1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21#include <linux/moduleparam.h>
22#include <linux/module.h>
23#include <linux/init.h>
24
25#include <linux/kernel.h>
26#include <linux/fs.h>
27#include <linux/slab.h>
28#include <linux/errno.h>
29#include <linux/hdreg.h>
30#include <linux/kdev_t.h>
31#include <linux/kref.h>
32#include <linux/blkdev.h>
33#include <linux/cdev.h>
34#include <linux/mutex.h>
35#include <linux/scatterlist.h>
36#include <linux/string_helpers.h>
37#include <linux/delay.h>
38#include <linux/capability.h>
39#include <linux/compat.h>
40#include <linux/pm_runtime.h>
41#include <linux/idr.h>
42#include <linux/debugfs.h>
43
44#include <linux/mmc/ioctl.h>
45#include <linux/mmc/card.h>
46#include <linux/mmc/host.h>
47#include <linux/mmc/mmc.h>
48#include <linux/mmc/sd.h>
49
50#include <linux/uaccess.h>
51
52#include "queue.h"
53#include "block.h"
54#include "core.h"
55#include "card.h"
56#include "crypto.h"
57#include "host.h"
58#include "bus.h"
59#include "mmc_ops.h"
60#include "quirks.h"
61#include "sd_ops.h"
62
63MODULE_ALIAS("mmc:block");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "mmcblk."
68
69/*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75#define MMC_BLK_TIMEOUT_MS (10 * 1000)
76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79static DEFINE_MUTEX(block_mutex);
80
81/*
82 * The defaults come from config options but can be overriden by module
83 * or bootarg options.
84 */
85static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86
87/*
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
91 */
92static int max_devices;
93
94#define MAX_DEVICES 256
95
96static DEFINE_IDA(mmc_blk_ida);
97static DEFINE_IDA(mmc_rpmb_ida);
98
99struct mmc_blk_busy_data {
100 struct mmc_card *card;
101 u32 status;
102};
103
104/*
105 * There is one mmc_blk_data per slot.
106 */
107struct mmc_blk_data {
108 struct device *parent;
109 struct gendisk *disk;
110 struct mmc_queue queue;
111 struct list_head part;
112 struct list_head rpmbs;
113
114 unsigned int flags;
115#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
116#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
117
118 struct kref kref;
119 unsigned int read_only;
120 unsigned int part_type;
121 unsigned int reset_done;
122#define MMC_BLK_READ BIT(0)
123#define MMC_BLK_WRITE BIT(1)
124#define MMC_BLK_DISCARD BIT(2)
125#define MMC_BLK_SECDISCARD BIT(3)
126#define MMC_BLK_CQE_RECOVERY BIT(4)
127#define MMC_BLK_TRIM BIT(5)
128
129 /*
130 * Only set in main mmc_blk_data associated
131 * with mmc_card with dev_set_drvdata, and keeps
132 * track of the current selected device partition.
133 */
134 unsigned int part_curr;
135#define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
136 int area_type;
137
138 /* debugfs files (only in main mmc_blk_data) */
139 struct dentry *status_dentry;
140 struct dentry *ext_csd_dentry;
141};
142
143/* Device type for RPMB character devices */
144static dev_t mmc_rpmb_devt;
145
146/* Bus type for RPMB character devices */
147static const struct bus_type mmc_rpmb_bus_type = {
148 .name = "mmc_rpmb",
149};
150
151/**
152 * struct mmc_rpmb_data - special RPMB device type for these areas
153 * @dev: the device for the RPMB area
154 * @chrdev: character device for the RPMB area
155 * @id: unique device ID number
156 * @part_index: partition index (0 on first)
157 * @md: parent MMC block device
158 * @node: list item, so we can put this device on a list
159 */
160struct mmc_rpmb_data {
161 struct device dev;
162 struct cdev chrdev;
163 int id;
164 unsigned int part_index;
165 struct mmc_blk_data *md;
166 struct list_head node;
167};
168
169static DEFINE_MUTEX(open_lock);
170
171module_param(perdev_minors, int, 0444);
172MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173
174static inline int mmc_blk_part_switch(struct mmc_card *card,
175 unsigned int part_type);
176static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 struct mmc_card *card,
178 int recovery_mode,
179 struct mmc_queue *mq);
180static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181static int mmc_spi_err_check(struct mmc_card *card);
182static int mmc_blk_busy_cb(void *cb_data, bool *busy);
183
184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185{
186 struct mmc_blk_data *md;
187
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(kref: &md->kref))
191 md = NULL;
192 mutex_unlock(lock: &open_lock);
193
194 return md;
195}
196
197static inline int mmc_get_devidx(struct gendisk *disk)
198{
199 int devidx = disk->first_minor / perdev_minors;
200 return devidx;
201}
202
203static void mmc_blk_kref_release(struct kref *ref)
204{
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 int devidx;
207
208 devidx = mmc_get_devidx(disk: md->disk);
209 ida_free(&mmc_blk_ida, id: devidx);
210
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(lock: &open_lock);
214
215 put_disk(disk: md->disk);
216 kfree(objp: md);
217}
218
219static void mmc_blk_put(struct mmc_blk_data *md)
220{
221 kref_put(kref: &md->kref, release: mmc_blk_kref_release);
222}
223
224static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226{
227 int ret;
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
230 int locked = 0;
231
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 locked = 2;
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 locked = 1;
236
237 ret = snprintf(buf, PAGE_SIZE, fmt: "%d\n", locked);
238
239 mmc_blk_put(md);
240
241 return ret;
242}
243
244static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
246{
247 int ret;
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
250 struct request *req;
251 unsigned long set;
252
253 if (kstrtoul(s: buf, base: 0, res: &set))
254 return -EINVAL;
255
256 if (set != 1)
257 return count;
258
259 md = mmc_blk_get(dev_to_disk(dev));
260 mq = &md->queue;
261
262 /* Dispatch locking to the block layer */
263 req = blk_mq_alloc_request(q: mq->queue, opf: REQ_OP_DRV_OUT, flags: 0);
264 if (IS_ERR(ptr: req)) {
265 count = PTR_ERR(ptr: req);
266 goto out_put;
267 }
268 req_to_mmc_queue_req(rq: req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 req_to_mmc_queue_req(rq: req)->drv_op_result = -EIO;
270 blk_execute_rq(rq: req, at_head: false);
271 ret = req_to_mmc_queue_req(rq: req)->drv_op_result;
272 blk_mq_free_request(rq: req);
273
274 if (!ret) {
275 pr_info("%s: Locking boot partition ro until next power on\n",
276 md->disk->disk_name);
277 set_disk_ro(disk: md->disk, read_only: 1);
278
279 list_for_each_entry(part_md, &md->part, part)
280 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
281 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
282 set_disk_ro(disk: part_md->disk, read_only: 1);
283 }
284 }
285out_put:
286 mmc_blk_put(md);
287 return count;
288}
289
290static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
291 power_ro_lock_show, power_ro_lock_store);
292
293static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
294 char *buf)
295{
296 int ret;
297 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
298
299 ret = snprintf(buf, PAGE_SIZE, fmt: "%d\n",
300 get_disk_ro(dev_to_disk(dev)) ^
301 md->read_only);
302 mmc_blk_put(md);
303 return ret;
304}
305
306static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
307 const char *buf, size_t count)
308{
309 int ret;
310 char *end;
311 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
312 unsigned long set = simple_strtoul(buf, &end, 0);
313 if (end == buf) {
314 ret = -EINVAL;
315 goto out;
316 }
317
318 set_disk_ro(dev_to_disk(dev), read_only: set || md->read_only);
319 ret = count;
320out:
321 mmc_blk_put(md);
322 return ret;
323}
324
325static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
326
327static struct attribute *mmc_disk_attrs[] = {
328 &dev_attr_force_ro.attr,
329 &dev_attr_ro_lock_until_next_power_on.attr,
330 NULL,
331};
332
333static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
334 struct attribute *a, int n)
335{
336 struct device *dev = kobj_to_dev(kobj);
337 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
338 umode_t mode = a->mode;
339
340 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
341 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
342 md->queue.card->ext_csd.boot_ro_lockable) {
343 mode = S_IRUGO;
344 if (!(md->queue.card->ext_csd.boot_ro_lock &
345 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
346 mode |= S_IWUSR;
347 }
348
349 mmc_blk_put(md);
350 return mode;
351}
352
353static const struct attribute_group mmc_disk_attr_group = {
354 .is_visible = mmc_disk_attrs_is_visible,
355 .attrs = mmc_disk_attrs,
356};
357
358static const struct attribute_group *mmc_disk_attr_groups[] = {
359 &mmc_disk_attr_group,
360 NULL,
361};
362
363static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
364{
365 struct mmc_blk_data *md = mmc_blk_get(disk);
366 int ret = -ENXIO;
367
368 mutex_lock(&block_mutex);
369 if (md) {
370 ret = 0;
371 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
372 mmc_blk_put(md);
373 ret = -EROFS;
374 }
375 }
376 mutex_unlock(lock: &block_mutex);
377
378 return ret;
379}
380
381static void mmc_blk_release(struct gendisk *disk)
382{
383 struct mmc_blk_data *md = disk->private_data;
384
385 mutex_lock(&block_mutex);
386 mmc_blk_put(md);
387 mutex_unlock(lock: &block_mutex);
388}
389
390static int
391mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392{
393 geo->cylinders = get_capacity(disk: bdev->bd_disk) / (4 * 16);
394 geo->heads = 4;
395 geo->sectors = 16;
396 return 0;
397}
398
399struct mmc_blk_ioc_data {
400 struct mmc_ioc_cmd ic;
401 unsigned char *buf;
402 u64 buf_bytes;
403 unsigned int flags;
404#define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
405#define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
406
407 struct mmc_rpmb_data *rpmb;
408};
409
410static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
411 struct mmc_ioc_cmd __user *user)
412{
413 struct mmc_blk_ioc_data *idata;
414 int err;
415
416 idata = kzalloc(size: sizeof(*idata), GFP_KERNEL);
417 if (!idata) {
418 err = -ENOMEM;
419 goto out;
420 }
421
422 if (copy_from_user(to: &idata->ic, from: user, n: sizeof(idata->ic))) {
423 err = -EFAULT;
424 goto idata_err;
425 }
426
427 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
428 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
429 err = -EOVERFLOW;
430 goto idata_err;
431 }
432
433 if (!idata->buf_bytes) {
434 idata->buf = NULL;
435 return idata;
436 }
437
438 idata->buf = memdup_user((void __user *)(unsigned long)
439 idata->ic.data_ptr, idata->buf_bytes);
440 if (IS_ERR(ptr: idata->buf)) {
441 err = PTR_ERR(ptr: idata->buf);
442 goto idata_err;
443 }
444
445 return idata;
446
447idata_err:
448 kfree(objp: idata);
449out:
450 return ERR_PTR(error: err);
451}
452
453static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
454 struct mmc_blk_ioc_data *idata)
455{
456 struct mmc_ioc_cmd *ic = &idata->ic;
457
458 if (copy_to_user(to: &(ic_ptr->response), from: ic->response,
459 n: sizeof(ic->response)))
460 return -EFAULT;
461
462 if (!idata->ic.write_flag) {
463 if (copy_to_user(to: (void __user *)(unsigned long)ic->data_ptr,
464 from: idata->buf, n: idata->buf_bytes))
465 return -EFAULT;
466 }
467
468 return 0;
469}
470
471static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 struct mmc_blk_ioc_data **idatas, int i)
473{
474 struct mmc_command cmd = {}, sbc = {};
475 struct mmc_data data = {};
476 struct mmc_request mrq = {};
477 struct scatterlist sg;
478 bool r1b_resp;
479 unsigned int busy_timeout_ms;
480 int err;
481 unsigned int target_part;
482 struct mmc_blk_ioc_data *idata = idatas[i];
483 struct mmc_blk_ioc_data *prev_idata = NULL;
484
485 if (!card || !md || !idata)
486 return -EINVAL;
487
488 if (idata->flags & MMC_BLK_IOC_DROP)
489 return 0;
490
491 if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
492 prev_idata = idatas[i - 1];
493
494 /*
495 * The RPMB accesses comes in from the character device, so we
496 * need to target these explicitly. Else we just target the
497 * partition type for the block device the ioctl() was issued
498 * on.
499 */
500 if (idata->rpmb) {
501 /* Support multiple RPMB partitions */
502 target_part = idata->rpmb->part_index;
503 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
504 } else {
505 target_part = md->part_type;
506 }
507
508 cmd.opcode = idata->ic.opcode;
509 cmd.arg = idata->ic.arg;
510 cmd.flags = idata->ic.flags;
511
512 if (idata->buf_bytes) {
513 data.sg = &sg;
514 data.sg_len = 1;
515 data.blksz = idata->ic.blksz;
516 data.blocks = idata->ic.blocks;
517
518 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
519
520 if (idata->ic.write_flag)
521 data.flags = MMC_DATA_WRITE;
522 else
523 data.flags = MMC_DATA_READ;
524
525 /* data.flags must already be set before doing this. */
526 mmc_set_data_timeout(data: &data, card);
527
528 /* Allow overriding the timeout_ns for empirical tuning. */
529 if (idata->ic.data_timeout_ns)
530 data.timeout_ns = idata->ic.data_timeout_ns;
531
532 mrq.data = &data;
533 }
534
535 mrq.cmd = &cmd;
536
537 err = mmc_blk_part_switch(card, part_type: target_part);
538 if (err)
539 return err;
540
541 if (idata->ic.is_acmd) {
542 err = mmc_app_cmd(host: card->host, card);
543 if (err)
544 return err;
545 }
546
547 if (idata->rpmb || prev_idata) {
548 sbc.opcode = MMC_SET_BLOCK_COUNT;
549 /*
550 * We don't do any blockcount validation because the max size
551 * may be increased by a future standard. We just copy the
552 * 'Reliable Write' bit here.
553 */
554 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
555 if (prev_idata)
556 sbc.arg = prev_idata->ic.arg;
557 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
558 mrq.sbc = &sbc;
559 }
560
561 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
562 (cmd.opcode == MMC_SWITCH))
563 return mmc_sanitize(card, timeout_ms: idata->ic.cmd_timeout_ms);
564
565 /* If it's an R1B response we need some more preparations. */
566 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
567 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
568 if (r1b_resp)
569 mmc_prepare_busy_cmd(host: card->host, cmd: &cmd, timeout_ms: busy_timeout_ms);
570
571 mmc_wait_for_req(host: card->host, mrq: &mrq);
572 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
573
574 if (prev_idata) {
575 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
576 if (sbc.error) {
577 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
578 __func__, sbc.error);
579 return sbc.error;
580 }
581 }
582
583 if (cmd.error) {
584 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
585 __func__, cmd.error);
586 return cmd.error;
587 }
588 if (data.error) {
589 dev_err(mmc_dev(card->host), "%s: data error %d\n",
590 __func__, data.error);
591 return data.error;
592 }
593
594 /*
595 * Make sure the cache of the PARTITION_CONFIG register and
596 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
597 * changed it successfully.
598 */
599 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
600 (cmd.opcode == MMC_SWITCH)) {
601 struct mmc_blk_data *main_md = dev_get_drvdata(dev: &card->dev);
602 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
603
604 /*
605 * Update cache so the next mmc_blk_part_switch call operates
606 * on up-to-date data.
607 */
608 card->ext_csd.part_config = value;
609 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
610 }
611
612 /*
613 * Make sure to update CACHE_CTRL in case it was changed. The cache
614 * will get turned back on if the card is re-initialized, e.g.
615 * suspend/resume or hw reset in recovery.
616 */
617 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
618 (cmd.opcode == MMC_SWITCH)) {
619 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
620
621 card->ext_csd.cache_ctrl = value;
622 }
623
624 /*
625 * According to the SD specs, some commands require a delay after
626 * issuing the command.
627 */
628 if (idata->ic.postsleep_min_us)
629 usleep_range(min: idata->ic.postsleep_min_us, max: idata->ic.postsleep_max_us);
630
631 if (mmc_host_is_spi(card->host)) {
632 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
633 return mmc_spi_err_check(card);
634 return err;
635 }
636
637 /*
638 * Ensure RPMB, writes and R1B responses are completed by polling with
639 * CMD13. Note that, usually we don't need to poll when using HW busy
640 * detection, but here it's needed since some commands may indicate the
641 * error through the R1 status bits.
642 */
643 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
644 struct mmc_blk_busy_data cb_data = {
645 .card = card,
646 };
647
648 err = __mmc_poll_for_busy(host: card->host, period_us: 0, timeout_ms: busy_timeout_ms,
649 busy_cb: &mmc_blk_busy_cb, cb_data: &cb_data);
650
651 idata->ic.response[0] = cb_data.status;
652 }
653
654 return err;
655}
656
657static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
658 struct mmc_ioc_cmd __user *ic_ptr,
659 struct mmc_rpmb_data *rpmb)
660{
661 struct mmc_blk_ioc_data *idata;
662 struct mmc_blk_ioc_data *idatas[1];
663 struct mmc_queue *mq;
664 struct mmc_card *card;
665 int err = 0, ioc_err = 0;
666 struct request *req;
667
668 idata = mmc_blk_ioctl_copy_from_user(user: ic_ptr);
669 if (IS_ERR(ptr: idata))
670 return PTR_ERR(ptr: idata);
671 /* This will be NULL on non-RPMB ioctl():s */
672 idata->rpmb = rpmb;
673
674 card = md->queue.card;
675 if (IS_ERR(ptr: card)) {
676 err = PTR_ERR(ptr: card);
677 goto cmd_done;
678 }
679
680 /*
681 * Dispatch the ioctl() into the block request queue.
682 */
683 mq = &md->queue;
684 req = blk_mq_alloc_request(q: mq->queue,
685 opf: idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, flags: 0);
686 if (IS_ERR(ptr: req)) {
687 err = PTR_ERR(ptr: req);
688 goto cmd_done;
689 }
690 idatas[0] = idata;
691 req_to_mmc_queue_req(rq: req)->drv_op =
692 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
693 req_to_mmc_queue_req(rq: req)->drv_op_result = -EIO;
694 req_to_mmc_queue_req(rq: req)->drv_op_data = idatas;
695 req_to_mmc_queue_req(rq: req)->ioc_count = 1;
696 blk_execute_rq(rq: req, at_head: false);
697 ioc_err = req_to_mmc_queue_req(rq: req)->drv_op_result;
698 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
699 blk_mq_free_request(rq: req);
700
701cmd_done:
702 kfree(objp: idata->buf);
703 kfree(objp: idata);
704 return ioc_err ? ioc_err : err;
705}
706
707static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
708 struct mmc_ioc_multi_cmd __user *user,
709 struct mmc_rpmb_data *rpmb)
710{
711 struct mmc_blk_ioc_data **idata = NULL;
712 struct mmc_ioc_cmd __user *cmds = user->cmds;
713 struct mmc_card *card;
714 struct mmc_queue *mq;
715 int err = 0, ioc_err = 0;
716 __u64 num_of_cmds;
717 unsigned int i, n;
718 struct request *req;
719
720 if (copy_from_user(to: &num_of_cmds, from: &user->num_of_cmds,
721 n: sizeof(num_of_cmds)))
722 return -EFAULT;
723
724 if (!num_of_cmds)
725 return 0;
726
727 if (num_of_cmds > MMC_IOC_MAX_CMDS)
728 return -EINVAL;
729
730 n = num_of_cmds;
731 idata = kcalloc(n, size: sizeof(*idata), GFP_KERNEL);
732 if (!idata)
733 return -ENOMEM;
734
735 for (i = 0; i < n; i++) {
736 idata[i] = mmc_blk_ioctl_copy_from_user(user: &cmds[i]);
737 if (IS_ERR(ptr: idata[i])) {
738 err = PTR_ERR(ptr: idata[i]);
739 n = i;
740 goto cmd_err;
741 }
742 /* This will be NULL on non-RPMB ioctl():s */
743 idata[i]->rpmb = rpmb;
744 }
745
746 card = md->queue.card;
747 if (IS_ERR(ptr: card)) {
748 err = PTR_ERR(ptr: card);
749 goto cmd_err;
750 }
751
752
753 /*
754 * Dispatch the ioctl()s into the block request queue.
755 */
756 mq = &md->queue;
757 req = blk_mq_alloc_request(q: mq->queue,
758 opf: idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, flags: 0);
759 if (IS_ERR(ptr: req)) {
760 err = PTR_ERR(ptr: req);
761 goto cmd_err;
762 }
763 req_to_mmc_queue_req(rq: req)->drv_op =
764 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
765 req_to_mmc_queue_req(rq: req)->drv_op_result = -EIO;
766 req_to_mmc_queue_req(rq: req)->drv_op_data = idata;
767 req_to_mmc_queue_req(rq: req)->ioc_count = n;
768 blk_execute_rq(rq: req, at_head: false);
769 ioc_err = req_to_mmc_queue_req(rq: req)->drv_op_result;
770
771 /* copy to user if data and response */
772 for (i = 0; i < n && !err; i++)
773 err = mmc_blk_ioctl_copy_to_user(ic_ptr: &cmds[i], idata: idata[i]);
774
775 blk_mq_free_request(rq: req);
776
777cmd_err:
778 for (i = 0; i < n; i++) {
779 kfree(objp: idata[i]->buf);
780 kfree(objp: idata[i]);
781 }
782 kfree(objp: idata);
783 return ioc_err ? ioc_err : err;
784}
785
786static int mmc_blk_check_blkdev(struct block_device *bdev)
787{
788 /*
789 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
790 * whole block device, not on a partition. This prevents overspray
791 * between sibling partitions.
792 */
793 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
794 return -EPERM;
795 return 0;
796}
797
798static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
799 unsigned int cmd, unsigned long arg)
800{
801 struct mmc_blk_data *md;
802 int ret;
803
804 switch (cmd) {
805 case MMC_IOC_CMD:
806 ret = mmc_blk_check_blkdev(bdev);
807 if (ret)
808 return ret;
809 md = mmc_blk_get(disk: bdev->bd_disk);
810 if (!md)
811 return -EINVAL;
812 ret = mmc_blk_ioctl_cmd(md,
813 ic_ptr: (struct mmc_ioc_cmd __user *)arg,
814 NULL);
815 mmc_blk_put(md);
816 return ret;
817 case MMC_IOC_MULTI_CMD:
818 ret = mmc_blk_check_blkdev(bdev);
819 if (ret)
820 return ret;
821 md = mmc_blk_get(disk: bdev->bd_disk);
822 if (!md)
823 return -EINVAL;
824 ret = mmc_blk_ioctl_multi_cmd(md,
825 user: (struct mmc_ioc_multi_cmd __user *)arg,
826 NULL);
827 mmc_blk_put(md);
828 return ret;
829 default:
830 return -EINVAL;
831 }
832}
833
834#ifdef CONFIG_COMPAT
835static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
836 unsigned int cmd, unsigned long arg)
837{
838 return mmc_blk_ioctl(bdev, mode, cmd, arg: (unsigned long) compat_ptr(uptr: arg));
839}
840#endif
841
842static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
843 sector_t *sector)
844{
845 struct mmc_blk_data *md;
846 int ret;
847
848 md = mmc_blk_get(disk);
849 if (!md)
850 return -EINVAL;
851
852 if (md->queue.card)
853 ret = mmc_card_alternative_gpt_sector(card: md->queue.card, sector);
854 else
855 ret = -ENODEV;
856
857 mmc_blk_put(md);
858
859 return ret;
860}
861
862static const struct block_device_operations mmc_bdops = {
863 .open = mmc_blk_open,
864 .release = mmc_blk_release,
865 .getgeo = mmc_blk_getgeo,
866 .owner = THIS_MODULE,
867 .ioctl = mmc_blk_ioctl,
868#ifdef CONFIG_COMPAT
869 .compat_ioctl = mmc_blk_compat_ioctl,
870#endif
871 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
872};
873
874static int mmc_blk_part_switch_pre(struct mmc_card *card,
875 unsigned int part_type)
876{
877 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
878 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
879 int ret = 0;
880
881 if ((part_type & mask) == rpmb) {
882 if (card->ext_csd.cmdq_en) {
883 ret = mmc_cmdq_disable(card);
884 if (ret)
885 return ret;
886 }
887 mmc_retune_pause(host: card->host);
888 }
889
890 return ret;
891}
892
893static int mmc_blk_part_switch_post(struct mmc_card *card,
894 unsigned int part_type)
895{
896 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
897 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
898 int ret = 0;
899
900 if ((part_type & mask) == rpmb) {
901 mmc_retune_unpause(host: card->host);
902 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
903 ret = mmc_cmdq_enable(card);
904 }
905
906 return ret;
907}
908
909static inline int mmc_blk_part_switch(struct mmc_card *card,
910 unsigned int part_type)
911{
912 int ret = 0;
913 struct mmc_blk_data *main_md = dev_get_drvdata(dev: &card->dev);
914
915 if (main_md->part_curr == part_type)
916 return 0;
917
918 if (mmc_card_mmc(card)) {
919 u8 part_config = card->ext_csd.part_config;
920
921 ret = mmc_blk_part_switch_pre(card, part_type);
922 if (ret)
923 return ret;
924
925 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
926 part_config |= part_type;
927
928 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
929 EXT_CSD_PART_CONFIG, value: part_config,
930 timeout_ms: card->ext_csd.part_time);
931 if (ret) {
932 mmc_blk_part_switch_post(card, part_type);
933 return ret;
934 }
935
936 card->ext_csd.part_config = part_config;
937
938 ret = mmc_blk_part_switch_post(card, part_type: main_md->part_curr);
939 }
940
941 main_md->part_curr = part_type;
942 return ret;
943}
944
945static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
946{
947 int err;
948 u32 result;
949 __be32 *blocks;
950
951 struct mmc_request mrq = {};
952 struct mmc_command cmd = {};
953 struct mmc_data data = {};
954
955 struct scatterlist sg;
956
957 err = mmc_app_cmd(host: card->host, card);
958 if (err)
959 return err;
960
961 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
962 cmd.arg = 0;
963 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
964
965 data.blksz = 4;
966 data.blocks = 1;
967 data.flags = MMC_DATA_READ;
968 data.sg = &sg;
969 data.sg_len = 1;
970 mmc_set_data_timeout(data: &data, card);
971
972 mrq.cmd = &cmd;
973 mrq.data = &data;
974
975 blocks = kmalloc(size: 4, GFP_KERNEL);
976 if (!blocks)
977 return -ENOMEM;
978
979 sg_init_one(&sg, blocks, 4);
980
981 mmc_wait_for_req(host: card->host, mrq: &mrq);
982
983 result = ntohl(*blocks);
984 kfree(objp: blocks);
985
986 if (cmd.error || data.error)
987 return -EIO;
988
989 *written_blocks = result;
990
991 return 0;
992}
993
994static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
995{
996 if (host->actual_clock)
997 return host->actual_clock / 1000;
998
999 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
1000 if (host->ios.clock)
1001 return host->ios.clock / 2000;
1002
1003 /* How can there be no clock */
1004 WARN_ON_ONCE(1);
1005 return 100; /* 100 kHz is minimum possible value */
1006}
1007
1008static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1009 struct mmc_data *data)
1010{
1011 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1012 unsigned int khz;
1013
1014 if (data->timeout_clks) {
1015 khz = mmc_blk_clock_khz(host);
1016 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1017 }
1018
1019 return ms;
1020}
1021
1022/*
1023 * Attempts to reset the card and get back to the requested partition.
1024 * Therefore any error here must result in cancelling the block layer
1025 * request, it must not be reattempted without going through the mmc_blk
1026 * partition sanity checks.
1027 */
1028static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1029 int type)
1030{
1031 int err;
1032 struct mmc_blk_data *main_md = dev_get_drvdata(dev: &host->card->dev);
1033
1034 if (md->reset_done & type)
1035 return -EEXIST;
1036
1037 md->reset_done |= type;
1038 err = mmc_hw_reset(card: host->card);
1039 /*
1040 * A successful reset will leave the card in the main partition, but
1041 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1042 * in that case.
1043 */
1044 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1045 if (err)
1046 return err;
1047 /* Ensure we switch back to the correct partition */
1048 if (mmc_blk_part_switch(card: host->card, part_type: md->part_type))
1049 /*
1050 * We have failed to get back into the correct
1051 * partition, so we need to abort the whole request.
1052 */
1053 return -ENODEV;
1054 return 0;
1055}
1056
1057static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1058{
1059 md->reset_done &= ~type;
1060}
1061
1062static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1063{
1064 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1065 int i;
1066
1067 for (i = 1; i < mq_rq->ioc_count; i++) {
1068 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1069 mmc_op_multi(opcode: idata[i]->ic.opcode)) {
1070 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1071 idata[i]->flags |= MMC_BLK_IOC_SBC;
1072 }
1073 }
1074}
1075
1076/*
1077 * The non-block commands come back from the block layer after it queued it and
1078 * processed it with all other requests and then they get issued in this
1079 * function.
1080 */
1081static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1082{
1083 struct mmc_queue_req *mq_rq;
1084 struct mmc_card *card = mq->card;
1085 struct mmc_blk_data *md = mq->blkdata;
1086 struct mmc_blk_ioc_data **idata;
1087 bool rpmb_ioctl;
1088 u8 **ext_csd;
1089 u32 status;
1090 int ret;
1091 int i;
1092
1093 mq_rq = req_to_mmc_queue_req(rq: req);
1094 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1095
1096 switch (mq_rq->drv_op) {
1097 case MMC_DRV_OP_IOCTL:
1098 if (card->ext_csd.cmdq_en) {
1099 ret = mmc_cmdq_disable(card);
1100 if (ret)
1101 break;
1102 }
1103
1104 mmc_blk_check_sbc(mq_rq);
1105
1106 fallthrough;
1107 case MMC_DRV_OP_IOCTL_RPMB:
1108 idata = mq_rq->drv_op_data;
1109 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1110 ret = __mmc_blk_ioctl_cmd(card, md, idatas: idata, i);
1111 if (ret)
1112 break;
1113 }
1114 /* Always switch back to main area after RPMB access */
1115 if (rpmb_ioctl)
1116 mmc_blk_part_switch(card, part_type: 0);
1117 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1118 mmc_cmdq_enable(card);
1119 break;
1120 case MMC_DRV_OP_BOOT_WP:
1121 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1122 value: card->ext_csd.boot_ro_lock |
1123 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1124 timeout_ms: card->ext_csd.part_time);
1125 if (ret)
1126 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1127 md->disk->disk_name, ret);
1128 else
1129 card->ext_csd.boot_ro_lock |=
1130 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1131 break;
1132 case MMC_DRV_OP_GET_CARD_STATUS:
1133 ret = mmc_send_status(card, status: &status);
1134 if (!ret)
1135 ret = status;
1136 break;
1137 case MMC_DRV_OP_GET_EXT_CSD:
1138 ext_csd = mq_rq->drv_op_data;
1139 ret = mmc_get_ext_csd(card, new_ext_csd: ext_csd);
1140 break;
1141 default:
1142 pr_err("%s: unknown driver specific operation\n",
1143 md->disk->disk_name);
1144 ret = -EINVAL;
1145 break;
1146 }
1147 mq_rq->drv_op_result = ret;
1148 blk_mq_end_request(rq: req, error: ret ? BLK_STS_IOERR : BLK_STS_OK);
1149}
1150
1151static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1152 int type, unsigned int erase_arg)
1153{
1154 struct mmc_blk_data *md = mq->blkdata;
1155 struct mmc_card *card = md->queue.card;
1156 unsigned int from, nr;
1157 int err = 0;
1158 blk_status_t status = BLK_STS_OK;
1159
1160 if (!mmc_can_erase(card)) {
1161 status = BLK_STS_NOTSUPP;
1162 goto fail;
1163 }
1164
1165 from = blk_rq_pos(rq: req);
1166 nr = blk_rq_sectors(rq: req);
1167
1168 do {
1169 err = 0;
1170 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1171 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 INAND_CMD38_ARG_EXT_CSD,
1173 value: erase_arg == MMC_TRIM_ARG ?
1174 INAND_CMD38_ARG_TRIM :
1175 INAND_CMD38_ARG_ERASE,
1176 timeout_ms: card->ext_csd.generic_cmd6_time);
1177 }
1178 if (!err)
1179 err = mmc_erase(card, from, nr, arg: erase_arg);
1180 } while (err == -EIO && !mmc_blk_reset(md, host: card->host, type));
1181 if (err)
1182 status = BLK_STS_IOERR;
1183 else
1184 mmc_blk_reset_success(md, type);
1185fail:
1186 blk_mq_end_request(rq: req, error: status);
1187}
1188
1189static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1190{
1191 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1192}
1193
1194static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1195{
1196 struct mmc_blk_data *md = mq->blkdata;
1197 struct mmc_card *card = md->queue.card;
1198 unsigned int arg = card->erase_arg;
1199
1200 if (mmc_card_broken_sd_discard(c: card))
1201 arg = SD_ERASE_ARG;
1202
1203 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, erase_arg: arg);
1204}
1205
1206static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1207 struct request *req)
1208{
1209 struct mmc_blk_data *md = mq->blkdata;
1210 struct mmc_card *card = md->queue.card;
1211 unsigned int from, nr, arg;
1212 int err = 0, type = MMC_BLK_SECDISCARD;
1213 blk_status_t status = BLK_STS_OK;
1214
1215 if (!(mmc_can_secure_erase_trim(card))) {
1216 status = BLK_STS_NOTSUPP;
1217 goto out;
1218 }
1219
1220 from = blk_rq_pos(rq: req);
1221 nr = blk_rq_sectors(rq: req);
1222
1223 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1224 arg = MMC_SECURE_TRIM1_ARG;
1225 else
1226 arg = MMC_SECURE_ERASE_ARG;
1227
1228retry:
1229 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1230 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1231 INAND_CMD38_ARG_EXT_CSD,
1232 value: arg == MMC_SECURE_TRIM1_ARG ?
1233 INAND_CMD38_ARG_SECTRIM1 :
1234 INAND_CMD38_ARG_SECERASE,
1235 timeout_ms: card->ext_csd.generic_cmd6_time);
1236 if (err)
1237 goto out_retry;
1238 }
1239
1240 err = mmc_erase(card, from, nr, arg);
1241 if (err == -EIO)
1242 goto out_retry;
1243 if (err) {
1244 status = BLK_STS_IOERR;
1245 goto out;
1246 }
1247
1248 if (arg == MMC_SECURE_TRIM1_ARG) {
1249 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1250 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1251 INAND_CMD38_ARG_EXT_CSD,
1252 INAND_CMD38_ARG_SECTRIM2,
1253 timeout_ms: card->ext_csd.generic_cmd6_time);
1254 if (err)
1255 goto out_retry;
1256 }
1257
1258 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1259 if (err == -EIO)
1260 goto out_retry;
1261 if (err) {
1262 status = BLK_STS_IOERR;
1263 goto out;
1264 }
1265 }
1266
1267out_retry:
1268 if (err && !mmc_blk_reset(md, host: card->host, type))
1269 goto retry;
1270 if (!err)
1271 mmc_blk_reset_success(md, type);
1272out:
1273 blk_mq_end_request(rq: req, error: status);
1274}
1275
1276static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1277{
1278 struct mmc_blk_data *md = mq->blkdata;
1279 struct mmc_card *card = md->queue.card;
1280 int ret = 0;
1281
1282 ret = mmc_flush_cache(host: card->host);
1283 blk_mq_end_request(rq: req, error: ret ? BLK_STS_IOERR : BLK_STS_OK);
1284}
1285
1286/*
1287 * Reformat current write as a reliable write, supporting
1288 * both legacy and the enhanced reliable write MMC cards.
1289 * In each transfer we'll handle only as much as a single
1290 * reliable write can handle, thus finish the request in
1291 * partial completions.
1292 */
1293static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1294 struct mmc_card *card,
1295 struct request *req)
1296{
1297 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1298 /* Legacy mode imposes restrictions on transfers. */
1299 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1300 brq->data.blocks = 1;
1301
1302 if (brq->data.blocks > card->ext_csd.rel_sectors)
1303 brq->data.blocks = card->ext_csd.rel_sectors;
1304 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1305 brq->data.blocks = 1;
1306 }
1307}
1308
1309#define CMD_ERRORS_EXCL_OOR \
1310 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1311 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1312 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1313 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1314 R1_CC_ERROR | /* Card controller error */ \
1315 R1_ERROR) /* General/unknown error */
1316
1317#define CMD_ERRORS \
1318 (CMD_ERRORS_EXCL_OOR | \
1319 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1320
1321static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1322{
1323 u32 val;
1324
1325 /*
1326 * Per the SD specification(physical layer version 4.10)[1],
1327 * section 4.3.3, it explicitly states that "When the last
1328 * block of user area is read using CMD18, the host should
1329 * ignore OUT_OF_RANGE error that may occur even the sequence
1330 * is correct". And JESD84-B51 for eMMC also has a similar
1331 * statement on section 6.8.3.
1332 *
1333 * Multiple block read/write could be done by either predefined
1334 * method, namely CMD23, or open-ending mode. For open-ending mode,
1335 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1336 *
1337 * However the spec[1] doesn't tell us whether we should also
1338 * ignore that for predefined method. But per the spec[1], section
1339 * 4.15 Set Block Count Command, it says"If illegal block count
1340 * is set, out of range error will be indicated during read/write
1341 * operation (For example, data transfer is stopped at user area
1342 * boundary)." In another word, we could expect a out of range error
1343 * in the response for the following CMD18/25. And if argument of
1344 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1345 * we could also expect to get a -ETIMEDOUT or any error number from
1346 * the host drivers due to missing data response(for write)/data(for
1347 * read), as the cards will stop the data transfer by itself per the
1348 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1349 */
1350
1351 if (!brq->stop.error) {
1352 bool oor_with_open_end;
1353 /* If there is no error yet, check R1 response */
1354
1355 val = brq->stop.resp[0] & CMD_ERRORS;
1356 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1357
1358 if (val && !oor_with_open_end)
1359 brq->stop.error = -EIO;
1360 }
1361}
1362
1363static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1364 int recovery_mode, bool *do_rel_wr_p,
1365 bool *do_data_tag_p)
1366{
1367 struct mmc_blk_data *md = mq->blkdata;
1368 struct mmc_card *card = md->queue.card;
1369 struct mmc_blk_request *brq = &mqrq->brq;
1370 struct request *req = mmc_queue_req_to_req(mqr: mqrq);
1371 bool do_rel_wr, do_data_tag;
1372
1373 /*
1374 * Reliable writes are used to implement Forced Unit Access and
1375 * are supported only on MMCs.
1376 */
1377 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1378 rq_data_dir(req) == WRITE &&
1379 (md->flags & MMC_BLK_REL_WR);
1380
1381 memset(brq, 0, sizeof(struct mmc_blk_request));
1382
1383 mmc_crypto_prepare_req(mqrq);
1384
1385 brq->mrq.data = &brq->data;
1386 brq->mrq.tag = req->tag;
1387
1388 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1389 brq->stop.arg = 0;
1390
1391 if (rq_data_dir(req) == READ) {
1392 brq->data.flags = MMC_DATA_READ;
1393 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1394 } else {
1395 brq->data.flags = MMC_DATA_WRITE;
1396 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1397 }
1398
1399 brq->data.blksz = 512;
1400 brq->data.blocks = blk_rq_sectors(rq: req);
1401 brq->data.blk_addr = blk_rq_pos(rq: req);
1402
1403 /*
1404 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1405 * The eMMC will give "high" priority tasks priority over "simple"
1406 * priority tasks. Here we always set "simple" priority by not setting
1407 * MMC_DATA_PRIO.
1408 */
1409
1410 /*
1411 * The block layer doesn't support all sector count
1412 * restrictions, so we need to be prepared for too big
1413 * requests.
1414 */
1415 if (brq->data.blocks > card->host->max_blk_count)
1416 brq->data.blocks = card->host->max_blk_count;
1417
1418 if (brq->data.blocks > 1) {
1419 /*
1420 * Some SD cards in SPI mode return a CRC error or even lock up
1421 * completely when trying to read the last block using a
1422 * multiblock read command.
1423 */
1424 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1425 (blk_rq_pos(rq: req) + blk_rq_sectors(rq: req) ==
1426 get_capacity(disk: md->disk)))
1427 brq->data.blocks--;
1428
1429 /*
1430 * After a read error, we redo the request one (native) sector
1431 * at a time in order to accurately determine which
1432 * sectors can be read successfully.
1433 */
1434 if (recovery_mode)
1435 brq->data.blocks = queue_physical_block_size(q: mq->queue) >> 9;
1436
1437 /*
1438 * Some controllers have HW issues while operating
1439 * in multiple I/O mode
1440 */
1441 if (card->host->ops->multi_io_quirk)
1442 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1443 (rq_data_dir(req) == READ) ?
1444 MMC_DATA_READ : MMC_DATA_WRITE,
1445 brq->data.blocks);
1446 }
1447
1448 if (do_rel_wr) {
1449 mmc_apply_rel_rw(brq, card, req);
1450 brq->data.flags |= MMC_DATA_REL_WR;
1451 }
1452
1453 /*
1454 * Data tag is used only during writing meta data to speed
1455 * up write and any subsequent read of this meta data
1456 */
1457 do_data_tag = card->ext_csd.data_tag_unit_size &&
1458 (req->cmd_flags & REQ_META) &&
1459 (rq_data_dir(req) == WRITE) &&
1460 ((brq->data.blocks * brq->data.blksz) >=
1461 card->ext_csd.data_tag_unit_size);
1462
1463 if (do_data_tag)
1464 brq->data.flags |= MMC_DATA_DAT_TAG;
1465
1466 mmc_set_data_timeout(data: &brq->data, card);
1467
1468 brq->data.sg = mqrq->sg;
1469 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1470
1471 /*
1472 * Adjust the sg list so it is the same size as the
1473 * request.
1474 */
1475 if (brq->data.blocks != blk_rq_sectors(rq: req)) {
1476 int i, data_size = brq->data.blocks << 9;
1477 struct scatterlist *sg;
1478
1479 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1480 data_size -= sg->length;
1481 if (data_size <= 0) {
1482 sg->length += data_size;
1483 i++;
1484 break;
1485 }
1486 }
1487 brq->data.sg_len = i;
1488 }
1489
1490 if (do_rel_wr_p)
1491 *do_rel_wr_p = do_rel_wr;
1492
1493 if (do_data_tag_p)
1494 *do_data_tag_p = do_data_tag;
1495}
1496
1497#define MMC_CQE_RETRIES 2
1498
1499static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1500{
1501 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
1502 struct mmc_request *mrq = &mqrq->brq.mrq;
1503 struct request_queue *q = req->q;
1504 struct mmc_host *host = mq->card->host;
1505 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1506 unsigned long flags;
1507 bool put_card;
1508 int err;
1509
1510 mmc_cqe_post_req(host, mrq);
1511
1512 if (mrq->cmd && mrq->cmd->error)
1513 err = mrq->cmd->error;
1514 else if (mrq->data && mrq->data->error)
1515 err = mrq->data->error;
1516 else
1517 err = 0;
1518
1519 if (err) {
1520 if (mqrq->retries++ < MMC_CQE_RETRIES)
1521 blk_mq_requeue_request(rq: req, kick_requeue_list: true);
1522 else
1523 blk_mq_end_request(rq: req, BLK_STS_IOERR);
1524 } else if (mrq->data) {
1525 if (blk_update_request(rq: req, BLK_STS_OK, nr_bytes: mrq->data->bytes_xfered))
1526 blk_mq_requeue_request(rq: req, kick_requeue_list: true);
1527 else
1528 __blk_mq_end_request(rq: req, BLK_STS_OK);
1529 } else if (mq->in_recovery) {
1530 blk_mq_requeue_request(rq: req, kick_requeue_list: true);
1531 } else {
1532 blk_mq_end_request(rq: req, BLK_STS_OK);
1533 }
1534
1535 spin_lock_irqsave(&mq->lock, flags);
1536
1537 mq->in_flight[issue_type] -= 1;
1538
1539 put_card = (mmc_tot_in_flight(mq) == 0);
1540
1541 mmc_cqe_check_busy(mq);
1542
1543 spin_unlock_irqrestore(lock: &mq->lock, flags);
1544
1545 if (!mq->cqe_busy)
1546 blk_mq_run_hw_queues(q, async: true);
1547
1548 if (put_card)
1549 mmc_put_card(card: mq->card, ctx: &mq->ctx);
1550}
1551
1552void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1553{
1554 struct mmc_card *card = mq->card;
1555 struct mmc_host *host = card->host;
1556 int err;
1557
1558 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1559
1560 err = mmc_cqe_recovery(host);
1561 if (err)
1562 mmc_blk_reset(md: mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1563 mmc_blk_reset_success(md: mq->blkdata, MMC_BLK_CQE_RECOVERY);
1564
1565 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1566}
1567
1568static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1569{
1570 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1571 brq.mrq);
1572 struct request *req = mmc_queue_req_to_req(mqr: mqrq);
1573 struct request_queue *q = req->q;
1574 struct mmc_queue *mq = q->queuedata;
1575
1576 /*
1577 * Block layer timeouts race with completions which means the normal
1578 * completion path cannot be used during recovery.
1579 */
1580 if (mq->in_recovery)
1581 mmc_blk_cqe_complete_rq(mq, req);
1582 else if (likely(!blk_should_fake_timeout(req->q)))
1583 blk_mq_complete_request(rq: req);
1584}
1585
1586static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1587{
1588 mrq->done = mmc_blk_cqe_req_done;
1589 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1590
1591 return mmc_cqe_start_req(host, mrq);
1592}
1593
1594static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1595 struct request *req)
1596{
1597 struct mmc_blk_request *brq = &mqrq->brq;
1598
1599 memset(brq, 0, sizeof(*brq));
1600
1601 brq->mrq.cmd = &brq->cmd;
1602 brq->mrq.tag = req->tag;
1603
1604 return &brq->mrq;
1605}
1606
1607static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1608{
1609 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
1610 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1611
1612 mrq->cmd->opcode = MMC_SWITCH;
1613 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1614 (EXT_CSD_FLUSH_CACHE << 16) |
1615 (1 << 8) |
1616 EXT_CSD_CMD_SET_NORMAL;
1617 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1618
1619 return mmc_blk_cqe_start_req(host: mq->card->host, mrq);
1620}
1621
1622static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1623{
1624 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
1625 struct mmc_host *host = mq->card->host;
1626 int err;
1627
1628 mmc_blk_rw_rq_prep(mqrq, card: mq->card, recovery_mode: 0, mq);
1629 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1630 mmc_pre_req(host, mrq: &mqrq->brq.mrq);
1631
1632 err = mmc_cqe_start_req(host, mrq: &mqrq->brq.mrq);
1633 if (err)
1634 mmc_post_req(host, mrq: &mqrq->brq.mrq, err);
1635
1636 return err;
1637}
1638
1639static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1640{
1641 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
1642 struct mmc_host *host = mq->card->host;
1643
1644 if (host->hsq_enabled)
1645 return mmc_blk_hsq_issue_rw_rq(mq, req);
1646
1647 mmc_blk_data_prep(mq, mqrq, recovery_mode: 0, NULL, NULL);
1648
1649 return mmc_blk_cqe_start_req(host: mq->card->host, mrq: &mqrq->brq.mrq);
1650}
1651
1652static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1653 struct mmc_card *card,
1654 int recovery_mode,
1655 struct mmc_queue *mq)
1656{
1657 u32 readcmd, writecmd;
1658 struct mmc_blk_request *brq = &mqrq->brq;
1659 struct request *req = mmc_queue_req_to_req(mqr: mqrq);
1660 struct mmc_blk_data *md = mq->blkdata;
1661 bool do_rel_wr, do_data_tag;
1662
1663 mmc_blk_data_prep(mq, mqrq, recovery_mode, do_rel_wr_p: &do_rel_wr, do_data_tag_p: &do_data_tag);
1664
1665 brq->mrq.cmd = &brq->cmd;
1666
1667 brq->cmd.arg = blk_rq_pos(rq: req);
1668 if (!mmc_card_blockaddr(card))
1669 brq->cmd.arg <<= 9;
1670 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1671
1672 if (brq->data.blocks > 1 || do_rel_wr) {
1673 /* SPI multiblock writes terminate using a special
1674 * token, not a STOP_TRANSMISSION request.
1675 */
1676 if (!mmc_host_is_spi(card->host) ||
1677 rq_data_dir(req) == READ)
1678 brq->mrq.stop = &brq->stop;
1679 readcmd = MMC_READ_MULTIPLE_BLOCK;
1680 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1681 } else {
1682 brq->mrq.stop = NULL;
1683 readcmd = MMC_READ_SINGLE_BLOCK;
1684 writecmd = MMC_WRITE_BLOCK;
1685 }
1686 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1687
1688 /*
1689 * Pre-defined multi-block transfers are preferable to
1690 * open ended-ones (and necessary for reliable writes).
1691 * However, it is not sufficient to just send CMD23,
1692 * and avoid the final CMD12, as on an error condition
1693 * CMD12 (stop) needs to be sent anyway. This, coupled
1694 * with Auto-CMD23 enhancements provided by some
1695 * hosts, means that the complexity of dealing
1696 * with this is best left to the host. If CMD23 is
1697 * supported by card and host, we'll fill sbc in and let
1698 * the host deal with handling it correctly. This means
1699 * that for hosts that don't expose MMC_CAP_CMD23, no
1700 * change of behavior will be observed.
1701 *
1702 * N.B: Some MMC cards experience perf degradation.
1703 * We'll avoid using CMD23-bounded multiblock writes for
1704 * these, while retaining features like reliable writes.
1705 */
1706 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(opcode: brq->cmd.opcode) &&
1707 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1708 do_data_tag)) {
1709 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1710 brq->sbc.arg = brq->data.blocks |
1711 (do_rel_wr ? (1 << 31) : 0) |
1712 (do_data_tag ? (1 << 29) : 0);
1713 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1714 brq->mrq.sbc = &brq->sbc;
1715 }
1716}
1717
1718#define MMC_MAX_RETRIES 5
1719#define MMC_DATA_RETRIES 2
1720#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1721
1722static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1723{
1724 struct mmc_command cmd = {
1725 .opcode = MMC_STOP_TRANSMISSION,
1726 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1727 /* Some hosts wait for busy anyway, so provide a busy timeout */
1728 .busy_timeout = timeout,
1729 };
1730
1731 return mmc_wait_for_cmd(host: card->host, cmd: &cmd, retries: 5);
1732}
1733
1734static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1735{
1736 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
1737 struct mmc_blk_request *brq = &mqrq->brq;
1738 unsigned int timeout = mmc_blk_data_timeout_ms(host: card->host, data: &brq->data);
1739 int err;
1740
1741 mmc_retune_hold_now(host: card->host);
1742
1743 mmc_blk_send_stop(card, timeout);
1744
1745 err = mmc_poll_for_busy(card, timeout_ms: timeout, retry_crc_err: false, busy_cmd: MMC_BUSY_IO);
1746
1747 mmc_retune_release(host: card->host);
1748
1749 return err;
1750}
1751
1752#define MMC_READ_SINGLE_RETRIES 2
1753
1754/* Single (native) sector read during recovery */
1755static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1756{
1757 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
1758 struct mmc_request *mrq = &mqrq->brq.mrq;
1759 struct mmc_card *card = mq->card;
1760 struct mmc_host *host = card->host;
1761 blk_status_t error = BLK_STS_OK;
1762 size_t bytes_per_read = queue_physical_block_size(q: mq->queue);
1763
1764 do {
1765 u32 status;
1766 int err;
1767 int retries = 0;
1768
1769 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1770 mmc_blk_rw_rq_prep(mqrq, card, recovery_mode: 1, mq);
1771
1772 mmc_wait_for_req(host, mrq);
1773
1774 err = mmc_send_status(card, status: &status);
1775 if (err)
1776 goto error_exit;
1777
1778 if (!mmc_host_is_spi(host) &&
1779 !mmc_ready_for_data(status)) {
1780 err = mmc_blk_fix_state(card, req);
1781 if (err)
1782 goto error_exit;
1783 }
1784
1785 if (!mrq->cmd->error)
1786 break;
1787 }
1788
1789 if (mrq->cmd->error ||
1790 mrq->data->error ||
1791 (!mmc_host_is_spi(host) &&
1792 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1793 error = BLK_STS_IOERR;
1794 else
1795 error = BLK_STS_OK;
1796
1797 } while (blk_update_request(rq: req, error, nr_bytes: bytes_per_read));
1798
1799 return;
1800
1801error_exit:
1802 mrq->data->bytes_xfered = 0;
1803 blk_update_request(rq: req, BLK_STS_IOERR, nr_bytes: bytes_per_read);
1804 /* Let it try the remaining request again */
1805 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1806 mqrq->retries = MMC_MAX_RETRIES - 1;
1807}
1808
1809static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1810{
1811 return !!brq->mrq.sbc;
1812}
1813
1814static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1815{
1816 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1817}
1818
1819/*
1820 * Check for errors the host controller driver might not have seen such as
1821 * response mode errors or invalid card state.
1822 */
1823static bool mmc_blk_status_error(struct request *req, u32 status)
1824{
1825 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
1826 struct mmc_blk_request *brq = &mqrq->brq;
1827 struct mmc_queue *mq = req->q->queuedata;
1828 u32 stop_err_bits;
1829
1830 if (mmc_host_is_spi(mq->card->host))
1831 return false;
1832
1833 stop_err_bits = mmc_blk_stop_err_bits(brq);
1834
1835 return brq->cmd.resp[0] & CMD_ERRORS ||
1836 brq->stop.resp[0] & stop_err_bits ||
1837 status & stop_err_bits ||
1838 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1839}
1840
1841static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1842{
1843 return !brq->sbc.error && !brq->cmd.error &&
1844 !(brq->cmd.resp[0] & CMD_ERRORS);
1845}
1846
1847/*
1848 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1849 * policy:
1850 * 1. A request that has transferred at least some data is considered
1851 * successful and will be requeued if there is remaining data to
1852 * transfer.
1853 * 2. Otherwise the number of retries is incremented and the request
1854 * will be requeued if there are remaining retries.
1855 * 3. Otherwise the request will be errored out.
1856 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1857 * mqrq->retries. So there are only 4 possible actions here:
1858 * 1. do not accept the bytes_xfered value i.e. set it to zero
1859 * 2. change mqrq->retries to determine the number of retries
1860 * 3. try to reset the card
1861 * 4. read one sector at a time
1862 */
1863static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1864{
1865 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1866 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
1867 struct mmc_blk_request *brq = &mqrq->brq;
1868 struct mmc_blk_data *md = mq->blkdata;
1869 struct mmc_card *card = mq->card;
1870 u32 status;
1871 u32 blocks;
1872 int err;
1873
1874 /*
1875 * Some errors the host driver might not have seen. Set the number of
1876 * bytes transferred to zero in that case.
1877 */
1878 err = __mmc_send_status(card, status: &status, retries: 0);
1879 if (err || mmc_blk_status_error(req, status))
1880 brq->data.bytes_xfered = 0;
1881
1882 mmc_retune_release(host: card->host);
1883
1884 /*
1885 * Try again to get the status. This also provides an opportunity for
1886 * re-tuning.
1887 */
1888 if (err)
1889 err = __mmc_send_status(card, status: &status, retries: 0);
1890
1891 /*
1892 * Nothing more to do after the number of bytes transferred has been
1893 * updated and there is no card.
1894 */
1895 if (err && mmc_detect_card_removed(host: card->host))
1896 return;
1897
1898 /* Try to get back to "tran" state */
1899 if (!mmc_host_is_spi(mq->card->host) &&
1900 (err || !mmc_ready_for_data(status)))
1901 err = mmc_blk_fix_state(card: mq->card, req);
1902
1903 /*
1904 * Special case for SD cards where the card might record the number of
1905 * blocks written.
1906 */
1907 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1908 rq_data_dir(req) == WRITE) {
1909 if (mmc_sd_num_wr_blocks(card, written_blocks: &blocks))
1910 brq->data.bytes_xfered = 0;
1911 else
1912 brq->data.bytes_xfered = blocks << 9;
1913 }
1914
1915 /* Reset if the card is in a bad state */
1916 if (!mmc_host_is_spi(mq->card->host) &&
1917 err && mmc_blk_reset(md, host: card->host, type)) {
1918 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1919 mqrq->retries = MMC_NO_RETRIES;
1920 return;
1921 }
1922
1923 /*
1924 * If anything was done, just return and if there is anything remaining
1925 * on the request it will get requeued.
1926 */
1927 if (brq->data.bytes_xfered)
1928 return;
1929
1930 /* Reset before last retry */
1931 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1932 mmc_blk_reset(md, host: card->host, type))
1933 return;
1934
1935 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1936 if (brq->sbc.error || brq->cmd.error)
1937 return;
1938
1939 /* Reduce the remaining retries for data errors */
1940 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1941 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1942 return;
1943 }
1944
1945 if (rq_data_dir(req) == READ && brq->data.blocks >
1946 queue_physical_block_size(q: mq->queue) >> 9) {
1947 /* Read one (native) sector at a time */
1948 mmc_blk_read_single(mq, req);
1949 return;
1950 }
1951}
1952
1953static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1954{
1955 mmc_blk_eval_resp_error(brq);
1956
1957 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1958 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1959}
1960
1961static int mmc_spi_err_check(struct mmc_card *card)
1962{
1963 u32 status = 0;
1964 int err;
1965
1966 /*
1967 * SPI does not have a TRAN state we have to wait on, instead the
1968 * card is ready again when it no longer holds the line LOW.
1969 * We still have to ensure two things here before we know the write
1970 * was successful:
1971 * 1. The card has not disconnected during busy and we actually read our
1972 * own pull-up, thinking it was still connected, so ensure it
1973 * still responds.
1974 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1975 * just reconnected card after being disconnected during busy.
1976 */
1977 err = __mmc_send_status(card, status: &status, retries: 0);
1978 if (err)
1979 return err;
1980 /* All R1 and R2 bits of SPI are errors in our case */
1981 if (status)
1982 return -EIO;
1983 return 0;
1984}
1985
1986static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1987{
1988 struct mmc_blk_busy_data *data = cb_data;
1989 u32 status = 0;
1990 int err;
1991
1992 err = mmc_send_status(card: data->card, status: &status);
1993 if (err)
1994 return err;
1995
1996 /* Accumulate response error bits. */
1997 data->status |= status;
1998
1999 *busy = !mmc_ready_for_data(status);
2000 return 0;
2001}
2002
2003static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2004{
2005 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
2006 struct mmc_blk_busy_data cb_data;
2007 int err;
2008
2009 if (rq_data_dir(req) == READ)
2010 return 0;
2011
2012 if (mmc_host_is_spi(card->host)) {
2013 err = mmc_spi_err_check(card);
2014 if (err)
2015 mqrq->brq.data.bytes_xfered = 0;
2016 return err;
2017 }
2018
2019 cb_data.card = card;
2020 cb_data.status = 0;
2021 err = __mmc_poll_for_busy(host: card->host, period_us: 0, MMC_BLK_TIMEOUT_MS,
2022 busy_cb: &mmc_blk_busy_cb, cb_data: &cb_data);
2023
2024 /*
2025 * Do not assume data transferred correctly if there are any error bits
2026 * set.
2027 */
2028 if (cb_data.status & mmc_blk_stop_err_bits(brq: &mqrq->brq)) {
2029 mqrq->brq.data.bytes_xfered = 0;
2030 err = err ? err : -EIO;
2031 }
2032
2033 /* Copy the exception bit so it will be seen later on */
2034 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2035 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2036
2037 return err;
2038}
2039
2040static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2041 struct request *req)
2042{
2043 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2044
2045 mmc_blk_reset_success(md: mq->blkdata, type);
2046}
2047
2048static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2049{
2050 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
2051 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2052
2053 if (nr_bytes) {
2054 if (blk_update_request(rq: req, BLK_STS_OK, nr_bytes))
2055 blk_mq_requeue_request(rq: req, kick_requeue_list: true);
2056 else
2057 __blk_mq_end_request(rq: req, BLK_STS_OK);
2058 } else if (!blk_rq_bytes(rq: req)) {
2059 __blk_mq_end_request(rq: req, BLK_STS_IOERR);
2060 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2061 blk_mq_requeue_request(rq: req, kick_requeue_list: true);
2062 } else {
2063 if (mmc_card_removed(mq->card))
2064 req->rq_flags |= RQF_QUIET;
2065 blk_mq_end_request(rq: req, BLK_STS_IOERR);
2066 }
2067}
2068
2069static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2070 struct mmc_queue_req *mqrq)
2071{
2072 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2073 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2074 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2075}
2076
2077static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2078 struct mmc_queue_req *mqrq)
2079{
2080 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2081 mmc_run_bkops(card: mq->card);
2082}
2083
2084static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2085{
2086 struct mmc_queue_req *mqrq =
2087 container_of(mrq, struct mmc_queue_req, brq.mrq);
2088 struct request *req = mmc_queue_req_to_req(mqr: mqrq);
2089 struct request_queue *q = req->q;
2090 struct mmc_queue *mq = q->queuedata;
2091 struct mmc_host *host = mq->card->host;
2092 unsigned long flags;
2093
2094 if (mmc_blk_rq_error(brq: &mqrq->brq) ||
2095 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2096 spin_lock_irqsave(&mq->lock, flags);
2097 mq->recovery_needed = true;
2098 mq->recovery_req = req;
2099 spin_unlock_irqrestore(lock: &mq->lock, flags);
2100
2101 host->cqe_ops->cqe_recovery_start(host);
2102
2103 schedule_work(work: &mq->recovery_work);
2104 return;
2105 }
2106
2107 mmc_blk_rw_reset_success(mq, req);
2108
2109 /*
2110 * Block layer timeouts race with completions which means the normal
2111 * completion path cannot be used during recovery.
2112 */
2113 if (mq->in_recovery)
2114 mmc_blk_cqe_complete_rq(mq, req);
2115 else if (likely(!blk_should_fake_timeout(req->q)))
2116 blk_mq_complete_request(rq: req);
2117}
2118
2119void mmc_blk_mq_complete(struct request *req)
2120{
2121 struct mmc_queue *mq = req->q->queuedata;
2122 struct mmc_host *host = mq->card->host;
2123
2124 if (host->cqe_enabled)
2125 mmc_blk_cqe_complete_rq(mq, req);
2126 else if (likely(!blk_should_fake_timeout(req->q)))
2127 mmc_blk_mq_complete_rq(mq, req);
2128}
2129
2130static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2131 struct request *req)
2132{
2133 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
2134 struct mmc_host *host = mq->card->host;
2135
2136 if (mmc_blk_rq_error(brq: &mqrq->brq) ||
2137 mmc_blk_card_busy(card: mq->card, req)) {
2138 mmc_blk_mq_rw_recovery(mq, req);
2139 } else {
2140 mmc_blk_rw_reset_success(mq, req);
2141 mmc_retune_release(host);
2142 }
2143
2144 mmc_blk_urgent_bkops(mq, mqrq);
2145}
2146
2147static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2148{
2149 unsigned long flags;
2150 bool put_card;
2151
2152 spin_lock_irqsave(&mq->lock, flags);
2153
2154 mq->in_flight[issue_type] -= 1;
2155
2156 put_card = (mmc_tot_in_flight(mq) == 0);
2157
2158 spin_unlock_irqrestore(lock: &mq->lock, flags);
2159
2160 if (put_card)
2161 mmc_put_card(card: mq->card, ctx: &mq->ctx);
2162}
2163
2164static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2165 bool can_sleep)
2166{
2167 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2168 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
2169 struct mmc_request *mrq = &mqrq->brq.mrq;
2170 struct mmc_host *host = mq->card->host;
2171
2172 mmc_post_req(host, mrq, err: 0);
2173
2174 /*
2175 * Block layer timeouts race with completions which means the normal
2176 * completion path cannot be used during recovery.
2177 */
2178 if (mq->in_recovery) {
2179 mmc_blk_mq_complete_rq(mq, req);
2180 } else if (likely(!blk_should_fake_timeout(req->q))) {
2181 if (can_sleep)
2182 blk_mq_complete_request_direct(rq: req, complete: mmc_blk_mq_complete);
2183 else
2184 blk_mq_complete_request(rq: req);
2185 }
2186
2187 mmc_blk_mq_dec_in_flight(mq, issue_type);
2188}
2189
2190void mmc_blk_mq_recovery(struct mmc_queue *mq)
2191{
2192 struct request *req = mq->recovery_req;
2193 struct mmc_host *host = mq->card->host;
2194 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
2195
2196 mq->recovery_req = NULL;
2197 mq->rw_wait = false;
2198
2199 if (mmc_blk_rq_error(brq: &mqrq->brq)) {
2200 mmc_retune_hold_now(host);
2201 mmc_blk_mq_rw_recovery(mq, req);
2202 }
2203
2204 mmc_blk_urgent_bkops(mq, mqrq);
2205
2206 mmc_blk_mq_post_req(mq, req, can_sleep: true);
2207}
2208
2209static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2210 struct request **prev_req)
2211{
2212 if (mmc_host_done_complete(host: mq->card->host))
2213 return;
2214
2215 mutex_lock(&mq->complete_lock);
2216
2217 if (!mq->complete_req)
2218 goto out_unlock;
2219
2220 mmc_blk_mq_poll_completion(mq, req: mq->complete_req);
2221
2222 if (prev_req)
2223 *prev_req = mq->complete_req;
2224 else
2225 mmc_blk_mq_post_req(mq, req: mq->complete_req, can_sleep: true);
2226
2227 mq->complete_req = NULL;
2228
2229out_unlock:
2230 mutex_unlock(lock: &mq->complete_lock);
2231}
2232
2233void mmc_blk_mq_complete_work(struct work_struct *work)
2234{
2235 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2236 complete_work);
2237
2238 mmc_blk_mq_complete_prev_req(mq, NULL);
2239}
2240
2241static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2242{
2243 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2244 brq.mrq);
2245 struct request *req = mmc_queue_req_to_req(mqr: mqrq);
2246 struct request_queue *q = req->q;
2247 struct mmc_queue *mq = q->queuedata;
2248 struct mmc_host *host = mq->card->host;
2249 unsigned long flags;
2250
2251 if (!mmc_host_done_complete(host)) {
2252 bool waiting;
2253
2254 /*
2255 * We cannot complete the request in this context, so record
2256 * that there is a request to complete, and that a following
2257 * request does not need to wait (although it does need to
2258 * complete complete_req first).
2259 */
2260 spin_lock_irqsave(&mq->lock, flags);
2261 mq->complete_req = req;
2262 mq->rw_wait = false;
2263 waiting = mq->waiting;
2264 spin_unlock_irqrestore(lock: &mq->lock, flags);
2265
2266 /*
2267 * If 'waiting' then the waiting task will complete this
2268 * request, otherwise queue a work to do it. Note that
2269 * complete_work may still race with the dispatch of a following
2270 * request.
2271 */
2272 if (waiting)
2273 wake_up(&mq->wait);
2274 else
2275 queue_work(wq: mq->card->complete_wq, work: &mq->complete_work);
2276
2277 return;
2278 }
2279
2280 /* Take the recovery path for errors or urgent background operations */
2281 if (mmc_blk_rq_error(brq: &mqrq->brq) ||
2282 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2283 spin_lock_irqsave(&mq->lock, flags);
2284 mq->recovery_needed = true;
2285 mq->recovery_req = req;
2286 spin_unlock_irqrestore(lock: &mq->lock, flags);
2287 wake_up(&mq->wait);
2288 schedule_work(work: &mq->recovery_work);
2289 return;
2290 }
2291
2292 mmc_blk_rw_reset_success(mq, req);
2293
2294 mq->rw_wait = false;
2295 wake_up(&mq->wait);
2296
2297 /* context unknown */
2298 mmc_blk_mq_post_req(mq, req, can_sleep: false);
2299}
2300
2301static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2302{
2303 unsigned long flags;
2304 bool done;
2305
2306 /*
2307 * Wait while there is another request in progress, but not if recovery
2308 * is needed. Also indicate whether there is a request waiting to start.
2309 */
2310 spin_lock_irqsave(&mq->lock, flags);
2311 if (mq->recovery_needed) {
2312 *err = -EBUSY;
2313 done = true;
2314 } else {
2315 done = !mq->rw_wait;
2316 }
2317 mq->waiting = !done;
2318 spin_unlock_irqrestore(lock: &mq->lock, flags);
2319
2320 return done;
2321}
2322
2323static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2324{
2325 int err = 0;
2326
2327 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2328
2329 /* Always complete the previous request if there is one */
2330 mmc_blk_mq_complete_prev_req(mq, prev_req);
2331
2332 return err;
2333}
2334
2335static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2336 struct request *req)
2337{
2338 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(rq: req);
2339 struct mmc_host *host = mq->card->host;
2340 struct request *prev_req = NULL;
2341 int err = 0;
2342
2343 mmc_blk_rw_rq_prep(mqrq, card: mq->card, recovery_mode: 0, mq);
2344
2345 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2346
2347 mmc_pre_req(host, mrq: &mqrq->brq.mrq);
2348
2349 err = mmc_blk_rw_wait(mq, prev_req: &prev_req);
2350 if (err)
2351 goto out_post_req;
2352
2353 mq->rw_wait = true;
2354
2355 err = mmc_start_request(host, mrq: &mqrq->brq.mrq);
2356
2357 if (prev_req)
2358 mmc_blk_mq_post_req(mq, req: prev_req, can_sleep: true);
2359
2360 if (err)
2361 mq->rw_wait = false;
2362
2363 /* Release re-tuning here where there is no synchronization required */
2364 if (err || mmc_host_done_complete(host))
2365 mmc_retune_release(host);
2366
2367out_post_req:
2368 if (err)
2369 mmc_post_req(host, mrq: &mqrq->brq.mrq, err);
2370
2371 return err;
2372}
2373
2374static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2375{
2376 if (host->cqe_enabled)
2377 return host->cqe_ops->cqe_wait_for_idle(host);
2378
2379 return mmc_blk_rw_wait(mq, NULL);
2380}
2381
2382enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2383{
2384 struct mmc_blk_data *md = mq->blkdata;
2385 struct mmc_card *card = md->queue.card;
2386 struct mmc_host *host = card->host;
2387 int ret;
2388
2389 ret = mmc_blk_part_switch(card, part_type: md->part_type);
2390 if (ret)
2391 return MMC_REQ_FAILED_TO_START;
2392
2393 switch (mmc_issue_type(mq, req)) {
2394 case MMC_ISSUE_SYNC:
2395 ret = mmc_blk_wait_for_idle(mq, host);
2396 if (ret)
2397 return MMC_REQ_BUSY;
2398 switch (req_op(req)) {
2399 case REQ_OP_DRV_IN:
2400 case REQ_OP_DRV_OUT:
2401 mmc_blk_issue_drv_op(mq, req);
2402 break;
2403 case REQ_OP_DISCARD:
2404 mmc_blk_issue_discard_rq(mq, req);
2405 break;
2406 case REQ_OP_SECURE_ERASE:
2407 mmc_blk_issue_secdiscard_rq(mq, req);
2408 break;
2409 case REQ_OP_WRITE_ZEROES:
2410 mmc_blk_issue_trim_rq(mq, req);
2411 break;
2412 case REQ_OP_FLUSH:
2413 mmc_blk_issue_flush(mq, req);
2414 break;
2415 default:
2416 WARN_ON_ONCE(1);
2417 return MMC_REQ_FAILED_TO_START;
2418 }
2419 return MMC_REQ_FINISHED;
2420 case MMC_ISSUE_DCMD:
2421 case MMC_ISSUE_ASYNC:
2422 switch (req_op(req)) {
2423 case REQ_OP_FLUSH:
2424 if (!mmc_cache_enabled(host)) {
2425 blk_mq_end_request(rq: req, BLK_STS_OK);
2426 return MMC_REQ_FINISHED;
2427 }
2428 ret = mmc_blk_cqe_issue_flush(mq, req);
2429 break;
2430 case REQ_OP_WRITE:
2431 card->written_flag = true;
2432 fallthrough;
2433 case REQ_OP_READ:
2434 if (host->cqe_enabled)
2435 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2436 else
2437 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2438 break;
2439 default:
2440 WARN_ON_ONCE(1);
2441 ret = -EINVAL;
2442 }
2443 if (!ret)
2444 return MMC_REQ_STARTED;
2445 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2446 default:
2447 WARN_ON_ONCE(1);
2448 return MMC_REQ_FAILED_TO_START;
2449 }
2450}
2451
2452static inline int mmc_blk_readonly(struct mmc_card *card)
2453{
2454 return mmc_card_readonly(card) ||
2455 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2456}
2457
2458static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2459 struct device *parent,
2460 sector_t size,
2461 bool default_ro,
2462 const char *subname,
2463 int area_type,
2464 unsigned int part_type)
2465{
2466 struct mmc_blk_data *md;
2467 int devidx, ret;
2468 char cap_str[10];
2469 bool cache_enabled = false;
2470 bool fua_enabled = false;
2471
2472 devidx = ida_alloc_max(ida: &mmc_blk_ida, max: max_devices - 1, GFP_KERNEL);
2473 if (devidx < 0) {
2474 /*
2475 * We get -ENOSPC because there are no more any available
2476 * devidx. The reason may be that, either userspace haven't yet
2477 * unmounted the partitions, which postpones mmc_blk_release()
2478 * from being called, or the device has more partitions than
2479 * what we support.
2480 */
2481 if (devidx == -ENOSPC)
2482 dev_err(mmc_dev(card->host),
2483 "no more device IDs available\n");
2484
2485 return ERR_PTR(error: devidx);
2486 }
2487
2488 md = kzalloc(size: sizeof(struct mmc_blk_data), GFP_KERNEL);
2489 if (!md) {
2490 ret = -ENOMEM;
2491 goto out;
2492 }
2493
2494 md->area_type = area_type;
2495
2496 /*
2497 * Set the read-only status based on the supported commands
2498 * and the write protect switch.
2499 */
2500 md->read_only = mmc_blk_readonly(card);
2501
2502 md->disk = mmc_init_queue(mq: &md->queue, card);
2503 if (IS_ERR(ptr: md->disk)) {
2504 ret = PTR_ERR(ptr: md->disk);
2505 goto err_kfree;
2506 }
2507
2508 INIT_LIST_HEAD(list: &md->part);
2509 INIT_LIST_HEAD(list: &md->rpmbs);
2510 kref_init(kref: &md->kref);
2511
2512 md->queue.blkdata = md;
2513 md->part_type = part_type;
2514
2515 md->disk->major = MMC_BLOCK_MAJOR;
2516 md->disk->minors = perdev_minors;
2517 md->disk->first_minor = devidx * perdev_minors;
2518 md->disk->fops = &mmc_bdops;
2519 md->disk->private_data = md;
2520 md->parent = parent;
2521 set_disk_ro(disk: md->disk, read_only: md->read_only || default_ro);
2522 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2523 md->disk->flags |= GENHD_FL_NO_PART;
2524
2525 /*
2526 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2527 *
2528 * - be set for removable media with permanent block devices
2529 * - be unset for removable block devices with permanent media
2530 *
2531 * Since MMC block devices clearly fall under the second
2532 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2533 * should use the block device creation/destruction hotplug
2534 * messages to tell when the card is present.
2535 */
2536
2537 snprintf(buf: md->disk->disk_name, size: sizeof(md->disk->disk_name),
2538 fmt: "mmcblk%u%s", card->host->index, subname ? subname : "");
2539
2540 set_capacity(disk: md->disk, size);
2541
2542 if (mmc_host_cmd23(host: card->host)) {
2543 if ((mmc_card_mmc(card) &&
2544 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2545 (mmc_card_sd(card) &&
2546 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2547 md->flags |= MMC_BLK_CMD23;
2548 }
2549
2550 if (md->flags & MMC_BLK_CMD23 &&
2551 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2552 card->ext_csd.rel_sectors)) {
2553 md->flags |= MMC_BLK_REL_WR;
2554 fua_enabled = true;
2555 cache_enabled = true;
2556 }
2557 if (mmc_cache_enabled(host: card->host))
2558 cache_enabled = true;
2559
2560 blk_queue_write_cache(q: md->queue.queue, enabled: cache_enabled, fua: fua_enabled);
2561
2562 string_get_size(size: (u64)size, blk_size: 512, units: STRING_UNITS_2,
2563 buf: cap_str, len: sizeof(cap_str));
2564 pr_info("%s: %s %s %s%s\n",
2565 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2566 cap_str, md->read_only ? " (ro)" : "");
2567
2568 /* used in ->open, must be set before add_disk: */
2569 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2570 dev_set_drvdata(dev: &card->dev, data: md);
2571 ret = device_add_disk(parent: md->parent, disk: md->disk, groups: mmc_disk_attr_groups);
2572 if (ret)
2573 goto err_put_disk;
2574 return md;
2575
2576 err_put_disk:
2577 put_disk(disk: md->disk);
2578 blk_mq_free_tag_set(set: &md->queue.tag_set);
2579 err_kfree:
2580 kfree(objp: md);
2581 out:
2582 ida_free(&mmc_blk_ida, id: devidx);
2583 return ERR_PTR(error: ret);
2584}
2585
2586static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2587{
2588 sector_t size;
2589
2590 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2591 /*
2592 * The EXT_CSD sector count is in number or 512 byte
2593 * sectors.
2594 */
2595 size = card->ext_csd.sectors;
2596 } else {
2597 /*
2598 * The CSD capacity field is in units of read_blkbits.
2599 * set_capacity takes units of 512 bytes.
2600 */
2601 size = (typeof(sector_t))card->csd.capacity
2602 << (card->csd.read_blkbits - 9);
2603 }
2604
2605 return mmc_blk_alloc_req(card, parent: &card->dev, size, default_ro: false, NULL,
2606 MMC_BLK_DATA_AREA_MAIN, part_type: 0);
2607}
2608
2609static int mmc_blk_alloc_part(struct mmc_card *card,
2610 struct mmc_blk_data *md,
2611 unsigned int part_type,
2612 sector_t size,
2613 bool default_ro,
2614 const char *subname,
2615 int area_type)
2616{
2617 struct mmc_blk_data *part_md;
2618
2619 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2620 subname, area_type, part_type);
2621 if (IS_ERR(ptr: part_md))
2622 return PTR_ERR(ptr: part_md);
2623 list_add(new: &part_md->part, head: &md->part);
2624
2625 return 0;
2626}
2627
2628/**
2629 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2630 * @filp: the character device file
2631 * @cmd: the ioctl() command
2632 * @arg: the argument from userspace
2633 *
2634 * This will essentially just redirect the ioctl()s coming in over to
2635 * the main block device spawning the RPMB character device.
2636 */
2637static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2638 unsigned long arg)
2639{
2640 struct mmc_rpmb_data *rpmb = filp->private_data;
2641 int ret;
2642
2643 switch (cmd) {
2644 case MMC_IOC_CMD:
2645 ret = mmc_blk_ioctl_cmd(md: rpmb->md,
2646 ic_ptr: (struct mmc_ioc_cmd __user *)arg,
2647 rpmb);
2648 break;
2649 case MMC_IOC_MULTI_CMD:
2650 ret = mmc_blk_ioctl_multi_cmd(md: rpmb->md,
2651 user: (struct mmc_ioc_multi_cmd __user *)arg,
2652 rpmb);
2653 break;
2654 default:
2655 ret = -EINVAL;
2656 break;
2657 }
2658
2659 return ret;
2660}
2661
2662#ifdef CONFIG_COMPAT
2663static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2664 unsigned long arg)
2665{
2666 return mmc_rpmb_ioctl(filp, cmd, arg: (unsigned long)compat_ptr(uptr: arg));
2667}
2668#endif
2669
2670static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2671{
2672 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2673 struct mmc_rpmb_data, chrdev);
2674
2675 get_device(dev: &rpmb->dev);
2676 filp->private_data = rpmb;
2677 mmc_blk_get(disk: rpmb->md->disk);
2678
2679 return nonseekable_open(inode, filp);
2680}
2681
2682static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2683{
2684 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2685 struct mmc_rpmb_data, chrdev);
2686
2687 mmc_blk_put(md: rpmb->md);
2688 put_device(dev: &rpmb->dev);
2689
2690 return 0;
2691}
2692
2693static const struct file_operations mmc_rpmb_fileops = {
2694 .release = mmc_rpmb_chrdev_release,
2695 .open = mmc_rpmb_chrdev_open,
2696 .owner = THIS_MODULE,
2697 .llseek = no_llseek,
2698 .unlocked_ioctl = mmc_rpmb_ioctl,
2699#ifdef CONFIG_COMPAT
2700 .compat_ioctl = mmc_rpmb_ioctl_compat,
2701#endif
2702};
2703
2704static void mmc_blk_rpmb_device_release(struct device *dev)
2705{
2706 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2707
2708 ida_free(&mmc_rpmb_ida, id: rpmb->id);
2709 kfree(objp: rpmb);
2710}
2711
2712static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2713 struct mmc_blk_data *md,
2714 unsigned int part_index,
2715 sector_t size,
2716 const char *subname)
2717{
2718 int devidx, ret;
2719 char rpmb_name[DISK_NAME_LEN];
2720 char cap_str[10];
2721 struct mmc_rpmb_data *rpmb;
2722
2723 /* This creates the minor number for the RPMB char device */
2724 devidx = ida_alloc_max(ida: &mmc_rpmb_ida, max: max_devices - 1, GFP_KERNEL);
2725 if (devidx < 0)
2726 return devidx;
2727
2728 rpmb = kzalloc(size: sizeof(*rpmb), GFP_KERNEL);
2729 if (!rpmb) {
2730 ida_free(&mmc_rpmb_ida, id: devidx);
2731 return -ENOMEM;
2732 }
2733
2734 snprintf(buf: rpmb_name, size: sizeof(rpmb_name),
2735 fmt: "mmcblk%u%s", card->host->index, subname ? subname : "");
2736
2737 rpmb->id = devidx;
2738 rpmb->part_index = part_index;
2739 rpmb->dev.init_name = rpmb_name;
2740 rpmb->dev.bus = &mmc_rpmb_bus_type;
2741 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2742 rpmb->dev.parent = &card->dev;
2743 rpmb->dev.release = mmc_blk_rpmb_device_release;
2744 device_initialize(dev: &rpmb->dev);
2745 dev_set_drvdata(dev: &rpmb->dev, data: rpmb);
2746 rpmb->md = md;
2747
2748 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2749 rpmb->chrdev.owner = THIS_MODULE;
2750 ret = cdev_device_add(cdev: &rpmb->chrdev, dev: &rpmb->dev);
2751 if (ret) {
2752 pr_err("%s: could not add character device\n", rpmb_name);
2753 goto out_put_device;
2754 }
2755
2756 list_add(new: &rpmb->node, head: &md->rpmbs);
2757
2758 string_get_size(size: (u64)size, blk_size: 512, units: STRING_UNITS_2,
2759 buf: cap_str, len: sizeof(cap_str));
2760
2761 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2762 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2763 MAJOR(mmc_rpmb_devt), rpmb->id);
2764
2765 return 0;
2766
2767out_put_device:
2768 put_device(dev: &rpmb->dev);
2769 return ret;
2770}
2771
2772static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2773
2774{
2775 cdev_device_del(cdev: &rpmb->chrdev, dev: &rpmb->dev);
2776 put_device(dev: &rpmb->dev);
2777}
2778
2779/* MMC Physical partitions consist of two boot partitions and
2780 * up to four general purpose partitions.
2781 * For each partition enabled in EXT_CSD a block device will be allocatedi
2782 * to provide access to the partition.
2783 */
2784
2785static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2786{
2787 int idx, ret;
2788
2789 if (!mmc_card_mmc(card))
2790 return 0;
2791
2792 for (idx = 0; idx < card->nr_parts; idx++) {
2793 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2794 /*
2795 * RPMB partitions does not provide block access, they
2796 * are only accessed using ioctl():s. Thus create
2797 * special RPMB block devices that do not have a
2798 * backing block queue for these.
2799 */
2800 ret = mmc_blk_alloc_rpmb_part(card, md,
2801 part_index: card->part[idx].part_cfg,
2802 size: card->part[idx].size >> 9,
2803 subname: card->part[idx].name);
2804 if (ret)
2805 return ret;
2806 } else if (card->part[idx].size) {
2807 ret = mmc_blk_alloc_part(card, md,
2808 part_type: card->part[idx].part_cfg,
2809 size: card->part[idx].size >> 9,
2810 default_ro: card->part[idx].force_ro,
2811 subname: card->part[idx].name,
2812 area_type: card->part[idx].area_type);
2813 if (ret)
2814 return ret;
2815 }
2816 }
2817
2818 return 0;
2819}
2820
2821static void mmc_blk_remove_req(struct mmc_blk_data *md)
2822{
2823 /*
2824 * Flush remaining requests and free queues. It is freeing the queue
2825 * that stops new requests from being accepted.
2826 */
2827 del_gendisk(gp: md->disk);
2828 mmc_cleanup_queue(&md->queue);
2829 mmc_blk_put(md);
2830}
2831
2832static void mmc_blk_remove_parts(struct mmc_card *card,
2833 struct mmc_blk_data *md)
2834{
2835 struct list_head *pos, *q;
2836 struct mmc_blk_data *part_md;
2837 struct mmc_rpmb_data *rpmb;
2838
2839 /* Remove RPMB partitions */
2840 list_for_each_safe(pos, q, &md->rpmbs) {
2841 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2842 list_del(entry: pos);
2843 mmc_blk_remove_rpmb_part(rpmb);
2844 }
2845 /* Remove block partitions */
2846 list_for_each_safe(pos, q, &md->part) {
2847 part_md = list_entry(pos, struct mmc_blk_data, part);
2848 list_del(entry: pos);
2849 mmc_blk_remove_req(md: part_md);
2850 }
2851}
2852
2853#ifdef CONFIG_DEBUG_FS
2854
2855static int mmc_dbg_card_status_get(void *data, u64 *val)
2856{
2857 struct mmc_card *card = data;
2858 struct mmc_blk_data *md = dev_get_drvdata(dev: &card->dev);
2859 struct mmc_queue *mq = &md->queue;
2860 struct request *req;
2861 int ret;
2862
2863 /* Ask the block layer about the card status */
2864 req = blk_mq_alloc_request(q: mq->queue, opf: REQ_OP_DRV_IN, flags: 0);
2865 if (IS_ERR(ptr: req))
2866 return PTR_ERR(ptr: req);
2867 req_to_mmc_queue_req(rq: req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2868 req_to_mmc_queue_req(rq: req)->drv_op_result = -EIO;
2869 blk_execute_rq(rq: req, at_head: false);
2870 ret = req_to_mmc_queue_req(rq: req)->drv_op_result;
2871 if (ret >= 0) {
2872 *val = ret;
2873 ret = 0;
2874 }
2875 blk_mq_free_request(rq: req);
2876
2877 return ret;
2878}
2879DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2880 NULL, "%08llx\n");
2881
2882/* That is two digits * 512 + 1 for newline */
2883#define EXT_CSD_STR_LEN 1025
2884
2885static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2886{
2887 struct mmc_card *card = inode->i_private;
2888 struct mmc_blk_data *md = dev_get_drvdata(dev: &card->dev);
2889 struct mmc_queue *mq = &md->queue;
2890 struct request *req;
2891 char *buf;
2892 ssize_t n = 0;
2893 u8 *ext_csd;
2894 int err, i;
2895
2896 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2897 if (!buf)
2898 return -ENOMEM;
2899
2900 /* Ask the block layer for the EXT CSD */
2901 req = blk_mq_alloc_request(q: mq->queue, opf: REQ_OP_DRV_IN, flags: 0);
2902 if (IS_ERR(ptr: req)) {
2903 err = PTR_ERR(ptr: req);
2904 goto out_free;
2905 }
2906 req_to_mmc_queue_req(rq: req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2907 req_to_mmc_queue_req(rq: req)->drv_op_result = -EIO;
2908 req_to_mmc_queue_req(rq: req)->drv_op_data = &ext_csd;
2909 blk_execute_rq(rq: req, at_head: false);
2910 err = req_to_mmc_queue_req(rq: req)->drv_op_result;
2911 blk_mq_free_request(rq: req);
2912 if (err) {
2913 pr_err("FAILED %d\n", err);
2914 goto out_free;
2915 }
2916
2917 for (i = 0; i < 512; i++)
2918 n += sprintf(buf: buf + n, fmt: "%02x", ext_csd[i]);
2919 n += sprintf(buf: buf + n, fmt: "\n");
2920
2921 if (n != EXT_CSD_STR_LEN) {
2922 err = -EINVAL;
2923 kfree(objp: ext_csd);
2924 goto out_free;
2925 }
2926
2927 filp->private_data = buf;
2928 kfree(objp: ext_csd);
2929 return 0;
2930
2931out_free:
2932 kfree(objp: buf);
2933 return err;
2934}
2935
2936static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2937 size_t cnt, loff_t *ppos)
2938{
2939 char *buf = filp->private_data;
2940
2941 return simple_read_from_buffer(to: ubuf, count: cnt, ppos,
2942 from: buf, EXT_CSD_STR_LEN);
2943}
2944
2945static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2946{
2947 kfree(objp: file->private_data);
2948 return 0;
2949}
2950
2951static const struct file_operations mmc_dbg_ext_csd_fops = {
2952 .open = mmc_ext_csd_open,
2953 .read = mmc_ext_csd_read,
2954 .release = mmc_ext_csd_release,
2955 .llseek = default_llseek,
2956};
2957
2958static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2959{
2960 struct dentry *root;
2961
2962 if (!card->debugfs_root)
2963 return;
2964
2965 root = card->debugfs_root;
2966
2967 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2968 md->status_dentry =
2969 debugfs_create_file_unsafe(name: "status", mode: 0400, parent: root,
2970 data: card,
2971 fops: &mmc_dbg_card_status_fops);
2972 }
2973
2974 if (mmc_card_mmc(card)) {
2975 md->ext_csd_dentry =
2976 debugfs_create_file(name: "ext_csd", S_IRUSR, parent: root, data: card,
2977 fops: &mmc_dbg_ext_csd_fops);
2978 }
2979}
2980
2981static void mmc_blk_remove_debugfs(struct mmc_card *card,
2982 struct mmc_blk_data *md)
2983{
2984 if (!card->debugfs_root)
2985 return;
2986
2987 debugfs_remove(dentry: md->status_dentry);
2988 md->status_dentry = NULL;
2989
2990 debugfs_remove(dentry: md->ext_csd_dentry);
2991 md->ext_csd_dentry = NULL;
2992}
2993
2994#else
2995
2996static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2997{
2998}
2999
3000static void mmc_blk_remove_debugfs(struct mmc_card *card,
3001 struct mmc_blk_data *md)
3002{
3003}
3004
3005#endif /* CONFIG_DEBUG_FS */
3006
3007static int mmc_blk_probe(struct mmc_card *card)
3008{
3009 struct mmc_blk_data *md;
3010 int ret = 0;
3011
3012 /*
3013 * Check that the card supports the command class(es) we need.
3014 */
3015 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3016 return -ENODEV;
3017
3018 mmc_fixup_device(card, table: mmc_blk_fixups);
3019
3020 card->complete_wq = alloc_workqueue(fmt: "mmc_complete",
3021 flags: WQ_MEM_RECLAIM | WQ_HIGHPRI, max_active: 0);
3022 if (!card->complete_wq) {
3023 pr_err("Failed to create mmc completion workqueue");
3024 return -ENOMEM;
3025 }
3026
3027 md = mmc_blk_alloc(card);
3028 if (IS_ERR(ptr: md)) {
3029 ret = PTR_ERR(ptr: md);
3030 goto out_free;
3031 }
3032
3033 ret = mmc_blk_alloc_parts(card, md);
3034 if (ret)
3035 goto out;
3036
3037 /* Add two debugfs entries */
3038 mmc_blk_add_debugfs(card, md);
3039
3040 pm_runtime_set_autosuspend_delay(dev: &card->dev, delay: 3000);
3041 pm_runtime_use_autosuspend(dev: &card->dev);
3042
3043 /*
3044 * Don't enable runtime PM for SD-combo cards here. Leave that
3045 * decision to be taken during the SDIO init sequence instead.
3046 */
3047 if (!mmc_card_sd_combo(card)) {
3048 pm_runtime_set_active(dev: &card->dev);
3049 pm_runtime_enable(dev: &card->dev);
3050 }
3051
3052 return 0;
3053
3054out:
3055 mmc_blk_remove_parts(card, md);
3056 mmc_blk_remove_req(md);
3057out_free:
3058 destroy_workqueue(wq: card->complete_wq);
3059 return ret;
3060}
3061
3062static void mmc_blk_remove(struct mmc_card *card)
3063{
3064 struct mmc_blk_data *md = dev_get_drvdata(dev: &card->dev);
3065
3066 mmc_blk_remove_debugfs(card, md);
3067 mmc_blk_remove_parts(card, md);
3068 pm_runtime_get_sync(dev: &card->dev);
3069 if (md->part_curr != md->part_type) {
3070 mmc_claim_host(host: card->host);
3071 mmc_blk_part_switch(card, part_type: md->part_type);
3072 mmc_release_host(host: card->host);
3073 }
3074 if (!mmc_card_sd_combo(card))
3075 pm_runtime_disable(dev: &card->dev);
3076 pm_runtime_put_noidle(dev: &card->dev);
3077 mmc_blk_remove_req(md);
3078 destroy_workqueue(wq: card->complete_wq);
3079}
3080
3081static int _mmc_blk_suspend(struct mmc_card *card)
3082{
3083 struct mmc_blk_data *part_md;
3084 struct mmc_blk_data *md = dev_get_drvdata(dev: &card->dev);
3085
3086 if (md) {
3087 mmc_queue_suspend(&md->queue);
3088 list_for_each_entry(part_md, &md->part, part) {
3089 mmc_queue_suspend(&part_md->queue);
3090 }
3091 }
3092 return 0;
3093}
3094
3095static void mmc_blk_shutdown(struct mmc_card *card)
3096{
3097 _mmc_blk_suspend(card);
3098}
3099
3100#ifdef CONFIG_PM_SLEEP
3101static int mmc_blk_suspend(struct device *dev)
3102{
3103 struct mmc_card *card = mmc_dev_to_card(dev);
3104
3105 return _mmc_blk_suspend(card);
3106}
3107
3108static int mmc_blk_resume(struct device *dev)
3109{
3110 struct mmc_blk_data *part_md;
3111 struct mmc_blk_data *md = dev_get_drvdata(dev);
3112
3113 if (md) {
3114 /*
3115 * Resume involves the card going into idle state,
3116 * so current partition is always the main one.
3117 */
3118 md->part_curr = md->part_type;
3119 mmc_queue_resume(&md->queue);
3120 list_for_each_entry(part_md, &md->part, part) {
3121 mmc_queue_resume(&part_md->queue);
3122 }
3123 }
3124 return 0;
3125}
3126#endif
3127
3128static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3129
3130static struct mmc_driver mmc_driver = {
3131 .drv = {
3132 .name = "mmcblk",
3133 .pm = &mmc_blk_pm_ops,
3134 },
3135 .probe = mmc_blk_probe,
3136 .remove = mmc_blk_remove,
3137 .shutdown = mmc_blk_shutdown,
3138};
3139
3140static int __init mmc_blk_init(void)
3141{
3142 int res;
3143
3144 res = bus_register(bus: &mmc_rpmb_bus_type);
3145 if (res < 0) {
3146 pr_err("mmcblk: could not register RPMB bus type\n");
3147 return res;
3148 }
3149 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3150 if (res < 0) {
3151 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3152 goto out_bus_unreg;
3153 }
3154
3155 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3156 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3157
3158 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3159
3160 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3161 if (res)
3162 goto out_chrdev_unreg;
3163
3164 res = mmc_register_driver(drv: &mmc_driver);
3165 if (res)
3166 goto out_blkdev_unreg;
3167
3168 return 0;
3169
3170out_blkdev_unreg:
3171 unregister_blkdev(MMC_BLOCK_MAJOR, name: "mmc");
3172out_chrdev_unreg:
3173 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3174out_bus_unreg:
3175 bus_unregister(bus: &mmc_rpmb_bus_type);
3176 return res;
3177}
3178
3179static void __exit mmc_blk_exit(void)
3180{
3181 mmc_unregister_driver(drv: &mmc_driver);
3182 unregister_blkdev(MMC_BLOCK_MAJOR, name: "mmc");
3183 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3184 bus_unregister(bus: &mmc_rpmb_bus_type);
3185}
3186
3187module_init(mmc_blk_init);
3188module_exit(mmc_blk_exit);
3189
3190MODULE_LICENSE("GPL");
3191MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3192

source code of linux/drivers/mmc/core/block.c