1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Compaq Hot Plug Controller Driver
4 *
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
8 *
9 * All rights reserved.
10 *
11 * Send feedback to <greg@kroah.com>
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/pci.h>
24#include <linux/pci_hotplug.h>
25#include <linux/kthread.h>
26#include "cpqphp.h"
27
28static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29 u8 behind_bridge, struct resource_lists *resources);
30static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31 u8 behind_bridge, struct resource_lists *resources);
32static void interrupt_event_handler(struct controller *ctrl);
33
34
35static struct task_struct *cpqhp_event_thread;
36static struct timer_list *pushbutton_pending; /* = NULL */
37
38/* delay is in jiffies to wait for */
39static void long_delay(int delay)
40{
41 /*
42 * XXX(hch): if someone is bored please convert all callers
43 * to call msleep_interruptible directly. They really want
44 * to specify timeouts in natural units and spend a lot of
45 * effort converting them to jiffies..
46 */
47 msleep_interruptible(msecs: jiffies_to_msecs(j: delay));
48}
49
50
51/* FIXME: The following line needs to be somewhere else... */
52#define WRONG_BUS_FREQUENCY 0x07
53static u8 handle_switch_change(u8 change, struct controller *ctrl)
54{
55 int hp_slot;
56 u8 rc = 0;
57 u16 temp_word;
58 struct pci_func *func;
59 struct event_info *taskInfo;
60
61 if (!change)
62 return 0;
63
64 /* Switch Change */
65 dbg("cpqsbd: Switch interrupt received.\n");
66
67 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68 if (change & (0x1L << hp_slot)) {
69 /*
70 * this one changed.
71 */
72 func = cpqhp_slot_find(bus: ctrl->bus,
73 device: (hp_slot + ctrl->slot_device_offset), index: 0);
74
75 /* this is the structure that tells the worker thread
76 * what to do
77 */
78 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79 ctrl->next_event = (ctrl->next_event + 1) % 10;
80 taskInfo->hp_slot = hp_slot;
81
82 rc++;
83
84 temp_word = ctrl->ctrl_int_comp >> 16;
85 func->presence_save = (temp_word >> hp_slot) & 0x01;
86 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87
88 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89 /*
90 * Switch opened
91 */
92
93 func->switch_save = 0;
94
95 taskInfo->event_type = INT_SWITCH_OPEN;
96 } else {
97 /*
98 * Switch closed
99 */
100
101 func->switch_save = 0x10;
102
103 taskInfo->event_type = INT_SWITCH_CLOSE;
104 }
105 }
106 }
107
108 return rc;
109}
110
111/**
112 * cpqhp_find_slot - find the struct slot of given device
113 * @ctrl: scan lots of this controller
114 * @device: the device id to find
115 */
116static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117{
118 struct slot *slot = ctrl->slot;
119
120 while (slot && (slot->device != device))
121 slot = slot->next;
122
123 return slot;
124}
125
126
127static u8 handle_presence_change(u16 change, struct controller *ctrl)
128{
129 int hp_slot;
130 u8 rc = 0;
131 u8 temp_byte;
132 u16 temp_word;
133 struct pci_func *func;
134 struct event_info *taskInfo;
135 struct slot *p_slot;
136
137 if (!change)
138 return 0;
139
140 /*
141 * Presence Change
142 */
143 dbg("cpqsbd: Presence/Notify input change.\n");
144 dbg(" Changed bits are 0x%4.4x\n", change);
145
146 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147 if (change & (0x0101 << hp_slot)) {
148 /*
149 * this one changed.
150 */
151 func = cpqhp_slot_find(bus: ctrl->bus,
152 device: (hp_slot + ctrl->slot_device_offset), index: 0);
153
154 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155 ctrl->next_event = (ctrl->next_event + 1) % 10;
156 taskInfo->hp_slot = hp_slot;
157
158 rc++;
159
160 p_slot = cpqhp_find_slot(ctrl, device: hp_slot + (readb(addr: ctrl->hpc_reg + SLOT_MASK) >> 4));
161 if (!p_slot)
162 return 0;
163
164 /* If the switch closed, must be a button
165 * If not in button mode, nevermind
166 */
167 if (func->switch_save && (ctrl->push_button == 1)) {
168 temp_word = ctrl->ctrl_int_comp >> 16;
169 temp_byte = (temp_word >> hp_slot) & 0x01;
170 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171
172 if (temp_byte != func->presence_save) {
173 /*
174 * button Pressed (doesn't do anything)
175 */
176 dbg("hp_slot %d button pressed\n", hp_slot);
177 taskInfo->event_type = INT_BUTTON_PRESS;
178 } else {
179 /*
180 * button Released - TAKE ACTION!!!!
181 */
182 dbg("hp_slot %d button released\n", hp_slot);
183 taskInfo->event_type = INT_BUTTON_RELEASE;
184
185 /* Cancel if we are still blinking */
186 if ((p_slot->state == BLINKINGON_STATE)
187 || (p_slot->state == BLINKINGOFF_STATE)) {
188 taskInfo->event_type = INT_BUTTON_CANCEL;
189 dbg("hp_slot %d button cancel\n", hp_slot);
190 } else if ((p_slot->state == POWERON_STATE)
191 || (p_slot->state == POWEROFF_STATE)) {
192 /* info(msg_button_ignore, p_slot->number); */
193 taskInfo->event_type = INT_BUTTON_IGNORE;
194 dbg("hp_slot %d button ignore\n", hp_slot);
195 }
196 }
197 } else {
198 /* Switch is open, assume a presence change
199 * Save the presence state
200 */
201 temp_word = ctrl->ctrl_int_comp >> 16;
202 func->presence_save = (temp_word >> hp_slot) & 0x01;
203 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204
205 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207 /* Present */
208 taskInfo->event_type = INT_PRESENCE_ON;
209 } else {
210 /* Not Present */
211 taskInfo->event_type = INT_PRESENCE_OFF;
212 }
213 }
214 }
215 }
216
217 return rc;
218}
219
220
221static u8 handle_power_fault(u8 change, struct controller *ctrl)
222{
223 int hp_slot;
224 u8 rc = 0;
225 struct pci_func *func;
226 struct event_info *taskInfo;
227
228 if (!change)
229 return 0;
230
231 /*
232 * power fault
233 */
234
235 info("power fault interrupt\n");
236
237 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238 if (change & (0x01 << hp_slot)) {
239 /*
240 * this one changed.
241 */
242 func = cpqhp_slot_find(bus: ctrl->bus,
243 device: (hp_slot + ctrl->slot_device_offset), index: 0);
244
245 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246 ctrl->next_event = (ctrl->next_event + 1) % 10;
247 taskInfo->hp_slot = hp_slot;
248
249 rc++;
250
251 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252 /*
253 * power fault Cleared
254 */
255 func->status = 0x00;
256
257 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258 } else {
259 /*
260 * power fault
261 */
262 taskInfo->event_type = INT_POWER_FAULT;
263
264 if (ctrl->rev < 4) {
265 amber_LED_on(ctrl, slot: hp_slot);
266 green_LED_off(ctrl, slot: hp_slot);
267 set_SOGO(ctrl);
268
269 /* this is a fatal condition, we want
270 * to crash the machine to protect from
271 * data corruption. simulated_NMI
272 * shouldn't ever return */
273 /* FIXME
274 simulated_NMI(hp_slot, ctrl); */
275
276 /* The following code causes a software
277 * crash just in case simulated_NMI did
278 * return */
279 /*FIXME
280 panic(msg_power_fault); */
281 } else {
282 /* set power fault status for this board */
283 func->status = 0xFF;
284 info("power fault bit %x set\n", hp_slot);
285 }
286 }
287 }
288 }
289
290 return rc;
291}
292
293
294/**
295 * sort_by_size - sort nodes on the list by their length, smallest first.
296 * @head: list to sort
297 */
298static int sort_by_size(struct pci_resource **head)
299{
300 struct pci_resource *current_res;
301 struct pci_resource *next_res;
302 int out_of_order = 1;
303
304 if (!(*head))
305 return 1;
306
307 if (!((*head)->next))
308 return 0;
309
310 while (out_of_order) {
311 out_of_order = 0;
312
313 /* Special case for swapping list head */
314 if (((*head)->next) &&
315 ((*head)->length > (*head)->next->length)) {
316 out_of_order++;
317 current_res = *head;
318 *head = (*head)->next;
319 current_res->next = (*head)->next;
320 (*head)->next = current_res;
321 }
322
323 current_res = *head;
324
325 while (current_res->next && current_res->next->next) {
326 if (current_res->next->length > current_res->next->next->length) {
327 out_of_order++;
328 next_res = current_res->next;
329 current_res->next = current_res->next->next;
330 current_res = current_res->next;
331 next_res->next = current_res->next;
332 current_res->next = next_res;
333 } else
334 current_res = current_res->next;
335 }
336 } /* End of out_of_order loop */
337
338 return 0;
339}
340
341
342/**
343 * sort_by_max_size - sort nodes on the list by their length, largest first.
344 * @head: list to sort
345 */
346static int sort_by_max_size(struct pci_resource **head)
347{
348 struct pci_resource *current_res;
349 struct pci_resource *next_res;
350 int out_of_order = 1;
351
352 if (!(*head))
353 return 1;
354
355 if (!((*head)->next))
356 return 0;
357
358 while (out_of_order) {
359 out_of_order = 0;
360
361 /* Special case for swapping list head */
362 if (((*head)->next) &&
363 ((*head)->length < (*head)->next->length)) {
364 out_of_order++;
365 current_res = *head;
366 *head = (*head)->next;
367 current_res->next = (*head)->next;
368 (*head)->next = current_res;
369 }
370
371 current_res = *head;
372
373 while (current_res->next && current_res->next->next) {
374 if (current_res->next->length < current_res->next->next->length) {
375 out_of_order++;
376 next_res = current_res->next;
377 current_res->next = current_res->next->next;
378 current_res = current_res->next;
379 next_res->next = current_res->next;
380 current_res->next = next_res;
381 } else
382 current_res = current_res->next;
383 }
384 } /* End of out_of_order loop */
385
386 return 0;
387}
388
389
390/**
391 * do_pre_bridge_resource_split - find node of resources that are unused
392 * @head: new list head
393 * @orig_head: original list head
394 * @alignment: max node size (?)
395 */
396static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397 struct pci_resource **orig_head, u32 alignment)
398{
399 struct pci_resource *prevnode = NULL;
400 struct pci_resource *node;
401 struct pci_resource *split_node;
402 u32 rc;
403 u32 temp_dword;
404 dbg("do_pre_bridge_resource_split\n");
405
406 if (!(*head) || !(*orig_head))
407 return NULL;
408
409 rc = cpqhp_resource_sort_and_combine(head);
410
411 if (rc)
412 return NULL;
413
414 if ((*head)->base != (*orig_head)->base)
415 return NULL;
416
417 if ((*head)->length == (*orig_head)->length)
418 return NULL;
419
420
421 /* If we got here, there the bridge requires some of the resource, but
422 * we may be able to split some off of the front
423 */
424
425 node = *head;
426
427 if (node->length & (alignment - 1)) {
428 /* this one isn't an aligned length, so we'll make a new entry
429 * and split it up.
430 */
431 split_node = kmalloc(size: sizeof(*split_node), GFP_KERNEL);
432
433 if (!split_node)
434 return NULL;
435
436 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437
438 split_node->base = node->base;
439 split_node->length = temp_dword;
440
441 node->length -= temp_dword;
442 node->base += split_node->length;
443
444 /* Put it in the list */
445 *head = split_node;
446 split_node->next = node;
447 }
448
449 if (node->length < alignment)
450 return NULL;
451
452 /* Now unlink it */
453 if (*head == node) {
454 *head = node->next;
455 } else {
456 prevnode = *head;
457 while (prevnode->next != node)
458 prevnode = prevnode->next;
459
460 prevnode->next = node->next;
461 }
462 node->next = NULL;
463
464 return node;
465}
466
467
468/**
469 * do_bridge_resource_split - find one node of resources that aren't in use
470 * @head: list head
471 * @alignment: max node size (?)
472 */
473static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474{
475 struct pci_resource *prevnode = NULL;
476 struct pci_resource *node;
477 u32 rc;
478 u32 temp_dword;
479
480 rc = cpqhp_resource_sort_and_combine(head);
481
482 if (rc)
483 return NULL;
484
485 node = *head;
486
487 while (node->next) {
488 prevnode = node;
489 node = node->next;
490 kfree(objp: prevnode);
491 }
492
493 if (node->length < alignment)
494 goto error;
495
496 if (node->base & (alignment - 1)) {
497 /* Short circuit if adjusted size is too small */
498 temp_dword = (node->base | (alignment-1)) + 1;
499 if ((node->length - (temp_dword - node->base)) < alignment)
500 goto error;
501
502 node->length -= (temp_dword - node->base);
503 node->base = temp_dword;
504 }
505
506 if (node->length & (alignment - 1))
507 /* There's stuff in use after this node */
508 goto error;
509
510 return node;
511error:
512 kfree(objp: node);
513 return NULL;
514}
515
516
517/**
518 * get_io_resource - find first node of given size not in ISA aliasing window.
519 * @head: list to search
520 * @size: size of node to find, must be a power of two.
521 *
522 * Description: This function sorts the resource list by size and then
523 * returns the first node of "size" length that is not in the ISA aliasing
524 * window. If it finds a node larger than "size" it will split it up.
525 */
526static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527{
528 struct pci_resource *prevnode;
529 struct pci_resource *node;
530 struct pci_resource *split_node;
531 u32 temp_dword;
532
533 if (!(*head))
534 return NULL;
535
536 if (cpqhp_resource_sort_and_combine(head))
537 return NULL;
538
539 if (sort_by_size(head))
540 return NULL;
541
542 for (node = *head; node; node = node->next) {
543 if (node->length < size)
544 continue;
545
546 if (node->base & (size - 1)) {
547 /* this one isn't base aligned properly
548 * so we'll make a new entry and split it up
549 */
550 temp_dword = (node->base | (size-1)) + 1;
551
552 /* Short circuit if adjusted size is too small */
553 if ((node->length - (temp_dword - node->base)) < size)
554 continue;
555
556 split_node = kmalloc(size: sizeof(*split_node), GFP_KERNEL);
557
558 if (!split_node)
559 return NULL;
560
561 split_node->base = node->base;
562 split_node->length = temp_dword - node->base;
563 node->base = temp_dword;
564 node->length -= split_node->length;
565
566 /* Put it in the list */
567 split_node->next = node->next;
568 node->next = split_node;
569 } /* End of non-aligned base */
570
571 /* Don't need to check if too small since we already did */
572 if (node->length > size) {
573 /* this one is longer than we need
574 * so we'll make a new entry and split it up
575 */
576 split_node = kmalloc(size: sizeof(*split_node), GFP_KERNEL);
577
578 if (!split_node)
579 return NULL;
580
581 split_node->base = node->base + size;
582 split_node->length = node->length - size;
583 node->length = size;
584
585 /* Put it in the list */
586 split_node->next = node->next;
587 node->next = split_node;
588 } /* End of too big on top end */
589
590 /* For IO make sure it's not in the ISA aliasing space */
591 if (node->base & 0x300L)
592 continue;
593
594 /* If we got here, then it is the right size
595 * Now take it out of the list and break
596 */
597 if (*head == node) {
598 *head = node->next;
599 } else {
600 prevnode = *head;
601 while (prevnode->next != node)
602 prevnode = prevnode->next;
603
604 prevnode->next = node->next;
605 }
606 node->next = NULL;
607 break;
608 }
609
610 return node;
611}
612
613
614/**
615 * get_max_resource - get largest node which has at least the given size.
616 * @head: the list to search the node in
617 * @size: the minimum size of the node to find
618 *
619 * Description: Gets the largest node that is at least "size" big from the
620 * list pointed to by head. It aligns the node on top and bottom
621 * to "size" alignment before returning it.
622 */
623static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624{
625 struct pci_resource *max;
626 struct pci_resource *temp;
627 struct pci_resource *split_node;
628 u32 temp_dword;
629
630 if (cpqhp_resource_sort_and_combine(head))
631 return NULL;
632
633 if (sort_by_max_size(head))
634 return NULL;
635
636 for (max = *head; max; max = max->next) {
637 /* If not big enough we could probably just bail,
638 * instead we'll continue to the next.
639 */
640 if (max->length < size)
641 continue;
642
643 if (max->base & (size - 1)) {
644 /* this one isn't base aligned properly
645 * so we'll make a new entry and split it up
646 */
647 temp_dword = (max->base | (size-1)) + 1;
648
649 /* Short circuit if adjusted size is too small */
650 if ((max->length - (temp_dword - max->base)) < size)
651 continue;
652
653 split_node = kmalloc(size: sizeof(*split_node), GFP_KERNEL);
654
655 if (!split_node)
656 return NULL;
657
658 split_node->base = max->base;
659 split_node->length = temp_dword - max->base;
660 max->base = temp_dword;
661 max->length -= split_node->length;
662
663 split_node->next = max->next;
664 max->next = split_node;
665 }
666
667 if ((max->base + max->length) & (size - 1)) {
668 /* this one isn't end aligned properly at the top
669 * so we'll make a new entry and split it up
670 */
671 split_node = kmalloc(size: sizeof(*split_node), GFP_KERNEL);
672
673 if (!split_node)
674 return NULL;
675 temp_dword = ((max->base + max->length) & ~(size - 1));
676 split_node->base = temp_dword;
677 split_node->length = max->length + max->base
678 - split_node->base;
679 max->length -= split_node->length;
680
681 split_node->next = max->next;
682 max->next = split_node;
683 }
684
685 /* Make sure it didn't shrink too much when we aligned it */
686 if (max->length < size)
687 continue;
688
689 /* Now take it out of the list */
690 temp = *head;
691 if (temp == max) {
692 *head = max->next;
693 } else {
694 while (temp && temp->next != max)
695 temp = temp->next;
696
697 if (temp)
698 temp->next = max->next;
699 }
700
701 max->next = NULL;
702 break;
703 }
704
705 return max;
706}
707
708
709/**
710 * get_resource - find resource of given size and split up larger ones.
711 * @head: the list to search for resources
712 * @size: the size limit to use
713 *
714 * Description: This function sorts the resource list by size and then
715 * returns the first node of "size" length. If it finds a node
716 * larger than "size" it will split it up.
717 *
718 * size must be a power of two.
719 */
720static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721{
722 struct pci_resource *prevnode;
723 struct pci_resource *node;
724 struct pci_resource *split_node;
725 u32 temp_dword;
726
727 if (cpqhp_resource_sort_and_combine(head))
728 return NULL;
729
730 if (sort_by_size(head))
731 return NULL;
732
733 for (node = *head; node; node = node->next) {
734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 __func__, size, node, node->base, node->length);
736 if (node->length < size)
737 continue;
738
739 if (node->base & (size - 1)) {
740 dbg("%s: not aligned\n", __func__);
741 /* this one isn't base aligned properly
742 * so we'll make a new entry and split it up
743 */
744 temp_dword = (node->base | (size-1)) + 1;
745
746 /* Short circuit if adjusted size is too small */
747 if ((node->length - (temp_dword - node->base)) < size)
748 continue;
749
750 split_node = kmalloc(size: sizeof(*split_node), GFP_KERNEL);
751
752 if (!split_node)
753 return NULL;
754
755 split_node->base = node->base;
756 split_node->length = temp_dword - node->base;
757 node->base = temp_dword;
758 node->length -= split_node->length;
759
760 split_node->next = node->next;
761 node->next = split_node;
762 } /* End of non-aligned base */
763
764 /* Don't need to check if too small since we already did */
765 if (node->length > size) {
766 dbg("%s: too big\n", __func__);
767 /* this one is longer than we need
768 * so we'll make a new entry and split it up
769 */
770 split_node = kmalloc(size: sizeof(*split_node), GFP_KERNEL);
771
772 if (!split_node)
773 return NULL;
774
775 split_node->base = node->base + size;
776 split_node->length = node->length - size;
777 node->length = size;
778
779 /* Put it in the list */
780 split_node->next = node->next;
781 node->next = split_node;
782 } /* End of too big on top end */
783
784 dbg("%s: got one!!!\n", __func__);
785 /* If we got here, then it is the right size
786 * Now take it out of the list */
787 if (*head == node) {
788 *head = node->next;
789 } else {
790 prevnode = *head;
791 while (prevnode->next != node)
792 prevnode = prevnode->next;
793
794 prevnode->next = node->next;
795 }
796 node->next = NULL;
797 break;
798 }
799 return node;
800}
801
802
803/**
804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805 * @head: the list to sort and clean up
806 *
807 * Description: Sorts all of the nodes in the list in ascending order by
808 * their base addresses. Also does garbage collection by
809 * combining adjacent nodes.
810 *
811 * Returns %0 if success.
812 */
813int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814{
815 struct pci_resource *node1;
816 struct pci_resource *node2;
817 int out_of_order = 1;
818
819 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820
821 if (!(*head))
822 return 1;
823
824 dbg("*head->next = %p\n", (*head)->next);
825
826 if (!(*head)->next)
827 return 0; /* only one item on the list, already sorted! */
828
829 dbg("*head->base = 0x%x\n", (*head)->base);
830 dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831 while (out_of_order) {
832 out_of_order = 0;
833
834 /* Special case for swapping list head */
835 if (((*head)->next) &&
836 ((*head)->base > (*head)->next->base)) {
837 node1 = *head;
838 (*head) = (*head)->next;
839 node1->next = (*head)->next;
840 (*head)->next = node1;
841 out_of_order++;
842 }
843
844 node1 = (*head);
845
846 while (node1->next && node1->next->next) {
847 if (node1->next->base > node1->next->next->base) {
848 out_of_order++;
849 node2 = node1->next;
850 node1->next = node1->next->next;
851 node1 = node1->next;
852 node2->next = node1->next;
853 node1->next = node2;
854 } else
855 node1 = node1->next;
856 }
857 } /* End of out_of_order loop */
858
859 node1 = *head;
860
861 while (node1 && node1->next) {
862 if ((node1->base + node1->length) == node1->next->base) {
863 /* Combine */
864 dbg("8..\n");
865 node1->length += node1->next->length;
866 node2 = node1->next;
867 node1->next = node1->next->next;
868 kfree(objp: node2);
869 } else
870 node1 = node1->next;
871 }
872
873 return 0;
874}
875
876
877irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878{
879 struct controller *ctrl = data;
880 u8 schedule_flag = 0;
881 u8 reset;
882 u16 misc;
883 u32 Diff;
884
885
886 misc = readw(addr: ctrl->hpc_reg + MISC);
887 /*
888 * Check to see if it was our interrupt
889 */
890 if (!(misc & 0x000C))
891 return IRQ_NONE;
892
893 if (misc & 0x0004) {
894 /*
895 * Serial Output interrupt Pending
896 */
897
898 /* Clear the interrupt */
899 misc |= 0x0004;
900 writew(val: misc, addr: ctrl->hpc_reg + MISC);
901
902 /* Read to clear posted writes */
903 misc = readw(addr: ctrl->hpc_reg + MISC);
904
905 dbg("%s - waking up\n", __func__);
906 wake_up_interruptible(&ctrl->queue);
907 }
908
909 if (misc & 0x0008) {
910 /* General-interrupt-input interrupt Pending */
911 Diff = readl(addr: ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
912
913 ctrl->ctrl_int_comp = readl(addr: ctrl->hpc_reg + INT_INPUT_CLEAR);
914
915 /* Clear the interrupt */
916 writel(val: Diff, addr: ctrl->hpc_reg + INT_INPUT_CLEAR);
917
918 /* Read it back to clear any posted writes */
919 readl(addr: ctrl->hpc_reg + INT_INPUT_CLEAR);
920
921 if (!Diff)
922 /* Clear all interrupts */
923 writel(val: 0xFFFFFFFF, addr: ctrl->hpc_reg + INT_INPUT_CLEAR);
924
925 schedule_flag += handle_switch_change(change: (u8)(Diff & 0xFFL), ctrl);
926 schedule_flag += handle_presence_change(change: (u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
927 schedule_flag += handle_power_fault(change: (u8)((Diff & 0xFF00L) >> 8), ctrl);
928 }
929
930 reset = readb(addr: ctrl->hpc_reg + RESET_FREQ_MODE);
931 if (reset & 0x40) {
932 /* Bus reset has completed */
933 reset &= 0xCF;
934 writeb(val: reset, addr: ctrl->hpc_reg + RESET_FREQ_MODE);
935 reset = readb(addr: ctrl->hpc_reg + RESET_FREQ_MODE);
936 wake_up_interruptible(&ctrl->queue);
937 }
938
939 if (schedule_flag) {
940 wake_up_process(tsk: cpqhp_event_thread);
941 dbg("Waking even thread");
942 }
943 return IRQ_HANDLED;
944}
945
946
947/**
948 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
949 * @busnumber: bus where new node is to be located
950 *
951 * Returns pointer to the new node or %NULL if unsuccessful.
952 */
953struct pci_func *cpqhp_slot_create(u8 busnumber)
954{
955 struct pci_func *new_slot;
956 struct pci_func *next;
957
958 new_slot = kzalloc(size: sizeof(*new_slot), GFP_KERNEL);
959 if (new_slot == NULL)
960 return new_slot;
961
962 new_slot->next = NULL;
963 new_slot->configured = 1;
964
965 if (cpqhp_slot_list[busnumber] == NULL) {
966 cpqhp_slot_list[busnumber] = new_slot;
967 } else {
968 next = cpqhp_slot_list[busnumber];
969 while (next->next != NULL)
970 next = next->next;
971 next->next = new_slot;
972 }
973 return new_slot;
974}
975
976
977/**
978 * slot_remove - Removes a node from the linked list of slots.
979 * @old_slot: slot to remove
980 *
981 * Returns %0 if successful, !0 otherwise.
982 */
983static int slot_remove(struct pci_func *old_slot)
984{
985 struct pci_func *next;
986
987 if (old_slot == NULL)
988 return 1;
989
990 next = cpqhp_slot_list[old_slot->bus];
991 if (next == NULL)
992 return 1;
993
994 if (next == old_slot) {
995 cpqhp_slot_list[old_slot->bus] = old_slot->next;
996 cpqhp_destroy_board_resources(func: old_slot);
997 kfree(objp: old_slot);
998 return 0;
999 }
1000
1001 while ((next->next != old_slot) && (next->next != NULL))
1002 next = next->next;
1003
1004 if (next->next == old_slot) {
1005 next->next = old_slot->next;
1006 cpqhp_destroy_board_resources(func: old_slot);
1007 kfree(objp: old_slot);
1008 return 0;
1009 } else
1010 return 2;
1011}
1012
1013
1014/**
1015 * bridge_slot_remove - Removes a node from the linked list of slots.
1016 * @bridge: bridge to remove
1017 *
1018 * Returns %0 if successful, !0 otherwise.
1019 */
1020static int bridge_slot_remove(struct pci_func *bridge)
1021{
1022 u8 subordinateBus, secondaryBus;
1023 u8 tempBus;
1024 struct pci_func *next;
1025
1026 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1027 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1028
1029 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1030 next = cpqhp_slot_list[tempBus];
1031
1032 while (!slot_remove(old_slot: next))
1033 next = cpqhp_slot_list[tempBus];
1034 }
1035
1036 next = cpqhp_slot_list[bridge->bus];
1037
1038 if (next == NULL)
1039 return 1;
1040
1041 if (next == bridge) {
1042 cpqhp_slot_list[bridge->bus] = bridge->next;
1043 goto out;
1044 }
1045
1046 while ((next->next != bridge) && (next->next != NULL))
1047 next = next->next;
1048
1049 if (next->next != bridge)
1050 return 2;
1051 next->next = bridge->next;
1052out:
1053 kfree(objp: bridge);
1054 return 0;
1055}
1056
1057
1058/**
1059 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1060 * @bus: bus to find
1061 * @device: device to find
1062 * @index: is %0 for first function found, %1 for the second...
1063 *
1064 * Returns pointer to the node if successful, %NULL otherwise.
1065 */
1066struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1067{
1068 int found = -1;
1069 struct pci_func *func;
1070
1071 func = cpqhp_slot_list[bus];
1072
1073 if ((func == NULL) || ((func->device == device) && (index == 0)))
1074 return func;
1075
1076 if (func->device == device)
1077 found++;
1078
1079 while (func->next != NULL) {
1080 func = func->next;
1081
1082 if (func->device == device)
1083 found++;
1084
1085 if (found == index)
1086 return func;
1087 }
1088
1089 return NULL;
1090}
1091
1092
1093/* DJZ: I don't think is_bridge will work as is.
1094 * FIXME */
1095static int is_bridge(struct pci_func *func)
1096{
1097 /* Check the header type */
1098 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1099 return 1;
1100 else
1101 return 0;
1102}
1103
1104
1105/**
1106 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1107 * @ctrl: controller to change frequency/mode for.
1108 * @adapter_speed: the speed of the adapter we want to match.
1109 * @hp_slot: the slot number where the adapter is installed.
1110 *
1111 * Returns %0 if we successfully change frequency and/or mode to match the
1112 * adapter speed.
1113 */
1114static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1115{
1116 struct slot *slot;
1117 struct pci_bus *bus = ctrl->pci_bus;
1118 u8 reg;
1119 u8 slot_power = readb(addr: ctrl->hpc_reg + SLOT_POWER);
1120 u16 reg16;
1121 u32 leds = readl(addr: ctrl->hpc_reg + LED_CONTROL);
1122
1123 if (bus->cur_bus_speed == adapter_speed)
1124 return 0;
1125
1126 /* We don't allow freq/mode changes if we find another adapter running
1127 * in another slot on this controller
1128 */
1129 for (slot = ctrl->slot; slot; slot = slot->next) {
1130 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1131 continue;
1132 if (get_presence_status(ctrl, slot) == 0)
1133 continue;
1134 /* If another adapter is running on the same segment but at a
1135 * lower speed/mode, we allow the new adapter to function at
1136 * this rate if supported
1137 */
1138 if (bus->cur_bus_speed < adapter_speed)
1139 return 0;
1140
1141 return 1;
1142 }
1143
1144 /* If the controller doesn't support freq/mode changes and the
1145 * controller is running at a higher mode, we bail
1146 */
1147 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1148 return 1;
1149
1150 /* But we allow the adapter to run at a lower rate if possible */
1151 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1152 return 0;
1153
1154 /* We try to set the max speed supported by both the adapter and
1155 * controller
1156 */
1157 if (bus->max_bus_speed < adapter_speed) {
1158 if (bus->cur_bus_speed == bus->max_bus_speed)
1159 return 0;
1160 adapter_speed = bus->max_bus_speed;
1161 }
1162
1163 writel(val: 0x0L, addr: ctrl->hpc_reg + LED_CONTROL);
1164 writeb(val: 0x00, addr: ctrl->hpc_reg + SLOT_ENABLE);
1165
1166 set_SOGO(ctrl);
1167 wait_for_ctrl_irq(ctrl);
1168
1169 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1170 reg = 0xF5;
1171 else
1172 reg = 0xF4;
1173 pci_write_config_byte(dev: ctrl->pci_dev, where: 0x41, val: reg);
1174
1175 reg16 = readw(addr: ctrl->hpc_reg + NEXT_CURR_FREQ);
1176 reg16 &= ~0x000F;
1177 switch (adapter_speed) {
1178 case(PCI_SPEED_133MHz_PCIX):
1179 reg = 0x75;
1180 reg16 |= 0xB;
1181 break;
1182 case(PCI_SPEED_100MHz_PCIX):
1183 reg = 0x74;
1184 reg16 |= 0xA;
1185 break;
1186 case(PCI_SPEED_66MHz_PCIX):
1187 reg = 0x73;
1188 reg16 |= 0x9;
1189 break;
1190 case(PCI_SPEED_66MHz):
1191 reg = 0x73;
1192 reg16 |= 0x1;
1193 break;
1194 default: /* 33MHz PCI 2.2 */
1195 reg = 0x71;
1196 break;
1197
1198 }
1199 reg16 |= 0xB << 12;
1200 writew(val: reg16, addr: ctrl->hpc_reg + NEXT_CURR_FREQ);
1201
1202 mdelay(5);
1203
1204 /* Re-enable interrupts */
1205 writel(val: 0, addr: ctrl->hpc_reg + INT_MASK);
1206
1207 pci_write_config_byte(dev: ctrl->pci_dev, where: 0x41, val: reg);
1208
1209 /* Restart state machine */
1210 reg = ~0xF;
1211 pci_read_config_byte(dev: ctrl->pci_dev, where: 0x43, val: &reg);
1212 pci_write_config_byte(dev: ctrl->pci_dev, where: 0x43, val: reg);
1213
1214 /* Only if mode change...*/
1215 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1216 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1217 set_SOGO(ctrl);
1218
1219 wait_for_ctrl_irq(ctrl);
1220 mdelay(1100);
1221
1222 /* Restore LED/Slot state */
1223 writel(val: leds, addr: ctrl->hpc_reg + LED_CONTROL);
1224 writeb(val: slot_power, addr: ctrl->hpc_reg + SLOT_ENABLE);
1225
1226 set_SOGO(ctrl);
1227 wait_for_ctrl_irq(ctrl);
1228
1229 bus->cur_bus_speed = adapter_speed;
1230 slot = cpqhp_find_slot(ctrl, device: hp_slot + ctrl->slot_device_offset);
1231
1232 info("Successfully changed frequency/mode for adapter in slot %d\n",
1233 slot->number);
1234 return 0;
1235}
1236
1237/* the following routines constitute the bulk of the
1238 * hotplug controller logic
1239 */
1240
1241
1242/**
1243 * board_replaced - Called after a board has been replaced in the system.
1244 * @func: PCI device/function information
1245 * @ctrl: hotplug controller
1246 *
1247 * This is only used if we don't have resources for hot add.
1248 * Turns power on for the board.
1249 * Checks to see if board is the same.
1250 * If board is same, reconfigures it.
1251 * If board isn't same, turns it back off.
1252 */
1253static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1254{
1255 struct pci_bus *bus = ctrl->pci_bus;
1256 u8 hp_slot;
1257 u8 temp_byte;
1258 u8 adapter_speed;
1259 u32 rc = 0;
1260
1261 hp_slot = func->device - ctrl->slot_device_offset;
1262
1263 /*
1264 * The switch is open.
1265 */
1266 if (readl(addr: ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1267 rc = INTERLOCK_OPEN;
1268 /*
1269 * The board is already on
1270 */
1271 else if (is_slot_enabled(ctrl, slot: hp_slot))
1272 rc = CARD_FUNCTIONING;
1273 else {
1274 mutex_lock(&ctrl->crit_sect);
1275
1276 /* turn on board without attaching to the bus */
1277 enable_slot_power(ctrl, slot: hp_slot);
1278
1279 set_SOGO(ctrl);
1280
1281 /* Wait for SOBS to be unset */
1282 wait_for_ctrl_irq(ctrl);
1283
1284 /* Change bits in slot power register to force another shift out
1285 * NOTE: this is to work around the timer bug */
1286 temp_byte = readb(addr: ctrl->hpc_reg + SLOT_POWER);
1287 writeb(val: 0x00, addr: ctrl->hpc_reg + SLOT_POWER);
1288 writeb(val: temp_byte, addr: ctrl->hpc_reg + SLOT_POWER);
1289
1290 set_SOGO(ctrl);
1291
1292 /* Wait for SOBS to be unset */
1293 wait_for_ctrl_irq(ctrl);
1294
1295 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1296 if (bus->cur_bus_speed != adapter_speed)
1297 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1298 rc = WRONG_BUS_FREQUENCY;
1299
1300 /* turn off board without attaching to the bus */
1301 disable_slot_power(ctrl, slot: hp_slot);
1302
1303 set_SOGO(ctrl);
1304
1305 /* Wait for SOBS to be unset */
1306 wait_for_ctrl_irq(ctrl);
1307
1308 mutex_unlock(lock: &ctrl->crit_sect);
1309
1310 if (rc)
1311 return rc;
1312
1313 mutex_lock(&ctrl->crit_sect);
1314
1315 slot_enable(ctrl, slot: hp_slot);
1316 green_LED_blink(ctrl, slot: hp_slot);
1317
1318 amber_LED_off(ctrl, slot: hp_slot);
1319
1320 set_SOGO(ctrl);
1321
1322 /* Wait for SOBS to be unset */
1323 wait_for_ctrl_irq(ctrl);
1324
1325 mutex_unlock(lock: &ctrl->crit_sect);
1326
1327 /* Wait for ~1 second because of hot plug spec */
1328 long_delay(delay: 1*HZ);
1329
1330 /* Check for a power fault */
1331 if (func->status == 0xFF) {
1332 /* power fault occurred, but it was benign */
1333 rc = POWER_FAILURE;
1334 func->status = 0;
1335 } else
1336 rc = cpqhp_valid_replace(ctrl, func);
1337
1338 if (!rc) {
1339 /* It must be the same board */
1340
1341 rc = cpqhp_configure_board(ctrl, func);
1342
1343 /* If configuration fails, turn it off
1344 * Get slot won't work for devices behind
1345 * bridges, but in this case it will always be
1346 * called for the "base" bus/dev/func of an
1347 * adapter.
1348 */
1349
1350 mutex_lock(&ctrl->crit_sect);
1351
1352 amber_LED_on(ctrl, slot: hp_slot);
1353 green_LED_off(ctrl, slot: hp_slot);
1354 slot_disable(ctrl, slot: hp_slot);
1355
1356 set_SOGO(ctrl);
1357
1358 /* Wait for SOBS to be unset */
1359 wait_for_ctrl_irq(ctrl);
1360
1361 mutex_unlock(lock: &ctrl->crit_sect);
1362
1363 if (rc)
1364 return rc;
1365 else
1366 return 1;
1367
1368 } else {
1369 /* Something is wrong
1370
1371 * Get slot won't work for devices behind bridges, but
1372 * in this case it will always be called for the "base"
1373 * bus/dev/func of an adapter.
1374 */
1375
1376 mutex_lock(&ctrl->crit_sect);
1377
1378 amber_LED_on(ctrl, slot: hp_slot);
1379 green_LED_off(ctrl, slot: hp_slot);
1380 slot_disable(ctrl, slot: hp_slot);
1381
1382 set_SOGO(ctrl);
1383
1384 /* Wait for SOBS to be unset */
1385 wait_for_ctrl_irq(ctrl);
1386
1387 mutex_unlock(lock: &ctrl->crit_sect);
1388 }
1389
1390 }
1391 return rc;
1392
1393}
1394
1395
1396/**
1397 * board_added - Called after a board has been added to the system.
1398 * @func: PCI device/function info
1399 * @ctrl: hotplug controller
1400 *
1401 * Turns power on for the board.
1402 * Configures board.
1403 */
1404static u32 board_added(struct pci_func *func, struct controller *ctrl)
1405{
1406 u8 hp_slot;
1407 u8 temp_byte;
1408 u8 adapter_speed;
1409 int index;
1410 u32 temp_register = 0xFFFFFFFF;
1411 u32 rc = 0;
1412 struct pci_func *new_slot = NULL;
1413 struct pci_bus *bus = ctrl->pci_bus;
1414 struct resource_lists res_lists;
1415
1416 hp_slot = func->device - ctrl->slot_device_offset;
1417 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1418 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1419
1420 mutex_lock(&ctrl->crit_sect);
1421
1422 /* turn on board without attaching to the bus */
1423 enable_slot_power(ctrl, slot: hp_slot);
1424
1425 set_SOGO(ctrl);
1426
1427 /* Wait for SOBS to be unset */
1428 wait_for_ctrl_irq(ctrl);
1429
1430 /* Change bits in slot power register to force another shift out
1431 * NOTE: this is to work around the timer bug
1432 */
1433 temp_byte = readb(addr: ctrl->hpc_reg + SLOT_POWER);
1434 writeb(val: 0x00, addr: ctrl->hpc_reg + SLOT_POWER);
1435 writeb(val: temp_byte, addr: ctrl->hpc_reg + SLOT_POWER);
1436
1437 set_SOGO(ctrl);
1438
1439 /* Wait for SOBS to be unset */
1440 wait_for_ctrl_irq(ctrl);
1441
1442 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1443 if (bus->cur_bus_speed != adapter_speed)
1444 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1445 rc = WRONG_BUS_FREQUENCY;
1446
1447 /* turn off board without attaching to the bus */
1448 disable_slot_power(ctrl, slot: hp_slot);
1449
1450 set_SOGO(ctrl);
1451
1452 /* Wait for SOBS to be unset */
1453 wait_for_ctrl_irq(ctrl);
1454
1455 mutex_unlock(lock: &ctrl->crit_sect);
1456
1457 if (rc)
1458 return rc;
1459
1460 cpqhp_find_slot(ctrl, device: hp_slot + ctrl->slot_device_offset);
1461
1462 /* turn on board and blink green LED */
1463
1464 dbg("%s: before down\n", __func__);
1465 mutex_lock(&ctrl->crit_sect);
1466 dbg("%s: after down\n", __func__);
1467
1468 dbg("%s: before slot_enable\n", __func__);
1469 slot_enable(ctrl, slot: hp_slot);
1470
1471 dbg("%s: before green_LED_blink\n", __func__);
1472 green_LED_blink(ctrl, slot: hp_slot);
1473
1474 dbg("%s: before amber_LED_blink\n", __func__);
1475 amber_LED_off(ctrl, slot: hp_slot);
1476
1477 dbg("%s: before set_SOGO\n", __func__);
1478 set_SOGO(ctrl);
1479
1480 /* Wait for SOBS to be unset */
1481 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1482 wait_for_ctrl_irq(ctrl);
1483 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1484
1485 dbg("%s: before up\n", __func__);
1486 mutex_unlock(lock: &ctrl->crit_sect);
1487 dbg("%s: after up\n", __func__);
1488
1489 /* Wait for ~1 second because of hot plug spec */
1490 dbg("%s: before long_delay\n", __func__);
1491 long_delay(delay: 1*HZ);
1492 dbg("%s: after long_delay\n", __func__);
1493
1494 dbg("%s: func status = %x\n", __func__, func->status);
1495 /* Check for a power fault */
1496 if (func->status == 0xFF) {
1497 /* power fault occurred, but it was benign */
1498 temp_register = 0xFFFFFFFF;
1499 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1500 rc = POWER_FAILURE;
1501 func->status = 0;
1502 } else {
1503 /* Get vendor/device ID u32 */
1504 ctrl->pci_bus->number = func->bus;
1505 rc = pci_bus_read_config_dword(bus: ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, val: &temp_register);
1506 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1507 dbg("%s: temp_register is %x\n", __func__, temp_register);
1508
1509 if (rc != 0) {
1510 /* Something's wrong here */
1511 temp_register = 0xFFFFFFFF;
1512 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1513 }
1514 /* Preset return code. It will be changed later if things go okay. */
1515 rc = NO_ADAPTER_PRESENT;
1516 }
1517
1518 /* All F's is an empty slot or an invalid board */
1519 if (temp_register != 0xFFFFFFFF) {
1520 res_lists.io_head = ctrl->io_head;
1521 res_lists.mem_head = ctrl->mem_head;
1522 res_lists.p_mem_head = ctrl->p_mem_head;
1523 res_lists.bus_head = ctrl->bus_head;
1524 res_lists.irqs = NULL;
1525
1526 rc = configure_new_device(ctrl, func, behind_bridge: 0, resources: &res_lists);
1527
1528 dbg("%s: back from configure_new_device\n", __func__);
1529 ctrl->io_head = res_lists.io_head;
1530 ctrl->mem_head = res_lists.mem_head;
1531 ctrl->p_mem_head = res_lists.p_mem_head;
1532 ctrl->bus_head = res_lists.bus_head;
1533
1534 cpqhp_resource_sort_and_combine(head: &(ctrl->mem_head));
1535 cpqhp_resource_sort_and_combine(head: &(ctrl->p_mem_head));
1536 cpqhp_resource_sort_and_combine(head: &(ctrl->io_head));
1537 cpqhp_resource_sort_and_combine(head: &(ctrl->bus_head));
1538
1539 if (rc) {
1540 mutex_lock(&ctrl->crit_sect);
1541
1542 amber_LED_on(ctrl, slot: hp_slot);
1543 green_LED_off(ctrl, slot: hp_slot);
1544 slot_disable(ctrl, slot: hp_slot);
1545
1546 set_SOGO(ctrl);
1547
1548 /* Wait for SOBS to be unset */
1549 wait_for_ctrl_irq(ctrl);
1550
1551 mutex_unlock(lock: &ctrl->crit_sect);
1552 return rc;
1553 } else {
1554 cpqhp_save_slot_config(ctrl, new_slot: func);
1555 }
1556
1557
1558 func->status = 0;
1559 func->switch_save = 0x10;
1560 func->is_a_board = 0x01;
1561
1562 /* next, we will instantiate the linux pci_dev structures (with
1563 * appropriate driver notification, if already present) */
1564 dbg("%s: configure linux pci_dev structure\n", __func__);
1565 index = 0;
1566 do {
1567 new_slot = cpqhp_slot_find(bus: ctrl->bus, device: func->device, index: index++);
1568 if (new_slot && !new_slot->pci_dev)
1569 cpqhp_configure_device(ctrl, func: new_slot);
1570 } while (new_slot);
1571
1572 mutex_lock(&ctrl->crit_sect);
1573
1574 green_LED_on(ctrl, slot: hp_slot);
1575
1576 set_SOGO(ctrl);
1577
1578 /* Wait for SOBS to be unset */
1579 wait_for_ctrl_irq(ctrl);
1580
1581 mutex_unlock(lock: &ctrl->crit_sect);
1582 } else {
1583 mutex_lock(&ctrl->crit_sect);
1584
1585 amber_LED_on(ctrl, slot: hp_slot);
1586 green_LED_off(ctrl, slot: hp_slot);
1587 slot_disable(ctrl, slot: hp_slot);
1588
1589 set_SOGO(ctrl);
1590
1591 /* Wait for SOBS to be unset */
1592 wait_for_ctrl_irq(ctrl);
1593
1594 mutex_unlock(lock: &ctrl->crit_sect);
1595
1596 return rc;
1597 }
1598 return 0;
1599}
1600
1601
1602/**
1603 * remove_board - Turns off slot and LEDs
1604 * @func: PCI device/function info
1605 * @replace_flag: whether replacing or adding a new device
1606 * @ctrl: target controller
1607 */
1608static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1609{
1610 int index;
1611 u8 skip = 0;
1612 u8 device;
1613 u8 hp_slot;
1614 u8 temp_byte;
1615 struct resource_lists res_lists;
1616 struct pci_func *temp_func;
1617
1618 if (cpqhp_unconfigure_device(func))
1619 return 1;
1620
1621 device = func->device;
1622
1623 hp_slot = func->device - ctrl->slot_device_offset;
1624 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1625
1626 /* When we get here, it is safe to change base address registers.
1627 * We will attempt to save the base address register lengths */
1628 if (replace_flag || !ctrl->add_support)
1629 cpqhp_save_base_addr_length(ctrl, func);
1630 else if (!func->bus_head && !func->mem_head &&
1631 !func->p_mem_head && !func->io_head) {
1632 /* Here we check to see if we've saved any of the board's
1633 * resources already. If so, we'll skip the attempt to
1634 * determine what's being used. */
1635 index = 0;
1636 temp_func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
1637 while (temp_func) {
1638 if (temp_func->bus_head || temp_func->mem_head
1639 || temp_func->p_mem_head || temp_func->io_head) {
1640 skip = 1;
1641 break;
1642 }
1643 temp_func = cpqhp_slot_find(bus: temp_func->bus, device: temp_func->device, index: index++);
1644 }
1645
1646 if (!skip)
1647 cpqhp_save_used_resources(ctrl, func);
1648 }
1649 /* Change status to shutdown */
1650 if (func->is_a_board)
1651 func->status = 0x01;
1652 func->configured = 0;
1653
1654 mutex_lock(&ctrl->crit_sect);
1655
1656 green_LED_off(ctrl, slot: hp_slot);
1657 slot_disable(ctrl, slot: hp_slot);
1658
1659 set_SOGO(ctrl);
1660
1661 /* turn off SERR for slot */
1662 temp_byte = readb(addr: ctrl->hpc_reg + SLOT_SERR);
1663 temp_byte &= ~(0x01 << hp_slot);
1664 writeb(val: temp_byte, addr: ctrl->hpc_reg + SLOT_SERR);
1665
1666 /* Wait for SOBS to be unset */
1667 wait_for_ctrl_irq(ctrl);
1668
1669 mutex_unlock(lock: &ctrl->crit_sect);
1670
1671 if (!replace_flag && ctrl->add_support) {
1672 while (func) {
1673 res_lists.io_head = ctrl->io_head;
1674 res_lists.mem_head = ctrl->mem_head;
1675 res_lists.p_mem_head = ctrl->p_mem_head;
1676 res_lists.bus_head = ctrl->bus_head;
1677
1678 cpqhp_return_board_resources(func, resources: &res_lists);
1679
1680 ctrl->io_head = res_lists.io_head;
1681 ctrl->mem_head = res_lists.mem_head;
1682 ctrl->p_mem_head = res_lists.p_mem_head;
1683 ctrl->bus_head = res_lists.bus_head;
1684
1685 cpqhp_resource_sort_and_combine(head: &(ctrl->mem_head));
1686 cpqhp_resource_sort_and_combine(head: &(ctrl->p_mem_head));
1687 cpqhp_resource_sort_and_combine(head: &(ctrl->io_head));
1688 cpqhp_resource_sort_and_combine(head: &(ctrl->bus_head));
1689
1690 if (is_bridge(func)) {
1691 bridge_slot_remove(bridge: func);
1692 } else
1693 slot_remove(old_slot: func);
1694
1695 func = cpqhp_slot_find(bus: ctrl->bus, device, index: 0);
1696 }
1697
1698 /* Setup slot structure with entry for empty slot */
1699 func = cpqhp_slot_create(busnumber: ctrl->bus);
1700
1701 if (func == NULL)
1702 return 1;
1703
1704 func->bus = ctrl->bus;
1705 func->device = device;
1706 func->function = 0;
1707 func->configured = 0;
1708 func->switch_save = 0x10;
1709 func->is_a_board = 0;
1710 func->p_task_event = NULL;
1711 }
1712
1713 return 0;
1714}
1715
1716static void pushbutton_helper_thread(struct timer_list *t)
1717{
1718 pushbutton_pending = t;
1719
1720 wake_up_process(tsk: cpqhp_event_thread);
1721}
1722
1723
1724/* this is the main worker thread */
1725static int event_thread(void *data)
1726{
1727 struct controller *ctrl;
1728
1729 while (1) {
1730 dbg("!!!!event_thread sleeping\n");
1731 set_current_state(TASK_INTERRUPTIBLE);
1732 schedule();
1733
1734 if (kthread_should_stop())
1735 break;
1736 /* Do stuff here */
1737 if (pushbutton_pending)
1738 cpqhp_pushbutton_thread(t: pushbutton_pending);
1739 else
1740 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1741 interrupt_event_handler(ctrl);
1742 }
1743 dbg("event_thread signals exit\n");
1744 return 0;
1745}
1746
1747int cpqhp_event_start_thread(void)
1748{
1749 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1750 if (IS_ERR(ptr: cpqhp_event_thread)) {
1751 err("Can't start up our event thread\n");
1752 return PTR_ERR(ptr: cpqhp_event_thread);
1753 }
1754
1755 return 0;
1756}
1757
1758
1759void cpqhp_event_stop_thread(void)
1760{
1761 kthread_stop(k: cpqhp_event_thread);
1762}
1763
1764
1765static void interrupt_event_handler(struct controller *ctrl)
1766{
1767 int loop;
1768 int change = 1;
1769 struct pci_func *func;
1770 u8 hp_slot;
1771 struct slot *p_slot;
1772
1773 while (change) {
1774 change = 0;
1775
1776 for (loop = 0; loop < 10; loop++) {
1777 /* dbg("loop %d\n", loop); */
1778 if (ctrl->event_queue[loop].event_type != 0) {
1779 hp_slot = ctrl->event_queue[loop].hp_slot;
1780
1781 func = cpqhp_slot_find(bus: ctrl->bus, device: (hp_slot + ctrl->slot_device_offset), index: 0);
1782 if (!func)
1783 return;
1784
1785 p_slot = cpqhp_find_slot(ctrl, device: hp_slot + ctrl->slot_device_offset);
1786 if (!p_slot)
1787 return;
1788
1789 dbg("hp_slot %d, func %p, p_slot %p\n",
1790 hp_slot, func, p_slot);
1791
1792 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1793 dbg("button pressed\n");
1794 } else if (ctrl->event_queue[loop].event_type ==
1795 INT_BUTTON_CANCEL) {
1796 dbg("button cancel\n");
1797 del_timer(timer: &p_slot->task_event);
1798
1799 mutex_lock(&ctrl->crit_sect);
1800
1801 if (p_slot->state == BLINKINGOFF_STATE) {
1802 /* slot is on */
1803 dbg("turn on green LED\n");
1804 green_LED_on(ctrl, slot: hp_slot);
1805 } else if (p_slot->state == BLINKINGON_STATE) {
1806 /* slot is off */
1807 dbg("turn off green LED\n");
1808 green_LED_off(ctrl, slot: hp_slot);
1809 }
1810
1811 info(msg_button_cancel, p_slot->number);
1812
1813 p_slot->state = STATIC_STATE;
1814
1815 amber_LED_off(ctrl, slot: hp_slot);
1816
1817 set_SOGO(ctrl);
1818
1819 /* Wait for SOBS to be unset */
1820 wait_for_ctrl_irq(ctrl);
1821
1822 mutex_unlock(lock: &ctrl->crit_sect);
1823 }
1824 /*** button Released (No action on press...) */
1825 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1826 dbg("button release\n");
1827
1828 if (is_slot_enabled(ctrl, slot: hp_slot)) {
1829 dbg("slot is on\n");
1830 p_slot->state = BLINKINGOFF_STATE;
1831 info(msg_button_off, p_slot->number);
1832 } else {
1833 dbg("slot is off\n");
1834 p_slot->state = BLINKINGON_STATE;
1835 info(msg_button_on, p_slot->number);
1836 }
1837 mutex_lock(&ctrl->crit_sect);
1838
1839 dbg("blink green LED and turn off amber\n");
1840
1841 amber_LED_off(ctrl, slot: hp_slot);
1842 green_LED_blink(ctrl, slot: hp_slot);
1843
1844 set_SOGO(ctrl);
1845
1846 /* Wait for SOBS to be unset */
1847 wait_for_ctrl_irq(ctrl);
1848
1849 mutex_unlock(lock: &ctrl->crit_sect);
1850 timer_setup(&p_slot->task_event,
1851 pushbutton_helper_thread,
1852 0);
1853 p_slot->hp_slot = hp_slot;
1854 p_slot->ctrl = ctrl;
1855/* p_slot->physical_slot = physical_slot; */
1856 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1857
1858 dbg("add_timer p_slot = %p\n", p_slot);
1859 add_timer(timer: &p_slot->task_event);
1860 }
1861 /***********POWER FAULT */
1862 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1863 dbg("power fault\n");
1864 }
1865
1866 ctrl->event_queue[loop].event_type = 0;
1867
1868 change = 1;
1869 }
1870 } /* End of FOR loop */
1871 }
1872}
1873
1874
1875/**
1876 * cpqhp_pushbutton_thread - handle pushbutton events
1877 * @t: pointer to struct timer_list which holds all timer-related callbacks
1878 *
1879 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1880 * Handles all pending events and exits.
1881 */
1882void cpqhp_pushbutton_thread(struct timer_list *t)
1883{
1884 u8 hp_slot;
1885 struct pci_func *func;
1886 struct slot *p_slot = from_timer(p_slot, t, task_event);
1887 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1888
1889 pushbutton_pending = NULL;
1890 hp_slot = p_slot->hp_slot;
1891
1892 if (is_slot_enabled(ctrl, slot: hp_slot)) {
1893 p_slot->state = POWEROFF_STATE;
1894 /* power Down board */
1895 func = cpqhp_slot_find(bus: p_slot->bus, device: p_slot->device, index: 0);
1896 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1897 if (!func) {
1898 dbg("Error! func NULL in %s\n", __func__);
1899 return;
1900 }
1901
1902 if (cpqhp_process_SS(ctrl, func) != 0) {
1903 amber_LED_on(ctrl, slot: hp_slot);
1904 green_LED_on(ctrl, slot: hp_slot);
1905
1906 set_SOGO(ctrl);
1907
1908 /* Wait for SOBS to be unset */
1909 wait_for_ctrl_irq(ctrl);
1910 }
1911
1912 p_slot->state = STATIC_STATE;
1913 } else {
1914 p_slot->state = POWERON_STATE;
1915 /* slot is off */
1916
1917 func = cpqhp_slot_find(bus: p_slot->bus, device: p_slot->device, index: 0);
1918 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1919 if (!func) {
1920 dbg("Error! func NULL in %s\n", __func__);
1921 return;
1922 }
1923
1924 if (ctrl != NULL) {
1925 if (cpqhp_process_SI(ctrl, func) != 0) {
1926 amber_LED_on(ctrl, slot: hp_slot);
1927 green_LED_off(ctrl, slot: hp_slot);
1928
1929 set_SOGO(ctrl);
1930
1931 /* Wait for SOBS to be unset */
1932 wait_for_ctrl_irq(ctrl);
1933 }
1934 }
1935
1936 p_slot->state = STATIC_STATE;
1937 }
1938}
1939
1940
1941int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1942{
1943 u8 device, hp_slot;
1944 u16 temp_word;
1945 u32 tempdword;
1946 int rc;
1947 struct slot *p_slot;
1948
1949 tempdword = 0;
1950
1951 device = func->device;
1952 hp_slot = device - ctrl->slot_device_offset;
1953 p_slot = cpqhp_find_slot(ctrl, device);
1954
1955 /* Check to see if the interlock is closed */
1956 tempdword = readl(addr: ctrl->hpc_reg + INT_INPUT_CLEAR);
1957
1958 if (tempdword & (0x01 << hp_slot))
1959 return 1;
1960
1961 if (func->is_a_board) {
1962 rc = board_replaced(func, ctrl);
1963 } else {
1964 /* add board */
1965 slot_remove(old_slot: func);
1966
1967 func = cpqhp_slot_create(busnumber: ctrl->bus);
1968 if (func == NULL)
1969 return 1;
1970
1971 func->bus = ctrl->bus;
1972 func->device = device;
1973 func->function = 0;
1974 func->configured = 0;
1975 func->is_a_board = 1;
1976
1977 /* We have to save the presence info for these slots */
1978 temp_word = ctrl->ctrl_int_comp >> 16;
1979 func->presence_save = (temp_word >> hp_slot) & 0x01;
1980 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1981
1982 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1983 func->switch_save = 0;
1984 } else {
1985 func->switch_save = 0x10;
1986 }
1987
1988 rc = board_added(func, ctrl);
1989 if (rc) {
1990 if (is_bridge(func)) {
1991 bridge_slot_remove(bridge: func);
1992 } else
1993 slot_remove(old_slot: func);
1994
1995 /* Setup slot structure with entry for empty slot */
1996 func = cpqhp_slot_create(busnumber: ctrl->bus);
1997
1998 if (func == NULL)
1999 return 1;
2000
2001 func->bus = ctrl->bus;
2002 func->device = device;
2003 func->function = 0;
2004 func->configured = 0;
2005 func->is_a_board = 0;
2006
2007 /* We have to save the presence info for these slots */
2008 temp_word = ctrl->ctrl_int_comp >> 16;
2009 func->presence_save = (temp_word >> hp_slot) & 0x01;
2010 func->presence_save |=
2011 (temp_word >> (hp_slot + 7)) & 0x02;
2012
2013 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2014 func->switch_save = 0;
2015 } else {
2016 func->switch_save = 0x10;
2017 }
2018 }
2019 }
2020
2021 if (rc)
2022 dbg("%s: rc = %d\n", __func__, rc);
2023
2024 return rc;
2025}
2026
2027
2028int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2029{
2030 u8 device, class_code, header_type, BCR;
2031 u8 index = 0;
2032 u8 replace_flag;
2033 u32 rc = 0;
2034 unsigned int devfn;
2035 struct slot *p_slot;
2036 struct pci_bus *pci_bus = ctrl->pci_bus;
2037
2038 device = func->device;
2039 func = cpqhp_slot_find(bus: ctrl->bus, device, index: index++);
2040 p_slot = cpqhp_find_slot(ctrl, device);
2041
2042 /* Make sure there are no video controllers here */
2043 while (func && !rc) {
2044 pci_bus->number = func->bus;
2045 devfn = PCI_DEVFN(func->device, func->function);
2046
2047 /* Check the Class Code */
2048 rc = pci_bus_read_config_byte(bus: pci_bus, devfn, where: 0x0B, val: &class_code);
2049 if (rc)
2050 return rc;
2051
2052 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2053 /* Display/Video adapter (not supported) */
2054 rc = REMOVE_NOT_SUPPORTED;
2055 } else {
2056 /* See if it's a bridge */
2057 rc = pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_HEADER_TYPE, val: &header_type);
2058 if (rc)
2059 return rc;
2060
2061 /* If it's a bridge, check the VGA Enable bit */
2062 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
2063 rc = pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_BRIDGE_CONTROL, val: &BCR);
2064 if (rc)
2065 return rc;
2066
2067 /* If the VGA Enable bit is set, remove isn't
2068 * supported */
2069 if (BCR & PCI_BRIDGE_CTL_VGA)
2070 rc = REMOVE_NOT_SUPPORTED;
2071 }
2072 }
2073
2074 func = cpqhp_slot_find(bus: ctrl->bus, device, index: index++);
2075 }
2076
2077 func = cpqhp_slot_find(bus: ctrl->bus, device, index: 0);
2078 if ((func != NULL) && !rc) {
2079 /* FIXME: Replace flag should be passed into process_SS */
2080 replace_flag = !(ctrl->add_support);
2081 rc = remove_board(func, replace_flag, ctrl);
2082 } else if (!rc) {
2083 rc = 1;
2084 }
2085
2086 return rc;
2087}
2088
2089/**
2090 * switch_leds - switch the leds, go from one site to the other.
2091 * @ctrl: controller to use
2092 * @num_of_slots: number of slots to use
2093 * @work_LED: LED control value
2094 * @direction: 1 to start from the left side, 0 to start right.
2095 */
2096static void switch_leds(struct controller *ctrl, const int num_of_slots,
2097 u32 *work_LED, const int direction)
2098{
2099 int loop;
2100
2101 for (loop = 0; loop < num_of_slots; loop++) {
2102 if (direction)
2103 *work_LED = *work_LED >> 1;
2104 else
2105 *work_LED = *work_LED << 1;
2106 writel(val: *work_LED, addr: ctrl->hpc_reg + LED_CONTROL);
2107
2108 set_SOGO(ctrl);
2109
2110 /* Wait for SOGO interrupt */
2111 wait_for_ctrl_irq(ctrl);
2112
2113 /* Get ready for next iteration */
2114 long_delay(delay: (2*HZ)/10);
2115 }
2116}
2117
2118/**
2119 * cpqhp_hardware_test - runs hardware tests
2120 * @ctrl: target controller
2121 * @test_num: the number written to the "test" file in sysfs.
2122 *
2123 * For hot plug ctrl folks to play with.
2124 */
2125int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2126{
2127 u32 save_LED;
2128 u32 work_LED;
2129 int loop;
2130 int num_of_slots;
2131
2132 num_of_slots = readb(addr: ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2133
2134 switch (test_num) {
2135 case 1:
2136 /* Do stuff here! */
2137
2138 /* Do that funky LED thing */
2139 /* so we can restore them later */
2140 save_LED = readl(addr: ctrl->hpc_reg + LED_CONTROL);
2141 work_LED = 0x01010101;
2142 switch_leds(ctrl, num_of_slots, work_LED: &work_LED, direction: 0);
2143 switch_leds(ctrl, num_of_slots, work_LED: &work_LED, direction: 1);
2144 switch_leds(ctrl, num_of_slots, work_LED: &work_LED, direction: 0);
2145 switch_leds(ctrl, num_of_slots, work_LED: &work_LED, direction: 1);
2146
2147 work_LED = 0x01010000;
2148 writel(val: work_LED, addr: ctrl->hpc_reg + LED_CONTROL);
2149 switch_leds(ctrl, num_of_slots, work_LED: &work_LED, direction: 0);
2150 switch_leds(ctrl, num_of_slots, work_LED: &work_LED, direction: 1);
2151 work_LED = 0x00000101;
2152 writel(val: work_LED, addr: ctrl->hpc_reg + LED_CONTROL);
2153 switch_leds(ctrl, num_of_slots, work_LED: &work_LED, direction: 0);
2154 switch_leds(ctrl, num_of_slots, work_LED: &work_LED, direction: 1);
2155
2156 work_LED = 0x01010000;
2157 writel(val: work_LED, addr: ctrl->hpc_reg + LED_CONTROL);
2158 for (loop = 0; loop < num_of_slots; loop++) {
2159 set_SOGO(ctrl);
2160
2161 /* Wait for SOGO interrupt */
2162 wait_for_ctrl_irq(ctrl);
2163
2164 /* Get ready for next iteration */
2165 long_delay(delay: (3*HZ)/10);
2166 work_LED = work_LED >> 16;
2167 writel(val: work_LED, addr: ctrl->hpc_reg + LED_CONTROL);
2168
2169 set_SOGO(ctrl);
2170
2171 /* Wait for SOGO interrupt */
2172 wait_for_ctrl_irq(ctrl);
2173
2174 /* Get ready for next iteration */
2175 long_delay(delay: (3*HZ)/10);
2176 work_LED = work_LED << 16;
2177 writel(val: work_LED, addr: ctrl->hpc_reg + LED_CONTROL);
2178 work_LED = work_LED << 1;
2179 writel(val: work_LED, addr: ctrl->hpc_reg + LED_CONTROL);
2180 }
2181
2182 /* put it back the way it was */
2183 writel(val: save_LED, addr: ctrl->hpc_reg + LED_CONTROL);
2184
2185 set_SOGO(ctrl);
2186
2187 /* Wait for SOBS to be unset */
2188 wait_for_ctrl_irq(ctrl);
2189 break;
2190 case 2:
2191 /* Do other stuff here! */
2192 break;
2193 case 3:
2194 /* and more... */
2195 break;
2196 }
2197 return 0;
2198}
2199
2200
2201/**
2202 * configure_new_device - Configures the PCI header information of one board.
2203 * @ctrl: pointer to controller structure
2204 * @func: pointer to function structure
2205 * @behind_bridge: 1 if this is a recursive call, 0 if not
2206 * @resources: pointer to set of resource lists
2207 *
2208 * Returns 0 if success.
2209 */
2210static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
2211 u8 behind_bridge, struct resource_lists *resources)
2212{
2213 u8 temp_byte, function, max_functions, stop_it;
2214 int rc;
2215 u32 ID;
2216 struct pci_func *new_slot;
2217 int index;
2218
2219 new_slot = func;
2220
2221 dbg("%s\n", __func__);
2222 /* Check for Multi-function device */
2223 ctrl->pci_bus->number = func->bus;
2224 rc = pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(func->device, func->function), where: 0x0E, val: &temp_byte);
2225 if (rc) {
2226 dbg("%s: rc = %d\n", __func__, rc);
2227 return rc;
2228 }
2229
2230 if (temp_byte & 0x80) /* Multi-function device */
2231 max_functions = 8;
2232 else
2233 max_functions = 1;
2234
2235 function = 0;
2236
2237 do {
2238 rc = configure_new_function(ctrl, func: new_slot, behind_bridge, resources);
2239
2240 if (rc) {
2241 dbg("configure_new_function failed %d\n", rc);
2242 index = 0;
2243
2244 while (new_slot) {
2245 new_slot = cpqhp_slot_find(bus: new_slot->bus, device: new_slot->device, index: index++);
2246
2247 if (new_slot)
2248 cpqhp_return_board_resources(func: new_slot, resources);
2249 }
2250
2251 return rc;
2252 }
2253
2254 function++;
2255
2256 stop_it = 0;
2257
2258 /* The following loop skips to the next present function
2259 * and creates a board structure */
2260
2261 while ((function < max_functions) && (!stop_it)) {
2262 pci_bus_read_config_dword(bus: ctrl->pci_bus, PCI_DEVFN(func->device, function), where: 0x00, val: &ID);
2263
2264 if (PCI_POSSIBLE_ERROR(ID)) {
2265 function++;
2266 } else {
2267 /* Setup slot structure. */
2268 new_slot = cpqhp_slot_create(busnumber: func->bus);
2269
2270 if (new_slot == NULL)
2271 return 1;
2272
2273 new_slot->bus = func->bus;
2274 new_slot->device = func->device;
2275 new_slot->function = function;
2276 new_slot->is_a_board = 1;
2277 new_slot->status = 0;
2278
2279 stop_it++;
2280 }
2281 }
2282
2283 } while (function < max_functions);
2284 dbg("returning from configure_new_device\n");
2285
2286 return 0;
2287}
2288
2289
2290/*
2291 * Configuration logic that involves the hotplug data structures and
2292 * their bookkeeping
2293 */
2294
2295
2296/**
2297 * configure_new_function - Configures the PCI header information of one device
2298 * @ctrl: pointer to controller structure
2299 * @func: pointer to function structure
2300 * @behind_bridge: 1 if this is a recursive call, 0 if not
2301 * @resources: pointer to set of resource lists
2302 *
2303 * Calls itself recursively for bridged devices.
2304 * Returns 0 if success.
2305 */
2306static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2307 u8 behind_bridge,
2308 struct resource_lists *resources)
2309{
2310 int cloop;
2311 u8 IRQ = 0;
2312 u8 temp_byte;
2313 u8 device;
2314 u8 class_code;
2315 u16 command;
2316 u16 temp_word;
2317 u32 temp_dword;
2318 u32 rc;
2319 u32 temp_register;
2320 u32 base;
2321 u32 ID;
2322 unsigned int devfn;
2323 struct pci_resource *mem_node;
2324 struct pci_resource *p_mem_node;
2325 struct pci_resource *io_node;
2326 struct pci_resource *bus_node;
2327 struct pci_resource *hold_mem_node;
2328 struct pci_resource *hold_p_mem_node;
2329 struct pci_resource *hold_IO_node;
2330 struct pci_resource *hold_bus_node;
2331 struct irq_mapping irqs;
2332 struct pci_func *new_slot;
2333 struct pci_bus *pci_bus;
2334 struct resource_lists temp_resources;
2335
2336 pci_bus = ctrl->pci_bus;
2337 pci_bus->number = func->bus;
2338 devfn = PCI_DEVFN(func->device, func->function);
2339
2340 /* Check for Bridge */
2341 rc = pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_HEADER_TYPE, val: &temp_byte);
2342 if (rc)
2343 return rc;
2344
2345 if ((temp_byte & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
2346 /* set Primary bus */
2347 dbg("set Primary bus = %d\n", func->bus);
2348 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_PRIMARY_BUS, val: func->bus);
2349 if (rc)
2350 return rc;
2351
2352 /* find range of buses to use */
2353 dbg("find ranges of buses to use\n");
2354 bus_node = get_max_resource(head: &(resources->bus_head), size: 1);
2355
2356 /* If we don't have any buses to allocate, we can't continue */
2357 if (!bus_node)
2358 return -ENOMEM;
2359
2360 /* set Secondary bus */
2361 temp_byte = bus_node->base;
2362 dbg("set Secondary bus = %d\n", bus_node->base);
2363 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_SECONDARY_BUS, val: temp_byte);
2364 if (rc)
2365 return rc;
2366
2367 /* set subordinate bus */
2368 temp_byte = bus_node->base + bus_node->length - 1;
2369 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2370 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_SUBORDINATE_BUS, val: temp_byte);
2371 if (rc)
2372 return rc;
2373
2374 /* set subordinate Latency Timer and base Latency Timer */
2375 temp_byte = 0x40;
2376 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_SEC_LATENCY_TIMER, val: temp_byte);
2377 if (rc)
2378 return rc;
2379 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_LATENCY_TIMER, val: temp_byte);
2380 if (rc)
2381 return rc;
2382
2383 /* set Cache Line size */
2384 temp_byte = 0x08;
2385 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_CACHE_LINE_SIZE, val: temp_byte);
2386 if (rc)
2387 return rc;
2388
2389 /* Setup the IO, memory, and prefetchable windows */
2390 io_node = get_max_resource(head: &(resources->io_head), size: 0x1000);
2391 if (!io_node)
2392 return -ENOMEM;
2393 mem_node = get_max_resource(head: &(resources->mem_head), size: 0x100000);
2394 if (!mem_node)
2395 return -ENOMEM;
2396 p_mem_node = get_max_resource(head: &(resources->p_mem_head), size: 0x100000);
2397 if (!p_mem_node)
2398 return -ENOMEM;
2399 dbg("Setup the IO, memory, and prefetchable windows\n");
2400 dbg("io_node\n");
2401 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2402 io_node->length, io_node->next);
2403 dbg("mem_node\n");
2404 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2405 mem_node->length, mem_node->next);
2406 dbg("p_mem_node\n");
2407 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2408 p_mem_node->length, p_mem_node->next);
2409
2410 /* set up the IRQ info */
2411 if (!resources->irqs) {
2412 irqs.barber_pole = 0;
2413 irqs.interrupt[0] = 0;
2414 irqs.interrupt[1] = 0;
2415 irqs.interrupt[2] = 0;
2416 irqs.interrupt[3] = 0;
2417 irqs.valid_INT = 0;
2418 } else {
2419 irqs.barber_pole = resources->irqs->barber_pole;
2420 irqs.interrupt[0] = resources->irqs->interrupt[0];
2421 irqs.interrupt[1] = resources->irqs->interrupt[1];
2422 irqs.interrupt[2] = resources->irqs->interrupt[2];
2423 irqs.interrupt[3] = resources->irqs->interrupt[3];
2424 irqs.valid_INT = resources->irqs->valid_INT;
2425 }
2426
2427 /* set up resource lists that are now aligned on top and bottom
2428 * for anything behind the bridge. */
2429 temp_resources.bus_head = bus_node;
2430 temp_resources.io_head = io_node;
2431 temp_resources.mem_head = mem_node;
2432 temp_resources.p_mem_head = p_mem_node;
2433 temp_resources.irqs = &irqs;
2434
2435 /* Make copies of the nodes we are going to pass down so that
2436 * if there is a problem,we can just use these to free resources
2437 */
2438 hold_bus_node = kmalloc(size: sizeof(*hold_bus_node), GFP_KERNEL);
2439 hold_IO_node = kmalloc(size: sizeof(*hold_IO_node), GFP_KERNEL);
2440 hold_mem_node = kmalloc(size: sizeof(*hold_mem_node), GFP_KERNEL);
2441 hold_p_mem_node = kmalloc(size: sizeof(*hold_p_mem_node), GFP_KERNEL);
2442
2443 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2444 kfree(objp: hold_bus_node);
2445 kfree(objp: hold_IO_node);
2446 kfree(objp: hold_mem_node);
2447 kfree(objp: hold_p_mem_node);
2448
2449 return 1;
2450 }
2451
2452 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2453
2454 bus_node->base += 1;
2455 bus_node->length -= 1;
2456 bus_node->next = NULL;
2457
2458 /* If we have IO resources copy them and fill in the bridge's
2459 * IO range registers */
2460 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2461 io_node->next = NULL;
2462
2463 /* set IO base and Limit registers */
2464 temp_byte = io_node->base >> 8;
2465 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_IO_BASE, val: temp_byte);
2466
2467 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2468 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_IO_LIMIT, val: temp_byte);
2469
2470 /* Copy the memory resources and fill in the bridge's memory
2471 * range registers.
2472 */
2473 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2474 mem_node->next = NULL;
2475
2476 /* set Mem base and Limit registers */
2477 temp_word = mem_node->base >> 16;
2478 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_MEMORY_BASE, val: temp_word);
2479
2480 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2481 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_MEMORY_LIMIT, val: temp_word);
2482
2483 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2484 p_mem_node->next = NULL;
2485
2486 /* set Pre Mem base and Limit registers */
2487 temp_word = p_mem_node->base >> 16;
2488 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_PREF_MEMORY_BASE, val: temp_word);
2489
2490 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2491 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, val: temp_word);
2492
2493 /* Adjust this to compensate for extra adjustment in first loop
2494 */
2495 irqs.barber_pole--;
2496
2497 rc = 0;
2498
2499 /* Here we actually find the devices and configure them */
2500 for (device = 0; (device <= 0x1F) && !rc; device++) {
2501 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2502
2503 ID = 0xFFFFFFFF;
2504 pci_bus->number = hold_bus_node->base;
2505 pci_bus_read_config_dword(bus: pci_bus, PCI_DEVFN(device, 0), where: 0x00, val: &ID);
2506 pci_bus->number = func->bus;
2507
2508 if (!PCI_POSSIBLE_ERROR(ID)) { /* device present */
2509 /* Setup slot structure. */
2510 new_slot = cpqhp_slot_create(busnumber: hold_bus_node->base);
2511
2512 if (new_slot == NULL) {
2513 rc = -ENOMEM;
2514 continue;
2515 }
2516
2517 new_slot->bus = hold_bus_node->base;
2518 new_slot->device = device;
2519 new_slot->function = 0;
2520 new_slot->is_a_board = 1;
2521 new_slot->status = 0;
2522
2523 rc = configure_new_device(ctrl, func: new_slot, behind_bridge: 1, resources: &temp_resources);
2524 dbg("configure_new_device rc=0x%x\n", rc);
2525 } /* End of IF (device in slot?) */
2526 } /* End of FOR loop */
2527
2528 if (rc)
2529 goto free_and_out;
2530 /* save the interrupt routing information */
2531 if (resources->irqs) {
2532 resources->irqs->interrupt[0] = irqs.interrupt[0];
2533 resources->irqs->interrupt[1] = irqs.interrupt[1];
2534 resources->irqs->interrupt[2] = irqs.interrupt[2];
2535 resources->irqs->interrupt[3] = irqs.interrupt[3];
2536 resources->irqs->valid_INT = irqs.valid_INT;
2537 } else if (!behind_bridge) {
2538 /* We need to hook up the interrupts here */
2539 for (cloop = 0; cloop < 4; cloop++) {
2540 if (irqs.valid_INT & (0x01 << cloop)) {
2541 rc = cpqhp_set_irq(bus_num: func->bus, dev_num: func->device,
2542 int_pin: cloop + 1, irq_num: irqs.interrupt[cloop]);
2543 if (rc)
2544 goto free_and_out;
2545 }
2546 } /* end of for loop */
2547 }
2548 /* Return unused bus resources
2549 * First use the temporary node to store information for
2550 * the board */
2551 if (bus_node && temp_resources.bus_head) {
2552 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2553
2554 hold_bus_node->next = func->bus_head;
2555 func->bus_head = hold_bus_node;
2556
2557 temp_byte = temp_resources.bus_head->base - 1;
2558
2559 /* set subordinate bus */
2560 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_SUBORDINATE_BUS, val: temp_byte);
2561
2562 if (temp_resources.bus_head->length == 0) {
2563 kfree(objp: temp_resources.bus_head);
2564 temp_resources.bus_head = NULL;
2565 } else {
2566 return_resource(head: &(resources->bus_head), node: temp_resources.bus_head);
2567 }
2568 }
2569
2570 /* If we have IO space available and there is some left,
2571 * return the unused portion */
2572 if (hold_IO_node && temp_resources.io_head) {
2573 io_node = do_pre_bridge_resource_split(head: &(temp_resources.io_head),
2574 orig_head: &hold_IO_node, alignment: 0x1000);
2575
2576 /* Check if we were able to split something off */
2577 if (io_node) {
2578 hold_IO_node->base = io_node->base + io_node->length;
2579
2580 temp_byte = (hold_IO_node->base) >> 8;
2581 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_IO_BASE, val: temp_byte);
2582
2583 return_resource(head: &(resources->io_head), node: io_node);
2584 }
2585
2586 io_node = do_bridge_resource_split(head: &(temp_resources.io_head), alignment: 0x1000);
2587
2588 /* Check if we were able to split something off */
2589 if (io_node) {
2590 /* First use the temporary node to store
2591 * information for the board */
2592 hold_IO_node->length = io_node->base - hold_IO_node->base;
2593
2594 /* If we used any, add it to the board's list */
2595 if (hold_IO_node->length) {
2596 hold_IO_node->next = func->io_head;
2597 func->io_head = hold_IO_node;
2598
2599 temp_byte = (io_node->base - 1) >> 8;
2600 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_IO_LIMIT, val: temp_byte);
2601
2602 return_resource(head: &(resources->io_head), node: io_node);
2603 } else {
2604 /* it doesn't need any IO */
2605 temp_word = 0x0000;
2606 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_IO_LIMIT, val: temp_word);
2607
2608 return_resource(head: &(resources->io_head), node: io_node);
2609 kfree(objp: hold_IO_node);
2610 }
2611 } else {
2612 /* it used most of the range */
2613 hold_IO_node->next = func->io_head;
2614 func->io_head = hold_IO_node;
2615 }
2616 } else if (hold_IO_node) {
2617 /* it used the whole range */
2618 hold_IO_node->next = func->io_head;
2619 func->io_head = hold_IO_node;
2620 }
2621 /* If we have memory space available and there is some left,
2622 * return the unused portion */
2623 if (hold_mem_node && temp_resources.mem_head) {
2624 mem_node = do_pre_bridge_resource_split(head: &(temp_resources. mem_head),
2625 orig_head: &hold_mem_node, alignment: 0x100000);
2626
2627 /* Check if we were able to split something off */
2628 if (mem_node) {
2629 hold_mem_node->base = mem_node->base + mem_node->length;
2630
2631 temp_word = (hold_mem_node->base) >> 16;
2632 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_MEMORY_BASE, val: temp_word);
2633
2634 return_resource(head: &(resources->mem_head), node: mem_node);
2635 }
2636
2637 mem_node = do_bridge_resource_split(head: &(temp_resources.mem_head), alignment: 0x100000);
2638
2639 /* Check if we were able to split something off */
2640 if (mem_node) {
2641 /* First use the temporary node to store
2642 * information for the board */
2643 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2644
2645 if (hold_mem_node->length) {
2646 hold_mem_node->next = func->mem_head;
2647 func->mem_head = hold_mem_node;
2648
2649 /* configure end address */
2650 temp_word = (mem_node->base - 1) >> 16;
2651 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_MEMORY_LIMIT, val: temp_word);
2652
2653 /* Return unused resources to the pool */
2654 return_resource(head: &(resources->mem_head), node: mem_node);
2655 } else {
2656 /* it doesn't need any Mem */
2657 temp_word = 0x0000;
2658 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_MEMORY_LIMIT, val: temp_word);
2659
2660 return_resource(head: &(resources->mem_head), node: mem_node);
2661 kfree(objp: hold_mem_node);
2662 }
2663 } else {
2664 /* it used most of the range */
2665 hold_mem_node->next = func->mem_head;
2666 func->mem_head = hold_mem_node;
2667 }
2668 } else if (hold_mem_node) {
2669 /* it used the whole range */
2670 hold_mem_node->next = func->mem_head;
2671 func->mem_head = hold_mem_node;
2672 }
2673 /* If we have prefetchable memory space available and there
2674 * is some left at the end, return the unused portion */
2675 if (temp_resources.p_mem_head) {
2676 p_mem_node = do_pre_bridge_resource_split(head: &(temp_resources.p_mem_head),
2677 orig_head: &hold_p_mem_node, alignment: 0x100000);
2678
2679 /* Check if we were able to split something off */
2680 if (p_mem_node) {
2681 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2682
2683 temp_word = (hold_p_mem_node->base) >> 16;
2684 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_PREF_MEMORY_BASE, val: temp_word);
2685
2686 return_resource(head: &(resources->p_mem_head), node: p_mem_node);
2687 }
2688
2689 p_mem_node = do_bridge_resource_split(head: &(temp_resources.p_mem_head), alignment: 0x100000);
2690
2691 /* Check if we were able to split something off */
2692 if (p_mem_node) {
2693 /* First use the temporary node to store
2694 * information for the board */
2695 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2696
2697 /* If we used any, add it to the board's list */
2698 if (hold_p_mem_node->length) {
2699 hold_p_mem_node->next = func->p_mem_head;
2700 func->p_mem_head = hold_p_mem_node;
2701
2702 temp_word = (p_mem_node->base - 1) >> 16;
2703 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, val: temp_word);
2704
2705 return_resource(head: &(resources->p_mem_head), node: p_mem_node);
2706 } else {
2707 /* it doesn't need any PMem */
2708 temp_word = 0x0000;
2709 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, val: temp_word);
2710
2711 return_resource(head: &(resources->p_mem_head), node: p_mem_node);
2712 kfree(objp: hold_p_mem_node);
2713 }
2714 } else {
2715 /* it used the most of the range */
2716 hold_p_mem_node->next = func->p_mem_head;
2717 func->p_mem_head = hold_p_mem_node;
2718 }
2719 } else if (hold_p_mem_node) {
2720 /* it used the whole range */
2721 hold_p_mem_node->next = func->p_mem_head;
2722 func->p_mem_head = hold_p_mem_node;
2723 }
2724 /* We should be configuring an IRQ and the bridge's base address
2725 * registers if it needs them. Although we have never seen such
2726 * a device */
2727
2728 /* enable card */
2729 command = 0x0157; /* = PCI_COMMAND_IO |
2730 * PCI_COMMAND_MEMORY |
2731 * PCI_COMMAND_MASTER |
2732 * PCI_COMMAND_INVALIDATE |
2733 * PCI_COMMAND_PARITY |
2734 * PCI_COMMAND_SERR */
2735 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_COMMAND, val: command);
2736
2737 /* set Bridge Control Register */
2738 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2739 * PCI_BRIDGE_CTL_SERR |
2740 * PCI_BRIDGE_CTL_NO_ISA */
2741 rc = pci_bus_write_config_word(bus: pci_bus, devfn, PCI_BRIDGE_CONTROL, val: command);
2742 } else if ((temp_byte & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
2743 /* Standard device */
2744 rc = pci_bus_read_config_byte(bus: pci_bus, devfn, where: 0x0B, val: &class_code);
2745
2746 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2747 /* Display (video) adapter (not supported) */
2748 return DEVICE_TYPE_NOT_SUPPORTED;
2749 }
2750 /* Figure out IO and memory needs */
2751 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2752 temp_register = 0xFFFFFFFF;
2753
2754 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2755 rc = pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: temp_register);
2756
2757 rc = pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &temp_register);
2758 dbg("CND: base = 0x%x\n", temp_register);
2759
2760 if (temp_register) { /* If this register is implemented */
2761 if ((temp_register & 0x03L) == 0x01) {
2762 /* Map IO */
2763
2764 /* set base = amount of IO space */
2765 base = temp_register & 0xFFFFFFFC;
2766 base = ~base + 1;
2767
2768 dbg("CND: length = 0x%x\n", base);
2769 io_node = get_io_resource(head: &(resources->io_head), size: base);
2770 if (!io_node)
2771 return -ENOMEM;
2772 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2773 io_node->base, io_node->length, io_node->next);
2774 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2775
2776 /* allocate the resource to the board */
2777 base = io_node->base;
2778 io_node->next = func->io_head;
2779 func->io_head = io_node;
2780 } else if ((temp_register & 0x0BL) == 0x08) {
2781 /* Map prefetchable memory */
2782 base = temp_register & 0xFFFFFFF0;
2783 base = ~base + 1;
2784
2785 dbg("CND: length = 0x%x\n", base);
2786 p_mem_node = get_resource(head: &(resources->p_mem_head), size: base);
2787
2788 /* allocate the resource to the board */
2789 if (p_mem_node) {
2790 base = p_mem_node->base;
2791
2792 p_mem_node->next = func->p_mem_head;
2793 func->p_mem_head = p_mem_node;
2794 } else
2795 return -ENOMEM;
2796 } else if ((temp_register & 0x0BL) == 0x00) {
2797 /* Map memory */
2798 base = temp_register & 0xFFFFFFF0;
2799 base = ~base + 1;
2800
2801 dbg("CND: length = 0x%x\n", base);
2802 mem_node = get_resource(head: &(resources->mem_head), size: base);
2803
2804 /* allocate the resource to the board */
2805 if (mem_node) {
2806 base = mem_node->base;
2807
2808 mem_node->next = func->mem_head;
2809 func->mem_head = mem_node;
2810 } else
2811 return -ENOMEM;
2812 } else {
2813 /* Reserved bits or requesting space below 1M */
2814 return NOT_ENOUGH_RESOURCES;
2815 }
2816
2817 rc = pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: base);
2818
2819 /* Check for 64-bit base */
2820 if ((temp_register & 0x07L) == 0x04) {
2821 cloop += 4;
2822
2823 /* Upper 32 bits of address always zero
2824 * on today's systems */
2825 /* FIXME this is probably not true on
2826 * Alpha and ia64??? */
2827 base = 0;
2828 rc = pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: base);
2829 }
2830 }
2831 } /* End of base register loop */
2832 if (cpqhp_legacy_mode) {
2833 /* Figure out which interrupt pin this function uses */
2834 rc = pci_bus_read_config_byte(bus: pci_bus, devfn,
2835 PCI_INTERRUPT_PIN, val: &temp_byte);
2836
2837 /* If this function needs an interrupt and we are behind
2838 * a bridge and the pin is tied to something that's
2839 * already mapped, set this one the same */
2840 if (temp_byte && resources->irqs &&
2841 (resources->irqs->valid_INT &
2842 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2843 /* We have to share with something already set up */
2844 IRQ = resources->irqs->interrupt[(temp_byte +
2845 resources->irqs->barber_pole - 1) & 0x03];
2846 } else {
2847 /* Program IRQ based on card type */
2848 rc = pci_bus_read_config_byte(bus: pci_bus, devfn, where: 0x0B, val: &class_code);
2849
2850 if (class_code == PCI_BASE_CLASS_STORAGE)
2851 IRQ = cpqhp_disk_irq;
2852 else
2853 IRQ = cpqhp_nic_irq;
2854 }
2855
2856 /* IRQ Line */
2857 rc = pci_bus_write_config_byte(bus: pci_bus, devfn, PCI_INTERRUPT_LINE, val: IRQ);
2858 }
2859
2860 if (!behind_bridge) {
2861 rc = cpqhp_set_irq(bus_num: func->bus, dev_num: func->device, int_pin: temp_byte, irq_num: IRQ);
2862 if (rc)
2863 return 1;
2864 } else {
2865 /* TBD - this code may also belong in the other clause
2866 * of this If statement */
2867 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2868 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2869 }
2870
2871 /* Latency Timer */
2872 temp_byte = 0x40;
2873 rc = pci_bus_write_config_byte(bus: pci_bus, devfn,
2874 PCI_LATENCY_TIMER, val: temp_byte);
2875
2876 /* Cache Line size */
2877 temp_byte = 0x08;
2878 rc = pci_bus_write_config_byte(bus: pci_bus, devfn,
2879 PCI_CACHE_LINE_SIZE, val: temp_byte);
2880
2881 /* disable ROM base Address */
2882 temp_dword = 0x00L;
2883 rc = pci_bus_write_config_word(bus: pci_bus, devfn,
2884 PCI_ROM_ADDRESS, val: temp_dword);
2885
2886 /* enable card */
2887 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2888 * PCI_COMMAND_MEMORY |
2889 * PCI_COMMAND_MASTER |
2890 * PCI_COMMAND_INVALIDATE |
2891 * PCI_COMMAND_PARITY |
2892 * PCI_COMMAND_SERR */
2893 rc = pci_bus_write_config_word(bus: pci_bus, devfn,
2894 PCI_COMMAND, val: temp_word);
2895 } else { /* End of Not-A-Bridge else */
2896 /* It's some strange type of PCI adapter (Cardbus?) */
2897 return DEVICE_TYPE_NOT_SUPPORTED;
2898 }
2899
2900 func->configured = 1;
2901
2902 return 0;
2903free_and_out:
2904 cpqhp_destroy_resource_list(resources: &temp_resources);
2905
2906 return_resource(head: &(resources->bus_head), node: hold_bus_node);
2907 return_resource(head: &(resources->io_head), node: hold_IO_node);
2908 return_resource(head: &(resources->mem_head), node: hold_mem_node);
2909 return_resource(head: &(resources->p_mem_head), node: hold_p_mem_node);
2910 return rc;
2911}
2912

source code of linux/drivers/pci/hotplug/cpqphp_ctrl.c