1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * APM X-Gene MSI Driver
4 *
5 * Copyright (c) 2014, Applied Micro Circuits Corporation
6 * Author: Tanmay Inamdar <tinamdar@apm.com>
7 * Duc Dang <dhdang@apm.com>
8 */
9#include <linux/cpu.h>
10#include <linux/interrupt.h>
11#include <linux/irqdomain.h>
12#include <linux/module.h>
13#include <linux/msi.h>
14#include <linux/irqchip/chained_irq.h>
15#include <linux/pci.h>
16#include <linux/platform_device.h>
17#include <linux/of_pci.h>
18
19#define MSI_IR0 0x000000
20#define MSI_INT0 0x800000
21#define IDX_PER_GROUP 8
22#define IRQS_PER_IDX 16
23#define NR_HW_IRQS 16
24#define NR_MSI_VEC (IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
25
26struct xgene_msi_group {
27 struct xgene_msi *msi;
28 int gic_irq;
29 u32 msi_grp;
30};
31
32struct xgene_msi {
33 struct device_node *node;
34 struct irq_domain *inner_domain;
35 struct irq_domain *msi_domain;
36 u64 msi_addr;
37 void __iomem *msi_regs;
38 unsigned long *bitmap;
39 struct mutex bitmap_lock;
40 struct xgene_msi_group *msi_groups;
41 int num_cpus;
42};
43
44/* Global data */
45static struct xgene_msi xgene_msi_ctrl;
46
47static struct irq_chip xgene_msi_top_irq_chip = {
48 .name = "X-Gene1 MSI",
49 .irq_enable = pci_msi_unmask_irq,
50 .irq_disable = pci_msi_mask_irq,
51 .irq_mask = pci_msi_mask_irq,
52 .irq_unmask = pci_msi_unmask_irq,
53};
54
55static struct msi_domain_info xgene_msi_domain_info = {
56 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
57 MSI_FLAG_PCI_MSIX),
58 .chip = &xgene_msi_top_irq_chip,
59};
60
61/*
62 * X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
63 * n is group number (0..F), x is index of registers in each group (0..7)
64 * The register layout is as follows:
65 * MSI0IR0 base_addr
66 * MSI0IR1 base_addr + 0x10000
67 * ... ...
68 * MSI0IR6 base_addr + 0x60000
69 * MSI0IR7 base_addr + 0x70000
70 * MSI1IR0 base_addr + 0x80000
71 * MSI1IR1 base_addr + 0x90000
72 * ... ...
73 * MSI1IR7 base_addr + 0xF0000
74 * MSI2IR0 base_addr + 0x100000
75 * ... ...
76 * MSIFIR0 base_addr + 0x780000
77 * MSIFIR1 base_addr + 0x790000
78 * ... ...
79 * MSIFIR7 base_addr + 0x7F0000
80 * MSIINT0 base_addr + 0x800000
81 * MSIINT1 base_addr + 0x810000
82 * ... ...
83 * MSIINTF base_addr + 0x8F0000
84 *
85 * Each index register supports 16 MSI vectors (0..15) to generate interrupt.
86 * There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
87 * registers.
88 *
89 * Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
90 * the MSI pending status caused by 1 of its 8 index registers.
91 */
92
93/* MSInIRx read helper */
94static u32 xgene_msi_ir_read(struct xgene_msi *msi,
95 u32 msi_grp, u32 msir_idx)
96{
97 return readl_relaxed(msi->msi_regs + MSI_IR0 +
98 (msi_grp << 19) + (msir_idx << 16));
99}
100
101/* MSIINTn read helper */
102static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
103{
104 return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
105}
106
107/*
108 * With 2048 MSI vectors supported, the MSI message can be constructed using
109 * following scheme:
110 * - Divide into 8 256-vector groups
111 * Group 0: 0-255
112 * Group 1: 256-511
113 * Group 2: 512-767
114 * ...
115 * Group 7: 1792-2047
116 * - Each 256-vector group is divided into 16 16-vector groups
117 * As an example: 16 16-vector groups for 256-vector group 0-255 is
118 * Group 0: 0-15
119 * Group 1: 16-32
120 * ...
121 * Group 15: 240-255
122 * - The termination address of MSI vector in 256-vector group n and 16-vector
123 * group x is the address of MSIxIRn
124 * - The data for MSI vector in 16-vector group x is x
125 */
126static u32 hwirq_to_reg_set(unsigned long hwirq)
127{
128 return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
129}
130
131static u32 hwirq_to_group(unsigned long hwirq)
132{
133 return (hwirq % NR_HW_IRQS);
134}
135
136static u32 hwirq_to_msi_data(unsigned long hwirq)
137{
138 return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
139}
140
141static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
142{
143 struct xgene_msi *msi = irq_data_get_irq_chip_data(d: data);
144 u32 reg_set = hwirq_to_reg_set(hwirq: data->hwirq);
145 u32 group = hwirq_to_group(hwirq: data->hwirq);
146 u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
147
148 msg->address_hi = upper_32_bits(target_addr);
149 msg->address_lo = lower_32_bits(target_addr);
150 msg->data = hwirq_to_msi_data(hwirq: data->hwirq);
151}
152
153/*
154 * X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors. To maintain
155 * the expected behaviour of .set_affinity for each MSI interrupt, the 16
156 * MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
157 * for each core). The MSI vector is moved fom 1 MSI GIC IRQ to another
158 * MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core. As a
159 * consequence, the total MSI vectors that X-Gene v1 supports will be
160 * reduced to 256 (2048/8) vectors.
161 */
162static int hwirq_to_cpu(unsigned long hwirq)
163{
164 return (hwirq % xgene_msi_ctrl.num_cpus);
165}
166
167static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
168{
169 return (hwirq - hwirq_to_cpu(hwirq));
170}
171
172static int xgene_msi_set_affinity(struct irq_data *irqdata,
173 const struct cpumask *mask, bool force)
174{
175 int target_cpu = cpumask_first(srcp: mask);
176 int curr_cpu;
177
178 curr_cpu = hwirq_to_cpu(hwirq: irqdata->hwirq);
179 if (curr_cpu == target_cpu)
180 return IRQ_SET_MASK_OK_DONE;
181
182 /* Update MSI number to target the new CPU */
183 irqdata->hwirq = hwirq_to_canonical_hwirq(hwirq: irqdata->hwirq) + target_cpu;
184
185 return IRQ_SET_MASK_OK;
186}
187
188static struct irq_chip xgene_msi_bottom_irq_chip = {
189 .name = "MSI",
190 .irq_set_affinity = xgene_msi_set_affinity,
191 .irq_compose_msi_msg = xgene_compose_msi_msg,
192};
193
194static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
195 unsigned int nr_irqs, void *args)
196{
197 struct xgene_msi *msi = domain->host_data;
198 int msi_irq;
199
200 mutex_lock(&msi->bitmap_lock);
201
202 msi_irq = bitmap_find_next_zero_area(map: msi->bitmap, NR_MSI_VEC, start: 0,
203 nr: msi->num_cpus, align_mask: 0);
204 if (msi_irq < NR_MSI_VEC)
205 bitmap_set(map: msi->bitmap, start: msi_irq, nbits: msi->num_cpus);
206 else
207 msi_irq = -ENOSPC;
208
209 mutex_unlock(lock: &msi->bitmap_lock);
210
211 if (msi_irq < 0)
212 return msi_irq;
213
214 irq_domain_set_info(domain, virq, hwirq: msi_irq,
215 chip: &xgene_msi_bottom_irq_chip, chip_data: domain->host_data,
216 handler: handle_simple_irq, NULL, NULL);
217
218 return 0;
219}
220
221static void xgene_irq_domain_free(struct irq_domain *domain,
222 unsigned int virq, unsigned int nr_irqs)
223{
224 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
225 struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
226 u32 hwirq;
227
228 mutex_lock(&msi->bitmap_lock);
229
230 hwirq = hwirq_to_canonical_hwirq(hwirq: d->hwirq);
231 bitmap_clear(map: msi->bitmap, start: hwirq, nbits: msi->num_cpus);
232
233 mutex_unlock(lock: &msi->bitmap_lock);
234
235 irq_domain_free_irqs_parent(domain, irq_base: virq, nr_irqs);
236}
237
238static const struct irq_domain_ops msi_domain_ops = {
239 .alloc = xgene_irq_domain_alloc,
240 .free = xgene_irq_domain_free,
241};
242
243static int xgene_allocate_domains(struct xgene_msi *msi)
244{
245 msi->inner_domain = irq_domain_add_linear(NULL, NR_MSI_VEC,
246 ops: &msi_domain_ops, host_data: msi);
247 if (!msi->inner_domain)
248 return -ENOMEM;
249
250 msi->msi_domain = pci_msi_create_irq_domain(fwnode: of_node_to_fwnode(node: msi->node),
251 info: &xgene_msi_domain_info,
252 parent: msi->inner_domain);
253
254 if (!msi->msi_domain) {
255 irq_domain_remove(host: msi->inner_domain);
256 return -ENOMEM;
257 }
258
259 return 0;
260}
261
262static void xgene_free_domains(struct xgene_msi *msi)
263{
264 if (msi->msi_domain)
265 irq_domain_remove(host: msi->msi_domain);
266 if (msi->inner_domain)
267 irq_domain_remove(host: msi->inner_domain);
268}
269
270static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
271{
272 xgene_msi->bitmap = bitmap_zalloc(NR_MSI_VEC, GFP_KERNEL);
273 if (!xgene_msi->bitmap)
274 return -ENOMEM;
275
276 mutex_init(&xgene_msi->bitmap_lock);
277
278 xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
279 size: sizeof(struct xgene_msi_group),
280 GFP_KERNEL);
281 if (!xgene_msi->msi_groups)
282 return -ENOMEM;
283
284 return 0;
285}
286
287static void xgene_msi_isr(struct irq_desc *desc)
288{
289 struct irq_chip *chip = irq_desc_get_chip(desc);
290 struct xgene_msi_group *msi_groups;
291 struct xgene_msi *xgene_msi;
292 int msir_index, msir_val, hw_irq, ret;
293 u32 intr_index, grp_select, msi_grp;
294
295 chained_irq_enter(chip, desc);
296
297 msi_groups = irq_desc_get_handler_data(desc);
298 xgene_msi = msi_groups->msi;
299 msi_grp = msi_groups->msi_grp;
300
301 /*
302 * MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
303 * If bit x of this register is set (x is 0..7), one or more interrupts
304 * corresponding to MSInIRx is set.
305 */
306 grp_select = xgene_msi_int_read(msi: xgene_msi, msi_grp);
307 while (grp_select) {
308 msir_index = ffs(grp_select) - 1;
309 /*
310 * Calculate MSInIRx address to read to check for interrupts
311 * (refer to termination address and data assignment
312 * described in xgene_compose_msi_msg() )
313 */
314 msir_val = xgene_msi_ir_read(msi: xgene_msi, msi_grp, msir_idx: msir_index);
315 while (msir_val) {
316 intr_index = ffs(msir_val) - 1;
317 /*
318 * Calculate MSI vector number (refer to the termination
319 * address and data assignment described in
320 * xgene_compose_msi_msg function)
321 */
322 hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
323 NR_HW_IRQS) + msi_grp;
324 /*
325 * As we have multiple hw_irq that maps to single MSI,
326 * always look up the virq using the hw_irq as seen from
327 * CPU0
328 */
329 hw_irq = hwirq_to_canonical_hwirq(hwirq: hw_irq);
330 ret = generic_handle_domain_irq(domain: xgene_msi->inner_domain, hwirq: hw_irq);
331 WARN_ON_ONCE(ret);
332 msir_val &= ~(1 << intr_index);
333 }
334 grp_select &= ~(1 << msir_index);
335
336 if (!grp_select) {
337 /*
338 * We handled all interrupts happened in this group,
339 * resample this group MSI_INTx register in case
340 * something else has been made pending in the meantime
341 */
342 grp_select = xgene_msi_int_read(msi: xgene_msi, msi_grp);
343 }
344 }
345
346 chained_irq_exit(chip, desc);
347}
348
349static enum cpuhp_state pci_xgene_online;
350
351static void xgene_msi_remove(struct platform_device *pdev)
352{
353 struct xgene_msi *msi = platform_get_drvdata(pdev);
354
355 if (pci_xgene_online)
356 cpuhp_remove_state(state: pci_xgene_online);
357 cpuhp_remove_state(state: CPUHP_PCI_XGENE_DEAD);
358
359 kfree(objp: msi->msi_groups);
360
361 bitmap_free(bitmap: msi->bitmap);
362 msi->bitmap = NULL;
363
364 xgene_free_domains(msi);
365}
366
367static int xgene_msi_hwirq_alloc(unsigned int cpu)
368{
369 struct xgene_msi *msi = &xgene_msi_ctrl;
370 struct xgene_msi_group *msi_group;
371 cpumask_var_t mask;
372 int i;
373 int err;
374
375 for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
376 msi_group = &msi->msi_groups[i];
377 if (!msi_group->gic_irq)
378 continue;
379
380 irq_set_chained_handler_and_data(irq: msi_group->gic_irq,
381 handle: xgene_msi_isr, data: msi_group);
382
383 /*
384 * Statically allocate MSI GIC IRQs to each CPU core.
385 * With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
386 * to each core.
387 */
388 if (alloc_cpumask_var(mask: &mask, GFP_KERNEL)) {
389 cpumask_clear(dstp: mask);
390 cpumask_set_cpu(cpu, dstp: mask);
391 err = irq_set_affinity(irq: msi_group->gic_irq, cpumask: mask);
392 if (err)
393 pr_err("failed to set affinity for GIC IRQ");
394 free_cpumask_var(mask);
395 } else {
396 pr_err("failed to alloc CPU mask for affinity\n");
397 err = -EINVAL;
398 }
399
400 if (err) {
401 irq_set_chained_handler_and_data(irq: msi_group->gic_irq,
402 NULL, NULL);
403 return err;
404 }
405 }
406
407 return 0;
408}
409
410static int xgene_msi_hwirq_free(unsigned int cpu)
411{
412 struct xgene_msi *msi = &xgene_msi_ctrl;
413 struct xgene_msi_group *msi_group;
414 int i;
415
416 for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
417 msi_group = &msi->msi_groups[i];
418 if (!msi_group->gic_irq)
419 continue;
420
421 irq_set_chained_handler_and_data(irq: msi_group->gic_irq, NULL,
422 NULL);
423 }
424 return 0;
425}
426
427static const struct of_device_id xgene_msi_match_table[] = {
428 {.compatible = "apm,xgene1-msi"},
429 {},
430};
431
432static int xgene_msi_probe(struct platform_device *pdev)
433{
434 struct resource *res;
435 int rc, irq_index;
436 struct xgene_msi *xgene_msi;
437 int virt_msir;
438 u32 msi_val, msi_idx;
439
440 xgene_msi = &xgene_msi_ctrl;
441
442 platform_set_drvdata(pdev, data: xgene_msi);
443
444 xgene_msi->msi_regs = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &res);
445 if (IS_ERR(ptr: xgene_msi->msi_regs)) {
446 rc = PTR_ERR(ptr: xgene_msi->msi_regs);
447 goto error;
448 }
449 xgene_msi->msi_addr = res->start;
450 xgene_msi->node = pdev->dev.of_node;
451 xgene_msi->num_cpus = num_possible_cpus();
452
453 rc = xgene_msi_init_allocator(xgene_msi);
454 if (rc) {
455 dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
456 goto error;
457 }
458
459 rc = xgene_allocate_domains(msi: xgene_msi);
460 if (rc) {
461 dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
462 goto error;
463 }
464
465 for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
466 virt_msir = platform_get_irq(pdev, irq_index);
467 if (virt_msir < 0) {
468 rc = virt_msir;
469 goto error;
470 }
471 xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
472 xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
473 xgene_msi->msi_groups[irq_index].msi = xgene_msi;
474 }
475
476 /*
477 * MSInIRx registers are read-to-clear; before registering
478 * interrupt handlers, read all of them to clear spurious
479 * interrupts that may occur before the driver is probed.
480 */
481 for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
482 for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
483 xgene_msi_ir_read(msi: xgene_msi, msi_grp: irq_index, msir_idx: msi_idx);
484
485 /* Read MSIINTn to confirm */
486 msi_val = xgene_msi_int_read(msi: xgene_msi, msi_grp: irq_index);
487 if (msi_val) {
488 dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
489 rc = -EINVAL;
490 goto error;
491 }
492 }
493
494 rc = cpuhp_setup_state(state: CPUHP_AP_ONLINE_DYN, name: "pci/xgene:online",
495 startup: xgene_msi_hwirq_alloc, NULL);
496 if (rc < 0)
497 goto err_cpuhp;
498 pci_xgene_online = rc;
499 rc = cpuhp_setup_state(state: CPUHP_PCI_XGENE_DEAD, name: "pci/xgene:dead", NULL,
500 teardown: xgene_msi_hwirq_free);
501 if (rc)
502 goto err_cpuhp;
503
504 dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
505
506 return 0;
507
508err_cpuhp:
509 dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
510error:
511 xgene_msi_remove(pdev);
512 return rc;
513}
514
515static struct platform_driver xgene_msi_driver = {
516 .driver = {
517 .name = "xgene-msi",
518 .of_match_table = xgene_msi_match_table,
519 },
520 .probe = xgene_msi_probe,
521 .remove_new = xgene_msi_remove,
522};
523
524static int __init xgene_pcie_msi_init(void)
525{
526 return platform_driver_register(&xgene_msi_driver);
527}
528subsys_initcall(xgene_pcie_msi_init);
529

source code of linux/drivers/pci/controller/pci-xgene-msi.c