->reg = ioremap(offset: iommu->reg_phys, size: iommu->reg_size); |
| 1012 | if (!iommu->reg) { |
| 1013 | pr_err("Can't map the region\n" ); |
| 1014 | err = -ENOMEM; |
| 1015 | goto release; |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | if (cap_ecmds(iommu->cap)) { |
| 1020 | int i; |
| 1021 | |
| 1022 | for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) { |
| 1023 | iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG + |
| 1024 | i * DMA_ECMD_REG_STEP); |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | err = 0; |
| 1029 | goto out; |
| 1030 | |
| 1031 | unmap: |
| 1032 | iounmap(addr: iommu->reg); |
| 1033 | release: |
| 1034 | release_mem_region(iommu->reg_phys, iommu->reg_size); |
| 1035 | out: |
| 1036 | return err; |
| 1037 | } |
| 1038 | |
| 1039 | static int alloc_iommu(struct dmar_drhd_unit *drhd) |
| 1040 | { |
| 1041 | struct intel_iommu *iommu; |
| 1042 | u32 ver, sts; |
| 1043 | int agaw = -1; |
| 1044 | int msagaw = -1; |
| 1045 | int err; |
| 1046 | |
| 1047 | if (!drhd->reg_base_addr) { |
| 1048 | warn_invalid_dmar(addr: 0, message: "" ); |
| 1049 | return -EINVAL; |
| 1050 | } |
| 1051 | |
| 1052 | iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); |
| 1053 | if (!iommu) |
| 1054 | return -ENOMEM; |
| 1055 | |
| 1056 | iommu->seq_id = ida_alloc_range(&dmar_seq_ids, min: 0, |
| 1057 | DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL); |
| 1058 | if (iommu->seq_id < 0) { |
| 1059 | pr_err("Failed to allocate seq_id\n" ); |
| 1060 | err = iommu->seq_id; |
| 1061 | goto error; |
| 1062 | } |
| 1063 | snprintf(buf: iommu->name, size: sizeof(iommu->name), fmt: "dmar%d" , iommu->seq_id); |
| 1064 | |
| 1065 | err = map_iommu(iommu, drhd); |
| 1066 | if (err) { |
| 1067 | pr_err("Failed to map %s\n" , iommu->name); |
| 1068 | goto error_free_seq_id; |
| 1069 | } |
| 1070 | |
| 1071 | if (!cap_sagaw(iommu->cap) && |
| 1072 | (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) { |
| 1073 | pr_info("%s: No supported address widths. Not attempting DMA translation.\n" , |
| 1074 | iommu->name); |
| 1075 | drhd->ignored = 1; |
| 1076 | } |
| 1077 | |
| 1078 | if (!drhd->ignored) { |
| 1079 | agaw = iommu_calculate_agaw(iommu); |
| 1080 | if (agaw < 0) { |
| 1081 | pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n" , |
| 1082 | iommu->seq_id); |
| 1083 | drhd->ignored = 1; |
| 1084 | } |
| 1085 | } |
| 1086 | if (!drhd->ignored) { |
| 1087 | msagaw = iommu_calculate_max_sagaw(iommu); |
| 1088 | if (msagaw < 0) { |
| 1089 | pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n" , |
| 1090 | iommu->seq_id); |
| 1091 | drhd->ignored = 1; |
| 1092 | agaw = -1; |
| 1093 | } |
| 1094 | } |
| 1095 | iommu->agaw = agaw; |
| 1096 | iommu->msagaw = msagaw; |
| 1097 | iommu->segment = drhd->segment; |
| 1098 | iommu->device_rbtree = RB_ROOT; |
| 1099 | spin_lock_init(&iommu->device_rbtree_lock); |
| 1100 | mutex_init(&iommu->iopf_lock); |
| 1101 | iommu->node = NUMA_NO_NODE; |
| 1102 | spin_lock_init(&iommu->lock); |
| 1103 | ida_init(ida: &iommu->domain_ida); |
| 1104 | mutex_init(&iommu->did_lock); |
| 1105 | |
| 1106 | ver = readl(addr: iommu->reg + DMAR_VER_REG); |
| 1107 | pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n" , |
| 1108 | iommu->name, |
| 1109 | (unsigned long long)drhd->reg_base_addr, |
| 1110 | DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), |
| 1111 | (unsigned long long)iommu->cap, |
| 1112 | (unsigned long long)iommu->ecap); |
| 1113 | |
| 1114 | /* Reflect status in gcmd */ |
| 1115 | sts = readl(addr: iommu->reg + DMAR_GSTS_REG); |
| 1116 | if (sts & DMA_GSTS_IRES) |
| 1117 | iommu->gcmd |= DMA_GCMD_IRE; |
| 1118 | if (sts & DMA_GSTS_TES) |
| 1119 | iommu->gcmd |= DMA_GCMD_TE; |
| 1120 | if (sts & DMA_GSTS_QIES) |
| 1121 | iommu->gcmd |= DMA_GCMD_QIE; |
| 1122 | |
| 1123 | if (alloc_iommu_pmu(iommu)) |
| 1124 | pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n" , iommu->seq_id); |
| 1125 | |
| 1126 | raw_spin_lock_init(&iommu->register_lock); |
| 1127 | |
| 1128 | /* |
| 1129 | * A value of N in PSS field of eCap register indicates hardware |
| 1130 | * supports PASID field of N+1 bits. |
| 1131 | */ |
| 1132 | if (pasid_supported(iommu)) |
| 1133 | iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap); |
| 1134 | |
| 1135 | /* |
| 1136 | * This is only for hotplug; at boot time intel_iommu_enabled won't |
| 1137 | * be set yet. When intel_iommu_init() runs, it registers the units |
| 1138 | * present at boot time, then sets intel_iommu_enabled. |
| 1139 | */ |
| 1140 | if (intel_iommu_enabled && !drhd->ignored) { |
| 1141 | err = iommu_device_sysfs_add(iommu: &iommu->iommu, NULL, |
| 1142 | groups: intel_iommu_groups, |
| 1143 | fmt: "%s" , iommu->name); |
| 1144 | if (err) |
| 1145 | goto err_unmap; |
| 1146 | |
| 1147 | err = iommu_device_register(iommu: &iommu->iommu, ops: &intel_iommu_ops, NULL); |
| 1148 | if (err) |
| 1149 | goto err_sysfs; |
| 1150 | |
| 1151 | iommu_pmu_register(iommu); |
| 1152 | } |
| 1153 | |
| 1154 | drhd->iommu = iommu; |
| 1155 | iommu->drhd = drhd; |
| 1156 | |
| 1157 | return 0; |
| 1158 | |
| 1159 | err_sysfs: |
| 1160 | iommu_device_sysfs_remove(iommu: &iommu->iommu); |
| 1161 | err_unmap: |
| 1162 | free_iommu_pmu(iommu); |
| 1163 | unmap_iommu(iommu); |
| 1164 | error_free_seq_id: |
| 1165 | ida_free(&dmar_seq_ids, id: iommu->seq_id); |
| 1166 | error: |
| 1167 | kfree(objp: iommu); |
| 1168 | return err; |
| 1169 | } |
| 1170 | |
| 1171 | static void free_iommu(struct intel_iommu *iommu) |
| 1172 | { |
| 1173 | if (intel_iommu_enabled && !iommu->drhd->ignored) { |
| 1174 | iommu_pmu_unregister(iommu); |
| 1175 | iommu_device_unregister(iommu: &iommu->iommu); |
| 1176 | iommu_device_sysfs_remove(iommu: &iommu->iommu); |
| 1177 | } |
| 1178 | |
| 1179 | free_iommu_pmu(iommu); |
| 1180 | |
| 1181 | if (iommu->irq) { |
| 1182 | if (iommu->pr_irq) { |
| 1183 | free_irq(iommu->pr_irq, iommu); |
| 1184 | dmar_free_hwirq(irq: iommu->pr_irq); |
| 1185 | iommu->pr_irq = 0; |
| 1186 | } |
| 1187 | free_irq(iommu->irq, iommu); |
| 1188 | dmar_free_hwirq(irq: iommu->irq); |
| 1189 | iommu->irq = 0; |
| 1190 | } |
| 1191 | |
| 1192 | if (iommu->qi) { |
| 1193 | iommu_free_pages(virt: iommu->qi->desc); |
| 1194 | kfree(objp: iommu->qi->desc_status); |
| 1195 | kfree(objp: iommu->qi); |
| 1196 | } |
| 1197 | |
| 1198 | if (iommu->reg) |
| 1199 | unmap_iommu(iommu); |
| 1200 | |
| 1201 | ida_destroy(ida: &iommu->domain_ida); |
| 1202 | ida_free(&dmar_seq_ids, id: iommu->seq_id); |
| 1203 | kfree(objp: iommu); |
| 1204 | } |
| 1205 | |
| 1206 | /* |
| 1207 | * Reclaim all the submitted descriptors which have completed its work. |
| 1208 | */ |
| 1209 | static inline void reclaim_free_desc(struct q_inval *qi) |
| 1210 | { |
| 1211 | while (qi->desc_status[qi->free_tail] == QI_FREE && qi->free_tail != qi->free_head) { |
| 1212 | qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; |
| 1213 | qi->free_cnt++; |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | static const char *qi_type_string(u8 type) |
| 1218 | { |
| 1219 | switch (type) { |
| 1220 | case QI_CC_TYPE: |
| 1221 | return "Context-cache Invalidation" ; |
| 1222 | case QI_IOTLB_TYPE: |
| 1223 | return "IOTLB Invalidation" ; |
| 1224 | case QI_DIOTLB_TYPE: |
| 1225 | return "Device-TLB Invalidation" ; |
| 1226 | case QI_IEC_TYPE: |
| 1227 | return "Interrupt Entry Cache Invalidation" ; |
| 1228 | case QI_IWD_TYPE: |
| 1229 | return "Invalidation Wait" ; |
| 1230 | case QI_EIOTLB_TYPE: |
| 1231 | return "PASID-based IOTLB Invalidation" ; |
| 1232 | case QI_PC_TYPE: |
| 1233 | return "PASID-cache Invalidation" ; |
| 1234 | case QI_DEIOTLB_TYPE: |
| 1235 | return "PASID-based Device-TLB Invalidation" ; |
| 1236 | case QI_PGRP_RESP_TYPE: |
| 1237 | return "Page Group Response" ; |
| 1238 | default: |
| 1239 | return "UNKNOWN" ; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | static void qi_dump_fault(struct intel_iommu *iommu, u32 fault) |
| 1244 | { |
| 1245 | unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG); |
| 1246 | u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); |
| 1247 | struct qi_desc *desc = iommu->qi->desc + head; |
| 1248 | |
| 1249 | if (fault & DMA_FSTS_IQE) |
| 1250 | pr_err("VT-d detected Invalidation Queue Error: Reason %llx" , |
| 1251 | DMAR_IQER_REG_IQEI(iqe_err)); |
| 1252 | if (fault & DMA_FSTS_ITE) |
| 1253 | pr_err("VT-d detected Invalidation Time-out Error: SID %llx" , |
| 1254 | DMAR_IQER_REG_ITESID(iqe_err)); |
| 1255 | if (fault & DMA_FSTS_ICE) |
| 1256 | pr_err("VT-d detected Invalidation Completion Error: SID %llx" , |
| 1257 | DMAR_IQER_REG_ICESID(iqe_err)); |
| 1258 | |
| 1259 | pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n" , |
| 1260 | qi_type_string(desc->qw0 & 0xf), |
| 1261 | (unsigned long long)desc->qw0, |
| 1262 | (unsigned long long)desc->qw1); |
| 1263 | |
| 1264 | head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH; |
| 1265 | head <<= qi_shift(iommu); |
| 1266 | desc = iommu->qi->desc + head; |
| 1267 | |
| 1268 | pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n" , |
| 1269 | qi_type_string(desc->qw0 & 0xf), |
| 1270 | (unsigned long long)desc->qw0, |
| 1271 | (unsigned long long)desc->qw1); |
| 1272 | } |
| 1273 | |
| 1274 | static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) |
| 1275 | { |
| 1276 | u32 fault; |
| 1277 | int head, tail; |
| 1278 | struct device *dev; |
| 1279 | u64 iqe_err, ite_sid; |
| 1280 | struct q_inval *qi = iommu->qi; |
| 1281 | int shift = qi_shift(iommu); |
| 1282 | |
| 1283 | if (qi->desc_status[wait_index] == QI_ABORT) |
| 1284 | return -EAGAIN; |
| 1285 | |
| 1286 | fault = readl(addr: iommu->reg + DMAR_FSTS_REG); |
| 1287 | if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE)) |
| 1288 | qi_dump_fault(iommu, fault); |
| 1289 | |
| 1290 | /* |
| 1291 | * If IQE happens, the head points to the descriptor associated |
| 1292 | * with the error. No new descriptors are fetched until the IQE |
| 1293 | * is cleared. |
| 1294 | */ |
| 1295 | if (fault & DMA_FSTS_IQE) { |
| 1296 | head = readl(addr: iommu->reg + DMAR_IQH_REG); |
| 1297 | if ((head >> shift) == index) { |
| 1298 | struct qi_desc *desc = qi->desc + head; |
| 1299 | |
| 1300 | /* |
| 1301 | * desc->qw2 and desc->qw3 are either reserved or |
| 1302 | * used by software as private data. We won't print |
| 1303 | * out these two qw's for security consideration. |
| 1304 | */ |
| 1305 | memcpy(desc, qi->desc + (wait_index << shift), |
| 1306 | 1 << shift); |
| 1307 | writel(DMA_FSTS_IQE, addr: iommu->reg + DMAR_FSTS_REG); |
| 1308 | pr_info("Invalidation Queue Error (IQE) cleared\n" ); |
| 1309 | return -EINVAL; |
| 1310 | } |
| 1311 | } |
| 1312 | |
| 1313 | /* |
| 1314 | * If ITE happens, all pending wait_desc commands are aborted. |
| 1315 | * No new descriptors are fetched until the ITE is cleared. |
| 1316 | */ |
| 1317 | if (fault & DMA_FSTS_ITE) { |
| 1318 | head = readl(addr: iommu->reg + DMAR_IQH_REG); |
| 1319 | head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; |
| 1320 | head |= 1; |
| 1321 | tail = readl(addr: iommu->reg + DMAR_IQT_REG); |
| 1322 | tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; |
| 1323 | |
| 1324 | /* |
| 1325 | * SID field is valid only when the ITE field is Set in FSTS_REG |
| 1326 | * see Intel VT-d spec r4.1, section 11.4.9.9 |
| 1327 | */ |
| 1328 | iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); |
| 1329 | ite_sid = DMAR_IQER_REG_ITESID(iqe_err); |
| 1330 | |
| 1331 | writel(DMA_FSTS_ITE, addr: iommu->reg + DMAR_FSTS_REG); |
| 1332 | pr_info("Invalidation Time-out Error (ITE) cleared\n" ); |
| 1333 | |
| 1334 | do { |
| 1335 | if (qi->desc_status[head] == QI_IN_USE) |
| 1336 | qi->desc_status[head] = QI_ABORT; |
| 1337 | head = (head - 2 + QI_LENGTH) % QI_LENGTH; |
| 1338 | } while (head != tail); |
| 1339 | |
| 1340 | /* |
| 1341 | * If device was released or isn't present, no need to retry |
| 1342 | * the ATS invalidate request anymore. |
| 1343 | * |
| 1344 | * 0 value of ite_sid means old VT-d device, no ite_sid value. |
| 1345 | * see Intel VT-d spec r4.1, section 11.4.9.9 |
| 1346 | */ |
| 1347 | if (ite_sid) { |
| 1348 | dev = device_rbtree_find(iommu, rid: ite_sid); |
| 1349 | if (!dev || !dev_is_pci(dev) || |
| 1350 | !pci_device_is_present(to_pci_dev(dev))) |
| 1351 | return -ETIMEDOUT; |
| 1352 | } |
| 1353 | if (qi->desc_status[wait_index] == QI_ABORT) |
| 1354 | return -EAGAIN; |
| 1355 | } |
| 1356 | |
| 1357 | if (fault & DMA_FSTS_ICE) { |
| 1358 | writel(DMA_FSTS_ICE, addr: iommu->reg + DMAR_FSTS_REG); |
| 1359 | pr_info("Invalidation Completion Error (ICE) cleared\n" ); |
| 1360 | } |
| 1361 | |
| 1362 | return 0; |
| 1363 | } |
| 1364 | |
| 1365 | /* |
| 1366 | * Function to submit invalidation descriptors of all types to the queued |
| 1367 | * invalidation interface(QI). Multiple descriptors can be submitted at a |
| 1368 | * time, a wait descriptor will be appended to each submission to ensure |
| 1369 | * hardware has completed the invalidation before return. Wait descriptors |
| 1370 | * can be part of the submission but it will not be polled for completion. |
| 1371 | */ |
| 1372 | int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, |
| 1373 | unsigned int count, unsigned long options) |
| 1374 | { |
| 1375 | struct q_inval *qi = iommu->qi; |
| 1376 | s64 devtlb_start_ktime = 0; |
| 1377 | s64 iotlb_start_ktime = 0; |
| 1378 | s64 iec_start_ktime = 0; |
| 1379 | struct qi_desc wait_desc; |
| 1380 | int wait_index, index; |
| 1381 | unsigned long flags; |
| 1382 | int offset, shift; |
| 1383 | int rc, i; |
| 1384 | u64 type; |
| 1385 | |
| 1386 | if (!qi) |
| 1387 | return 0; |
| 1388 | |
| 1389 | type = desc->qw0 & GENMASK_ULL(3, 0); |
| 1390 | |
| 1391 | if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) && |
| 1392 | dmar_latency_enabled(iommu, type: DMAR_LATENCY_INV_IOTLB)) |
| 1393 | iotlb_start_ktime = ktime_to_ns(kt: ktime_get()); |
| 1394 | |
| 1395 | if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) && |
| 1396 | dmar_latency_enabled(iommu, type: DMAR_LATENCY_INV_DEVTLB)) |
| 1397 | devtlb_start_ktime = ktime_to_ns(kt: ktime_get()); |
| 1398 | |
| 1399 | if (type == QI_IEC_TYPE && |
| 1400 | dmar_latency_enabled(iommu, type: DMAR_LATENCY_INV_IEC)) |
| 1401 | iec_start_ktime = ktime_to_ns(kt: ktime_get()); |
| 1402 | |
| 1403 | restart: |
| 1404 | rc = 0; |
| 1405 | |
| 1406 | raw_spin_lock_irqsave(&qi->q_lock, flags); |
| 1407 | /* |
| 1408 | * Check if we have enough empty slots in the queue to submit, |
| 1409 | * the calculation is based on: |
| 1410 | * # of desc + 1 wait desc + 1 space between head and tail |
| 1411 | */ |
| 1412 | while (qi->free_cnt < count + 2) { |
| 1413 | raw_spin_unlock_irqrestore(&qi->q_lock, flags); |
| 1414 | cpu_relax(); |
| 1415 | raw_spin_lock_irqsave(&qi->q_lock, flags); |
| 1416 | } |
| 1417 | |
| 1418 | index = qi->free_head; |
| 1419 | wait_index = (index + count) % QI_LENGTH; |
| 1420 | shift = qi_shift(iommu); |
| 1421 | |
| 1422 | for (i = 0; i < count; i++) { |
| 1423 | offset = ((index + i) % QI_LENGTH) << shift; |
| 1424 | memcpy(qi->desc + offset, &desc[i], 1 << shift); |
| 1425 | qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; |
| 1426 | trace_qi_submit(iommu, qw0: desc[i].qw0, qw1: desc[i].qw1, |
| 1427 | qw2: desc[i].qw2, qw3: desc[i].qw3); |
| 1428 | } |
| 1429 | qi->desc_status[wait_index] = QI_IN_USE; |
| 1430 | |
| 1431 | wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | |
| 1432 | QI_IWD_STATUS_WRITE | QI_IWD_TYPE; |
| 1433 | if (options & QI_OPT_WAIT_DRAIN) |
| 1434 | wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; |
| 1435 | wait_desc.qw1 = virt_to_phys(address: &qi->desc_status[wait_index]); |
| 1436 | wait_desc.qw2 = 0; |
| 1437 | wait_desc.qw3 = 0; |
| 1438 | |
| 1439 | offset = wait_index << shift; |
| 1440 | memcpy(qi->desc + offset, &wait_desc, 1 << shift); |
| 1441 | |
| 1442 | qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; |
| 1443 | qi->free_cnt -= count + 1; |
| 1444 | |
| 1445 | /* |
| 1446 | * update the HW tail register indicating the presence of |
| 1447 | * new descriptors. |
| 1448 | */ |
| 1449 | writel(val: qi->free_head << shift, addr: iommu->reg + DMAR_IQT_REG); |
| 1450 | |
| 1451 | while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) { |
| 1452 | /* |
| 1453 | * We will leave the interrupts disabled, to prevent interrupt |
| 1454 | * context to queue another cmd while a cmd is already submitted |
| 1455 | * and waiting for completion on this cpu. This is to avoid |
| 1456 | * a deadlock where the interrupt context can wait indefinitely |
| 1457 | * for free slots in the queue. |
| 1458 | */ |
| 1459 | rc = qi_check_fault(iommu, index, wait_index); |
| 1460 | if (rc) |
| 1461 | break; |
| 1462 | |
| 1463 | raw_spin_unlock(&qi->q_lock); |
| 1464 | cpu_relax(); |
| 1465 | raw_spin_lock(&qi->q_lock); |
| 1466 | } |
| 1467 | |
| 1468 | /* |
| 1469 | * The reclaim code can free descriptors from multiple submissions |
| 1470 | * starting from the tail of the queue. When count == 0, the |
| 1471 | * status of the standalone wait descriptor at the tail of the queue |
| 1472 | * must be set to QI_FREE to allow the reclaim code to proceed. |
| 1473 | * It is also possible that descriptors from one of the previous |
| 1474 | * submissions has to be reclaimed by a subsequent submission. |
| 1475 | */ |
| 1476 | for (i = 0; i <= count; i++) |
| 1477 | qi->desc_status[(index + i) % QI_LENGTH] = QI_FREE; |
| 1478 | |
| 1479 | reclaim_free_desc(qi); |
| 1480 | raw_spin_unlock_irqrestore(&qi->q_lock, flags); |
| 1481 | |
| 1482 | if (rc == -EAGAIN) |
| 1483 | goto restart; |
| 1484 | |
| 1485 | if (iotlb_start_ktime) |
| 1486 | dmar_latency_update(iommu, type: DMAR_LATENCY_INV_IOTLB, |
| 1487 | latency: ktime_to_ns(kt: ktime_get()) - iotlb_start_ktime); |
| 1488 | |
| 1489 | if (devtlb_start_ktime) |
| 1490 | dmar_latency_update(iommu, type: DMAR_LATENCY_INV_DEVTLB, |
| 1491 | latency: ktime_to_ns(kt: ktime_get()) - devtlb_start_ktime); |
| 1492 | |
| 1493 | if (iec_start_ktime) |
| 1494 | dmar_latency_update(iommu, type: DMAR_LATENCY_INV_IEC, |
| 1495 | latency: ktime_to_ns(kt: ktime_get()) - iec_start_ktime); |
| 1496 | |
| 1497 | return rc; |
| 1498 | } |
| 1499 | |
| 1500 | /* |
| 1501 | * Flush the global interrupt entry cache. |
| 1502 | */ |
| 1503 | void qi_global_iec(struct intel_iommu *iommu) |
| 1504 | { |
| 1505 | struct qi_desc desc; |
| 1506 | |
| 1507 | desc.qw0 = QI_IEC_TYPE; |
| 1508 | desc.qw1 = 0; |
| 1509 | desc.qw2 = 0; |
| 1510 | desc.qw3 = 0; |
| 1511 | |
| 1512 | /* should never fail */ |
| 1513 | qi_submit_sync(iommu, desc: &desc, count: 1, options: 0); |
| 1514 | } |
| 1515 | |
| 1516 | void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, |
| 1517 | u64 type) |
| 1518 | { |
| 1519 | struct qi_desc desc; |
| 1520 | |
| 1521 | desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) |
| 1522 | | QI_CC_GRAN(type) | QI_CC_TYPE; |
| 1523 | desc.qw1 = 0; |
| 1524 | desc.qw2 = 0; |
| 1525 | desc.qw3 = 0; |
| 1526 | |
| 1527 | qi_submit_sync(iommu, desc: &desc, count: 1, options: 0); |
| 1528 | } |
| 1529 | |
| 1530 | void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, |
| 1531 | unsigned int size_order, u64 type) |
| 1532 | { |
| 1533 | struct qi_desc desc; |
| 1534 | |
| 1535 | qi_desc_iotlb(iommu, did, addr, size_order, type, desc: &desc); |
| 1536 | qi_submit_sync(iommu, desc: &desc, count: 1, options: 0); |
| 1537 | } |
| 1538 | |
| 1539 | void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, |
| 1540 | u16 qdep, u64 addr, unsigned mask) |
| 1541 | { |
| 1542 | struct qi_desc desc; |
| 1543 | |
| 1544 | /* |
| 1545 | * VT-d spec, section 4.3: |
| 1546 | * |
| 1547 | * Software is recommended to not submit any Device-TLB invalidation |
| 1548 | * requests while address remapping hardware is disabled. |
| 1549 | */ |
| 1550 | if (!(iommu->gcmd & DMA_GCMD_TE)) |
| 1551 | return; |
| 1552 | |
| 1553 | qi_desc_dev_iotlb(sid, pfsid, qdep, addr, mask, desc: &desc); |
| 1554 | qi_submit_sync(iommu, desc: &desc, count: 1, options: 0); |
| 1555 | } |
| 1556 | |
| 1557 | /* PASID-based IOTLB invalidation */ |
| 1558 | void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, |
| 1559 | unsigned long npages, bool ih) |
| 1560 | { |
| 1561 | struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; |
| 1562 | |
| 1563 | /* |
| 1564 | * npages == -1 means a PASID-selective invalidation, otherwise, |
| 1565 | * a positive value for Page-selective-within-PASID invalidation. |
| 1566 | * 0 is not a valid input. |
| 1567 | */ |
| 1568 | if (WARN_ON(!npages)) { |
| 1569 | pr_err("Invalid input npages = %ld\n" , npages); |
| 1570 | return; |
| 1571 | } |
| 1572 | |
| 1573 | qi_desc_piotlb(did, pasid, addr, npages, ih, desc: &desc); |
| 1574 | qi_submit_sync(iommu, desc: &desc, count: 1, options: 0); |
| 1575 | } |
| 1576 | |
| 1577 | /* PASID-based device IOTLB Invalidate */ |
| 1578 | void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, |
| 1579 | u32 pasid, u16 qdep, u64 addr, unsigned int size_order) |
| 1580 | { |
| 1581 | struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; |
| 1582 | |
| 1583 | /* |
| 1584 | * VT-d spec, section 4.3: |
| 1585 | * |
| 1586 | * Software is recommended to not submit any Device-TLB invalidation |
| 1587 | * requests while address remapping hardware is disabled. |
| 1588 | */ |
| 1589 | if (!(iommu->gcmd & DMA_GCMD_TE)) |
| 1590 | return; |
| 1591 | |
| 1592 | qi_desc_dev_iotlb_pasid(sid, pfsid, pasid, |
| 1593 | qdep, addr, size_order, |
| 1594 | desc: &desc); |
| 1595 | qi_submit_sync(iommu, desc: &desc, count: 1, options: 0); |
| 1596 | } |
| 1597 | |
| 1598 | void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, |
| 1599 | u64 granu, u32 pasid) |
| 1600 | { |
| 1601 | struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; |
| 1602 | |
| 1603 | desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | |
| 1604 | QI_PC_GRAN(granu) | QI_PC_TYPE; |
| 1605 | qi_submit_sync(iommu, desc: &desc, count: 1, options: 0); |
| 1606 | } |
| 1607 | |
| 1608 | /* |
| 1609 | * Disable Queued Invalidation interface. |
| 1610 | */ |
| 1611 | void dmar_disable_qi(struct intel_iommu *iommu) |
| 1612 | { |
| 1613 | unsigned long flags; |
| 1614 | u32 sts; |
| 1615 | cycles_t start_time = get_cycles(); |
| 1616 | |
| 1617 | if (!ecap_qis(iommu->ecap)) |
| 1618 | return; |
| 1619 | |
| 1620 | raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| 1621 | |
| 1622 | sts = readl(addr: iommu->reg + DMAR_GSTS_REG); |
| 1623 | if (!(sts & DMA_GSTS_QIES)) |
| 1624 | goto end; |
| 1625 | |
| 1626 | /* |
| 1627 | * Give a chance to HW to complete the pending invalidation requests. |
| 1628 | */ |
| 1629 | while ((readl(addr: iommu->reg + DMAR_IQT_REG) != |
| 1630 | readl(addr: iommu->reg + DMAR_IQH_REG)) && |
| 1631 | (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) |
| 1632 | cpu_relax(); |
| 1633 | |
| 1634 | iommu->gcmd &= ~DMA_GCMD_QIE; |
| 1635 | writel(val: iommu->gcmd, addr: iommu->reg + DMAR_GCMD_REG); |
| 1636 | |
| 1637 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, |
| 1638 | !(sts & DMA_GSTS_QIES), sts); |
| 1639 | end: |
| 1640 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| 1641 | } |
| 1642 | |
| 1643 | /* |
| 1644 | * Enable queued invalidation. |
| 1645 | */ |
| 1646 | static void __dmar_enable_qi(struct intel_iommu *iommu) |
| 1647 | { |
| 1648 | u32 sts; |
| 1649 | unsigned long flags; |
| 1650 | struct q_inval *qi = iommu->qi; |
| 1651 | u64 val = virt_to_phys(address: qi->desc); |
| 1652 | |
| 1653 | qi->free_head = qi->free_tail = 0; |
| 1654 | qi->free_cnt = QI_LENGTH; |
| 1655 | |
| 1656 | /* |
| 1657 | * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability |
| 1658 | * is present. |
| 1659 | */ |
| 1660 | if (ecap_smts(iommu->ecap)) |
| 1661 | val |= BIT_ULL(11) | BIT_ULL(0); |
| 1662 | |
| 1663 | raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| 1664 | |
| 1665 | /* write zero to the tail reg */ |
| 1666 | writel(val: 0, addr: iommu->reg + DMAR_IQT_REG); |
| 1667 | |
| 1668 | dmar_writeq(iommu->reg + DMAR_IQA_REG, val); |
| 1669 | |
| 1670 | iommu->gcmd |= DMA_GCMD_QIE; |
| 1671 | writel(val: iommu->gcmd, addr: iommu->reg + DMAR_GCMD_REG); |
| 1672 | |
| 1673 | /* Make sure hardware complete it */ |
| 1674 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); |
| 1675 | |
| 1676 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| 1677 | } |
| 1678 | |
| 1679 | /* |
| 1680 | * Enable Queued Invalidation interface. This is a must to support |
| 1681 | * interrupt-remapping. Also used by DMA-remapping, which replaces |
| 1682 | * register based IOTLB invalidation. |
| 1683 | */ |
| 1684 | int dmar_enable_qi(struct intel_iommu *iommu) |
| 1685 | { |
| 1686 | struct q_inval *qi; |
| 1687 | void *desc; |
| 1688 | |
| 1689 | if (!ecap_qis(iommu->ecap)) |
| 1690 | return -ENOENT; |
| 1691 | |
| 1692 | /* |
| 1693 | * queued invalidation is already setup and enabled. |
| 1694 | */ |
| 1695 | if (iommu->qi) |
| 1696 | return 0; |
| 1697 | |
| 1698 | iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); |
| 1699 | if (!iommu->qi) |
| 1700 | return -ENOMEM; |
| 1701 | |
| 1702 | qi = iommu->qi; |
| 1703 | |
| 1704 | /* |
| 1705 | * Need two pages to accommodate 256 descriptors of 256 bits each |
| 1706 | * if the remapping hardware supports scalable mode translation. |
| 1707 | */ |
| 1708 | desc = iommu_alloc_pages_node_sz(nid: iommu->node, GFP_ATOMIC, |
| 1709 | ecap_smts(iommu->ecap) ? SZ_8K : |
| 1710 | SZ_4K); |
| 1711 | if (!desc) { |
| 1712 | kfree(objp: qi); |
| 1713 | iommu->qi = NULL; |
| 1714 | return -ENOMEM; |
| 1715 | } |
| 1716 | |
| 1717 | qi->desc = desc; |
| 1718 | |
| 1719 | qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); |
| 1720 | if (!qi->desc_status) { |
| 1721 | iommu_free_pages(virt: qi->desc); |
| 1722 | kfree(objp: qi); |
| 1723 | iommu->qi = NULL; |
| 1724 | return -ENOMEM; |
| 1725 | } |
| 1726 | |
| 1727 | raw_spin_lock_init(&qi->q_lock); |
| 1728 | |
| 1729 | __dmar_enable_qi(iommu); |
| 1730 | |
| 1731 | return 0; |
| 1732 | } |
| 1733 | |
| 1734 | /* iommu interrupt handling. Most stuff are MSI-like. */ |
| 1735 | |
| 1736 | enum faulttype { |
| 1737 | DMA_REMAP, |
| 1738 | INTR_REMAP, |
| 1739 | UNKNOWN, |
| 1740 | }; |
| 1741 | |
| 1742 | static const char *dma_remap_fault_reasons[] = |
| 1743 | { |
| 1744 | "Software" , |
| 1745 | "Present bit in root entry is clear" , |
| 1746 | "Present bit in context entry is clear" , |
| 1747 | "Invalid context entry" , |
| 1748 | "Access beyond MGAW" , |
| 1749 | "PTE Write access is not set" , |
| 1750 | "PTE Read access is not set" , |
| 1751 | "Next page table ptr is invalid" , |
| 1752 | "Root table address invalid" , |
| 1753 | "Context table ptr is invalid" , |
| 1754 | "non-zero reserved fields in RTP" , |
| 1755 | "non-zero reserved fields in CTP" , |
| 1756 | "non-zero reserved fields in PTE" , |
| 1757 | "PCE for translation request specifies blocking" , |
| 1758 | }; |
| 1759 | |
| 1760 | static const char * const dma_remap_sm_fault_reasons[] = { |
| 1761 | "SM: Invalid Root Table Address" , |
| 1762 | "SM: TTM 0 for request with PASID" , |
| 1763 | "SM: TTM 0 for page group request" , |
| 1764 | "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , /* 0x33-0x37 */ |
| 1765 | "SM: Error attempting to access Root Entry" , |
| 1766 | "SM: Present bit in Root Entry is clear" , |
| 1767 | "SM: Non-zero reserved field set in Root Entry" , |
| 1768 | "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , /* 0x3B-0x3F */ |
| 1769 | "SM: Error attempting to access Context Entry" , |
| 1770 | "SM: Present bit in Context Entry is clear" , |
| 1771 | "SM: Non-zero reserved field set in the Context Entry" , |
| 1772 | "SM: Invalid Context Entry" , |
| 1773 | "SM: DTE field in Context Entry is clear" , |
| 1774 | "SM: PASID Enable field in Context Entry is clear" , |
| 1775 | "SM: PASID is larger than the max in Context Entry" , |
| 1776 | "SM: PRE field in Context-Entry is clear" , |
| 1777 | "SM: RID_PASID field error in Context-Entry" , |
| 1778 | "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , /* 0x49-0x4F */ |
| 1779 | "SM: Error attempting to access the PASID Directory Entry" , |
| 1780 | "SM: Present bit in Directory Entry is clear" , |
| 1781 | "SM: Non-zero reserved field set in PASID Directory Entry" , |
| 1782 | "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , /* 0x53-0x57 */ |
| 1783 | "SM: Error attempting to access PASID Table Entry" , |
| 1784 | "SM: Present bit in PASID Table Entry is clear" , |
| 1785 | "SM: Non-zero reserved field set in PASID Table Entry" , |
| 1786 | "SM: Invalid Scalable-Mode PASID Table Entry" , |
| 1787 | "SM: ERE field is clear in PASID Table Entry" , |
| 1788 | "SM: SRE field is clear in PASID Table Entry" , |
| 1789 | "Unknown" , "Unknown" ,/* 0x5E-0x5F */ |
| 1790 | "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , /* 0x60-0x67 */ |
| 1791 | "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , /* 0x68-0x6F */ |
| 1792 | "SM: Error attempting to access first-level paging entry" , |
| 1793 | "SM: Present bit in first-level paging entry is clear" , |
| 1794 | "SM: Non-zero reserved field set in first-level paging entry" , |
| 1795 | "SM: Error attempting to access FL-PML4 entry" , |
| 1796 | "SM: First-level entry address beyond MGAW in Nested translation" , |
| 1797 | "SM: Read permission error in FL-PML4 entry in Nested translation" , |
| 1798 | "SM: Read permission error in first-level paging entry in Nested translation" , |
| 1799 | "SM: Write permission error in first-level paging entry in Nested translation" , |
| 1800 | "SM: Error attempting to access second-level paging entry" , |
| 1801 | "SM: Read/Write permission error in second-level paging entry" , |
| 1802 | "SM: Non-zero reserved field set in second-level paging entry" , |
| 1803 | "SM: Invalid second-level page table pointer" , |
| 1804 | "SM: A/D bit update needed in second-level entry when set up in no snoop" , |
| 1805 | "Unknown" , "Unknown" , "Unknown" , /* 0x7D-0x7F */ |
| 1806 | "SM: Address in first-level translation is not canonical" , |
| 1807 | "SM: U/S set 0 for first-level translation with user privilege" , |
| 1808 | "SM: No execute permission for request with PASID and ER=1" , |
| 1809 | "SM: Address beyond the DMA hardware max" , |
| 1810 | "SM: Second-level entry address beyond the max" , |
| 1811 | "SM: No write permission for Write/AtomicOp request" , |
| 1812 | "SM: No read permission for Read/AtomicOp request" , |
| 1813 | "SM: Invalid address-interrupt address" , |
| 1814 | "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , "Unknown" , /* 0x88-0x8F */ |
| 1815 | "SM: A/D bit update needed in first-level entry when set up in no snoop" , |
| 1816 | }; |
| 1817 | |
| 1818 | static const char *irq_remap_fault_reasons[] = |
| 1819 | { |
| 1820 | "Detected reserved fields in the decoded interrupt-remapped request" , |
| 1821 | "Interrupt index exceeded the interrupt-remapping table size" , |
| 1822 | "Present field in the IRTE entry is clear" , |
| 1823 | "Error accessing interrupt-remapping table pointed by IRTA_REG" , |
| 1824 | "Detected reserved fields in the IRTE entry" , |
| 1825 | "Blocked a compatibility format interrupt request" , |
| 1826 | "Blocked an interrupt request due to source-id verification failure" , |
| 1827 | }; |
| 1828 | |
| 1829 | static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) |
| 1830 | { |
| 1831 | if (fault_reason >= 0x20 && (fault_reason - 0x20 < |
| 1832 | ARRAY_SIZE(irq_remap_fault_reasons))) { |
| 1833 | *fault_type = INTR_REMAP; |
| 1834 | return irq_remap_fault_reasons[fault_reason - 0x20]; |
| 1835 | } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < |
| 1836 | ARRAY_SIZE(dma_remap_sm_fault_reasons))) { |
| 1837 | *fault_type = DMA_REMAP; |
| 1838 | return dma_remap_sm_fault_reasons[fault_reason - 0x30]; |
| 1839 | } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { |
| 1840 | *fault_type = DMA_REMAP; |
| 1841 | return dma_remap_fault_reasons[fault_reason]; |
| 1842 | } else { |
| 1843 | *fault_type = UNKNOWN; |
| 1844 | return "Unknown" ; |
| 1845 | } |
| 1846 | } |
| 1847 | |
| 1848 | |
| 1849 | static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) |
| 1850 | { |
| 1851 | if (iommu->irq == irq) |
| 1852 | return DMAR_FECTL_REG; |
| 1853 | else if (iommu->pr_irq == irq) |
| 1854 | return DMAR_PECTL_REG; |
| 1855 | else if (iommu->perf_irq == irq) |
| 1856 | return DMAR_PERFINTRCTL_REG; |
| 1857 | else |
| 1858 | BUG(); |
| 1859 | } |
| 1860 | |
| 1861 | void dmar_msi_unmask(struct irq_data *data) |
| 1862 | { |
| 1863 | struct intel_iommu *iommu = irq_data_get_irq_handler_data(d: data); |
| 1864 | int reg = dmar_msi_reg(iommu, irq: data->irq); |
| 1865 | unsigned long flag; |
| 1866 | |
| 1867 | /* unmask it */ |
| 1868 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1869 | writel(val: 0, addr: iommu->reg + reg); |
| 1870 | /* Read a reg to force flush the post write */ |
| 1871 | readl(addr: iommu->reg + reg); |
| 1872 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1873 | } |
| 1874 | |
| 1875 | void dmar_msi_mask(struct irq_data *data) |
| 1876 | { |
| 1877 | struct intel_iommu *iommu = irq_data_get_irq_handler_data(d: data); |
| 1878 | int reg = dmar_msi_reg(iommu, irq: data->irq); |
| 1879 | unsigned long flag; |
| 1880 | |
| 1881 | /* mask it */ |
| 1882 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1883 | writel(DMA_FECTL_IM, addr: iommu->reg + reg); |
| 1884 | /* Read a reg to force flush the post write */ |
| 1885 | readl(addr: iommu->reg + reg); |
| 1886 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1887 | } |
| 1888 | |
| 1889 | void dmar_msi_write(int irq, struct msi_msg *msg) |
| 1890 | { |
| 1891 | struct intel_iommu *iommu = irq_get_handler_data(irq); |
| 1892 | int reg = dmar_msi_reg(iommu, irq); |
| 1893 | unsigned long flag; |
| 1894 | |
| 1895 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1896 | writel(val: msg->data, addr: iommu->reg + reg + 4); |
| 1897 | writel(val: msg->address_lo, addr: iommu->reg + reg + 8); |
| 1898 | writel(val: msg->address_hi, addr: iommu->reg + reg + 12); |
| 1899 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1900 | } |
| 1901 | |
| 1902 | static int dmar_fault_do_one(struct intel_iommu *iommu, int type, |
| 1903 | u8 fault_reason, u32 pasid, u16 source_id, |
| 1904 | unsigned long long addr) |
| 1905 | { |
| 1906 | const char *reason; |
| 1907 | int fault_type; |
| 1908 | |
| 1909 | reason = dmar_get_fault_reason(fault_reason, fault_type: &fault_type); |
| 1910 | |
| 1911 | if (fault_type == INTR_REMAP) { |
| 1912 | pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n" , |
| 1913 | source_id >> 8, PCI_SLOT(source_id & 0xFF), |
| 1914 | PCI_FUNC(source_id & 0xFF), addr >> 48, |
| 1915 | fault_reason, reason); |
| 1916 | |
| 1917 | return 0; |
| 1918 | } |
| 1919 | |
| 1920 | if (pasid == IOMMU_PASID_INVALID) |
| 1921 | pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n" , |
| 1922 | type ? "DMA Read" : "DMA Write" , |
| 1923 | source_id >> 8, PCI_SLOT(source_id & 0xFF), |
| 1924 | PCI_FUNC(source_id & 0xFF), addr, |
| 1925 | fault_reason, reason); |
| 1926 | else |
| 1927 | pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n" , |
| 1928 | type ? "DMA Read" : "DMA Write" , pasid, |
| 1929 | source_id >> 8, PCI_SLOT(source_id & 0xFF), |
| 1930 | PCI_FUNC(source_id & 0xFF), addr, |
| 1931 | fault_reason, reason); |
| 1932 | |
| 1933 | dmar_fault_dump_ptes(iommu, source_id, addr, pasid); |
| 1934 | |
| 1935 | return 0; |
| 1936 | } |
| 1937 | |
| 1938 | #define PRIMARY_FAULT_REG_LEN (16) |
| 1939 | irqreturn_t dmar_fault(int irq, void *dev_id) |
| 1940 | { |
| 1941 | struct intel_iommu *iommu = dev_id; |
| 1942 | int reg, fault_index; |
| 1943 | u32 fault_status; |
| 1944 | unsigned long flag; |
| 1945 | static DEFINE_RATELIMIT_STATE(rs, |
| 1946 | DEFAULT_RATELIMIT_INTERVAL, |
| 1947 | DEFAULT_RATELIMIT_BURST); |
| 1948 | |
| 1949 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1950 | fault_status = readl(addr: iommu->reg + DMAR_FSTS_REG); |
| 1951 | if (fault_status && __ratelimit(&rs)) |
| 1952 | pr_err("DRHD: handling fault status reg %x\n" , fault_status); |
| 1953 | |
| 1954 | /* TBD: ignore advanced fault log currently */ |
| 1955 | if (!(fault_status & DMA_FSTS_PPF)) |
| 1956 | goto unlock_exit; |
| 1957 | |
| 1958 | fault_index = dma_fsts_fault_record_index(fault_status); |
| 1959 | reg = cap_fault_reg_offset(iommu->cap); |
| 1960 | while (1) { |
| 1961 | /* Disable printing, simply clear the fault when ratelimited */ |
| 1962 | bool ratelimited = !__ratelimit(&rs); |
| 1963 | u8 fault_reason; |
| 1964 | u16 source_id; |
| 1965 | u64 guest_addr; |
| 1966 | u32 pasid; |
| 1967 | int type; |
| 1968 | u32 data; |
| 1969 | bool pasid_present; |
| 1970 | |
| 1971 | /* highest 32 bits */ |
| 1972 | data = readl(addr: iommu->reg + reg + |
| 1973 | fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| 1974 | if (!(data & DMA_FRCD_F)) |
| 1975 | break; |
| 1976 | |
| 1977 | if (!ratelimited) { |
| 1978 | fault_reason = dma_frcd_fault_reason(data); |
| 1979 | type = dma_frcd_type(data); |
| 1980 | |
| 1981 | pasid = dma_frcd_pasid_value(data); |
| 1982 | data = readl(addr: iommu->reg + reg + |
| 1983 | fault_index * PRIMARY_FAULT_REG_LEN + 8); |
| 1984 | source_id = dma_frcd_source_id(data); |
| 1985 | |
| 1986 | pasid_present = dma_frcd_pasid_present(data); |
| 1987 | guest_addr = dmar_readq(iommu->reg + reg + |
| 1988 | fault_index * PRIMARY_FAULT_REG_LEN); |
| 1989 | guest_addr = dma_frcd_page_addr(guest_addr); |
| 1990 | } |
| 1991 | |
| 1992 | /* clear the fault */ |
| 1993 | writel(DMA_FRCD_F, addr: iommu->reg + reg + |
| 1994 | fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| 1995 | |
| 1996 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1997 | |
| 1998 | if (!ratelimited) |
| 1999 | /* Using pasid -1 if pasid is not present */ |
| 2000 | dmar_fault_do_one(iommu, type, fault_reason, |
| 2001 | pasid: pasid_present ? pasid : IOMMU_PASID_INVALID, |
| 2002 | source_id, addr: guest_addr); |
| 2003 | |
| 2004 | fault_index++; |
| 2005 | if (fault_index >= cap_num_fault_regs(iommu->cap)) |
| 2006 | fault_index = 0; |
| 2007 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 2008 | } |
| 2009 | |
| 2010 | writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, |
| 2011 | addr: iommu->reg + DMAR_FSTS_REG); |
| 2012 | |
| 2013 | unlock_exit: |
| 2014 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 2015 | return IRQ_HANDLED; |
| 2016 | } |
| 2017 | |
| 2018 | int dmar_set_interrupt(struct intel_iommu *iommu) |
| 2019 | { |
| 2020 | int irq, ret; |
| 2021 | |
| 2022 | /* |
| 2023 | * Check if the fault interrupt is already initialized. |
| 2024 | */ |
| 2025 | if (iommu->irq) |
| 2026 | return 0; |
| 2027 | |
| 2028 | irq = dmar_alloc_hwirq(id: iommu->seq_id, node: iommu->node, arg: iommu); |
| 2029 | if (irq > 0) { |
| 2030 | iommu->irq = irq; |
| 2031 | } else { |
| 2032 | pr_err("No free IRQ vectors\n" ); |
| 2033 | return -EINVAL; |
| 2034 | } |
| 2035 | |
| 2036 | ret = request_irq(irq, handler: dmar_fault, IRQF_NO_THREAD, name: iommu->name, dev: iommu); |
| 2037 | if (ret) |
| 2038 | pr_err("Can't request irq\n" ); |
| 2039 | return ret; |
| 2040 | } |
| 2041 | |
| 2042 | int enable_drhd_fault_handling(unsigned int cpu) |
| 2043 | { |
| 2044 | struct dmar_drhd_unit *drhd; |
| 2045 | struct intel_iommu *iommu; |
| 2046 | |
| 2047 | /* |
| 2048 | * Enable fault control interrupt. |
| 2049 | */ |
| 2050 | guard(rwsem_read)(T: &dmar_global_lock); |
| 2051 | for_each_iommu(iommu, drhd) { |
| 2052 | u32 fault_status; |
| 2053 | int ret; |
| 2054 | |
| 2055 | if (iommu->irq || iommu->node != cpu_to_node(cpu)) |
| 2056 | continue; |
| 2057 | |
| 2058 | ret = dmar_set_interrupt(iommu); |
| 2059 | |
| 2060 | if (ret) { |
| 2061 | pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n" , |
| 2062 | (unsigned long long)drhd->reg_base_addr, ret); |
| 2063 | return -1; |
| 2064 | } |
| 2065 | |
| 2066 | /* |
| 2067 | * Clear any previous faults. |
| 2068 | */ |
| 2069 | dmar_fault(irq: iommu->irq, dev_id: iommu); |
| 2070 | fault_status = readl(addr: iommu->reg + DMAR_FSTS_REG); |
| 2071 | writel(val: fault_status, addr: iommu->reg + DMAR_FSTS_REG); |
| 2072 | } |
| 2073 | |
| 2074 | return 0; |
| 2075 | } |
| 2076 | |
| 2077 | /* |
| 2078 | * Re-enable Queued Invalidation interface. |
| 2079 | */ |
| 2080 | int dmar_reenable_qi(struct intel_iommu *iommu) |
| 2081 | { |
| 2082 | if (!ecap_qis(iommu->ecap)) |
| 2083 | return -ENOENT; |
| 2084 | |
| 2085 | if (!iommu->qi) |
| 2086 | return -ENOENT; |
| 2087 | |
| 2088 | /* |
| 2089 | * First disable queued invalidation. |
| 2090 | */ |
| 2091 | dmar_disable_qi(iommu); |
| 2092 | /* |
| 2093 | * Then enable queued invalidation again. Since there is no pending |
| 2094 | * invalidation requests now, it's safe to re-enable queued |
| 2095 | * invalidation. |
| 2096 | */ |
| 2097 | __dmar_enable_qi(iommu); |
| 2098 | |
| 2099 | return 0; |
| 2100 | } |
| 2101 | |
| 2102 | /* |
| 2103 | * Check interrupt remapping support in DMAR table description. |
| 2104 | */ |
| 2105 | int __init dmar_ir_support(void) |
| 2106 | { |
| 2107 | struct acpi_table_dmar *dmar; |
| 2108 | dmar = (struct acpi_table_dmar *)dmar_tbl; |
| 2109 | if (!dmar) |
| 2110 | return 0; |
| 2111 | return dmar->flags & 0x1; |
| 2112 | } |
| 2113 | |
| 2114 | /* Check whether DMAR units are in use */ |
| 2115 | static inline bool dmar_in_use(void) |
| 2116 | { |
| 2117 | return irq_remapping_enabled || intel_iommu_enabled; |
| 2118 | } |
| 2119 | |
| 2120 | static int __init dmar_free_unused_resources(void) |
| 2121 | { |
| 2122 | struct dmar_drhd_unit *dmaru, *dmaru_n; |
| 2123 | |
| 2124 | if (dmar_in_use()) |
| 2125 | return 0; |
| 2126 | |
| 2127 | if (dmar_dev_scope_status != 1 && !list_empty(head: &dmar_drhd_units)) |
| 2128 | bus_unregister_notifier(bus: &pci_bus_type, nb: &dmar_pci_bus_nb); |
| 2129 | |
| 2130 | down_write(sem: &dmar_global_lock); |
| 2131 | list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { |
| 2132 | list_del(entry: &dmaru->list); |
| 2133 | dmar_free_drhd(dmaru); |
| 2134 | } |
| 2135 | up_write(sem: &dmar_global_lock); |
| 2136 | |
| 2137 | return 0; |
| 2138 | } |
| 2139 | |
| 2140 | late_initcall(dmar_free_unused_resources); |
| 2141 | |
| 2142 | /* |
| 2143 | * DMAR Hotplug Support |
| 2144 | * For more details, please refer to Intel(R) Virtualization Technology |
| 2145 | * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 |
| 2146 | * "Remapping Hardware Unit Hot Plug". |
| 2147 | */ |
| 2148 | static guid_t dmar_hp_guid = |
| 2149 | GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, |
| 2150 | 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); |
| 2151 | |
| 2152 | /* |
| 2153 | * Currently there's only one revision and BIOS will not check the revision id, |
| 2154 | * so use 0 for safety. |
| 2155 | */ |
| 2156 | #define DMAR_DSM_REV_ID 0 |
| 2157 | #define DMAR_DSM_FUNC_DRHD 1 |
| 2158 | #define DMAR_DSM_FUNC_ATSR 2 |
| 2159 | #define DMAR_DSM_FUNC_RHSA 3 |
| 2160 | #define DMAR_DSM_FUNC_SATC 4 |
| 2161 | |
| 2162 | static inline bool dmar_detect_dsm(acpi_handle handle, int func) |
| 2163 | { |
| 2164 | return acpi_check_dsm(handle, guid: &dmar_hp_guid, DMAR_DSM_REV_ID, funcs: 1 << func); |
| 2165 | } |
| 2166 | |
| 2167 | static int dmar_walk_dsm_resource(acpi_handle handle, int func, |
| 2168 | dmar_res_handler_t handler, void *arg) |
| 2169 | { |
| 2170 | int ret = -ENODEV; |
| 2171 | union acpi_object *obj; |
| 2172 | struct acpi_dmar_header *start; |
| 2173 | struct dmar_res_callback callback; |
| 2174 | static int res_type[] = { |
| 2175 | [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, |
| 2176 | [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, |
| 2177 | [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, |
| 2178 | [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC, |
| 2179 | }; |
| 2180 | |
| 2181 | if (!dmar_detect_dsm(handle, func)) |
| 2182 | return 0; |
| 2183 | |
| 2184 | obj = acpi_evaluate_dsm_typed(handle, guid: &dmar_hp_guid, DMAR_DSM_REV_ID, |
| 2185 | func, NULL, ACPI_TYPE_BUFFER); |
| 2186 | if (!obj) |
| 2187 | return -ENODEV; |
| 2188 | |
| 2189 | memset(&callback, 0, sizeof(callback)); |
| 2190 | callback.cb[res_type[func]] = handler; |
| 2191 | callback.arg[res_type[func]] = arg; |
| 2192 | start = (struct acpi_dmar_header *)obj->buffer.pointer; |
| 2193 | ret = dmar_walk_remapping_entries(start, len: obj->buffer.length, cb: &callback); |
| 2194 | |
| 2195 | ACPI_FREE(obj); |
| 2196 | |
| 2197 | return ret; |
| 2198 | } |
| 2199 | |
| 2200 | static int dmar_hp_add_drhd(struct acpi_dmar_header *, void *arg) |
| 2201 | { |
| 2202 | int ret; |
| 2203 | struct dmar_drhd_unit *dmaru; |
| 2204 | |
| 2205 | dmaru = dmar_find_dmaru(drhd: (struct acpi_dmar_hardware_unit *)header); |
| 2206 | if (!dmaru) |
| 2207 | return -ENODEV; |
| 2208 | |
| 2209 | ret = dmar_ir_hotplug(dmaru, insert: true); |
| 2210 | if (ret == 0) |
| 2211 | ret = dmar_iommu_hotplug(dmaru, insert: true); |
| 2212 | |
| 2213 | return ret; |
| 2214 | } |
| 2215 | |
| 2216 | static int dmar_hp_remove_drhd(struct acpi_dmar_header *, void *arg) |
| 2217 | { |
| 2218 | int i, ret; |
| 2219 | struct device *dev; |
| 2220 | struct dmar_drhd_unit *dmaru; |
| 2221 | |
| 2222 | dmaru = dmar_find_dmaru(drhd: (struct acpi_dmar_hardware_unit *)header); |
| 2223 | if (!dmaru) |
| 2224 | return 0; |
| 2225 | |
| 2226 | /* |
| 2227 | * All PCI devices managed by this unit should have been destroyed. |
| 2228 | */ |
| 2229 | if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { |
| 2230 | for_each_active_dev_scope(dmaru->devices, |
| 2231 | dmaru->devices_cnt, i, dev) |
| 2232 | return -EBUSY; |
| 2233 | } |
| 2234 | |
| 2235 | ret = dmar_ir_hotplug(dmaru, insert: false); |
| 2236 | if (ret == 0) |
| 2237 | ret = dmar_iommu_hotplug(dmaru, insert: false); |
| 2238 | |
| 2239 | return ret; |
| 2240 | } |
| 2241 | |
| 2242 | static int dmar_hp_release_drhd(struct acpi_dmar_header *, void *arg) |
| 2243 | { |
| 2244 | struct dmar_drhd_unit *dmaru; |
| 2245 | |
| 2246 | dmaru = dmar_find_dmaru(drhd: (struct acpi_dmar_hardware_unit *)header); |
| 2247 | if (dmaru) { |
| 2248 | list_del_rcu(entry: &dmaru->list); |
| 2249 | synchronize_rcu(); |
| 2250 | dmar_free_drhd(dmaru); |
| 2251 | } |
| 2252 | |
| 2253 | return 0; |
| 2254 | } |
| 2255 | |
| 2256 | static int dmar_hotplug_insert(acpi_handle handle) |
| 2257 | { |
| 2258 | int ret; |
| 2259 | int drhd_count = 0; |
| 2260 | |
| 2261 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2262 | handler: &dmar_validate_one_drhd, arg: (void *)1); |
| 2263 | if (ret) |
| 2264 | goto out; |
| 2265 | |
| 2266 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2267 | handler: &dmar_parse_one_drhd, arg: (void *)&drhd_count); |
| 2268 | if (ret == 0 && drhd_count == 0) { |
| 2269 | pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n" ); |
| 2270 | goto out; |
| 2271 | } else if (ret) { |
| 2272 | goto release_drhd; |
| 2273 | } |
| 2274 | |
| 2275 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, |
| 2276 | handler: &dmar_parse_one_rhsa, NULL); |
| 2277 | if (ret) |
| 2278 | goto release_drhd; |
| 2279 | |
| 2280 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| 2281 | handler: &dmar_parse_one_atsr, NULL); |
| 2282 | if (ret) |
| 2283 | goto release_atsr; |
| 2284 | |
| 2285 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2286 | handler: &dmar_hp_add_drhd, NULL); |
| 2287 | if (!ret) |
| 2288 | return 0; |
| 2289 | |
| 2290 | dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2291 | handler: &dmar_hp_remove_drhd, NULL); |
| 2292 | release_atsr: |
| 2293 | dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| 2294 | handler: &dmar_release_one_atsr, NULL); |
| 2295 | release_drhd: |
| 2296 | dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2297 | handler: &dmar_hp_release_drhd, NULL); |
| 2298 | out: |
| 2299 | return ret; |
| 2300 | } |
| 2301 | |
| 2302 | static int dmar_hotplug_remove(acpi_handle handle) |
| 2303 | { |
| 2304 | int ret; |
| 2305 | |
| 2306 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| 2307 | handler: &dmar_check_one_atsr, NULL); |
| 2308 | if (ret) |
| 2309 | return ret; |
| 2310 | |
| 2311 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2312 | handler: &dmar_hp_remove_drhd, NULL); |
| 2313 | if (ret == 0) { |
| 2314 | WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| 2315 | &dmar_release_one_atsr, NULL)); |
| 2316 | WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2317 | &dmar_hp_release_drhd, NULL)); |
| 2318 | } else { |
| 2319 | dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2320 | handler: &dmar_hp_add_drhd, NULL); |
| 2321 | } |
| 2322 | |
| 2323 | return ret; |
| 2324 | } |
| 2325 | |
| 2326 | static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, |
| 2327 | void *context, void **retval) |
| 2328 | { |
| 2329 | acpi_handle *phdl = retval; |
| 2330 | |
| 2331 | if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { |
| 2332 | *phdl = handle; |
| 2333 | return AE_CTRL_TERMINATE; |
| 2334 | } |
| 2335 | |
| 2336 | return AE_OK; |
| 2337 | } |
| 2338 | |
| 2339 | static int dmar_device_hotplug(acpi_handle handle, bool insert) |
| 2340 | { |
| 2341 | int ret; |
| 2342 | acpi_handle tmp = NULL; |
| 2343 | acpi_status status; |
| 2344 | |
| 2345 | if (!dmar_in_use()) |
| 2346 | return 0; |
| 2347 | |
| 2348 | if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { |
| 2349 | tmp = handle; |
| 2350 | } else { |
| 2351 | status = acpi_walk_namespace(ACPI_TYPE_DEVICE, start_object: handle, |
| 2352 | ACPI_UINT32_MAX, |
| 2353 | descending_callback: dmar_get_dsm_handle, |
| 2354 | NULL, NULL, return_value: &tmp); |
| 2355 | if (ACPI_FAILURE(status)) { |
| 2356 | pr_warn("Failed to locate _DSM method.\n" ); |
| 2357 | return -ENXIO; |
| 2358 | } |
| 2359 | } |
| 2360 | if (tmp == NULL) |
| 2361 | return 0; |
| 2362 | |
| 2363 | down_write(sem: &dmar_global_lock); |
| 2364 | if (insert) |
| 2365 | ret = dmar_hotplug_insert(handle: tmp); |
| 2366 | else |
| 2367 | ret = dmar_hotplug_remove(handle: tmp); |
| 2368 | up_write(sem: &dmar_global_lock); |
| 2369 | |
| 2370 | return ret; |
| 2371 | } |
| 2372 | |
| 2373 | int dmar_device_add(acpi_handle handle) |
| 2374 | { |
| 2375 | return dmar_device_hotplug(handle, insert: true); |
| 2376 | } |
| 2377 | |
| 2378 | int dmar_device_remove(acpi_handle handle) |
| 2379 | { |
| 2380 | return dmar_device_hotplug(handle, insert: false); |
| 2381 | } |
| 2382 | |
| 2383 | /* |
| 2384 | * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table |
| 2385 | * |
| 2386 | * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in |
| 2387 | * the ACPI DMAR table. This means that the platform boot firmware has made |
| 2388 | * sure no device can issue DMA outside of RMRR regions. |
| 2389 | */ |
| 2390 | bool dmar_platform_optin(void) |
| 2391 | { |
| 2392 | struct acpi_table_dmar *dmar; |
| 2393 | acpi_status status; |
| 2394 | bool ret; |
| 2395 | |
| 2396 | status = acpi_get_table(ACPI_SIG_DMAR, instance: 0, |
| 2397 | out_table: (struct acpi_table_header **)&dmar); |
| 2398 | if (ACPI_FAILURE(status)) |
| 2399 | return false; |
| 2400 | |
| 2401 | ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); |
| 2402 | acpi_put_table(table: (struct acpi_table_header *)dmar); |
| 2403 | |
| 2404 | return ret; |
| 2405 | } |
| 2406 | EXPORT_SYMBOL_GPL(dmar_platform_optin); |
| 2407 | |