1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * Driver for Xceive XC5000 "QAM/8VSB single chip tuner" |
4 | * |
5 | * Copyright (c) 2007 Xceive Corporation |
6 | * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org> |
7 | * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com> |
8 | */ |
9 | |
10 | #include <linux/module.h> |
11 | #include <linux/moduleparam.h> |
12 | #include <linux/videodev2.h> |
13 | #include <linux/delay.h> |
14 | #include <linux/workqueue.h> |
15 | #include <linux/dvb/frontend.h> |
16 | #include <linux/i2c.h> |
17 | |
18 | #include <media/dvb_frontend.h> |
19 | |
20 | #include "xc5000.h" |
21 | #include "tuner-i2c.h" |
22 | |
23 | static int debug; |
24 | module_param(debug, int, 0644); |
25 | MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); |
26 | |
27 | static int no_poweroff; |
28 | module_param(no_poweroff, int, 0644); |
29 | MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n" |
30 | "\t\t1 keep device energized and with tuner ready all the times.\n" |
31 | "\t\tFaster, but consumes more power and keeps the device hotter"); |
32 | |
33 | static DEFINE_MUTEX(xc5000_list_mutex); |
34 | static LIST_HEAD(hybrid_tuner_instance_list); |
35 | |
36 | #define dprintk(level, fmt, arg...) if (debug >= level) \ |
37 | printk(KERN_INFO "%s: " fmt, "xc5000", ## arg) |
38 | |
39 | struct xc5000_priv { |
40 | struct tuner_i2c_props i2c_props; |
41 | struct list_head hybrid_tuner_instance_list; |
42 | |
43 | u32 if_khz; |
44 | u16 xtal_khz; |
45 | u32 freq_hz, freq_offset; |
46 | u32 bandwidth; |
47 | u8 video_standard; |
48 | unsigned int mode; |
49 | u8 rf_mode; |
50 | u8 radio_input; |
51 | u16 output_amp; |
52 | |
53 | int chip_id; |
54 | u16 pll_register_no; |
55 | u8 init_status_supported; |
56 | u8 fw_checksum_supported; |
57 | |
58 | struct dvb_frontend *fe; |
59 | struct delayed_work timer_sleep; |
60 | |
61 | const struct firmware *firmware; |
62 | }; |
63 | |
64 | /* Misc Defines */ |
65 | #define MAX_TV_STANDARD 24 |
66 | #define XC_MAX_I2C_WRITE_LENGTH 64 |
67 | |
68 | /* Time to suspend after the .sleep callback is called */ |
69 | #define XC5000_SLEEP_TIME 5000 /* ms */ |
70 | |
71 | /* Signal Types */ |
72 | #define XC_RF_MODE_AIR 0 |
73 | #define XC_RF_MODE_CABLE 1 |
74 | |
75 | /* Product id */ |
76 | #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000 |
77 | #define XC_PRODUCT_ID_FW_LOADED 0x1388 |
78 | |
79 | /* Registers */ |
80 | #define XREG_INIT 0x00 |
81 | #define XREG_VIDEO_MODE 0x01 |
82 | #define XREG_AUDIO_MODE 0x02 |
83 | #define XREG_RF_FREQ 0x03 |
84 | #define XREG_D_CODE 0x04 |
85 | #define XREG_IF_OUT 0x05 |
86 | #define XREG_SEEK_MODE 0x07 |
87 | #define XREG_POWER_DOWN 0x0A /* Obsolete */ |
88 | /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */ |
89 | #define XREG_OUTPUT_AMP 0x0B |
90 | #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */ |
91 | #define XREG_SMOOTHEDCVBS 0x0E |
92 | #define XREG_XTALFREQ 0x0F |
93 | #define XREG_FINERFREQ 0x10 |
94 | #define XREG_DDIMODE 0x11 |
95 | |
96 | #define XREG_ADC_ENV 0x00 |
97 | #define XREG_QUALITY 0x01 |
98 | #define XREG_FRAME_LINES 0x02 |
99 | #define XREG_HSYNC_FREQ 0x03 |
100 | #define XREG_LOCK 0x04 |
101 | #define XREG_FREQ_ERROR 0x05 |
102 | #define XREG_SNR 0x06 |
103 | #define XREG_VERSION 0x07 |
104 | #define XREG_PRODUCT_ID 0x08 |
105 | #define XREG_BUSY 0x09 |
106 | #define XREG_BUILD 0x0D |
107 | #define XREG_TOTALGAIN 0x0F |
108 | #define XREG_FW_CHECKSUM 0x12 |
109 | #define XREG_INIT_STATUS 0x13 |
110 | |
111 | /* |
112 | Basic firmware description. This will remain with |
113 | the driver for documentation purposes. |
114 | |
115 | This represents an I2C firmware file encoded as a |
116 | string of unsigned char. Format is as follows: |
117 | |
118 | char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB |
119 | char[1 ]=len0_LSB -> length of first write transaction |
120 | char[2 ]=data0 -> first byte to be sent |
121 | char[3 ]=data1 |
122 | char[4 ]=data2 |
123 | char[ ]=... |
124 | char[M ]=dataN -> last byte to be sent |
125 | char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB |
126 | char[M+2]=len1_LSB -> length of second write transaction |
127 | char[M+3]=data0 |
128 | char[M+4]=data1 |
129 | ... |
130 | etc. |
131 | |
132 | The [len] value should be interpreted as follows: |
133 | |
134 | len= len_MSB _ len_LSB |
135 | len=1111_1111_1111_1111 : End of I2C_SEQUENCE |
136 | len=0000_0000_0000_0000 : Reset command: Do hardware reset |
137 | len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) |
138 | len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms |
139 | |
140 | For the RESET and WAIT commands, the two following bytes will contain |
141 | immediately the length of the following transaction. |
142 | |
143 | */ |
144 | struct XC_TV_STANDARD { |
145 | char *name; |
146 | u16 audio_mode; |
147 | u16 video_mode; |
148 | }; |
149 | |
150 | /* Tuner standards */ |
151 | #define MN_NTSC_PAL_BTSC 0 |
152 | #define MN_NTSC_PAL_A2 1 |
153 | #define MN_NTSC_PAL_EIAJ 2 |
154 | #define MN_NTSC_PAL_MONO 3 |
155 | #define BG_PAL_A2 4 |
156 | #define BG_PAL_NICAM 5 |
157 | #define BG_PAL_MONO 6 |
158 | #define I_PAL_NICAM 7 |
159 | #define I_PAL_NICAM_MONO 8 |
160 | #define DK_PAL_A2 9 |
161 | #define DK_PAL_NICAM 10 |
162 | #define DK_PAL_MONO 11 |
163 | #define DK_SECAM_A2DK1 12 |
164 | #define DK_SECAM_A2LDK3 13 |
165 | #define DK_SECAM_A2MONO 14 |
166 | #define L_SECAM_NICAM 15 |
167 | #define LC_SECAM_NICAM 16 |
168 | #define DTV6 17 |
169 | #define DTV8 18 |
170 | #define DTV7_8 19 |
171 | #define DTV7 20 |
172 | #define FM_RADIO_INPUT2 21 |
173 | #define FM_RADIO_INPUT1 22 |
174 | #define FM_RADIO_INPUT1_MONO 23 |
175 | |
176 | static struct XC_TV_STANDARD xc5000_standard[MAX_TV_STANDARD] = { |
177 | {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, |
178 | {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, |
179 | {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, |
180 | {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, |
181 | {"B/G-PAL-A2", 0x0A00, 0x8049}, |
182 | {"B/G-PAL-NICAM", 0x0C04, 0x8049}, |
183 | {"B/G-PAL-MONO", 0x0878, 0x8059}, |
184 | {"I-PAL-NICAM", 0x1080, 0x8009}, |
185 | {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, |
186 | {"D/K-PAL-A2", 0x1600, 0x8009}, |
187 | {"D/K-PAL-NICAM", 0x0E80, 0x8009}, |
188 | {"D/K-PAL-MONO", 0x1478, 0x8009}, |
189 | {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, |
190 | {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009}, |
191 | {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, |
192 | {"L-SECAM-NICAM", 0x8E82, 0x0009}, |
193 | {"L'-SECAM-NICAM", 0x8E82, 0x4009}, |
194 | {"DTV6", 0x00C0, 0x8002}, |
195 | {"DTV8", 0x00C0, 0x800B}, |
196 | {"DTV7/8", 0x00C0, 0x801B}, |
197 | {"DTV7", 0x00C0, 0x8007}, |
198 | {"FM Radio-INPUT2", 0x9802, 0x9002}, |
199 | {"FM Radio-INPUT1", 0x0208, 0x9002}, |
200 | {"FM Radio-INPUT1_MONO", 0x0278, 0x9002} |
201 | }; |
202 | |
203 | |
204 | struct xc5000_fw_cfg { |
205 | char *name; |
206 | u16 size; |
207 | u16 pll_reg; |
208 | u8 init_status_supported; |
209 | u8 fw_checksum_supported; |
210 | }; |
211 | |
212 | #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw" |
213 | static const struct xc5000_fw_cfg xc5000a_1_6_114 = { |
214 | .name = XC5000A_FIRMWARE, |
215 | .size = 12401, |
216 | .pll_reg = 0x806c, |
217 | }; |
218 | |
219 | #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw" |
220 | static const struct xc5000_fw_cfg xc5000c_41_024_5 = { |
221 | .name = XC5000C_FIRMWARE, |
222 | .size = 16497, |
223 | .pll_reg = 0x13, |
224 | .init_status_supported = 1, |
225 | .fw_checksum_supported = 1, |
226 | }; |
227 | |
228 | static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id) |
229 | { |
230 | switch (chip_id) { |
231 | default: |
232 | case XC5000A: |
233 | return &xc5000a_1_6_114; |
234 | case XC5000C: |
235 | return &xc5000c_41_024_5; |
236 | } |
237 | } |
238 | |
239 | static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force); |
240 | static int xc5000_is_firmware_loaded(struct dvb_frontend *fe); |
241 | static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val); |
242 | static int xc5000_tuner_reset(struct dvb_frontend *fe); |
243 | |
244 | static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) |
245 | { |
246 | struct i2c_msg msg = { .addr = priv->i2c_props.addr, |
247 | .flags = 0, .buf = buf, .len = len }; |
248 | |
249 | if (i2c_transfer(adap: priv->i2c_props.adap, msgs: &msg, num: 1) != 1) { |
250 | printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len); |
251 | return -EREMOTEIO; |
252 | } |
253 | return 0; |
254 | } |
255 | |
256 | #if 0 |
257 | /* This routine is never used because the only time we read data from the |
258 | i2c bus is when we read registers, and we want that to be an atomic i2c |
259 | transaction in case we are on a multi-master bus */ |
260 | static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) |
261 | { |
262 | struct i2c_msg msg = { .addr = priv->i2c_props.addr, |
263 | .flags = I2C_M_RD, .buf = buf, .len = len }; |
264 | |
265 | if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { |
266 | printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len); |
267 | return -EREMOTEIO; |
268 | } |
269 | return 0; |
270 | } |
271 | #endif |
272 | |
273 | static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val) |
274 | { |
275 | u8 buf[2] = { reg >> 8, reg & 0xff }; |
276 | u8 bval[2] = { 0, 0 }; |
277 | struct i2c_msg msg[2] = { |
278 | { .addr = priv->i2c_props.addr, |
279 | .flags = 0, .buf = &buf[0], .len = 2 }, |
280 | { .addr = priv->i2c_props.addr, |
281 | .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, |
282 | }; |
283 | |
284 | if (i2c_transfer(adap: priv->i2c_props.adap, msgs: msg, num: 2) != 2) { |
285 | printk(KERN_WARNING "xc5000: I2C read failed\n"); |
286 | return -EREMOTEIO; |
287 | } |
288 | |
289 | *val = (bval[0] << 8) | bval[1]; |
290 | return 0; |
291 | } |
292 | |
293 | static int xc5000_tuner_reset(struct dvb_frontend *fe) |
294 | { |
295 | struct xc5000_priv *priv = fe->tuner_priv; |
296 | int ret; |
297 | |
298 | dprintk(1, "%s()\n", __func__); |
299 | |
300 | if (fe->callback) { |
301 | ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ? |
302 | fe->dvb->priv : |
303 | priv->i2c_props.adap->algo_data, |
304 | DVB_FRONTEND_COMPONENT_TUNER, |
305 | XC5000_TUNER_RESET, 0); |
306 | if (ret) { |
307 | printk(KERN_ERR "xc5000: reset failed\n"); |
308 | return ret; |
309 | } |
310 | } else { |
311 | printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n"); |
312 | return -EINVAL; |
313 | } |
314 | return 0; |
315 | } |
316 | |
317 | static int xc_write_reg(struct xc5000_priv *priv, u16 reg_addr, u16 i2c_data) |
318 | { |
319 | u8 buf[4]; |
320 | int watch_dog_timer = 100; |
321 | int result; |
322 | |
323 | buf[0] = (reg_addr >> 8) & 0xFF; |
324 | buf[1] = reg_addr & 0xFF; |
325 | buf[2] = (i2c_data >> 8) & 0xFF; |
326 | buf[3] = i2c_data & 0xFF; |
327 | result = xc_send_i2c_data(priv, buf, len: 4); |
328 | if (result == 0) { |
329 | /* wait for busy flag to clear */ |
330 | while ((watch_dog_timer > 0) && (result == 0)) { |
331 | result = xc5000_readreg(priv, XREG_BUSY, val: (u16 *)buf); |
332 | if (result == 0) { |
333 | if ((buf[0] == 0) && (buf[1] == 0)) { |
334 | /* busy flag cleared */ |
335 | break; |
336 | } else { |
337 | msleep(msecs: 5); /* wait 5 ms */ |
338 | watch_dog_timer--; |
339 | } |
340 | } |
341 | } |
342 | } |
343 | if (watch_dog_timer <= 0) |
344 | result = -EREMOTEIO; |
345 | |
346 | return result; |
347 | } |
348 | |
349 | static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) |
350 | { |
351 | struct xc5000_priv *priv = fe->tuner_priv; |
352 | |
353 | int i, nbytes_to_send, result; |
354 | unsigned int len, pos, index; |
355 | u8 buf[XC_MAX_I2C_WRITE_LENGTH]; |
356 | |
357 | index = 0; |
358 | while ((i2c_sequence[index] != 0xFF) || |
359 | (i2c_sequence[index + 1] != 0xFF)) { |
360 | len = i2c_sequence[index] * 256 + i2c_sequence[index+1]; |
361 | if (len == 0x0000) { |
362 | /* RESET command */ |
363 | result = xc5000_tuner_reset(fe); |
364 | index += 2; |
365 | if (result != 0) |
366 | return result; |
367 | } else if (len & 0x8000) { |
368 | /* WAIT command */ |
369 | msleep(msecs: len & 0x7FFF); |
370 | index += 2; |
371 | } else { |
372 | /* Send i2c data whilst ensuring individual transactions |
373 | * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. |
374 | */ |
375 | index += 2; |
376 | buf[0] = i2c_sequence[index]; |
377 | buf[1] = i2c_sequence[index + 1]; |
378 | pos = 2; |
379 | while (pos < len) { |
380 | if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) |
381 | nbytes_to_send = |
382 | XC_MAX_I2C_WRITE_LENGTH; |
383 | else |
384 | nbytes_to_send = (len - pos + 2); |
385 | for (i = 2; i < nbytes_to_send; i++) { |
386 | buf[i] = i2c_sequence[index + pos + |
387 | i - 2]; |
388 | } |
389 | result = xc_send_i2c_data(priv, buf, |
390 | len: nbytes_to_send); |
391 | |
392 | if (result != 0) |
393 | return result; |
394 | |
395 | pos += nbytes_to_send - 2; |
396 | } |
397 | index += len; |
398 | } |
399 | } |
400 | return 0; |
401 | } |
402 | |
403 | static int xc_initialize(struct xc5000_priv *priv) |
404 | { |
405 | dprintk(1, "%s()\n", __func__); |
406 | return xc_write_reg(priv, XREG_INIT, i2c_data: 0); |
407 | } |
408 | |
409 | static int xc_set_tv_standard(struct xc5000_priv *priv, |
410 | u16 video_mode, u16 audio_mode, u8 radio_mode) |
411 | { |
412 | int ret; |
413 | dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode); |
414 | if (radio_mode) { |
415 | dprintk(1, "%s() Standard = %s\n", |
416 | __func__, |
417 | xc5000_standard[radio_mode].name); |
418 | } else { |
419 | dprintk(1, "%s() Standard = %s\n", |
420 | __func__, |
421 | xc5000_standard[priv->video_standard].name); |
422 | } |
423 | |
424 | ret = xc_write_reg(priv, XREG_VIDEO_MODE, i2c_data: video_mode); |
425 | if (ret == 0) |
426 | ret = xc_write_reg(priv, XREG_AUDIO_MODE, i2c_data: audio_mode); |
427 | |
428 | return ret; |
429 | } |
430 | |
431 | static int xc_set_signal_source(struct xc5000_priv *priv, u16 rf_mode) |
432 | { |
433 | dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, |
434 | rf_mode == XC_RF_MODE_AIR ? "ANTENNA": "CABLE"); |
435 | |
436 | if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { |
437 | rf_mode = XC_RF_MODE_CABLE; |
438 | printk(KERN_ERR |
439 | "%s(), Invalid mode, defaulting to CABLE", |
440 | __func__); |
441 | } |
442 | return xc_write_reg(priv, XREG_SIGNALSOURCE, i2c_data: rf_mode); |
443 | } |
444 | |
445 | static const struct dvb_tuner_ops xc5000_tuner_ops; |
446 | |
447 | static int xc_set_rf_frequency(struct xc5000_priv *priv, u32 freq_hz) |
448 | { |
449 | u16 freq_code; |
450 | |
451 | dprintk(1, "%s(%u)\n", __func__, freq_hz); |
452 | |
453 | if ((freq_hz > xc5000_tuner_ops.info.frequency_max_hz) || |
454 | (freq_hz < xc5000_tuner_ops.info.frequency_min_hz)) |
455 | return -EINVAL; |
456 | |
457 | freq_code = (u16)(freq_hz / 15625); |
458 | |
459 | /* Starting in firmware version 1.1.44, Xceive recommends using the |
460 | FINERFREQ for all normal tuning (the doc indicates reg 0x03 should |
461 | only be used for fast scanning for channel lock) */ |
462 | return xc_write_reg(priv, XREG_FINERFREQ, i2c_data: freq_code); |
463 | } |
464 | |
465 | |
466 | static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz) |
467 | { |
468 | u32 freq_code = (freq_khz * 1024)/1000; |
469 | dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n", |
470 | __func__, freq_khz, freq_code); |
471 | |
472 | return xc_write_reg(priv, XREG_IF_OUT, i2c_data: freq_code); |
473 | } |
474 | |
475 | |
476 | static int xc_get_adc_envelope(struct xc5000_priv *priv, u16 *adc_envelope) |
477 | { |
478 | return xc5000_readreg(priv, XREG_ADC_ENV, val: adc_envelope); |
479 | } |
480 | |
481 | static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz) |
482 | { |
483 | int result; |
484 | u16 reg_data; |
485 | u32 tmp; |
486 | |
487 | result = xc5000_readreg(priv, XREG_FREQ_ERROR, val: ®_data); |
488 | if (result != 0) |
489 | return result; |
490 | |
491 | tmp = (u32)reg_data; |
492 | (*freq_error_hz) = (tmp * 15625) / 1000; |
493 | return result; |
494 | } |
495 | |
496 | static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status) |
497 | { |
498 | return xc5000_readreg(priv, XREG_LOCK, val: lock_status); |
499 | } |
500 | |
501 | static int xc_get_version(struct xc5000_priv *priv, |
502 | u8 *hw_majorversion, u8 *hw_minorversion, |
503 | u8 *fw_majorversion, u8 *fw_minorversion) |
504 | { |
505 | u16 data; |
506 | int result; |
507 | |
508 | result = xc5000_readreg(priv, XREG_VERSION, val: &data); |
509 | if (result != 0) |
510 | return result; |
511 | |
512 | (*hw_majorversion) = (data >> 12) & 0x0F; |
513 | (*hw_minorversion) = (data >> 8) & 0x0F; |
514 | (*fw_majorversion) = (data >> 4) & 0x0F; |
515 | (*fw_minorversion) = data & 0x0F; |
516 | |
517 | return 0; |
518 | } |
519 | |
520 | static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev) |
521 | { |
522 | return xc5000_readreg(priv, XREG_BUILD, val: buildrev); |
523 | } |
524 | |
525 | static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz) |
526 | { |
527 | u16 reg_data; |
528 | int result; |
529 | |
530 | result = xc5000_readreg(priv, XREG_HSYNC_FREQ, val: ®_data); |
531 | if (result != 0) |
532 | return result; |
533 | |
534 | (*hsync_freq_hz) = ((reg_data & 0x0fff) * 763)/100; |
535 | return result; |
536 | } |
537 | |
538 | static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines) |
539 | { |
540 | return xc5000_readreg(priv, XREG_FRAME_LINES, val: frame_lines); |
541 | } |
542 | |
543 | static int xc_get_quality(struct xc5000_priv *priv, u16 *quality) |
544 | { |
545 | return xc5000_readreg(priv, XREG_QUALITY, val: quality); |
546 | } |
547 | |
548 | static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr) |
549 | { |
550 | return xc5000_readreg(priv, XREG_SNR, val: snr); |
551 | } |
552 | |
553 | static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain) |
554 | { |
555 | return xc5000_readreg(priv, XREG_TOTALGAIN, val: totalgain); |
556 | } |
557 | |
558 | #define XC_TUNE_ANALOG 0 |
559 | #define XC_TUNE_DIGITAL 1 |
560 | static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode) |
561 | { |
562 | dprintk(1, "%s(%u)\n", __func__, freq_hz); |
563 | |
564 | if (xc_set_rf_frequency(priv, freq_hz) != 0) |
565 | return -EREMOTEIO; |
566 | |
567 | return 0; |
568 | } |
569 | |
570 | static int xc_set_xtal(struct dvb_frontend *fe) |
571 | { |
572 | struct xc5000_priv *priv = fe->tuner_priv; |
573 | int ret = 0; |
574 | |
575 | switch (priv->chip_id) { |
576 | default: |
577 | case XC5000A: |
578 | /* 32.000 MHz xtal is default */ |
579 | break; |
580 | case XC5000C: |
581 | switch (priv->xtal_khz) { |
582 | default: |
583 | case 32000: |
584 | /* 32.000 MHz xtal is default */ |
585 | break; |
586 | case 31875: |
587 | /* 31.875 MHz xtal configuration */ |
588 | ret = xc_write_reg(priv, reg_addr: 0x000f, i2c_data: 0x8081); |
589 | break; |
590 | } |
591 | break; |
592 | } |
593 | return ret; |
594 | } |
595 | |
596 | static int xc5000_fwupload(struct dvb_frontend *fe, |
597 | const struct xc5000_fw_cfg *desired_fw, |
598 | const struct firmware *fw) |
599 | { |
600 | struct xc5000_priv *priv = fe->tuner_priv; |
601 | int ret; |
602 | |
603 | /* request the firmware, this will block and timeout */ |
604 | dprintk(1, "waiting for firmware upload (%s)...\n", |
605 | desired_fw->name); |
606 | |
607 | priv->pll_register_no = desired_fw->pll_reg; |
608 | priv->init_status_supported = desired_fw->init_status_supported; |
609 | priv->fw_checksum_supported = desired_fw->fw_checksum_supported; |
610 | |
611 | |
612 | dprintk(1, "firmware uploading...\n"); |
613 | ret = xc_load_i2c_sequence(fe, i2c_sequence: fw->data); |
614 | if (!ret) { |
615 | ret = xc_set_xtal(fe); |
616 | dprintk(1, "Firmware upload complete...\n"); |
617 | } else |
618 | printk(KERN_ERR "xc5000: firmware upload failed...\n"); |
619 | |
620 | return ret; |
621 | } |
622 | |
623 | static void xc_debug_dump(struct xc5000_priv *priv) |
624 | { |
625 | u16 adc_envelope; |
626 | u32 freq_error_hz = 0; |
627 | u16 lock_status; |
628 | u32 hsync_freq_hz = 0; |
629 | u16 frame_lines; |
630 | u16 quality; |
631 | u16 snr; |
632 | u16 totalgain; |
633 | u8 hw_majorversion = 0, hw_minorversion = 0; |
634 | u8 fw_majorversion = 0, fw_minorversion = 0; |
635 | u16 fw_buildversion = 0; |
636 | u16 regval; |
637 | |
638 | /* Wait for stats to stabilize. |
639 | * Frame Lines needs two frame times after initial lock |
640 | * before it is valid. |
641 | */ |
642 | msleep(msecs: 100); |
643 | |
644 | xc_get_adc_envelope(priv, adc_envelope: &adc_envelope); |
645 | dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); |
646 | |
647 | xc_get_frequency_error(priv, freq_error_hz: &freq_error_hz); |
648 | dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); |
649 | |
650 | xc_get_lock_status(priv, lock_status: &lock_status); |
651 | dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", |
652 | lock_status); |
653 | |
654 | xc_get_version(priv, hw_majorversion: &hw_majorversion, hw_minorversion: &hw_minorversion, |
655 | fw_majorversion: &fw_majorversion, fw_minorversion: &fw_minorversion); |
656 | xc_get_buildversion(priv, buildrev: &fw_buildversion); |
657 | dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n", |
658 | hw_majorversion, hw_minorversion, |
659 | fw_majorversion, fw_minorversion, fw_buildversion); |
660 | |
661 | xc_get_hsync_freq(priv, hsync_freq_hz: &hsync_freq_hz); |
662 | dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); |
663 | |
664 | xc_get_frame_lines(priv, frame_lines: &frame_lines); |
665 | dprintk(1, "*** Frame lines = %d\n", frame_lines); |
666 | |
667 | xc_get_quality(priv, quality: &quality); |
668 | dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07); |
669 | |
670 | xc_get_analogsnr(priv, snr: &snr); |
671 | dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f); |
672 | |
673 | xc_get_totalgain(priv, totalgain: &totalgain); |
674 | dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256, |
675 | (totalgain % 256) * 100 / 256); |
676 | |
677 | if (priv->pll_register_no) { |
678 | if (!xc5000_readreg(priv, reg: priv->pll_register_no, val: ®val)) |
679 | dprintk(1, "*** PLL lock status = 0x%04x\n", regval); |
680 | } |
681 | } |
682 | |
683 | static int xc5000_tune_digital(struct dvb_frontend *fe) |
684 | { |
685 | struct xc5000_priv *priv = fe->tuner_priv; |
686 | int ret; |
687 | u32 bw = fe->dtv_property_cache.bandwidth_hz; |
688 | |
689 | ret = xc_set_signal_source(priv, rf_mode: priv->rf_mode); |
690 | if (ret != 0) { |
691 | printk(KERN_ERR |
692 | "xc5000: xc_set_signal_source(%d) failed\n", |
693 | priv->rf_mode); |
694 | return -EREMOTEIO; |
695 | } |
696 | |
697 | ret = xc_set_tv_standard(priv, |
698 | video_mode: xc5000_standard[priv->video_standard].video_mode, |
699 | audio_mode: xc5000_standard[priv->video_standard].audio_mode, radio_mode: 0); |
700 | if (ret != 0) { |
701 | printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); |
702 | return -EREMOTEIO; |
703 | } |
704 | |
705 | ret = xc_set_IF_frequency(priv, freq_khz: priv->if_khz); |
706 | if (ret != 0) { |
707 | printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n", |
708 | priv->if_khz); |
709 | return -EIO; |
710 | } |
711 | |
712 | dprintk(1, "%s() setting OUTPUT_AMP to 0x%x\n", |
713 | __func__, priv->output_amp); |
714 | xc_write_reg(priv, XREG_OUTPUT_AMP, i2c_data: priv->output_amp); |
715 | |
716 | xc_tune_channel(priv, freq_hz: priv->freq_hz, XC_TUNE_DIGITAL); |
717 | |
718 | if (debug) |
719 | xc_debug_dump(priv); |
720 | |
721 | priv->bandwidth = bw; |
722 | |
723 | return 0; |
724 | } |
725 | |
726 | static int xc5000_set_digital_params(struct dvb_frontend *fe) |
727 | { |
728 | int b; |
729 | struct xc5000_priv *priv = fe->tuner_priv; |
730 | u32 bw = fe->dtv_property_cache.bandwidth_hz; |
731 | u32 freq = fe->dtv_property_cache.frequency; |
732 | u32 delsys = fe->dtv_property_cache.delivery_system; |
733 | |
734 | if (xc_load_fw_and_init_tuner(fe, force: 0) != 0) { |
735 | dprintk(1, "Unable to load firmware and init tuner\n"); |
736 | return -EINVAL; |
737 | } |
738 | |
739 | dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq); |
740 | |
741 | switch (delsys) { |
742 | case SYS_ATSC: |
743 | dprintk(1, "%s() VSB modulation\n", __func__); |
744 | priv->rf_mode = XC_RF_MODE_AIR; |
745 | priv->freq_offset = 1750000; |
746 | priv->video_standard = DTV6; |
747 | break; |
748 | case SYS_DVBC_ANNEX_B: |
749 | dprintk(1, "%s() QAM modulation\n", __func__); |
750 | priv->rf_mode = XC_RF_MODE_CABLE; |
751 | priv->freq_offset = 1750000; |
752 | priv->video_standard = DTV6; |
753 | break; |
754 | case SYS_ISDBT: |
755 | /* All ISDB-T are currently for 6 MHz bw */ |
756 | if (!bw) |
757 | bw = 6000000; |
758 | /* fall to OFDM handling */ |
759 | fallthrough; |
760 | case SYS_DMBTH: |
761 | case SYS_DVBT: |
762 | case SYS_DVBT2: |
763 | dprintk(1, "%s() OFDM\n", __func__); |
764 | switch (bw) { |
765 | case 6000000: |
766 | priv->video_standard = DTV6; |
767 | priv->freq_offset = 1750000; |
768 | break; |
769 | case 7000000: |
770 | priv->video_standard = DTV7; |
771 | priv->freq_offset = 2250000; |
772 | break; |
773 | case 8000000: |
774 | priv->video_standard = DTV8; |
775 | priv->freq_offset = 2750000; |
776 | break; |
777 | default: |
778 | printk(KERN_ERR "xc5000 bandwidth not set!\n"); |
779 | return -EINVAL; |
780 | } |
781 | priv->rf_mode = XC_RF_MODE_AIR; |
782 | break; |
783 | case SYS_DVBC_ANNEX_A: |
784 | case SYS_DVBC_ANNEX_C: |
785 | dprintk(1, "%s() QAM modulation\n", __func__); |
786 | priv->rf_mode = XC_RF_MODE_CABLE; |
787 | if (bw <= 6000000) { |
788 | priv->video_standard = DTV6; |
789 | priv->freq_offset = 1750000; |
790 | b = 6; |
791 | } else if (bw <= 7000000) { |
792 | priv->video_standard = DTV7; |
793 | priv->freq_offset = 2250000; |
794 | b = 7; |
795 | } else { |
796 | priv->video_standard = DTV7_8; |
797 | priv->freq_offset = 2750000; |
798 | b = 8; |
799 | } |
800 | dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__, |
801 | b, bw); |
802 | break; |
803 | default: |
804 | printk(KERN_ERR "xc5000: delivery system is not supported!\n"); |
805 | return -EINVAL; |
806 | } |
807 | |
808 | priv->freq_hz = freq - priv->freq_offset; |
809 | priv->mode = V4L2_TUNER_DIGITAL_TV; |
810 | |
811 | dprintk(1, "%s() frequency=%d (compensated to %d)\n", |
812 | __func__, freq, priv->freq_hz); |
813 | |
814 | return xc5000_tune_digital(fe); |
815 | } |
816 | |
817 | static int xc5000_is_firmware_loaded(struct dvb_frontend *fe) |
818 | { |
819 | struct xc5000_priv *priv = fe->tuner_priv; |
820 | int ret; |
821 | u16 id; |
822 | |
823 | ret = xc5000_readreg(priv, XREG_PRODUCT_ID, val: &id); |
824 | if (!ret) { |
825 | if (id == XC_PRODUCT_ID_FW_NOT_LOADED) |
826 | ret = -ENOENT; |
827 | else |
828 | ret = 0; |
829 | dprintk(1, "%s() returns id = 0x%x\n", __func__, id); |
830 | } else { |
831 | dprintk(1, "%s() returns error %d\n", __func__, ret); |
832 | } |
833 | |
834 | return ret; |
835 | } |
836 | |
837 | static void xc5000_config_tv(struct dvb_frontend *fe, |
838 | struct analog_parameters *params) |
839 | { |
840 | struct xc5000_priv *priv = fe->tuner_priv; |
841 | |
842 | dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", |
843 | __func__, params->frequency); |
844 | |
845 | /* Fix me: it could be air. */ |
846 | priv->rf_mode = params->mode; |
847 | if (params->mode > XC_RF_MODE_CABLE) |
848 | priv->rf_mode = XC_RF_MODE_CABLE; |
849 | |
850 | /* params->frequency is in units of 62.5khz */ |
851 | priv->freq_hz = params->frequency * 62500; |
852 | |
853 | /* FIX ME: Some video standards may have several possible audio |
854 | standards. We simply default to one of them here. |
855 | */ |
856 | if (params->std & V4L2_STD_MN) { |
857 | /* default to BTSC audio standard */ |
858 | priv->video_standard = MN_NTSC_PAL_BTSC; |
859 | return; |
860 | } |
861 | |
862 | if (params->std & V4L2_STD_PAL_BG) { |
863 | /* default to NICAM audio standard */ |
864 | priv->video_standard = BG_PAL_NICAM; |
865 | return; |
866 | } |
867 | |
868 | if (params->std & V4L2_STD_PAL_I) { |
869 | /* default to NICAM audio standard */ |
870 | priv->video_standard = I_PAL_NICAM; |
871 | return; |
872 | } |
873 | |
874 | if (params->std & V4L2_STD_PAL_DK) { |
875 | /* default to NICAM audio standard */ |
876 | priv->video_standard = DK_PAL_NICAM; |
877 | return; |
878 | } |
879 | |
880 | if (params->std & V4L2_STD_SECAM_DK) { |
881 | /* default to A2 DK1 audio standard */ |
882 | priv->video_standard = DK_SECAM_A2DK1; |
883 | return; |
884 | } |
885 | |
886 | if (params->std & V4L2_STD_SECAM_L) { |
887 | priv->video_standard = L_SECAM_NICAM; |
888 | return; |
889 | } |
890 | |
891 | if (params->std & V4L2_STD_SECAM_LC) { |
892 | priv->video_standard = LC_SECAM_NICAM; |
893 | return; |
894 | } |
895 | } |
896 | |
897 | static int xc5000_set_tv_freq(struct dvb_frontend *fe) |
898 | { |
899 | struct xc5000_priv *priv = fe->tuner_priv; |
900 | u16 pll_lock_status; |
901 | int ret; |
902 | |
903 | tune_channel: |
904 | ret = xc_set_signal_source(priv, rf_mode: priv->rf_mode); |
905 | if (ret != 0) { |
906 | printk(KERN_ERR |
907 | "xc5000: xc_set_signal_source(%d) failed\n", |
908 | priv->rf_mode); |
909 | return -EREMOTEIO; |
910 | } |
911 | |
912 | ret = xc_set_tv_standard(priv, |
913 | video_mode: xc5000_standard[priv->video_standard].video_mode, |
914 | audio_mode: xc5000_standard[priv->video_standard].audio_mode, radio_mode: 0); |
915 | if (ret != 0) { |
916 | printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); |
917 | return -EREMOTEIO; |
918 | } |
919 | |
920 | xc_write_reg(priv, XREG_OUTPUT_AMP, i2c_data: 0x09); |
921 | |
922 | xc_tune_channel(priv, freq_hz: priv->freq_hz, XC_TUNE_ANALOG); |
923 | |
924 | if (debug) |
925 | xc_debug_dump(priv); |
926 | |
927 | if (priv->pll_register_no != 0) { |
928 | msleep(msecs: 20); |
929 | ret = xc5000_readreg(priv, reg: priv->pll_register_no, |
930 | val: &pll_lock_status); |
931 | if (ret) |
932 | return ret; |
933 | if (pll_lock_status > 63) { |
934 | /* PLL is unlocked, force reload of the firmware */ |
935 | dprintk(1, "xc5000: PLL not locked (0x%x). Reloading...\n", |
936 | pll_lock_status); |
937 | if (xc_load_fw_and_init_tuner(fe, force: 1) != 0) { |
938 | printk(KERN_ERR "xc5000: Unable to reload fw\n"); |
939 | return -EREMOTEIO; |
940 | } |
941 | goto tune_channel; |
942 | } |
943 | } |
944 | |
945 | return 0; |
946 | } |
947 | |
948 | static int xc5000_config_radio(struct dvb_frontend *fe, |
949 | struct analog_parameters *params) |
950 | |
951 | { |
952 | struct xc5000_priv *priv = fe->tuner_priv; |
953 | |
954 | dprintk(1, "%s() frequency=%d (in units of khz)\n", |
955 | __func__, params->frequency); |
956 | |
957 | if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) { |
958 | dprintk(1, "%s() radio input not configured\n", __func__); |
959 | return -EINVAL; |
960 | } |
961 | |
962 | priv->freq_hz = params->frequency * 125 / 2; |
963 | priv->rf_mode = XC_RF_MODE_AIR; |
964 | |
965 | return 0; |
966 | } |
967 | |
968 | static int xc5000_set_radio_freq(struct dvb_frontend *fe) |
969 | { |
970 | struct xc5000_priv *priv = fe->tuner_priv; |
971 | int ret; |
972 | u8 radio_input; |
973 | |
974 | if (priv->radio_input == XC5000_RADIO_FM1) |
975 | radio_input = FM_RADIO_INPUT1; |
976 | else if (priv->radio_input == XC5000_RADIO_FM2) |
977 | radio_input = FM_RADIO_INPUT2; |
978 | else if (priv->radio_input == XC5000_RADIO_FM1_MONO) |
979 | radio_input = FM_RADIO_INPUT1_MONO; |
980 | else { |
981 | dprintk(1, "%s() unknown radio input %d\n", __func__, |
982 | priv->radio_input); |
983 | return -EINVAL; |
984 | } |
985 | |
986 | ret = xc_set_tv_standard(priv, video_mode: xc5000_standard[radio_input].video_mode, |
987 | audio_mode: xc5000_standard[radio_input].audio_mode, radio_mode: radio_input); |
988 | |
989 | if (ret != 0) { |
990 | printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); |
991 | return -EREMOTEIO; |
992 | } |
993 | |
994 | ret = xc_set_signal_source(priv, rf_mode: priv->rf_mode); |
995 | if (ret != 0) { |
996 | printk(KERN_ERR |
997 | "xc5000: xc_set_signal_source(%d) failed\n", |
998 | priv->rf_mode); |
999 | return -EREMOTEIO; |
1000 | } |
1001 | |
1002 | if ((priv->radio_input == XC5000_RADIO_FM1) || |
1003 | (priv->radio_input == XC5000_RADIO_FM2)) |
1004 | xc_write_reg(priv, XREG_OUTPUT_AMP, i2c_data: 0x09); |
1005 | else if (priv->radio_input == XC5000_RADIO_FM1_MONO) |
1006 | xc_write_reg(priv, XREG_OUTPUT_AMP, i2c_data: 0x06); |
1007 | |
1008 | xc_tune_channel(priv, freq_hz: priv->freq_hz, XC_TUNE_ANALOG); |
1009 | |
1010 | return 0; |
1011 | } |
1012 | |
1013 | static int xc5000_set_params(struct dvb_frontend *fe) |
1014 | { |
1015 | struct xc5000_priv *priv = fe->tuner_priv; |
1016 | |
1017 | if (xc_load_fw_and_init_tuner(fe, force: 0) != 0) { |
1018 | dprintk(1, "Unable to load firmware and init tuner\n"); |
1019 | return -EINVAL; |
1020 | } |
1021 | |
1022 | switch (priv->mode) { |
1023 | case V4L2_TUNER_RADIO: |
1024 | return xc5000_set_radio_freq(fe); |
1025 | case V4L2_TUNER_ANALOG_TV: |
1026 | return xc5000_set_tv_freq(fe); |
1027 | case V4L2_TUNER_DIGITAL_TV: |
1028 | return xc5000_tune_digital(fe); |
1029 | } |
1030 | |
1031 | return 0; |
1032 | } |
1033 | |
1034 | static int xc5000_set_analog_params(struct dvb_frontend *fe, |
1035 | struct analog_parameters *params) |
1036 | { |
1037 | struct xc5000_priv *priv = fe->tuner_priv; |
1038 | int ret; |
1039 | |
1040 | if (priv->i2c_props.adap == NULL) |
1041 | return -EINVAL; |
1042 | |
1043 | switch (params->mode) { |
1044 | case V4L2_TUNER_RADIO: |
1045 | ret = xc5000_config_radio(fe, params); |
1046 | if (ret) |
1047 | return ret; |
1048 | break; |
1049 | case V4L2_TUNER_ANALOG_TV: |
1050 | xc5000_config_tv(fe, params); |
1051 | break; |
1052 | default: |
1053 | break; |
1054 | } |
1055 | priv->mode = params->mode; |
1056 | |
1057 | return xc5000_set_params(fe); |
1058 | } |
1059 | |
1060 | static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq) |
1061 | { |
1062 | struct xc5000_priv *priv = fe->tuner_priv; |
1063 | dprintk(1, "%s()\n", __func__); |
1064 | *freq = priv->freq_hz + priv->freq_offset; |
1065 | return 0; |
1066 | } |
1067 | |
1068 | static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq) |
1069 | { |
1070 | struct xc5000_priv *priv = fe->tuner_priv; |
1071 | dprintk(1, "%s()\n", __func__); |
1072 | *freq = priv->if_khz * 1000; |
1073 | return 0; |
1074 | } |
1075 | |
1076 | static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) |
1077 | { |
1078 | struct xc5000_priv *priv = fe->tuner_priv; |
1079 | dprintk(1, "%s()\n", __func__); |
1080 | |
1081 | *bw = priv->bandwidth; |
1082 | return 0; |
1083 | } |
1084 | |
1085 | static int xc5000_get_status(struct dvb_frontend *fe, u32 *status) |
1086 | { |
1087 | struct xc5000_priv *priv = fe->tuner_priv; |
1088 | u16 lock_status = 0; |
1089 | |
1090 | xc_get_lock_status(priv, lock_status: &lock_status); |
1091 | |
1092 | dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); |
1093 | |
1094 | *status = lock_status; |
1095 | |
1096 | return 0; |
1097 | } |
1098 | |
1099 | static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force) |
1100 | { |
1101 | struct xc5000_priv *priv = fe->tuner_priv; |
1102 | const struct xc5000_fw_cfg *desired_fw = xc5000_assign_firmware(chip_id: priv->chip_id); |
1103 | const struct firmware *fw; |
1104 | int ret, i; |
1105 | u16 pll_lock_status; |
1106 | u16 fw_ck; |
1107 | |
1108 | cancel_delayed_work(dwork: &priv->timer_sleep); |
1109 | |
1110 | if (!force && xc5000_is_firmware_loaded(fe) == 0) |
1111 | return 0; |
1112 | |
1113 | if (!priv->firmware) { |
1114 | ret = request_firmware(fw: &fw, name: desired_fw->name, |
1115 | device: priv->i2c_props.adap->dev.parent); |
1116 | if (ret) { |
1117 | pr_err("xc5000: Upload failed. rc %d\n", ret); |
1118 | return ret; |
1119 | } |
1120 | dprintk(1, "firmware read %zu bytes.\n", fw->size); |
1121 | |
1122 | if (fw->size != desired_fw->size) { |
1123 | pr_err("xc5000: Firmware file with incorrect size\n"); |
1124 | release_firmware(fw); |
1125 | return -EINVAL; |
1126 | } |
1127 | priv->firmware = fw; |
1128 | } else |
1129 | fw = priv->firmware; |
1130 | |
1131 | /* Try up to 5 times to load firmware */ |
1132 | for (i = 0; i < 5; i++) { |
1133 | if (i) |
1134 | printk(KERN_CONT " - retrying to upload firmware.\n"); |
1135 | |
1136 | ret = xc5000_fwupload(fe, desired_fw, fw); |
1137 | if (ret != 0) |
1138 | goto err; |
1139 | |
1140 | msleep(msecs: 20); |
1141 | |
1142 | if (priv->fw_checksum_supported) { |
1143 | if (xc5000_readreg(priv, XREG_FW_CHECKSUM, val: &fw_ck)) { |
1144 | printk(KERN_ERR |
1145 | "xc5000: FW checksum reading failed."); |
1146 | continue; |
1147 | } |
1148 | |
1149 | if (!fw_ck) { |
1150 | printk(KERN_ERR |
1151 | "xc5000: FW checksum failed = 0x%04x.", |
1152 | fw_ck); |
1153 | continue; |
1154 | } |
1155 | } |
1156 | |
1157 | /* Start the tuner self-calibration process */ |
1158 | ret = xc_initialize(priv); |
1159 | if (ret) { |
1160 | printk(KERN_ERR "xc5000: Can't request self-calibration."); |
1161 | continue; |
1162 | } |
1163 | |
1164 | /* Wait for calibration to complete. |
1165 | * We could continue but XC5000 will clock stretch subsequent |
1166 | * I2C transactions until calibration is complete. This way we |
1167 | * don't have to rely on clock stretching working. |
1168 | */ |
1169 | msleep(msecs: 100); |
1170 | |
1171 | if (priv->init_status_supported) { |
1172 | if (xc5000_readreg(priv, XREG_INIT_STATUS, val: &fw_ck)) { |
1173 | printk(KERN_ERR |
1174 | "xc5000: FW failed reading init status."); |
1175 | continue; |
1176 | } |
1177 | |
1178 | if (!fw_ck) { |
1179 | printk(KERN_ERR |
1180 | "xc5000: FW init status failed = 0x%04x.", |
1181 | fw_ck); |
1182 | continue; |
1183 | } |
1184 | } |
1185 | |
1186 | if (priv->pll_register_no) { |
1187 | ret = xc5000_readreg(priv, reg: priv->pll_register_no, |
1188 | val: &pll_lock_status); |
1189 | if (ret) |
1190 | continue; |
1191 | if (pll_lock_status > 63) { |
1192 | /* PLL is unlocked, force reload of the firmware */ |
1193 | printk(KERN_ERR |
1194 | "xc5000: PLL not running after fwload."); |
1195 | continue; |
1196 | } |
1197 | } |
1198 | |
1199 | /* Default to "CABLE" mode */ |
1200 | ret = xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); |
1201 | if (!ret) |
1202 | break; |
1203 | printk(KERN_ERR "xc5000: can't set to cable mode."); |
1204 | } |
1205 | |
1206 | err: |
1207 | if (!ret) |
1208 | printk(KERN_INFO "xc5000: Firmware %s loaded and running.\n", |
1209 | desired_fw->name); |
1210 | else |
1211 | printk(KERN_CONT " - too many retries. Giving up\n"); |
1212 | |
1213 | return ret; |
1214 | } |
1215 | |
1216 | static void xc5000_do_timer_sleep(struct work_struct *timer_sleep) |
1217 | { |
1218 | struct xc5000_priv *priv =container_of(timer_sleep, struct xc5000_priv, |
1219 | timer_sleep.work); |
1220 | struct dvb_frontend *fe = priv->fe; |
1221 | int ret; |
1222 | |
1223 | dprintk(1, "%s()\n", __func__); |
1224 | |
1225 | /* According to Xceive technical support, the "powerdown" register |
1226 | was removed in newer versions of the firmware. The "supported" |
1227 | way to sleep the tuner is to pull the reset pin low for 10ms */ |
1228 | ret = xc5000_tuner_reset(fe); |
1229 | if (ret != 0) |
1230 | printk(KERN_ERR |
1231 | "xc5000: %s() unable to shutdown tuner\n", |
1232 | __func__); |
1233 | } |
1234 | |
1235 | static int xc5000_sleep(struct dvb_frontend *fe) |
1236 | { |
1237 | struct xc5000_priv *priv = fe->tuner_priv; |
1238 | |
1239 | dprintk(1, "%s()\n", __func__); |
1240 | |
1241 | /* Avoid firmware reload on slow devices */ |
1242 | if (no_poweroff) |
1243 | return 0; |
1244 | |
1245 | schedule_delayed_work(dwork: &priv->timer_sleep, |
1246 | delay: msecs_to_jiffies(XC5000_SLEEP_TIME)); |
1247 | |
1248 | return 0; |
1249 | } |
1250 | |
1251 | static int xc5000_suspend(struct dvb_frontend *fe) |
1252 | { |
1253 | struct xc5000_priv *priv = fe->tuner_priv; |
1254 | int ret; |
1255 | |
1256 | dprintk(1, "%s()\n", __func__); |
1257 | |
1258 | cancel_delayed_work(dwork: &priv->timer_sleep); |
1259 | |
1260 | ret = xc5000_tuner_reset(fe); |
1261 | if (ret != 0) |
1262 | printk(KERN_ERR |
1263 | "xc5000: %s() unable to shutdown tuner\n", |
1264 | __func__); |
1265 | |
1266 | return 0; |
1267 | } |
1268 | |
1269 | static int xc5000_resume(struct dvb_frontend *fe) |
1270 | { |
1271 | struct xc5000_priv *priv = fe->tuner_priv; |
1272 | |
1273 | dprintk(1, "%s()\n", __func__); |
1274 | |
1275 | /* suspended before firmware is loaded. |
1276 | Avoid firmware load in resume path. */ |
1277 | if (!priv->firmware) |
1278 | return 0; |
1279 | |
1280 | return xc5000_set_params(fe); |
1281 | } |
1282 | |
1283 | static int xc5000_init(struct dvb_frontend *fe) |
1284 | { |
1285 | struct xc5000_priv *priv = fe->tuner_priv; |
1286 | dprintk(1, "%s()\n", __func__); |
1287 | |
1288 | if (xc_load_fw_and_init_tuner(fe, force: 0) != 0) { |
1289 | printk(KERN_ERR "xc5000: Unable to initialise tuner\n"); |
1290 | return -EREMOTEIO; |
1291 | } |
1292 | |
1293 | if (debug) |
1294 | xc_debug_dump(priv); |
1295 | |
1296 | return 0; |
1297 | } |
1298 | |
1299 | static void xc5000_release(struct dvb_frontend *fe) |
1300 | { |
1301 | struct xc5000_priv *priv = fe->tuner_priv; |
1302 | |
1303 | dprintk(1, "%s()\n", __func__); |
1304 | |
1305 | mutex_lock(&xc5000_list_mutex); |
1306 | |
1307 | if (priv) { |
1308 | cancel_delayed_work(dwork: &priv->timer_sleep); |
1309 | if (priv->firmware) { |
1310 | release_firmware(fw: priv->firmware); |
1311 | priv->firmware = NULL; |
1312 | } |
1313 | hybrid_tuner_release_state(priv); |
1314 | } |
1315 | |
1316 | mutex_unlock(lock: &xc5000_list_mutex); |
1317 | |
1318 | fe->tuner_priv = NULL; |
1319 | } |
1320 | |
1321 | static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg) |
1322 | { |
1323 | struct xc5000_priv *priv = fe->tuner_priv; |
1324 | struct xc5000_config *p = priv_cfg; |
1325 | |
1326 | dprintk(1, "%s()\n", __func__); |
1327 | |
1328 | if (p->if_khz) |
1329 | priv->if_khz = p->if_khz; |
1330 | |
1331 | if (p->radio_input) |
1332 | priv->radio_input = p->radio_input; |
1333 | |
1334 | if (p->output_amp) |
1335 | priv->output_amp = p->output_amp; |
1336 | |
1337 | return 0; |
1338 | } |
1339 | |
1340 | |
1341 | static const struct dvb_tuner_ops xc5000_tuner_ops = { |
1342 | .info = { |
1343 | .name = "Xceive XC5000", |
1344 | .frequency_min_hz = 1 * MHz, |
1345 | .frequency_max_hz = 1023 * MHz, |
1346 | .frequency_step_hz = 50 * kHz, |
1347 | }, |
1348 | |
1349 | .release = xc5000_release, |
1350 | .init = xc5000_init, |
1351 | .sleep = xc5000_sleep, |
1352 | .suspend = xc5000_suspend, |
1353 | .resume = xc5000_resume, |
1354 | |
1355 | .set_config = xc5000_set_config, |
1356 | .set_params = xc5000_set_digital_params, |
1357 | .set_analog_params = xc5000_set_analog_params, |
1358 | .get_frequency = xc5000_get_frequency, |
1359 | .get_if_frequency = xc5000_get_if_frequency, |
1360 | .get_bandwidth = xc5000_get_bandwidth, |
1361 | .get_status = xc5000_get_status |
1362 | }; |
1363 | |
1364 | struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe, |
1365 | struct i2c_adapter *i2c, |
1366 | const struct xc5000_config *cfg) |
1367 | { |
1368 | struct xc5000_priv *priv = NULL; |
1369 | int instance; |
1370 | u16 id = 0; |
1371 | |
1372 | dprintk(1, "%s(%d-%04x)\n", __func__, |
1373 | i2c ? i2c_adapter_id(i2c) : -1, |
1374 | cfg ? cfg->i2c_address : -1); |
1375 | |
1376 | mutex_lock(&xc5000_list_mutex); |
1377 | |
1378 | instance = hybrid_tuner_request_state(struct xc5000_priv, priv, |
1379 | hybrid_tuner_instance_list, |
1380 | i2c, cfg->i2c_address, "xc5000"); |
1381 | switch (instance) { |
1382 | case 0: |
1383 | goto fail; |
1384 | case 1: |
1385 | /* new tuner instance */ |
1386 | priv->bandwidth = 6000000; |
1387 | fe->tuner_priv = priv; |
1388 | priv->fe = fe; |
1389 | INIT_DELAYED_WORK(&priv->timer_sleep, xc5000_do_timer_sleep); |
1390 | break; |
1391 | default: |
1392 | /* existing tuner instance */ |
1393 | fe->tuner_priv = priv; |
1394 | break; |
1395 | } |
1396 | |
1397 | if (priv->if_khz == 0) { |
1398 | /* If the IF hasn't been set yet, use the value provided by |
1399 | the caller (occurs in hybrid devices where the analog |
1400 | call to xc5000_attach occurs before the digital side) */ |
1401 | priv->if_khz = cfg->if_khz; |
1402 | } |
1403 | |
1404 | if (priv->xtal_khz == 0) |
1405 | priv->xtal_khz = cfg->xtal_khz; |
1406 | |
1407 | if (priv->radio_input == 0) |
1408 | priv->radio_input = cfg->radio_input; |
1409 | |
1410 | /* don't override chip id if it's already been set |
1411 | unless explicitly specified */ |
1412 | if ((priv->chip_id == 0) || (cfg->chip_id)) |
1413 | /* use default chip id if none specified, set to 0 so |
1414 | it can be overridden if this is a hybrid driver */ |
1415 | priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0; |
1416 | |
1417 | /* don't override output_amp if it's already been set |
1418 | unless explicitly specified */ |
1419 | if ((priv->output_amp == 0) || (cfg->output_amp)) |
1420 | /* use default output_amp value if none specified */ |
1421 | priv->output_amp = (cfg->output_amp) ? cfg->output_amp : 0x8a; |
1422 | |
1423 | /* Check if firmware has been loaded. It is possible that another |
1424 | instance of the driver has loaded the firmware. |
1425 | */ |
1426 | if (xc5000_readreg(priv, XREG_PRODUCT_ID, val: &id) != 0) |
1427 | goto fail; |
1428 | |
1429 | switch (id) { |
1430 | case XC_PRODUCT_ID_FW_LOADED: |
1431 | printk(KERN_INFO |
1432 | "xc5000: Successfully identified at address 0x%02x\n", |
1433 | cfg->i2c_address); |
1434 | printk(KERN_INFO |
1435 | "xc5000: Firmware has been loaded previously\n"); |
1436 | break; |
1437 | case XC_PRODUCT_ID_FW_NOT_LOADED: |
1438 | printk(KERN_INFO |
1439 | "xc5000: Successfully identified at address 0x%02x\n", |
1440 | cfg->i2c_address); |
1441 | printk(KERN_INFO |
1442 | "xc5000: Firmware has not been loaded previously\n"); |
1443 | break; |
1444 | default: |
1445 | printk(KERN_ERR |
1446 | "xc5000: Device not found at addr 0x%02x (0x%x)\n", |
1447 | cfg->i2c_address, id); |
1448 | goto fail; |
1449 | } |
1450 | |
1451 | mutex_unlock(lock: &xc5000_list_mutex); |
1452 | |
1453 | memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops, |
1454 | sizeof(struct dvb_tuner_ops)); |
1455 | |
1456 | return fe; |
1457 | fail: |
1458 | mutex_unlock(lock: &xc5000_list_mutex); |
1459 | |
1460 | xc5000_release(fe); |
1461 | return NULL; |
1462 | } |
1463 | EXPORT_SYMBOL_GPL(xc5000_attach); |
1464 | |
1465 | MODULE_AUTHOR("Steven Toth"); |
1466 | MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver"); |
1467 | MODULE_LICENSE("GPL"); |
1468 | MODULE_FIRMWARE(XC5000A_FIRMWARE); |
1469 | MODULE_FIRMWARE(XC5000C_FIRMWARE); |
1470 |
Definitions
- debug
- no_poweroff
- xc5000_list_mutex
- hybrid_tuner_instance_list
- xc5000_priv
- XC_TV_STANDARD
- xc5000_standard
- xc5000_fw_cfg
- xc5000a_1_6_114
- xc5000c_41_024_5
- xc5000_assign_firmware
- xc_send_i2c_data
- xc5000_readreg
- xc5000_tuner_reset
- xc_write_reg
- xc_load_i2c_sequence
- xc_initialize
- xc_set_tv_standard
- xc_set_signal_source
- xc5000_tuner_ops
- xc_set_rf_frequency
- xc_set_IF_frequency
- xc_get_adc_envelope
- xc_get_frequency_error
- xc_get_lock_status
- xc_get_version
- xc_get_buildversion
- xc_get_hsync_freq
- xc_get_frame_lines
- xc_get_quality
- xc_get_analogsnr
- xc_get_totalgain
- xc_tune_channel
- xc_set_xtal
- xc5000_fwupload
- xc_debug_dump
- xc5000_tune_digital
- xc5000_set_digital_params
- xc5000_is_firmware_loaded
- xc5000_config_tv
- xc5000_set_tv_freq
- xc5000_config_radio
- xc5000_set_radio_freq
- xc5000_set_params
- xc5000_set_analog_params
- xc5000_get_frequency
- xc5000_get_if_frequency
- xc5000_get_bandwidth
- xc5000_get_status
- xc_load_fw_and_init_tuner
- xc5000_do_timer_sleep
- xc5000_sleep
- xc5000_suspend
- xc5000_resume
- xc5000_init
- xc5000_release
- xc5000_set_config
- xc5000_tuner_ops
Improve your Profiling and Debugging skills
Find out more