1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* |
3 | * NVMe over Fabrics RDMA host code. |
4 | * Copyright (c) 2015-2016 HGST, a Western Digital Company. |
5 | */ |
6 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
7 | #include <linux/module.h> |
8 | #include <linux/init.h> |
9 | #include <linux/slab.h> |
10 | #include <rdma/mr_pool.h> |
11 | #include <linux/err.h> |
12 | #include <linux/string.h> |
13 | #include <linux/atomic.h> |
14 | #include <linux/blk-mq.h> |
15 | #include <linux/blk-integrity.h> |
16 | #include <linux/types.h> |
17 | #include <linux/list.h> |
18 | #include <linux/mutex.h> |
19 | #include <linux/scatterlist.h> |
20 | #include <linux/nvme.h> |
21 | #include <linux/unaligned.h> |
22 | |
23 | #include <rdma/ib_verbs.h> |
24 | #include <rdma/rdma_cm.h> |
25 | #include <linux/nvme-rdma.h> |
26 | |
27 | #include "nvme.h" |
28 | #include "fabrics.h" |
29 | |
30 | |
31 | #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */ |
32 | |
33 | #define NVME_RDMA_MAX_SEGMENTS 256 |
34 | |
35 | #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 |
36 | |
37 | #define NVME_RDMA_DATA_SGL_SIZE \ |
38 | (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) |
39 | #define NVME_RDMA_METADATA_SGL_SIZE \ |
40 | (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) |
41 | |
42 | struct nvme_rdma_device { |
43 | struct ib_device *dev; |
44 | struct ib_pd *pd; |
45 | struct kref ref; |
46 | struct list_head entry; |
47 | unsigned int num_inline_segments; |
48 | }; |
49 | |
50 | struct nvme_rdma_qe { |
51 | struct ib_cqe cqe; |
52 | void *data; |
53 | u64 dma; |
54 | }; |
55 | |
56 | struct nvme_rdma_sgl { |
57 | int nents; |
58 | struct sg_table sg_table; |
59 | }; |
60 | |
61 | struct nvme_rdma_queue; |
62 | struct nvme_rdma_request { |
63 | struct nvme_request req; |
64 | struct ib_mr *mr; |
65 | struct nvme_rdma_qe sqe; |
66 | union nvme_result result; |
67 | __le16 status; |
68 | refcount_t ref; |
69 | struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; |
70 | u32 num_sge; |
71 | struct ib_reg_wr reg_wr; |
72 | struct ib_cqe reg_cqe; |
73 | struct nvme_rdma_queue *queue; |
74 | struct nvme_rdma_sgl data_sgl; |
75 | struct nvme_rdma_sgl *metadata_sgl; |
76 | bool use_sig_mr; |
77 | }; |
78 | |
79 | enum nvme_rdma_queue_flags { |
80 | NVME_RDMA_Q_ALLOCATED = 0, |
81 | NVME_RDMA_Q_LIVE = 1, |
82 | NVME_RDMA_Q_TR_READY = 2, |
83 | }; |
84 | |
85 | struct nvme_rdma_queue { |
86 | struct nvme_rdma_qe *rsp_ring; |
87 | int queue_size; |
88 | size_t cmnd_capsule_len; |
89 | struct nvme_rdma_ctrl *ctrl; |
90 | struct nvme_rdma_device *device; |
91 | struct ib_cq *ib_cq; |
92 | struct ib_qp *qp; |
93 | |
94 | unsigned long flags; |
95 | struct rdma_cm_id *cm_id; |
96 | int cm_error; |
97 | struct completion cm_done; |
98 | bool pi_support; |
99 | int cq_size; |
100 | struct mutex queue_lock; |
101 | }; |
102 | |
103 | struct nvme_rdma_ctrl { |
104 | /* read only in the hot path */ |
105 | struct nvme_rdma_queue *queues; |
106 | |
107 | /* other member variables */ |
108 | struct blk_mq_tag_set tag_set; |
109 | struct work_struct err_work; |
110 | |
111 | struct nvme_rdma_qe async_event_sqe; |
112 | |
113 | struct delayed_work reconnect_work; |
114 | |
115 | struct list_head list; |
116 | |
117 | struct blk_mq_tag_set admin_tag_set; |
118 | struct nvme_rdma_device *device; |
119 | |
120 | u32 max_fr_pages; |
121 | |
122 | struct sockaddr_storage addr; |
123 | struct sockaddr_storage src_addr; |
124 | |
125 | struct nvme_ctrl ctrl; |
126 | bool use_inline_data; |
127 | u32 io_queues[HCTX_MAX_TYPES]; |
128 | }; |
129 | |
130 | static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) |
131 | { |
132 | return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); |
133 | } |
134 | |
135 | static LIST_HEAD(device_list); |
136 | static DEFINE_MUTEX(device_list_mutex); |
137 | |
138 | static LIST_HEAD(nvme_rdma_ctrl_list); |
139 | static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); |
140 | |
141 | /* |
142 | * Disabling this option makes small I/O goes faster, but is fundamentally |
143 | * unsafe. With it turned off we will have to register a global rkey that |
144 | * allows read and write access to all physical memory. |
145 | */ |
146 | static bool register_always = true; |
147 | module_param(register_always, bool, 0444); |
148 | MODULE_PARM_DESC(register_always, |
149 | "Use memory registration even for contiguous memory regions" ); |
150 | |
151 | static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, |
152 | struct rdma_cm_event *event); |
153 | static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); |
154 | static void nvme_rdma_complete_rq(struct request *rq); |
155 | |
156 | static const struct blk_mq_ops nvme_rdma_mq_ops; |
157 | static const struct blk_mq_ops nvme_rdma_admin_mq_ops; |
158 | |
159 | static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) |
160 | { |
161 | return queue - queue->ctrl->queues; |
162 | } |
163 | |
164 | static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) |
165 | { |
166 | return nvme_rdma_queue_idx(queue) > |
167 | queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + |
168 | queue->ctrl->io_queues[HCTX_TYPE_READ]; |
169 | } |
170 | |
171 | static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) |
172 | { |
173 | return queue->cmnd_capsule_len - sizeof(struct nvme_command); |
174 | } |
175 | |
176 | static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, |
177 | size_t capsule_size, enum dma_data_direction dir) |
178 | { |
179 | ib_dma_unmap_single(dev: ibdev, addr: qe->dma, size: capsule_size, direction: dir); |
180 | kfree(objp: qe->data); |
181 | } |
182 | |
183 | static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, |
184 | size_t capsule_size, enum dma_data_direction dir) |
185 | { |
186 | qe->data = kzalloc(capsule_size, GFP_KERNEL); |
187 | if (!qe->data) |
188 | return -ENOMEM; |
189 | |
190 | qe->dma = ib_dma_map_single(dev: ibdev, cpu_addr: qe->data, size: capsule_size, direction: dir); |
191 | if (ib_dma_mapping_error(dev: ibdev, dma_addr: qe->dma)) { |
192 | kfree(objp: qe->data); |
193 | qe->data = NULL; |
194 | return -ENOMEM; |
195 | } |
196 | |
197 | return 0; |
198 | } |
199 | |
200 | static void nvme_rdma_free_ring(struct ib_device *ibdev, |
201 | struct nvme_rdma_qe *ring, size_t ib_queue_size, |
202 | size_t capsule_size, enum dma_data_direction dir) |
203 | { |
204 | int i; |
205 | |
206 | for (i = 0; i < ib_queue_size; i++) |
207 | nvme_rdma_free_qe(ibdev, qe: &ring[i], capsule_size, dir); |
208 | kfree(objp: ring); |
209 | } |
210 | |
211 | static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, |
212 | size_t ib_queue_size, size_t capsule_size, |
213 | enum dma_data_direction dir) |
214 | { |
215 | struct nvme_rdma_qe *ring; |
216 | int i; |
217 | |
218 | ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); |
219 | if (!ring) |
220 | return NULL; |
221 | |
222 | /* |
223 | * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue |
224 | * lifetime. It's safe, since any change in the underlying RDMA device |
225 | * will issue error recovery and queue re-creation. |
226 | */ |
227 | for (i = 0; i < ib_queue_size; i++) { |
228 | if (nvme_rdma_alloc_qe(ibdev, qe: &ring[i], capsule_size, dir)) |
229 | goto out_free_ring; |
230 | } |
231 | |
232 | return ring; |
233 | |
234 | out_free_ring: |
235 | nvme_rdma_free_ring(ibdev, ring, ib_queue_size: i, capsule_size, dir); |
236 | return NULL; |
237 | } |
238 | |
239 | static void nvme_rdma_qp_event(struct ib_event *event, void *context) |
240 | { |
241 | pr_debug("QP event %s (%d)\n" , |
242 | ib_event_msg(event->event), event->event); |
243 | |
244 | } |
245 | |
246 | static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) |
247 | { |
248 | int ret; |
249 | |
250 | ret = wait_for_completion_interruptible(x: &queue->cm_done); |
251 | if (ret) |
252 | return ret; |
253 | WARN_ON_ONCE(queue->cm_error > 0); |
254 | return queue->cm_error; |
255 | } |
256 | |
257 | static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) |
258 | { |
259 | struct nvme_rdma_device *dev = queue->device; |
260 | struct ib_qp_init_attr init_attr; |
261 | int ret; |
262 | |
263 | memset(&init_attr, 0, sizeof(init_attr)); |
264 | init_attr.event_handler = nvme_rdma_qp_event; |
265 | /* +1 for drain */ |
266 | init_attr.cap.max_send_wr = factor * queue->queue_size + 1; |
267 | /* +1 for drain */ |
268 | init_attr.cap.max_recv_wr = queue->queue_size + 1; |
269 | init_attr.cap.max_recv_sge = 1; |
270 | init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; |
271 | init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
272 | init_attr.qp_type = IB_QPT_RC; |
273 | init_attr.send_cq = queue->ib_cq; |
274 | init_attr.recv_cq = queue->ib_cq; |
275 | if (queue->pi_support) |
276 | init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; |
277 | init_attr.qp_context = queue; |
278 | |
279 | ret = rdma_create_qp(id: queue->cm_id, pd: dev->pd, qp_init_attr: &init_attr); |
280 | |
281 | queue->qp = queue->cm_id->qp; |
282 | return ret; |
283 | } |
284 | |
285 | static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, |
286 | struct request *rq, unsigned int hctx_idx) |
287 | { |
288 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
289 | |
290 | kfree(objp: req->sqe.data); |
291 | } |
292 | |
293 | static int nvme_rdma_init_request(struct blk_mq_tag_set *set, |
294 | struct request *rq, unsigned int hctx_idx, |
295 | unsigned int numa_node) |
296 | { |
297 | struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: set->driver_data); |
298 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
299 | int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; |
300 | struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; |
301 | |
302 | nvme_req(req: rq)->ctrl = &ctrl->ctrl; |
303 | req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); |
304 | if (!req->sqe.data) |
305 | return -ENOMEM; |
306 | |
307 | /* metadata nvme_rdma_sgl struct is located after command's data SGL */ |
308 | if (queue->pi_support) |
309 | req->metadata_sgl = (void *)nvme_req(req: rq) + |
310 | sizeof(struct nvme_rdma_request) + |
311 | NVME_RDMA_DATA_SGL_SIZE; |
312 | |
313 | req->queue = queue; |
314 | nvme_req(req: rq)->cmd = req->sqe.data; |
315 | |
316 | return 0; |
317 | } |
318 | |
319 | static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
320 | unsigned int hctx_idx) |
321 | { |
322 | struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: data); |
323 | struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; |
324 | |
325 | BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); |
326 | |
327 | hctx->driver_data = queue; |
328 | return 0; |
329 | } |
330 | |
331 | static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
332 | unsigned int hctx_idx) |
333 | { |
334 | struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: data); |
335 | struct nvme_rdma_queue *queue = &ctrl->queues[0]; |
336 | |
337 | BUG_ON(hctx_idx != 0); |
338 | |
339 | hctx->driver_data = queue; |
340 | return 0; |
341 | } |
342 | |
343 | static void nvme_rdma_free_dev(struct kref *ref) |
344 | { |
345 | struct nvme_rdma_device *ndev = |
346 | container_of(ref, struct nvme_rdma_device, ref); |
347 | |
348 | mutex_lock(&device_list_mutex); |
349 | list_del(entry: &ndev->entry); |
350 | mutex_unlock(lock: &device_list_mutex); |
351 | |
352 | ib_dealloc_pd(pd: ndev->pd); |
353 | kfree(objp: ndev); |
354 | } |
355 | |
356 | static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) |
357 | { |
358 | kref_put(kref: &dev->ref, release: nvme_rdma_free_dev); |
359 | } |
360 | |
361 | static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) |
362 | { |
363 | return kref_get_unless_zero(kref: &dev->ref); |
364 | } |
365 | |
366 | static struct nvme_rdma_device * |
367 | nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) |
368 | { |
369 | struct nvme_rdma_device *ndev; |
370 | |
371 | mutex_lock(&device_list_mutex); |
372 | list_for_each_entry(ndev, &device_list, entry) { |
373 | if (ndev->dev->node_guid == cm_id->device->node_guid && |
374 | nvme_rdma_dev_get(dev: ndev)) |
375 | goto out_unlock; |
376 | } |
377 | |
378 | ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); |
379 | if (!ndev) |
380 | goto out_err; |
381 | |
382 | ndev->dev = cm_id->device; |
383 | kref_init(kref: &ndev->ref); |
384 | |
385 | ndev->pd = ib_alloc_pd(ndev->dev, |
386 | register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); |
387 | if (IS_ERR(ptr: ndev->pd)) |
388 | goto out_free_dev; |
389 | |
390 | if (!(ndev->dev->attrs.device_cap_flags & |
391 | IB_DEVICE_MEM_MGT_EXTENSIONS)) { |
392 | dev_err(&ndev->dev->dev, |
393 | "Memory registrations not supported.\n" ); |
394 | goto out_free_pd; |
395 | } |
396 | |
397 | ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, |
398 | ndev->dev->attrs.max_send_sge - 1); |
399 | list_add(new: &ndev->entry, head: &device_list); |
400 | out_unlock: |
401 | mutex_unlock(lock: &device_list_mutex); |
402 | return ndev; |
403 | |
404 | out_free_pd: |
405 | ib_dealloc_pd(pd: ndev->pd); |
406 | out_free_dev: |
407 | kfree(objp: ndev); |
408 | out_err: |
409 | mutex_unlock(lock: &device_list_mutex); |
410 | return NULL; |
411 | } |
412 | |
413 | static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) |
414 | { |
415 | if (nvme_rdma_poll_queue(queue)) |
416 | ib_free_cq(cq: queue->ib_cq); |
417 | else |
418 | ib_cq_pool_put(cq: queue->ib_cq, nr_cqe: queue->cq_size); |
419 | } |
420 | |
421 | static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) |
422 | { |
423 | struct nvme_rdma_device *dev; |
424 | struct ib_device *ibdev; |
425 | |
426 | if (!test_and_clear_bit(nr: NVME_RDMA_Q_TR_READY, addr: &queue->flags)) |
427 | return; |
428 | |
429 | dev = queue->device; |
430 | ibdev = dev->dev; |
431 | |
432 | if (queue->pi_support) |
433 | ib_mr_pool_destroy(qp: queue->qp, list: &queue->qp->sig_mrs); |
434 | ib_mr_pool_destroy(qp: queue->qp, list: &queue->qp->rdma_mrs); |
435 | |
436 | /* |
437 | * The cm_id object might have been destroyed during RDMA connection |
438 | * establishment error flow to avoid getting other cma events, thus |
439 | * the destruction of the QP shouldn't use rdma_cm API. |
440 | */ |
441 | ib_destroy_qp(qp: queue->qp); |
442 | nvme_rdma_free_cq(queue); |
443 | |
444 | nvme_rdma_free_ring(ibdev, ring: queue->rsp_ring, ib_queue_size: queue->queue_size, |
445 | capsule_size: sizeof(struct nvme_completion), dir: DMA_FROM_DEVICE); |
446 | |
447 | nvme_rdma_dev_put(dev); |
448 | } |
449 | |
450 | static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) |
451 | { |
452 | u32 max_page_list_len; |
453 | |
454 | if (pi_support) |
455 | max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; |
456 | else |
457 | max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; |
458 | |
459 | return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); |
460 | } |
461 | |
462 | static int nvme_rdma_create_cq(struct ib_device *ibdev, |
463 | struct nvme_rdma_queue *queue) |
464 | { |
465 | int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); |
466 | |
467 | /* |
468 | * Spread I/O queues completion vectors according their queue index. |
469 | * Admin queues can always go on completion vector 0. |
470 | */ |
471 | comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; |
472 | |
473 | /* Polling queues need direct cq polling context */ |
474 | if (nvme_rdma_poll_queue(queue)) |
475 | queue->ib_cq = ib_alloc_cq(dev: ibdev, private: queue, nr_cqe: queue->cq_size, |
476 | comp_vector, poll_ctx: IB_POLL_DIRECT); |
477 | else |
478 | queue->ib_cq = ib_cq_pool_get(dev: ibdev, nr_cqe: queue->cq_size, |
479 | comp_vector_hint: comp_vector, poll_ctx: IB_POLL_SOFTIRQ); |
480 | |
481 | if (IS_ERR(ptr: queue->ib_cq)) { |
482 | ret = PTR_ERR(ptr: queue->ib_cq); |
483 | return ret; |
484 | } |
485 | |
486 | return 0; |
487 | } |
488 | |
489 | static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) |
490 | { |
491 | struct ib_device *ibdev; |
492 | const int send_wr_factor = 3; /* MR, SEND, INV */ |
493 | const int cq_factor = send_wr_factor + 1; /* + RECV */ |
494 | int ret, pages_per_mr; |
495 | |
496 | queue->device = nvme_rdma_find_get_device(cm_id: queue->cm_id); |
497 | if (!queue->device) { |
498 | dev_err(queue->cm_id->device->dev.parent, |
499 | "no client data found!\n" ); |
500 | return -ECONNREFUSED; |
501 | } |
502 | ibdev = queue->device->dev; |
503 | |
504 | /* +1 for ib_drain_qp */ |
505 | queue->cq_size = cq_factor * queue->queue_size + 1; |
506 | |
507 | ret = nvme_rdma_create_cq(ibdev, queue); |
508 | if (ret) |
509 | goto out_put_dev; |
510 | |
511 | ret = nvme_rdma_create_qp(queue, factor: send_wr_factor); |
512 | if (ret) |
513 | goto out_destroy_ib_cq; |
514 | |
515 | queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, ib_queue_size: queue->queue_size, |
516 | capsule_size: sizeof(struct nvme_completion), dir: DMA_FROM_DEVICE); |
517 | if (!queue->rsp_ring) { |
518 | ret = -ENOMEM; |
519 | goto out_destroy_qp; |
520 | } |
521 | |
522 | /* |
523 | * Currently we don't use SG_GAPS MR's so if the first entry is |
524 | * misaligned we'll end up using two entries for a single data page, |
525 | * so one additional entry is required. |
526 | */ |
527 | pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, pi_support: queue->pi_support) + 1; |
528 | ret = ib_mr_pool_init(qp: queue->qp, list: &queue->qp->rdma_mrs, |
529 | nr: queue->queue_size, |
530 | type: IB_MR_TYPE_MEM_REG, |
531 | max_num_sg: pages_per_mr, max_num_meta_sg: 0); |
532 | if (ret) { |
533 | dev_err(queue->ctrl->ctrl.device, |
534 | "failed to initialize MR pool sized %d for QID %d\n" , |
535 | queue->queue_size, nvme_rdma_queue_idx(queue)); |
536 | goto out_destroy_ring; |
537 | } |
538 | |
539 | if (queue->pi_support) { |
540 | ret = ib_mr_pool_init(qp: queue->qp, list: &queue->qp->sig_mrs, |
541 | nr: queue->queue_size, type: IB_MR_TYPE_INTEGRITY, |
542 | max_num_sg: pages_per_mr, max_num_meta_sg: pages_per_mr); |
543 | if (ret) { |
544 | dev_err(queue->ctrl->ctrl.device, |
545 | "failed to initialize PI MR pool sized %d for QID %d\n" , |
546 | queue->queue_size, nvme_rdma_queue_idx(queue)); |
547 | goto out_destroy_mr_pool; |
548 | } |
549 | } |
550 | |
551 | set_bit(nr: NVME_RDMA_Q_TR_READY, addr: &queue->flags); |
552 | |
553 | return 0; |
554 | |
555 | out_destroy_mr_pool: |
556 | ib_mr_pool_destroy(qp: queue->qp, list: &queue->qp->rdma_mrs); |
557 | out_destroy_ring: |
558 | nvme_rdma_free_ring(ibdev, ring: queue->rsp_ring, ib_queue_size: queue->queue_size, |
559 | capsule_size: sizeof(struct nvme_completion), dir: DMA_FROM_DEVICE); |
560 | out_destroy_qp: |
561 | rdma_destroy_qp(id: queue->cm_id); |
562 | out_destroy_ib_cq: |
563 | nvme_rdma_free_cq(queue); |
564 | out_put_dev: |
565 | nvme_rdma_dev_put(dev: queue->device); |
566 | return ret; |
567 | } |
568 | |
569 | static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, |
570 | int idx, size_t queue_size) |
571 | { |
572 | struct nvme_rdma_queue *queue; |
573 | struct sockaddr *src_addr = NULL; |
574 | int ret; |
575 | |
576 | queue = &ctrl->queues[idx]; |
577 | mutex_init(&queue->queue_lock); |
578 | queue->ctrl = ctrl; |
579 | if (idx && ctrl->ctrl.max_integrity_segments) |
580 | queue->pi_support = true; |
581 | else |
582 | queue->pi_support = false; |
583 | init_completion(x: &queue->cm_done); |
584 | |
585 | if (idx > 0) |
586 | queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; |
587 | else |
588 | queue->cmnd_capsule_len = sizeof(struct nvme_command); |
589 | |
590 | queue->queue_size = queue_size; |
591 | |
592 | queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, |
593 | RDMA_PS_TCP, IB_QPT_RC); |
594 | if (IS_ERR(ptr: queue->cm_id)) { |
595 | dev_info(ctrl->ctrl.device, |
596 | "failed to create CM ID: %ld\n" , PTR_ERR(queue->cm_id)); |
597 | ret = PTR_ERR(ptr: queue->cm_id); |
598 | goto out_destroy_mutex; |
599 | } |
600 | |
601 | if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) |
602 | src_addr = (struct sockaddr *)&ctrl->src_addr; |
603 | |
604 | queue->cm_error = -ETIMEDOUT; |
605 | ret = rdma_resolve_addr(id: queue->cm_id, src_addr, |
606 | dst_addr: (struct sockaddr *)&ctrl->addr, |
607 | NVME_RDMA_CM_TIMEOUT_MS); |
608 | if (ret) { |
609 | dev_info(ctrl->ctrl.device, |
610 | "rdma_resolve_addr failed (%d).\n" , ret); |
611 | goto out_destroy_cm_id; |
612 | } |
613 | |
614 | ret = nvme_rdma_wait_for_cm(queue); |
615 | if (ret) { |
616 | dev_info(ctrl->ctrl.device, |
617 | "rdma connection establishment failed (%d)\n" , ret); |
618 | goto out_destroy_cm_id; |
619 | } |
620 | |
621 | set_bit(nr: NVME_RDMA_Q_ALLOCATED, addr: &queue->flags); |
622 | |
623 | return 0; |
624 | |
625 | out_destroy_cm_id: |
626 | rdma_destroy_id(id: queue->cm_id); |
627 | nvme_rdma_destroy_queue_ib(queue); |
628 | out_destroy_mutex: |
629 | mutex_destroy(lock: &queue->queue_lock); |
630 | return ret; |
631 | } |
632 | |
633 | static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) |
634 | { |
635 | rdma_disconnect(id: queue->cm_id); |
636 | ib_drain_qp(qp: queue->qp); |
637 | } |
638 | |
639 | static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) |
640 | { |
641 | if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) |
642 | return; |
643 | |
644 | mutex_lock(&queue->queue_lock); |
645 | if (test_and_clear_bit(nr: NVME_RDMA_Q_LIVE, addr: &queue->flags)) |
646 | __nvme_rdma_stop_queue(queue); |
647 | mutex_unlock(lock: &queue->queue_lock); |
648 | } |
649 | |
650 | static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) |
651 | { |
652 | if (!test_and_clear_bit(nr: NVME_RDMA_Q_ALLOCATED, addr: &queue->flags)) |
653 | return; |
654 | |
655 | rdma_destroy_id(id: queue->cm_id); |
656 | nvme_rdma_destroy_queue_ib(queue); |
657 | mutex_destroy(lock: &queue->queue_lock); |
658 | } |
659 | |
660 | static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) |
661 | { |
662 | int i; |
663 | |
664 | for (i = 1; i < ctrl->ctrl.queue_count; i++) |
665 | nvme_rdma_free_queue(queue: &ctrl->queues[i]); |
666 | } |
667 | |
668 | static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) |
669 | { |
670 | int i; |
671 | |
672 | for (i = 1; i < ctrl->ctrl.queue_count; i++) |
673 | nvme_rdma_stop_queue(queue: &ctrl->queues[i]); |
674 | } |
675 | |
676 | static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) |
677 | { |
678 | struct nvme_rdma_queue *queue = &ctrl->queues[idx]; |
679 | int ret; |
680 | |
681 | if (idx) |
682 | ret = nvmf_connect_io_queue(ctrl: &ctrl->ctrl, qid: idx); |
683 | else |
684 | ret = nvmf_connect_admin_queue(ctrl: &ctrl->ctrl); |
685 | |
686 | if (!ret) { |
687 | set_bit(nr: NVME_RDMA_Q_LIVE, addr: &queue->flags); |
688 | } else { |
689 | if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) |
690 | __nvme_rdma_stop_queue(queue); |
691 | dev_info(ctrl->ctrl.device, |
692 | "failed to connect queue: %d ret=%d\n" , idx, ret); |
693 | } |
694 | return ret; |
695 | } |
696 | |
697 | static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl, |
698 | int first, int last) |
699 | { |
700 | int i, ret = 0; |
701 | |
702 | for (i = first; i < last; i++) { |
703 | ret = nvme_rdma_start_queue(ctrl, idx: i); |
704 | if (ret) |
705 | goto out_stop_queues; |
706 | } |
707 | |
708 | return 0; |
709 | |
710 | out_stop_queues: |
711 | for (i--; i >= first; i--) |
712 | nvme_rdma_stop_queue(queue: &ctrl->queues[i]); |
713 | return ret; |
714 | } |
715 | |
716 | static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) |
717 | { |
718 | struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; |
719 | unsigned int nr_io_queues; |
720 | int i, ret; |
721 | |
722 | nr_io_queues = nvmf_nr_io_queues(opts); |
723 | ret = nvme_set_queue_count(ctrl: &ctrl->ctrl, count: &nr_io_queues); |
724 | if (ret) |
725 | return ret; |
726 | |
727 | if (nr_io_queues == 0) { |
728 | dev_err(ctrl->ctrl.device, |
729 | "unable to set any I/O queues\n" ); |
730 | return -ENOMEM; |
731 | } |
732 | |
733 | ctrl->ctrl.queue_count = nr_io_queues + 1; |
734 | dev_info(ctrl->ctrl.device, |
735 | "creating %d I/O queues.\n" , nr_io_queues); |
736 | |
737 | nvmf_set_io_queues(opts, nr_io_queues, io_queues: ctrl->io_queues); |
738 | for (i = 1; i < ctrl->ctrl.queue_count; i++) { |
739 | ret = nvme_rdma_alloc_queue(ctrl, idx: i, |
740 | queue_size: ctrl->ctrl.sqsize + 1); |
741 | if (ret) |
742 | goto out_free_queues; |
743 | } |
744 | |
745 | return 0; |
746 | |
747 | out_free_queues: |
748 | for (i--; i >= 1; i--) |
749 | nvme_rdma_free_queue(queue: &ctrl->queues[i]); |
750 | |
751 | return ret; |
752 | } |
753 | |
754 | static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl) |
755 | { |
756 | unsigned int cmd_size = sizeof(struct nvme_rdma_request) + |
757 | NVME_RDMA_DATA_SGL_SIZE; |
758 | |
759 | if (ctrl->max_integrity_segments) |
760 | cmd_size += sizeof(struct nvme_rdma_sgl) + |
761 | NVME_RDMA_METADATA_SGL_SIZE; |
762 | |
763 | return nvme_alloc_io_tag_set(ctrl, set: &to_rdma_ctrl(ctrl)->tag_set, |
764 | ops: &nvme_rdma_mq_ops, |
765 | nr_maps: ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, |
766 | cmd_size); |
767 | } |
768 | |
769 | static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) |
770 | { |
771 | if (ctrl->async_event_sqe.data) { |
772 | cancel_work_sync(work: &ctrl->ctrl.async_event_work); |
773 | nvme_rdma_free_qe(ibdev: ctrl->device->dev, qe: &ctrl->async_event_sqe, |
774 | capsule_size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE); |
775 | ctrl->async_event_sqe.data = NULL; |
776 | } |
777 | nvme_rdma_free_queue(queue: &ctrl->queues[0]); |
778 | } |
779 | |
780 | static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, |
781 | bool new) |
782 | { |
783 | bool pi_capable = false; |
784 | int error; |
785 | |
786 | error = nvme_rdma_alloc_queue(ctrl, idx: 0, NVME_AQ_DEPTH); |
787 | if (error) |
788 | return error; |
789 | |
790 | ctrl->device = ctrl->queues[0].device; |
791 | ctrl->ctrl.numa_node = ibdev_to_node(ibdev: ctrl->device->dev); |
792 | |
793 | /* T10-PI support */ |
794 | if (ctrl->device->dev->attrs.kernel_cap_flags & |
795 | IBK_INTEGRITY_HANDOVER) |
796 | pi_capable = true; |
797 | |
798 | ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ibdev: ctrl->device->dev, |
799 | pi_support: pi_capable); |
800 | |
801 | /* |
802 | * Bind the async event SQE DMA mapping to the admin queue lifetime. |
803 | * It's safe, since any change in the underlying RDMA device will issue |
804 | * error recovery and queue re-creation. |
805 | */ |
806 | error = nvme_rdma_alloc_qe(ibdev: ctrl->device->dev, qe: &ctrl->async_event_sqe, |
807 | capsule_size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE); |
808 | if (error) |
809 | goto out_free_queue; |
810 | |
811 | if (new) { |
812 | error = nvme_alloc_admin_tag_set(ctrl: &ctrl->ctrl, |
813 | set: &ctrl->admin_tag_set, ops: &nvme_rdma_admin_mq_ops, |
814 | cmd_size: sizeof(struct nvme_rdma_request) + |
815 | NVME_RDMA_DATA_SGL_SIZE); |
816 | if (error) |
817 | goto out_free_async_qe; |
818 | |
819 | } |
820 | |
821 | error = nvme_rdma_start_queue(ctrl, idx: 0); |
822 | if (error) |
823 | goto out_remove_admin_tag_set; |
824 | |
825 | error = nvme_enable_ctrl(ctrl: &ctrl->ctrl); |
826 | if (error) |
827 | goto out_stop_queue; |
828 | |
829 | ctrl->ctrl.max_segments = ctrl->max_fr_pages; |
830 | ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); |
831 | if (pi_capable) |
832 | ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; |
833 | else |
834 | ctrl->ctrl.max_integrity_segments = 0; |
835 | |
836 | nvme_unquiesce_admin_queue(ctrl: &ctrl->ctrl); |
837 | |
838 | error = nvme_init_ctrl_finish(ctrl: &ctrl->ctrl, was_suspended: false); |
839 | if (error) |
840 | goto out_quiesce_queue; |
841 | |
842 | return 0; |
843 | |
844 | out_quiesce_queue: |
845 | nvme_quiesce_admin_queue(ctrl: &ctrl->ctrl); |
846 | blk_sync_queue(q: ctrl->ctrl.admin_q); |
847 | out_stop_queue: |
848 | nvme_rdma_stop_queue(queue: &ctrl->queues[0]); |
849 | nvme_cancel_admin_tagset(ctrl: &ctrl->ctrl); |
850 | out_remove_admin_tag_set: |
851 | if (new) |
852 | nvme_remove_admin_tag_set(ctrl: &ctrl->ctrl); |
853 | out_free_async_qe: |
854 | if (ctrl->async_event_sqe.data) { |
855 | nvme_rdma_free_qe(ibdev: ctrl->device->dev, qe: &ctrl->async_event_sqe, |
856 | capsule_size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE); |
857 | ctrl->async_event_sqe.data = NULL; |
858 | } |
859 | out_free_queue: |
860 | nvme_rdma_free_queue(queue: &ctrl->queues[0]); |
861 | return error; |
862 | } |
863 | |
864 | static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) |
865 | { |
866 | int ret, nr_queues; |
867 | |
868 | ret = nvme_rdma_alloc_io_queues(ctrl); |
869 | if (ret) |
870 | return ret; |
871 | |
872 | if (new) { |
873 | ret = nvme_rdma_alloc_tag_set(ctrl: &ctrl->ctrl); |
874 | if (ret) |
875 | goto out_free_io_queues; |
876 | } |
877 | |
878 | /* |
879 | * Only start IO queues for which we have allocated the tagset |
880 | * and limitted it to the available queues. On reconnects, the |
881 | * queue number might have changed. |
882 | */ |
883 | nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count); |
884 | ret = nvme_rdma_start_io_queues(ctrl, first: 1, last: nr_queues); |
885 | if (ret) |
886 | goto out_cleanup_tagset; |
887 | |
888 | if (!new) { |
889 | nvme_start_freeze(ctrl: &ctrl->ctrl); |
890 | nvme_unquiesce_io_queues(ctrl: &ctrl->ctrl); |
891 | if (!nvme_wait_freeze_timeout(ctrl: &ctrl->ctrl, NVME_IO_TIMEOUT)) { |
892 | /* |
893 | * If we timed out waiting for freeze we are likely to |
894 | * be stuck. Fail the controller initialization just |
895 | * to be safe. |
896 | */ |
897 | ret = -ENODEV; |
898 | nvme_unfreeze(ctrl: &ctrl->ctrl); |
899 | goto out_wait_freeze_timed_out; |
900 | } |
901 | blk_mq_update_nr_hw_queues(set: ctrl->ctrl.tagset, |
902 | nr_hw_queues: ctrl->ctrl.queue_count - 1); |
903 | nvme_unfreeze(ctrl: &ctrl->ctrl); |
904 | } |
905 | |
906 | /* |
907 | * If the number of queues has increased (reconnect case) |
908 | * start all new queues now. |
909 | */ |
910 | ret = nvme_rdma_start_io_queues(ctrl, first: nr_queues, |
911 | last: ctrl->tag_set.nr_hw_queues + 1); |
912 | if (ret) |
913 | goto out_wait_freeze_timed_out; |
914 | |
915 | return 0; |
916 | |
917 | out_wait_freeze_timed_out: |
918 | nvme_quiesce_io_queues(ctrl: &ctrl->ctrl); |
919 | nvme_sync_io_queues(ctrl: &ctrl->ctrl); |
920 | nvme_rdma_stop_io_queues(ctrl); |
921 | out_cleanup_tagset: |
922 | nvme_cancel_tagset(ctrl: &ctrl->ctrl); |
923 | if (new) |
924 | nvme_remove_io_tag_set(ctrl: &ctrl->ctrl); |
925 | out_free_io_queues: |
926 | nvme_rdma_free_io_queues(ctrl); |
927 | return ret; |
928 | } |
929 | |
930 | static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, |
931 | bool remove) |
932 | { |
933 | nvme_quiesce_admin_queue(ctrl: &ctrl->ctrl); |
934 | blk_sync_queue(q: ctrl->ctrl.admin_q); |
935 | nvme_rdma_stop_queue(queue: &ctrl->queues[0]); |
936 | nvme_cancel_admin_tagset(ctrl: &ctrl->ctrl); |
937 | if (remove) { |
938 | nvme_unquiesce_admin_queue(ctrl: &ctrl->ctrl); |
939 | nvme_remove_admin_tag_set(ctrl: &ctrl->ctrl); |
940 | } |
941 | nvme_rdma_destroy_admin_queue(ctrl); |
942 | } |
943 | |
944 | static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, |
945 | bool remove) |
946 | { |
947 | if (ctrl->ctrl.queue_count > 1) { |
948 | nvme_quiesce_io_queues(ctrl: &ctrl->ctrl); |
949 | nvme_sync_io_queues(ctrl: &ctrl->ctrl); |
950 | nvme_rdma_stop_io_queues(ctrl); |
951 | nvme_cancel_tagset(ctrl: &ctrl->ctrl); |
952 | if (remove) { |
953 | nvme_unquiesce_io_queues(ctrl: &ctrl->ctrl); |
954 | nvme_remove_io_tag_set(ctrl: &ctrl->ctrl); |
955 | } |
956 | nvme_rdma_free_io_queues(ctrl); |
957 | } |
958 | } |
959 | |
960 | static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) |
961 | { |
962 | struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: nctrl); |
963 | |
964 | flush_work(work: &ctrl->err_work); |
965 | cancel_delayed_work_sync(dwork: &ctrl->reconnect_work); |
966 | } |
967 | |
968 | static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) |
969 | { |
970 | struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: nctrl); |
971 | |
972 | if (list_empty(head: &ctrl->list)) |
973 | goto free_ctrl; |
974 | |
975 | mutex_lock(&nvme_rdma_ctrl_mutex); |
976 | list_del(entry: &ctrl->list); |
977 | mutex_unlock(lock: &nvme_rdma_ctrl_mutex); |
978 | |
979 | nvmf_free_options(opts: nctrl->opts); |
980 | free_ctrl: |
981 | kfree(objp: ctrl->queues); |
982 | kfree(objp: ctrl); |
983 | } |
984 | |
985 | static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl, |
986 | int status) |
987 | { |
988 | enum nvme_ctrl_state state = nvme_ctrl_state(ctrl: &ctrl->ctrl); |
989 | |
990 | /* If we are resetting/deleting then do nothing */ |
991 | if (state != NVME_CTRL_CONNECTING) { |
992 | WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); |
993 | return; |
994 | } |
995 | |
996 | if (nvmf_should_reconnect(ctrl: &ctrl->ctrl, status)) { |
997 | dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n" , |
998 | ctrl->ctrl.opts->reconnect_delay); |
999 | queue_delayed_work(wq: nvme_wq, dwork: &ctrl->reconnect_work, |
1000 | delay: ctrl->ctrl.opts->reconnect_delay * HZ); |
1001 | } else { |
1002 | nvme_delete_ctrl(ctrl: &ctrl->ctrl); |
1003 | } |
1004 | } |
1005 | |
1006 | static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) |
1007 | { |
1008 | int ret; |
1009 | bool changed; |
1010 | u16 max_queue_size; |
1011 | |
1012 | ret = nvme_rdma_configure_admin_queue(ctrl, new); |
1013 | if (ret) |
1014 | return ret; |
1015 | |
1016 | if (ctrl->ctrl.icdoff) { |
1017 | ret = -EOPNOTSUPP; |
1018 | dev_err(ctrl->ctrl.device, "icdoff is not supported!\n" ); |
1019 | goto destroy_admin; |
1020 | } |
1021 | |
1022 | if (!(ctrl->ctrl.sgls & NVME_CTRL_SGLS_KSDBDS)) { |
1023 | ret = -EOPNOTSUPP; |
1024 | dev_err(ctrl->ctrl.device, |
1025 | "Mandatory keyed sgls are not supported!\n" ); |
1026 | goto destroy_admin; |
1027 | } |
1028 | |
1029 | if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { |
1030 | dev_warn(ctrl->ctrl.device, |
1031 | "queue_size %zu > ctrl sqsize %u, clamping down\n" , |
1032 | ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); |
1033 | } |
1034 | |
1035 | if (ctrl->ctrl.max_integrity_segments) |
1036 | max_queue_size = NVME_RDMA_MAX_METADATA_QUEUE_SIZE; |
1037 | else |
1038 | max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE; |
1039 | |
1040 | if (ctrl->ctrl.sqsize + 1 > max_queue_size) { |
1041 | dev_warn(ctrl->ctrl.device, |
1042 | "ctrl sqsize %u > max queue size %u, clamping down\n" , |
1043 | ctrl->ctrl.sqsize + 1, max_queue_size); |
1044 | ctrl->ctrl.sqsize = max_queue_size - 1; |
1045 | } |
1046 | |
1047 | if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { |
1048 | dev_warn(ctrl->ctrl.device, |
1049 | "sqsize %u > ctrl maxcmd %u, clamping down\n" , |
1050 | ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); |
1051 | ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; |
1052 | } |
1053 | |
1054 | if (ctrl->ctrl.sgls & NVME_CTRL_SGLS_SAOS) |
1055 | ctrl->use_inline_data = true; |
1056 | |
1057 | if (ctrl->ctrl.queue_count > 1) { |
1058 | ret = nvme_rdma_configure_io_queues(ctrl, new); |
1059 | if (ret) |
1060 | goto destroy_admin; |
1061 | } |
1062 | |
1063 | changed = nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_LIVE); |
1064 | if (!changed) { |
1065 | /* |
1066 | * state change failure is ok if we started ctrl delete, |
1067 | * unless we're during creation of a new controller to |
1068 | * avoid races with teardown flow. |
1069 | */ |
1070 | enum nvme_ctrl_state state = nvme_ctrl_state(ctrl: &ctrl->ctrl); |
1071 | |
1072 | WARN_ON_ONCE(state != NVME_CTRL_DELETING && |
1073 | state != NVME_CTRL_DELETING_NOIO); |
1074 | WARN_ON_ONCE(new); |
1075 | ret = -EINVAL; |
1076 | goto destroy_io; |
1077 | } |
1078 | |
1079 | nvme_start_ctrl(ctrl: &ctrl->ctrl); |
1080 | return 0; |
1081 | |
1082 | destroy_io: |
1083 | if (ctrl->ctrl.queue_count > 1) { |
1084 | nvme_quiesce_io_queues(ctrl: &ctrl->ctrl); |
1085 | nvme_sync_io_queues(ctrl: &ctrl->ctrl); |
1086 | nvme_rdma_stop_io_queues(ctrl); |
1087 | nvme_cancel_tagset(ctrl: &ctrl->ctrl); |
1088 | if (new) |
1089 | nvme_remove_io_tag_set(ctrl: &ctrl->ctrl); |
1090 | nvme_rdma_free_io_queues(ctrl); |
1091 | } |
1092 | destroy_admin: |
1093 | nvme_stop_keep_alive(ctrl: &ctrl->ctrl); |
1094 | nvme_rdma_teardown_admin_queue(ctrl, remove: new); |
1095 | return ret; |
1096 | } |
1097 | |
1098 | static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) |
1099 | { |
1100 | struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), |
1101 | struct nvme_rdma_ctrl, reconnect_work); |
1102 | int ret; |
1103 | |
1104 | ++ctrl->ctrl.nr_reconnects; |
1105 | |
1106 | ret = nvme_rdma_setup_ctrl(ctrl, new: false); |
1107 | if (ret) |
1108 | goto requeue; |
1109 | |
1110 | dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n" , |
1111 | ctrl->ctrl.nr_reconnects); |
1112 | |
1113 | ctrl->ctrl.nr_reconnects = 0; |
1114 | |
1115 | return; |
1116 | |
1117 | requeue: |
1118 | dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d/%d\n" , |
1119 | ctrl->ctrl.nr_reconnects, ctrl->ctrl.opts->max_reconnects); |
1120 | nvme_rdma_reconnect_or_remove(ctrl, status: ret); |
1121 | } |
1122 | |
1123 | static void nvme_rdma_error_recovery_work(struct work_struct *work) |
1124 | { |
1125 | struct nvme_rdma_ctrl *ctrl = container_of(work, |
1126 | struct nvme_rdma_ctrl, err_work); |
1127 | |
1128 | nvme_stop_keep_alive(ctrl: &ctrl->ctrl); |
1129 | flush_work(work: &ctrl->ctrl.async_event_work); |
1130 | nvme_rdma_teardown_io_queues(ctrl, remove: false); |
1131 | nvme_unquiesce_io_queues(ctrl: &ctrl->ctrl); |
1132 | nvme_rdma_teardown_admin_queue(ctrl, remove: false); |
1133 | nvme_unquiesce_admin_queue(ctrl: &ctrl->ctrl); |
1134 | nvme_auth_stop(ctrl: &ctrl->ctrl); |
1135 | |
1136 | if (!nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_CONNECTING)) { |
1137 | /* state change failure is ok if we started ctrl delete */ |
1138 | enum nvme_ctrl_state state = nvme_ctrl_state(ctrl: &ctrl->ctrl); |
1139 | |
1140 | WARN_ON_ONCE(state != NVME_CTRL_DELETING && |
1141 | state != NVME_CTRL_DELETING_NOIO); |
1142 | return; |
1143 | } |
1144 | |
1145 | nvme_rdma_reconnect_or_remove(ctrl, status: 0); |
1146 | } |
1147 | |
1148 | static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) |
1149 | { |
1150 | if (!nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_RESETTING)) |
1151 | return; |
1152 | |
1153 | dev_warn(ctrl->ctrl.device, "starting error recovery\n" ); |
1154 | queue_work(wq: nvme_reset_wq, work: &ctrl->err_work); |
1155 | } |
1156 | |
1157 | static void nvme_rdma_end_request(struct nvme_rdma_request *req) |
1158 | { |
1159 | struct request *rq = blk_mq_rq_from_pdu(pdu: req); |
1160 | |
1161 | if (!refcount_dec_and_test(r: &req->ref)) |
1162 | return; |
1163 | if (!nvme_try_complete_req(req: rq, status: req->status, result: req->result)) |
1164 | nvme_rdma_complete_rq(rq); |
1165 | } |
1166 | |
1167 | static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, |
1168 | const char *op) |
1169 | { |
1170 | struct nvme_rdma_queue *queue = wc->qp->qp_context; |
1171 | struct nvme_rdma_ctrl *ctrl = queue->ctrl; |
1172 | |
1173 | if (nvme_ctrl_state(ctrl: &ctrl->ctrl) == NVME_CTRL_LIVE) |
1174 | dev_info(ctrl->ctrl.device, |
1175 | "%s for CQE 0x%p failed with status %s (%d)\n" , |
1176 | op, wc->wr_cqe, |
1177 | ib_wc_status_msg(wc->status), wc->status); |
1178 | nvme_rdma_error_recovery(ctrl); |
1179 | } |
1180 | |
1181 | static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) |
1182 | { |
1183 | if (unlikely(wc->status != IB_WC_SUCCESS)) |
1184 | nvme_rdma_wr_error(cq, wc, op: "MEMREG" ); |
1185 | } |
1186 | |
1187 | static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) |
1188 | { |
1189 | struct nvme_rdma_request *req = |
1190 | container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); |
1191 | |
1192 | if (unlikely(wc->status != IB_WC_SUCCESS)) |
1193 | nvme_rdma_wr_error(cq, wc, op: "LOCAL_INV" ); |
1194 | else |
1195 | nvme_rdma_end_request(req); |
1196 | } |
1197 | |
1198 | static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, |
1199 | struct nvme_rdma_request *req) |
1200 | { |
1201 | struct ib_send_wr wr = { |
1202 | .opcode = IB_WR_LOCAL_INV, |
1203 | .next = NULL, |
1204 | .num_sge = 0, |
1205 | .send_flags = IB_SEND_SIGNALED, |
1206 | .ex.invalidate_rkey = req->mr->rkey, |
1207 | }; |
1208 | |
1209 | req->reg_cqe.done = nvme_rdma_inv_rkey_done; |
1210 | wr.wr_cqe = &req->reg_cqe; |
1211 | |
1212 | return ib_post_send(qp: queue->qp, send_wr: &wr, NULL); |
1213 | } |
1214 | |
1215 | static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq) |
1216 | { |
1217 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
1218 | |
1219 | if (blk_integrity_rq(rq)) { |
1220 | ib_dma_unmap_sg(dev: ibdev, sg: req->metadata_sgl->sg_table.sgl, |
1221 | nents: req->metadata_sgl->nents, rq_dma_dir(rq)); |
1222 | sg_free_table_chained(table: &req->metadata_sgl->sg_table, |
1223 | NVME_INLINE_METADATA_SG_CNT); |
1224 | } |
1225 | |
1226 | ib_dma_unmap_sg(dev: ibdev, sg: req->data_sgl.sg_table.sgl, nents: req->data_sgl.nents, |
1227 | rq_dma_dir(rq)); |
1228 | sg_free_table_chained(table: &req->data_sgl.sg_table, NVME_INLINE_SG_CNT); |
1229 | } |
1230 | |
1231 | static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, |
1232 | struct request *rq) |
1233 | { |
1234 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
1235 | struct nvme_rdma_device *dev = queue->device; |
1236 | struct ib_device *ibdev = dev->dev; |
1237 | struct list_head *pool = &queue->qp->rdma_mrs; |
1238 | |
1239 | if (!blk_rq_nr_phys_segments(rq)) |
1240 | return; |
1241 | |
1242 | if (req->use_sig_mr) |
1243 | pool = &queue->qp->sig_mrs; |
1244 | |
1245 | if (req->mr) { |
1246 | ib_mr_pool_put(qp: queue->qp, list: pool, mr: req->mr); |
1247 | req->mr = NULL; |
1248 | } |
1249 | |
1250 | nvme_rdma_dma_unmap_req(ibdev, rq); |
1251 | } |
1252 | |
1253 | static int nvme_rdma_set_sg_null(struct nvme_command *c) |
1254 | { |
1255 | struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; |
1256 | |
1257 | sg->addr = 0; |
1258 | put_unaligned_le24(val: 0, p: sg->length); |
1259 | put_unaligned_le32(val: 0, p: sg->key); |
1260 | sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; |
1261 | return 0; |
1262 | } |
1263 | |
1264 | static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, |
1265 | struct nvme_rdma_request *req, struct nvme_command *c, |
1266 | int count) |
1267 | { |
1268 | struct nvme_sgl_desc *sg = &c->common.dptr.sgl; |
1269 | struct ib_sge *sge = &req->sge[1]; |
1270 | struct scatterlist *sgl; |
1271 | u32 len = 0; |
1272 | int i; |
1273 | |
1274 | for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) { |
1275 | sge->addr = sg_dma_address(sgl); |
1276 | sge->length = sg_dma_len(sgl); |
1277 | sge->lkey = queue->device->pd->local_dma_lkey; |
1278 | len += sge->length; |
1279 | sge++; |
1280 | } |
1281 | |
1282 | sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); |
1283 | sg->length = cpu_to_le32(len); |
1284 | sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; |
1285 | |
1286 | req->num_sge += count; |
1287 | return 0; |
1288 | } |
1289 | |
1290 | static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, |
1291 | struct nvme_rdma_request *req, struct nvme_command *c) |
1292 | { |
1293 | struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; |
1294 | |
1295 | sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); |
1296 | put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), p: sg->length); |
1297 | put_unaligned_le32(val: queue->device->pd->unsafe_global_rkey, p: sg->key); |
1298 | sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; |
1299 | return 0; |
1300 | } |
1301 | |
1302 | static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, |
1303 | struct nvme_rdma_request *req, struct nvme_command *c, |
1304 | int count) |
1305 | { |
1306 | struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; |
1307 | int nr; |
1308 | |
1309 | req->mr = ib_mr_pool_get(qp: queue->qp, list: &queue->qp->rdma_mrs); |
1310 | if (WARN_ON_ONCE(!req->mr)) |
1311 | return -EAGAIN; |
1312 | |
1313 | /* |
1314 | * Align the MR to a 4K page size to match the ctrl page size and |
1315 | * the block virtual boundary. |
1316 | */ |
1317 | nr = ib_map_mr_sg(mr: req->mr, sg: req->data_sgl.sg_table.sgl, sg_nents: count, NULL, |
1318 | SZ_4K); |
1319 | if (unlikely(nr < count)) { |
1320 | ib_mr_pool_put(qp: queue->qp, list: &queue->qp->rdma_mrs, mr: req->mr); |
1321 | req->mr = NULL; |
1322 | if (nr < 0) |
1323 | return nr; |
1324 | return -EINVAL; |
1325 | } |
1326 | |
1327 | ib_update_fast_reg_key(mr: req->mr, newkey: ib_inc_rkey(rkey: req->mr->rkey)); |
1328 | |
1329 | req->reg_cqe.done = nvme_rdma_memreg_done; |
1330 | memset(&req->reg_wr, 0, sizeof(req->reg_wr)); |
1331 | req->reg_wr.wr.opcode = IB_WR_REG_MR; |
1332 | req->reg_wr.wr.wr_cqe = &req->reg_cqe; |
1333 | req->reg_wr.wr.num_sge = 0; |
1334 | req->reg_wr.mr = req->mr; |
1335 | req->reg_wr.key = req->mr->rkey; |
1336 | req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | |
1337 | IB_ACCESS_REMOTE_READ | |
1338 | IB_ACCESS_REMOTE_WRITE; |
1339 | |
1340 | sg->addr = cpu_to_le64(req->mr->iova); |
1341 | put_unaligned_le24(val: req->mr->length, p: sg->length); |
1342 | put_unaligned_le32(val: req->mr->rkey, p: sg->key); |
1343 | sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | |
1344 | NVME_SGL_FMT_INVALIDATE; |
1345 | |
1346 | return 0; |
1347 | } |
1348 | |
1349 | static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, |
1350 | struct nvme_command *cmd, struct ib_sig_domain *domain, |
1351 | u16 control, u8 pi_type) |
1352 | { |
1353 | domain->sig_type = IB_SIG_TYPE_T10_DIF; |
1354 | domain->sig.dif.bg_type = IB_T10DIF_CRC; |
1355 | domain->sig.dif.pi_interval = 1 << bi->interval_exp; |
1356 | domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); |
1357 | if (control & NVME_RW_PRINFO_PRCHK_REF) |
1358 | domain->sig.dif.ref_remap = true; |
1359 | |
1360 | domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat); |
1361 | domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm); |
1362 | domain->sig.dif.app_escape = true; |
1363 | if (pi_type == NVME_NS_DPS_PI_TYPE3) |
1364 | domain->sig.dif.ref_escape = true; |
1365 | } |
1366 | |
1367 | static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, |
1368 | struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, |
1369 | u8 pi_type) |
1370 | { |
1371 | u16 control = le16_to_cpu(cmd->rw.control); |
1372 | |
1373 | memset(sig_attrs, 0, sizeof(*sig_attrs)); |
1374 | if (control & NVME_RW_PRINFO_PRACT) { |
1375 | /* for WRITE_INSERT/READ_STRIP no memory domain */ |
1376 | sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; |
1377 | nvme_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->wire, control, |
1378 | pi_type); |
1379 | /* Clear the PRACT bit since HCA will generate/verify the PI */ |
1380 | control &= ~NVME_RW_PRINFO_PRACT; |
1381 | cmd->rw.control = cpu_to_le16(control); |
1382 | } else { |
1383 | /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ |
1384 | nvme_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->wire, control, |
1385 | pi_type); |
1386 | nvme_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->mem, control, |
1387 | pi_type); |
1388 | } |
1389 | } |
1390 | |
1391 | static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) |
1392 | { |
1393 | *mask = 0; |
1394 | if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) |
1395 | *mask |= IB_SIG_CHECK_REFTAG; |
1396 | if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) |
1397 | *mask |= IB_SIG_CHECK_GUARD; |
1398 | } |
1399 | |
1400 | static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) |
1401 | { |
1402 | if (unlikely(wc->status != IB_WC_SUCCESS)) |
1403 | nvme_rdma_wr_error(cq, wc, op: "SIG" ); |
1404 | } |
1405 | |
1406 | static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, |
1407 | struct nvme_rdma_request *req, struct nvme_command *c, |
1408 | int count, int pi_count) |
1409 | { |
1410 | struct nvme_rdma_sgl *sgl = &req->data_sgl; |
1411 | struct ib_reg_wr *wr = &req->reg_wr; |
1412 | struct request *rq = blk_mq_rq_from_pdu(pdu: req); |
1413 | struct nvme_ns *ns = rq->q->queuedata; |
1414 | struct bio *bio = rq->bio; |
1415 | struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; |
1416 | struct blk_integrity *bi = blk_get_integrity(disk: bio->bi_bdev->bd_disk); |
1417 | u32 xfer_len; |
1418 | int nr; |
1419 | |
1420 | req->mr = ib_mr_pool_get(qp: queue->qp, list: &queue->qp->sig_mrs); |
1421 | if (WARN_ON_ONCE(!req->mr)) |
1422 | return -EAGAIN; |
1423 | |
1424 | nr = ib_map_mr_sg_pi(mr: req->mr, data_sg: sgl->sg_table.sgl, data_sg_nents: count, NULL, |
1425 | meta_sg: req->metadata_sgl->sg_table.sgl, meta_sg_nents: pi_count, NULL, |
1426 | SZ_4K); |
1427 | if (unlikely(nr)) |
1428 | goto mr_put; |
1429 | |
1430 | nvme_rdma_set_sig_attrs(bi, cmd: c, sig_attrs: req->mr->sig_attrs, pi_type: ns->head->pi_type); |
1431 | nvme_rdma_set_prot_checks(cmd: c, mask: &req->mr->sig_attrs->check_mask); |
1432 | |
1433 | ib_update_fast_reg_key(mr: req->mr, newkey: ib_inc_rkey(rkey: req->mr->rkey)); |
1434 | |
1435 | req->reg_cqe.done = nvme_rdma_sig_done; |
1436 | memset(wr, 0, sizeof(*wr)); |
1437 | wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; |
1438 | wr->wr.wr_cqe = &req->reg_cqe; |
1439 | wr->wr.num_sge = 0; |
1440 | wr->wr.send_flags = 0; |
1441 | wr->mr = req->mr; |
1442 | wr->key = req->mr->rkey; |
1443 | wr->access = IB_ACCESS_LOCAL_WRITE | |
1444 | IB_ACCESS_REMOTE_READ | |
1445 | IB_ACCESS_REMOTE_WRITE; |
1446 | |
1447 | sg->addr = cpu_to_le64(req->mr->iova); |
1448 | xfer_len = req->mr->length; |
1449 | /* Check if PI is added by the HW */ |
1450 | if (!pi_count) |
1451 | xfer_len += (xfer_len >> bi->interval_exp) * ns->head->pi_size; |
1452 | put_unaligned_le24(val: xfer_len, p: sg->length); |
1453 | put_unaligned_le32(val: req->mr->rkey, p: sg->key); |
1454 | sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; |
1455 | |
1456 | return 0; |
1457 | |
1458 | mr_put: |
1459 | ib_mr_pool_put(qp: queue->qp, list: &queue->qp->sig_mrs, mr: req->mr); |
1460 | req->mr = NULL; |
1461 | if (nr < 0) |
1462 | return nr; |
1463 | return -EINVAL; |
1464 | } |
1465 | |
1466 | static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq, |
1467 | int *count, int *pi_count) |
1468 | { |
1469 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
1470 | int ret; |
1471 | |
1472 | req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); |
1473 | ret = sg_alloc_table_chained(table: &req->data_sgl.sg_table, |
1474 | nents: blk_rq_nr_phys_segments(rq), first_chunk: req->data_sgl.sg_table.sgl, |
1475 | NVME_INLINE_SG_CNT); |
1476 | if (ret) |
1477 | return -ENOMEM; |
1478 | |
1479 | req->data_sgl.nents = blk_rq_map_sg(rq, sglist: req->data_sgl.sg_table.sgl); |
1480 | |
1481 | *count = ib_dma_map_sg(dev: ibdev, sg: req->data_sgl.sg_table.sgl, |
1482 | nents: req->data_sgl.nents, rq_dma_dir(rq)); |
1483 | if (unlikely(*count <= 0)) { |
1484 | ret = -EIO; |
1485 | goto out_free_table; |
1486 | } |
1487 | |
1488 | if (blk_integrity_rq(rq)) { |
1489 | req->metadata_sgl->sg_table.sgl = |
1490 | (struct scatterlist *)(req->metadata_sgl + 1); |
1491 | ret = sg_alloc_table_chained(table: &req->metadata_sgl->sg_table, |
1492 | nents: rq->nr_integrity_segments, |
1493 | first_chunk: req->metadata_sgl->sg_table.sgl, |
1494 | NVME_INLINE_METADATA_SG_CNT); |
1495 | if (unlikely(ret)) { |
1496 | ret = -ENOMEM; |
1497 | goto out_unmap_sg; |
1498 | } |
1499 | |
1500 | req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq, |
1501 | req->metadata_sgl->sg_table.sgl); |
1502 | *pi_count = ib_dma_map_sg(dev: ibdev, |
1503 | sg: req->metadata_sgl->sg_table.sgl, |
1504 | nents: req->metadata_sgl->nents, |
1505 | rq_dma_dir(rq)); |
1506 | if (unlikely(*pi_count <= 0)) { |
1507 | ret = -EIO; |
1508 | goto out_free_pi_table; |
1509 | } |
1510 | } |
1511 | |
1512 | return 0; |
1513 | |
1514 | out_free_pi_table: |
1515 | sg_free_table_chained(table: &req->metadata_sgl->sg_table, |
1516 | NVME_INLINE_METADATA_SG_CNT); |
1517 | out_unmap_sg: |
1518 | ib_dma_unmap_sg(dev: ibdev, sg: req->data_sgl.sg_table.sgl, nents: req->data_sgl.nents, |
1519 | rq_dma_dir(rq)); |
1520 | out_free_table: |
1521 | sg_free_table_chained(table: &req->data_sgl.sg_table, NVME_INLINE_SG_CNT); |
1522 | return ret; |
1523 | } |
1524 | |
1525 | static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, |
1526 | struct request *rq, struct nvme_command *c) |
1527 | { |
1528 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
1529 | struct nvme_rdma_device *dev = queue->device; |
1530 | struct ib_device *ibdev = dev->dev; |
1531 | int pi_count = 0; |
1532 | int count, ret; |
1533 | |
1534 | req->num_sge = 1; |
1535 | refcount_set(r: &req->ref, n: 2); /* send and recv completions */ |
1536 | |
1537 | c->common.flags |= NVME_CMD_SGL_METABUF; |
1538 | |
1539 | if (!blk_rq_nr_phys_segments(rq)) |
1540 | return nvme_rdma_set_sg_null(c); |
1541 | |
1542 | ret = nvme_rdma_dma_map_req(ibdev, rq, count: &count, pi_count: &pi_count); |
1543 | if (unlikely(ret)) |
1544 | return ret; |
1545 | |
1546 | if (req->use_sig_mr) { |
1547 | ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); |
1548 | goto out; |
1549 | } |
1550 | |
1551 | if (count <= dev->num_inline_segments) { |
1552 | if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && |
1553 | queue->ctrl->use_inline_data && |
1554 | blk_rq_payload_bytes(rq) <= |
1555 | nvme_rdma_inline_data_size(queue)) { |
1556 | ret = nvme_rdma_map_sg_inline(queue, req, c, count); |
1557 | goto out; |
1558 | } |
1559 | |
1560 | if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { |
1561 | ret = nvme_rdma_map_sg_single(queue, req, c); |
1562 | goto out; |
1563 | } |
1564 | } |
1565 | |
1566 | ret = nvme_rdma_map_sg_fr(queue, req, c, count); |
1567 | out: |
1568 | if (unlikely(ret)) |
1569 | goto out_dma_unmap_req; |
1570 | |
1571 | return 0; |
1572 | |
1573 | out_dma_unmap_req: |
1574 | nvme_rdma_dma_unmap_req(ibdev, rq); |
1575 | return ret; |
1576 | } |
1577 | |
1578 | static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) |
1579 | { |
1580 | struct nvme_rdma_qe *qe = |
1581 | container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); |
1582 | struct nvme_rdma_request *req = |
1583 | container_of(qe, struct nvme_rdma_request, sqe); |
1584 | |
1585 | if (unlikely(wc->status != IB_WC_SUCCESS)) |
1586 | nvme_rdma_wr_error(cq, wc, op: "SEND" ); |
1587 | else |
1588 | nvme_rdma_end_request(req); |
1589 | } |
1590 | |
1591 | static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, |
1592 | struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, |
1593 | struct ib_send_wr *first) |
1594 | { |
1595 | struct ib_send_wr wr; |
1596 | int ret; |
1597 | |
1598 | sge->addr = qe->dma; |
1599 | sge->length = sizeof(struct nvme_command); |
1600 | sge->lkey = queue->device->pd->local_dma_lkey; |
1601 | |
1602 | wr.next = NULL; |
1603 | wr.wr_cqe = &qe->cqe; |
1604 | wr.sg_list = sge; |
1605 | wr.num_sge = num_sge; |
1606 | wr.opcode = IB_WR_SEND; |
1607 | wr.send_flags = IB_SEND_SIGNALED; |
1608 | |
1609 | if (first) |
1610 | first->next = ≀ |
1611 | else |
1612 | first = ≀ |
1613 | |
1614 | ret = ib_post_send(qp: queue->qp, send_wr: first, NULL); |
1615 | if (unlikely(ret)) { |
1616 | dev_err(queue->ctrl->ctrl.device, |
1617 | "%s failed with error code %d\n" , __func__, ret); |
1618 | } |
1619 | return ret; |
1620 | } |
1621 | |
1622 | static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, |
1623 | struct nvme_rdma_qe *qe) |
1624 | { |
1625 | struct ib_recv_wr wr; |
1626 | struct ib_sge list; |
1627 | int ret; |
1628 | |
1629 | list.addr = qe->dma; |
1630 | list.length = sizeof(struct nvme_completion); |
1631 | list.lkey = queue->device->pd->local_dma_lkey; |
1632 | |
1633 | qe->cqe.done = nvme_rdma_recv_done; |
1634 | |
1635 | wr.next = NULL; |
1636 | wr.wr_cqe = &qe->cqe; |
1637 | wr.sg_list = &list; |
1638 | wr.num_sge = 1; |
1639 | |
1640 | ret = ib_post_recv(qp: queue->qp, recv_wr: &wr, NULL); |
1641 | if (unlikely(ret)) { |
1642 | dev_err(queue->ctrl->ctrl.device, |
1643 | "%s failed with error code %d\n" , __func__, ret); |
1644 | } |
1645 | return ret; |
1646 | } |
1647 | |
1648 | static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) |
1649 | { |
1650 | u32 queue_idx = nvme_rdma_queue_idx(queue); |
1651 | |
1652 | if (queue_idx == 0) |
1653 | return queue->ctrl->admin_tag_set.tags[queue_idx]; |
1654 | return queue->ctrl->tag_set.tags[queue_idx - 1]; |
1655 | } |
1656 | |
1657 | static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) |
1658 | { |
1659 | if (unlikely(wc->status != IB_WC_SUCCESS)) |
1660 | nvme_rdma_wr_error(cq, wc, op: "ASYNC" ); |
1661 | } |
1662 | |
1663 | static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) |
1664 | { |
1665 | struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: arg); |
1666 | struct nvme_rdma_queue *queue = &ctrl->queues[0]; |
1667 | struct ib_device *dev = queue->device->dev; |
1668 | struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; |
1669 | struct nvme_command *cmd = sqe->data; |
1670 | struct ib_sge sge; |
1671 | int ret; |
1672 | |
1673 | ib_dma_sync_single_for_cpu(dev, addr: sqe->dma, size: sizeof(*cmd), dir: DMA_TO_DEVICE); |
1674 | |
1675 | memset(cmd, 0, sizeof(*cmd)); |
1676 | cmd->common.opcode = nvme_admin_async_event; |
1677 | cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; |
1678 | cmd->common.flags |= NVME_CMD_SGL_METABUF; |
1679 | nvme_rdma_set_sg_null(c: cmd); |
1680 | |
1681 | sqe->cqe.done = nvme_rdma_async_done; |
1682 | |
1683 | ib_dma_sync_single_for_device(dev, addr: sqe->dma, size: sizeof(*cmd), |
1684 | dir: DMA_TO_DEVICE); |
1685 | |
1686 | ret = nvme_rdma_post_send(queue, qe: sqe, sge: &sge, num_sge: 1, NULL); |
1687 | WARN_ON_ONCE(ret); |
1688 | } |
1689 | |
1690 | static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, |
1691 | struct nvme_completion *cqe, struct ib_wc *wc) |
1692 | { |
1693 | struct request *rq; |
1694 | struct nvme_rdma_request *req; |
1695 | |
1696 | rq = nvme_find_rq(tags: nvme_rdma_tagset(queue), command_id: cqe->command_id); |
1697 | if (!rq) { |
1698 | dev_err(queue->ctrl->ctrl.device, |
1699 | "got bad command_id %#x on QP %#x\n" , |
1700 | cqe->command_id, queue->qp->qp_num); |
1701 | nvme_rdma_error_recovery(ctrl: queue->ctrl); |
1702 | return; |
1703 | } |
1704 | req = blk_mq_rq_to_pdu(rq); |
1705 | |
1706 | req->status = cqe->status; |
1707 | req->result = cqe->result; |
1708 | |
1709 | if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { |
1710 | if (unlikely(!req->mr || |
1711 | wc->ex.invalidate_rkey != req->mr->rkey)) { |
1712 | dev_err(queue->ctrl->ctrl.device, |
1713 | "Bogus remote invalidation for rkey %#x\n" , |
1714 | req->mr ? req->mr->rkey : 0); |
1715 | nvme_rdma_error_recovery(ctrl: queue->ctrl); |
1716 | } |
1717 | } else if (req->mr) { |
1718 | int ret; |
1719 | |
1720 | ret = nvme_rdma_inv_rkey(queue, req); |
1721 | if (unlikely(ret < 0)) { |
1722 | dev_err(queue->ctrl->ctrl.device, |
1723 | "Queueing INV WR for rkey %#x failed (%d)\n" , |
1724 | req->mr->rkey, ret); |
1725 | nvme_rdma_error_recovery(ctrl: queue->ctrl); |
1726 | } |
1727 | /* the local invalidation completion will end the request */ |
1728 | return; |
1729 | } |
1730 | |
1731 | nvme_rdma_end_request(req); |
1732 | } |
1733 | |
1734 | static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) |
1735 | { |
1736 | struct nvme_rdma_qe *qe = |
1737 | container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); |
1738 | struct nvme_rdma_queue *queue = wc->qp->qp_context; |
1739 | struct ib_device *ibdev = queue->device->dev; |
1740 | struct nvme_completion *cqe = qe->data; |
1741 | const size_t len = sizeof(struct nvme_completion); |
1742 | |
1743 | if (unlikely(wc->status != IB_WC_SUCCESS)) { |
1744 | nvme_rdma_wr_error(cq, wc, op: "RECV" ); |
1745 | return; |
1746 | } |
1747 | |
1748 | /* sanity checking for received data length */ |
1749 | if (unlikely(wc->byte_len < len)) { |
1750 | dev_err(queue->ctrl->ctrl.device, |
1751 | "Unexpected nvme completion length(%d)\n" , wc->byte_len); |
1752 | nvme_rdma_error_recovery(ctrl: queue->ctrl); |
1753 | return; |
1754 | } |
1755 | |
1756 | ib_dma_sync_single_for_cpu(dev: ibdev, addr: qe->dma, size: len, dir: DMA_FROM_DEVICE); |
1757 | /* |
1758 | * AEN requests are special as they don't time out and can |
1759 | * survive any kind of queue freeze and often don't respond to |
1760 | * aborts. We don't even bother to allocate a struct request |
1761 | * for them but rather special case them here. |
1762 | */ |
1763 | if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), |
1764 | cqe->command_id))) |
1765 | nvme_complete_async_event(ctrl: &queue->ctrl->ctrl, status: cqe->status, |
1766 | res: &cqe->result); |
1767 | else |
1768 | nvme_rdma_process_nvme_rsp(queue, cqe, wc); |
1769 | ib_dma_sync_single_for_device(dev: ibdev, addr: qe->dma, size: len, dir: DMA_FROM_DEVICE); |
1770 | |
1771 | nvme_rdma_post_recv(queue, qe); |
1772 | } |
1773 | |
1774 | static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) |
1775 | { |
1776 | int ret, i; |
1777 | |
1778 | for (i = 0; i < queue->queue_size; i++) { |
1779 | ret = nvme_rdma_post_recv(queue, qe: &queue->rsp_ring[i]); |
1780 | if (ret) |
1781 | return ret; |
1782 | } |
1783 | |
1784 | return 0; |
1785 | } |
1786 | |
1787 | static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, |
1788 | struct rdma_cm_event *ev) |
1789 | { |
1790 | struct rdma_cm_id *cm_id = queue->cm_id; |
1791 | int status = ev->status; |
1792 | const char *rej_msg; |
1793 | const struct nvme_rdma_cm_rej *rej_data; |
1794 | u8 rej_data_len; |
1795 | |
1796 | rej_msg = rdma_reject_msg(id: cm_id, reason: status); |
1797 | rej_data = rdma_consumer_reject_data(id: cm_id, ev, data_len: &rej_data_len); |
1798 | |
1799 | if (rej_data && rej_data_len >= sizeof(u16)) { |
1800 | u16 sts = le16_to_cpu(rej_data->sts); |
1801 | |
1802 | dev_err(queue->ctrl->ctrl.device, |
1803 | "Connect rejected: status %d (%s) nvme status %d (%s).\n" , |
1804 | status, rej_msg, sts, nvme_rdma_cm_msg(sts)); |
1805 | } else { |
1806 | dev_err(queue->ctrl->ctrl.device, |
1807 | "Connect rejected: status %d (%s).\n" , status, rej_msg); |
1808 | } |
1809 | |
1810 | return -ECONNRESET; |
1811 | } |
1812 | |
1813 | static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) |
1814 | { |
1815 | struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; |
1816 | int ret; |
1817 | |
1818 | ret = nvme_rdma_create_queue_ib(queue); |
1819 | if (ret) |
1820 | return ret; |
1821 | |
1822 | if (ctrl->opts->tos >= 0) |
1823 | rdma_set_service_type(id: queue->cm_id, tos: ctrl->opts->tos); |
1824 | ret = rdma_resolve_route(id: queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS); |
1825 | if (ret) { |
1826 | dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n" , |
1827 | queue->cm_error); |
1828 | goto out_destroy_queue; |
1829 | } |
1830 | |
1831 | return 0; |
1832 | |
1833 | out_destroy_queue: |
1834 | nvme_rdma_destroy_queue_ib(queue); |
1835 | return ret; |
1836 | } |
1837 | |
1838 | static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) |
1839 | { |
1840 | struct nvme_rdma_ctrl *ctrl = queue->ctrl; |
1841 | struct rdma_conn_param param = { }; |
1842 | struct nvme_rdma_cm_req priv = { }; |
1843 | int ret; |
1844 | |
1845 | param.qp_num = queue->qp->qp_num; |
1846 | param.flow_control = 1; |
1847 | |
1848 | param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; |
1849 | /* maximum retry count */ |
1850 | param.retry_count = 7; |
1851 | param.rnr_retry_count = 7; |
1852 | param.private_data = &priv; |
1853 | param.private_data_len = sizeof(priv); |
1854 | |
1855 | priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); |
1856 | priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); |
1857 | /* |
1858 | * set the admin queue depth to the minimum size |
1859 | * specified by the Fabrics standard. |
1860 | */ |
1861 | if (priv.qid == 0) { |
1862 | priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); |
1863 | priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); |
1864 | } else { |
1865 | /* |
1866 | * current interpretation of the fabrics spec |
1867 | * is at minimum you make hrqsize sqsize+1, or a |
1868 | * 1's based representation of sqsize. |
1869 | */ |
1870 | priv.hrqsize = cpu_to_le16(queue->queue_size); |
1871 | priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); |
1872 | /* cntlid should only be set when creating an I/O queue */ |
1873 | priv.cntlid = cpu_to_le16(ctrl->ctrl.cntlid); |
1874 | } |
1875 | |
1876 | ret = rdma_connect_locked(id: queue->cm_id, conn_param: ¶m); |
1877 | if (ret) { |
1878 | dev_err(ctrl->ctrl.device, |
1879 | "rdma_connect_locked failed (%d).\n" , ret); |
1880 | return ret; |
1881 | } |
1882 | |
1883 | return 0; |
1884 | } |
1885 | |
1886 | static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, |
1887 | struct rdma_cm_event *ev) |
1888 | { |
1889 | struct nvme_rdma_queue *queue = cm_id->context; |
1890 | int cm_error = 0; |
1891 | |
1892 | dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n" , |
1893 | rdma_event_msg(ev->event), ev->event, |
1894 | ev->status, cm_id); |
1895 | |
1896 | switch (ev->event) { |
1897 | case RDMA_CM_EVENT_ADDR_RESOLVED: |
1898 | cm_error = nvme_rdma_addr_resolved(queue); |
1899 | break; |
1900 | case RDMA_CM_EVENT_ROUTE_RESOLVED: |
1901 | cm_error = nvme_rdma_route_resolved(queue); |
1902 | break; |
1903 | case RDMA_CM_EVENT_ESTABLISHED: |
1904 | queue->cm_error = nvme_rdma_conn_established(queue); |
1905 | /* complete cm_done regardless of success/failure */ |
1906 | complete(&queue->cm_done); |
1907 | return 0; |
1908 | case RDMA_CM_EVENT_REJECTED: |
1909 | cm_error = nvme_rdma_conn_rejected(queue, ev); |
1910 | break; |
1911 | case RDMA_CM_EVENT_ROUTE_ERROR: |
1912 | case RDMA_CM_EVENT_CONNECT_ERROR: |
1913 | case RDMA_CM_EVENT_UNREACHABLE: |
1914 | case RDMA_CM_EVENT_ADDR_ERROR: |
1915 | dev_dbg(queue->ctrl->ctrl.device, |
1916 | "CM error event %d\n" , ev->event); |
1917 | cm_error = -ECONNRESET; |
1918 | break; |
1919 | case RDMA_CM_EVENT_DISCONNECTED: |
1920 | case RDMA_CM_EVENT_ADDR_CHANGE: |
1921 | case RDMA_CM_EVENT_TIMEWAIT_EXIT: |
1922 | dev_dbg(queue->ctrl->ctrl.device, |
1923 | "disconnect received - connection closed\n" ); |
1924 | nvme_rdma_error_recovery(ctrl: queue->ctrl); |
1925 | break; |
1926 | case RDMA_CM_EVENT_DEVICE_REMOVAL: |
1927 | /* device removal is handled via the ib_client API */ |
1928 | break; |
1929 | default: |
1930 | dev_err(queue->ctrl->ctrl.device, |
1931 | "Unexpected RDMA CM event (%d)\n" , ev->event); |
1932 | nvme_rdma_error_recovery(ctrl: queue->ctrl); |
1933 | break; |
1934 | } |
1935 | |
1936 | if (cm_error) { |
1937 | queue->cm_error = cm_error; |
1938 | complete(&queue->cm_done); |
1939 | } |
1940 | |
1941 | return 0; |
1942 | } |
1943 | |
1944 | static void nvme_rdma_complete_timed_out(struct request *rq) |
1945 | { |
1946 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
1947 | struct nvme_rdma_queue *queue = req->queue; |
1948 | |
1949 | nvme_rdma_stop_queue(queue); |
1950 | nvmf_complete_timed_out_request(rq); |
1951 | } |
1952 | |
1953 | static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq) |
1954 | { |
1955 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
1956 | struct nvme_rdma_queue *queue = req->queue; |
1957 | struct nvme_rdma_ctrl *ctrl = queue->ctrl; |
1958 | struct nvme_command *cmd = req->req.cmd; |
1959 | int qid = nvme_rdma_queue_idx(queue); |
1960 | |
1961 | dev_warn(ctrl->ctrl.device, |
1962 | "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout\n" , |
1963 | rq->tag, nvme_cid(rq), cmd->common.opcode, |
1964 | nvme_fabrics_opcode_str(qid, cmd), qid); |
1965 | |
1966 | if (nvme_ctrl_state(ctrl: &ctrl->ctrl) != NVME_CTRL_LIVE) { |
1967 | /* |
1968 | * If we are resetting, connecting or deleting we should |
1969 | * complete immediately because we may block controller |
1970 | * teardown or setup sequence |
1971 | * - ctrl disable/shutdown fabrics requests |
1972 | * - connect requests |
1973 | * - initialization admin requests |
1974 | * - I/O requests that entered after unquiescing and |
1975 | * the controller stopped responding |
1976 | * |
1977 | * All other requests should be cancelled by the error |
1978 | * recovery work, so it's fine that we fail it here. |
1979 | */ |
1980 | nvme_rdma_complete_timed_out(rq); |
1981 | return BLK_EH_DONE; |
1982 | } |
1983 | |
1984 | /* |
1985 | * LIVE state should trigger the normal error recovery which will |
1986 | * handle completing this request. |
1987 | */ |
1988 | nvme_rdma_error_recovery(ctrl); |
1989 | return BLK_EH_RESET_TIMER; |
1990 | } |
1991 | |
1992 | static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, |
1993 | const struct blk_mq_queue_data *bd) |
1994 | { |
1995 | struct nvme_ns *ns = hctx->queue->queuedata; |
1996 | struct nvme_rdma_queue *queue = hctx->driver_data; |
1997 | struct request *rq = bd->rq; |
1998 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
1999 | struct nvme_rdma_qe *sqe = &req->sqe; |
2000 | struct nvme_command *c = nvme_req(req: rq)->cmd; |
2001 | struct ib_device *dev; |
2002 | bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); |
2003 | blk_status_t ret; |
2004 | int err; |
2005 | |
2006 | WARN_ON_ONCE(rq->tag < 0); |
2007 | |
2008 | if (!nvme_check_ready(ctrl: &queue->ctrl->ctrl, rq, queue_live: queue_ready)) |
2009 | return nvme_fail_nonready_command(ctrl: &queue->ctrl->ctrl, req: rq); |
2010 | |
2011 | dev = queue->device->dev; |
2012 | |
2013 | req->sqe.dma = ib_dma_map_single(dev, cpu_addr: req->sqe.data, |
2014 | size: sizeof(struct nvme_command), |
2015 | direction: DMA_TO_DEVICE); |
2016 | err = ib_dma_mapping_error(dev, dma_addr: req->sqe.dma); |
2017 | if (unlikely(err)) |
2018 | return BLK_STS_RESOURCE; |
2019 | |
2020 | ib_dma_sync_single_for_cpu(dev, addr: sqe->dma, |
2021 | size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE); |
2022 | |
2023 | ret = nvme_setup_cmd(ns, req: rq); |
2024 | if (ret) |
2025 | goto unmap_qe; |
2026 | |
2027 | nvme_start_request(rq); |
2028 | |
2029 | if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && |
2030 | queue->pi_support && |
2031 | (c->common.opcode == nvme_cmd_write || |
2032 | c->common.opcode == nvme_cmd_read) && |
2033 | nvme_ns_has_pi(head: ns->head)) |
2034 | req->use_sig_mr = true; |
2035 | else |
2036 | req->use_sig_mr = false; |
2037 | |
2038 | err = nvme_rdma_map_data(queue, rq, c); |
2039 | if (unlikely(err < 0)) { |
2040 | dev_err(queue->ctrl->ctrl.device, |
2041 | "Failed to map data (%d)\n" , err); |
2042 | goto err; |
2043 | } |
2044 | |
2045 | sqe->cqe.done = nvme_rdma_send_done; |
2046 | |
2047 | ib_dma_sync_single_for_device(dev, addr: sqe->dma, |
2048 | size: sizeof(struct nvme_command), dir: DMA_TO_DEVICE); |
2049 | |
2050 | err = nvme_rdma_post_send(queue, qe: sqe, sge: req->sge, num_sge: req->num_sge, |
2051 | first: req->mr ? &req->reg_wr.wr : NULL); |
2052 | if (unlikely(err)) |
2053 | goto err_unmap; |
2054 | |
2055 | return BLK_STS_OK; |
2056 | |
2057 | err_unmap: |
2058 | nvme_rdma_unmap_data(queue, rq); |
2059 | err: |
2060 | if (err == -EIO) |
2061 | ret = nvme_host_path_error(req: rq); |
2062 | else if (err == -ENOMEM || err == -EAGAIN) |
2063 | ret = BLK_STS_RESOURCE; |
2064 | else |
2065 | ret = BLK_STS_IOERR; |
2066 | nvme_cleanup_cmd(req: rq); |
2067 | unmap_qe: |
2068 | ib_dma_unmap_single(dev, addr: req->sqe.dma, size: sizeof(struct nvme_command), |
2069 | direction: DMA_TO_DEVICE); |
2070 | return ret; |
2071 | } |
2072 | |
2073 | static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) |
2074 | { |
2075 | struct nvme_rdma_queue *queue = hctx->driver_data; |
2076 | |
2077 | return ib_process_cq_direct(cq: queue->ib_cq, budget: -1); |
2078 | } |
2079 | |
2080 | static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) |
2081 | { |
2082 | struct request *rq = blk_mq_rq_from_pdu(pdu: req); |
2083 | struct ib_mr_status mr_status; |
2084 | int ret; |
2085 | |
2086 | ret = ib_check_mr_status(mr: req->mr, check_mask: IB_MR_CHECK_SIG_STATUS, mr_status: &mr_status); |
2087 | if (ret) { |
2088 | pr_err("ib_check_mr_status failed, ret %d\n" , ret); |
2089 | nvme_req(req: rq)->status = NVME_SC_INVALID_PI; |
2090 | return; |
2091 | } |
2092 | |
2093 | if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { |
2094 | switch (mr_status.sig_err.err_type) { |
2095 | case IB_SIG_BAD_GUARD: |
2096 | nvme_req(req: rq)->status = NVME_SC_GUARD_CHECK; |
2097 | break; |
2098 | case IB_SIG_BAD_REFTAG: |
2099 | nvme_req(req: rq)->status = NVME_SC_REFTAG_CHECK; |
2100 | break; |
2101 | case IB_SIG_BAD_APPTAG: |
2102 | nvme_req(req: rq)->status = NVME_SC_APPTAG_CHECK; |
2103 | break; |
2104 | } |
2105 | pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n" , |
2106 | mr_status.sig_err.err_type, mr_status.sig_err.expected, |
2107 | mr_status.sig_err.actual); |
2108 | } |
2109 | } |
2110 | |
2111 | static void nvme_rdma_complete_rq(struct request *rq) |
2112 | { |
2113 | struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); |
2114 | struct nvme_rdma_queue *queue = req->queue; |
2115 | struct ib_device *ibdev = queue->device->dev; |
2116 | |
2117 | if (req->use_sig_mr) |
2118 | nvme_rdma_check_pi_status(req); |
2119 | |
2120 | nvme_rdma_unmap_data(queue, rq); |
2121 | ib_dma_unmap_single(dev: ibdev, addr: req->sqe.dma, size: sizeof(struct nvme_command), |
2122 | direction: DMA_TO_DEVICE); |
2123 | nvme_complete_rq(req: rq); |
2124 | } |
2125 | |
2126 | static void nvme_rdma_map_queues(struct blk_mq_tag_set *set) |
2127 | { |
2128 | struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(ctrl: set->driver_data); |
2129 | |
2130 | nvmf_map_queues(set, ctrl: &ctrl->ctrl, io_queues: ctrl->io_queues); |
2131 | } |
2132 | |
2133 | static const struct blk_mq_ops nvme_rdma_mq_ops = { |
2134 | .queue_rq = nvme_rdma_queue_rq, |
2135 | .complete = nvme_rdma_complete_rq, |
2136 | .init_request = nvme_rdma_init_request, |
2137 | .exit_request = nvme_rdma_exit_request, |
2138 | .init_hctx = nvme_rdma_init_hctx, |
2139 | .timeout = nvme_rdma_timeout, |
2140 | .map_queues = nvme_rdma_map_queues, |
2141 | .poll = nvme_rdma_poll, |
2142 | }; |
2143 | |
2144 | static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { |
2145 | .queue_rq = nvme_rdma_queue_rq, |
2146 | .complete = nvme_rdma_complete_rq, |
2147 | .init_request = nvme_rdma_init_request, |
2148 | .exit_request = nvme_rdma_exit_request, |
2149 | .init_hctx = nvme_rdma_init_admin_hctx, |
2150 | .timeout = nvme_rdma_timeout, |
2151 | }; |
2152 | |
2153 | static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) |
2154 | { |
2155 | nvme_rdma_teardown_io_queues(ctrl, remove: shutdown); |
2156 | nvme_quiesce_admin_queue(ctrl: &ctrl->ctrl); |
2157 | nvme_disable_ctrl(ctrl: &ctrl->ctrl, shutdown); |
2158 | nvme_rdma_teardown_admin_queue(ctrl, remove: shutdown); |
2159 | } |
2160 | |
2161 | static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) |
2162 | { |
2163 | nvme_rdma_shutdown_ctrl(ctrl: to_rdma_ctrl(ctrl), shutdown: true); |
2164 | } |
2165 | |
2166 | static void nvme_rdma_reset_ctrl_work(struct work_struct *work) |
2167 | { |
2168 | struct nvme_rdma_ctrl *ctrl = |
2169 | container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); |
2170 | int ret; |
2171 | |
2172 | nvme_stop_ctrl(ctrl: &ctrl->ctrl); |
2173 | nvme_rdma_shutdown_ctrl(ctrl, shutdown: false); |
2174 | |
2175 | if (!nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_CONNECTING)) { |
2176 | /* state change failure should never happen */ |
2177 | WARN_ON_ONCE(1); |
2178 | return; |
2179 | } |
2180 | |
2181 | ret = nvme_rdma_setup_ctrl(ctrl, new: false); |
2182 | if (ret) |
2183 | goto out_fail; |
2184 | |
2185 | return; |
2186 | |
2187 | out_fail: |
2188 | ++ctrl->ctrl.nr_reconnects; |
2189 | nvme_rdma_reconnect_or_remove(ctrl, status: ret); |
2190 | } |
2191 | |
2192 | static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { |
2193 | .name = "rdma" , |
2194 | .module = THIS_MODULE, |
2195 | .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, |
2196 | .reg_read32 = nvmf_reg_read32, |
2197 | .reg_read64 = nvmf_reg_read64, |
2198 | .reg_write32 = nvmf_reg_write32, |
2199 | .subsystem_reset = nvmf_subsystem_reset, |
2200 | .free_ctrl = nvme_rdma_free_ctrl, |
2201 | .submit_async_event = nvme_rdma_submit_async_event, |
2202 | .delete_ctrl = nvme_rdma_delete_ctrl, |
2203 | .get_address = nvmf_get_address, |
2204 | .stop_ctrl = nvme_rdma_stop_ctrl, |
2205 | }; |
2206 | |
2207 | /* |
2208 | * Fails a connection request if it matches an existing controller |
2209 | * (association) with the same tuple: |
2210 | * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> |
2211 | * |
2212 | * if local address is not specified in the request, it will match an |
2213 | * existing controller with all the other parameters the same and no |
2214 | * local port address specified as well. |
2215 | * |
2216 | * The ports don't need to be compared as they are intrinsically |
2217 | * already matched by the port pointers supplied. |
2218 | */ |
2219 | static bool |
2220 | nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) |
2221 | { |
2222 | struct nvme_rdma_ctrl *ctrl; |
2223 | bool found = false; |
2224 | |
2225 | mutex_lock(&nvme_rdma_ctrl_mutex); |
2226 | list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { |
2227 | found = nvmf_ip_options_match(ctrl: &ctrl->ctrl, opts); |
2228 | if (found) |
2229 | break; |
2230 | } |
2231 | mutex_unlock(lock: &nvme_rdma_ctrl_mutex); |
2232 | |
2233 | return found; |
2234 | } |
2235 | |
2236 | static struct nvme_rdma_ctrl *nvme_rdma_alloc_ctrl(struct device *dev, |
2237 | struct nvmf_ctrl_options *opts) |
2238 | { |
2239 | struct nvme_rdma_ctrl *ctrl; |
2240 | int ret; |
2241 | |
2242 | ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); |
2243 | if (!ctrl) |
2244 | return ERR_PTR(error: -ENOMEM); |
2245 | ctrl->ctrl.opts = opts; |
2246 | INIT_LIST_HEAD(list: &ctrl->list); |
2247 | |
2248 | if (!(opts->mask & NVMF_OPT_TRSVCID)) { |
2249 | opts->trsvcid = |
2250 | kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); |
2251 | if (!opts->trsvcid) { |
2252 | ret = -ENOMEM; |
2253 | goto out_free_ctrl; |
2254 | } |
2255 | opts->mask |= NVMF_OPT_TRSVCID; |
2256 | } |
2257 | |
2258 | ret = inet_pton_with_scope(net: &init_net, AF_UNSPEC, |
2259 | src: opts->traddr, port: opts->trsvcid, addr: &ctrl->addr); |
2260 | if (ret) { |
2261 | pr_err("malformed address passed: %s:%s\n" , |
2262 | opts->traddr, opts->trsvcid); |
2263 | goto out_free_ctrl; |
2264 | } |
2265 | |
2266 | if (opts->mask & NVMF_OPT_HOST_TRADDR) { |
2267 | ret = inet_pton_with_scope(net: &init_net, AF_UNSPEC, |
2268 | src: opts->host_traddr, NULL, addr: &ctrl->src_addr); |
2269 | if (ret) { |
2270 | pr_err("malformed src address passed: %s\n" , |
2271 | opts->host_traddr); |
2272 | goto out_free_ctrl; |
2273 | } |
2274 | } |
2275 | |
2276 | if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { |
2277 | ret = -EALREADY; |
2278 | goto out_free_ctrl; |
2279 | } |
2280 | |
2281 | INIT_DELAYED_WORK(&ctrl->reconnect_work, |
2282 | nvme_rdma_reconnect_ctrl_work); |
2283 | INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); |
2284 | INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); |
2285 | |
2286 | ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + |
2287 | opts->nr_poll_queues + 1; |
2288 | ctrl->ctrl.sqsize = opts->queue_size - 1; |
2289 | ctrl->ctrl.kato = opts->kato; |
2290 | |
2291 | ret = -ENOMEM; |
2292 | ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), |
2293 | GFP_KERNEL); |
2294 | if (!ctrl->queues) |
2295 | goto out_free_ctrl; |
2296 | |
2297 | ret = nvme_init_ctrl(ctrl: &ctrl->ctrl, dev, ops: &nvme_rdma_ctrl_ops, |
2298 | quirks: 0 /* no quirks, we're perfect! */); |
2299 | if (ret) |
2300 | goto out_kfree_queues; |
2301 | |
2302 | return ctrl; |
2303 | |
2304 | out_kfree_queues: |
2305 | kfree(objp: ctrl->queues); |
2306 | out_free_ctrl: |
2307 | kfree(objp: ctrl); |
2308 | return ERR_PTR(error: ret); |
2309 | } |
2310 | |
2311 | static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, |
2312 | struct nvmf_ctrl_options *opts) |
2313 | { |
2314 | struct nvme_rdma_ctrl *ctrl; |
2315 | bool changed; |
2316 | int ret; |
2317 | |
2318 | ctrl = nvme_rdma_alloc_ctrl(dev, opts); |
2319 | if (IS_ERR(ptr: ctrl)) |
2320 | return ERR_CAST(ptr: ctrl); |
2321 | |
2322 | ret = nvme_add_ctrl(ctrl: &ctrl->ctrl); |
2323 | if (ret) |
2324 | goto out_put_ctrl; |
2325 | |
2326 | changed = nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_CONNECTING); |
2327 | WARN_ON_ONCE(!changed); |
2328 | |
2329 | ret = nvme_rdma_setup_ctrl(ctrl, new: true); |
2330 | if (ret) |
2331 | goto out_uninit_ctrl; |
2332 | |
2333 | dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs, hostnqn: %s\n" , |
2334 | nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); |
2335 | |
2336 | mutex_lock(&nvme_rdma_ctrl_mutex); |
2337 | list_add_tail(new: &ctrl->list, head: &nvme_rdma_ctrl_list); |
2338 | mutex_unlock(lock: &nvme_rdma_ctrl_mutex); |
2339 | |
2340 | return &ctrl->ctrl; |
2341 | |
2342 | out_uninit_ctrl: |
2343 | nvme_uninit_ctrl(ctrl: &ctrl->ctrl); |
2344 | out_put_ctrl: |
2345 | nvme_put_ctrl(ctrl: &ctrl->ctrl); |
2346 | if (ret > 0) |
2347 | ret = -EIO; |
2348 | return ERR_PTR(error: ret); |
2349 | } |
2350 | |
2351 | static struct nvmf_transport_ops nvme_rdma_transport = { |
2352 | .name = "rdma" , |
2353 | .module = THIS_MODULE, |
2354 | .required_opts = NVMF_OPT_TRADDR, |
2355 | .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | |
2356 | NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | |
2357 | NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | |
2358 | NVMF_OPT_TOS, |
2359 | .create_ctrl = nvme_rdma_create_ctrl, |
2360 | }; |
2361 | |
2362 | static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) |
2363 | { |
2364 | struct nvme_rdma_ctrl *ctrl; |
2365 | struct nvme_rdma_device *ndev; |
2366 | bool found = false; |
2367 | |
2368 | mutex_lock(&device_list_mutex); |
2369 | list_for_each_entry(ndev, &device_list, entry) { |
2370 | if (ndev->dev == ib_device) { |
2371 | found = true; |
2372 | break; |
2373 | } |
2374 | } |
2375 | mutex_unlock(lock: &device_list_mutex); |
2376 | |
2377 | if (!found) |
2378 | return; |
2379 | |
2380 | /* Delete all controllers using this device */ |
2381 | mutex_lock(&nvme_rdma_ctrl_mutex); |
2382 | list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { |
2383 | if (ctrl->device->dev != ib_device) |
2384 | continue; |
2385 | nvme_delete_ctrl(ctrl: &ctrl->ctrl); |
2386 | } |
2387 | mutex_unlock(lock: &nvme_rdma_ctrl_mutex); |
2388 | |
2389 | flush_workqueue(nvme_delete_wq); |
2390 | } |
2391 | |
2392 | static struct ib_client nvme_rdma_ib_client = { |
2393 | .name = "nvme_rdma" , |
2394 | .remove = nvme_rdma_remove_one |
2395 | }; |
2396 | |
2397 | static int __init nvme_rdma_init_module(void) |
2398 | { |
2399 | int ret; |
2400 | |
2401 | ret = ib_register_client(client: &nvme_rdma_ib_client); |
2402 | if (ret) |
2403 | return ret; |
2404 | |
2405 | ret = nvmf_register_transport(ops: &nvme_rdma_transport); |
2406 | if (ret) |
2407 | goto err_unreg_client; |
2408 | |
2409 | return 0; |
2410 | |
2411 | err_unreg_client: |
2412 | ib_unregister_client(client: &nvme_rdma_ib_client); |
2413 | return ret; |
2414 | } |
2415 | |
2416 | static void __exit nvme_rdma_cleanup_module(void) |
2417 | { |
2418 | struct nvme_rdma_ctrl *ctrl; |
2419 | |
2420 | nvmf_unregister_transport(ops: &nvme_rdma_transport); |
2421 | ib_unregister_client(client: &nvme_rdma_ib_client); |
2422 | |
2423 | mutex_lock(&nvme_rdma_ctrl_mutex); |
2424 | list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) |
2425 | nvme_delete_ctrl(ctrl: &ctrl->ctrl); |
2426 | mutex_unlock(lock: &nvme_rdma_ctrl_mutex); |
2427 | flush_workqueue(nvme_delete_wq); |
2428 | } |
2429 | |
2430 | module_init(nvme_rdma_init_module); |
2431 | module_exit(nvme_rdma_cleanup_module); |
2432 | |
2433 | MODULE_DESCRIPTION("NVMe host RDMA transport driver" ); |
2434 | MODULE_LICENSE("GPL v2" ); |
2435 | |