1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <rdma/mr_pool.h>
11#include <linux/err.h>
12#include <linux/string.h>
13#include <linux/atomic.h>
14#include <linux/blk-mq.h>
15#include <linux/blk-integrity.h>
16#include <linux/types.h>
17#include <linux/list.h>
18#include <linux/mutex.h>
19#include <linux/scatterlist.h>
20#include <linux/nvme.h>
21#include <linux/unaligned.h>
22
23#include <rdma/ib_verbs.h>
24#include <rdma/rdma_cm.h>
25#include <linux/nvme-rdma.h>
26
27#include "nvme.h"
28#include "fabrics.h"
29
30
31#define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
32
33#define NVME_RDMA_MAX_SEGMENTS 256
34
35#define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37#define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39#define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
48};
49
50struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
54};
55
56struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
59};
60
61struct nvme_rdma_queue;
62struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
77};
78
79enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
83};
84
85struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
93
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
100 struct mutex queue_lock;
101};
102
103struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
106
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
110
111 struct nvme_rdma_qe async_event_sqe;
112
113 struct delayed_work reconnect_work;
114
115 struct list_head list;
116
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
119
120 u32 max_fr_pages;
121
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
124
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
128};
129
130static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131{
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133}
134
135static LIST_HEAD(device_list);
136static DEFINE_MUTEX(device_list_mutex);
137
138static LIST_HEAD(nvme_rdma_ctrl_list);
139static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141/*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146static bool register_always = true;
147module_param(register_always, bool, 0444);
148MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
150
151static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154static void nvme_rdma_complete_rq(struct request *rq);
155
156static const struct blk_mq_ops nvme_rdma_mq_ops;
157static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
159static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160{
161 return queue - queue->ctrl->queues;
162}
163
164static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165{
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
169}
170
171static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172{
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174}
175
176static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178{
179 ib_dma_unmap_single(dev: ibdev, addr: qe->dma, size: capsule_size, direction: dir);
180 kfree(objp: qe->data);
181}
182
183static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185{
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
189
190 qe->dma = ib_dma_map_single(dev: ibdev, cpu_addr: qe->data, size: capsule_size, direction: dir);
191 if (ib_dma_mapping_error(dev: ibdev, dma_addr: qe->dma)) {
192 kfree(objp: qe->data);
193 qe->data = NULL;
194 return -ENOMEM;
195 }
196
197 return 0;
198}
199
200static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
203{
204 int i;
205
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, qe: &ring[i], capsule_size, dir);
208 kfree(objp: ring);
209}
210
211static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
214{
215 struct nvme_rdma_qe *ring;
216 int i;
217
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 if (!ring)
220 return NULL;
221
222 /*
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any change in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
226 */
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, qe: &ring[i], capsule_size, dir))
229 goto out_free_ring;
230 }
231
232 return ring;
233
234out_free_ring:
235 nvme_rdma_free_ring(ibdev, ring, ib_queue_size: i, capsule_size, dir);
236 return NULL;
237}
238
239static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240{
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
243
244}
245
246static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247{
248 int ret;
249
250 ret = wait_for_completion_interruptible(x: &queue->cm_done);
251 if (ret)
252 return ret;
253 WARN_ON_ONCE(queue->cm_error > 0);
254 return queue->cm_error;
255}
256
257static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258{
259 struct nvme_rdma_device *dev = queue->device;
260 struct ib_qp_init_attr init_attr;
261 int ret;
262
263 memset(&init_attr, 0, sizeof(init_attr));
264 init_attr.event_handler = nvme_rdma_qp_event;
265 /* +1 for drain */
266 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 /* +1 for drain */
268 init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 init_attr.cap.max_recv_sge = 1;
270 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 init_attr.qp_type = IB_QPT_RC;
273 init_attr.send_cq = queue->ib_cq;
274 init_attr.recv_cq = queue->ib_cq;
275 if (queue->pi_support)
276 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277 init_attr.qp_context = queue;
278
279 ret = rdma_create_qp(id: queue->cm_id, pd: dev->pd, qp_init_attr: &init_attr);
280
281 queue->qp = queue->cm_id->qp;
282 return ret;
283}
284
285static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 struct request *rq, unsigned int hctx_idx)
287{
288 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289
290 kfree(objp: req->sqe.data);
291}
292
293static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 struct request *rq, unsigned int hctx_idx,
295 unsigned int numa_node)
296{
297 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: set->driver_data);
298 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301
302 nvme_req(req: rq)->ctrl = &ctrl->ctrl;
303 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304 if (!req->sqe.data)
305 return -ENOMEM;
306
307 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 if (queue->pi_support)
309 req->metadata_sgl = (void *)nvme_req(req: rq) +
310 sizeof(struct nvme_rdma_request) +
311 NVME_RDMA_DATA_SGL_SIZE;
312
313 req->queue = queue;
314 nvme_req(req: rq)->cmd = req->sqe.data;
315
316 return 0;
317}
318
319static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320 unsigned int hctx_idx)
321{
322 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: data);
323 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324
325 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326
327 hctx->driver_data = queue;
328 return 0;
329}
330
331static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 unsigned int hctx_idx)
333{
334 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: data);
335 struct nvme_rdma_queue *queue = &ctrl->queues[0];
336
337 BUG_ON(hctx_idx != 0);
338
339 hctx->driver_data = queue;
340 return 0;
341}
342
343static void nvme_rdma_free_dev(struct kref *ref)
344{
345 struct nvme_rdma_device *ndev =
346 container_of(ref, struct nvme_rdma_device, ref);
347
348 mutex_lock(&device_list_mutex);
349 list_del(entry: &ndev->entry);
350 mutex_unlock(lock: &device_list_mutex);
351
352 ib_dealloc_pd(pd: ndev->pd);
353 kfree(objp: ndev);
354}
355
356static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357{
358 kref_put(kref: &dev->ref, release: nvme_rdma_free_dev);
359}
360
361static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362{
363 return kref_get_unless_zero(kref: &dev->ref);
364}
365
366static struct nvme_rdma_device *
367nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368{
369 struct nvme_rdma_device *ndev;
370
371 mutex_lock(&device_list_mutex);
372 list_for_each_entry(ndev, &device_list, entry) {
373 if (ndev->dev->node_guid == cm_id->device->node_guid &&
374 nvme_rdma_dev_get(dev: ndev))
375 goto out_unlock;
376 }
377
378 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379 if (!ndev)
380 goto out_err;
381
382 ndev->dev = cm_id->device;
383 kref_init(kref: &ndev->ref);
384
385 ndev->pd = ib_alloc_pd(ndev->dev,
386 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 if (IS_ERR(ptr: ndev->pd))
388 goto out_free_dev;
389
390 if (!(ndev->dev->attrs.device_cap_flags &
391 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392 dev_err(&ndev->dev->dev,
393 "Memory registrations not supported.\n");
394 goto out_free_pd;
395 }
396
397 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398 ndev->dev->attrs.max_send_sge - 1);
399 list_add(new: &ndev->entry, head: &device_list);
400out_unlock:
401 mutex_unlock(lock: &device_list_mutex);
402 return ndev;
403
404out_free_pd:
405 ib_dealloc_pd(pd: ndev->pd);
406out_free_dev:
407 kfree(objp: ndev);
408out_err:
409 mutex_unlock(lock: &device_list_mutex);
410 return NULL;
411}
412
413static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414{
415 if (nvme_rdma_poll_queue(queue))
416 ib_free_cq(cq: queue->ib_cq);
417 else
418 ib_cq_pool_put(cq: queue->ib_cq, nr_cqe: queue->cq_size);
419}
420
421static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422{
423 struct nvme_rdma_device *dev;
424 struct ib_device *ibdev;
425
426 if (!test_and_clear_bit(nr: NVME_RDMA_Q_TR_READY, addr: &queue->flags))
427 return;
428
429 dev = queue->device;
430 ibdev = dev->dev;
431
432 if (queue->pi_support)
433 ib_mr_pool_destroy(qp: queue->qp, list: &queue->qp->sig_mrs);
434 ib_mr_pool_destroy(qp: queue->qp, list: &queue->qp->rdma_mrs);
435
436 /*
437 * The cm_id object might have been destroyed during RDMA connection
438 * establishment error flow to avoid getting other cma events, thus
439 * the destruction of the QP shouldn't use rdma_cm API.
440 */
441 ib_destroy_qp(qp: queue->qp);
442 nvme_rdma_free_cq(queue);
443
444 nvme_rdma_free_ring(ibdev, ring: queue->rsp_ring, ib_queue_size: queue->queue_size,
445 capsule_size: sizeof(struct nvme_completion), dir: DMA_FROM_DEVICE);
446
447 nvme_rdma_dev_put(dev);
448}
449
450static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451{
452 u32 max_page_list_len;
453
454 if (pi_support)
455 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456 else
457 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458
459 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460}
461
462static int nvme_rdma_create_cq(struct ib_device *ibdev,
463 struct nvme_rdma_queue *queue)
464{
465 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466
467 /*
468 * Spread I/O queues completion vectors according their queue index.
469 * Admin queues can always go on completion vector 0.
470 */
471 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472
473 /* Polling queues need direct cq polling context */
474 if (nvme_rdma_poll_queue(queue))
475 queue->ib_cq = ib_alloc_cq(dev: ibdev, private: queue, nr_cqe: queue->cq_size,
476 comp_vector, poll_ctx: IB_POLL_DIRECT);
477 else
478 queue->ib_cq = ib_cq_pool_get(dev: ibdev, nr_cqe: queue->cq_size,
479 comp_vector_hint: comp_vector, poll_ctx: IB_POLL_SOFTIRQ);
480
481 if (IS_ERR(ptr: queue->ib_cq)) {
482 ret = PTR_ERR(ptr: queue->ib_cq);
483 return ret;
484 }
485
486 return 0;
487}
488
489static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490{
491 struct ib_device *ibdev;
492 const int send_wr_factor = 3; /* MR, SEND, INV */
493 const int cq_factor = send_wr_factor + 1; /* + RECV */
494 int ret, pages_per_mr;
495
496 queue->device = nvme_rdma_find_get_device(cm_id: queue->cm_id);
497 if (!queue->device) {
498 dev_err(queue->cm_id->device->dev.parent,
499 "no client data found!\n");
500 return -ECONNREFUSED;
501 }
502 ibdev = queue->device->dev;
503
504 /* +1 for ib_drain_qp */
505 queue->cq_size = cq_factor * queue->queue_size + 1;
506
507 ret = nvme_rdma_create_cq(ibdev, queue);
508 if (ret)
509 goto out_put_dev;
510
511 ret = nvme_rdma_create_qp(queue, factor: send_wr_factor);
512 if (ret)
513 goto out_destroy_ib_cq;
514
515 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, ib_queue_size: queue->queue_size,
516 capsule_size: sizeof(struct nvme_completion), dir: DMA_FROM_DEVICE);
517 if (!queue->rsp_ring) {
518 ret = -ENOMEM;
519 goto out_destroy_qp;
520 }
521
522 /*
523 * Currently we don't use SG_GAPS MR's so if the first entry is
524 * misaligned we'll end up using two entries for a single data page,
525 * so one additional entry is required.
526 */
527 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, pi_support: queue->pi_support) + 1;
528 ret = ib_mr_pool_init(qp: queue->qp, list: &queue->qp->rdma_mrs,
529 nr: queue->queue_size,
530 type: IB_MR_TYPE_MEM_REG,
531 max_num_sg: pages_per_mr, max_num_meta_sg: 0);
532 if (ret) {
533 dev_err(queue->ctrl->ctrl.device,
534 "failed to initialize MR pool sized %d for QID %d\n",
535 queue->queue_size, nvme_rdma_queue_idx(queue));
536 goto out_destroy_ring;
537 }
538
539 if (queue->pi_support) {
540 ret = ib_mr_pool_init(qp: queue->qp, list: &queue->qp->sig_mrs,
541 nr: queue->queue_size, type: IB_MR_TYPE_INTEGRITY,
542 max_num_sg: pages_per_mr, max_num_meta_sg: pages_per_mr);
543 if (ret) {
544 dev_err(queue->ctrl->ctrl.device,
545 "failed to initialize PI MR pool sized %d for QID %d\n",
546 queue->queue_size, nvme_rdma_queue_idx(queue));
547 goto out_destroy_mr_pool;
548 }
549 }
550
551 set_bit(nr: NVME_RDMA_Q_TR_READY, addr: &queue->flags);
552
553 return 0;
554
555out_destroy_mr_pool:
556 ib_mr_pool_destroy(qp: queue->qp, list: &queue->qp->rdma_mrs);
557out_destroy_ring:
558 nvme_rdma_free_ring(ibdev, ring: queue->rsp_ring, ib_queue_size: queue->queue_size,
559 capsule_size: sizeof(struct nvme_completion), dir: DMA_FROM_DEVICE);
560out_destroy_qp:
561 rdma_destroy_qp(id: queue->cm_id);
562out_destroy_ib_cq:
563 nvme_rdma_free_cq(queue);
564out_put_dev:
565 nvme_rdma_dev_put(dev: queue->device);
566 return ret;
567}
568
569static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 int idx, size_t queue_size)
571{
572 struct nvme_rdma_queue *queue;
573 struct sockaddr *src_addr = NULL;
574 int ret;
575
576 queue = &ctrl->queues[idx];
577 mutex_init(&queue->queue_lock);
578 queue->ctrl = ctrl;
579 if (idx && ctrl->ctrl.max_integrity_segments)
580 queue->pi_support = true;
581 else
582 queue->pi_support = false;
583 init_completion(x: &queue->cm_done);
584
585 if (idx > 0)
586 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587 else
588 queue->cmnd_capsule_len = sizeof(struct nvme_command);
589
590 queue->queue_size = queue_size;
591
592 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593 RDMA_PS_TCP, IB_QPT_RC);
594 if (IS_ERR(ptr: queue->cm_id)) {
595 dev_info(ctrl->ctrl.device,
596 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 ret = PTR_ERR(ptr: queue->cm_id);
598 goto out_destroy_mutex;
599 }
600
601 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602 src_addr = (struct sockaddr *)&ctrl->src_addr;
603
604 queue->cm_error = -ETIMEDOUT;
605 ret = rdma_resolve_addr(id: queue->cm_id, src_addr,
606 dst_addr: (struct sockaddr *)&ctrl->addr,
607 NVME_RDMA_CM_TIMEOUT_MS);
608 if (ret) {
609 dev_info(ctrl->ctrl.device,
610 "rdma_resolve_addr failed (%d).\n", ret);
611 goto out_destroy_cm_id;
612 }
613
614 ret = nvme_rdma_wait_for_cm(queue);
615 if (ret) {
616 dev_info(ctrl->ctrl.device,
617 "rdma connection establishment failed (%d)\n", ret);
618 goto out_destroy_cm_id;
619 }
620
621 set_bit(nr: NVME_RDMA_Q_ALLOCATED, addr: &queue->flags);
622
623 return 0;
624
625out_destroy_cm_id:
626 rdma_destroy_id(id: queue->cm_id);
627 nvme_rdma_destroy_queue_ib(queue);
628out_destroy_mutex:
629 mutex_destroy(lock: &queue->queue_lock);
630 return ret;
631}
632
633static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634{
635 rdma_disconnect(id: queue->cm_id);
636 ib_drain_qp(qp: queue->qp);
637}
638
639static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640{
641 if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
642 return;
643
644 mutex_lock(&queue->queue_lock);
645 if (test_and_clear_bit(nr: NVME_RDMA_Q_LIVE, addr: &queue->flags))
646 __nvme_rdma_stop_queue(queue);
647 mutex_unlock(lock: &queue->queue_lock);
648}
649
650static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
651{
652 if (!test_and_clear_bit(nr: NVME_RDMA_Q_ALLOCATED, addr: &queue->flags))
653 return;
654
655 rdma_destroy_id(id: queue->cm_id);
656 nvme_rdma_destroy_queue_ib(queue);
657 mutex_destroy(lock: &queue->queue_lock);
658}
659
660static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
661{
662 int i;
663
664 for (i = 1; i < ctrl->ctrl.queue_count; i++)
665 nvme_rdma_free_queue(queue: &ctrl->queues[i]);
666}
667
668static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
669{
670 int i;
671
672 for (i = 1; i < ctrl->ctrl.queue_count; i++)
673 nvme_rdma_stop_queue(queue: &ctrl->queues[i]);
674}
675
676static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
677{
678 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
679 int ret;
680
681 if (idx)
682 ret = nvmf_connect_io_queue(ctrl: &ctrl->ctrl, qid: idx);
683 else
684 ret = nvmf_connect_admin_queue(ctrl: &ctrl->ctrl);
685
686 if (!ret) {
687 set_bit(nr: NVME_RDMA_Q_LIVE, addr: &queue->flags);
688 } else {
689 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
690 __nvme_rdma_stop_queue(queue);
691 dev_info(ctrl->ctrl.device,
692 "failed to connect queue: %d ret=%d\n", idx, ret);
693 }
694 return ret;
695}
696
697static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
698 int first, int last)
699{
700 int i, ret = 0;
701
702 for (i = first; i < last; i++) {
703 ret = nvme_rdma_start_queue(ctrl, idx: i);
704 if (ret)
705 goto out_stop_queues;
706 }
707
708 return 0;
709
710out_stop_queues:
711 for (i--; i >= first; i--)
712 nvme_rdma_stop_queue(queue: &ctrl->queues[i]);
713 return ret;
714}
715
716static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
717{
718 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
719 unsigned int nr_io_queues;
720 int i, ret;
721
722 nr_io_queues = nvmf_nr_io_queues(opts);
723 ret = nvme_set_queue_count(ctrl: &ctrl->ctrl, count: &nr_io_queues);
724 if (ret)
725 return ret;
726
727 if (nr_io_queues == 0) {
728 dev_err(ctrl->ctrl.device,
729 "unable to set any I/O queues\n");
730 return -ENOMEM;
731 }
732
733 ctrl->ctrl.queue_count = nr_io_queues + 1;
734 dev_info(ctrl->ctrl.device,
735 "creating %d I/O queues.\n", nr_io_queues);
736
737 nvmf_set_io_queues(opts, nr_io_queues, io_queues: ctrl->io_queues);
738 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
739 ret = nvme_rdma_alloc_queue(ctrl, idx: i,
740 queue_size: ctrl->ctrl.sqsize + 1);
741 if (ret)
742 goto out_free_queues;
743 }
744
745 return 0;
746
747out_free_queues:
748 for (i--; i >= 1; i--)
749 nvme_rdma_free_queue(queue: &ctrl->queues[i]);
750
751 return ret;
752}
753
754static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
755{
756 unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
757 NVME_RDMA_DATA_SGL_SIZE;
758
759 if (ctrl->max_integrity_segments)
760 cmd_size += sizeof(struct nvme_rdma_sgl) +
761 NVME_RDMA_METADATA_SGL_SIZE;
762
763 return nvme_alloc_io_tag_set(ctrl, set: &to_rdma_ctrl(ctrl)->tag_set,
764 ops: &nvme_rdma_mq_ops,
765 nr_maps: ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
766 cmd_size);
767}
768
769static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
770{
771 if (ctrl->async_event_sqe.data) {
772 cancel_work_sync(work: &ctrl->ctrl.async_event_work);
773 nvme_rdma_free_qe(ibdev: ctrl->device->dev, qe: &ctrl->async_event_sqe,
774 capsule_size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE);
775 ctrl->async_event_sqe.data = NULL;
776 }
777 nvme_rdma_free_queue(queue: &ctrl->queues[0]);
778}
779
780static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
781 bool new)
782{
783 bool pi_capable = false;
784 int error;
785
786 error = nvme_rdma_alloc_queue(ctrl, idx: 0, NVME_AQ_DEPTH);
787 if (error)
788 return error;
789
790 ctrl->device = ctrl->queues[0].device;
791 ctrl->ctrl.numa_node = ibdev_to_node(ibdev: ctrl->device->dev);
792
793 /* T10-PI support */
794 if (ctrl->device->dev->attrs.kernel_cap_flags &
795 IBK_INTEGRITY_HANDOVER)
796 pi_capable = true;
797
798 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ibdev: ctrl->device->dev,
799 pi_support: pi_capable);
800
801 /*
802 * Bind the async event SQE DMA mapping to the admin queue lifetime.
803 * It's safe, since any change in the underlying RDMA device will issue
804 * error recovery and queue re-creation.
805 */
806 error = nvme_rdma_alloc_qe(ibdev: ctrl->device->dev, qe: &ctrl->async_event_sqe,
807 capsule_size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE);
808 if (error)
809 goto out_free_queue;
810
811 if (new) {
812 error = nvme_alloc_admin_tag_set(ctrl: &ctrl->ctrl,
813 set: &ctrl->admin_tag_set, ops: &nvme_rdma_admin_mq_ops,
814 cmd_size: sizeof(struct nvme_rdma_request) +
815 NVME_RDMA_DATA_SGL_SIZE);
816 if (error)
817 goto out_free_async_qe;
818
819 }
820
821 error = nvme_rdma_start_queue(ctrl, idx: 0);
822 if (error)
823 goto out_remove_admin_tag_set;
824
825 error = nvme_enable_ctrl(ctrl: &ctrl->ctrl);
826 if (error)
827 goto out_stop_queue;
828
829 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
830 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
831 if (pi_capable)
832 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
833 else
834 ctrl->ctrl.max_integrity_segments = 0;
835
836 nvme_unquiesce_admin_queue(ctrl: &ctrl->ctrl);
837
838 error = nvme_init_ctrl_finish(ctrl: &ctrl->ctrl, was_suspended: false);
839 if (error)
840 goto out_quiesce_queue;
841
842 return 0;
843
844out_quiesce_queue:
845 nvme_quiesce_admin_queue(ctrl: &ctrl->ctrl);
846 blk_sync_queue(q: ctrl->ctrl.admin_q);
847out_stop_queue:
848 nvme_rdma_stop_queue(queue: &ctrl->queues[0]);
849 nvme_cancel_admin_tagset(ctrl: &ctrl->ctrl);
850out_remove_admin_tag_set:
851 if (new)
852 nvme_remove_admin_tag_set(ctrl: &ctrl->ctrl);
853out_free_async_qe:
854 if (ctrl->async_event_sqe.data) {
855 nvme_rdma_free_qe(ibdev: ctrl->device->dev, qe: &ctrl->async_event_sqe,
856 capsule_size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE);
857 ctrl->async_event_sqe.data = NULL;
858 }
859out_free_queue:
860 nvme_rdma_free_queue(queue: &ctrl->queues[0]);
861 return error;
862}
863
864static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
865{
866 int ret, nr_queues;
867
868 ret = nvme_rdma_alloc_io_queues(ctrl);
869 if (ret)
870 return ret;
871
872 if (new) {
873 ret = nvme_rdma_alloc_tag_set(ctrl: &ctrl->ctrl);
874 if (ret)
875 goto out_free_io_queues;
876 }
877
878 /*
879 * Only start IO queues for which we have allocated the tagset
880 * and limitted it to the available queues. On reconnects, the
881 * queue number might have changed.
882 */
883 nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
884 ret = nvme_rdma_start_io_queues(ctrl, first: 1, last: nr_queues);
885 if (ret)
886 goto out_cleanup_tagset;
887
888 if (!new) {
889 nvme_start_freeze(ctrl: &ctrl->ctrl);
890 nvme_unquiesce_io_queues(ctrl: &ctrl->ctrl);
891 if (!nvme_wait_freeze_timeout(ctrl: &ctrl->ctrl, NVME_IO_TIMEOUT)) {
892 /*
893 * If we timed out waiting for freeze we are likely to
894 * be stuck. Fail the controller initialization just
895 * to be safe.
896 */
897 ret = -ENODEV;
898 nvme_unfreeze(ctrl: &ctrl->ctrl);
899 goto out_wait_freeze_timed_out;
900 }
901 blk_mq_update_nr_hw_queues(set: ctrl->ctrl.tagset,
902 nr_hw_queues: ctrl->ctrl.queue_count - 1);
903 nvme_unfreeze(ctrl: &ctrl->ctrl);
904 }
905
906 /*
907 * If the number of queues has increased (reconnect case)
908 * start all new queues now.
909 */
910 ret = nvme_rdma_start_io_queues(ctrl, first: nr_queues,
911 last: ctrl->tag_set.nr_hw_queues + 1);
912 if (ret)
913 goto out_wait_freeze_timed_out;
914
915 return 0;
916
917out_wait_freeze_timed_out:
918 nvme_quiesce_io_queues(ctrl: &ctrl->ctrl);
919 nvme_sync_io_queues(ctrl: &ctrl->ctrl);
920 nvme_rdma_stop_io_queues(ctrl);
921out_cleanup_tagset:
922 nvme_cancel_tagset(ctrl: &ctrl->ctrl);
923 if (new)
924 nvme_remove_io_tag_set(ctrl: &ctrl->ctrl);
925out_free_io_queues:
926 nvme_rdma_free_io_queues(ctrl);
927 return ret;
928}
929
930static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
931 bool remove)
932{
933 nvme_quiesce_admin_queue(ctrl: &ctrl->ctrl);
934 blk_sync_queue(q: ctrl->ctrl.admin_q);
935 nvme_rdma_stop_queue(queue: &ctrl->queues[0]);
936 nvme_cancel_admin_tagset(ctrl: &ctrl->ctrl);
937 if (remove) {
938 nvme_unquiesce_admin_queue(ctrl: &ctrl->ctrl);
939 nvme_remove_admin_tag_set(ctrl: &ctrl->ctrl);
940 }
941 nvme_rdma_destroy_admin_queue(ctrl);
942}
943
944static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
945 bool remove)
946{
947 if (ctrl->ctrl.queue_count > 1) {
948 nvme_quiesce_io_queues(ctrl: &ctrl->ctrl);
949 nvme_sync_io_queues(ctrl: &ctrl->ctrl);
950 nvme_rdma_stop_io_queues(ctrl);
951 nvme_cancel_tagset(ctrl: &ctrl->ctrl);
952 if (remove) {
953 nvme_unquiesce_io_queues(ctrl: &ctrl->ctrl);
954 nvme_remove_io_tag_set(ctrl: &ctrl->ctrl);
955 }
956 nvme_rdma_free_io_queues(ctrl);
957 }
958}
959
960static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
961{
962 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: nctrl);
963
964 flush_work(work: &ctrl->err_work);
965 cancel_delayed_work_sync(dwork: &ctrl->reconnect_work);
966}
967
968static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
969{
970 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: nctrl);
971
972 if (list_empty(head: &ctrl->list))
973 goto free_ctrl;
974
975 mutex_lock(&nvme_rdma_ctrl_mutex);
976 list_del(entry: &ctrl->list);
977 mutex_unlock(lock: &nvme_rdma_ctrl_mutex);
978
979 nvmf_free_options(opts: nctrl->opts);
980free_ctrl:
981 kfree(objp: ctrl->queues);
982 kfree(objp: ctrl);
983}
984
985static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl,
986 int status)
987{
988 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl: &ctrl->ctrl);
989
990 /* If we are resetting/deleting then do nothing */
991 if (state != NVME_CTRL_CONNECTING) {
992 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
993 return;
994 }
995
996 if (nvmf_should_reconnect(ctrl: &ctrl->ctrl, status)) {
997 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
998 ctrl->ctrl.opts->reconnect_delay);
999 queue_delayed_work(wq: nvme_wq, dwork: &ctrl->reconnect_work,
1000 delay: ctrl->ctrl.opts->reconnect_delay * HZ);
1001 } else {
1002 nvme_delete_ctrl(ctrl: &ctrl->ctrl);
1003 }
1004}
1005
1006static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1007{
1008 int ret;
1009 bool changed;
1010 u16 max_queue_size;
1011
1012 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1013 if (ret)
1014 return ret;
1015
1016 if (ctrl->ctrl.icdoff) {
1017 ret = -EOPNOTSUPP;
1018 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1019 goto destroy_admin;
1020 }
1021
1022 if (!(ctrl->ctrl.sgls & NVME_CTRL_SGLS_KSDBDS)) {
1023 ret = -EOPNOTSUPP;
1024 dev_err(ctrl->ctrl.device,
1025 "Mandatory keyed sgls are not supported!\n");
1026 goto destroy_admin;
1027 }
1028
1029 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1030 dev_warn(ctrl->ctrl.device,
1031 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1032 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1033 }
1034
1035 if (ctrl->ctrl.max_integrity_segments)
1036 max_queue_size = NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
1037 else
1038 max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1039
1040 if (ctrl->ctrl.sqsize + 1 > max_queue_size) {
1041 dev_warn(ctrl->ctrl.device,
1042 "ctrl sqsize %u > max queue size %u, clamping down\n",
1043 ctrl->ctrl.sqsize + 1, max_queue_size);
1044 ctrl->ctrl.sqsize = max_queue_size - 1;
1045 }
1046
1047 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1048 dev_warn(ctrl->ctrl.device,
1049 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1050 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1051 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1052 }
1053
1054 if (ctrl->ctrl.sgls & NVME_CTRL_SGLS_SAOS)
1055 ctrl->use_inline_data = true;
1056
1057 if (ctrl->ctrl.queue_count > 1) {
1058 ret = nvme_rdma_configure_io_queues(ctrl, new);
1059 if (ret)
1060 goto destroy_admin;
1061 }
1062
1063 changed = nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_LIVE);
1064 if (!changed) {
1065 /*
1066 * state change failure is ok if we started ctrl delete,
1067 * unless we're during creation of a new controller to
1068 * avoid races with teardown flow.
1069 */
1070 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl: &ctrl->ctrl);
1071
1072 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1073 state != NVME_CTRL_DELETING_NOIO);
1074 WARN_ON_ONCE(new);
1075 ret = -EINVAL;
1076 goto destroy_io;
1077 }
1078
1079 nvme_start_ctrl(ctrl: &ctrl->ctrl);
1080 return 0;
1081
1082destroy_io:
1083 if (ctrl->ctrl.queue_count > 1) {
1084 nvme_quiesce_io_queues(ctrl: &ctrl->ctrl);
1085 nvme_sync_io_queues(ctrl: &ctrl->ctrl);
1086 nvme_rdma_stop_io_queues(ctrl);
1087 nvme_cancel_tagset(ctrl: &ctrl->ctrl);
1088 if (new)
1089 nvme_remove_io_tag_set(ctrl: &ctrl->ctrl);
1090 nvme_rdma_free_io_queues(ctrl);
1091 }
1092destroy_admin:
1093 nvme_stop_keep_alive(ctrl: &ctrl->ctrl);
1094 nvme_rdma_teardown_admin_queue(ctrl, remove: new);
1095 return ret;
1096}
1097
1098static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1099{
1100 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1101 struct nvme_rdma_ctrl, reconnect_work);
1102 int ret;
1103
1104 ++ctrl->ctrl.nr_reconnects;
1105
1106 ret = nvme_rdma_setup_ctrl(ctrl, new: false);
1107 if (ret)
1108 goto requeue;
1109
1110 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1111 ctrl->ctrl.nr_reconnects);
1112
1113 ctrl->ctrl.nr_reconnects = 0;
1114
1115 return;
1116
1117requeue:
1118 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d/%d\n",
1119 ctrl->ctrl.nr_reconnects, ctrl->ctrl.opts->max_reconnects);
1120 nvme_rdma_reconnect_or_remove(ctrl, status: ret);
1121}
1122
1123static void nvme_rdma_error_recovery_work(struct work_struct *work)
1124{
1125 struct nvme_rdma_ctrl *ctrl = container_of(work,
1126 struct nvme_rdma_ctrl, err_work);
1127
1128 nvme_stop_keep_alive(ctrl: &ctrl->ctrl);
1129 flush_work(work: &ctrl->ctrl.async_event_work);
1130 nvme_rdma_teardown_io_queues(ctrl, remove: false);
1131 nvme_unquiesce_io_queues(ctrl: &ctrl->ctrl);
1132 nvme_rdma_teardown_admin_queue(ctrl, remove: false);
1133 nvme_unquiesce_admin_queue(ctrl: &ctrl->ctrl);
1134 nvme_auth_stop(ctrl: &ctrl->ctrl);
1135
1136 if (!nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_CONNECTING)) {
1137 /* state change failure is ok if we started ctrl delete */
1138 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl: &ctrl->ctrl);
1139
1140 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1141 state != NVME_CTRL_DELETING_NOIO);
1142 return;
1143 }
1144
1145 nvme_rdma_reconnect_or_remove(ctrl, status: 0);
1146}
1147
1148static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1149{
1150 if (!nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_RESETTING))
1151 return;
1152
1153 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1154 queue_work(wq: nvme_reset_wq, work: &ctrl->err_work);
1155}
1156
1157static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1158{
1159 struct request *rq = blk_mq_rq_from_pdu(pdu: req);
1160
1161 if (!refcount_dec_and_test(r: &req->ref))
1162 return;
1163 if (!nvme_try_complete_req(req: rq, status: req->status, result: req->result))
1164 nvme_rdma_complete_rq(rq);
1165}
1166
1167static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1168 const char *op)
1169{
1170 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1171 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1172
1173 if (nvme_ctrl_state(ctrl: &ctrl->ctrl) == NVME_CTRL_LIVE)
1174 dev_info(ctrl->ctrl.device,
1175 "%s for CQE 0x%p failed with status %s (%d)\n",
1176 op, wc->wr_cqe,
1177 ib_wc_status_msg(wc->status), wc->status);
1178 nvme_rdma_error_recovery(ctrl);
1179}
1180
1181static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1182{
1183 if (unlikely(wc->status != IB_WC_SUCCESS))
1184 nvme_rdma_wr_error(cq, wc, op: "MEMREG");
1185}
1186
1187static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1188{
1189 struct nvme_rdma_request *req =
1190 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1191
1192 if (unlikely(wc->status != IB_WC_SUCCESS))
1193 nvme_rdma_wr_error(cq, wc, op: "LOCAL_INV");
1194 else
1195 nvme_rdma_end_request(req);
1196}
1197
1198static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1199 struct nvme_rdma_request *req)
1200{
1201 struct ib_send_wr wr = {
1202 .opcode = IB_WR_LOCAL_INV,
1203 .next = NULL,
1204 .num_sge = 0,
1205 .send_flags = IB_SEND_SIGNALED,
1206 .ex.invalidate_rkey = req->mr->rkey,
1207 };
1208
1209 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1210 wr.wr_cqe = &req->reg_cqe;
1211
1212 return ib_post_send(qp: queue->qp, send_wr: &wr, NULL);
1213}
1214
1215static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1216{
1217 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1218
1219 if (blk_integrity_rq(rq)) {
1220 ib_dma_unmap_sg(dev: ibdev, sg: req->metadata_sgl->sg_table.sgl,
1221 nents: req->metadata_sgl->nents, rq_dma_dir(rq));
1222 sg_free_table_chained(table: &req->metadata_sgl->sg_table,
1223 NVME_INLINE_METADATA_SG_CNT);
1224 }
1225
1226 ib_dma_unmap_sg(dev: ibdev, sg: req->data_sgl.sg_table.sgl, nents: req->data_sgl.nents,
1227 rq_dma_dir(rq));
1228 sg_free_table_chained(table: &req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1229}
1230
1231static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1232 struct request *rq)
1233{
1234 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1235 struct nvme_rdma_device *dev = queue->device;
1236 struct ib_device *ibdev = dev->dev;
1237 struct list_head *pool = &queue->qp->rdma_mrs;
1238
1239 if (!blk_rq_nr_phys_segments(rq))
1240 return;
1241
1242 if (req->use_sig_mr)
1243 pool = &queue->qp->sig_mrs;
1244
1245 if (req->mr) {
1246 ib_mr_pool_put(qp: queue->qp, list: pool, mr: req->mr);
1247 req->mr = NULL;
1248 }
1249
1250 nvme_rdma_dma_unmap_req(ibdev, rq);
1251}
1252
1253static int nvme_rdma_set_sg_null(struct nvme_command *c)
1254{
1255 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1256
1257 sg->addr = 0;
1258 put_unaligned_le24(val: 0, p: sg->length);
1259 put_unaligned_le32(val: 0, p: sg->key);
1260 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1261 return 0;
1262}
1263
1264static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1265 struct nvme_rdma_request *req, struct nvme_command *c,
1266 int count)
1267{
1268 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1269 struct ib_sge *sge = &req->sge[1];
1270 struct scatterlist *sgl;
1271 u32 len = 0;
1272 int i;
1273
1274 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1275 sge->addr = sg_dma_address(sgl);
1276 sge->length = sg_dma_len(sgl);
1277 sge->lkey = queue->device->pd->local_dma_lkey;
1278 len += sge->length;
1279 sge++;
1280 }
1281
1282 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1283 sg->length = cpu_to_le32(len);
1284 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1285
1286 req->num_sge += count;
1287 return 0;
1288}
1289
1290static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1291 struct nvme_rdma_request *req, struct nvme_command *c)
1292{
1293 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1294
1295 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1296 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), p: sg->length);
1297 put_unaligned_le32(val: queue->device->pd->unsafe_global_rkey, p: sg->key);
1298 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1299 return 0;
1300}
1301
1302static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1303 struct nvme_rdma_request *req, struct nvme_command *c,
1304 int count)
1305{
1306 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1307 int nr;
1308
1309 req->mr = ib_mr_pool_get(qp: queue->qp, list: &queue->qp->rdma_mrs);
1310 if (WARN_ON_ONCE(!req->mr))
1311 return -EAGAIN;
1312
1313 /*
1314 * Align the MR to a 4K page size to match the ctrl page size and
1315 * the block virtual boundary.
1316 */
1317 nr = ib_map_mr_sg(mr: req->mr, sg: req->data_sgl.sg_table.sgl, sg_nents: count, NULL,
1318 SZ_4K);
1319 if (unlikely(nr < count)) {
1320 ib_mr_pool_put(qp: queue->qp, list: &queue->qp->rdma_mrs, mr: req->mr);
1321 req->mr = NULL;
1322 if (nr < 0)
1323 return nr;
1324 return -EINVAL;
1325 }
1326
1327 ib_update_fast_reg_key(mr: req->mr, newkey: ib_inc_rkey(rkey: req->mr->rkey));
1328
1329 req->reg_cqe.done = nvme_rdma_memreg_done;
1330 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1331 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1332 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1333 req->reg_wr.wr.num_sge = 0;
1334 req->reg_wr.mr = req->mr;
1335 req->reg_wr.key = req->mr->rkey;
1336 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1337 IB_ACCESS_REMOTE_READ |
1338 IB_ACCESS_REMOTE_WRITE;
1339
1340 sg->addr = cpu_to_le64(req->mr->iova);
1341 put_unaligned_le24(val: req->mr->length, p: sg->length);
1342 put_unaligned_le32(val: req->mr->rkey, p: sg->key);
1343 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1344 NVME_SGL_FMT_INVALIDATE;
1345
1346 return 0;
1347}
1348
1349static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1350 struct nvme_command *cmd, struct ib_sig_domain *domain,
1351 u16 control, u8 pi_type)
1352{
1353 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1354 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1355 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1356 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1357 if (control & NVME_RW_PRINFO_PRCHK_REF)
1358 domain->sig.dif.ref_remap = true;
1359
1360 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
1361 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
1362 domain->sig.dif.app_escape = true;
1363 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1364 domain->sig.dif.ref_escape = true;
1365}
1366
1367static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1368 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1369 u8 pi_type)
1370{
1371 u16 control = le16_to_cpu(cmd->rw.control);
1372
1373 memset(sig_attrs, 0, sizeof(*sig_attrs));
1374 if (control & NVME_RW_PRINFO_PRACT) {
1375 /* for WRITE_INSERT/READ_STRIP no memory domain */
1376 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1377 nvme_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->wire, control,
1378 pi_type);
1379 /* Clear the PRACT bit since HCA will generate/verify the PI */
1380 control &= ~NVME_RW_PRINFO_PRACT;
1381 cmd->rw.control = cpu_to_le16(control);
1382 } else {
1383 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1384 nvme_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->wire, control,
1385 pi_type);
1386 nvme_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->mem, control,
1387 pi_type);
1388 }
1389}
1390
1391static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1392{
1393 *mask = 0;
1394 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1395 *mask |= IB_SIG_CHECK_REFTAG;
1396 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1397 *mask |= IB_SIG_CHECK_GUARD;
1398}
1399
1400static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1401{
1402 if (unlikely(wc->status != IB_WC_SUCCESS))
1403 nvme_rdma_wr_error(cq, wc, op: "SIG");
1404}
1405
1406static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1407 struct nvme_rdma_request *req, struct nvme_command *c,
1408 int count, int pi_count)
1409{
1410 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1411 struct ib_reg_wr *wr = &req->reg_wr;
1412 struct request *rq = blk_mq_rq_from_pdu(pdu: req);
1413 struct nvme_ns *ns = rq->q->queuedata;
1414 struct bio *bio = rq->bio;
1415 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1416 struct blk_integrity *bi = blk_get_integrity(disk: bio->bi_bdev->bd_disk);
1417 u32 xfer_len;
1418 int nr;
1419
1420 req->mr = ib_mr_pool_get(qp: queue->qp, list: &queue->qp->sig_mrs);
1421 if (WARN_ON_ONCE(!req->mr))
1422 return -EAGAIN;
1423
1424 nr = ib_map_mr_sg_pi(mr: req->mr, data_sg: sgl->sg_table.sgl, data_sg_nents: count, NULL,
1425 meta_sg: req->metadata_sgl->sg_table.sgl, meta_sg_nents: pi_count, NULL,
1426 SZ_4K);
1427 if (unlikely(nr))
1428 goto mr_put;
1429
1430 nvme_rdma_set_sig_attrs(bi, cmd: c, sig_attrs: req->mr->sig_attrs, pi_type: ns->head->pi_type);
1431 nvme_rdma_set_prot_checks(cmd: c, mask: &req->mr->sig_attrs->check_mask);
1432
1433 ib_update_fast_reg_key(mr: req->mr, newkey: ib_inc_rkey(rkey: req->mr->rkey));
1434
1435 req->reg_cqe.done = nvme_rdma_sig_done;
1436 memset(wr, 0, sizeof(*wr));
1437 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1438 wr->wr.wr_cqe = &req->reg_cqe;
1439 wr->wr.num_sge = 0;
1440 wr->wr.send_flags = 0;
1441 wr->mr = req->mr;
1442 wr->key = req->mr->rkey;
1443 wr->access = IB_ACCESS_LOCAL_WRITE |
1444 IB_ACCESS_REMOTE_READ |
1445 IB_ACCESS_REMOTE_WRITE;
1446
1447 sg->addr = cpu_to_le64(req->mr->iova);
1448 xfer_len = req->mr->length;
1449 /* Check if PI is added by the HW */
1450 if (!pi_count)
1451 xfer_len += (xfer_len >> bi->interval_exp) * ns->head->pi_size;
1452 put_unaligned_le24(val: xfer_len, p: sg->length);
1453 put_unaligned_le32(val: req->mr->rkey, p: sg->key);
1454 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1455
1456 return 0;
1457
1458mr_put:
1459 ib_mr_pool_put(qp: queue->qp, list: &queue->qp->sig_mrs, mr: req->mr);
1460 req->mr = NULL;
1461 if (nr < 0)
1462 return nr;
1463 return -EINVAL;
1464}
1465
1466static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1467 int *count, int *pi_count)
1468{
1469 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1470 int ret;
1471
1472 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1473 ret = sg_alloc_table_chained(table: &req->data_sgl.sg_table,
1474 nents: blk_rq_nr_phys_segments(rq), first_chunk: req->data_sgl.sg_table.sgl,
1475 NVME_INLINE_SG_CNT);
1476 if (ret)
1477 return -ENOMEM;
1478
1479 req->data_sgl.nents = blk_rq_map_sg(rq, sglist: req->data_sgl.sg_table.sgl);
1480
1481 *count = ib_dma_map_sg(dev: ibdev, sg: req->data_sgl.sg_table.sgl,
1482 nents: req->data_sgl.nents, rq_dma_dir(rq));
1483 if (unlikely(*count <= 0)) {
1484 ret = -EIO;
1485 goto out_free_table;
1486 }
1487
1488 if (blk_integrity_rq(rq)) {
1489 req->metadata_sgl->sg_table.sgl =
1490 (struct scatterlist *)(req->metadata_sgl + 1);
1491 ret = sg_alloc_table_chained(table: &req->metadata_sgl->sg_table,
1492 nents: rq->nr_integrity_segments,
1493 first_chunk: req->metadata_sgl->sg_table.sgl,
1494 NVME_INLINE_METADATA_SG_CNT);
1495 if (unlikely(ret)) {
1496 ret = -ENOMEM;
1497 goto out_unmap_sg;
1498 }
1499
1500 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq,
1501 req->metadata_sgl->sg_table.sgl);
1502 *pi_count = ib_dma_map_sg(dev: ibdev,
1503 sg: req->metadata_sgl->sg_table.sgl,
1504 nents: req->metadata_sgl->nents,
1505 rq_dma_dir(rq));
1506 if (unlikely(*pi_count <= 0)) {
1507 ret = -EIO;
1508 goto out_free_pi_table;
1509 }
1510 }
1511
1512 return 0;
1513
1514out_free_pi_table:
1515 sg_free_table_chained(table: &req->metadata_sgl->sg_table,
1516 NVME_INLINE_METADATA_SG_CNT);
1517out_unmap_sg:
1518 ib_dma_unmap_sg(dev: ibdev, sg: req->data_sgl.sg_table.sgl, nents: req->data_sgl.nents,
1519 rq_dma_dir(rq));
1520out_free_table:
1521 sg_free_table_chained(table: &req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1522 return ret;
1523}
1524
1525static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1526 struct request *rq, struct nvme_command *c)
1527{
1528 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1529 struct nvme_rdma_device *dev = queue->device;
1530 struct ib_device *ibdev = dev->dev;
1531 int pi_count = 0;
1532 int count, ret;
1533
1534 req->num_sge = 1;
1535 refcount_set(r: &req->ref, n: 2); /* send and recv completions */
1536
1537 c->common.flags |= NVME_CMD_SGL_METABUF;
1538
1539 if (!blk_rq_nr_phys_segments(rq))
1540 return nvme_rdma_set_sg_null(c);
1541
1542 ret = nvme_rdma_dma_map_req(ibdev, rq, count: &count, pi_count: &pi_count);
1543 if (unlikely(ret))
1544 return ret;
1545
1546 if (req->use_sig_mr) {
1547 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1548 goto out;
1549 }
1550
1551 if (count <= dev->num_inline_segments) {
1552 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1553 queue->ctrl->use_inline_data &&
1554 blk_rq_payload_bytes(rq) <=
1555 nvme_rdma_inline_data_size(queue)) {
1556 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1557 goto out;
1558 }
1559
1560 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1561 ret = nvme_rdma_map_sg_single(queue, req, c);
1562 goto out;
1563 }
1564 }
1565
1566 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1567out:
1568 if (unlikely(ret))
1569 goto out_dma_unmap_req;
1570
1571 return 0;
1572
1573out_dma_unmap_req:
1574 nvme_rdma_dma_unmap_req(ibdev, rq);
1575 return ret;
1576}
1577
1578static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1579{
1580 struct nvme_rdma_qe *qe =
1581 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1582 struct nvme_rdma_request *req =
1583 container_of(qe, struct nvme_rdma_request, sqe);
1584
1585 if (unlikely(wc->status != IB_WC_SUCCESS))
1586 nvme_rdma_wr_error(cq, wc, op: "SEND");
1587 else
1588 nvme_rdma_end_request(req);
1589}
1590
1591static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1592 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1593 struct ib_send_wr *first)
1594{
1595 struct ib_send_wr wr;
1596 int ret;
1597
1598 sge->addr = qe->dma;
1599 sge->length = sizeof(struct nvme_command);
1600 sge->lkey = queue->device->pd->local_dma_lkey;
1601
1602 wr.next = NULL;
1603 wr.wr_cqe = &qe->cqe;
1604 wr.sg_list = sge;
1605 wr.num_sge = num_sge;
1606 wr.opcode = IB_WR_SEND;
1607 wr.send_flags = IB_SEND_SIGNALED;
1608
1609 if (first)
1610 first->next = &wr;
1611 else
1612 first = &wr;
1613
1614 ret = ib_post_send(qp: queue->qp, send_wr: first, NULL);
1615 if (unlikely(ret)) {
1616 dev_err(queue->ctrl->ctrl.device,
1617 "%s failed with error code %d\n", __func__, ret);
1618 }
1619 return ret;
1620}
1621
1622static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1623 struct nvme_rdma_qe *qe)
1624{
1625 struct ib_recv_wr wr;
1626 struct ib_sge list;
1627 int ret;
1628
1629 list.addr = qe->dma;
1630 list.length = sizeof(struct nvme_completion);
1631 list.lkey = queue->device->pd->local_dma_lkey;
1632
1633 qe->cqe.done = nvme_rdma_recv_done;
1634
1635 wr.next = NULL;
1636 wr.wr_cqe = &qe->cqe;
1637 wr.sg_list = &list;
1638 wr.num_sge = 1;
1639
1640 ret = ib_post_recv(qp: queue->qp, recv_wr: &wr, NULL);
1641 if (unlikely(ret)) {
1642 dev_err(queue->ctrl->ctrl.device,
1643 "%s failed with error code %d\n", __func__, ret);
1644 }
1645 return ret;
1646}
1647
1648static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1649{
1650 u32 queue_idx = nvme_rdma_queue_idx(queue);
1651
1652 if (queue_idx == 0)
1653 return queue->ctrl->admin_tag_set.tags[queue_idx];
1654 return queue->ctrl->tag_set.tags[queue_idx - 1];
1655}
1656
1657static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1658{
1659 if (unlikely(wc->status != IB_WC_SUCCESS))
1660 nvme_rdma_wr_error(cq, wc, op: "ASYNC");
1661}
1662
1663static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1664{
1665 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: arg);
1666 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1667 struct ib_device *dev = queue->device->dev;
1668 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1669 struct nvme_command *cmd = sqe->data;
1670 struct ib_sge sge;
1671 int ret;
1672
1673 ib_dma_sync_single_for_cpu(dev, addr: sqe->dma, size: sizeof(*cmd), dir: DMA_TO_DEVICE);
1674
1675 memset(cmd, 0, sizeof(*cmd));
1676 cmd->common.opcode = nvme_admin_async_event;
1677 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1678 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1679 nvme_rdma_set_sg_null(c: cmd);
1680
1681 sqe->cqe.done = nvme_rdma_async_done;
1682
1683 ib_dma_sync_single_for_device(dev, addr: sqe->dma, size: sizeof(*cmd),
1684 dir: DMA_TO_DEVICE);
1685
1686 ret = nvme_rdma_post_send(queue, qe: sqe, sge: &sge, num_sge: 1, NULL);
1687 WARN_ON_ONCE(ret);
1688}
1689
1690static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1691 struct nvme_completion *cqe, struct ib_wc *wc)
1692{
1693 struct request *rq;
1694 struct nvme_rdma_request *req;
1695
1696 rq = nvme_find_rq(tags: nvme_rdma_tagset(queue), command_id: cqe->command_id);
1697 if (!rq) {
1698 dev_err(queue->ctrl->ctrl.device,
1699 "got bad command_id %#x on QP %#x\n",
1700 cqe->command_id, queue->qp->qp_num);
1701 nvme_rdma_error_recovery(ctrl: queue->ctrl);
1702 return;
1703 }
1704 req = blk_mq_rq_to_pdu(rq);
1705
1706 req->status = cqe->status;
1707 req->result = cqe->result;
1708
1709 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1710 if (unlikely(!req->mr ||
1711 wc->ex.invalidate_rkey != req->mr->rkey)) {
1712 dev_err(queue->ctrl->ctrl.device,
1713 "Bogus remote invalidation for rkey %#x\n",
1714 req->mr ? req->mr->rkey : 0);
1715 nvme_rdma_error_recovery(ctrl: queue->ctrl);
1716 }
1717 } else if (req->mr) {
1718 int ret;
1719
1720 ret = nvme_rdma_inv_rkey(queue, req);
1721 if (unlikely(ret < 0)) {
1722 dev_err(queue->ctrl->ctrl.device,
1723 "Queueing INV WR for rkey %#x failed (%d)\n",
1724 req->mr->rkey, ret);
1725 nvme_rdma_error_recovery(ctrl: queue->ctrl);
1726 }
1727 /* the local invalidation completion will end the request */
1728 return;
1729 }
1730
1731 nvme_rdma_end_request(req);
1732}
1733
1734static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1735{
1736 struct nvme_rdma_qe *qe =
1737 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1738 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1739 struct ib_device *ibdev = queue->device->dev;
1740 struct nvme_completion *cqe = qe->data;
1741 const size_t len = sizeof(struct nvme_completion);
1742
1743 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1744 nvme_rdma_wr_error(cq, wc, op: "RECV");
1745 return;
1746 }
1747
1748 /* sanity checking for received data length */
1749 if (unlikely(wc->byte_len < len)) {
1750 dev_err(queue->ctrl->ctrl.device,
1751 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1752 nvme_rdma_error_recovery(ctrl: queue->ctrl);
1753 return;
1754 }
1755
1756 ib_dma_sync_single_for_cpu(dev: ibdev, addr: qe->dma, size: len, dir: DMA_FROM_DEVICE);
1757 /*
1758 * AEN requests are special as they don't time out and can
1759 * survive any kind of queue freeze and often don't respond to
1760 * aborts. We don't even bother to allocate a struct request
1761 * for them but rather special case them here.
1762 */
1763 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1764 cqe->command_id)))
1765 nvme_complete_async_event(ctrl: &queue->ctrl->ctrl, status: cqe->status,
1766 res: &cqe->result);
1767 else
1768 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1769 ib_dma_sync_single_for_device(dev: ibdev, addr: qe->dma, size: len, dir: DMA_FROM_DEVICE);
1770
1771 nvme_rdma_post_recv(queue, qe);
1772}
1773
1774static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1775{
1776 int ret, i;
1777
1778 for (i = 0; i < queue->queue_size; i++) {
1779 ret = nvme_rdma_post_recv(queue, qe: &queue->rsp_ring[i]);
1780 if (ret)
1781 return ret;
1782 }
1783
1784 return 0;
1785}
1786
1787static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1788 struct rdma_cm_event *ev)
1789{
1790 struct rdma_cm_id *cm_id = queue->cm_id;
1791 int status = ev->status;
1792 const char *rej_msg;
1793 const struct nvme_rdma_cm_rej *rej_data;
1794 u8 rej_data_len;
1795
1796 rej_msg = rdma_reject_msg(id: cm_id, reason: status);
1797 rej_data = rdma_consumer_reject_data(id: cm_id, ev, data_len: &rej_data_len);
1798
1799 if (rej_data && rej_data_len >= sizeof(u16)) {
1800 u16 sts = le16_to_cpu(rej_data->sts);
1801
1802 dev_err(queue->ctrl->ctrl.device,
1803 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1804 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1805 } else {
1806 dev_err(queue->ctrl->ctrl.device,
1807 "Connect rejected: status %d (%s).\n", status, rej_msg);
1808 }
1809
1810 return -ECONNRESET;
1811}
1812
1813static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1814{
1815 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1816 int ret;
1817
1818 ret = nvme_rdma_create_queue_ib(queue);
1819 if (ret)
1820 return ret;
1821
1822 if (ctrl->opts->tos >= 0)
1823 rdma_set_service_type(id: queue->cm_id, tos: ctrl->opts->tos);
1824 ret = rdma_resolve_route(id: queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1825 if (ret) {
1826 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1827 queue->cm_error);
1828 goto out_destroy_queue;
1829 }
1830
1831 return 0;
1832
1833out_destroy_queue:
1834 nvme_rdma_destroy_queue_ib(queue);
1835 return ret;
1836}
1837
1838static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1839{
1840 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1841 struct rdma_conn_param param = { };
1842 struct nvme_rdma_cm_req priv = { };
1843 int ret;
1844
1845 param.qp_num = queue->qp->qp_num;
1846 param.flow_control = 1;
1847
1848 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1849 /* maximum retry count */
1850 param.retry_count = 7;
1851 param.rnr_retry_count = 7;
1852 param.private_data = &priv;
1853 param.private_data_len = sizeof(priv);
1854
1855 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1856 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1857 /*
1858 * set the admin queue depth to the minimum size
1859 * specified by the Fabrics standard.
1860 */
1861 if (priv.qid == 0) {
1862 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1863 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1864 } else {
1865 /*
1866 * current interpretation of the fabrics spec
1867 * is at minimum you make hrqsize sqsize+1, or a
1868 * 1's based representation of sqsize.
1869 */
1870 priv.hrqsize = cpu_to_le16(queue->queue_size);
1871 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1872 /* cntlid should only be set when creating an I/O queue */
1873 priv.cntlid = cpu_to_le16(ctrl->ctrl.cntlid);
1874 }
1875
1876 ret = rdma_connect_locked(id: queue->cm_id, conn_param: &param);
1877 if (ret) {
1878 dev_err(ctrl->ctrl.device,
1879 "rdma_connect_locked failed (%d).\n", ret);
1880 return ret;
1881 }
1882
1883 return 0;
1884}
1885
1886static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1887 struct rdma_cm_event *ev)
1888{
1889 struct nvme_rdma_queue *queue = cm_id->context;
1890 int cm_error = 0;
1891
1892 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1893 rdma_event_msg(ev->event), ev->event,
1894 ev->status, cm_id);
1895
1896 switch (ev->event) {
1897 case RDMA_CM_EVENT_ADDR_RESOLVED:
1898 cm_error = nvme_rdma_addr_resolved(queue);
1899 break;
1900 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1901 cm_error = nvme_rdma_route_resolved(queue);
1902 break;
1903 case RDMA_CM_EVENT_ESTABLISHED:
1904 queue->cm_error = nvme_rdma_conn_established(queue);
1905 /* complete cm_done regardless of success/failure */
1906 complete(&queue->cm_done);
1907 return 0;
1908 case RDMA_CM_EVENT_REJECTED:
1909 cm_error = nvme_rdma_conn_rejected(queue, ev);
1910 break;
1911 case RDMA_CM_EVENT_ROUTE_ERROR:
1912 case RDMA_CM_EVENT_CONNECT_ERROR:
1913 case RDMA_CM_EVENT_UNREACHABLE:
1914 case RDMA_CM_EVENT_ADDR_ERROR:
1915 dev_dbg(queue->ctrl->ctrl.device,
1916 "CM error event %d\n", ev->event);
1917 cm_error = -ECONNRESET;
1918 break;
1919 case RDMA_CM_EVENT_DISCONNECTED:
1920 case RDMA_CM_EVENT_ADDR_CHANGE:
1921 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1922 dev_dbg(queue->ctrl->ctrl.device,
1923 "disconnect received - connection closed\n");
1924 nvme_rdma_error_recovery(ctrl: queue->ctrl);
1925 break;
1926 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1927 /* device removal is handled via the ib_client API */
1928 break;
1929 default:
1930 dev_err(queue->ctrl->ctrl.device,
1931 "Unexpected RDMA CM event (%d)\n", ev->event);
1932 nvme_rdma_error_recovery(ctrl: queue->ctrl);
1933 break;
1934 }
1935
1936 if (cm_error) {
1937 queue->cm_error = cm_error;
1938 complete(&queue->cm_done);
1939 }
1940
1941 return 0;
1942}
1943
1944static void nvme_rdma_complete_timed_out(struct request *rq)
1945{
1946 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1947 struct nvme_rdma_queue *queue = req->queue;
1948
1949 nvme_rdma_stop_queue(queue);
1950 nvmf_complete_timed_out_request(rq);
1951}
1952
1953static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1954{
1955 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1956 struct nvme_rdma_queue *queue = req->queue;
1957 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1958 struct nvme_command *cmd = req->req.cmd;
1959 int qid = nvme_rdma_queue_idx(queue);
1960
1961 dev_warn(ctrl->ctrl.device,
1962 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout\n",
1963 rq->tag, nvme_cid(rq), cmd->common.opcode,
1964 nvme_fabrics_opcode_str(qid, cmd), qid);
1965
1966 if (nvme_ctrl_state(ctrl: &ctrl->ctrl) != NVME_CTRL_LIVE) {
1967 /*
1968 * If we are resetting, connecting or deleting we should
1969 * complete immediately because we may block controller
1970 * teardown or setup sequence
1971 * - ctrl disable/shutdown fabrics requests
1972 * - connect requests
1973 * - initialization admin requests
1974 * - I/O requests that entered after unquiescing and
1975 * the controller stopped responding
1976 *
1977 * All other requests should be cancelled by the error
1978 * recovery work, so it's fine that we fail it here.
1979 */
1980 nvme_rdma_complete_timed_out(rq);
1981 return BLK_EH_DONE;
1982 }
1983
1984 /*
1985 * LIVE state should trigger the normal error recovery which will
1986 * handle completing this request.
1987 */
1988 nvme_rdma_error_recovery(ctrl);
1989 return BLK_EH_RESET_TIMER;
1990}
1991
1992static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1993 const struct blk_mq_queue_data *bd)
1994{
1995 struct nvme_ns *ns = hctx->queue->queuedata;
1996 struct nvme_rdma_queue *queue = hctx->driver_data;
1997 struct request *rq = bd->rq;
1998 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1999 struct nvme_rdma_qe *sqe = &req->sqe;
2000 struct nvme_command *c = nvme_req(req: rq)->cmd;
2001 struct ib_device *dev;
2002 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2003 blk_status_t ret;
2004 int err;
2005
2006 WARN_ON_ONCE(rq->tag < 0);
2007
2008 if (!nvme_check_ready(ctrl: &queue->ctrl->ctrl, rq, queue_live: queue_ready))
2009 return nvme_fail_nonready_command(ctrl: &queue->ctrl->ctrl, req: rq);
2010
2011 dev = queue->device->dev;
2012
2013 req->sqe.dma = ib_dma_map_single(dev, cpu_addr: req->sqe.data,
2014 size: sizeof(struct nvme_command),
2015 direction: DMA_TO_DEVICE);
2016 err = ib_dma_mapping_error(dev, dma_addr: req->sqe.dma);
2017 if (unlikely(err))
2018 return BLK_STS_RESOURCE;
2019
2020 ib_dma_sync_single_for_cpu(dev, addr: sqe->dma,
2021 size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE);
2022
2023 ret = nvme_setup_cmd(ns, req: rq);
2024 if (ret)
2025 goto unmap_qe;
2026
2027 nvme_start_request(rq);
2028
2029 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2030 queue->pi_support &&
2031 (c->common.opcode == nvme_cmd_write ||
2032 c->common.opcode == nvme_cmd_read) &&
2033 nvme_ns_has_pi(head: ns->head))
2034 req->use_sig_mr = true;
2035 else
2036 req->use_sig_mr = false;
2037
2038 err = nvme_rdma_map_data(queue, rq, c);
2039 if (unlikely(err < 0)) {
2040 dev_err(queue->ctrl->ctrl.device,
2041 "Failed to map data (%d)\n", err);
2042 goto err;
2043 }
2044
2045 sqe->cqe.done = nvme_rdma_send_done;
2046
2047 ib_dma_sync_single_for_device(dev, addr: sqe->dma,
2048 size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE);
2049
2050 err = nvme_rdma_post_send(queue, qe: sqe, sge: req->sge, num_sge: req->num_sge,
2051 first: req->mr ? &req->reg_wr.wr : NULL);
2052 if (unlikely(err))
2053 goto err_unmap;
2054
2055 return BLK_STS_OK;
2056
2057err_unmap:
2058 nvme_rdma_unmap_data(queue, rq);
2059err:
2060 if (err == -EIO)
2061 ret = nvme_host_path_error(req: rq);
2062 else if (err == -ENOMEM || err == -EAGAIN)
2063 ret = BLK_STS_RESOURCE;
2064 else
2065 ret = BLK_STS_IOERR;
2066 nvme_cleanup_cmd(req: rq);
2067unmap_qe:
2068 ib_dma_unmap_single(dev, addr: req->sqe.dma, size: sizeof(struct nvme_command),
2069 direction: DMA_TO_DEVICE);
2070 return ret;
2071}
2072
2073static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2074{
2075 struct nvme_rdma_queue *queue = hctx->driver_data;
2076
2077 return ib_process_cq_direct(cq: queue->ib_cq, budget: -1);
2078}
2079
2080static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2081{
2082 struct request *rq = blk_mq_rq_from_pdu(pdu: req);
2083 struct ib_mr_status mr_status;
2084 int ret;
2085
2086 ret = ib_check_mr_status(mr: req->mr, check_mask: IB_MR_CHECK_SIG_STATUS, mr_status: &mr_status);
2087 if (ret) {
2088 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2089 nvme_req(req: rq)->status = NVME_SC_INVALID_PI;
2090 return;
2091 }
2092
2093 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2094 switch (mr_status.sig_err.err_type) {
2095 case IB_SIG_BAD_GUARD:
2096 nvme_req(req: rq)->status = NVME_SC_GUARD_CHECK;
2097 break;
2098 case IB_SIG_BAD_REFTAG:
2099 nvme_req(req: rq)->status = NVME_SC_REFTAG_CHECK;
2100 break;
2101 case IB_SIG_BAD_APPTAG:
2102 nvme_req(req: rq)->status = NVME_SC_APPTAG_CHECK;
2103 break;
2104 }
2105 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2106 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2107 mr_status.sig_err.actual);
2108 }
2109}
2110
2111static void nvme_rdma_complete_rq(struct request *rq)
2112{
2113 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2114 struct nvme_rdma_queue *queue = req->queue;
2115 struct ib_device *ibdev = queue->device->dev;
2116
2117 if (req->use_sig_mr)
2118 nvme_rdma_check_pi_status(req);
2119
2120 nvme_rdma_unmap_data(queue, rq);
2121 ib_dma_unmap_single(dev: ibdev, addr: req->sqe.dma, size: sizeof(struct nvme_command),
2122 direction: DMA_TO_DEVICE);
2123 nvme_complete_rq(req: rq);
2124}
2125
2126static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2127{
2128 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: set->driver_data);
2129
2130 nvmf_map_queues(set, ctrl: &ctrl->ctrl, io_queues: ctrl->io_queues);
2131}
2132
2133static const struct blk_mq_ops nvme_rdma_mq_ops = {
2134 .queue_rq = nvme_rdma_queue_rq,
2135 .complete = nvme_rdma_complete_rq,
2136 .init_request = nvme_rdma_init_request,
2137 .exit_request = nvme_rdma_exit_request,
2138 .init_hctx = nvme_rdma_init_hctx,
2139 .timeout = nvme_rdma_timeout,
2140 .map_queues = nvme_rdma_map_queues,
2141 .poll = nvme_rdma_poll,
2142};
2143
2144static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2145 .queue_rq = nvme_rdma_queue_rq,
2146 .complete = nvme_rdma_complete_rq,
2147 .init_request = nvme_rdma_init_request,
2148 .exit_request = nvme_rdma_exit_request,
2149 .init_hctx = nvme_rdma_init_admin_hctx,
2150 .timeout = nvme_rdma_timeout,
2151};
2152
2153static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2154{
2155 nvme_rdma_teardown_io_queues(ctrl, remove: shutdown);
2156 nvme_quiesce_admin_queue(ctrl: &ctrl->ctrl);
2157 nvme_disable_ctrl(ctrl: &ctrl->ctrl, shutdown);
2158 nvme_rdma_teardown_admin_queue(ctrl, remove: shutdown);
2159}
2160
2161static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2162{
2163 nvme_rdma_shutdown_ctrl(ctrl: to_rdma_ctrl(ctrl), shutdown: true);
2164}
2165
2166static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2167{
2168 struct nvme_rdma_ctrl *ctrl =
2169 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2170 int ret;
2171
2172 nvme_stop_ctrl(ctrl: &ctrl->ctrl);
2173 nvme_rdma_shutdown_ctrl(ctrl, shutdown: false);
2174
2175 if (!nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_CONNECTING)) {
2176 /* state change failure should never happen */
2177 WARN_ON_ONCE(1);
2178 return;
2179 }
2180
2181 ret = nvme_rdma_setup_ctrl(ctrl, new: false);
2182 if (ret)
2183 goto out_fail;
2184
2185 return;
2186
2187out_fail:
2188 ++ctrl->ctrl.nr_reconnects;
2189 nvme_rdma_reconnect_or_remove(ctrl, status: ret);
2190}
2191
2192static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2193 .name = "rdma",
2194 .module = THIS_MODULE,
2195 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2196 .reg_read32 = nvmf_reg_read32,
2197 .reg_read64 = nvmf_reg_read64,
2198 .reg_write32 = nvmf_reg_write32,
2199 .subsystem_reset = nvmf_subsystem_reset,
2200 .free_ctrl = nvme_rdma_free_ctrl,
2201 .submit_async_event = nvme_rdma_submit_async_event,
2202 .delete_ctrl = nvme_rdma_delete_ctrl,
2203 .get_address = nvmf_get_address,
2204 .stop_ctrl = nvme_rdma_stop_ctrl,
2205};
2206
2207/*
2208 * Fails a connection request if it matches an existing controller
2209 * (association) with the same tuple:
2210 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2211 *
2212 * if local address is not specified in the request, it will match an
2213 * existing controller with all the other parameters the same and no
2214 * local port address specified as well.
2215 *
2216 * The ports don't need to be compared as they are intrinsically
2217 * already matched by the port pointers supplied.
2218 */
2219static bool
2220nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2221{
2222 struct nvme_rdma_ctrl *ctrl;
2223 bool found = false;
2224
2225 mutex_lock(&nvme_rdma_ctrl_mutex);
2226 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2227 found = nvmf_ip_options_match(ctrl: &ctrl->ctrl, opts);
2228 if (found)
2229 break;
2230 }
2231 mutex_unlock(lock: &nvme_rdma_ctrl_mutex);
2232
2233 return found;
2234}
2235
2236static struct nvme_rdma_ctrl *nvme_rdma_alloc_ctrl(struct device *dev,
2237 struct nvmf_ctrl_options *opts)
2238{
2239 struct nvme_rdma_ctrl *ctrl;
2240 int ret;
2241
2242 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2243 if (!ctrl)
2244 return ERR_PTR(error: -ENOMEM);
2245 ctrl->ctrl.opts = opts;
2246 INIT_LIST_HEAD(list: &ctrl->list);
2247
2248 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2249 opts->trsvcid =
2250 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2251 if (!opts->trsvcid) {
2252 ret = -ENOMEM;
2253 goto out_free_ctrl;
2254 }
2255 opts->mask |= NVMF_OPT_TRSVCID;
2256 }
2257
2258 ret = inet_pton_with_scope(net: &init_net, AF_UNSPEC,
2259 src: opts->traddr, port: opts->trsvcid, addr: &ctrl->addr);
2260 if (ret) {
2261 pr_err("malformed address passed: %s:%s\n",
2262 opts->traddr, opts->trsvcid);
2263 goto out_free_ctrl;
2264 }
2265
2266 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2267 ret = inet_pton_with_scope(net: &init_net, AF_UNSPEC,
2268 src: opts->host_traddr, NULL, addr: &ctrl->src_addr);
2269 if (ret) {
2270 pr_err("malformed src address passed: %s\n",
2271 opts->host_traddr);
2272 goto out_free_ctrl;
2273 }
2274 }
2275
2276 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2277 ret = -EALREADY;
2278 goto out_free_ctrl;
2279 }
2280
2281 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2282 nvme_rdma_reconnect_ctrl_work);
2283 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2284 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2285
2286 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2287 opts->nr_poll_queues + 1;
2288 ctrl->ctrl.sqsize = opts->queue_size - 1;
2289 ctrl->ctrl.kato = opts->kato;
2290
2291 ret = -ENOMEM;
2292 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2293 GFP_KERNEL);
2294 if (!ctrl->queues)
2295 goto out_free_ctrl;
2296
2297 ret = nvme_init_ctrl(ctrl: &ctrl->ctrl, dev, ops: &nvme_rdma_ctrl_ops,
2298 quirks: 0 /* no quirks, we're perfect! */);
2299 if (ret)
2300 goto out_kfree_queues;
2301
2302 return ctrl;
2303
2304out_kfree_queues:
2305 kfree(objp: ctrl->queues);
2306out_free_ctrl:
2307 kfree(objp: ctrl);
2308 return ERR_PTR(error: ret);
2309}
2310
2311static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2312 struct nvmf_ctrl_options *opts)
2313{
2314 struct nvme_rdma_ctrl *ctrl;
2315 bool changed;
2316 int ret;
2317
2318 ctrl = nvme_rdma_alloc_ctrl(dev, opts);
2319 if (IS_ERR(ptr: ctrl))
2320 return ERR_CAST(ptr: ctrl);
2321
2322 ret = nvme_add_ctrl(ctrl: &ctrl->ctrl);
2323 if (ret)
2324 goto out_put_ctrl;
2325
2326 changed = nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_CONNECTING);
2327 WARN_ON_ONCE(!changed);
2328
2329 ret = nvme_rdma_setup_ctrl(ctrl, new: true);
2330 if (ret)
2331 goto out_uninit_ctrl;
2332
2333 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs, hostnqn: %s\n",
2334 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2335
2336 mutex_lock(&nvme_rdma_ctrl_mutex);
2337 list_add_tail(new: &ctrl->list, head: &nvme_rdma_ctrl_list);
2338 mutex_unlock(lock: &nvme_rdma_ctrl_mutex);
2339
2340 return &ctrl->ctrl;
2341
2342out_uninit_ctrl:
2343 nvme_uninit_ctrl(ctrl: &ctrl->ctrl);
2344out_put_ctrl:
2345 nvme_put_ctrl(ctrl: &ctrl->ctrl);
2346 if (ret > 0)
2347 ret = -EIO;
2348 return ERR_PTR(error: ret);
2349}
2350
2351static struct nvmf_transport_ops nvme_rdma_transport = {
2352 .name = "rdma",
2353 .module = THIS_MODULE,
2354 .required_opts = NVMF_OPT_TRADDR,
2355 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2356 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2357 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2358 NVMF_OPT_TOS,
2359 .create_ctrl = nvme_rdma_create_ctrl,
2360};
2361
2362static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2363{
2364 struct nvme_rdma_ctrl *ctrl;
2365 struct nvme_rdma_device *ndev;
2366 bool found = false;
2367
2368 mutex_lock(&device_list_mutex);
2369 list_for_each_entry(ndev, &device_list, entry) {
2370 if (ndev->dev == ib_device) {
2371 found = true;
2372 break;
2373 }
2374 }
2375 mutex_unlock(lock: &device_list_mutex);
2376
2377 if (!found)
2378 return;
2379
2380 /* Delete all controllers using this device */
2381 mutex_lock(&nvme_rdma_ctrl_mutex);
2382 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2383 if (ctrl->device->dev != ib_device)
2384 continue;
2385 nvme_delete_ctrl(ctrl: &ctrl->ctrl);
2386 }
2387 mutex_unlock(lock: &nvme_rdma_ctrl_mutex);
2388
2389 flush_workqueue(nvme_delete_wq);
2390}
2391
2392static struct ib_client nvme_rdma_ib_client = {
2393 .name = "nvme_rdma",
2394 .remove = nvme_rdma_remove_one
2395};
2396
2397static int __init nvme_rdma_init_module(void)
2398{
2399 int ret;
2400
2401 ret = ib_register_client(client: &nvme_rdma_ib_client);
2402 if (ret)
2403 return ret;
2404
2405 ret = nvmf_register_transport(ops: &nvme_rdma_transport);
2406 if (ret)
2407 goto err_unreg_client;
2408
2409 return 0;
2410
2411err_unreg_client:
2412 ib_unregister_client(client: &nvme_rdma_ib_client);
2413 return ret;
2414}
2415
2416static void __exit nvme_rdma_cleanup_module(void)
2417{
2418 struct nvme_rdma_ctrl *ctrl;
2419
2420 nvmf_unregister_transport(ops: &nvme_rdma_transport);
2421 ib_unregister_client(client: &nvme_rdma_ib_client);
2422
2423 mutex_lock(&nvme_rdma_ctrl_mutex);
2424 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2425 nvme_delete_ctrl(ctrl: &ctrl->ctrl);
2426 mutex_unlock(lock: &nvme_rdma_ctrl_mutex);
2427 flush_workqueue(nvme_delete_wq);
2428}
2429
2430module_init(nvme_rdma_init_module);
2431module_exit(nvme_rdma_cleanup_module);
2432
2433MODULE_DESCRIPTION("NVMe host RDMA transport driver");
2434MODULE_LICENSE("GPL v2");
2435

source code of linux/drivers/nvme/host/rdma.c