1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2014-2020, NVIDIA CORPORATION. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/io.h>
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/of.h>
11
12#include <soc/tegra/mc.h>
13
14#include "tegra210-emc.h"
15#include "tegra210-mc.h"
16
17/*
18 * Enable flags for specifying verbosity.
19 */
20#define INFO (1 << 0)
21#define STEPS (1 << 1)
22#define SUB_STEPS (1 << 2)
23#define PRELOCK (1 << 3)
24#define PRELOCK_STEPS (1 << 4)
25#define ACTIVE_EN (1 << 5)
26#define PRAMP_UP (1 << 6)
27#define PRAMP_DN (1 << 7)
28#define EMA_WRITES (1 << 10)
29#define EMA_UPDATES (1 << 11)
30#define PER_TRAIN (1 << 16)
31#define CC_PRINT (1 << 17)
32#define CCFIFO (1 << 29)
33#define REGS (1 << 30)
34#define REG_LISTS (1 << 31)
35
36#define emc_dbg(emc, flags, ...) dev_dbg(emc->dev, __VA_ARGS__)
37
38#define DVFS_CLOCK_CHANGE_VERSION 21021
39#define EMC_PRELOCK_VERSION 2101
40
41enum {
42 DVFS_SEQUENCE = 1,
43 WRITE_TRAINING_SEQUENCE = 2,
44 PERIODIC_TRAINING_SEQUENCE = 3,
45 DVFS_PT1 = 10,
46 DVFS_UPDATE = 11,
47 TRAINING_PT1 = 12,
48 TRAINING_UPDATE = 13,
49 PERIODIC_TRAINING_UPDATE = 14
50};
51
52/*
53 * PTFV defines - basically just indexes into the per table PTFV array.
54 */
55#define PTFV_DQSOSC_MOVAVG_C0D0U0_INDEX 0
56#define PTFV_DQSOSC_MOVAVG_C0D0U1_INDEX 1
57#define PTFV_DQSOSC_MOVAVG_C0D1U0_INDEX 2
58#define PTFV_DQSOSC_MOVAVG_C0D1U1_INDEX 3
59#define PTFV_DQSOSC_MOVAVG_C1D0U0_INDEX 4
60#define PTFV_DQSOSC_MOVAVG_C1D0U1_INDEX 5
61#define PTFV_DQSOSC_MOVAVG_C1D1U0_INDEX 6
62#define PTFV_DQSOSC_MOVAVG_C1D1U1_INDEX 7
63#define PTFV_DVFS_SAMPLES_INDEX 9
64#define PTFV_MOVAVG_WEIGHT_INDEX 10
65#define PTFV_CONFIG_CTRL_INDEX 11
66
67#define PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA (1 << 0)
68
69/*
70 * Do arithmetic in fixed point.
71 */
72#define MOVAVG_PRECISION_FACTOR 100
73
74/*
75 * The division portion of the average operation.
76 */
77#define __AVERAGE_PTFV(dev) \
78 ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] = \
79 next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \
80 next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; })
81
82/*
83 * Convert val to fixed point and add it to the temporary average.
84 */
85#define __INCREMENT_PTFV(dev, val) \
86 ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] += \
87 ((val) * MOVAVG_PRECISION_FACTOR); })
88
89/*
90 * Convert a moving average back to integral form and return the value.
91 */
92#define __MOVAVG_AC(timing, dev) \
93 ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \
94 MOVAVG_PRECISION_FACTOR)
95
96/* Weighted update. */
97#define __WEIGHTED_UPDATE_PTFV(dev, nval) \
98 do { \
99 int w = PTFV_MOVAVG_WEIGHT_INDEX; \
100 int dqs = PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX; \
101 \
102 next->ptfv_list[dqs] = \
103 ((nval * MOVAVG_PRECISION_FACTOR) + \
104 (next->ptfv_list[dqs] * \
105 next->ptfv_list[w])) / \
106 (next->ptfv_list[w] + 1); \
107 \
108 emc_dbg(emc, EMA_UPDATES, "%s: (s=%lu) EMA: %u\n", \
109 __stringify(dev), nval, next->ptfv_list[dqs]); \
110 } while (0)
111
112/* Access a particular average. */
113#define __MOVAVG(timing, dev) \
114 ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX])
115
116static u32 update_clock_tree_delay(struct tegra210_emc *emc, int type)
117{
118 bool periodic_training_update = type == PERIODIC_TRAINING_UPDATE;
119 struct tegra210_emc_timing *last = emc->last;
120 struct tegra210_emc_timing *next = emc->next;
121 u32 last_timing_rate_mhz = last->rate / 1000;
122 u32 next_timing_rate_mhz = next->rate / 1000;
123 bool dvfs_update = type == DVFS_UPDATE;
124 s32 tdel = 0, tmdel = 0, adel = 0;
125 bool dvfs_pt1 = type == DVFS_PT1;
126 unsigned long cval = 0;
127 u32 temp[2][2], value;
128 unsigned int i;
129
130 /*
131 * Dev0 MSB.
132 */
133 if (dvfs_pt1 || periodic_training_update) {
134 value = tegra210_emc_mrr_read(emc, chip: 2, address: 19);
135
136 for (i = 0; i < emc->num_channels; i++) {
137 temp[i][0] = (value & 0x00ff) << 8;
138 temp[i][1] = (value & 0xff00) << 0;
139 value >>= 16;
140 }
141
142 /*
143 * Dev0 LSB.
144 */
145 value = tegra210_emc_mrr_read(emc, chip: 2, address: 18);
146
147 for (i = 0; i < emc->num_channels; i++) {
148 temp[i][0] |= (value & 0x00ff) >> 0;
149 temp[i][1] |= (value & 0xff00) >> 8;
150 value >>= 16;
151 }
152 }
153
154 if (dvfs_pt1 || periodic_training_update) {
155 cval = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
156 cval *= 1000000;
157 cval /= last_timing_rate_mhz * 2 * temp[0][0];
158 }
159
160 if (dvfs_pt1)
161 __INCREMENT_PTFV(C0D0U0, cval);
162 else if (dvfs_update)
163 __AVERAGE_PTFV(C0D0U0);
164 else if (periodic_training_update)
165 __WEIGHTED_UPDATE_PTFV(C0D0U0, cval);
166
167 if (dvfs_update || periodic_training_update) {
168 tdel = next->current_dram_clktree[C0D0U0] -
169 __MOVAVG_AC(next, C0D0U0);
170 tmdel = (tdel < 0) ? -1 * tdel : tdel;
171 adel = tmdel;
172
173 if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
174 next->tree_margin)
175 next->current_dram_clktree[C0D0U0] =
176 __MOVAVG_AC(next, C0D0U0);
177 }
178
179 if (dvfs_pt1 || periodic_training_update) {
180 cval = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
181 cval *= 1000000;
182 cval /= last_timing_rate_mhz * 2 * temp[0][1];
183 }
184
185 if (dvfs_pt1)
186 __INCREMENT_PTFV(C0D0U1, cval);
187 else if (dvfs_update)
188 __AVERAGE_PTFV(C0D0U1);
189 else if (periodic_training_update)
190 __WEIGHTED_UPDATE_PTFV(C0D0U1, cval);
191
192 if (dvfs_update || periodic_training_update) {
193 tdel = next->current_dram_clktree[C0D0U1] -
194 __MOVAVG_AC(next, C0D0U1);
195 tmdel = (tdel < 0) ? -1 * tdel : tdel;
196
197 if (tmdel > adel)
198 adel = tmdel;
199
200 if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
201 next->tree_margin)
202 next->current_dram_clktree[C0D0U1] =
203 __MOVAVG_AC(next, C0D0U1);
204 }
205
206 if (emc->num_channels > 1) {
207 if (dvfs_pt1 || periodic_training_update) {
208 cval = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
209 cval *= 1000000;
210 cval /= last_timing_rate_mhz * 2 * temp[1][0];
211 }
212
213 if (dvfs_pt1)
214 __INCREMENT_PTFV(C1D0U0, cval);
215 else if (dvfs_update)
216 __AVERAGE_PTFV(C1D0U0);
217 else if (periodic_training_update)
218 __WEIGHTED_UPDATE_PTFV(C1D0U0, cval);
219
220 if (dvfs_update || periodic_training_update) {
221 tdel = next->current_dram_clktree[C1D0U0] -
222 __MOVAVG_AC(next, C1D0U0);
223 tmdel = (tdel < 0) ? -1 * tdel : tdel;
224
225 if (tmdel > adel)
226 adel = tmdel;
227
228 if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
229 next->tree_margin)
230 next->current_dram_clktree[C1D0U0] =
231 __MOVAVG_AC(next, C1D0U0);
232 }
233
234 if (dvfs_pt1 || periodic_training_update) {
235 cval = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
236 cval *= 1000000;
237 cval /= last_timing_rate_mhz * 2 * temp[1][1];
238 }
239
240 if (dvfs_pt1)
241 __INCREMENT_PTFV(C1D0U1, cval);
242 else if (dvfs_update)
243 __AVERAGE_PTFV(C1D0U1);
244 else if (periodic_training_update)
245 __WEIGHTED_UPDATE_PTFV(C1D0U1, cval);
246
247 if (dvfs_update || periodic_training_update) {
248 tdel = next->current_dram_clktree[C1D0U1] -
249 __MOVAVG_AC(next, C1D0U1);
250 tmdel = (tdel < 0) ? -1 * tdel : tdel;
251
252 if (tmdel > adel)
253 adel = tmdel;
254
255 if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
256 next->tree_margin)
257 next->current_dram_clktree[C1D0U1] =
258 __MOVAVG_AC(next, C1D0U1);
259 }
260 }
261
262 if (emc->num_devices < 2)
263 goto done;
264
265 /*
266 * Dev1 MSB.
267 */
268 if (dvfs_pt1 || periodic_training_update) {
269 value = tegra210_emc_mrr_read(emc, chip: 1, address: 19);
270
271 for (i = 0; i < emc->num_channels; i++) {
272 temp[i][0] = (value & 0x00ff) << 8;
273 temp[i][1] = (value & 0xff00) << 0;
274 value >>= 16;
275 }
276
277 /*
278 * Dev1 LSB.
279 */
280 value = tegra210_emc_mrr_read(emc, chip: 1, address: 18);
281
282 for (i = 0; i < emc->num_channels; i++) {
283 temp[i][0] |= (value & 0x00ff) >> 0;
284 temp[i][1] |= (value & 0xff00) >> 8;
285 value >>= 16;
286 }
287 }
288
289 if (dvfs_pt1 || periodic_training_update) {
290 cval = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
291 cval *= 1000000;
292 cval /= last_timing_rate_mhz * 2 * temp[0][0];
293 }
294
295 if (dvfs_pt1)
296 __INCREMENT_PTFV(C0D1U0, cval);
297 else if (dvfs_update)
298 __AVERAGE_PTFV(C0D1U0);
299 else if (periodic_training_update)
300 __WEIGHTED_UPDATE_PTFV(C0D1U0, cval);
301
302 if (dvfs_update || periodic_training_update) {
303 tdel = next->current_dram_clktree[C0D1U0] -
304 __MOVAVG_AC(next, C0D1U0);
305 tmdel = (tdel < 0) ? -1 * tdel : tdel;
306
307 if (tmdel > adel)
308 adel = tmdel;
309
310 if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
311 next->tree_margin)
312 next->current_dram_clktree[C0D1U0] =
313 __MOVAVG_AC(next, C0D1U0);
314 }
315
316 if (dvfs_pt1 || periodic_training_update) {
317 cval = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
318 cval *= 1000000;
319 cval /= last_timing_rate_mhz * 2 * temp[0][1];
320 }
321
322 if (dvfs_pt1)
323 __INCREMENT_PTFV(C0D1U1, cval);
324 else if (dvfs_update)
325 __AVERAGE_PTFV(C0D1U1);
326 else if (periodic_training_update)
327 __WEIGHTED_UPDATE_PTFV(C0D1U1, cval);
328
329 if (dvfs_update || periodic_training_update) {
330 tdel = next->current_dram_clktree[C0D1U1] -
331 __MOVAVG_AC(next, C0D1U1);
332 tmdel = (tdel < 0) ? -1 * tdel : tdel;
333
334 if (tmdel > adel)
335 adel = tmdel;
336
337 if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
338 next->tree_margin)
339 next->current_dram_clktree[C0D1U1] =
340 __MOVAVG_AC(next, C0D1U1);
341 }
342
343 if (emc->num_channels > 1) {
344 if (dvfs_pt1 || periodic_training_update) {
345 cval = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
346 cval *= 1000000;
347 cval /= last_timing_rate_mhz * 2 * temp[1][0];
348 }
349
350 if (dvfs_pt1)
351 __INCREMENT_PTFV(C1D1U0, cval);
352 else if (dvfs_update)
353 __AVERAGE_PTFV(C1D1U0);
354 else if (periodic_training_update)
355 __WEIGHTED_UPDATE_PTFV(C1D1U0, cval);
356
357 if (dvfs_update || periodic_training_update) {
358 tdel = next->current_dram_clktree[C1D1U0] -
359 __MOVAVG_AC(next, C1D1U0);
360 tmdel = (tdel < 0) ? -1 * tdel : tdel;
361
362 if (tmdel > adel)
363 adel = tmdel;
364
365 if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
366 next->tree_margin)
367 next->current_dram_clktree[C1D1U0] =
368 __MOVAVG_AC(next, C1D1U0);
369 }
370
371 if (dvfs_pt1 || periodic_training_update) {
372 cval = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
373 cval *= 1000000;
374 cval /= last_timing_rate_mhz * 2 * temp[1][1];
375 }
376
377 if (dvfs_pt1)
378 __INCREMENT_PTFV(C1D1U1, cval);
379 else if (dvfs_update)
380 __AVERAGE_PTFV(C1D1U1);
381 else if (periodic_training_update)
382 __WEIGHTED_UPDATE_PTFV(C1D1U1, cval);
383
384 if (dvfs_update || periodic_training_update) {
385 tdel = next->current_dram_clktree[C1D1U1] -
386 __MOVAVG_AC(next, C1D1U1);
387 tmdel = (tdel < 0) ? -1 * tdel : tdel;
388
389 if (tmdel > adel)
390 adel = tmdel;
391
392 if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
393 next->tree_margin)
394 next->current_dram_clktree[C1D1U1] =
395 __MOVAVG_AC(next, C1D1U1);
396 }
397 }
398
399done:
400 return adel;
401}
402
403static u32 periodic_compensation_handler(struct tegra210_emc *emc, u32 type,
404 struct tegra210_emc_timing *last,
405 struct tegra210_emc_timing *next)
406{
407#define __COPY_EMA(nt, lt, dev) \
408 ({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) * \
409 (nt)->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; })
410
411 u32 i, adel = 0, samples = next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX];
412 u32 delay;
413
414 delay = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
415 delay *= 1000;
416 delay = 2 + (delay / last->rate);
417
418 if (!next->periodic_training)
419 return 0;
420
421 if (type == DVFS_SEQUENCE) {
422 if (last->periodic_training &&
423 (next->ptfv_list[PTFV_CONFIG_CTRL_INDEX] &
424 PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA)) {
425 /*
426 * If the previous frequency was using periodic
427 * calibration then we can reuse the previous
428 * frequencies EMA data.
429 */
430 __COPY_EMA(next, last, C0D0U0);
431 __COPY_EMA(next, last, C0D0U1);
432 __COPY_EMA(next, last, C1D0U0);
433 __COPY_EMA(next, last, C1D0U1);
434 __COPY_EMA(next, last, C0D1U0);
435 __COPY_EMA(next, last, C0D1U1);
436 __COPY_EMA(next, last, C1D1U0);
437 __COPY_EMA(next, last, C1D1U1);
438 } else {
439 /* Reset the EMA.*/
440 __MOVAVG(next, C0D0U0) = 0;
441 __MOVAVG(next, C0D0U1) = 0;
442 __MOVAVG(next, C1D0U0) = 0;
443 __MOVAVG(next, C1D0U1) = 0;
444 __MOVAVG(next, C0D1U0) = 0;
445 __MOVAVG(next, C0D1U1) = 0;
446 __MOVAVG(next, C1D1U0) = 0;
447 __MOVAVG(next, C1D1U1) = 0;
448
449 for (i = 0; i < samples; i++) {
450 tegra210_emc_start_periodic_compensation(emc);
451 udelay(delay);
452
453 /*
454 * Generate next sample of data.
455 */
456 adel = update_clock_tree_delay(emc, type: DVFS_PT1);
457 }
458 }
459
460 /*
461 * Seems like it should be part of the
462 * 'if (last_timing->periodic_training)' conditional
463 * since is already done for the else clause.
464 */
465 adel = update_clock_tree_delay(emc, type: DVFS_UPDATE);
466 }
467
468 if (type == PERIODIC_TRAINING_SEQUENCE) {
469 tegra210_emc_start_periodic_compensation(emc);
470 udelay(delay);
471
472 adel = update_clock_tree_delay(emc, type: PERIODIC_TRAINING_UPDATE);
473 }
474
475 return adel;
476}
477
478static u32 tegra210_emc_r21021_periodic_compensation(struct tegra210_emc *emc)
479{
480 u32 emc_cfg, emc_cfg_o, emc_cfg_update, del, value;
481 static const u32 list[] = {
482 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0,
483 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1,
484 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2,
485 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3,
486 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0,
487 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1,
488 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2,
489 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3,
490 EMC_DATA_BRLSHFT_0,
491 EMC_DATA_BRLSHFT_1
492 };
493 struct tegra210_emc_timing *last = emc->last;
494 unsigned int items = ARRAY_SIZE(list), i;
495 unsigned long delay;
496
497 if (last->periodic_training) {
498 emc_dbg(emc, PER_TRAIN, "Periodic training starting\n");
499
500 value = emc_readl(emc, EMC_DBG);
501 emc_cfg_o = emc_readl(emc, EMC_CFG);
502 emc_cfg = emc_cfg_o & ~(EMC_CFG_DYN_SELF_REF |
503 EMC_CFG_DRAM_ACPD |
504 EMC_CFG_DRAM_CLKSTOP_PD);
505
506
507 /*
508 * 1. Power optimizations should be off.
509 */
510 emc_writel(emc, value: emc_cfg, EMC_CFG);
511
512 /* Does emc_timing_update() for above changes. */
513 tegra210_emc_dll_disable(emc);
514
515 for (i = 0; i < emc->num_channels; i++)
516 tegra210_emc_wait_for_update(emc, channel: i, EMC_EMC_STATUS,
517 EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK,
518 state: 0);
519
520 for (i = 0; i < emc->num_channels; i++)
521 tegra210_emc_wait_for_update(emc, channel: i, EMC_EMC_STATUS,
522 EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK,
523 state: 0);
524
525 emc_cfg_update = value = emc_readl(emc, EMC_CFG_UPDATE);
526 value &= ~EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK;
527 value |= (2 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT);
528 emc_writel(emc, value, EMC_CFG_UPDATE);
529
530 /*
531 * 2. osc kick off - this assumes training and dvfs have set
532 * correct MR23.
533 */
534 tegra210_emc_start_periodic_compensation(emc);
535
536 /*
537 * 3. Let dram capture its clock tree delays.
538 */
539 delay = tegra210_emc_actual_osc_clocks(in: last->run_clocks);
540 delay *= 1000;
541 delay /= last->rate + 1;
542 udelay(delay);
543
544 /*
545 * 4. Check delta wrt previous values (save value if margin
546 * exceeds what is set in table).
547 */
548 del = periodic_compensation_handler(emc,
549 type: PERIODIC_TRAINING_SEQUENCE,
550 last, next: last);
551
552 /*
553 * 5. Apply compensation w.r.t. trained values (if clock tree
554 * has drifted more than the set margin).
555 */
556 if (last->tree_margin < ((del * 128 * (last->rate / 1000)) / 1000000)) {
557 for (i = 0; i < items; i++) {
558 value = tegra210_emc_compensate(next: last, offset: list[i]);
559 emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n",
560 list[i], value);
561 emc_writel(emc, value, offset: list[i]);
562 }
563 }
564
565 emc_writel(emc, value: emc_cfg_o, EMC_CFG);
566
567 /*
568 * 6. Timing update actally applies the new trimmers.
569 */
570 tegra210_emc_timing_update(emc);
571
572 /* 6.1. Restore the UPDATE_DLL_IN_UPDATE field. */
573 emc_writel(emc, value: emc_cfg_update, EMC_CFG_UPDATE);
574
575 /* 6.2. Restore the DLL. */
576 tegra210_emc_dll_enable(emc);
577 }
578
579 return 0;
580}
581
582/*
583 * Do the clock change sequence.
584 */
585static void tegra210_emc_r21021_set_clock(struct tegra210_emc *emc, u32 clksrc)
586{
587 /* state variables */
588 static bool fsp_for_next_freq;
589 /* constant configuration parameters */
590 const bool save_restore_clkstop_pd = true;
591 const u32 zqcal_before_cc_cutoff = 2400;
592 const bool cya_allow_ref_cc = false;
593 const bool cya_issue_pc_ref = false;
594 const bool opt_cc_short_zcal = true;
595 const bool ref_b4_sref_en = false;
596 const u32 tZQCAL_lpddr4 = 1000000;
597 const bool opt_short_zcal = true;
598 const bool opt_do_sw_qrst = true;
599 const u32 opt_dvfs_mode = MAN_SR;
600 /*
601 * This is the timing table for the source frequency. It does _not_
602 * necessarily correspond to the actual timing values in the EMC at the
603 * moment. If the boot BCT differs from the table then this can happen.
604 * However, we need it for accessing the dram_timings (which are not
605 * really registers) array for the current frequency.
606 */
607 struct tegra210_emc_timing *fake, *last = emc->last, *next = emc->next;
608 u32 tRTM, RP_war, R2P_war, TRPab_war, deltaTWATM, W2P_war, tRPST;
609 u32 mr13_flip_fspwr, mr13_flip_fspop, ramp_up_wait, ramp_down_wait;
610 u32 zq_wait_long, zq_latch_dvfs_wait_time, tZQCAL_lpddr4_fc_adj;
611 u32 emc_auto_cal_config, auto_cal_en, emc_cfg, emc_sel_dpd_ctrl;
612 u32 tFC_lpddr4 = 1000 * next->dram_timings[T_FC_LPDDR4];
613 u32 bg_reg_mode_change, enable_bglp_reg, enable_bg_reg;
614 bool opt_zcal_en_cc = false, is_lpddr3 = false;
615 bool compensate_trimmer_applicable = false;
616 u32 emc_dbg, emc_cfg_pipe_clk, emc_pin;
617 u32 src_clk_period, dst_clk_period; /* in picoseconds */
618 bool shared_zq_resistor = false;
619 u32 value, dram_type;
620 u32 opt_dll_mode = 0;
621 unsigned long delay;
622 unsigned int i;
623
624 emc_dbg(emc, INFO, "Running clock change.\n");
625
626 /* XXX fake == last */
627 fake = tegra210_emc_find_timing(emc, rate: last->rate * 1000UL);
628 fsp_for_next_freq = !fsp_for_next_freq;
629
630 value = emc_readl(emc, EMC_FBIO_CFG5) & EMC_FBIO_CFG5_DRAM_TYPE_MASK;
631 dram_type = value >> EMC_FBIO_CFG5_DRAM_TYPE_SHIFT;
632
633 if (last->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX] & BIT(31))
634 shared_zq_resistor = true;
635
636 if ((next->burst_regs[EMC_ZCAL_INTERVAL_INDEX] != 0 &&
637 last->burst_regs[EMC_ZCAL_INTERVAL_INDEX] == 0) ||
638 dram_type == DRAM_TYPE_LPDDR4)
639 opt_zcal_en_cc = true;
640
641 if (dram_type == DRAM_TYPE_DDR3)
642 opt_dll_mode = tegra210_emc_get_dll_state(next);
643
644 if ((next->burst_regs[EMC_FBIO_CFG5_INDEX] & BIT(25)) &&
645 (dram_type == DRAM_TYPE_LPDDR2))
646 is_lpddr3 = true;
647
648 emc_readl(emc, EMC_CFG);
649 emc_readl(emc, EMC_AUTO_CAL_CONFIG);
650
651 src_clk_period = 1000000000 / last->rate;
652 dst_clk_period = 1000000000 / next->rate;
653
654 if (dst_clk_period <= zqcal_before_cc_cutoff)
655 tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4 - tFC_lpddr4;
656 else
657 tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4;
658
659 tZQCAL_lpddr4_fc_adj /= dst_clk_period;
660
661 emc_dbg = emc_readl(emc, EMC_DBG);
662 emc_pin = emc_readl(emc, EMC_PIN);
663 emc_cfg_pipe_clk = emc_readl(emc, EMC_CFG_PIPE_CLK);
664
665 emc_cfg = next->burst_regs[EMC_CFG_INDEX];
666 emc_cfg &= ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD |
667 EMC_CFG_DRAM_CLKSTOP_SR | EMC_CFG_DRAM_CLKSTOP_PD);
668 emc_sel_dpd_ctrl = next->emc_sel_dpd_ctrl;
669 emc_sel_dpd_ctrl &= ~(EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN |
670 EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN |
671 EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN |
672 EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN |
673 EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN);
674
675 emc_dbg(emc, INFO, "Clock change version: %d\n",
676 DVFS_CLOCK_CHANGE_VERSION);
677 emc_dbg(emc, INFO, "DRAM type = %d\n", dram_type);
678 emc_dbg(emc, INFO, "DRAM dev #: %u\n", emc->num_devices);
679 emc_dbg(emc, INFO, "Next EMC clksrc: 0x%08x\n", clksrc);
680 emc_dbg(emc, INFO, "DLL clksrc: 0x%08x\n", next->dll_clk_src);
681 emc_dbg(emc, INFO, "last rate: %u, next rate %u\n", last->rate,
682 next->rate);
683 emc_dbg(emc, INFO, "last period: %u, next period: %u\n",
684 src_clk_period, dst_clk_period);
685 emc_dbg(emc, INFO, " shared_zq_resistor: %d\n", !!shared_zq_resistor);
686 emc_dbg(emc, INFO, " num_channels: %u\n", emc->num_channels);
687 emc_dbg(emc, INFO, " opt_dll_mode: %d\n", opt_dll_mode);
688
689 /*
690 * Step 1:
691 * Pre DVFS SW sequence.
692 */
693 emc_dbg(emc, STEPS, "Step 1\n");
694 emc_dbg(emc, STEPS, "Step 1.1: Disable DLL temporarily.\n");
695
696 value = emc_readl(emc, EMC_CFG_DIG_DLL);
697 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
698 emc_writel(emc, value, EMC_CFG_DIG_DLL);
699
700 tegra210_emc_timing_update(emc);
701
702 for (i = 0; i < emc->num_channels; i++)
703 tegra210_emc_wait_for_update(emc, channel: i, EMC_CFG_DIG_DLL,
704 EMC_CFG_DIG_DLL_CFG_DLL_EN, state: 0);
705
706 emc_dbg(emc, STEPS, "Step 1.2: Disable AUTOCAL temporarily.\n");
707
708 emc_auto_cal_config = next->emc_auto_cal_config;
709 auto_cal_en = emc_auto_cal_config & EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE;
710 emc_auto_cal_config &= ~EMC_AUTO_CAL_CONFIG_AUTO_CAL_START;
711 emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL;
712 emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL;
713 emc_auto_cal_config |= auto_cal_en;
714 emc_writel(emc, value: emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
715 emc_readl(emc, EMC_AUTO_CAL_CONFIG); /* Flush write. */
716
717 emc_dbg(emc, STEPS, "Step 1.3: Disable other power features.\n");
718
719 tegra210_emc_set_shadow_bypass(emc, set: ACTIVE);
720 emc_writel(emc, value: emc_cfg, EMC_CFG);
721 emc_writel(emc, value: emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
722 tegra210_emc_set_shadow_bypass(emc, set: ASSEMBLY);
723
724 if (next->periodic_training) {
725 tegra210_emc_reset_dram_clktree_values(timing: next);
726
727 for (i = 0; i < emc->num_channels; i++)
728 tegra210_emc_wait_for_update(emc, channel: i, EMC_EMC_STATUS,
729 EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK,
730 state: 0);
731
732 for (i = 0; i < emc->num_channels; i++)
733 tegra210_emc_wait_for_update(emc, channel: i, EMC_EMC_STATUS,
734 EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK,
735 state: 0);
736
737 tegra210_emc_start_periodic_compensation(emc);
738
739 delay = 1000 * tegra210_emc_actual_osc_clocks(in: last->run_clocks);
740 udelay((delay / last->rate) + 2);
741
742 value = periodic_compensation_handler(emc, type: DVFS_SEQUENCE, last: fake,
743 next);
744 value = (value * 128 * next->rate / 1000) / 1000000;
745
746 if (next->periodic_training && value > next->tree_margin)
747 compensate_trimmer_applicable = true;
748 }
749
750 emc_writel(emc, EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS);
751 tegra210_emc_set_shadow_bypass(emc, set: ACTIVE);
752 emc_writel(emc, value: emc_cfg, EMC_CFG);
753 emc_writel(emc, value: emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
754 emc_writel(emc, value: emc_cfg_pipe_clk | EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON,
755 EMC_CFG_PIPE_CLK);
756 emc_writel(emc, value: next->emc_fdpd_ctrl_cmd_no_ramp &
757 ~EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE,
758 EMC_FDPD_CTRL_CMD_NO_RAMP);
759
760 bg_reg_mode_change =
761 ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
762 EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) ^
763 (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
764 EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD)) ||
765 ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
766 EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) ^
767 (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
768 EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD));
769 enable_bglp_reg =
770 (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
771 EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) == 0;
772 enable_bg_reg =
773 (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
774 EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) == 0;
775
776 if (bg_reg_mode_change) {
777 if (enable_bg_reg)
778 emc_writel(emc, value: last->burst_regs
779 [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
780 ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD,
781 EMC_PMACRO_BG_BIAS_CTRL_0);
782
783 if (enable_bglp_reg)
784 emc_writel(emc, value: last->burst_regs
785 [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
786 ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD,
787 EMC_PMACRO_BG_BIAS_CTRL_0);
788 }
789
790 /* Check if we need to turn on VREF generator. */
791 if ((((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
792 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 0) &&
793 ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
794 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 1)) ||
795 (((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
796 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) == 0) &&
797 ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
798 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) != 0))) {
799 u32 pad_tx_ctrl =
800 next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
801 u32 last_pad_tx_ctrl =
802 last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
803 u32 next_dq_e_ivref, next_dqs_e_ivref;
804
805 next_dqs_e_ivref = pad_tx_ctrl &
806 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF;
807 next_dq_e_ivref = pad_tx_ctrl &
808 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF;
809 value = (last_pad_tx_ctrl &
810 ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF &
811 ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) |
812 next_dq_e_ivref | next_dqs_e_ivref;
813 emc_writel(emc, value, EMC_PMACRO_DATA_PAD_TX_CTRL);
814 udelay(1);
815 } else if (bg_reg_mode_change) {
816 udelay(1);
817 }
818
819 tegra210_emc_set_shadow_bypass(emc, set: ASSEMBLY);
820
821 /*
822 * Step 2:
823 * Prelock the DLL.
824 */
825 emc_dbg(emc, STEPS, "Step 2\n");
826
827 if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] &
828 EMC_CFG_DIG_DLL_CFG_DLL_EN) {
829 emc_dbg(emc, INFO, "Prelock enabled for target frequency.\n");
830 value = tegra210_emc_dll_prelock(emc, clksrc);
831 emc_dbg(emc, INFO, "DLL out: 0x%03x\n", value);
832 } else {
833 emc_dbg(emc, INFO, "Disabling DLL for target frequency.\n");
834 tegra210_emc_dll_disable(emc);
835 }
836
837 /*
838 * Step 3:
839 * Prepare autocal for the clock change.
840 */
841 emc_dbg(emc, STEPS, "Step 3\n");
842
843 tegra210_emc_set_shadow_bypass(emc, set: ACTIVE);
844 emc_writel(emc, value: next->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2);
845 emc_writel(emc, value: next->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3);
846 emc_writel(emc, value: next->emc_auto_cal_config4, EMC_AUTO_CAL_CONFIG4);
847 emc_writel(emc, value: next->emc_auto_cal_config5, EMC_AUTO_CAL_CONFIG5);
848 emc_writel(emc, value: next->emc_auto_cal_config6, EMC_AUTO_CAL_CONFIG6);
849 emc_writel(emc, value: next->emc_auto_cal_config7, EMC_AUTO_CAL_CONFIG7);
850 emc_writel(emc, value: next->emc_auto_cal_config8, EMC_AUTO_CAL_CONFIG8);
851 tegra210_emc_set_shadow_bypass(emc, set: ASSEMBLY);
852
853 emc_auto_cal_config |= (EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START |
854 auto_cal_en);
855 emc_writel(emc, value: emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
856
857 /*
858 * Step 4:
859 * Update EMC_CFG. (??)
860 */
861 emc_dbg(emc, STEPS, "Step 4\n");
862
863 if (src_clk_period > 50000 && dram_type == DRAM_TYPE_LPDDR4)
864 ccfifo_writel(emc, value: 1, EMC_SELF_REF, delay: 0);
865 else
866 emc_writel(emc, value: next->emc_cfg_2, EMC_CFG_2);
867
868 /*
869 * Step 5:
870 * Prepare reference variables for ZQCAL regs.
871 */
872 emc_dbg(emc, STEPS, "Step 5\n");
873
874 if (dram_type == DRAM_TYPE_LPDDR4)
875 zq_wait_long = max((u32)1, div_o3(1000000, dst_clk_period));
876 else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3)
877 zq_wait_long = max(next->min_mrs_wait,
878 div_o3(360000, dst_clk_period)) + 4;
879 else if (dram_type == DRAM_TYPE_DDR3)
880 zq_wait_long = max((u32)256,
881 div_o3(320000, dst_clk_period) + 2);
882 else
883 zq_wait_long = 0;
884
885 /*
886 * Step 6:
887 * Training code - removed.
888 */
889 emc_dbg(emc, STEPS, "Step 6\n");
890
891 /*
892 * Step 7:
893 * Program FSP reference registers and send MRWs to new FSPWR.
894 */
895 emc_dbg(emc, STEPS, "Step 7\n");
896 emc_dbg(emc, SUB_STEPS, "Step 7.1: Bug 200024907 - Patch RP R2P");
897
898 /* WAR 200024907 */
899 if (dram_type == DRAM_TYPE_LPDDR4) {
900 u32 nRTP = 16;
901
902 if (src_clk_period >= 1000000 / 1866) /* 535.91 ps */
903 nRTP = 14;
904
905 if (src_clk_period >= 1000000 / 1600) /* 625.00 ps */
906 nRTP = 12;
907
908 if (src_clk_period >= 1000000 / 1333) /* 750.19 ps */
909 nRTP = 10;
910
911 if (src_clk_period >= 1000000 / 1066) /* 938.09 ps */
912 nRTP = 8;
913
914 deltaTWATM = max_t(u32, div_o3(7500, src_clk_period), 8);
915
916 /*
917 * Originally there was a + .5 in the tRPST calculation.
918 * However since we can't do FP in the kernel and the tRTM
919 * computation was in a floating point ceiling function, adding
920 * one to tRTP should be ok. There is no other source of non
921 * integer values, so the result was always going to be
922 * something for the form: f_ceil(N + .5) = N + 1;
923 */
924 tRPST = (last->emc_mrw & 0x80) >> 7;
925 tRTM = fake->dram_timings[RL] + div_o3(a: 3600, b: src_clk_period) +
926 max_t(u32, div_o3(7500, src_clk_period), 8) + tRPST +
927 1 + nRTP;
928
929 emc_dbg(emc, INFO, "tRTM = %u, EMC_RP = %u\n", tRTM,
930 next->burst_regs[EMC_RP_INDEX]);
931
932 if (last->burst_regs[EMC_RP_INDEX] < tRTM) {
933 if (tRTM > (last->burst_regs[EMC_R2P_INDEX] +
934 last->burst_regs[EMC_RP_INDEX])) {
935 R2P_war = tRTM - last->burst_regs[EMC_RP_INDEX];
936 RP_war = last->burst_regs[EMC_RP_INDEX];
937 TRPab_war = last->burst_regs[EMC_TRPAB_INDEX];
938
939 if (R2P_war > 63) {
940 RP_war = R2P_war +
941 last->burst_regs[EMC_RP_INDEX] - 63;
942
943 if (TRPab_war < RP_war)
944 TRPab_war = RP_war;
945
946 R2P_war = 63;
947 }
948 } else {
949 R2P_war = last->burst_regs[EMC_R2P_INDEX];
950 RP_war = last->burst_regs[EMC_RP_INDEX];
951 TRPab_war = last->burst_regs[EMC_TRPAB_INDEX];
952 }
953
954 if (RP_war < deltaTWATM) {
955 W2P_war = last->burst_regs[EMC_W2P_INDEX]
956 + deltaTWATM - RP_war;
957 if (W2P_war > 63) {
958 RP_war = RP_war + W2P_war - 63;
959 if (TRPab_war < RP_war)
960 TRPab_war = RP_war;
961 W2P_war = 63;
962 }
963 } else {
964 W2P_war = last->burst_regs[
965 EMC_W2P_INDEX];
966 }
967
968 if ((last->burst_regs[EMC_W2P_INDEX] ^ W2P_war) ||
969 (last->burst_regs[EMC_R2P_INDEX] ^ R2P_war) ||
970 (last->burst_regs[EMC_RP_INDEX] ^ RP_war) ||
971 (last->burst_regs[EMC_TRPAB_INDEX] ^ TRPab_war)) {
972 emc_writel(emc, value: RP_war, EMC_RP);
973 emc_writel(emc, value: R2P_war, EMC_R2P);
974 emc_writel(emc, value: W2P_war, EMC_W2P);
975 emc_writel(emc, value: TRPab_war, EMC_TRPAB);
976 }
977
978 tegra210_emc_timing_update(emc);
979 } else {
980 emc_dbg(emc, INFO, "Skipped WAR\n");
981 }
982 }
983
984 if (!fsp_for_next_freq) {
985 mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x80;
986 mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0x00;
987 } else {
988 mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x40;
989 mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0xc0;
990 }
991
992 if (dram_type == DRAM_TYPE_LPDDR4) {
993 emc_writel(emc, value: mr13_flip_fspwr, EMC_MRW3);
994 emc_writel(emc, value: next->emc_mrw, EMC_MRW);
995 emc_writel(emc, value: next->emc_mrw2, EMC_MRW2);
996 }
997
998 /*
999 * Step 8:
1000 * Program the shadow registers.
1001 */
1002 emc_dbg(emc, STEPS, "Step 8\n");
1003 emc_dbg(emc, SUB_STEPS, "Writing burst_regs\n");
1004
1005 for (i = 0; i < next->num_burst; i++) {
1006 const u16 *offsets = emc->offsets->burst;
1007 u16 offset;
1008
1009 if (!offsets[i])
1010 continue;
1011
1012 value = next->burst_regs[i];
1013 offset = offsets[i];
1014
1015 if (dram_type != DRAM_TYPE_LPDDR4 &&
1016 (offset == EMC_MRW6 || offset == EMC_MRW7 ||
1017 offset == EMC_MRW8 || offset == EMC_MRW9 ||
1018 offset == EMC_MRW10 || offset == EMC_MRW11 ||
1019 offset == EMC_MRW12 || offset == EMC_MRW13 ||
1020 offset == EMC_MRW14 || offset == EMC_MRW15 ||
1021 offset == EMC_TRAINING_CTRL))
1022 continue;
1023
1024 /* Pain... And suffering. */
1025 if (offset == EMC_CFG) {
1026 value &= ~EMC_CFG_DRAM_ACPD;
1027 value &= ~EMC_CFG_DYN_SELF_REF;
1028
1029 if (dram_type == DRAM_TYPE_LPDDR4) {
1030 value &= ~EMC_CFG_DRAM_CLKSTOP_SR;
1031 value &= ~EMC_CFG_DRAM_CLKSTOP_PD;
1032 }
1033 } else if (offset == EMC_MRS_WAIT_CNT &&
1034 dram_type == DRAM_TYPE_LPDDR2 &&
1035 opt_zcal_en_cc && !opt_cc_short_zcal &&
1036 opt_short_zcal) {
1037 value = (value & ~(EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK <<
1038 EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)) |
1039 ((zq_wait_long & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) <<
1040 EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT);
1041 } else if (offset == EMC_ZCAL_WAIT_CNT &&
1042 dram_type == DRAM_TYPE_DDR3 && opt_zcal_en_cc &&
1043 !opt_cc_short_zcal && opt_short_zcal) {
1044 value = (value & ~(EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK <<
1045 EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT)) |
1046 ((zq_wait_long & EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK) <<
1047 EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT);
1048 } else if (offset == EMC_ZCAL_INTERVAL && opt_zcal_en_cc) {
1049 value = 0; /* EMC_ZCAL_INTERVAL reset value. */
1050 } else if (offset == EMC_PMACRO_AUTOCAL_CFG_COMMON) {
1051 value |= EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS;
1052 } else if (offset == EMC_PMACRO_DATA_PAD_TX_CTRL) {
1053 value &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1054 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC |
1055 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1056 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
1057 } else if (offset == EMC_PMACRO_CMD_PAD_TX_CTRL) {
1058 value |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
1059 value &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1060 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC |
1061 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1062 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
1063 } else if (offset == EMC_PMACRO_BRICK_CTRL_RFU1) {
1064 value &= 0xf800f800;
1065 } else if (offset == EMC_PMACRO_COMMON_PAD_TX_CTRL) {
1066 value &= 0xfffffff0;
1067 }
1068
1069 emc_writel(emc, value, offset);
1070 }
1071
1072 /* SW addition: do EMC refresh adjustment here. */
1073 tegra210_emc_adjust_timing(emc, timing: next);
1074
1075 if (dram_type == DRAM_TYPE_LPDDR4) {
1076 value = (23 << EMC_MRW_MRW_MA_SHIFT) |
1077 (next->run_clocks & EMC_MRW_MRW_OP_MASK);
1078 emc_writel(emc, value, EMC_MRW);
1079 }
1080
1081 /* Per channel burst registers. */
1082 emc_dbg(emc, SUB_STEPS, "Writing burst_regs_per_ch\n");
1083
1084 for (i = 0; i < next->num_burst_per_ch; i++) {
1085 const struct tegra210_emc_per_channel_regs *burst =
1086 emc->offsets->burst_per_channel;
1087
1088 if (!burst[i].offset)
1089 continue;
1090
1091 if (dram_type != DRAM_TYPE_LPDDR4 &&
1092 (burst[i].offset == EMC_MRW6 ||
1093 burst[i].offset == EMC_MRW7 ||
1094 burst[i].offset == EMC_MRW8 ||
1095 burst[i].offset == EMC_MRW9 ||
1096 burst[i].offset == EMC_MRW10 ||
1097 burst[i].offset == EMC_MRW11 ||
1098 burst[i].offset == EMC_MRW12 ||
1099 burst[i].offset == EMC_MRW13 ||
1100 burst[i].offset == EMC_MRW14 ||
1101 burst[i].offset == EMC_MRW15))
1102 continue;
1103
1104 /* Filter out second channel if not in DUAL_CHANNEL mode. */
1105 if (emc->num_channels < 2 && burst[i].bank >= 1)
1106 continue;
1107
1108 emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1109 next->burst_reg_per_ch[i], burst[i].offset);
1110 emc_channel_writel(emc, channel: burst[i].bank,
1111 value: next->burst_reg_per_ch[i],
1112 offset: burst[i].offset);
1113 }
1114
1115 /* Vref regs. */
1116 emc_dbg(emc, SUB_STEPS, "Writing vref_regs\n");
1117
1118 for (i = 0; i < next->vref_num; i++) {
1119 const struct tegra210_emc_per_channel_regs *vref =
1120 emc->offsets->vref_per_channel;
1121
1122 if (!vref[i].offset)
1123 continue;
1124
1125 if (emc->num_channels < 2 && vref[i].bank >= 1)
1126 continue;
1127
1128 emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1129 next->vref_perch_regs[i], vref[i].offset);
1130 emc_channel_writel(emc, channel: vref[i].bank, value: next->vref_perch_regs[i],
1131 offset: vref[i].offset);
1132 }
1133
1134 /* Trimmers. */
1135 emc_dbg(emc, SUB_STEPS, "Writing trim_regs\n");
1136
1137 for (i = 0; i < next->num_trim; i++) {
1138 const u16 *offsets = emc->offsets->trim;
1139
1140 if (!offsets[i])
1141 continue;
1142
1143 if (compensate_trimmer_applicable &&
1144 (offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
1145 offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
1146 offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
1147 offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
1148 offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
1149 offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
1150 offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
1151 offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
1152 offsets[i] == EMC_DATA_BRLSHFT_0 ||
1153 offsets[i] == EMC_DATA_BRLSHFT_1)) {
1154 value = tegra210_emc_compensate(next, offset: offsets[i]);
1155 emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1156 value, offsets[i]);
1157 emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n",
1158 (u32)(u64)offsets[i], value);
1159 emc_writel(emc, value, offset: offsets[i]);
1160 } else {
1161 emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1162 next->trim_regs[i], offsets[i]);
1163 emc_writel(emc, value: next->trim_regs[i], offset: offsets[i]);
1164 }
1165 }
1166
1167 /* Per channel trimmers. */
1168 emc_dbg(emc, SUB_STEPS, "Writing trim_regs_per_ch\n");
1169
1170 for (i = 0; i < next->num_trim_per_ch; i++) {
1171 const struct tegra210_emc_per_channel_regs *trim =
1172 &emc->offsets->trim_per_channel[0];
1173 unsigned int offset;
1174
1175 if (!trim[i].offset)
1176 continue;
1177
1178 if (emc->num_channels < 2 && trim[i].bank >= 1)
1179 continue;
1180
1181 offset = trim[i].offset;
1182
1183 if (compensate_trimmer_applicable &&
1184 (offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
1185 offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
1186 offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
1187 offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
1188 offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
1189 offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
1190 offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
1191 offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
1192 offset == EMC_DATA_BRLSHFT_0 ||
1193 offset == EMC_DATA_BRLSHFT_1)) {
1194 value = tegra210_emc_compensate(next, offset);
1195 emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1196 value, offset);
1197 emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", offset,
1198 value);
1199 emc_channel_writel(emc, channel: trim[i].bank, value, offset);
1200 } else {
1201 emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1202 next->trim_perch_regs[i], offset);
1203 emc_channel_writel(emc, channel: trim[i].bank,
1204 value: next->trim_perch_regs[i], offset);
1205 }
1206 }
1207
1208 emc_dbg(emc, SUB_STEPS, "Writing burst_mc_regs\n");
1209
1210 for (i = 0; i < next->num_mc_regs; i++) {
1211 const u16 *offsets = emc->offsets->burst_mc;
1212 u32 *values = next->burst_mc_regs;
1213
1214 emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1215 values[i], offsets[i]);
1216 mc_writel(mc: emc->mc, value: values[i], offset: offsets[i]);
1217 }
1218
1219 /* Registers to be programmed on the faster clock. */
1220 if (next->rate < last->rate) {
1221 const u16 *la = emc->offsets->la_scale;
1222
1223 emc_dbg(emc, SUB_STEPS, "Writing la_scale_regs\n");
1224
1225 for (i = 0; i < next->num_up_down; i++) {
1226 emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1227 next->la_scale_regs[i], la[i]);
1228 mc_writel(mc: emc->mc, value: next->la_scale_regs[i], offset: la[i]);
1229 }
1230 }
1231
1232 /* Flush all the burst register writes. */
1233 mc_readl(mc: emc->mc, MC_EMEM_ADR_CFG);
1234
1235 /*
1236 * Step 9:
1237 * LPDDR4 section A.
1238 */
1239 emc_dbg(emc, STEPS, "Step 9\n");
1240
1241 value = next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX];
1242 value &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK;
1243
1244 if (dram_type == DRAM_TYPE_LPDDR4) {
1245 emc_writel(emc, value: 0, EMC_ZCAL_INTERVAL);
1246 emc_writel(emc, value, EMC_ZCAL_WAIT_CNT);
1247
1248 value = emc_dbg | (EMC_DBG_WRITE_MUX_ACTIVE |
1249 EMC_DBG_WRITE_ACTIVE_ONLY);
1250
1251 emc_writel(emc, value, EMC_DBG);
1252 emc_writel(emc, value: 0, EMC_ZCAL_INTERVAL);
1253 emc_writel(emc, value: emc_dbg, EMC_DBG);
1254 }
1255
1256 /*
1257 * Step 10:
1258 * LPDDR4 and DDR3 common section.
1259 */
1260 emc_dbg(emc, STEPS, "Step 10\n");
1261
1262 if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) {
1263 if (dram_type == DRAM_TYPE_LPDDR4)
1264 ccfifo_writel(emc, value: 0x101, EMC_SELF_REF, delay: 0);
1265 else
1266 ccfifo_writel(emc, value: 0x1, EMC_SELF_REF, delay: 0);
1267
1268 if (dram_type == DRAM_TYPE_LPDDR4 &&
1269 dst_clk_period <= zqcal_before_cc_cutoff) {
1270 ccfifo_writel(emc, value: mr13_flip_fspwr ^ 0x40, EMC_MRW3, delay: 0);
1271 ccfifo_writel(emc, value: (next->burst_regs[EMC_MRW6_INDEX] &
1272 0xFFFF3F3F) |
1273 (last->burst_regs[EMC_MRW6_INDEX] &
1274 0x0000C0C0), EMC_MRW6, delay: 0);
1275 ccfifo_writel(emc, value: (next->burst_regs[EMC_MRW14_INDEX] &
1276 0xFFFF0707) |
1277 (last->burst_regs[EMC_MRW14_INDEX] &
1278 0x00003838), EMC_MRW14, delay: 0);
1279
1280 if (emc->num_devices > 1) {
1281 ccfifo_writel(emc,
1282 value: (next->burst_regs[EMC_MRW7_INDEX] &
1283 0xFFFF3F3F) |
1284 (last->burst_regs[EMC_MRW7_INDEX] &
1285 0x0000C0C0), EMC_MRW7, delay: 0);
1286 ccfifo_writel(emc,
1287 value: (next->burst_regs[EMC_MRW15_INDEX] &
1288 0xFFFF0707) |
1289 (last->burst_regs[EMC_MRW15_INDEX] &
1290 0x00003838), EMC_MRW15, delay: 0);
1291 }
1292
1293 if (opt_zcal_en_cc) {
1294 if (emc->num_devices < 2)
1295 ccfifo_writel(emc,
1296 value: 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT
1297 | EMC_ZQ_CAL_ZQ_CAL_CMD,
1298 EMC_ZQ_CAL, delay: 0);
1299 else if (shared_zq_resistor)
1300 ccfifo_writel(emc,
1301 value: 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT
1302 | EMC_ZQ_CAL_ZQ_CAL_CMD,
1303 EMC_ZQ_CAL, delay: 0);
1304 else
1305 ccfifo_writel(emc,
1306 EMC_ZQ_CAL_ZQ_CAL_CMD,
1307 EMC_ZQ_CAL, delay: 0);
1308 }
1309 }
1310 }
1311
1312 if (dram_type == DRAM_TYPE_LPDDR4) {
1313 value = (1000 * fake->dram_timings[T_RP]) / src_clk_period;
1314 ccfifo_writel(emc, value: mr13_flip_fspop | 0x8, EMC_MRW3, delay: value);
1315 ccfifo_writel(emc, value: 0, offset: 0, delay: tFC_lpddr4 / src_clk_period);
1316 }
1317
1318 if (dram_type == DRAM_TYPE_LPDDR4 || opt_dvfs_mode != MAN_SR) {
1319 delay = 30;
1320
1321 if (cya_allow_ref_cc) {
1322 delay += (1000 * fake->dram_timings[T_RP]) /
1323 src_clk_period;
1324 delay += 4000 * fake->dram_timings[T_RFC];
1325 }
1326
1327 ccfifo_writel(emc, value: emc_pin & ~(EMC_PIN_PIN_CKE_PER_DEV |
1328 EMC_PIN_PIN_CKEB |
1329 EMC_PIN_PIN_CKE),
1330 EMC_PIN, delay);
1331 }
1332
1333 /* calculate reference delay multiplier */
1334 value = 1;
1335
1336 if (ref_b4_sref_en)
1337 value++;
1338
1339 if (cya_allow_ref_cc)
1340 value++;
1341
1342 if (cya_issue_pc_ref)
1343 value++;
1344
1345 if (dram_type != DRAM_TYPE_LPDDR4) {
1346 delay = ((1000 * fake->dram_timings[T_RP] / src_clk_period) +
1347 (1000 * fake->dram_timings[T_RFC] / src_clk_period));
1348 delay = value * delay + 20;
1349 } else {
1350 delay = 0;
1351 }
1352
1353 /*
1354 * Step 11:
1355 * Ramp down.
1356 */
1357 emc_dbg(emc, STEPS, "Step 11\n");
1358
1359 ccfifo_writel(emc, value: 0x0, EMC_CFG_SYNC, delay);
1360
1361 value = emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE | EMC_DBG_WRITE_ACTIVE_ONLY;
1362 ccfifo_writel(emc, value, EMC_DBG, delay: 0);
1363
1364 ramp_down_wait = tegra210_emc_dvfs_power_ramp_down(emc, clk: src_clk_period,
1365 flip_backward: 0);
1366
1367 /*
1368 * Step 12:
1369 * And finally - trigger the clock change.
1370 */
1371 emc_dbg(emc, STEPS, "Step 12\n");
1372
1373 ccfifo_writel(emc, value: 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, delay: 0);
1374 value &= ~EMC_DBG_WRITE_ACTIVE_ONLY;
1375 ccfifo_writel(emc, value, EMC_DBG, delay: 0);
1376
1377 /*
1378 * Step 13:
1379 * Ramp up.
1380 */
1381 emc_dbg(emc, STEPS, "Step 13\n");
1382
1383 ramp_up_wait = tegra210_emc_dvfs_power_ramp_up(emc, clk: dst_clk_period, flip_backward: 0);
1384 ccfifo_writel(emc, value: emc_dbg, EMC_DBG, delay: 0);
1385
1386 /*
1387 * Step 14:
1388 * Bringup CKE pins.
1389 */
1390 emc_dbg(emc, STEPS, "Step 14\n");
1391
1392 if (dram_type == DRAM_TYPE_LPDDR4) {
1393 value = emc_pin | EMC_PIN_PIN_CKE;
1394
1395 if (emc->num_devices <= 1)
1396 value &= ~(EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV);
1397 else
1398 value |= EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV;
1399
1400 ccfifo_writel(emc, value, EMC_PIN, delay: 0);
1401 }
1402
1403 /*
1404 * Step 15: (two step 15s ??)
1405 * Calculate zqlatch wait time; has dependency on ramping times.
1406 */
1407 emc_dbg(emc, STEPS, "Step 15\n");
1408
1409 if (dst_clk_period <= zqcal_before_cc_cutoff) {
1410 s32 t = (s32)(ramp_up_wait + ramp_down_wait) /
1411 (s32)dst_clk_period;
1412 zq_latch_dvfs_wait_time = (s32)tZQCAL_lpddr4_fc_adj - t;
1413 } else {
1414 zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj -
1415 div_o3(a: 1000 * next->dram_timings[T_PDEX],
1416 b: dst_clk_period);
1417 }
1418
1419 emc_dbg(emc, INFO, "tZQCAL_lpddr4_fc_adj = %u\n", tZQCAL_lpddr4_fc_adj);
1420 emc_dbg(emc, INFO, "dst_clk_period = %u\n",
1421 dst_clk_period);
1422 emc_dbg(emc, INFO, "next->dram_timings[T_PDEX] = %u\n",
1423 next->dram_timings[T_PDEX]);
1424 emc_dbg(emc, INFO, "zq_latch_dvfs_wait_time = %d\n",
1425 max_t(s32, 0, zq_latch_dvfs_wait_time));
1426
1427 if (dram_type == DRAM_TYPE_LPDDR4 && opt_zcal_en_cc) {
1428 delay = div_o3(a: 1000 * next->dram_timings[T_PDEX],
1429 b: dst_clk_period);
1430
1431 if (emc->num_devices < 2) {
1432 if (dst_clk_period > zqcal_before_cc_cutoff)
1433 ccfifo_writel(emc,
1434 value: 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1435 EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
1436 delay);
1437
1438 value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
1439 ccfifo_writel(emc, value, EMC_MRW3, delay);
1440 ccfifo_writel(emc, value: 0, EMC_SELF_REF, delay: 0);
1441 ccfifo_writel(emc, value: 0, EMC_REF, delay: 0);
1442 ccfifo_writel(emc, value: 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1443 EMC_ZQ_CAL_ZQ_LATCH_CMD,
1444 EMC_ZQ_CAL,
1445 max_t(s32, 0, zq_latch_dvfs_wait_time));
1446 } else if (shared_zq_resistor) {
1447 if (dst_clk_period > zqcal_before_cc_cutoff)
1448 ccfifo_writel(emc,
1449 value: 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1450 EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
1451 delay);
1452
1453 ccfifo_writel(emc, value: 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1454 EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
1455 max_t(s32, 0, zq_latch_dvfs_wait_time) +
1456 delay);
1457 ccfifo_writel(emc, value: 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1458 EMC_ZQ_CAL_ZQ_LATCH_CMD,
1459 EMC_ZQ_CAL, delay: 0);
1460
1461 value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
1462 ccfifo_writel(emc, value, EMC_MRW3, delay: 0);
1463 ccfifo_writel(emc, value: 0, EMC_SELF_REF, delay: 0);
1464 ccfifo_writel(emc, value: 0, EMC_REF, delay: 0);
1465
1466 ccfifo_writel(emc, value: 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1467 EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
1468 delay: tZQCAL_lpddr4 / dst_clk_period);
1469 } else {
1470 if (dst_clk_period > zqcal_before_cc_cutoff)
1471 ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_CAL_CMD,
1472 EMC_ZQ_CAL, delay);
1473
1474 value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
1475 ccfifo_writel(emc, value, EMC_MRW3, delay);
1476 ccfifo_writel(emc, value: 0, EMC_SELF_REF, delay: 0);
1477 ccfifo_writel(emc, value: 0, EMC_REF, delay: 0);
1478
1479 ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
1480 max_t(s32, 0, zq_latch_dvfs_wait_time));
1481 }
1482 }
1483
1484 /* WAR: delay for zqlatch */
1485 ccfifo_writel(emc, value: 0, offset: 0, delay: 10);
1486
1487 /*
1488 * Step 16:
1489 * LPDDR4 Conditional Training Kickoff. Removed.
1490 */
1491
1492 /*
1493 * Step 17:
1494 * MANSR exit self refresh.
1495 */
1496 emc_dbg(emc, STEPS, "Step 17\n");
1497
1498 if (opt_dvfs_mode == MAN_SR && dram_type != DRAM_TYPE_LPDDR4)
1499 ccfifo_writel(emc, value: 0, EMC_SELF_REF, delay: 0);
1500
1501 /*
1502 * Step 18:
1503 * Send MRWs to LPDDR3/DDR3.
1504 */
1505 emc_dbg(emc, STEPS, "Step 18\n");
1506
1507 if (dram_type == DRAM_TYPE_LPDDR2) {
1508 ccfifo_writel(emc, value: next->emc_mrw2, EMC_MRW2, delay: 0);
1509 ccfifo_writel(emc, value: next->emc_mrw, EMC_MRW, delay: 0);
1510 if (is_lpddr3)
1511 ccfifo_writel(emc, value: next->emc_mrw4, EMC_MRW4, delay: 0);
1512 } else if (dram_type == DRAM_TYPE_DDR3) {
1513 if (opt_dll_mode)
1514 ccfifo_writel(emc, value: next->emc_emrs &
1515 ~EMC_EMRS_USE_EMRS_LONG_CNT, EMC_EMRS, delay: 0);
1516 ccfifo_writel(emc, value: next->emc_emrs2 &
1517 ~EMC_EMRS2_USE_EMRS2_LONG_CNT, EMC_EMRS2, delay: 0);
1518 ccfifo_writel(emc, value: next->emc_mrs |
1519 EMC_EMRS_USE_EMRS_LONG_CNT, EMC_MRS, delay: 0);
1520 }
1521
1522 /*
1523 * Step 19:
1524 * ZQCAL for LPDDR3/DDR3
1525 */
1526 emc_dbg(emc, STEPS, "Step 19\n");
1527
1528 if (opt_zcal_en_cc) {
1529 if (dram_type == DRAM_TYPE_LPDDR2) {
1530 value = opt_cc_short_zcal ? 90000 : 360000;
1531 value = div_o3(a: value, b: dst_clk_period);
1532 value = value <<
1533 EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT |
1534 value <<
1535 EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT;
1536 ccfifo_writel(emc, value, EMC_MRS_WAIT_CNT2, delay: 0);
1537
1538 value = opt_cc_short_zcal ? 0x56 : 0xab;
1539 ccfifo_writel(emc, value: 2 << EMC_MRW_MRW_DEV_SELECTN_SHIFT |
1540 EMC_MRW_USE_MRW_EXT_CNT |
1541 10 << EMC_MRW_MRW_MA_SHIFT |
1542 value << EMC_MRW_MRW_OP_SHIFT,
1543 EMC_MRW, delay: 0);
1544
1545 if (emc->num_devices > 1) {
1546 value = 1 << EMC_MRW_MRW_DEV_SELECTN_SHIFT |
1547 EMC_MRW_USE_MRW_EXT_CNT |
1548 10 << EMC_MRW_MRW_MA_SHIFT |
1549 value << EMC_MRW_MRW_OP_SHIFT;
1550 ccfifo_writel(emc, value, EMC_MRW, delay: 0);
1551 }
1552 } else if (dram_type == DRAM_TYPE_DDR3) {
1553 value = opt_cc_short_zcal ? 0 : EMC_ZQ_CAL_LONG;
1554
1555 ccfifo_writel(emc, value: value |
1556 2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1557 EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
1558 delay: 0);
1559
1560 if (emc->num_devices > 1) {
1561 value = value | 1 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1562 EMC_ZQ_CAL_ZQ_CAL_CMD;
1563 ccfifo_writel(emc, value, EMC_ZQ_CAL, delay: 0);
1564 }
1565 }
1566 }
1567
1568 if (bg_reg_mode_change) {
1569 tegra210_emc_set_shadow_bypass(emc, set: ACTIVE);
1570
1571 if (ramp_up_wait <= 1250000)
1572 delay = (1250000 - ramp_up_wait) / dst_clk_period;
1573 else
1574 delay = 0;
1575
1576 ccfifo_writel(emc,
1577 value: next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX],
1578 EMC_PMACRO_BG_BIAS_CTRL_0, delay);
1579 tegra210_emc_set_shadow_bypass(emc, set: ASSEMBLY);
1580 }
1581
1582 /*
1583 * Step 20:
1584 * Issue ref and optional QRST.
1585 */
1586 emc_dbg(emc, STEPS, "Step 20\n");
1587
1588 if (dram_type != DRAM_TYPE_LPDDR4)
1589 ccfifo_writel(emc, value: 0, EMC_REF, delay: 0);
1590
1591 if (opt_do_sw_qrst) {
1592 ccfifo_writel(emc, value: 1, EMC_ISSUE_QRST, delay: 0);
1593 ccfifo_writel(emc, value: 0, EMC_ISSUE_QRST, delay: 2);
1594 }
1595
1596 /*
1597 * Step 21:
1598 * Restore ZCAL and ZCAL interval.
1599 */
1600 emc_dbg(emc, STEPS, "Step 21\n");
1601
1602 if (save_restore_clkstop_pd || opt_zcal_en_cc) {
1603 ccfifo_writel(emc, value: emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE,
1604 EMC_DBG, delay: 0);
1605 if (opt_zcal_en_cc && dram_type != DRAM_TYPE_LPDDR4)
1606 ccfifo_writel(emc, value: next->burst_regs[EMC_ZCAL_INTERVAL_INDEX],
1607 EMC_ZCAL_INTERVAL, delay: 0);
1608
1609 if (save_restore_clkstop_pd)
1610 ccfifo_writel(emc, value: next->burst_regs[EMC_CFG_INDEX] &
1611 ~EMC_CFG_DYN_SELF_REF,
1612 EMC_CFG, delay: 0);
1613 ccfifo_writel(emc, value: emc_dbg, EMC_DBG, delay: 0);
1614 }
1615
1616 /*
1617 * Step 22:
1618 * Restore EMC_CFG_PIPE_CLK.
1619 */
1620 emc_dbg(emc, STEPS, "Step 22\n");
1621
1622 ccfifo_writel(emc, value: emc_cfg_pipe_clk, EMC_CFG_PIPE_CLK, delay: 0);
1623
1624 if (bg_reg_mode_change) {
1625 if (enable_bg_reg)
1626 emc_writel(emc,
1627 value: next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
1628 ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD,
1629 EMC_PMACRO_BG_BIAS_CTRL_0);
1630 else
1631 emc_writel(emc,
1632 value: next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
1633 ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD,
1634 EMC_PMACRO_BG_BIAS_CTRL_0);
1635 }
1636
1637 /*
1638 * Step 23:
1639 */
1640 emc_dbg(emc, STEPS, "Step 23\n");
1641
1642 value = emc_readl(emc, EMC_CFG_DIG_DLL);
1643 value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
1644 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
1645 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
1646 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
1647 value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) |
1648 (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
1649 emc_writel(emc, value, EMC_CFG_DIG_DLL);
1650
1651 tegra210_emc_do_clock_change(emc, clksrc);
1652
1653 /*
1654 * Step 24:
1655 * Save training results. Removed.
1656 */
1657
1658 /*
1659 * Step 25:
1660 * Program MC updown registers.
1661 */
1662 emc_dbg(emc, STEPS, "Step 25\n");
1663
1664 if (next->rate > last->rate) {
1665 for (i = 0; i < next->num_up_down; i++)
1666 mc_writel(mc: emc->mc, value: next->la_scale_regs[i],
1667 offset: emc->offsets->la_scale[i]);
1668
1669 tegra210_emc_timing_update(emc);
1670 }
1671
1672 /*
1673 * Step 26:
1674 * Restore ZCAL registers.
1675 */
1676 emc_dbg(emc, STEPS, "Step 26\n");
1677
1678 if (dram_type == DRAM_TYPE_LPDDR4) {
1679 tegra210_emc_set_shadow_bypass(emc, set: ACTIVE);
1680 emc_writel(emc, value: next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX],
1681 EMC_ZCAL_WAIT_CNT);
1682 emc_writel(emc, value: next->burst_regs[EMC_ZCAL_INTERVAL_INDEX],
1683 EMC_ZCAL_INTERVAL);
1684 tegra210_emc_set_shadow_bypass(emc, set: ASSEMBLY);
1685 }
1686
1687 if (dram_type != DRAM_TYPE_LPDDR4 && opt_zcal_en_cc &&
1688 !opt_short_zcal && opt_cc_short_zcal) {
1689 udelay(2);
1690
1691 tegra210_emc_set_shadow_bypass(emc, set: ACTIVE);
1692 if (dram_type == DRAM_TYPE_LPDDR2)
1693 emc_writel(emc, value: next->burst_regs[EMC_MRS_WAIT_CNT_INDEX],
1694 EMC_MRS_WAIT_CNT);
1695 else if (dram_type == DRAM_TYPE_DDR3)
1696 emc_writel(emc, value: next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX],
1697 EMC_ZCAL_WAIT_CNT);
1698 tegra210_emc_set_shadow_bypass(emc, set: ASSEMBLY);
1699 }
1700
1701 /*
1702 * Step 27:
1703 * Restore EMC_CFG, FDPD registers.
1704 */
1705 emc_dbg(emc, STEPS, "Step 27\n");
1706
1707 tegra210_emc_set_shadow_bypass(emc, set: ACTIVE);
1708 emc_writel(emc, value: next->burst_regs[EMC_CFG_INDEX], EMC_CFG);
1709 tegra210_emc_set_shadow_bypass(emc, set: ASSEMBLY);
1710 emc_writel(emc, value: next->emc_fdpd_ctrl_cmd_no_ramp,
1711 EMC_FDPD_CTRL_CMD_NO_RAMP);
1712 emc_writel(emc, value: next->emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
1713
1714 /*
1715 * Step 28:
1716 * Training recover. Removed.
1717 */
1718 emc_dbg(emc, STEPS, "Step 28\n");
1719
1720 tegra210_emc_set_shadow_bypass(emc, set: ACTIVE);
1721 emc_writel(emc,
1722 value: next->burst_regs[EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX],
1723 EMC_PMACRO_AUTOCAL_CFG_COMMON);
1724 tegra210_emc_set_shadow_bypass(emc, set: ASSEMBLY);
1725
1726 /*
1727 * Step 29:
1728 * Power fix WAR.
1729 */
1730 emc_dbg(emc, STEPS, "Step 29\n");
1731
1732 emc_writel(emc, EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 |
1733 EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 |
1734 EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 |
1735 EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 |
1736 EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 |
1737 EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 |
1738 EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 |
1739 EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7,
1740 EMC_PMACRO_CFG_PM_GLOBAL_0);
1741 emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR,
1742 EMC_PMACRO_TRAINING_CTRL_0);
1743 emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR,
1744 EMC_PMACRO_TRAINING_CTRL_1);
1745 emc_writel(emc, value: 0, EMC_PMACRO_CFG_PM_GLOBAL_0);
1746
1747 /*
1748 * Step 30:
1749 * Re-enable autocal.
1750 */
1751 emc_dbg(emc, STEPS, "Step 30: Re-enable DLL and AUTOCAL\n");
1752
1753 if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & EMC_CFG_DIG_DLL_CFG_DLL_EN) {
1754 value = emc_readl(emc, EMC_CFG_DIG_DLL);
1755 value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
1756 value |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
1757 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
1758 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
1759 value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) |
1760 (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
1761 emc_writel(emc, value, EMC_CFG_DIG_DLL);
1762 tegra210_emc_timing_update(emc);
1763 }
1764
1765 emc_writel(emc, value: next->emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
1766
1767 /* Done! Yay. */
1768}
1769
1770const struct tegra210_emc_sequence tegra210_emc_r21021 = {
1771 .revision = 0x7,
1772 .set_clock = tegra210_emc_r21021_set_clock,
1773 .periodic_compensation = tegra210_emc_r21021_periodic_compensation,
1774};
1775

source code of linux/drivers/memory/tegra/tegra210-emc-cc-r21021.c