1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * PCI Bus Services, see include/linux/pci.h for further explanation. |
4 | * |
5 | * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, |
6 | * David Mosberger-Tang |
7 | * |
8 | * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> |
9 | */ |
10 | |
11 | #include <linux/acpi.h> |
12 | #include <linux/kernel.h> |
13 | #include <linux/delay.h> |
14 | #include <linux/dmi.h> |
15 | #include <linux/init.h> |
16 | #include <linux/msi.h> |
17 | #include <linux/of.h> |
18 | #include <linux/pci.h> |
19 | #include <linux/pm.h> |
20 | #include <linux/slab.h> |
21 | #include <linux/module.h> |
22 | #include <linux/spinlock.h> |
23 | #include <linux/string.h> |
24 | #include <linux/log2.h> |
25 | #include <linux/logic_pio.h> |
26 | #include <linux/pm_wakeup.h> |
27 | #include <linux/device.h> |
28 | #include <linux/pm_runtime.h> |
29 | #include <linux/pci_hotplug.h> |
30 | #include <linux/vmalloc.h> |
31 | #include <asm/dma.h> |
32 | #include <linux/aer.h> |
33 | #include <linux/bitfield.h> |
34 | #include "pci.h" |
35 | |
36 | DEFINE_MUTEX(pci_slot_mutex); |
37 | |
38 | const char *pci_power_names[] = { |
39 | "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", |
40 | }; |
41 | EXPORT_SYMBOL_GPL(pci_power_names); |
42 | |
43 | #ifdef CONFIG_X86_32 |
44 | int isa_dma_bridge_buggy; |
45 | EXPORT_SYMBOL(isa_dma_bridge_buggy); |
46 | #endif |
47 | |
48 | int pci_pci_problems; |
49 | EXPORT_SYMBOL(pci_pci_problems); |
50 | |
51 | unsigned int pci_pm_d3hot_delay; |
52 | |
53 | static void pci_pme_list_scan(struct work_struct *work); |
54 | |
55 | static LIST_HEAD(pci_pme_list); |
56 | static DEFINE_MUTEX(pci_pme_list_mutex); |
57 | static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); |
58 | |
59 | struct pci_pme_device { |
60 | struct list_head list; |
61 | struct pci_dev *dev; |
62 | }; |
63 | |
64 | #define PME_TIMEOUT 1000 /* How long between PME checks */ |
65 | |
66 | /* |
67 | * Following exit from Conventional Reset, devices must be ready within 1 sec |
68 | * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional |
69 | * Reset (PCIe r6.0 sec 5.8). |
70 | */ |
71 | #define PCI_RESET_WAIT 1000 /* msec */ |
72 | |
73 | /* |
74 | * Devices may extend the 1 sec period through Request Retry Status |
75 | * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper |
76 | * limit, but 60 sec ought to be enough for any device to become |
77 | * responsive. |
78 | */ |
79 | #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ |
80 | |
81 | static void pci_dev_d3_sleep(struct pci_dev *dev) |
82 | { |
83 | unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); |
84 | unsigned int upper; |
85 | |
86 | if (delay_ms) { |
87 | /* Use a 20% upper bound, 1ms minimum */ |
88 | upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); |
89 | usleep_range(min: delay_ms * USEC_PER_MSEC, |
90 | max: (delay_ms + upper) * USEC_PER_MSEC); |
91 | } |
92 | } |
93 | |
94 | bool pci_reset_supported(struct pci_dev *dev) |
95 | { |
96 | return dev->reset_methods[0] != 0; |
97 | } |
98 | |
99 | #ifdef CONFIG_PCI_DOMAINS |
100 | int pci_domains_supported = 1; |
101 | #endif |
102 | |
103 | #define DEFAULT_CARDBUS_IO_SIZE (256) |
104 | #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) |
105 | /* pci=cbmemsize=nnM,cbiosize=nn can override this */ |
106 | unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; |
107 | unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; |
108 | |
109 | #define DEFAULT_HOTPLUG_IO_SIZE (256) |
110 | #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) |
111 | #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) |
112 | /* hpiosize=nn can override this */ |
113 | unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; |
114 | /* |
115 | * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, |
116 | * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; |
117 | * pci=hpmemsize=nnM overrides both |
118 | */ |
119 | unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; |
120 | unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; |
121 | |
122 | #define DEFAULT_HOTPLUG_BUS_SIZE 1 |
123 | unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; |
124 | |
125 | |
126 | /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ |
127 | #ifdef CONFIG_PCIE_BUS_TUNE_OFF |
128 | enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; |
129 | #elif defined CONFIG_PCIE_BUS_SAFE |
130 | enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; |
131 | #elif defined CONFIG_PCIE_BUS_PERFORMANCE |
132 | enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; |
133 | #elif defined CONFIG_PCIE_BUS_PEER2PEER |
134 | enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; |
135 | #else |
136 | enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; |
137 | #endif |
138 | |
139 | /* |
140 | * The default CLS is used if arch didn't set CLS explicitly and not |
141 | * all pci devices agree on the same value. Arch can override either |
142 | * the dfl or actual value as it sees fit. Don't forget this is |
143 | * measured in 32-bit words, not bytes. |
144 | */ |
145 | u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; |
146 | u8 pci_cache_line_size; |
147 | |
148 | /* |
149 | * If we set up a device for bus mastering, we need to check the latency |
150 | * timer as certain BIOSes forget to set it properly. |
151 | */ |
152 | unsigned int pcibios_max_latency = 255; |
153 | |
154 | /* If set, the PCIe ARI capability will not be used. */ |
155 | static bool pcie_ari_disabled; |
156 | |
157 | /* If set, the PCIe ATS capability will not be used. */ |
158 | static bool pcie_ats_disabled; |
159 | |
160 | /* If set, the PCI config space of each device is printed during boot. */ |
161 | bool pci_early_dump; |
162 | |
163 | bool pci_ats_disabled(void) |
164 | { |
165 | return pcie_ats_disabled; |
166 | } |
167 | EXPORT_SYMBOL_GPL(pci_ats_disabled); |
168 | |
169 | /* Disable bridge_d3 for all PCIe ports */ |
170 | static bool pci_bridge_d3_disable; |
171 | /* Force bridge_d3 for all PCIe ports */ |
172 | static bool pci_bridge_d3_force; |
173 | |
174 | static int __init pcie_port_pm_setup(char *str) |
175 | { |
176 | if (!strcmp(str, "off")) |
177 | pci_bridge_d3_disable = true; |
178 | else if (!strcmp(str, "force")) |
179 | pci_bridge_d3_force = true; |
180 | return 1; |
181 | } |
182 | __setup("pcie_port_pm=", pcie_port_pm_setup); |
183 | |
184 | /** |
185 | * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children |
186 | * @bus: pointer to PCI bus structure to search |
187 | * |
188 | * Given a PCI bus, returns the highest PCI bus number present in the set |
189 | * including the given PCI bus and its list of child PCI buses. |
190 | */ |
191 | unsigned char pci_bus_max_busnr(struct pci_bus *bus) |
192 | { |
193 | struct pci_bus *tmp; |
194 | unsigned char max, n; |
195 | |
196 | max = bus->busn_res.end; |
197 | list_for_each_entry(tmp, &bus->children, node) { |
198 | n = pci_bus_max_busnr(bus: tmp); |
199 | if (n > max) |
200 | max = n; |
201 | } |
202 | return max; |
203 | } |
204 | EXPORT_SYMBOL_GPL(pci_bus_max_busnr); |
205 | |
206 | /** |
207 | * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS |
208 | * @pdev: the PCI device |
209 | * |
210 | * Returns error bits set in PCI_STATUS and clears them. |
211 | */ |
212 | int pci_status_get_and_clear_errors(struct pci_dev *pdev) |
213 | { |
214 | u16 status; |
215 | int ret; |
216 | |
217 | ret = pci_read_config_word(dev: pdev, PCI_STATUS, val: &status); |
218 | if (ret != PCIBIOS_SUCCESSFUL) |
219 | return -EIO; |
220 | |
221 | status &= PCI_STATUS_ERROR_BITS; |
222 | if (status) |
223 | pci_write_config_word(dev: pdev, PCI_STATUS, val: status); |
224 | |
225 | return status; |
226 | } |
227 | EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); |
228 | |
229 | #ifdef CONFIG_HAS_IOMEM |
230 | static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, |
231 | bool write_combine) |
232 | { |
233 | struct resource *res = &pdev->resource[bar]; |
234 | resource_size_t start = res->start; |
235 | resource_size_t size = resource_size(res); |
236 | |
237 | /* |
238 | * Make sure the BAR is actually a memory resource, not an IO resource |
239 | */ |
240 | if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { |
241 | pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); |
242 | return NULL; |
243 | } |
244 | |
245 | if (write_combine) |
246 | return ioremap_wc(offset: start, size); |
247 | |
248 | return ioremap(offset: start, size); |
249 | } |
250 | |
251 | void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) |
252 | { |
253 | return __pci_ioremap_resource(pdev, bar, write_combine: false); |
254 | } |
255 | EXPORT_SYMBOL_GPL(pci_ioremap_bar); |
256 | |
257 | void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) |
258 | { |
259 | return __pci_ioremap_resource(pdev, bar, write_combine: true); |
260 | } |
261 | EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); |
262 | #endif |
263 | |
264 | /** |
265 | * pci_dev_str_match_path - test if a path string matches a device |
266 | * @dev: the PCI device to test |
267 | * @path: string to match the device against |
268 | * @endptr: pointer to the string after the match |
269 | * |
270 | * Test if a string (typically from a kernel parameter) formatted as a |
271 | * path of device/function addresses matches a PCI device. The string must |
272 | * be of the form: |
273 | * |
274 | * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* |
275 | * |
276 | * A path for a device can be obtained using 'lspci -t'. Using a path |
277 | * is more robust against bus renumbering than using only a single bus, |
278 | * device and function address. |
279 | * |
280 | * Returns 1 if the string matches the device, 0 if it does not and |
281 | * a negative error code if it fails to parse the string. |
282 | */ |
283 | static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, |
284 | const char **endptr) |
285 | { |
286 | int ret; |
287 | unsigned int seg, bus, slot, func; |
288 | char *wpath, *p; |
289 | char end; |
290 | |
291 | *endptr = strchrnul(path, ';'); |
292 | |
293 | wpath = kmemdup_nul(s: path, len: *endptr - path, GFP_ATOMIC); |
294 | if (!wpath) |
295 | return -ENOMEM; |
296 | |
297 | while (1) { |
298 | p = strrchr(wpath, '/'); |
299 | if (!p) |
300 | break; |
301 | ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); |
302 | if (ret != 2) { |
303 | ret = -EINVAL; |
304 | goto free_and_exit; |
305 | } |
306 | |
307 | if (dev->devfn != PCI_DEVFN(slot, func)) { |
308 | ret = 0; |
309 | goto free_and_exit; |
310 | } |
311 | |
312 | /* |
313 | * Note: we don't need to get a reference to the upstream |
314 | * bridge because we hold a reference to the top level |
315 | * device which should hold a reference to the bridge, |
316 | * and so on. |
317 | */ |
318 | dev = pci_upstream_bridge(dev); |
319 | if (!dev) { |
320 | ret = 0; |
321 | goto free_and_exit; |
322 | } |
323 | |
324 | *p = 0; |
325 | } |
326 | |
327 | ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, |
328 | &func, &end); |
329 | if (ret != 4) { |
330 | seg = 0; |
331 | ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); |
332 | if (ret != 3) { |
333 | ret = -EINVAL; |
334 | goto free_and_exit; |
335 | } |
336 | } |
337 | |
338 | ret = (seg == pci_domain_nr(bus: dev->bus) && |
339 | bus == dev->bus->number && |
340 | dev->devfn == PCI_DEVFN(slot, func)); |
341 | |
342 | free_and_exit: |
343 | kfree(objp: wpath); |
344 | return ret; |
345 | } |
346 | |
347 | /** |
348 | * pci_dev_str_match - test if a string matches a device |
349 | * @dev: the PCI device to test |
350 | * @p: string to match the device against |
351 | * @endptr: pointer to the string after the match |
352 | * |
353 | * Test if a string (typically from a kernel parameter) matches a specified |
354 | * PCI device. The string may be of one of the following formats: |
355 | * |
356 | * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* |
357 | * pci:<vendor>:<device>[:<subvendor>:<subdevice>] |
358 | * |
359 | * The first format specifies a PCI bus/device/function address which |
360 | * may change if new hardware is inserted, if motherboard firmware changes, |
361 | * or due to changes caused in kernel parameters. If the domain is |
362 | * left unspecified, it is taken to be 0. In order to be robust against |
363 | * bus renumbering issues, a path of PCI device/function numbers may be used |
364 | * to address the specific device. The path for a device can be determined |
365 | * through the use of 'lspci -t'. |
366 | * |
367 | * The second format matches devices using IDs in the configuration |
368 | * space which may match multiple devices in the system. A value of 0 |
369 | * for any field will match all devices. (Note: this differs from |
370 | * in-kernel code that uses PCI_ANY_ID which is ~0; this is for |
371 | * legacy reasons and convenience so users don't have to specify |
372 | * FFFFFFFFs on the command line.) |
373 | * |
374 | * Returns 1 if the string matches the device, 0 if it does not and |
375 | * a negative error code if the string cannot be parsed. |
376 | */ |
377 | static int pci_dev_str_match(struct pci_dev *dev, const char *p, |
378 | const char **endptr) |
379 | { |
380 | int ret; |
381 | int count; |
382 | unsigned short vendor, device, subsystem_vendor, subsystem_device; |
383 | |
384 | if (strncmp(p, "pci:", 4) == 0) { |
385 | /* PCI vendor/device (subvendor/subdevice) IDs are specified */ |
386 | p += 4; |
387 | ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, |
388 | &subsystem_vendor, &subsystem_device, &count); |
389 | if (ret != 4) { |
390 | ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); |
391 | if (ret != 2) |
392 | return -EINVAL; |
393 | |
394 | subsystem_vendor = 0; |
395 | subsystem_device = 0; |
396 | } |
397 | |
398 | p += count; |
399 | |
400 | if ((!vendor || vendor == dev->vendor) && |
401 | (!device || device == dev->device) && |
402 | (!subsystem_vendor || |
403 | subsystem_vendor == dev->subsystem_vendor) && |
404 | (!subsystem_device || |
405 | subsystem_device == dev->subsystem_device)) |
406 | goto found; |
407 | } else { |
408 | /* |
409 | * PCI Bus, Device, Function IDs are specified |
410 | * (optionally, may include a path of devfns following it) |
411 | */ |
412 | ret = pci_dev_str_match_path(dev, path: p, endptr: &p); |
413 | if (ret < 0) |
414 | return ret; |
415 | else if (ret) |
416 | goto found; |
417 | } |
418 | |
419 | *endptr = p; |
420 | return 0; |
421 | |
422 | found: |
423 | *endptr = p; |
424 | return 1; |
425 | } |
426 | |
427 | static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, |
428 | u8 pos, int cap, int *ttl) |
429 | { |
430 | u8 id; |
431 | u16 ent; |
432 | |
433 | pci_bus_read_config_byte(bus, devfn, where: pos, val: &pos); |
434 | |
435 | while ((*ttl)--) { |
436 | if (pos < 0x40) |
437 | break; |
438 | pos &= ~3; |
439 | pci_bus_read_config_word(bus, devfn, where: pos, val: &ent); |
440 | |
441 | id = ent & 0xff; |
442 | if (id == 0xff) |
443 | break; |
444 | if (id == cap) |
445 | return pos; |
446 | pos = (ent >> 8); |
447 | } |
448 | return 0; |
449 | } |
450 | |
451 | static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, |
452 | u8 pos, int cap) |
453 | { |
454 | int ttl = PCI_FIND_CAP_TTL; |
455 | |
456 | return __pci_find_next_cap_ttl(bus, devfn, pos, cap, ttl: &ttl); |
457 | } |
458 | |
459 | u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) |
460 | { |
461 | return __pci_find_next_cap(bus: dev->bus, devfn: dev->devfn, |
462 | pos: pos + PCI_CAP_LIST_NEXT, cap); |
463 | } |
464 | EXPORT_SYMBOL_GPL(pci_find_next_capability); |
465 | |
466 | static u8 __pci_bus_find_cap_start(struct pci_bus *bus, |
467 | unsigned int devfn, u8 hdr_type) |
468 | { |
469 | u16 status; |
470 | |
471 | pci_bus_read_config_word(bus, devfn, PCI_STATUS, val: &status); |
472 | if (!(status & PCI_STATUS_CAP_LIST)) |
473 | return 0; |
474 | |
475 | switch (hdr_type) { |
476 | case PCI_HEADER_TYPE_NORMAL: |
477 | case PCI_HEADER_TYPE_BRIDGE: |
478 | return PCI_CAPABILITY_LIST; |
479 | case PCI_HEADER_TYPE_CARDBUS: |
480 | return PCI_CB_CAPABILITY_LIST; |
481 | } |
482 | |
483 | return 0; |
484 | } |
485 | |
486 | /** |
487 | * pci_find_capability - query for devices' capabilities |
488 | * @dev: PCI device to query |
489 | * @cap: capability code |
490 | * |
491 | * Tell if a device supports a given PCI capability. |
492 | * Returns the address of the requested capability structure within the |
493 | * device's PCI configuration space or 0 in case the device does not |
494 | * support it. Possible values for @cap include: |
495 | * |
496 | * %PCI_CAP_ID_PM Power Management |
497 | * %PCI_CAP_ID_AGP Accelerated Graphics Port |
498 | * %PCI_CAP_ID_VPD Vital Product Data |
499 | * %PCI_CAP_ID_SLOTID Slot Identification |
500 | * %PCI_CAP_ID_MSI Message Signalled Interrupts |
501 | * %PCI_CAP_ID_CHSWP CompactPCI HotSwap |
502 | * %PCI_CAP_ID_PCIX PCI-X |
503 | * %PCI_CAP_ID_EXP PCI Express |
504 | */ |
505 | u8 pci_find_capability(struct pci_dev *dev, int cap) |
506 | { |
507 | u8 pos; |
508 | |
509 | pos = __pci_bus_find_cap_start(bus: dev->bus, devfn: dev->devfn, hdr_type: dev->hdr_type); |
510 | if (pos) |
511 | pos = __pci_find_next_cap(bus: dev->bus, devfn: dev->devfn, pos, cap); |
512 | |
513 | return pos; |
514 | } |
515 | EXPORT_SYMBOL(pci_find_capability); |
516 | |
517 | /** |
518 | * pci_bus_find_capability - query for devices' capabilities |
519 | * @bus: the PCI bus to query |
520 | * @devfn: PCI device to query |
521 | * @cap: capability code |
522 | * |
523 | * Like pci_find_capability() but works for PCI devices that do not have a |
524 | * pci_dev structure set up yet. |
525 | * |
526 | * Returns the address of the requested capability structure within the |
527 | * device's PCI configuration space or 0 in case the device does not |
528 | * support it. |
529 | */ |
530 | u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) |
531 | { |
532 | u8 hdr_type, pos; |
533 | |
534 | pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, val: &hdr_type); |
535 | |
536 | pos = __pci_bus_find_cap_start(bus, devfn, hdr_type: hdr_type & PCI_HEADER_TYPE_MASK); |
537 | if (pos) |
538 | pos = __pci_find_next_cap(bus, devfn, pos, cap); |
539 | |
540 | return pos; |
541 | } |
542 | EXPORT_SYMBOL(pci_bus_find_capability); |
543 | |
544 | /** |
545 | * pci_find_next_ext_capability - Find an extended capability |
546 | * @dev: PCI device to query |
547 | * @start: address at which to start looking (0 to start at beginning of list) |
548 | * @cap: capability code |
549 | * |
550 | * Returns the address of the next matching extended capability structure |
551 | * within the device's PCI configuration space or 0 if the device does |
552 | * not support it. Some capabilities can occur several times, e.g., the |
553 | * vendor-specific capability, and this provides a way to find them all. |
554 | */ |
555 | u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) |
556 | { |
557 | u32 header; |
558 | int ttl; |
559 | u16 pos = PCI_CFG_SPACE_SIZE; |
560 | |
561 | /* minimum 8 bytes per capability */ |
562 | ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; |
563 | |
564 | if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) |
565 | return 0; |
566 | |
567 | if (start) |
568 | pos = start; |
569 | |
570 | if (pci_read_config_dword(dev, where: pos, val: &header) != PCIBIOS_SUCCESSFUL) |
571 | return 0; |
572 | |
573 | /* |
574 | * If we have no capabilities, this is indicated by cap ID, |
575 | * cap version and next pointer all being 0. |
576 | */ |
577 | if (header == 0) |
578 | return 0; |
579 | |
580 | while (ttl-- > 0) { |
581 | if (PCI_EXT_CAP_ID(header) == cap && pos != start) |
582 | return pos; |
583 | |
584 | pos = PCI_EXT_CAP_NEXT(header); |
585 | if (pos < PCI_CFG_SPACE_SIZE) |
586 | break; |
587 | |
588 | if (pci_read_config_dword(dev, where: pos, val: &header) != PCIBIOS_SUCCESSFUL) |
589 | break; |
590 | } |
591 | |
592 | return 0; |
593 | } |
594 | EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); |
595 | |
596 | /** |
597 | * pci_find_ext_capability - Find an extended capability |
598 | * @dev: PCI device to query |
599 | * @cap: capability code |
600 | * |
601 | * Returns the address of the requested extended capability structure |
602 | * within the device's PCI configuration space or 0 if the device does |
603 | * not support it. Possible values for @cap include: |
604 | * |
605 | * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting |
606 | * %PCI_EXT_CAP_ID_VC Virtual Channel |
607 | * %PCI_EXT_CAP_ID_DSN Device Serial Number |
608 | * %PCI_EXT_CAP_ID_PWR Power Budgeting |
609 | */ |
610 | u16 pci_find_ext_capability(struct pci_dev *dev, int cap) |
611 | { |
612 | return pci_find_next_ext_capability(dev, 0, cap); |
613 | } |
614 | EXPORT_SYMBOL_GPL(pci_find_ext_capability); |
615 | |
616 | /** |
617 | * pci_get_dsn - Read and return the 8-byte Device Serial Number |
618 | * @dev: PCI device to query |
619 | * |
620 | * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial |
621 | * Number. |
622 | * |
623 | * Returns the DSN, or zero if the capability does not exist. |
624 | */ |
625 | u64 pci_get_dsn(struct pci_dev *dev) |
626 | { |
627 | u32 dword; |
628 | u64 dsn; |
629 | int pos; |
630 | |
631 | pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); |
632 | if (!pos) |
633 | return 0; |
634 | |
635 | /* |
636 | * The Device Serial Number is two dwords offset 4 bytes from the |
637 | * capability position. The specification says that the first dword is |
638 | * the lower half, and the second dword is the upper half. |
639 | */ |
640 | pos += 4; |
641 | pci_read_config_dword(dev, where: pos, val: &dword); |
642 | dsn = (u64)dword; |
643 | pci_read_config_dword(dev, where: pos + 4, val: &dword); |
644 | dsn |= ((u64)dword) << 32; |
645 | |
646 | return dsn; |
647 | } |
648 | EXPORT_SYMBOL_GPL(pci_get_dsn); |
649 | |
650 | static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) |
651 | { |
652 | int rc, ttl = PCI_FIND_CAP_TTL; |
653 | u8 cap, mask; |
654 | |
655 | if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) |
656 | mask = HT_3BIT_CAP_MASK; |
657 | else |
658 | mask = HT_5BIT_CAP_MASK; |
659 | |
660 | pos = __pci_find_next_cap_ttl(bus: dev->bus, devfn: dev->devfn, pos, |
661 | PCI_CAP_ID_HT, ttl: &ttl); |
662 | while (pos) { |
663 | rc = pci_read_config_byte(dev, where: pos + 3, val: &cap); |
664 | if (rc != PCIBIOS_SUCCESSFUL) |
665 | return 0; |
666 | |
667 | if ((cap & mask) == ht_cap) |
668 | return pos; |
669 | |
670 | pos = __pci_find_next_cap_ttl(bus: dev->bus, devfn: dev->devfn, |
671 | pos: pos + PCI_CAP_LIST_NEXT, |
672 | PCI_CAP_ID_HT, ttl: &ttl); |
673 | } |
674 | |
675 | return 0; |
676 | } |
677 | |
678 | /** |
679 | * pci_find_next_ht_capability - query a device's HyperTransport capabilities |
680 | * @dev: PCI device to query |
681 | * @pos: Position from which to continue searching |
682 | * @ht_cap: HyperTransport capability code |
683 | * |
684 | * To be used in conjunction with pci_find_ht_capability() to search for |
685 | * all capabilities matching @ht_cap. @pos should always be a value returned |
686 | * from pci_find_ht_capability(). |
687 | * |
688 | * NB. To be 100% safe against broken PCI devices, the caller should take |
689 | * steps to avoid an infinite loop. |
690 | */ |
691 | u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) |
692 | { |
693 | return __pci_find_next_ht_cap(dev, pos: pos + PCI_CAP_LIST_NEXT, ht_cap); |
694 | } |
695 | EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); |
696 | |
697 | /** |
698 | * pci_find_ht_capability - query a device's HyperTransport capabilities |
699 | * @dev: PCI device to query |
700 | * @ht_cap: HyperTransport capability code |
701 | * |
702 | * Tell if a device supports a given HyperTransport capability. |
703 | * Returns an address within the device's PCI configuration space |
704 | * or 0 in case the device does not support the request capability. |
705 | * The address points to the PCI capability, of type PCI_CAP_ID_HT, |
706 | * which has a HyperTransport capability matching @ht_cap. |
707 | */ |
708 | u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) |
709 | { |
710 | u8 pos; |
711 | |
712 | pos = __pci_bus_find_cap_start(bus: dev->bus, devfn: dev->devfn, hdr_type: dev->hdr_type); |
713 | if (pos) |
714 | pos = __pci_find_next_ht_cap(dev, pos, ht_cap); |
715 | |
716 | return pos; |
717 | } |
718 | EXPORT_SYMBOL_GPL(pci_find_ht_capability); |
719 | |
720 | /** |
721 | * pci_find_vsec_capability - Find a vendor-specific extended capability |
722 | * @dev: PCI device to query |
723 | * @vendor: Vendor ID for which capability is defined |
724 | * @cap: Vendor-specific capability ID |
725 | * |
726 | * If @dev has Vendor ID @vendor, search for a VSEC capability with |
727 | * VSEC ID @cap. If found, return the capability offset in |
728 | * config space; otherwise return 0. |
729 | */ |
730 | u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) |
731 | { |
732 | u16 vsec = 0; |
733 | u32 header; |
734 | int ret; |
735 | |
736 | if (vendor != dev->vendor) |
737 | return 0; |
738 | |
739 | while ((vsec = pci_find_next_ext_capability(dev, vsec, |
740 | PCI_EXT_CAP_ID_VNDR))) { |
741 | ret = pci_read_config_dword(dev, where: vsec + PCI_VNDR_HEADER, val: &header); |
742 | if (ret != PCIBIOS_SUCCESSFUL) |
743 | continue; |
744 | |
745 | if (PCI_VNDR_HEADER_ID(header) == cap) |
746 | return vsec; |
747 | } |
748 | |
749 | return 0; |
750 | } |
751 | EXPORT_SYMBOL_GPL(pci_find_vsec_capability); |
752 | |
753 | /** |
754 | * pci_find_dvsec_capability - Find DVSEC for vendor |
755 | * @dev: PCI device to query |
756 | * @vendor: Vendor ID to match for the DVSEC |
757 | * @dvsec: Designated Vendor-specific capability ID |
758 | * |
759 | * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability |
760 | * offset in config space; otherwise return 0. |
761 | */ |
762 | u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) |
763 | { |
764 | int pos; |
765 | |
766 | pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); |
767 | if (!pos) |
768 | return 0; |
769 | |
770 | while (pos) { |
771 | u16 v, id; |
772 | |
773 | pci_read_config_word(dev, where: pos + PCI_DVSEC_HEADER1, val: &v); |
774 | pci_read_config_word(dev, where: pos + PCI_DVSEC_HEADER2, val: &id); |
775 | if (vendor == v && dvsec == id) |
776 | return pos; |
777 | |
778 | pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); |
779 | } |
780 | |
781 | return 0; |
782 | } |
783 | EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); |
784 | |
785 | /** |
786 | * pci_find_parent_resource - return resource region of parent bus of given |
787 | * region |
788 | * @dev: PCI device structure contains resources to be searched |
789 | * @res: child resource record for which parent is sought |
790 | * |
791 | * For given resource region of given device, return the resource region of |
792 | * parent bus the given region is contained in. |
793 | */ |
794 | struct resource *pci_find_parent_resource(const struct pci_dev *dev, |
795 | struct resource *res) |
796 | { |
797 | const struct pci_bus *bus = dev->bus; |
798 | struct resource *r; |
799 | |
800 | pci_bus_for_each_resource(bus, r) { |
801 | if (!r) |
802 | continue; |
803 | if (resource_contains(r1: r, r2: res)) { |
804 | |
805 | /* |
806 | * If the window is prefetchable but the BAR is |
807 | * not, the allocator made a mistake. |
808 | */ |
809 | if (r->flags & IORESOURCE_PREFETCH && |
810 | !(res->flags & IORESOURCE_PREFETCH)) |
811 | return NULL; |
812 | |
813 | /* |
814 | * If we're below a transparent bridge, there may |
815 | * be both a positively-decoded aperture and a |
816 | * subtractively-decoded region that contain the BAR. |
817 | * We want the positively-decoded one, so this depends |
818 | * on pci_bus_for_each_resource() giving us those |
819 | * first. |
820 | */ |
821 | return r; |
822 | } |
823 | } |
824 | return NULL; |
825 | } |
826 | EXPORT_SYMBOL(pci_find_parent_resource); |
827 | |
828 | /** |
829 | * pci_find_resource - Return matching PCI device resource |
830 | * @dev: PCI device to query |
831 | * @res: Resource to look for |
832 | * |
833 | * Goes over standard PCI resources (BARs) and checks if the given resource |
834 | * is partially or fully contained in any of them. In that case the |
835 | * matching resource is returned, %NULL otherwise. |
836 | */ |
837 | struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) |
838 | { |
839 | int i; |
840 | |
841 | for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
842 | struct resource *r = &dev->resource[i]; |
843 | |
844 | if (r->start && resource_contains(r1: r, r2: res)) |
845 | return r; |
846 | } |
847 | |
848 | return NULL; |
849 | } |
850 | EXPORT_SYMBOL(pci_find_resource); |
851 | |
852 | /** |
853 | * pci_resource_name - Return the name of the PCI resource |
854 | * @dev: PCI device to query |
855 | * @i: index of the resource |
856 | * |
857 | * Return the standard PCI resource (BAR) name according to their index. |
858 | */ |
859 | const char *pci_resource_name(struct pci_dev *dev, unsigned int i) |
860 | { |
861 | static const char * const bar_name[] = { |
862 | "BAR 0", |
863 | "BAR 1", |
864 | "BAR 2", |
865 | "BAR 3", |
866 | "BAR 4", |
867 | "BAR 5", |
868 | "ROM", |
869 | #ifdef CONFIG_PCI_IOV |
870 | "VF BAR 0", |
871 | "VF BAR 1", |
872 | "VF BAR 2", |
873 | "VF BAR 3", |
874 | "VF BAR 4", |
875 | "VF BAR 5", |
876 | #endif |
877 | "bridge window", /* "io" included in %pR */ |
878 | "bridge window", /* "mem" included in %pR */ |
879 | "bridge window", /* "mem pref" included in %pR */ |
880 | }; |
881 | static const char * const cardbus_name[] = { |
882 | "BAR 1", |
883 | "unknown", |
884 | "unknown", |
885 | "unknown", |
886 | "unknown", |
887 | "unknown", |
888 | #ifdef CONFIG_PCI_IOV |
889 | "unknown", |
890 | "unknown", |
891 | "unknown", |
892 | "unknown", |
893 | "unknown", |
894 | "unknown", |
895 | #endif |
896 | "CardBus bridge window 0", /* I/O */ |
897 | "CardBus bridge window 1", /* I/O */ |
898 | "CardBus bridge window 0", /* mem */ |
899 | "CardBus bridge window 1", /* mem */ |
900 | }; |
901 | |
902 | if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS && |
903 | i < ARRAY_SIZE(cardbus_name)) |
904 | return cardbus_name[i]; |
905 | |
906 | if (i < ARRAY_SIZE(bar_name)) |
907 | return bar_name[i]; |
908 | |
909 | return "unknown"; |
910 | } |
911 | |
912 | /** |
913 | * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos |
914 | * @dev: the PCI device to operate on |
915 | * @pos: config space offset of status word |
916 | * @mask: mask of bit(s) to care about in status word |
917 | * |
918 | * Return 1 when mask bit(s) in status word clear, 0 otherwise. |
919 | */ |
920 | int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) |
921 | { |
922 | int i; |
923 | |
924 | /* Wait for Transaction Pending bit clean */ |
925 | for (i = 0; i < 4; i++) { |
926 | u16 status; |
927 | if (i) |
928 | msleep(msecs: (1 << (i - 1)) * 100); |
929 | |
930 | pci_read_config_word(dev, where: pos, val: &status); |
931 | if (!(status & mask)) |
932 | return 1; |
933 | } |
934 | |
935 | return 0; |
936 | } |
937 | |
938 | static int pci_acs_enable; |
939 | |
940 | /** |
941 | * pci_request_acs - ask for ACS to be enabled if supported |
942 | */ |
943 | void pci_request_acs(void) |
944 | { |
945 | pci_acs_enable = 1; |
946 | } |
947 | |
948 | static const char *disable_acs_redir_param; |
949 | |
950 | /** |
951 | * pci_disable_acs_redir - disable ACS redirect capabilities |
952 | * @dev: the PCI device |
953 | * |
954 | * For only devices specified in the disable_acs_redir parameter. |
955 | */ |
956 | static void pci_disable_acs_redir(struct pci_dev *dev) |
957 | { |
958 | int ret = 0; |
959 | const char *p; |
960 | int pos; |
961 | u16 ctrl; |
962 | |
963 | if (!disable_acs_redir_param) |
964 | return; |
965 | |
966 | p = disable_acs_redir_param; |
967 | while (*p) { |
968 | ret = pci_dev_str_match(dev, p, endptr: &p); |
969 | if (ret < 0) { |
970 | pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", |
971 | disable_acs_redir_param); |
972 | |
973 | break; |
974 | } else if (ret == 1) { |
975 | /* Found a match */ |
976 | break; |
977 | } |
978 | |
979 | if (*p != ';' && *p != ',') { |
980 | /* End of param or invalid format */ |
981 | break; |
982 | } |
983 | p++; |
984 | } |
985 | |
986 | if (ret != 1) |
987 | return; |
988 | |
989 | if (!pci_dev_specific_disable_acs_redir(dev)) |
990 | return; |
991 | |
992 | pos = dev->acs_cap; |
993 | if (!pos) { |
994 | pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); |
995 | return; |
996 | } |
997 | |
998 | pci_read_config_word(dev, where: pos + PCI_ACS_CTRL, val: &ctrl); |
999 | |
1000 | /* P2P Request & Completion Redirect */ |
1001 | ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); |
1002 | |
1003 | pci_write_config_word(dev, where: pos + PCI_ACS_CTRL, val: ctrl); |
1004 | |
1005 | pci_info(dev, "disabled ACS redirect\n"); |
1006 | } |
1007 | |
1008 | /** |
1009 | * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities |
1010 | * @dev: the PCI device |
1011 | */ |
1012 | static void pci_std_enable_acs(struct pci_dev *dev) |
1013 | { |
1014 | int pos; |
1015 | u16 cap; |
1016 | u16 ctrl; |
1017 | |
1018 | pos = dev->acs_cap; |
1019 | if (!pos) |
1020 | return; |
1021 | |
1022 | pci_read_config_word(dev, where: pos + PCI_ACS_CAP, val: &cap); |
1023 | pci_read_config_word(dev, where: pos + PCI_ACS_CTRL, val: &ctrl); |
1024 | |
1025 | /* Source Validation */ |
1026 | ctrl |= (cap & PCI_ACS_SV); |
1027 | |
1028 | /* P2P Request Redirect */ |
1029 | ctrl |= (cap & PCI_ACS_RR); |
1030 | |
1031 | /* P2P Completion Redirect */ |
1032 | ctrl |= (cap & PCI_ACS_CR); |
1033 | |
1034 | /* Upstream Forwarding */ |
1035 | ctrl |= (cap & PCI_ACS_UF); |
1036 | |
1037 | /* Enable Translation Blocking for external devices and noats */ |
1038 | if (pci_ats_disabled() || dev->external_facing || dev->untrusted) |
1039 | ctrl |= (cap & PCI_ACS_TB); |
1040 | |
1041 | pci_write_config_word(dev, where: pos + PCI_ACS_CTRL, val: ctrl); |
1042 | } |
1043 | |
1044 | /** |
1045 | * pci_enable_acs - enable ACS if hardware support it |
1046 | * @dev: the PCI device |
1047 | */ |
1048 | static void pci_enable_acs(struct pci_dev *dev) |
1049 | { |
1050 | if (!pci_acs_enable) |
1051 | goto disable_acs_redir; |
1052 | |
1053 | if (!pci_dev_specific_enable_acs(dev)) |
1054 | goto disable_acs_redir; |
1055 | |
1056 | pci_std_enable_acs(dev); |
1057 | |
1058 | disable_acs_redir: |
1059 | /* |
1060 | * Note: pci_disable_acs_redir() must be called even if ACS was not |
1061 | * enabled by the kernel because it may have been enabled by |
1062 | * platform firmware. So if we are told to disable it, we should |
1063 | * always disable it after setting the kernel's default |
1064 | * preferences. |
1065 | */ |
1066 | pci_disable_acs_redir(dev); |
1067 | } |
1068 | |
1069 | /** |
1070 | * pcie_read_tlp_log - read TLP Header Log |
1071 | * @dev: PCIe device |
1072 | * @where: PCI Config offset of TLP Header Log |
1073 | * @tlp_log: TLP Log structure to fill |
1074 | * |
1075 | * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC. |
1076 | * |
1077 | * Return: 0 on success and filled TLP Log structure, <0 on error. |
1078 | */ |
1079 | int pcie_read_tlp_log(struct pci_dev *dev, int where, |
1080 | struct pcie_tlp_log *tlp_log) |
1081 | { |
1082 | int i, ret; |
1083 | |
1084 | memset(tlp_log, 0, sizeof(*tlp_log)); |
1085 | |
1086 | for (i = 0; i < 4; i++) { |
1087 | ret = pci_read_config_dword(dev, where: where + i * 4, |
1088 | val: &tlp_log->dw[i]); |
1089 | if (ret) |
1090 | return pcibios_err_to_errno(err: ret); |
1091 | } |
1092 | |
1093 | return 0; |
1094 | } |
1095 | EXPORT_SYMBOL_GPL(pcie_read_tlp_log); |
1096 | |
1097 | /** |
1098 | * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) |
1099 | * @dev: PCI device to have its BARs restored |
1100 | * |
1101 | * Restore the BAR values for a given device, so as to make it |
1102 | * accessible by its driver. |
1103 | */ |
1104 | static void pci_restore_bars(struct pci_dev *dev) |
1105 | { |
1106 | int i; |
1107 | |
1108 | for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) |
1109 | pci_update_resource(dev, resno: i); |
1110 | } |
1111 | |
1112 | static inline bool platform_pci_power_manageable(struct pci_dev *dev) |
1113 | { |
1114 | if (pci_use_mid_pm()) |
1115 | return true; |
1116 | |
1117 | return acpi_pci_power_manageable(dev); |
1118 | } |
1119 | |
1120 | static inline int platform_pci_set_power_state(struct pci_dev *dev, |
1121 | pci_power_t t) |
1122 | { |
1123 | if (pci_use_mid_pm()) |
1124 | return mid_pci_set_power_state(pdev: dev, state: t); |
1125 | |
1126 | return acpi_pci_set_power_state(dev, state: t); |
1127 | } |
1128 | |
1129 | static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) |
1130 | { |
1131 | if (pci_use_mid_pm()) |
1132 | return mid_pci_get_power_state(pdev: dev); |
1133 | |
1134 | return acpi_pci_get_power_state(dev); |
1135 | } |
1136 | |
1137 | static inline void platform_pci_refresh_power_state(struct pci_dev *dev) |
1138 | { |
1139 | if (!pci_use_mid_pm()) |
1140 | acpi_pci_refresh_power_state(dev); |
1141 | } |
1142 | |
1143 | static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) |
1144 | { |
1145 | if (pci_use_mid_pm()) |
1146 | return PCI_POWER_ERROR; |
1147 | |
1148 | return acpi_pci_choose_state(pdev: dev); |
1149 | } |
1150 | |
1151 | static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) |
1152 | { |
1153 | if (pci_use_mid_pm()) |
1154 | return PCI_POWER_ERROR; |
1155 | |
1156 | return acpi_pci_wakeup(dev, enable); |
1157 | } |
1158 | |
1159 | static inline bool platform_pci_need_resume(struct pci_dev *dev) |
1160 | { |
1161 | if (pci_use_mid_pm()) |
1162 | return false; |
1163 | |
1164 | return acpi_pci_need_resume(dev); |
1165 | } |
1166 | |
1167 | static inline bool platform_pci_bridge_d3(struct pci_dev *dev) |
1168 | { |
1169 | if (pci_use_mid_pm()) |
1170 | return false; |
1171 | |
1172 | return acpi_pci_bridge_d3(dev); |
1173 | } |
1174 | |
1175 | /** |
1176 | * pci_update_current_state - Read power state of given device and cache it |
1177 | * @dev: PCI device to handle. |
1178 | * @state: State to cache in case the device doesn't have the PM capability |
1179 | * |
1180 | * The power state is read from the PMCSR register, which however is |
1181 | * inaccessible in D3cold. The platform firmware is therefore queried first |
1182 | * to detect accessibility of the register. In case the platform firmware |
1183 | * reports an incorrect state or the device isn't power manageable by the |
1184 | * platform at all, we try to detect D3cold by testing accessibility of the |
1185 | * vendor ID in config space. |
1186 | */ |
1187 | void pci_update_current_state(struct pci_dev *dev, pci_power_t state) |
1188 | { |
1189 | if (platform_pci_get_power_state(dev) == PCI_D3cold) { |
1190 | dev->current_state = PCI_D3cold; |
1191 | } else if (dev->pm_cap) { |
1192 | u16 pmcsr; |
1193 | |
1194 | pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr); |
1195 | if (PCI_POSSIBLE_ERROR(pmcsr)) { |
1196 | dev->current_state = PCI_D3cold; |
1197 | return; |
1198 | } |
1199 | dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; |
1200 | } else { |
1201 | dev->current_state = state; |
1202 | } |
1203 | } |
1204 | |
1205 | /** |
1206 | * pci_refresh_power_state - Refresh the given device's power state data |
1207 | * @dev: Target PCI device. |
1208 | * |
1209 | * Ask the platform to refresh the devices power state information and invoke |
1210 | * pci_update_current_state() to update its current PCI power state. |
1211 | */ |
1212 | void pci_refresh_power_state(struct pci_dev *dev) |
1213 | { |
1214 | platform_pci_refresh_power_state(dev); |
1215 | pci_update_current_state(dev, state: dev->current_state); |
1216 | } |
1217 | |
1218 | /** |
1219 | * pci_platform_power_transition - Use platform to change device power state |
1220 | * @dev: PCI device to handle. |
1221 | * @state: State to put the device into. |
1222 | */ |
1223 | int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) |
1224 | { |
1225 | int error; |
1226 | |
1227 | error = platform_pci_set_power_state(dev, t: state); |
1228 | if (!error) |
1229 | pci_update_current_state(dev, state); |
1230 | else if (!dev->pm_cap) /* Fall back to PCI_D0 */ |
1231 | dev->current_state = PCI_D0; |
1232 | |
1233 | return error; |
1234 | } |
1235 | EXPORT_SYMBOL_GPL(pci_platform_power_transition); |
1236 | |
1237 | static int pci_resume_one(struct pci_dev *pci_dev, void *ign) |
1238 | { |
1239 | pm_request_resume(dev: &pci_dev->dev); |
1240 | return 0; |
1241 | } |
1242 | |
1243 | /** |
1244 | * pci_resume_bus - Walk given bus and runtime resume devices on it |
1245 | * @bus: Top bus of the subtree to walk. |
1246 | */ |
1247 | void pci_resume_bus(struct pci_bus *bus) |
1248 | { |
1249 | if (bus) |
1250 | pci_walk_bus(top: bus, cb: pci_resume_one, NULL); |
1251 | } |
1252 | |
1253 | static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) |
1254 | { |
1255 | int delay = 1; |
1256 | bool retrain = false; |
1257 | struct pci_dev *bridge; |
1258 | |
1259 | if (pci_is_pcie(dev)) { |
1260 | bridge = pci_upstream_bridge(dev); |
1261 | if (bridge) |
1262 | retrain = true; |
1263 | } |
1264 | |
1265 | /* |
1266 | * After reset, the device should not silently discard config |
1267 | * requests, but it may still indicate that it needs more time by |
1268 | * responding to them with CRS completions. The Root Port will |
1269 | * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete |
1270 | * the read (except when CRS SV is enabled and the read was for the |
1271 | * Vendor ID; in that case it synthesizes 0x0001 data). |
1272 | * |
1273 | * Wait for the device to return a non-CRS completion. Read the |
1274 | * Command register instead of Vendor ID so we don't have to |
1275 | * contend with the CRS SV value. |
1276 | */ |
1277 | for (;;) { |
1278 | u32 id; |
1279 | |
1280 | pci_read_config_dword(dev, PCI_COMMAND, val: &id); |
1281 | if (!PCI_POSSIBLE_ERROR(id)) |
1282 | break; |
1283 | |
1284 | if (delay > timeout) { |
1285 | pci_warn(dev, "not ready %dms after %s; giving up\n", |
1286 | delay - 1, reset_type); |
1287 | return -ENOTTY; |
1288 | } |
1289 | |
1290 | if (delay > PCI_RESET_WAIT) { |
1291 | if (retrain) { |
1292 | retrain = false; |
1293 | if (pcie_failed_link_retrain(dev: bridge)) { |
1294 | delay = 1; |
1295 | continue; |
1296 | } |
1297 | } |
1298 | pci_info(dev, "not ready %dms after %s; waiting\n", |
1299 | delay - 1, reset_type); |
1300 | } |
1301 | |
1302 | msleep(msecs: delay); |
1303 | delay *= 2; |
1304 | } |
1305 | |
1306 | if (delay > PCI_RESET_WAIT) |
1307 | pci_info(dev, "ready %dms after %s\n", delay - 1, |
1308 | reset_type); |
1309 | else |
1310 | pci_dbg(dev, "ready %dms after %s\n", delay - 1, |
1311 | reset_type); |
1312 | |
1313 | return 0; |
1314 | } |
1315 | |
1316 | /** |
1317 | * pci_power_up - Put the given device into D0 |
1318 | * @dev: PCI device to power up |
1319 | * |
1320 | * On success, return 0 or 1, depending on whether or not it is necessary to |
1321 | * restore the device's BARs subsequently (1 is returned in that case). |
1322 | * |
1323 | * On failure, return a negative error code. Always return failure if @dev |
1324 | * lacks a Power Management Capability, even if the platform was able to |
1325 | * put the device in D0 via non-PCI means. |
1326 | */ |
1327 | int pci_power_up(struct pci_dev *dev) |
1328 | { |
1329 | bool need_restore; |
1330 | pci_power_t state; |
1331 | u16 pmcsr; |
1332 | |
1333 | platform_pci_set_power_state(dev, PCI_D0); |
1334 | |
1335 | if (!dev->pm_cap) { |
1336 | state = platform_pci_get_power_state(dev); |
1337 | if (state == PCI_UNKNOWN) |
1338 | dev->current_state = PCI_D0; |
1339 | else |
1340 | dev->current_state = state; |
1341 | |
1342 | return -EIO; |
1343 | } |
1344 | |
1345 | pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr); |
1346 | if (PCI_POSSIBLE_ERROR(pmcsr)) { |
1347 | pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", |
1348 | pci_power_name(dev->current_state)); |
1349 | dev->current_state = PCI_D3cold; |
1350 | return -EIO; |
1351 | } |
1352 | |
1353 | state = pmcsr & PCI_PM_CTRL_STATE_MASK; |
1354 | |
1355 | need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && |
1356 | !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); |
1357 | |
1358 | if (state == PCI_D0) |
1359 | goto end; |
1360 | |
1361 | /* |
1362 | * Force the entire word to 0. This doesn't affect PME_Status, disables |
1363 | * PME_En, and sets PowerState to 0. |
1364 | */ |
1365 | pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: 0); |
1366 | |
1367 | /* Mandatory transition delays; see PCI PM 1.2. */ |
1368 | if (state == PCI_D3hot) |
1369 | pci_dev_d3_sleep(dev); |
1370 | else if (state == PCI_D2) |
1371 | udelay(PCI_PM_D2_DELAY); |
1372 | |
1373 | end: |
1374 | dev->current_state = PCI_D0; |
1375 | if (need_restore) |
1376 | return 1; |
1377 | |
1378 | return 0; |
1379 | } |
1380 | |
1381 | /** |
1382 | * pci_set_full_power_state - Put a PCI device into D0 and update its state |
1383 | * @dev: PCI device to power up |
1384 | * @locked: whether pci_bus_sem is held |
1385 | * |
1386 | * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register |
1387 | * to confirm the state change, restore its BARs if they might be lost and |
1388 | * reconfigure ASPM in accordance with the new power state. |
1389 | * |
1390 | * If pci_restore_state() is going to be called right after a power state change |
1391 | * to D0, it is more efficient to use pci_power_up() directly instead of this |
1392 | * function. |
1393 | */ |
1394 | static int pci_set_full_power_state(struct pci_dev *dev, bool locked) |
1395 | { |
1396 | u16 pmcsr; |
1397 | int ret; |
1398 | |
1399 | ret = pci_power_up(dev); |
1400 | if (ret < 0) { |
1401 | if (dev->current_state == PCI_D0) |
1402 | return 0; |
1403 | |
1404 | return ret; |
1405 | } |
1406 | |
1407 | pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr); |
1408 | dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; |
1409 | if (dev->current_state != PCI_D0) { |
1410 | pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", |
1411 | pci_power_name(dev->current_state)); |
1412 | } else if (ret > 0) { |
1413 | /* |
1414 | * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT |
1415 | * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning |
1416 | * from D3hot to D0 _may_ perform an internal reset, thereby |
1417 | * going to "D0 Uninitialized" rather than "D0 Initialized". |
1418 | * For example, at least some versions of the 3c905B and the |
1419 | * 3c556B exhibit this behaviour. |
1420 | * |
1421 | * At least some laptop BIOSen (e.g. the Thinkpad T21) leave |
1422 | * devices in a D3hot state at boot. Consequently, we need to |
1423 | * restore at least the BARs so that the device will be |
1424 | * accessible to its driver. |
1425 | */ |
1426 | pci_restore_bars(dev); |
1427 | } |
1428 | |
1429 | if (dev->bus->self) |
1430 | pcie_aspm_pm_state_change(pdev: dev->bus->self, locked); |
1431 | |
1432 | return 0; |
1433 | } |
1434 | |
1435 | /** |
1436 | * __pci_dev_set_current_state - Set current state of a PCI device |
1437 | * @dev: Device to handle |
1438 | * @data: pointer to state to be set |
1439 | */ |
1440 | static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) |
1441 | { |
1442 | pci_power_t state = *(pci_power_t *)data; |
1443 | |
1444 | dev->current_state = state; |
1445 | return 0; |
1446 | } |
1447 | |
1448 | /** |
1449 | * pci_bus_set_current_state - Walk given bus and set current state of devices |
1450 | * @bus: Top bus of the subtree to walk. |
1451 | * @state: state to be set |
1452 | */ |
1453 | void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) |
1454 | { |
1455 | if (bus) |
1456 | pci_walk_bus(top: bus, cb: __pci_dev_set_current_state, userdata: &state); |
1457 | } |
1458 | |
1459 | static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) |
1460 | { |
1461 | if (!bus) |
1462 | return; |
1463 | |
1464 | if (locked) |
1465 | pci_walk_bus_locked(top: bus, cb: __pci_dev_set_current_state, userdata: &state); |
1466 | else |
1467 | pci_walk_bus(top: bus, cb: __pci_dev_set_current_state, userdata: &state); |
1468 | } |
1469 | |
1470 | /** |
1471 | * pci_set_low_power_state - Put a PCI device into a low-power state. |
1472 | * @dev: PCI device to handle. |
1473 | * @state: PCI power state (D1, D2, D3hot) to put the device into. |
1474 | * @locked: whether pci_bus_sem is held |
1475 | * |
1476 | * Use the device's PCI_PM_CTRL register to put it into a low-power state. |
1477 | * |
1478 | * RETURN VALUE: |
1479 | * -EINVAL if the requested state is invalid. |
1480 | * -EIO if device does not support PCI PM or its PM capabilities register has a |
1481 | * wrong version, or device doesn't support the requested state. |
1482 | * 0 if device already is in the requested state. |
1483 | * 0 if device's power state has been successfully changed. |
1484 | */ |
1485 | static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) |
1486 | { |
1487 | u16 pmcsr; |
1488 | |
1489 | if (!dev->pm_cap) |
1490 | return -EIO; |
1491 | |
1492 | /* |
1493 | * Validate transition: We can enter D0 from any state, but if |
1494 | * we're already in a low-power state, we can only go deeper. E.g., |
1495 | * we can go from D1 to D3, but we can't go directly from D3 to D1; |
1496 | * we'd have to go from D3 to D0, then to D1. |
1497 | */ |
1498 | if (dev->current_state <= PCI_D3cold && dev->current_state > state) { |
1499 | pci_dbg(dev, "Invalid power transition (from %s to %s)\n", |
1500 | pci_power_name(dev->current_state), |
1501 | pci_power_name(state)); |
1502 | return -EINVAL; |
1503 | } |
1504 | |
1505 | /* Check if this device supports the desired state */ |
1506 | if ((state == PCI_D1 && !dev->d1_support) |
1507 | || (state == PCI_D2 && !dev->d2_support)) |
1508 | return -EIO; |
1509 | |
1510 | pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr); |
1511 | if (PCI_POSSIBLE_ERROR(pmcsr)) { |
1512 | pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", |
1513 | pci_power_name(dev->current_state), |
1514 | pci_power_name(state)); |
1515 | dev->current_state = PCI_D3cold; |
1516 | return -EIO; |
1517 | } |
1518 | |
1519 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
1520 | pmcsr |= state; |
1521 | |
1522 | /* Enter specified state */ |
1523 | pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr); |
1524 | |
1525 | /* Mandatory power management transition delays; see PCI PM 1.2. */ |
1526 | if (state == PCI_D3hot) |
1527 | pci_dev_d3_sleep(dev); |
1528 | else if (state == PCI_D2) |
1529 | udelay(PCI_PM_D2_DELAY); |
1530 | |
1531 | pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr); |
1532 | dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; |
1533 | if (dev->current_state != state) |
1534 | pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", |
1535 | pci_power_name(dev->current_state), |
1536 | pci_power_name(state)); |
1537 | |
1538 | if (dev->bus->self) |
1539 | pcie_aspm_pm_state_change(pdev: dev->bus->self, locked); |
1540 | |
1541 | return 0; |
1542 | } |
1543 | |
1544 | static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) |
1545 | { |
1546 | int error; |
1547 | |
1548 | /* Bound the state we're entering */ |
1549 | if (state > PCI_D3cold) |
1550 | state = PCI_D3cold; |
1551 | else if (state < PCI_D0) |
1552 | state = PCI_D0; |
1553 | else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) |
1554 | |
1555 | /* |
1556 | * If the device or the parent bridge do not support PCI |
1557 | * PM, ignore the request if we're doing anything other |
1558 | * than putting it into D0 (which would only happen on |
1559 | * boot). |
1560 | */ |
1561 | return 0; |
1562 | |
1563 | /* Check if we're already there */ |
1564 | if (dev->current_state == state) |
1565 | return 0; |
1566 | |
1567 | if (state == PCI_D0) |
1568 | return pci_set_full_power_state(dev, locked); |
1569 | |
1570 | /* |
1571 | * This device is quirked not to be put into D3, so don't put it in |
1572 | * D3 |
1573 | */ |
1574 | if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) |
1575 | return 0; |
1576 | |
1577 | if (state == PCI_D3cold) { |
1578 | /* |
1579 | * To put the device in D3cold, put it into D3hot in the native |
1580 | * way, then put it into D3cold using platform ops. |
1581 | */ |
1582 | error = pci_set_low_power_state(dev, PCI_D3hot, locked); |
1583 | |
1584 | if (pci_platform_power_transition(dev, PCI_D3cold)) |
1585 | return error; |
1586 | |
1587 | /* Powering off a bridge may power off the whole hierarchy */ |
1588 | if (dev->current_state == PCI_D3cold) |
1589 | __pci_bus_set_current_state(bus: dev->subordinate, PCI_D3cold, locked); |
1590 | } else { |
1591 | error = pci_set_low_power_state(dev, state, locked); |
1592 | |
1593 | if (pci_platform_power_transition(dev, state)) |
1594 | return error; |
1595 | } |
1596 | |
1597 | return 0; |
1598 | } |
1599 | |
1600 | /** |
1601 | * pci_set_power_state - Set the power state of a PCI device |
1602 | * @dev: PCI device to handle. |
1603 | * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. |
1604 | * |
1605 | * Transition a device to a new power state, using the platform firmware and/or |
1606 | * the device's PCI PM registers. |
1607 | * |
1608 | * RETURN VALUE: |
1609 | * -EINVAL if the requested state is invalid. |
1610 | * -EIO if device does not support PCI PM or its PM capabilities register has a |
1611 | * wrong version, or device doesn't support the requested state. |
1612 | * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. |
1613 | * 0 if device already is in the requested state. |
1614 | * 0 if the transition is to D3 but D3 is not supported. |
1615 | * 0 if device's power state has been successfully changed. |
1616 | */ |
1617 | int pci_set_power_state(struct pci_dev *dev, pci_power_t state) |
1618 | { |
1619 | return __pci_set_power_state(dev, state, locked: false); |
1620 | } |
1621 | EXPORT_SYMBOL(pci_set_power_state); |
1622 | |
1623 | int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) |
1624 | { |
1625 | lockdep_assert_held(&pci_bus_sem); |
1626 | |
1627 | return __pci_set_power_state(dev, state, locked: true); |
1628 | } |
1629 | EXPORT_SYMBOL(pci_set_power_state_locked); |
1630 | |
1631 | #define PCI_EXP_SAVE_REGS 7 |
1632 | |
1633 | static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, |
1634 | u16 cap, bool extended) |
1635 | { |
1636 | struct pci_cap_saved_state *tmp; |
1637 | |
1638 | hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { |
1639 | if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) |
1640 | return tmp; |
1641 | } |
1642 | return NULL; |
1643 | } |
1644 | |
1645 | struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) |
1646 | { |
1647 | return _pci_find_saved_cap(pci_dev: dev, cap, extended: false); |
1648 | } |
1649 | |
1650 | struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) |
1651 | { |
1652 | return _pci_find_saved_cap(pci_dev: dev, cap, extended: true); |
1653 | } |
1654 | |
1655 | static int pci_save_pcie_state(struct pci_dev *dev) |
1656 | { |
1657 | int i = 0; |
1658 | struct pci_cap_saved_state *save_state; |
1659 | u16 *cap; |
1660 | |
1661 | if (!pci_is_pcie(dev)) |
1662 | return 0; |
1663 | |
1664 | save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); |
1665 | if (!save_state) { |
1666 | pci_err(dev, "buffer not found in %s\n", __func__); |
1667 | return -ENOMEM; |
1668 | } |
1669 | |
1670 | cap = (u16 *)&save_state->cap.data[0]; |
1671 | pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &cap[i++]); |
1672 | pcie_capability_read_word(dev, PCI_EXP_LNKCTL, val: &cap[i++]); |
1673 | pcie_capability_read_word(dev, PCI_EXP_SLTCTL, val: &cap[i++]); |
1674 | pcie_capability_read_word(dev, PCI_EXP_RTCTL, val: &cap[i++]); |
1675 | pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, val: &cap[i++]); |
1676 | pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, val: &cap[i++]); |
1677 | pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, val: &cap[i++]); |
1678 | |
1679 | pci_save_aspm_l1ss_state(dev); |
1680 | pci_save_ltr_state(dev); |
1681 | |
1682 | return 0; |
1683 | } |
1684 | |
1685 | static void pci_restore_pcie_state(struct pci_dev *dev) |
1686 | { |
1687 | int i = 0; |
1688 | struct pci_cap_saved_state *save_state; |
1689 | u16 *cap; |
1690 | |
1691 | /* |
1692 | * Restore max latencies (in the LTR capability) before enabling |
1693 | * LTR itself in PCI_EXP_DEVCTL2. |
1694 | */ |
1695 | pci_restore_ltr_state(dev); |
1696 | pci_restore_aspm_l1ss_state(dev); |
1697 | |
1698 | save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); |
1699 | if (!save_state) |
1700 | return; |
1701 | |
1702 | /* |
1703 | * Downstream ports reset the LTR enable bit when link goes down. |
1704 | * Check and re-configure the bit here before restoring device. |
1705 | * PCIe r5.0, sec 7.5.3.16. |
1706 | */ |
1707 | pci_bridge_reconfigure_ltr(pdev: dev); |
1708 | |
1709 | cap = (u16 *)&save_state->cap.data[0]; |
1710 | pcie_capability_write_word(dev, PCI_EXP_DEVCTL, val: cap[i++]); |
1711 | pcie_capability_write_word(dev, PCI_EXP_LNKCTL, val: cap[i++]); |
1712 | pcie_capability_write_word(dev, PCI_EXP_SLTCTL, val: cap[i++]); |
1713 | pcie_capability_write_word(dev, PCI_EXP_RTCTL, val: cap[i++]); |
1714 | pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, val: cap[i++]); |
1715 | pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, val: cap[i++]); |
1716 | pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, val: cap[i++]); |
1717 | } |
1718 | |
1719 | static int pci_save_pcix_state(struct pci_dev *dev) |
1720 | { |
1721 | int pos; |
1722 | struct pci_cap_saved_state *save_state; |
1723 | |
1724 | pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
1725 | if (!pos) |
1726 | return 0; |
1727 | |
1728 | save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); |
1729 | if (!save_state) { |
1730 | pci_err(dev, "buffer not found in %s\n", __func__); |
1731 | return -ENOMEM; |
1732 | } |
1733 | |
1734 | pci_read_config_word(dev, where: pos + PCI_X_CMD, |
1735 | val: (u16 *)save_state->cap.data); |
1736 | |
1737 | return 0; |
1738 | } |
1739 | |
1740 | static void pci_restore_pcix_state(struct pci_dev *dev) |
1741 | { |
1742 | int i = 0, pos; |
1743 | struct pci_cap_saved_state *save_state; |
1744 | u16 *cap; |
1745 | |
1746 | save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); |
1747 | pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
1748 | if (!save_state || !pos) |
1749 | return; |
1750 | cap = (u16 *)&save_state->cap.data[0]; |
1751 | |
1752 | pci_write_config_word(dev, where: pos + PCI_X_CMD, val: cap[i++]); |
1753 | } |
1754 | |
1755 | /** |
1756 | * pci_save_state - save the PCI configuration space of a device before |
1757 | * suspending |
1758 | * @dev: PCI device that we're dealing with |
1759 | */ |
1760 | int pci_save_state(struct pci_dev *dev) |
1761 | { |
1762 | int i; |
1763 | /* XXX: 100% dword access ok here? */ |
1764 | for (i = 0; i < 16; i++) { |
1765 | pci_read_config_dword(dev, where: i * 4, val: &dev->saved_config_space[i]); |
1766 | pci_dbg(dev, "save config %#04x: %#010x\n", |
1767 | i * 4, dev->saved_config_space[i]); |
1768 | } |
1769 | dev->state_saved = true; |
1770 | |
1771 | i = pci_save_pcie_state(dev); |
1772 | if (i != 0) |
1773 | return i; |
1774 | |
1775 | i = pci_save_pcix_state(dev); |
1776 | if (i != 0) |
1777 | return i; |
1778 | |
1779 | pci_save_dpc_state(dev); |
1780 | pci_save_aer_state(dev); |
1781 | pci_save_ptm_state(dev); |
1782 | return pci_save_vc_state(dev); |
1783 | } |
1784 | EXPORT_SYMBOL(pci_save_state); |
1785 | |
1786 | static void pci_restore_config_dword(struct pci_dev *pdev, int offset, |
1787 | u32 saved_val, int retry, bool force) |
1788 | { |
1789 | u32 val; |
1790 | |
1791 | pci_read_config_dword(dev: pdev, where: offset, val: &val); |
1792 | if (!force && val == saved_val) |
1793 | return; |
1794 | |
1795 | for (;;) { |
1796 | pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", |
1797 | offset, val, saved_val); |
1798 | pci_write_config_dword(dev: pdev, where: offset, val: saved_val); |
1799 | if (retry-- <= 0) |
1800 | return; |
1801 | |
1802 | pci_read_config_dword(dev: pdev, where: offset, val: &val); |
1803 | if (val == saved_val) |
1804 | return; |
1805 | |
1806 | mdelay(1); |
1807 | } |
1808 | } |
1809 | |
1810 | static void pci_restore_config_space_range(struct pci_dev *pdev, |
1811 | int start, int end, int retry, |
1812 | bool force) |
1813 | { |
1814 | int index; |
1815 | |
1816 | for (index = end; index >= start; index--) |
1817 | pci_restore_config_dword(pdev, offset: 4 * index, |
1818 | saved_val: pdev->saved_config_space[index], |
1819 | retry, force); |
1820 | } |
1821 | |
1822 | static void pci_restore_config_space(struct pci_dev *pdev) |
1823 | { |
1824 | if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { |
1825 | pci_restore_config_space_range(pdev, start: 10, end: 15, retry: 0, force: false); |
1826 | /* Restore BARs before the command register. */ |
1827 | pci_restore_config_space_range(pdev, start: 4, end: 9, retry: 10, force: false); |
1828 | pci_restore_config_space_range(pdev, start: 0, end: 3, retry: 0, force: false); |
1829 | } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
1830 | pci_restore_config_space_range(pdev, start: 12, end: 15, retry: 0, force: false); |
1831 | |
1832 | /* |
1833 | * Force rewriting of prefetch registers to avoid S3 resume |
1834 | * issues on Intel PCI bridges that occur when these |
1835 | * registers are not explicitly written. |
1836 | */ |
1837 | pci_restore_config_space_range(pdev, start: 9, end: 11, retry: 0, force: true); |
1838 | pci_restore_config_space_range(pdev, start: 0, end: 8, retry: 0, force: false); |
1839 | } else { |
1840 | pci_restore_config_space_range(pdev, start: 0, end: 15, retry: 0, force: false); |
1841 | } |
1842 | } |
1843 | |
1844 | static void pci_restore_rebar_state(struct pci_dev *pdev) |
1845 | { |
1846 | unsigned int pos, nbars, i; |
1847 | u32 ctrl; |
1848 | |
1849 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); |
1850 | if (!pos) |
1851 | return; |
1852 | |
1853 | pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl); |
1854 | nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); |
1855 | |
1856 | for (i = 0; i < nbars; i++, pos += 8) { |
1857 | struct resource *res; |
1858 | int bar_idx, size; |
1859 | |
1860 | pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl); |
1861 | bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; |
1862 | res = pdev->resource + bar_idx; |
1863 | size = pci_rebar_bytes_to_size(bytes: resource_size(res)); |
1864 | ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; |
1865 | ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); |
1866 | pci_write_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: ctrl); |
1867 | } |
1868 | } |
1869 | |
1870 | /** |
1871 | * pci_restore_state - Restore the saved state of a PCI device |
1872 | * @dev: PCI device that we're dealing with |
1873 | */ |
1874 | void pci_restore_state(struct pci_dev *dev) |
1875 | { |
1876 | if (!dev->state_saved) |
1877 | return; |
1878 | |
1879 | pci_restore_pcie_state(dev); |
1880 | pci_restore_pasid_state(pdev: dev); |
1881 | pci_restore_pri_state(pdev: dev); |
1882 | pci_restore_ats_state(dev); |
1883 | pci_restore_vc_state(dev); |
1884 | pci_restore_rebar_state(pdev: dev); |
1885 | pci_restore_dpc_state(dev); |
1886 | pci_restore_ptm_state(dev); |
1887 | |
1888 | pci_aer_clear_status(dev); |
1889 | pci_restore_aer_state(dev); |
1890 | |
1891 | pci_restore_config_space(pdev: dev); |
1892 | |
1893 | pci_restore_pcix_state(dev); |
1894 | pci_restore_msi_state(dev); |
1895 | |
1896 | /* Restore ACS and IOV configuration state */ |
1897 | pci_enable_acs(dev); |
1898 | pci_restore_iov_state(dev); |
1899 | |
1900 | dev->state_saved = false; |
1901 | } |
1902 | EXPORT_SYMBOL(pci_restore_state); |
1903 | |
1904 | struct pci_saved_state { |
1905 | u32 config_space[16]; |
1906 | struct pci_cap_saved_data cap[]; |
1907 | }; |
1908 | |
1909 | /** |
1910 | * pci_store_saved_state - Allocate and return an opaque struct containing |
1911 | * the device saved state. |
1912 | * @dev: PCI device that we're dealing with |
1913 | * |
1914 | * Return NULL if no state or error. |
1915 | */ |
1916 | struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) |
1917 | { |
1918 | struct pci_saved_state *state; |
1919 | struct pci_cap_saved_state *tmp; |
1920 | struct pci_cap_saved_data *cap; |
1921 | size_t size; |
1922 | |
1923 | if (!dev->state_saved) |
1924 | return NULL; |
1925 | |
1926 | size = sizeof(*state) + sizeof(struct pci_cap_saved_data); |
1927 | |
1928 | hlist_for_each_entry(tmp, &dev->saved_cap_space, next) |
1929 | size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; |
1930 | |
1931 | state = kzalloc(size, GFP_KERNEL); |
1932 | if (!state) |
1933 | return NULL; |
1934 | |
1935 | memcpy(state->config_space, dev->saved_config_space, |
1936 | sizeof(state->config_space)); |
1937 | |
1938 | cap = state->cap; |
1939 | hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { |
1940 | size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; |
1941 | memcpy(cap, &tmp->cap, len); |
1942 | cap = (struct pci_cap_saved_data *)((u8 *)cap + len); |
1943 | } |
1944 | /* Empty cap_save terminates list */ |
1945 | |
1946 | return state; |
1947 | } |
1948 | EXPORT_SYMBOL_GPL(pci_store_saved_state); |
1949 | |
1950 | /** |
1951 | * pci_load_saved_state - Reload the provided save state into struct pci_dev. |
1952 | * @dev: PCI device that we're dealing with |
1953 | * @state: Saved state returned from pci_store_saved_state() |
1954 | */ |
1955 | int pci_load_saved_state(struct pci_dev *dev, |
1956 | struct pci_saved_state *state) |
1957 | { |
1958 | struct pci_cap_saved_data *cap; |
1959 | |
1960 | dev->state_saved = false; |
1961 | |
1962 | if (!state) |
1963 | return 0; |
1964 | |
1965 | memcpy(dev->saved_config_space, state->config_space, |
1966 | sizeof(state->config_space)); |
1967 | |
1968 | cap = state->cap; |
1969 | while (cap->size) { |
1970 | struct pci_cap_saved_state *tmp; |
1971 | |
1972 | tmp = _pci_find_saved_cap(pci_dev: dev, cap: cap->cap_nr, extended: cap->cap_extended); |
1973 | if (!tmp || tmp->cap.size != cap->size) |
1974 | return -EINVAL; |
1975 | |
1976 | memcpy(tmp->cap.data, cap->data, tmp->cap.size); |
1977 | cap = (struct pci_cap_saved_data *)((u8 *)cap + |
1978 | sizeof(struct pci_cap_saved_data) + cap->size); |
1979 | } |
1980 | |
1981 | dev->state_saved = true; |
1982 | return 0; |
1983 | } |
1984 | EXPORT_SYMBOL_GPL(pci_load_saved_state); |
1985 | |
1986 | /** |
1987 | * pci_load_and_free_saved_state - Reload the save state pointed to by state, |
1988 | * and free the memory allocated for it. |
1989 | * @dev: PCI device that we're dealing with |
1990 | * @state: Pointer to saved state returned from pci_store_saved_state() |
1991 | */ |
1992 | int pci_load_and_free_saved_state(struct pci_dev *dev, |
1993 | struct pci_saved_state **state) |
1994 | { |
1995 | int ret = pci_load_saved_state(dev, *state); |
1996 | kfree(objp: *state); |
1997 | *state = NULL; |
1998 | return ret; |
1999 | } |
2000 | EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); |
2001 | |
2002 | int __weak pcibios_enable_device(struct pci_dev *dev, int bars) |
2003 | { |
2004 | return pci_enable_resources(dev, mask: bars); |
2005 | } |
2006 | |
2007 | static int do_pci_enable_device(struct pci_dev *dev, int bars) |
2008 | { |
2009 | int err; |
2010 | struct pci_dev *bridge; |
2011 | u16 cmd; |
2012 | u8 pin; |
2013 | |
2014 | err = pci_set_power_state(dev, PCI_D0); |
2015 | if (err < 0 && err != -EIO) |
2016 | return err; |
2017 | |
2018 | bridge = pci_upstream_bridge(dev); |
2019 | if (bridge) |
2020 | pcie_aspm_powersave_config_link(pdev: bridge); |
2021 | |
2022 | err = pcibios_enable_device(dev, bars); |
2023 | if (err < 0) |
2024 | return err; |
2025 | pci_fixup_device(pass: pci_fixup_enable, dev); |
2026 | |
2027 | if (dev->msi_enabled || dev->msix_enabled) |
2028 | return 0; |
2029 | |
2030 | pci_read_config_byte(dev, PCI_INTERRUPT_PIN, val: &pin); |
2031 | if (pin) { |
2032 | pci_read_config_word(dev, PCI_COMMAND, val: &cmd); |
2033 | if (cmd & PCI_COMMAND_INTX_DISABLE) |
2034 | pci_write_config_word(dev, PCI_COMMAND, |
2035 | val: cmd & ~PCI_COMMAND_INTX_DISABLE); |
2036 | } |
2037 | |
2038 | return 0; |
2039 | } |
2040 | |
2041 | /** |
2042 | * pci_reenable_device - Resume abandoned device |
2043 | * @dev: PCI device to be resumed |
2044 | * |
2045 | * NOTE: This function is a backend of pci_default_resume() and is not supposed |
2046 | * to be called by normal code, write proper resume handler and use it instead. |
2047 | */ |
2048 | int pci_reenable_device(struct pci_dev *dev) |
2049 | { |
2050 | if (pci_is_enabled(pdev: dev)) |
2051 | return do_pci_enable_device(dev, bars: (1 << PCI_NUM_RESOURCES) - 1); |
2052 | return 0; |
2053 | } |
2054 | EXPORT_SYMBOL(pci_reenable_device); |
2055 | |
2056 | static void pci_enable_bridge(struct pci_dev *dev) |
2057 | { |
2058 | struct pci_dev *bridge; |
2059 | int retval; |
2060 | |
2061 | bridge = pci_upstream_bridge(dev); |
2062 | if (bridge) |
2063 | pci_enable_bridge(dev: bridge); |
2064 | |
2065 | if (pci_is_enabled(pdev: dev)) { |
2066 | if (!dev->is_busmaster) |
2067 | pci_set_master(dev); |
2068 | return; |
2069 | } |
2070 | |
2071 | retval = pci_enable_device(dev); |
2072 | if (retval) |
2073 | pci_err(dev, "Error enabling bridge (%d), continuing\n", |
2074 | retval); |
2075 | pci_set_master(dev); |
2076 | } |
2077 | |
2078 | static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) |
2079 | { |
2080 | struct pci_dev *bridge; |
2081 | int err; |
2082 | int i, bars = 0; |
2083 | |
2084 | /* |
2085 | * Power state could be unknown at this point, either due to a fresh |
2086 | * boot or a device removal call. So get the current power state |
2087 | * so that things like MSI message writing will behave as expected |
2088 | * (e.g. if the device really is in D0 at enable time). |
2089 | */ |
2090 | pci_update_current_state(dev, state: dev->current_state); |
2091 | |
2092 | if (atomic_inc_return(v: &dev->enable_cnt) > 1) |
2093 | return 0; /* already enabled */ |
2094 | |
2095 | bridge = pci_upstream_bridge(dev); |
2096 | if (bridge) |
2097 | pci_enable_bridge(dev: bridge); |
2098 | |
2099 | /* only skip sriov related */ |
2100 | for (i = 0; i <= PCI_ROM_RESOURCE; i++) |
2101 | if (dev->resource[i].flags & flags) |
2102 | bars |= (1 << i); |
2103 | for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) |
2104 | if (dev->resource[i].flags & flags) |
2105 | bars |= (1 << i); |
2106 | |
2107 | err = do_pci_enable_device(dev, bars); |
2108 | if (err < 0) |
2109 | atomic_dec(v: &dev->enable_cnt); |
2110 | return err; |
2111 | } |
2112 | |
2113 | /** |
2114 | * pci_enable_device_io - Initialize a device for use with IO space |
2115 | * @dev: PCI device to be initialized |
2116 | * |
2117 | * Initialize device before it's used by a driver. Ask low-level code |
2118 | * to enable I/O resources. Wake up the device if it was suspended. |
2119 | * Beware, this function can fail. |
2120 | */ |
2121 | int pci_enable_device_io(struct pci_dev *dev) |
2122 | { |
2123 | return pci_enable_device_flags(dev, IORESOURCE_IO); |
2124 | } |
2125 | EXPORT_SYMBOL(pci_enable_device_io); |
2126 | |
2127 | /** |
2128 | * pci_enable_device_mem - Initialize a device for use with Memory space |
2129 | * @dev: PCI device to be initialized |
2130 | * |
2131 | * Initialize device before it's used by a driver. Ask low-level code |
2132 | * to enable Memory resources. Wake up the device if it was suspended. |
2133 | * Beware, this function can fail. |
2134 | */ |
2135 | int pci_enable_device_mem(struct pci_dev *dev) |
2136 | { |
2137 | return pci_enable_device_flags(dev, IORESOURCE_MEM); |
2138 | } |
2139 | EXPORT_SYMBOL(pci_enable_device_mem); |
2140 | |
2141 | /** |
2142 | * pci_enable_device - Initialize device before it's used by a driver. |
2143 | * @dev: PCI device to be initialized |
2144 | * |
2145 | * Initialize device before it's used by a driver. Ask low-level code |
2146 | * to enable I/O and memory. Wake up the device if it was suspended. |
2147 | * Beware, this function can fail. |
2148 | * |
2149 | * Note we don't actually enable the device many times if we call |
2150 | * this function repeatedly (we just increment the count). |
2151 | */ |
2152 | int pci_enable_device(struct pci_dev *dev) |
2153 | { |
2154 | return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); |
2155 | } |
2156 | EXPORT_SYMBOL(pci_enable_device); |
2157 | |
2158 | /* |
2159 | * pcibios_device_add - provide arch specific hooks when adding device dev |
2160 | * @dev: the PCI device being added |
2161 | * |
2162 | * Permits the platform to provide architecture specific functionality when |
2163 | * devices are added. This is the default implementation. Architecture |
2164 | * implementations can override this. |
2165 | */ |
2166 | int __weak pcibios_device_add(struct pci_dev *dev) |
2167 | { |
2168 | return 0; |
2169 | } |
2170 | |
2171 | /** |
2172 | * pcibios_release_device - provide arch specific hooks when releasing |
2173 | * device dev |
2174 | * @dev: the PCI device being released |
2175 | * |
2176 | * Permits the platform to provide architecture specific functionality when |
2177 | * devices are released. This is the default implementation. Architecture |
2178 | * implementations can override this. |
2179 | */ |
2180 | void __weak pcibios_release_device(struct pci_dev *dev) {} |
2181 | |
2182 | /** |
2183 | * pcibios_disable_device - disable arch specific PCI resources for device dev |
2184 | * @dev: the PCI device to disable |
2185 | * |
2186 | * Disables architecture specific PCI resources for the device. This |
2187 | * is the default implementation. Architecture implementations can |
2188 | * override this. |
2189 | */ |
2190 | void __weak pcibios_disable_device(struct pci_dev *dev) {} |
2191 | |
2192 | static void do_pci_disable_device(struct pci_dev *dev) |
2193 | { |
2194 | u16 pci_command; |
2195 | |
2196 | pci_read_config_word(dev, PCI_COMMAND, val: &pci_command); |
2197 | if (pci_command & PCI_COMMAND_MASTER) { |
2198 | pci_command &= ~PCI_COMMAND_MASTER; |
2199 | pci_write_config_word(dev, PCI_COMMAND, val: pci_command); |
2200 | } |
2201 | |
2202 | pcibios_disable_device(dev); |
2203 | } |
2204 | |
2205 | /** |
2206 | * pci_disable_enabled_device - Disable device without updating enable_cnt |
2207 | * @dev: PCI device to disable |
2208 | * |
2209 | * NOTE: This function is a backend of PCI power management routines and is |
2210 | * not supposed to be called drivers. |
2211 | */ |
2212 | void pci_disable_enabled_device(struct pci_dev *dev) |
2213 | { |
2214 | if (pci_is_enabled(pdev: dev)) |
2215 | do_pci_disable_device(dev); |
2216 | } |
2217 | |
2218 | /** |
2219 | * pci_disable_device - Disable PCI device after use |
2220 | * @dev: PCI device to be disabled |
2221 | * |
2222 | * Signal to the system that the PCI device is not in use by the system |
2223 | * anymore. This only involves disabling PCI bus-mastering, if active. |
2224 | * |
2225 | * Note we don't actually disable the device until all callers of |
2226 | * pci_enable_device() have called pci_disable_device(). |
2227 | */ |
2228 | void pci_disable_device(struct pci_dev *dev) |
2229 | { |
2230 | struct pci_devres *dr; |
2231 | |
2232 | dr = find_pci_dr(pdev: dev); |
2233 | if (dr) |
2234 | dr->enabled = 0; |
2235 | |
2236 | dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, |
2237 | "disabling already-disabled device"); |
2238 | |
2239 | if (atomic_dec_return(v: &dev->enable_cnt) != 0) |
2240 | return; |
2241 | |
2242 | do_pci_disable_device(dev); |
2243 | |
2244 | dev->is_busmaster = 0; |
2245 | } |
2246 | EXPORT_SYMBOL(pci_disable_device); |
2247 | |
2248 | /** |
2249 | * pcibios_set_pcie_reset_state - set reset state for device dev |
2250 | * @dev: the PCIe device reset |
2251 | * @state: Reset state to enter into |
2252 | * |
2253 | * Set the PCIe reset state for the device. This is the default |
2254 | * implementation. Architecture implementations can override this. |
2255 | */ |
2256 | int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, |
2257 | enum pcie_reset_state state) |
2258 | { |
2259 | return -EINVAL; |
2260 | } |
2261 | |
2262 | /** |
2263 | * pci_set_pcie_reset_state - set reset state for device dev |
2264 | * @dev: the PCIe device reset |
2265 | * @state: Reset state to enter into |
2266 | * |
2267 | * Sets the PCI reset state for the device. |
2268 | */ |
2269 | int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) |
2270 | { |
2271 | return pcibios_set_pcie_reset_state(dev, state); |
2272 | } |
2273 | EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); |
2274 | |
2275 | #ifdef CONFIG_PCIEAER |
2276 | void pcie_clear_device_status(struct pci_dev *dev) |
2277 | { |
2278 | u16 sta; |
2279 | |
2280 | pcie_capability_read_word(dev, PCI_EXP_DEVSTA, val: &sta); |
2281 | pcie_capability_write_word(dev, PCI_EXP_DEVSTA, val: sta); |
2282 | } |
2283 | #endif |
2284 | |
2285 | /** |
2286 | * pcie_clear_root_pme_status - Clear root port PME interrupt status. |
2287 | * @dev: PCIe root port or event collector. |
2288 | */ |
2289 | void pcie_clear_root_pme_status(struct pci_dev *dev) |
2290 | { |
2291 | pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); |
2292 | } |
2293 | |
2294 | /** |
2295 | * pci_check_pme_status - Check if given device has generated PME. |
2296 | * @dev: Device to check. |
2297 | * |
2298 | * Check the PME status of the device and if set, clear it and clear PME enable |
2299 | * (if set). Return 'true' if PME status and PME enable were both set or |
2300 | * 'false' otherwise. |
2301 | */ |
2302 | bool pci_check_pme_status(struct pci_dev *dev) |
2303 | { |
2304 | int pmcsr_pos; |
2305 | u16 pmcsr; |
2306 | bool ret = false; |
2307 | |
2308 | if (!dev->pm_cap) |
2309 | return false; |
2310 | |
2311 | pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; |
2312 | pci_read_config_word(dev, where: pmcsr_pos, val: &pmcsr); |
2313 | if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) |
2314 | return false; |
2315 | |
2316 | /* Clear PME status. */ |
2317 | pmcsr |= PCI_PM_CTRL_PME_STATUS; |
2318 | if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { |
2319 | /* Disable PME to avoid interrupt flood. */ |
2320 | pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
2321 | ret = true; |
2322 | } |
2323 | |
2324 | pci_write_config_word(dev, where: pmcsr_pos, val: pmcsr); |
2325 | |
2326 | return ret; |
2327 | } |
2328 | |
2329 | /** |
2330 | * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. |
2331 | * @dev: Device to handle. |
2332 | * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. |
2333 | * |
2334 | * Check if @dev has generated PME and queue a resume request for it in that |
2335 | * case. |
2336 | */ |
2337 | static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) |
2338 | { |
2339 | if (pme_poll_reset && dev->pme_poll) |
2340 | dev->pme_poll = false; |
2341 | |
2342 | if (pci_check_pme_status(dev)) { |
2343 | pci_wakeup_event(dev); |
2344 | pm_request_resume(dev: &dev->dev); |
2345 | } |
2346 | return 0; |
2347 | } |
2348 | |
2349 | /** |
2350 | * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. |
2351 | * @bus: Top bus of the subtree to walk. |
2352 | */ |
2353 | void pci_pme_wakeup_bus(struct pci_bus *bus) |
2354 | { |
2355 | if (bus) |
2356 | pci_walk_bus(top: bus, cb: pci_pme_wakeup, userdata: (void *)true); |
2357 | } |
2358 | |
2359 | |
2360 | /** |
2361 | * pci_pme_capable - check the capability of PCI device to generate PME# |
2362 | * @dev: PCI device to handle. |
2363 | * @state: PCI state from which device will issue PME#. |
2364 | */ |
2365 | bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) |
2366 | { |
2367 | if (!dev->pm_cap) |
2368 | return false; |
2369 | |
2370 | return !!(dev->pme_support & (1 << state)); |
2371 | } |
2372 | EXPORT_SYMBOL(pci_pme_capable); |
2373 | |
2374 | static void pci_pme_list_scan(struct work_struct *work) |
2375 | { |
2376 | struct pci_pme_device *pme_dev, *n; |
2377 | |
2378 | mutex_lock(&pci_pme_list_mutex); |
2379 | list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { |
2380 | struct pci_dev *pdev = pme_dev->dev; |
2381 | |
2382 | if (pdev->pme_poll) { |
2383 | struct pci_dev *bridge = pdev->bus->self; |
2384 | struct device *dev = &pdev->dev; |
2385 | struct device *bdev = bridge ? &bridge->dev : NULL; |
2386 | int bref = 0; |
2387 | |
2388 | /* |
2389 | * If we have a bridge, it should be in an active/D0 |
2390 | * state or the configuration space of subordinate |
2391 | * devices may not be accessible or stable over the |
2392 | * course of the call. |
2393 | */ |
2394 | if (bdev) { |
2395 | bref = pm_runtime_get_if_active(dev: bdev); |
2396 | if (!bref) |
2397 | continue; |
2398 | |
2399 | if (bridge->current_state != PCI_D0) |
2400 | goto put_bridge; |
2401 | } |
2402 | |
2403 | /* |
2404 | * The device itself should be suspended but config |
2405 | * space must be accessible, therefore it cannot be in |
2406 | * D3cold. |
2407 | */ |
2408 | if (pm_runtime_suspended(dev) && |
2409 | pdev->current_state != PCI_D3cold) |
2410 | pci_pme_wakeup(dev: pdev, NULL); |
2411 | |
2412 | put_bridge: |
2413 | if (bref > 0) |
2414 | pm_runtime_put(dev: bdev); |
2415 | } else { |
2416 | list_del(entry: &pme_dev->list); |
2417 | kfree(objp: pme_dev); |
2418 | } |
2419 | } |
2420 | if (!list_empty(head: &pci_pme_list)) |
2421 | queue_delayed_work(wq: system_freezable_wq, dwork: &pci_pme_work, |
2422 | delay: msecs_to_jiffies(PME_TIMEOUT)); |
2423 | mutex_unlock(lock: &pci_pme_list_mutex); |
2424 | } |
2425 | |
2426 | static void __pci_pme_active(struct pci_dev *dev, bool enable) |
2427 | { |
2428 | u16 pmcsr; |
2429 | |
2430 | if (!dev->pme_support) |
2431 | return; |
2432 | |
2433 | pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr); |
2434 | /* Clear PME_Status by writing 1 to it and enable PME# */ |
2435 | pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; |
2436 | if (!enable) |
2437 | pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
2438 | |
2439 | pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr); |
2440 | } |
2441 | |
2442 | /** |
2443 | * pci_pme_restore - Restore PME configuration after config space restore. |
2444 | * @dev: PCI device to update. |
2445 | */ |
2446 | void pci_pme_restore(struct pci_dev *dev) |
2447 | { |
2448 | u16 pmcsr; |
2449 | |
2450 | if (!dev->pme_support) |
2451 | return; |
2452 | |
2453 | pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr); |
2454 | if (dev->wakeup_prepared) { |
2455 | pmcsr |= PCI_PM_CTRL_PME_ENABLE; |
2456 | pmcsr &= ~PCI_PM_CTRL_PME_STATUS; |
2457 | } else { |
2458 | pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
2459 | pmcsr |= PCI_PM_CTRL_PME_STATUS; |
2460 | } |
2461 | pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr); |
2462 | } |
2463 | |
2464 | /** |
2465 | * pci_pme_active - enable or disable PCI device's PME# function |
2466 | * @dev: PCI device to handle. |
2467 | * @enable: 'true' to enable PME# generation; 'false' to disable it. |
2468 | * |
2469 | * The caller must verify that the device is capable of generating PME# before |
2470 | * calling this function with @enable equal to 'true'. |
2471 | */ |
2472 | void pci_pme_active(struct pci_dev *dev, bool enable) |
2473 | { |
2474 | __pci_pme_active(dev, enable); |
2475 | |
2476 | /* |
2477 | * PCI (as opposed to PCIe) PME requires that the device have |
2478 | * its PME# line hooked up correctly. Not all hardware vendors |
2479 | * do this, so the PME never gets delivered and the device |
2480 | * remains asleep. The easiest way around this is to |
2481 | * periodically walk the list of suspended devices and check |
2482 | * whether any have their PME flag set. The assumption is that |
2483 | * we'll wake up often enough anyway that this won't be a huge |
2484 | * hit, and the power savings from the devices will still be a |
2485 | * win. |
2486 | * |
2487 | * Although PCIe uses in-band PME message instead of PME# line |
2488 | * to report PME, PME does not work for some PCIe devices in |
2489 | * reality. For example, there are devices that set their PME |
2490 | * status bits, but don't really bother to send a PME message; |
2491 | * there are PCI Express Root Ports that don't bother to |
2492 | * trigger interrupts when they receive PME messages from the |
2493 | * devices below. So PME poll is used for PCIe devices too. |
2494 | */ |
2495 | |
2496 | if (dev->pme_poll) { |
2497 | struct pci_pme_device *pme_dev; |
2498 | if (enable) { |
2499 | pme_dev = kmalloc(size: sizeof(struct pci_pme_device), |
2500 | GFP_KERNEL); |
2501 | if (!pme_dev) { |
2502 | pci_warn(dev, "can't enable PME#\n"); |
2503 | return; |
2504 | } |
2505 | pme_dev->dev = dev; |
2506 | mutex_lock(&pci_pme_list_mutex); |
2507 | list_add(new: &pme_dev->list, head: &pci_pme_list); |
2508 | if (list_is_singular(head: &pci_pme_list)) |
2509 | queue_delayed_work(wq: system_freezable_wq, |
2510 | dwork: &pci_pme_work, |
2511 | delay: msecs_to_jiffies(PME_TIMEOUT)); |
2512 | mutex_unlock(lock: &pci_pme_list_mutex); |
2513 | } else { |
2514 | mutex_lock(&pci_pme_list_mutex); |
2515 | list_for_each_entry(pme_dev, &pci_pme_list, list) { |
2516 | if (pme_dev->dev == dev) { |
2517 | list_del(entry: &pme_dev->list); |
2518 | kfree(objp: pme_dev); |
2519 | break; |
2520 | } |
2521 | } |
2522 | mutex_unlock(lock: &pci_pme_list_mutex); |
2523 | } |
2524 | } |
2525 | |
2526 | pci_dbg(dev, "PME# %s\n", enable ? "enabled": "disabled"); |
2527 | } |
2528 | EXPORT_SYMBOL(pci_pme_active); |
2529 | |
2530 | /** |
2531 | * __pci_enable_wake - enable PCI device as wakeup event source |
2532 | * @dev: PCI device affected |
2533 | * @state: PCI state from which device will issue wakeup events |
2534 | * @enable: True to enable event generation; false to disable |
2535 | * |
2536 | * This enables the device as a wakeup event source, or disables it. |
2537 | * When such events involves platform-specific hooks, those hooks are |
2538 | * called automatically by this routine. |
2539 | * |
2540 | * Devices with legacy power management (no standard PCI PM capabilities) |
2541 | * always require such platform hooks. |
2542 | * |
2543 | * RETURN VALUE: |
2544 | * 0 is returned on success |
2545 | * -EINVAL is returned if device is not supposed to wake up the system |
2546 | * Error code depending on the platform is returned if both the platform and |
2547 | * the native mechanism fail to enable the generation of wake-up events |
2548 | */ |
2549 | static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) |
2550 | { |
2551 | int ret = 0; |
2552 | |
2553 | /* |
2554 | * Bridges that are not power-manageable directly only signal |
2555 | * wakeup on behalf of subordinate devices which is set up |
2556 | * elsewhere, so skip them. However, bridges that are |
2557 | * power-manageable may signal wakeup for themselves (for example, |
2558 | * on a hotplug event) and they need to be covered here. |
2559 | */ |
2560 | if (!pci_power_manageable(pci_dev: dev)) |
2561 | return 0; |
2562 | |
2563 | /* Don't do the same thing twice in a row for one device. */ |
2564 | if (!!enable == !!dev->wakeup_prepared) |
2565 | return 0; |
2566 | |
2567 | /* |
2568 | * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don |
2569 | * Anderson we should be doing PME# wake enable followed by ACPI wake |
2570 | * enable. To disable wake-up we call the platform first, for symmetry. |
2571 | */ |
2572 | |
2573 | if (enable) { |
2574 | int error; |
2575 | |
2576 | /* |
2577 | * Enable PME signaling if the device can signal PME from |
2578 | * D3cold regardless of whether or not it can signal PME from |
2579 | * the current target state, because that will allow it to |
2580 | * signal PME when the hierarchy above it goes into D3cold and |
2581 | * the device itself ends up in D3cold as a result of that. |
2582 | */ |
2583 | if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) |
2584 | pci_pme_active(dev, true); |
2585 | else |
2586 | ret = 1; |
2587 | error = platform_pci_set_wakeup(dev, enable: true); |
2588 | if (ret) |
2589 | ret = error; |
2590 | if (!ret) |
2591 | dev->wakeup_prepared = true; |
2592 | } else { |
2593 | platform_pci_set_wakeup(dev, enable: false); |
2594 | pci_pme_active(dev, false); |
2595 | dev->wakeup_prepared = false; |
2596 | } |
2597 | |
2598 | return ret; |
2599 | } |
2600 | |
2601 | /** |
2602 | * pci_enable_wake - change wakeup settings for a PCI device |
2603 | * @pci_dev: Target device |
2604 | * @state: PCI state from which device will issue wakeup events |
2605 | * @enable: Whether or not to enable event generation |
2606 | * |
2607 | * If @enable is set, check device_may_wakeup() for the device before calling |
2608 | * __pci_enable_wake() for it. |
2609 | */ |
2610 | int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) |
2611 | { |
2612 | if (enable && !device_may_wakeup(dev: &pci_dev->dev)) |
2613 | return -EINVAL; |
2614 | |
2615 | return __pci_enable_wake(dev: pci_dev, state, enable); |
2616 | } |
2617 | EXPORT_SYMBOL(pci_enable_wake); |
2618 | |
2619 | /** |
2620 | * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold |
2621 | * @dev: PCI device to prepare |
2622 | * @enable: True to enable wake-up event generation; false to disable |
2623 | * |
2624 | * Many drivers want the device to wake up the system from D3_hot or D3_cold |
2625 | * and this function allows them to set that up cleanly - pci_enable_wake() |
2626 | * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI |
2627 | * ordering constraints. |
2628 | * |
2629 | * This function only returns error code if the device is not allowed to wake |
2630 | * up the system from sleep or it is not capable of generating PME# from both |
2631 | * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. |
2632 | */ |
2633 | int pci_wake_from_d3(struct pci_dev *dev, bool enable) |
2634 | { |
2635 | return pci_pme_capable(dev, PCI_D3cold) ? |
2636 | pci_enable_wake(dev, PCI_D3cold, enable) : |
2637 | pci_enable_wake(dev, PCI_D3hot, enable); |
2638 | } |
2639 | EXPORT_SYMBOL(pci_wake_from_d3); |
2640 | |
2641 | /** |
2642 | * pci_target_state - find an appropriate low power state for a given PCI dev |
2643 | * @dev: PCI device |
2644 | * @wakeup: Whether or not wakeup functionality will be enabled for the device. |
2645 | * |
2646 | * Use underlying platform code to find a supported low power state for @dev. |
2647 | * If the platform can't manage @dev, return the deepest state from which it |
2648 | * can generate wake events, based on any available PME info. |
2649 | */ |
2650 | static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) |
2651 | { |
2652 | if (platform_pci_power_manageable(dev)) { |
2653 | /* |
2654 | * Call the platform to find the target state for the device. |
2655 | */ |
2656 | pci_power_t state = platform_pci_choose_state(dev); |
2657 | |
2658 | switch (state) { |
2659 | case PCI_POWER_ERROR: |
2660 | case PCI_UNKNOWN: |
2661 | return PCI_D3hot; |
2662 | |
2663 | case PCI_D1: |
2664 | case PCI_D2: |
2665 | if (pci_no_d1d2(dev)) |
2666 | return PCI_D3hot; |
2667 | } |
2668 | |
2669 | return state; |
2670 | } |
2671 | |
2672 | /* |
2673 | * If the device is in D3cold even though it's not power-manageable by |
2674 | * the platform, it may have been powered down by non-standard means. |
2675 | * Best to let it slumber. |
2676 | */ |
2677 | if (dev->current_state == PCI_D3cold) |
2678 | return PCI_D3cold; |
2679 | else if (!dev->pm_cap) |
2680 | return PCI_D0; |
2681 | |
2682 | if (wakeup && dev->pme_support) { |
2683 | pci_power_t state = PCI_D3hot; |
2684 | |
2685 | /* |
2686 | * Find the deepest state from which the device can generate |
2687 | * PME#. |
2688 | */ |
2689 | while (state && !(dev->pme_support & (1 << state))) |
2690 | state--; |
2691 | |
2692 | if (state) |
2693 | return state; |
2694 | else if (dev->pme_support & 1) |
2695 | return PCI_D0; |
2696 | } |
2697 | |
2698 | return PCI_D3hot; |
2699 | } |
2700 | |
2701 | /** |
2702 | * pci_prepare_to_sleep - prepare PCI device for system-wide transition |
2703 | * into a sleep state |
2704 | * @dev: Device to handle. |
2705 | * |
2706 | * Choose the power state appropriate for the device depending on whether |
2707 | * it can wake up the system and/or is power manageable by the platform |
2708 | * (PCI_D3hot is the default) and put the device into that state. |
2709 | */ |
2710 | int pci_prepare_to_sleep(struct pci_dev *dev) |
2711 | { |
2712 | bool wakeup = device_may_wakeup(dev: &dev->dev); |
2713 | pci_power_t target_state = pci_target_state(dev, wakeup); |
2714 | int error; |
2715 | |
2716 | if (target_state == PCI_POWER_ERROR) |
2717 | return -EIO; |
2718 | |
2719 | pci_enable_wake(dev, target_state, wakeup); |
2720 | |
2721 | error = pci_set_power_state(dev, target_state); |
2722 | |
2723 | if (error) |
2724 | pci_enable_wake(dev, target_state, false); |
2725 | |
2726 | return error; |
2727 | } |
2728 | EXPORT_SYMBOL(pci_prepare_to_sleep); |
2729 | |
2730 | /** |
2731 | * pci_back_from_sleep - turn PCI device on during system-wide transition |
2732 | * into working state |
2733 | * @dev: Device to handle. |
2734 | * |
2735 | * Disable device's system wake-up capability and put it into D0. |
2736 | */ |
2737 | int pci_back_from_sleep(struct pci_dev *dev) |
2738 | { |
2739 | int ret = pci_set_power_state(dev, PCI_D0); |
2740 | |
2741 | if (ret) |
2742 | return ret; |
2743 | |
2744 | pci_enable_wake(dev, PCI_D0, false); |
2745 | return 0; |
2746 | } |
2747 | EXPORT_SYMBOL(pci_back_from_sleep); |
2748 | |
2749 | /** |
2750 | * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. |
2751 | * @dev: PCI device being suspended. |
2752 | * |
2753 | * Prepare @dev to generate wake-up events at run time and put it into a low |
2754 | * power state. |
2755 | */ |
2756 | int pci_finish_runtime_suspend(struct pci_dev *dev) |
2757 | { |
2758 | pci_power_t target_state; |
2759 | int error; |
2760 | |
2761 | target_state = pci_target_state(dev, wakeup: device_can_wakeup(dev: &dev->dev)); |
2762 | if (target_state == PCI_POWER_ERROR) |
2763 | return -EIO; |
2764 | |
2765 | __pci_enable_wake(dev, state: target_state, enable: pci_dev_run_wake(dev)); |
2766 | |
2767 | error = pci_set_power_state(dev, target_state); |
2768 | |
2769 | if (error) |
2770 | pci_enable_wake(dev, target_state, false); |
2771 | |
2772 | return error; |
2773 | } |
2774 | |
2775 | /** |
2776 | * pci_dev_run_wake - Check if device can generate run-time wake-up events. |
2777 | * @dev: Device to check. |
2778 | * |
2779 | * Return true if the device itself is capable of generating wake-up events |
2780 | * (through the platform or using the native PCIe PME) or if the device supports |
2781 | * PME and one of its upstream bridges can generate wake-up events. |
2782 | */ |
2783 | bool pci_dev_run_wake(struct pci_dev *dev) |
2784 | { |
2785 | struct pci_bus *bus = dev->bus; |
2786 | |
2787 | if (!dev->pme_support) |
2788 | return false; |
2789 | |
2790 | /* PME-capable in principle, but not from the target power state */ |
2791 | if (!pci_pme_capable(dev, pci_target_state(dev, wakeup: true))) |
2792 | return false; |
2793 | |
2794 | if (device_can_wakeup(dev: &dev->dev)) |
2795 | return true; |
2796 | |
2797 | while (bus->parent) { |
2798 | struct pci_dev *bridge = bus->self; |
2799 | |
2800 | if (device_can_wakeup(dev: &bridge->dev)) |
2801 | return true; |
2802 | |
2803 | bus = bus->parent; |
2804 | } |
2805 | |
2806 | /* We have reached the root bus. */ |
2807 | if (bus->bridge) |
2808 | return device_can_wakeup(dev: bus->bridge); |
2809 | |
2810 | return false; |
2811 | } |
2812 | EXPORT_SYMBOL_GPL(pci_dev_run_wake); |
2813 | |
2814 | /** |
2815 | * pci_dev_need_resume - Check if it is necessary to resume the device. |
2816 | * @pci_dev: Device to check. |
2817 | * |
2818 | * Return 'true' if the device is not runtime-suspended or it has to be |
2819 | * reconfigured due to wakeup settings difference between system and runtime |
2820 | * suspend, or the current power state of it is not suitable for the upcoming |
2821 | * (system-wide) transition. |
2822 | */ |
2823 | bool pci_dev_need_resume(struct pci_dev *pci_dev) |
2824 | { |
2825 | struct device *dev = &pci_dev->dev; |
2826 | pci_power_t target_state; |
2827 | |
2828 | if (!pm_runtime_suspended(dev) || platform_pci_need_resume(dev: pci_dev)) |
2829 | return true; |
2830 | |
2831 | target_state = pci_target_state(dev: pci_dev, wakeup: device_may_wakeup(dev)); |
2832 | |
2833 | /* |
2834 | * If the earlier platform check has not triggered, D3cold is just power |
2835 | * removal on top of D3hot, so no need to resume the device in that |
2836 | * case. |
2837 | */ |
2838 | return target_state != pci_dev->current_state && |
2839 | target_state != PCI_D3cold && |
2840 | pci_dev->current_state != PCI_D3hot; |
2841 | } |
2842 | |
2843 | /** |
2844 | * pci_dev_adjust_pme - Adjust PME setting for a suspended device. |
2845 | * @pci_dev: Device to check. |
2846 | * |
2847 | * If the device is suspended and it is not configured for system wakeup, |
2848 | * disable PME for it to prevent it from waking up the system unnecessarily. |
2849 | * |
2850 | * Note that if the device's power state is D3cold and the platform check in |
2851 | * pci_dev_need_resume() has not triggered, the device's configuration need not |
2852 | * be changed. |
2853 | */ |
2854 | void pci_dev_adjust_pme(struct pci_dev *pci_dev) |
2855 | { |
2856 | struct device *dev = &pci_dev->dev; |
2857 | |
2858 | spin_lock_irq(lock: &dev->power.lock); |
2859 | |
2860 | if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && |
2861 | pci_dev->current_state < PCI_D3cold) |
2862 | __pci_pme_active(dev: pci_dev, enable: false); |
2863 | |
2864 | spin_unlock_irq(lock: &dev->power.lock); |
2865 | } |
2866 | |
2867 | /** |
2868 | * pci_dev_complete_resume - Finalize resume from system sleep for a device. |
2869 | * @pci_dev: Device to handle. |
2870 | * |
2871 | * If the device is runtime suspended and wakeup-capable, enable PME for it as |
2872 | * it might have been disabled during the prepare phase of system suspend if |
2873 | * the device was not configured for system wakeup. |
2874 | */ |
2875 | void pci_dev_complete_resume(struct pci_dev *pci_dev) |
2876 | { |
2877 | struct device *dev = &pci_dev->dev; |
2878 | |
2879 | if (!pci_dev_run_wake(pci_dev)) |
2880 | return; |
2881 | |
2882 | spin_lock_irq(lock: &dev->power.lock); |
2883 | |
2884 | if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) |
2885 | __pci_pme_active(dev: pci_dev, enable: true); |
2886 | |
2887 | spin_unlock_irq(lock: &dev->power.lock); |
2888 | } |
2889 | |
2890 | /** |
2891 | * pci_choose_state - Choose the power state of a PCI device. |
2892 | * @dev: Target PCI device. |
2893 | * @state: Target state for the whole system. |
2894 | * |
2895 | * Returns PCI power state suitable for @dev and @state. |
2896 | */ |
2897 | pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) |
2898 | { |
2899 | if (state.event == PM_EVENT_ON) |
2900 | return PCI_D0; |
2901 | |
2902 | return pci_target_state(dev, wakeup: false); |
2903 | } |
2904 | EXPORT_SYMBOL(pci_choose_state); |
2905 | |
2906 | void pci_config_pm_runtime_get(struct pci_dev *pdev) |
2907 | { |
2908 | struct device *dev = &pdev->dev; |
2909 | struct device *parent = dev->parent; |
2910 | |
2911 | if (parent) |
2912 | pm_runtime_get_sync(dev: parent); |
2913 | pm_runtime_get_noresume(dev); |
2914 | /* |
2915 | * pdev->current_state is set to PCI_D3cold during suspending, |
2916 | * so wait until suspending completes |
2917 | */ |
2918 | pm_runtime_barrier(dev); |
2919 | /* |
2920 | * Only need to resume devices in D3cold, because config |
2921 | * registers are still accessible for devices suspended but |
2922 | * not in D3cold. |
2923 | */ |
2924 | if (pdev->current_state == PCI_D3cold) |
2925 | pm_runtime_resume(dev); |
2926 | } |
2927 | |
2928 | void pci_config_pm_runtime_put(struct pci_dev *pdev) |
2929 | { |
2930 | struct device *dev = &pdev->dev; |
2931 | struct device *parent = dev->parent; |
2932 | |
2933 | pm_runtime_put(dev); |
2934 | if (parent) |
2935 | pm_runtime_put_sync(dev: parent); |
2936 | } |
2937 | |
2938 | static const struct dmi_system_id bridge_d3_blacklist[] = { |
2939 | #ifdef CONFIG_X86 |
2940 | { |
2941 | /* |
2942 | * Gigabyte X299 root port is not marked as hotplug capable |
2943 | * which allows Linux to power manage it. However, this |
2944 | * confuses the BIOS SMI handler so don't power manage root |
2945 | * ports on that system. |
2946 | */ |
2947 | .ident = "X299 DESIGNARE EX-CF", |
2948 | .matches = { |
2949 | DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), |
2950 | DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), |
2951 | }, |
2952 | }, |
2953 | { |
2954 | /* |
2955 | * Downstream device is not accessible after putting a root port |
2956 | * into D3cold and back into D0 on Elo Continental Z2 board |
2957 | */ |
2958 | .ident = "Elo Continental Z2", |
2959 | .matches = { |
2960 | DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), |
2961 | DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), |
2962 | DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), |
2963 | }, |
2964 | }, |
2965 | #endif |
2966 | { } |
2967 | }; |
2968 | |
2969 | /** |
2970 | * pci_bridge_d3_possible - Is it possible to put the bridge into D3 |
2971 | * @bridge: Bridge to check |
2972 | * |
2973 | * This function checks if it is possible to move the bridge to D3. |
2974 | * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. |
2975 | */ |
2976 | bool pci_bridge_d3_possible(struct pci_dev *bridge) |
2977 | { |
2978 | if (!pci_is_pcie(dev: bridge)) |
2979 | return false; |
2980 | |
2981 | switch (pci_pcie_type(dev: bridge)) { |
2982 | case PCI_EXP_TYPE_ROOT_PORT: |
2983 | case PCI_EXP_TYPE_UPSTREAM: |
2984 | case PCI_EXP_TYPE_DOWNSTREAM: |
2985 | if (pci_bridge_d3_disable) |
2986 | return false; |
2987 | |
2988 | /* |
2989 | * Hotplug ports handled by firmware in System Management Mode |
2990 | * may not be put into D3 by the OS (Thunderbolt on non-Macs). |
2991 | */ |
2992 | if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) |
2993 | return false; |
2994 | |
2995 | if (pci_bridge_d3_force) |
2996 | return true; |
2997 | |
2998 | /* Even the oldest 2010 Thunderbolt controller supports D3. */ |
2999 | if (bridge->is_thunderbolt) |
3000 | return true; |
3001 | |
3002 | /* Platform might know better if the bridge supports D3 */ |
3003 | if (platform_pci_bridge_d3(dev: bridge)) |
3004 | return true; |
3005 | |
3006 | /* |
3007 | * Hotplug ports handled natively by the OS were not validated |
3008 | * by vendors for runtime D3 at least until 2018 because there |
3009 | * was no OS support. |
3010 | */ |
3011 | if (bridge->is_hotplug_bridge) |
3012 | return false; |
3013 | |
3014 | if (dmi_check_system(list: bridge_d3_blacklist)) |
3015 | return false; |
3016 | |
3017 | /* |
3018 | * It should be safe to put PCIe ports from 2015 or newer |
3019 | * to D3. |
3020 | */ |
3021 | if (dmi_get_bios_year() >= 2015) |
3022 | return true; |
3023 | break; |
3024 | } |
3025 | |
3026 | return false; |
3027 | } |
3028 | |
3029 | static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) |
3030 | { |
3031 | bool *d3cold_ok = data; |
3032 | |
3033 | if (/* The device needs to be allowed to go D3cold ... */ |
3034 | dev->no_d3cold || !dev->d3cold_allowed || |
3035 | |
3036 | /* ... and if it is wakeup capable to do so from D3cold. */ |
3037 | (device_may_wakeup(dev: &dev->dev) && |
3038 | !pci_pme_capable(dev, PCI_D3cold)) || |
3039 | |
3040 | /* If it is a bridge it must be allowed to go to D3. */ |
3041 | !pci_power_manageable(pci_dev: dev)) |
3042 | |
3043 | *d3cold_ok = false; |
3044 | |
3045 | return !*d3cold_ok; |
3046 | } |
3047 | |
3048 | /* |
3049 | * pci_bridge_d3_update - Update bridge D3 capabilities |
3050 | * @dev: PCI device which is changed |
3051 | * |
3052 | * Update upstream bridge PM capabilities accordingly depending on if the |
3053 | * device PM configuration was changed or the device is being removed. The |
3054 | * change is also propagated upstream. |
3055 | */ |
3056 | void pci_bridge_d3_update(struct pci_dev *dev) |
3057 | { |
3058 | bool remove = !device_is_registered(dev: &dev->dev); |
3059 | struct pci_dev *bridge; |
3060 | bool d3cold_ok = true; |
3061 | |
3062 | bridge = pci_upstream_bridge(dev); |
3063 | if (!bridge || !pci_bridge_d3_possible(bridge)) |
3064 | return; |
3065 | |
3066 | /* |
3067 | * If D3 is currently allowed for the bridge, removing one of its |
3068 | * children won't change that. |
3069 | */ |
3070 | if (remove && bridge->bridge_d3) |
3071 | return; |
3072 | |
3073 | /* |
3074 | * If D3 is currently allowed for the bridge and a child is added or |
3075 | * changed, disallowance of D3 can only be caused by that child, so |
3076 | * we only need to check that single device, not any of its siblings. |
3077 | * |
3078 | * If D3 is currently not allowed for the bridge, checking the device |
3079 | * first may allow us to skip checking its siblings. |
3080 | */ |
3081 | if (!remove) |
3082 | pci_dev_check_d3cold(dev, data: &d3cold_ok); |
3083 | |
3084 | /* |
3085 | * If D3 is currently not allowed for the bridge, this may be caused |
3086 | * either by the device being changed/removed or any of its siblings, |
3087 | * so we need to go through all children to find out if one of them |
3088 | * continues to block D3. |
3089 | */ |
3090 | if (d3cold_ok && !bridge->bridge_d3) |
3091 | pci_walk_bus(top: bridge->subordinate, cb: pci_dev_check_d3cold, |
3092 | userdata: &d3cold_ok); |
3093 | |
3094 | if (bridge->bridge_d3 != d3cold_ok) { |
3095 | bridge->bridge_d3 = d3cold_ok; |
3096 | /* Propagate change to upstream bridges */ |
3097 | pci_bridge_d3_update(dev: bridge); |
3098 | } |
3099 | } |
3100 | |
3101 | /** |
3102 | * pci_d3cold_enable - Enable D3cold for device |
3103 | * @dev: PCI device to handle |
3104 | * |
3105 | * This function can be used in drivers to enable D3cold from the device |
3106 | * they handle. It also updates upstream PCI bridge PM capabilities |
3107 | * accordingly. |
3108 | */ |
3109 | void pci_d3cold_enable(struct pci_dev *dev) |
3110 | { |
3111 | if (dev->no_d3cold) { |
3112 | dev->no_d3cold = false; |
3113 | pci_bridge_d3_update(dev); |
3114 | } |
3115 | } |
3116 | EXPORT_SYMBOL_GPL(pci_d3cold_enable); |
3117 | |
3118 | /** |
3119 | * pci_d3cold_disable - Disable D3cold for device |
3120 | * @dev: PCI device to handle |
3121 | * |
3122 | * This function can be used in drivers to disable D3cold from the device |
3123 | * they handle. It also updates upstream PCI bridge PM capabilities |
3124 | * accordingly. |
3125 | */ |
3126 | void pci_d3cold_disable(struct pci_dev *dev) |
3127 | { |
3128 | if (!dev->no_d3cold) { |
3129 | dev->no_d3cold = true; |
3130 | pci_bridge_d3_update(dev); |
3131 | } |
3132 | } |
3133 | EXPORT_SYMBOL_GPL(pci_d3cold_disable); |
3134 | |
3135 | /** |
3136 | * pci_pm_init - Initialize PM functions of given PCI device |
3137 | * @dev: PCI device to handle. |
3138 | */ |
3139 | void pci_pm_init(struct pci_dev *dev) |
3140 | { |
3141 | int pm; |
3142 | u16 status; |
3143 | u16 pmc; |
3144 | |
3145 | pm_runtime_forbid(dev: &dev->dev); |
3146 | pm_runtime_set_active(dev: &dev->dev); |
3147 | pm_runtime_enable(dev: &dev->dev); |
3148 | device_enable_async_suspend(dev: &dev->dev); |
3149 | dev->wakeup_prepared = false; |
3150 | |
3151 | dev->pm_cap = 0; |
3152 | dev->pme_support = 0; |
3153 | |
3154 | /* find PCI PM capability in list */ |
3155 | pm = pci_find_capability(dev, PCI_CAP_ID_PM); |
3156 | if (!pm) |
3157 | return; |
3158 | /* Check device's ability to generate PME# */ |
3159 | pci_read_config_word(dev, where: pm + PCI_PM_PMC, val: &pmc); |
3160 | |
3161 | if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { |
3162 | pci_err(dev, "unsupported PM cap regs version (%u)\n", |
3163 | pmc & PCI_PM_CAP_VER_MASK); |
3164 | return; |
3165 | } |
3166 | |
3167 | dev->pm_cap = pm; |
3168 | dev->d3hot_delay = PCI_PM_D3HOT_WAIT; |
3169 | dev->d3cold_delay = PCI_PM_D3COLD_WAIT; |
3170 | dev->bridge_d3 = pci_bridge_d3_possible(bridge: dev); |
3171 | dev->d3cold_allowed = true; |
3172 | |
3173 | dev->d1_support = false; |
3174 | dev->d2_support = false; |
3175 | if (!pci_no_d1d2(dev)) { |
3176 | if (pmc & PCI_PM_CAP_D1) |
3177 | dev->d1_support = true; |
3178 | if (pmc & PCI_PM_CAP_D2) |
3179 | dev->d2_support = true; |
3180 | |
3181 | if (dev->d1_support || dev->d2_support) |
3182 | pci_info(dev, "supports%s%s\n", |
3183 | dev->d1_support ? " D1": "", |
3184 | dev->d2_support ? " D2": ""); |
3185 | } |
3186 | |
3187 | pmc &= PCI_PM_CAP_PME_MASK; |
3188 | if (pmc) { |
3189 | pci_info(dev, "PME# supported from%s%s%s%s%s\n", |
3190 | (pmc & PCI_PM_CAP_PME_D0) ? " D0": "", |
3191 | (pmc & PCI_PM_CAP_PME_D1) ? " D1": "", |
3192 | (pmc & PCI_PM_CAP_PME_D2) ? " D2": "", |
3193 | (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot": "", |
3194 | (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold": ""); |
3195 | dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); |
3196 | dev->pme_poll = true; |
3197 | /* |
3198 | * Make device's PM flags reflect the wake-up capability, but |
3199 | * let the user space enable it to wake up the system as needed. |
3200 | */ |
3201 | device_set_wakeup_capable(dev: &dev->dev, capable: true); |
3202 | /* Disable the PME# generation functionality */ |
3203 | pci_pme_active(dev, false); |
3204 | } |
3205 | |
3206 | pci_read_config_word(dev, PCI_STATUS, val: &status); |
3207 | if (status & PCI_STATUS_IMM_READY) |
3208 | dev->imm_ready = 1; |
3209 | } |
3210 | |
3211 | static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) |
3212 | { |
3213 | unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; |
3214 | |
3215 | switch (prop) { |
3216 | case PCI_EA_P_MEM: |
3217 | case PCI_EA_P_VF_MEM: |
3218 | flags |= IORESOURCE_MEM; |
3219 | break; |
3220 | case PCI_EA_P_MEM_PREFETCH: |
3221 | case PCI_EA_P_VF_MEM_PREFETCH: |
3222 | flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; |
3223 | break; |
3224 | case PCI_EA_P_IO: |
3225 | flags |= IORESOURCE_IO; |
3226 | break; |
3227 | default: |
3228 | return 0; |
3229 | } |
3230 | |
3231 | return flags; |
3232 | } |
3233 | |
3234 | static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, |
3235 | u8 prop) |
3236 | { |
3237 | if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) |
3238 | return &dev->resource[bei]; |
3239 | #ifdef CONFIG_PCI_IOV |
3240 | else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && |
3241 | (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) |
3242 | return &dev->resource[PCI_IOV_RESOURCES + |
3243 | bei - PCI_EA_BEI_VF_BAR0]; |
3244 | #endif |
3245 | else if (bei == PCI_EA_BEI_ROM) |
3246 | return &dev->resource[PCI_ROM_RESOURCE]; |
3247 | else |
3248 | return NULL; |
3249 | } |
3250 | |
3251 | /* Read an Enhanced Allocation (EA) entry */ |
3252 | static int pci_ea_read(struct pci_dev *dev, int offset) |
3253 | { |
3254 | struct resource *res; |
3255 | const char *res_name; |
3256 | int ent_size, ent_offset = offset; |
3257 | resource_size_t start, end; |
3258 | unsigned long flags; |
3259 | u32 dw0, bei, base, max_offset; |
3260 | u8 prop; |
3261 | bool support_64 = (sizeof(resource_size_t) >= 8); |
3262 | |
3263 | pci_read_config_dword(dev, where: ent_offset, val: &dw0); |
3264 | ent_offset += 4; |
3265 | |
3266 | /* Entry size field indicates DWORDs after 1st */ |
3267 | ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; |
3268 | |
3269 | if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ |
3270 | goto out; |
3271 | |
3272 | bei = FIELD_GET(PCI_EA_BEI, dw0); |
3273 | prop = FIELD_GET(PCI_EA_PP, dw0); |
3274 | |
3275 | /* |
3276 | * If the Property is in the reserved range, try the Secondary |
3277 | * Property instead. |
3278 | */ |
3279 | if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) |
3280 | prop = FIELD_GET(PCI_EA_SP, dw0); |
3281 | if (prop > PCI_EA_P_BRIDGE_IO) |
3282 | goto out; |
3283 | |
3284 | res = pci_ea_get_resource(dev, bei, prop); |
3285 | res_name = pci_resource_name(dev, i: bei); |
3286 | if (!res) { |
3287 | pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); |
3288 | goto out; |
3289 | } |
3290 | |
3291 | flags = pci_ea_flags(dev, prop); |
3292 | if (!flags) { |
3293 | pci_err(dev, "Unsupported EA properties: %#x\n", prop); |
3294 | goto out; |
3295 | } |
3296 | |
3297 | /* Read Base */ |
3298 | pci_read_config_dword(dev, where: ent_offset, val: &base); |
3299 | start = (base & PCI_EA_FIELD_MASK); |
3300 | ent_offset += 4; |
3301 | |
3302 | /* Read MaxOffset */ |
3303 | pci_read_config_dword(dev, where: ent_offset, val: &max_offset); |
3304 | ent_offset += 4; |
3305 | |
3306 | /* Read Base MSBs (if 64-bit entry) */ |
3307 | if (base & PCI_EA_IS_64) { |
3308 | u32 base_upper; |
3309 | |
3310 | pci_read_config_dword(dev, where: ent_offset, val: &base_upper); |
3311 | ent_offset += 4; |
3312 | |
3313 | flags |= IORESOURCE_MEM_64; |
3314 | |
3315 | /* entry starts above 32-bit boundary, can't use */ |
3316 | if (!support_64 && base_upper) |
3317 | goto out; |
3318 | |
3319 | if (support_64) |
3320 | start |= ((u64)base_upper << 32); |
3321 | } |
3322 | |
3323 | end = start + (max_offset | 0x03); |
3324 | |
3325 | /* Read MaxOffset MSBs (if 64-bit entry) */ |
3326 | if (max_offset & PCI_EA_IS_64) { |
3327 | u32 max_offset_upper; |
3328 | |
3329 | pci_read_config_dword(dev, where: ent_offset, val: &max_offset_upper); |
3330 | ent_offset += 4; |
3331 | |
3332 | flags |= IORESOURCE_MEM_64; |
3333 | |
3334 | /* entry too big, can't use */ |
3335 | if (!support_64 && max_offset_upper) |
3336 | goto out; |
3337 | |
3338 | if (support_64) |
3339 | end += ((u64)max_offset_upper << 32); |
3340 | } |
3341 | |
3342 | if (end < start) { |
3343 | pci_err(dev, "EA Entry crosses address boundary\n"); |
3344 | goto out; |
3345 | } |
3346 | |
3347 | if (ent_size != ent_offset - offset) { |
3348 | pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", |
3349 | ent_size, ent_offset - offset); |
3350 | goto out; |
3351 | } |
3352 | |
3353 | res->name = pci_name(pdev: dev); |
3354 | res->start = start; |
3355 | res->end = end; |
3356 | res->flags = flags; |
3357 | |
3358 | if (bei <= PCI_EA_BEI_BAR5) |
3359 | pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", |
3360 | res_name, res, prop); |
3361 | else if (bei == PCI_EA_BEI_ROM) |
3362 | pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", |
3363 | res_name, res, prop); |
3364 | else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) |
3365 | pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n", |
3366 | res_name, res, prop); |
3367 | else |
3368 | pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n", |
3369 | bei, res, prop); |
3370 | |
3371 | out: |
3372 | return offset + ent_size; |
3373 | } |
3374 | |
3375 | /* Enhanced Allocation Initialization */ |
3376 | void pci_ea_init(struct pci_dev *dev) |
3377 | { |
3378 | int ea; |
3379 | u8 num_ent; |
3380 | int offset; |
3381 | int i; |
3382 | |
3383 | /* find PCI EA capability in list */ |
3384 | ea = pci_find_capability(dev, PCI_CAP_ID_EA); |
3385 | if (!ea) |
3386 | return; |
3387 | |
3388 | /* determine the number of entries */ |
3389 | pci_bus_read_config_byte(bus: dev->bus, devfn: dev->devfn, where: ea + PCI_EA_NUM_ENT, |
3390 | val: &num_ent); |
3391 | num_ent &= PCI_EA_NUM_ENT_MASK; |
3392 | |
3393 | offset = ea + PCI_EA_FIRST_ENT; |
3394 | |
3395 | /* Skip DWORD 2 for type 1 functions */ |
3396 | if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) |
3397 | offset += 4; |
3398 | |
3399 | /* parse each EA entry */ |
3400 | for (i = 0; i < num_ent; ++i) |
3401 | offset = pci_ea_read(dev, offset); |
3402 | } |
3403 | |
3404 | static void pci_add_saved_cap(struct pci_dev *pci_dev, |
3405 | struct pci_cap_saved_state *new_cap) |
3406 | { |
3407 | hlist_add_head(n: &new_cap->next, h: &pci_dev->saved_cap_space); |
3408 | } |
3409 | |
3410 | /** |
3411 | * _pci_add_cap_save_buffer - allocate buffer for saving given |
3412 | * capability registers |
3413 | * @dev: the PCI device |
3414 | * @cap: the capability to allocate the buffer for |
3415 | * @extended: Standard or Extended capability ID |
3416 | * @size: requested size of the buffer |
3417 | */ |
3418 | static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, |
3419 | bool extended, unsigned int size) |
3420 | { |
3421 | int pos; |
3422 | struct pci_cap_saved_state *save_state; |
3423 | |
3424 | if (extended) |
3425 | pos = pci_find_ext_capability(dev, cap); |
3426 | else |
3427 | pos = pci_find_capability(dev, cap); |
3428 | |
3429 | if (!pos) |
3430 | return 0; |
3431 | |
3432 | save_state = kzalloc(size: sizeof(*save_state) + size, GFP_KERNEL); |
3433 | if (!save_state) |
3434 | return -ENOMEM; |
3435 | |
3436 | save_state->cap.cap_nr = cap; |
3437 | save_state->cap.cap_extended = extended; |
3438 | save_state->cap.size = size; |
3439 | pci_add_saved_cap(pci_dev: dev, new_cap: save_state); |
3440 | |
3441 | return 0; |
3442 | } |
3443 | |
3444 | int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) |
3445 | { |
3446 | return _pci_add_cap_save_buffer(dev, cap, extended: false, size); |
3447 | } |
3448 | |
3449 | int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) |
3450 | { |
3451 | return _pci_add_cap_save_buffer(dev, cap, extended: true, size); |
3452 | } |
3453 | |
3454 | /** |
3455 | * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities |
3456 | * @dev: the PCI device |
3457 | */ |
3458 | void pci_allocate_cap_save_buffers(struct pci_dev *dev) |
3459 | { |
3460 | int error; |
3461 | |
3462 | error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, |
3463 | PCI_EXP_SAVE_REGS * sizeof(u16)); |
3464 | if (error) |
3465 | pci_err(dev, "unable to preallocate PCI Express save buffer\n"); |
3466 | |
3467 | error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, size: sizeof(u16)); |
3468 | if (error) |
3469 | pci_err(dev, "unable to preallocate PCI-X save buffer\n"); |
3470 | |
3471 | error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, |
3472 | size: 2 * sizeof(u16)); |
3473 | if (error) |
3474 | pci_err(dev, "unable to allocate suspend buffer for LTR\n"); |
3475 | |
3476 | pci_allocate_vc_save_buffers(dev); |
3477 | } |
3478 | |
3479 | void pci_free_cap_save_buffers(struct pci_dev *dev) |
3480 | { |
3481 | struct pci_cap_saved_state *tmp; |
3482 | struct hlist_node *n; |
3483 | |
3484 | hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) |
3485 | kfree(objp: tmp); |
3486 | } |
3487 | |
3488 | /** |
3489 | * pci_configure_ari - enable or disable ARI forwarding |
3490 | * @dev: the PCI device |
3491 | * |
3492 | * If @dev and its upstream bridge both support ARI, enable ARI in the |
3493 | * bridge. Otherwise, disable ARI in the bridge. |
3494 | */ |
3495 | void pci_configure_ari(struct pci_dev *dev) |
3496 | { |
3497 | u32 cap; |
3498 | struct pci_dev *bridge; |
3499 | |
3500 | if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) |
3501 | return; |
3502 | |
3503 | bridge = dev->bus->self; |
3504 | if (!bridge) |
3505 | return; |
3506 | |
3507 | pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCAP2, val: &cap); |
3508 | if (!(cap & PCI_EXP_DEVCAP2_ARI)) |
3509 | return; |
3510 | |
3511 | if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { |
3512 | pcie_capability_set_word(dev: bridge, PCI_EXP_DEVCTL2, |
3513 | PCI_EXP_DEVCTL2_ARI); |
3514 | bridge->ari_enabled = 1; |
3515 | } else { |
3516 | pcie_capability_clear_word(dev: bridge, PCI_EXP_DEVCTL2, |
3517 | PCI_EXP_DEVCTL2_ARI); |
3518 | bridge->ari_enabled = 0; |
3519 | } |
3520 | } |
3521 | |
3522 | static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) |
3523 | { |
3524 | int pos; |
3525 | u16 cap, ctrl; |
3526 | |
3527 | pos = pdev->acs_cap; |
3528 | if (!pos) |
3529 | return false; |
3530 | |
3531 | /* |
3532 | * Except for egress control, capabilities are either required |
3533 | * or only required if controllable. Features missing from the |
3534 | * capability field can therefore be assumed as hard-wired enabled. |
3535 | */ |
3536 | pci_read_config_word(dev: pdev, where: pos + PCI_ACS_CAP, val: &cap); |
3537 | acs_flags &= (cap | PCI_ACS_EC); |
3538 | |
3539 | pci_read_config_word(dev: pdev, where: pos + PCI_ACS_CTRL, val: &ctrl); |
3540 | return (ctrl & acs_flags) == acs_flags; |
3541 | } |
3542 | |
3543 | /** |
3544 | * pci_acs_enabled - test ACS against required flags for a given device |
3545 | * @pdev: device to test |
3546 | * @acs_flags: required PCI ACS flags |
3547 | * |
3548 | * Return true if the device supports the provided flags. Automatically |
3549 | * filters out flags that are not implemented on multifunction devices. |
3550 | * |
3551 | * Note that this interface checks the effective ACS capabilities of the |
3552 | * device rather than the actual capabilities. For instance, most single |
3553 | * function endpoints are not required to support ACS because they have no |
3554 | * opportunity for peer-to-peer access. We therefore return 'true' |
3555 | * regardless of whether the device exposes an ACS capability. This makes |
3556 | * it much easier for callers of this function to ignore the actual type |
3557 | * or topology of the device when testing ACS support. |
3558 | */ |
3559 | bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) |
3560 | { |
3561 | int ret; |
3562 | |
3563 | ret = pci_dev_specific_acs_enabled(dev: pdev, acs_flags); |
3564 | if (ret >= 0) |
3565 | return ret > 0; |
3566 | |
3567 | /* |
3568 | * Conventional PCI and PCI-X devices never support ACS, either |
3569 | * effectively or actually. The shared bus topology implies that |
3570 | * any device on the bus can receive or snoop DMA. |
3571 | */ |
3572 | if (!pci_is_pcie(dev: pdev)) |
3573 | return false; |
3574 | |
3575 | switch (pci_pcie_type(dev: pdev)) { |
3576 | /* |
3577 | * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, |
3578 | * but since their primary interface is PCI/X, we conservatively |
3579 | * handle them as we would a non-PCIe device. |
3580 | */ |
3581 | case PCI_EXP_TYPE_PCIE_BRIDGE: |
3582 | /* |
3583 | * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never |
3584 | * applicable... must never implement an ACS Extended Capability...". |
3585 | * This seems arbitrary, but we take a conservative interpretation |
3586 | * of this statement. |
3587 | */ |
3588 | case PCI_EXP_TYPE_PCI_BRIDGE: |
3589 | case PCI_EXP_TYPE_RC_EC: |
3590 | return false; |
3591 | /* |
3592 | * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should |
3593 | * implement ACS in order to indicate their peer-to-peer capabilities, |
3594 | * regardless of whether they are single- or multi-function devices. |
3595 | */ |
3596 | case PCI_EXP_TYPE_DOWNSTREAM: |
3597 | case PCI_EXP_TYPE_ROOT_PORT: |
3598 | return pci_acs_flags_enabled(pdev, acs_flags); |
3599 | /* |
3600 | * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be |
3601 | * implemented by the remaining PCIe types to indicate peer-to-peer |
3602 | * capabilities, but only when they are part of a multifunction |
3603 | * device. The footnote for section 6.12 indicates the specific |
3604 | * PCIe types included here. |
3605 | */ |
3606 | case PCI_EXP_TYPE_ENDPOINT: |
3607 | case PCI_EXP_TYPE_UPSTREAM: |
3608 | case PCI_EXP_TYPE_LEG_END: |
3609 | case PCI_EXP_TYPE_RC_END: |
3610 | if (!pdev->multifunction) |
3611 | break; |
3612 | |
3613 | return pci_acs_flags_enabled(pdev, acs_flags); |
3614 | } |
3615 | |
3616 | /* |
3617 | * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable |
3618 | * to single function devices with the exception of downstream ports. |
3619 | */ |
3620 | return true; |
3621 | } |
3622 | |
3623 | /** |
3624 | * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy |
3625 | * @start: starting downstream device |
3626 | * @end: ending upstream device or NULL to search to the root bus |
3627 | * @acs_flags: required flags |
3628 | * |
3629 | * Walk up a device tree from start to end testing PCI ACS support. If |
3630 | * any step along the way does not support the required flags, return false. |
3631 | */ |
3632 | bool pci_acs_path_enabled(struct pci_dev *start, |
3633 | struct pci_dev *end, u16 acs_flags) |
3634 | { |
3635 | struct pci_dev *pdev, *parent = start; |
3636 | |
3637 | do { |
3638 | pdev = parent; |
3639 | |
3640 | if (!pci_acs_enabled(pdev, acs_flags)) |
3641 | return false; |
3642 | |
3643 | if (pci_is_root_bus(pbus: pdev->bus)) |
3644 | return (end == NULL); |
3645 | |
3646 | parent = pdev->bus->self; |
3647 | } while (pdev != end); |
3648 | |
3649 | return true; |
3650 | } |
3651 | |
3652 | /** |
3653 | * pci_acs_init - Initialize ACS if hardware supports it |
3654 | * @dev: the PCI device |
3655 | */ |
3656 | void pci_acs_init(struct pci_dev *dev) |
3657 | { |
3658 | dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); |
3659 | |
3660 | /* |
3661 | * Attempt to enable ACS regardless of capability because some Root |
3662 | * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have |
3663 | * the standard ACS capability but still support ACS via those |
3664 | * quirks. |
3665 | */ |
3666 | pci_enable_acs(dev); |
3667 | } |
3668 | |
3669 | /** |
3670 | * pci_rebar_find_pos - find position of resize ctrl reg for BAR |
3671 | * @pdev: PCI device |
3672 | * @bar: BAR to find |
3673 | * |
3674 | * Helper to find the position of the ctrl register for a BAR. |
3675 | * Returns -ENOTSUPP if resizable BARs are not supported at all. |
3676 | * Returns -ENOENT if no ctrl register for the BAR could be found. |
3677 | */ |
3678 | static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) |
3679 | { |
3680 | unsigned int pos, nbars, i; |
3681 | u32 ctrl; |
3682 | |
3683 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); |
3684 | if (!pos) |
3685 | return -ENOTSUPP; |
3686 | |
3687 | pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl); |
3688 | nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); |
3689 | |
3690 | for (i = 0; i < nbars; i++, pos += 8) { |
3691 | int bar_idx; |
3692 | |
3693 | pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl); |
3694 | bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); |
3695 | if (bar_idx == bar) |
3696 | return pos; |
3697 | } |
3698 | |
3699 | return -ENOENT; |
3700 | } |
3701 | |
3702 | /** |
3703 | * pci_rebar_get_possible_sizes - get possible sizes for BAR |
3704 | * @pdev: PCI device |
3705 | * @bar: BAR to query |
3706 | * |
3707 | * Get the possible sizes of a resizable BAR as bitmask defined in the spec |
3708 | * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. |
3709 | */ |
3710 | u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) |
3711 | { |
3712 | int pos; |
3713 | u32 cap; |
3714 | |
3715 | pos = pci_rebar_find_pos(pdev, bar); |
3716 | if (pos < 0) |
3717 | return 0; |
3718 | |
3719 | pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CAP, val: &cap); |
3720 | cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); |
3721 | |
3722 | /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ |
3723 | if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && |
3724 | bar == 0 && cap == 0x700) |
3725 | return 0x3f00; |
3726 | |
3727 | return cap; |
3728 | } |
3729 | EXPORT_SYMBOL(pci_rebar_get_possible_sizes); |
3730 | |
3731 | /** |
3732 | * pci_rebar_get_current_size - get the current size of a BAR |
3733 | * @pdev: PCI device |
3734 | * @bar: BAR to set size to |
3735 | * |
3736 | * Read the size of a BAR from the resizable BAR config. |
3737 | * Returns size if found or negative error code. |
3738 | */ |
3739 | int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) |
3740 | { |
3741 | int pos; |
3742 | u32 ctrl; |
3743 | |
3744 | pos = pci_rebar_find_pos(pdev, bar); |
3745 | if (pos < 0) |
3746 | return pos; |
3747 | |
3748 | pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl); |
3749 | return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); |
3750 | } |
3751 | |
3752 | /** |
3753 | * pci_rebar_set_size - set a new size for a BAR |
3754 | * @pdev: PCI device |
3755 | * @bar: BAR to set size to |
3756 | * @size: new size as defined in the spec (0=1MB, 19=512GB) |
3757 | * |
3758 | * Set the new size of a BAR as defined in the spec. |
3759 | * Returns zero if resizing was successful, error code otherwise. |
3760 | */ |
3761 | int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) |
3762 | { |
3763 | int pos; |
3764 | u32 ctrl; |
3765 | |
3766 | pos = pci_rebar_find_pos(pdev, bar); |
3767 | if (pos < 0) |
3768 | return pos; |
3769 | |
3770 | pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl); |
3771 | ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; |
3772 | ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); |
3773 | pci_write_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: ctrl); |
3774 | return 0; |
3775 | } |
3776 | |
3777 | /** |
3778 | * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port |
3779 | * @dev: the PCI device |
3780 | * @cap_mask: mask of desired AtomicOp sizes, including one or more of: |
3781 | * PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
3782 | * PCI_EXP_DEVCAP2_ATOMIC_COMP64 |
3783 | * PCI_EXP_DEVCAP2_ATOMIC_COMP128 |
3784 | * |
3785 | * Return 0 if all upstream bridges support AtomicOp routing, egress |
3786 | * blocking is disabled on all upstream ports, and the root port supports |
3787 | * the requested completion capabilities (32-bit, 64-bit and/or 128-bit |
3788 | * AtomicOp completion), or negative otherwise. |
3789 | */ |
3790 | int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) |
3791 | { |
3792 | struct pci_bus *bus = dev->bus; |
3793 | struct pci_dev *bridge; |
3794 | u32 cap, ctl2; |
3795 | |
3796 | /* |
3797 | * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit |
3798 | * in Device Control 2 is reserved in VFs and the PF value applies |
3799 | * to all associated VFs. |
3800 | */ |
3801 | if (dev->is_virtfn) |
3802 | return -EINVAL; |
3803 | |
3804 | if (!pci_is_pcie(dev)) |
3805 | return -EINVAL; |
3806 | |
3807 | /* |
3808 | * Per PCIe r4.0, sec 6.15, endpoints and root ports may be |
3809 | * AtomicOp requesters. For now, we only support endpoints as |
3810 | * requesters and root ports as completers. No endpoints as |
3811 | * completers, and no peer-to-peer. |
3812 | */ |
3813 | |
3814 | switch (pci_pcie_type(dev)) { |
3815 | case PCI_EXP_TYPE_ENDPOINT: |
3816 | case PCI_EXP_TYPE_LEG_END: |
3817 | case PCI_EXP_TYPE_RC_END: |
3818 | break; |
3819 | default: |
3820 | return -EINVAL; |
3821 | } |
3822 | |
3823 | while (bus->parent) { |
3824 | bridge = bus->self; |
3825 | |
3826 | pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCAP2, val: &cap); |
3827 | |
3828 | switch (pci_pcie_type(dev: bridge)) { |
3829 | /* Ensure switch ports support AtomicOp routing */ |
3830 | case PCI_EXP_TYPE_UPSTREAM: |
3831 | case PCI_EXP_TYPE_DOWNSTREAM: |
3832 | if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) |
3833 | return -EINVAL; |
3834 | break; |
3835 | |
3836 | /* Ensure root port supports all the sizes we care about */ |
3837 | case PCI_EXP_TYPE_ROOT_PORT: |
3838 | if ((cap & cap_mask) != cap_mask) |
3839 | return -EINVAL; |
3840 | break; |
3841 | } |
3842 | |
3843 | /* Ensure upstream ports don't block AtomicOps on egress */ |
3844 | if (pci_pcie_type(dev: bridge) == PCI_EXP_TYPE_UPSTREAM) { |
3845 | pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCTL2, |
3846 | val: &ctl2); |
3847 | if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) |
3848 | return -EINVAL; |
3849 | } |
3850 | |
3851 | bus = bus->parent; |
3852 | } |
3853 | |
3854 | pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, |
3855 | PCI_EXP_DEVCTL2_ATOMIC_REQ); |
3856 | return 0; |
3857 | } |
3858 | EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); |
3859 | |
3860 | /** |
3861 | * pci_release_region - Release a PCI bar |
3862 | * @pdev: PCI device whose resources were previously reserved by |
3863 | * pci_request_region() |
3864 | * @bar: BAR to release |
3865 | * |
3866 | * Releases the PCI I/O and memory resources previously reserved by a |
3867 | * successful call to pci_request_region(). Call this function only |
3868 | * after all use of the PCI regions has ceased. |
3869 | */ |
3870 | void pci_release_region(struct pci_dev *pdev, int bar) |
3871 | { |
3872 | struct pci_devres *dr; |
3873 | |
3874 | if (pci_resource_len(pdev, bar) == 0) |
3875 | return; |
3876 | if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) |
3877 | release_region(pci_resource_start(pdev, bar), |
3878 | pci_resource_len(pdev, bar)); |
3879 | else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) |
3880 | release_mem_region(pci_resource_start(pdev, bar), |
3881 | pci_resource_len(pdev, bar)); |
3882 | |
3883 | dr = find_pci_dr(pdev); |
3884 | if (dr) |
3885 | dr->region_mask &= ~(1 << bar); |
3886 | } |
3887 | EXPORT_SYMBOL(pci_release_region); |
3888 | |
3889 | /** |
3890 | * __pci_request_region - Reserved PCI I/O and memory resource |
3891 | * @pdev: PCI device whose resources are to be reserved |
3892 | * @bar: BAR to be reserved |
3893 | * @res_name: Name to be associated with resource. |
3894 | * @exclusive: whether the region access is exclusive or not |
3895 | * |
3896 | * Mark the PCI region associated with PCI device @pdev BAR @bar as |
3897 | * being reserved by owner @res_name. Do not access any |
3898 | * address inside the PCI regions unless this call returns |
3899 | * successfully. |
3900 | * |
3901 | * If @exclusive is set, then the region is marked so that userspace |
3902 | * is explicitly not allowed to map the resource via /dev/mem or |
3903 | * sysfs MMIO access. |
3904 | * |
3905 | * Returns 0 on success, or %EBUSY on error. A warning |
3906 | * message is also printed on failure. |
3907 | */ |
3908 | static int __pci_request_region(struct pci_dev *pdev, int bar, |
3909 | const char *res_name, int exclusive) |
3910 | { |
3911 | struct pci_devres *dr; |
3912 | |
3913 | if (pci_resource_len(pdev, bar) == 0) |
3914 | return 0; |
3915 | |
3916 | if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { |
3917 | if (!request_region(pci_resource_start(pdev, bar), |
3918 | pci_resource_len(pdev, bar), res_name)) |
3919 | goto err_out; |
3920 | } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { |
3921 | if (!__request_mem_region(pci_resource_start(pdev, bar), |
3922 | pci_resource_len(pdev, bar), res_name, |
3923 | exclusive)) |
3924 | goto err_out; |
3925 | } |
3926 | |
3927 | dr = find_pci_dr(pdev); |
3928 | if (dr) |
3929 | dr->region_mask |= 1 << bar; |
3930 | |
3931 | return 0; |
3932 | |
3933 | err_out: |
3934 | pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, |
3935 | &pdev->resource[bar]); |
3936 | return -EBUSY; |
3937 | } |
3938 | |
3939 | /** |
3940 | * pci_request_region - Reserve PCI I/O and memory resource |
3941 | * @pdev: PCI device whose resources are to be reserved |
3942 | * @bar: BAR to be reserved |
3943 | * @res_name: Name to be associated with resource |
3944 | * |
3945 | * Mark the PCI region associated with PCI device @pdev BAR @bar as |
3946 | * being reserved by owner @res_name. Do not access any |
3947 | * address inside the PCI regions unless this call returns |
3948 | * successfully. |
3949 | * |
3950 | * Returns 0 on success, or %EBUSY on error. A warning |
3951 | * message is also printed on failure. |
3952 | */ |
3953 | int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) |
3954 | { |
3955 | return __pci_request_region(pdev, bar, res_name, exclusive: 0); |
3956 | } |
3957 | EXPORT_SYMBOL(pci_request_region); |
3958 | |
3959 | /** |
3960 | * pci_release_selected_regions - Release selected PCI I/O and memory resources |
3961 | * @pdev: PCI device whose resources were previously reserved |
3962 | * @bars: Bitmask of BARs to be released |
3963 | * |
3964 | * Release selected PCI I/O and memory resources previously reserved. |
3965 | * Call this function only after all use of the PCI regions has ceased. |
3966 | */ |
3967 | void pci_release_selected_regions(struct pci_dev *pdev, int bars) |
3968 | { |
3969 | int i; |
3970 | |
3971 | for (i = 0; i < PCI_STD_NUM_BARS; i++) |
3972 | if (bars & (1 << i)) |
3973 | pci_release_region(pdev, i); |
3974 | } |
3975 | EXPORT_SYMBOL(pci_release_selected_regions); |
3976 | |
3977 | static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, |
3978 | const char *res_name, int excl) |
3979 | { |
3980 | int i; |
3981 | |
3982 | for (i = 0; i < PCI_STD_NUM_BARS; i++) |
3983 | if (bars & (1 << i)) |
3984 | if (__pci_request_region(pdev, bar: i, res_name, exclusive: excl)) |
3985 | goto err_out; |
3986 | return 0; |
3987 | |
3988 | err_out: |
3989 | while (--i >= 0) |
3990 | if (bars & (1 << i)) |
3991 | pci_release_region(pdev, i); |
3992 | |
3993 | return -EBUSY; |
3994 | } |
3995 | |
3996 | |
3997 | /** |
3998 | * pci_request_selected_regions - Reserve selected PCI I/O and memory resources |
3999 | * @pdev: PCI device whose resources are to be reserved |
4000 | * @bars: Bitmask of BARs to be requested |
4001 | * @res_name: Name to be associated with resource |
4002 | */ |
4003 | int pci_request_selected_regions(struct pci_dev *pdev, int bars, |
4004 | const char *res_name) |
4005 | { |
4006 | return __pci_request_selected_regions(pdev, bars, res_name, excl: 0); |
4007 | } |
4008 | EXPORT_SYMBOL(pci_request_selected_regions); |
4009 | |
4010 | int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, |
4011 | const char *res_name) |
4012 | { |
4013 | return __pci_request_selected_regions(pdev, bars, res_name, |
4014 | IORESOURCE_EXCLUSIVE); |
4015 | } |
4016 | EXPORT_SYMBOL(pci_request_selected_regions_exclusive); |
4017 | |
4018 | /** |
4019 | * pci_release_regions - Release reserved PCI I/O and memory resources |
4020 | * @pdev: PCI device whose resources were previously reserved by |
4021 | * pci_request_regions() |
4022 | * |
4023 | * Releases all PCI I/O and memory resources previously reserved by a |
4024 | * successful call to pci_request_regions(). Call this function only |
4025 | * after all use of the PCI regions has ceased. |
4026 | */ |
4027 | |
4028 | void pci_release_regions(struct pci_dev *pdev) |
4029 | { |
4030 | pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); |
4031 | } |
4032 | EXPORT_SYMBOL(pci_release_regions); |
4033 | |
4034 | /** |
4035 | * pci_request_regions - Reserve PCI I/O and memory resources |
4036 | * @pdev: PCI device whose resources are to be reserved |
4037 | * @res_name: Name to be associated with resource. |
4038 | * |
4039 | * Mark all PCI regions associated with PCI device @pdev as |
4040 | * being reserved by owner @res_name. Do not access any |
4041 | * address inside the PCI regions unless this call returns |
4042 | * successfully. |
4043 | * |
4044 | * Returns 0 on success, or %EBUSY on error. A warning |
4045 | * message is also printed on failure. |
4046 | */ |
4047 | int pci_request_regions(struct pci_dev *pdev, const char *res_name) |
4048 | { |
4049 | return pci_request_selected_regions(pdev, |
4050 | ((1 << PCI_STD_NUM_BARS) - 1), res_name); |
4051 | } |
4052 | EXPORT_SYMBOL(pci_request_regions); |
4053 | |
4054 | /** |
4055 | * pci_request_regions_exclusive - Reserve PCI I/O and memory resources |
4056 | * @pdev: PCI device whose resources are to be reserved |
4057 | * @res_name: Name to be associated with resource. |
4058 | * |
4059 | * Mark all PCI regions associated with PCI device @pdev as being reserved |
4060 | * by owner @res_name. Do not access any address inside the PCI regions |
4061 | * unless this call returns successfully. |
4062 | * |
4063 | * pci_request_regions_exclusive() will mark the region so that /dev/mem |
4064 | * and the sysfs MMIO access will not be allowed. |
4065 | * |
4066 | * Returns 0 on success, or %EBUSY on error. A warning message is also |
4067 | * printed on failure. |
4068 | */ |
4069 | int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) |
4070 | { |
4071 | return pci_request_selected_regions_exclusive(pdev, |
4072 | ((1 << PCI_STD_NUM_BARS) - 1), res_name); |
4073 | } |
4074 | EXPORT_SYMBOL(pci_request_regions_exclusive); |
4075 | |
4076 | /* |
4077 | * Record the PCI IO range (expressed as CPU physical address + size). |
4078 | * Return a negative value if an error has occurred, zero otherwise |
4079 | */ |
4080 | int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, |
4081 | resource_size_t size) |
4082 | { |
4083 | int ret = 0; |
4084 | #ifdef PCI_IOBASE |
4085 | struct logic_pio_hwaddr *range; |
4086 | |
4087 | if (!size || addr + size < addr) |
4088 | return -EINVAL; |
4089 | |
4090 | range = kzalloc(sizeof(*range), GFP_ATOMIC); |
4091 | if (!range) |
4092 | return -ENOMEM; |
4093 | |
4094 | range->fwnode = fwnode; |
4095 | range->size = size; |
4096 | range->hw_start = addr; |
4097 | range->flags = LOGIC_PIO_CPU_MMIO; |
4098 | |
4099 | ret = logic_pio_register_range(range); |
4100 | if (ret) |
4101 | kfree(range); |
4102 | |
4103 | /* Ignore duplicates due to deferred probing */ |
4104 | if (ret == -EEXIST) |
4105 | ret = 0; |
4106 | #endif |
4107 | |
4108 | return ret; |
4109 | } |
4110 | |
4111 | phys_addr_t pci_pio_to_address(unsigned long pio) |
4112 | { |
4113 | #ifdef PCI_IOBASE |
4114 | if (pio < MMIO_UPPER_LIMIT) |
4115 | return logic_pio_to_hwaddr(pio); |
4116 | #endif |
4117 | |
4118 | return (phys_addr_t) OF_BAD_ADDR; |
4119 | } |
4120 | EXPORT_SYMBOL_GPL(pci_pio_to_address); |
4121 | |
4122 | unsigned long __weak pci_address_to_pio(phys_addr_t address) |
4123 | { |
4124 | #ifdef PCI_IOBASE |
4125 | return logic_pio_trans_cpuaddr(address); |
4126 | #else |
4127 | if (address > IO_SPACE_LIMIT) |
4128 | return (unsigned long)-1; |
4129 | |
4130 | return (unsigned long) address; |
4131 | #endif |
4132 | } |
4133 | |
4134 | /** |
4135 | * pci_remap_iospace - Remap the memory mapped I/O space |
4136 | * @res: Resource describing the I/O space |
4137 | * @phys_addr: physical address of range to be mapped |
4138 | * |
4139 | * Remap the memory mapped I/O space described by the @res and the CPU |
4140 | * physical address @phys_addr into virtual address space. Only |
4141 | * architectures that have memory mapped IO functions defined (and the |
4142 | * PCI_IOBASE value defined) should call this function. |
4143 | */ |
4144 | #ifndef pci_remap_iospace |
4145 | int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) |
4146 | { |
4147 | #if defined(PCI_IOBASE) && defined(CONFIG_MMU) |
4148 | unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; |
4149 | |
4150 | if (!(res->flags & IORESOURCE_IO)) |
4151 | return -EINVAL; |
4152 | |
4153 | if (res->end > IO_SPACE_LIMIT) |
4154 | return -EINVAL; |
4155 | |
4156 | return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr, |
4157 | pgprot_device(PAGE_KERNEL)); |
4158 | #else |
4159 | /* |
4160 | * This architecture does not have memory mapped I/O space, |
4161 | * so this function should never be called |
4162 | */ |
4163 | WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); |
4164 | return -ENODEV; |
4165 | #endif |
4166 | } |
4167 | EXPORT_SYMBOL(pci_remap_iospace); |
4168 | #endif |
4169 | |
4170 | /** |
4171 | * pci_unmap_iospace - Unmap the memory mapped I/O space |
4172 | * @res: resource to be unmapped |
4173 | * |
4174 | * Unmap the CPU virtual address @res from virtual address space. Only |
4175 | * architectures that have memory mapped IO functions defined (and the |
4176 | * PCI_IOBASE value defined) should call this function. |
4177 | */ |
4178 | void pci_unmap_iospace(struct resource *res) |
4179 | { |
4180 | #if defined(PCI_IOBASE) && defined(CONFIG_MMU) |
4181 | unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; |
4182 | |
4183 | vunmap_range(vaddr, vaddr + resource_size(res)); |
4184 | #endif |
4185 | } |
4186 | EXPORT_SYMBOL(pci_unmap_iospace); |
4187 | |
4188 | static void __pci_set_master(struct pci_dev *dev, bool enable) |
4189 | { |
4190 | u16 old_cmd, cmd; |
4191 | |
4192 | pci_read_config_word(dev, PCI_COMMAND, val: &old_cmd); |
4193 | if (enable) |
4194 | cmd = old_cmd | PCI_COMMAND_MASTER; |
4195 | else |
4196 | cmd = old_cmd & ~PCI_COMMAND_MASTER; |
4197 | if (cmd != old_cmd) { |
4198 | pci_dbg(dev, "%s bus mastering\n", |
4199 | enable ? "enabling": "disabling"); |
4200 | pci_write_config_word(dev, PCI_COMMAND, val: cmd); |
4201 | } |
4202 | dev->is_busmaster = enable; |
4203 | } |
4204 | |
4205 | /** |
4206 | * pcibios_setup - process "pci=" kernel boot arguments |
4207 | * @str: string used to pass in "pci=" kernel boot arguments |
4208 | * |
4209 | * Process kernel boot arguments. This is the default implementation. |
4210 | * Architecture specific implementations can override this as necessary. |
4211 | */ |
4212 | char * __weak __init pcibios_setup(char *str) |
4213 | { |
4214 | return str; |
4215 | } |
4216 | |
4217 | /** |
4218 | * pcibios_set_master - enable PCI bus-mastering for device dev |
4219 | * @dev: the PCI device to enable |
4220 | * |
4221 | * Enables PCI bus-mastering for the device. This is the default |
4222 | * implementation. Architecture specific implementations can override |
4223 | * this if necessary. |
4224 | */ |
4225 | void __weak pcibios_set_master(struct pci_dev *dev) |
4226 | { |
4227 | u8 lat; |
4228 | |
4229 | /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ |
4230 | if (pci_is_pcie(dev)) |
4231 | return; |
4232 | |
4233 | pci_read_config_byte(dev, PCI_LATENCY_TIMER, val: &lat); |
4234 | if (lat < 16) |
4235 | lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; |
4236 | else if (lat > pcibios_max_latency) |
4237 | lat = pcibios_max_latency; |
4238 | else |
4239 | return; |
4240 | |
4241 | pci_write_config_byte(dev, PCI_LATENCY_TIMER, val: lat); |
4242 | } |
4243 | |
4244 | /** |
4245 | * pci_set_master - enables bus-mastering for device dev |
4246 | * @dev: the PCI device to enable |
4247 | * |
4248 | * Enables bus-mastering on the device and calls pcibios_set_master() |
4249 | * to do the needed arch specific settings. |
4250 | */ |
4251 | void pci_set_master(struct pci_dev *dev) |
4252 | { |
4253 | __pci_set_master(dev, enable: true); |
4254 | pcibios_set_master(dev); |
4255 | } |
4256 | EXPORT_SYMBOL(pci_set_master); |
4257 | |
4258 | /** |
4259 | * pci_clear_master - disables bus-mastering for device dev |
4260 | * @dev: the PCI device to disable |
4261 | */ |
4262 | void pci_clear_master(struct pci_dev *dev) |
4263 | { |
4264 | __pci_set_master(dev, enable: false); |
4265 | } |
4266 | EXPORT_SYMBOL(pci_clear_master); |
4267 | |
4268 | /** |
4269 | * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed |
4270 | * @dev: the PCI device for which MWI is to be enabled |
4271 | * |
4272 | * Helper function for pci_set_mwi. |
4273 | * Originally copied from drivers/net/acenic.c. |
4274 | * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. |
4275 | * |
4276 | * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
4277 | */ |
4278 | int pci_set_cacheline_size(struct pci_dev *dev) |
4279 | { |
4280 | u8 cacheline_size; |
4281 | |
4282 | if (!pci_cache_line_size) |
4283 | return -EINVAL; |
4284 | |
4285 | /* Validate current setting: the PCI_CACHE_LINE_SIZE must be |
4286 | equal to or multiple of the right value. */ |
4287 | pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, val: &cacheline_size); |
4288 | if (cacheline_size >= pci_cache_line_size && |
4289 | (cacheline_size % pci_cache_line_size) == 0) |
4290 | return 0; |
4291 | |
4292 | /* Write the correct value. */ |
4293 | pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, val: pci_cache_line_size); |
4294 | /* Read it back. */ |
4295 | pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, val: &cacheline_size); |
4296 | if (cacheline_size == pci_cache_line_size) |
4297 | return 0; |
4298 | |
4299 | pci_dbg(dev, "cache line size of %d is not supported\n", |
4300 | pci_cache_line_size << 2); |
4301 | |
4302 | return -EINVAL; |
4303 | } |
4304 | EXPORT_SYMBOL_GPL(pci_set_cacheline_size); |
4305 | |
4306 | /** |
4307 | * pci_set_mwi - enables memory-write-invalidate PCI transaction |
4308 | * @dev: the PCI device for which MWI is enabled |
4309 | * |
4310 | * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. |
4311 | * |
4312 | * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
4313 | */ |
4314 | int pci_set_mwi(struct pci_dev *dev) |
4315 | { |
4316 | #ifdef PCI_DISABLE_MWI |
4317 | return 0; |
4318 | #else |
4319 | int rc; |
4320 | u16 cmd; |
4321 | |
4322 | rc = pci_set_cacheline_size(dev); |
4323 | if (rc) |
4324 | return rc; |
4325 | |
4326 | pci_read_config_word(dev, PCI_COMMAND, val: &cmd); |
4327 | if (!(cmd & PCI_COMMAND_INVALIDATE)) { |
4328 | pci_dbg(dev, "enabling Mem-Wr-Inval\n"); |
4329 | cmd |= PCI_COMMAND_INVALIDATE; |
4330 | pci_write_config_word(dev, PCI_COMMAND, val: cmd); |
4331 | } |
4332 | return 0; |
4333 | #endif |
4334 | } |
4335 | EXPORT_SYMBOL(pci_set_mwi); |
4336 | |
4337 | /** |
4338 | * pci_try_set_mwi - enables memory-write-invalidate PCI transaction |
4339 | * @dev: the PCI device for which MWI is enabled |
4340 | * |
4341 | * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. |
4342 | * Callers are not required to check the return value. |
4343 | * |
4344 | * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
4345 | */ |
4346 | int pci_try_set_mwi(struct pci_dev *dev) |
4347 | { |
4348 | #ifdef PCI_DISABLE_MWI |
4349 | return 0; |
4350 | #else |
4351 | return pci_set_mwi(dev); |
4352 | #endif |
4353 | } |
4354 | EXPORT_SYMBOL(pci_try_set_mwi); |
4355 | |
4356 | /** |
4357 | * pci_clear_mwi - disables Memory-Write-Invalidate for device dev |
4358 | * @dev: the PCI device to disable |
4359 | * |
4360 | * Disables PCI Memory-Write-Invalidate transaction on the device |
4361 | */ |
4362 | void pci_clear_mwi(struct pci_dev *dev) |
4363 | { |
4364 | #ifndef PCI_DISABLE_MWI |
4365 | u16 cmd; |
4366 | |
4367 | pci_read_config_word(dev, PCI_COMMAND, val: &cmd); |
4368 | if (cmd & PCI_COMMAND_INVALIDATE) { |
4369 | cmd &= ~PCI_COMMAND_INVALIDATE; |
4370 | pci_write_config_word(dev, PCI_COMMAND, val: cmd); |
4371 | } |
4372 | #endif |
4373 | } |
4374 | EXPORT_SYMBOL(pci_clear_mwi); |
4375 | |
4376 | /** |
4377 | * pci_disable_parity - disable parity checking for device |
4378 | * @dev: the PCI device to operate on |
4379 | * |
4380 | * Disable parity checking for device @dev |
4381 | */ |
4382 | void pci_disable_parity(struct pci_dev *dev) |
4383 | { |
4384 | u16 cmd; |
4385 | |
4386 | pci_read_config_word(dev, PCI_COMMAND, val: &cmd); |
4387 | if (cmd & PCI_COMMAND_PARITY) { |
4388 | cmd &= ~PCI_COMMAND_PARITY; |
4389 | pci_write_config_word(dev, PCI_COMMAND, val: cmd); |
4390 | } |
4391 | } |
4392 | |
4393 | /** |
4394 | * pci_intx - enables/disables PCI INTx for device dev |
4395 | * @pdev: the PCI device to operate on |
4396 | * @enable: boolean: whether to enable or disable PCI INTx |
4397 | * |
4398 | * Enables/disables PCI INTx for device @pdev |
4399 | */ |
4400 | void pci_intx(struct pci_dev *pdev, int enable) |
4401 | { |
4402 | u16 pci_command, new; |
4403 | |
4404 | pci_read_config_word(dev: pdev, PCI_COMMAND, val: &pci_command); |
4405 | |
4406 | if (enable) |
4407 | new = pci_command & ~PCI_COMMAND_INTX_DISABLE; |
4408 | else |
4409 | new = pci_command | PCI_COMMAND_INTX_DISABLE; |
4410 | |
4411 | if (new != pci_command) { |
4412 | struct pci_devres *dr; |
4413 | |
4414 | pci_write_config_word(dev: pdev, PCI_COMMAND, val: new); |
4415 | |
4416 | dr = find_pci_dr(pdev); |
4417 | if (dr && !dr->restore_intx) { |
4418 | dr->restore_intx = 1; |
4419 | dr->orig_intx = !enable; |
4420 | } |
4421 | } |
4422 | } |
4423 | EXPORT_SYMBOL_GPL(pci_intx); |
4424 | |
4425 | /** |
4426 | * pci_wait_for_pending_transaction - wait for pending transaction |
4427 | * @dev: the PCI device to operate on |
4428 | * |
4429 | * Return 0 if transaction is pending 1 otherwise. |
4430 | */ |
4431 | int pci_wait_for_pending_transaction(struct pci_dev *dev) |
4432 | { |
4433 | if (!pci_is_pcie(dev)) |
4434 | return 1; |
4435 | |
4436 | return pci_wait_for_pending(dev, pos: pci_pcie_cap(dev) + PCI_EXP_DEVSTA, |
4437 | PCI_EXP_DEVSTA_TRPND); |
4438 | } |
4439 | EXPORT_SYMBOL(pci_wait_for_pending_transaction); |
4440 | |
4441 | /** |
4442 | * pcie_flr - initiate a PCIe function level reset |
4443 | * @dev: device to reset |
4444 | * |
4445 | * Initiate a function level reset unconditionally on @dev without |
4446 | * checking any flags and DEVCAP |
4447 | */ |
4448 | int pcie_flr(struct pci_dev *dev) |
4449 | { |
4450 | if (!pci_wait_for_pending_transaction(dev)) |
4451 | pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); |
4452 | |
4453 | pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); |
4454 | |
4455 | if (dev->imm_ready) |
4456 | return 0; |
4457 | |
4458 | /* |
4459 | * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within |
4460 | * 100ms, but may silently discard requests while the FLR is in |
4461 | * progress. Wait 100ms before trying to access the device. |
4462 | */ |
4463 | msleep(msecs: 100); |
4464 | |
4465 | return pci_dev_wait(dev, reset_type: "FLR", PCIE_RESET_READY_POLL_MS); |
4466 | } |
4467 | EXPORT_SYMBOL_GPL(pcie_flr); |
4468 | |
4469 | /** |
4470 | * pcie_reset_flr - initiate a PCIe function level reset |
4471 | * @dev: device to reset |
4472 | * @probe: if true, return 0 if device can be reset this way |
4473 | * |
4474 | * Initiate a function level reset on @dev. |
4475 | */ |
4476 | int pcie_reset_flr(struct pci_dev *dev, bool probe) |
4477 | { |
4478 | if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) |
4479 | return -ENOTTY; |
4480 | |
4481 | if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) |
4482 | return -ENOTTY; |
4483 | |
4484 | if (probe) |
4485 | return 0; |
4486 | |
4487 | return pcie_flr(dev); |
4488 | } |
4489 | EXPORT_SYMBOL_GPL(pcie_reset_flr); |
4490 | |
4491 | static int pci_af_flr(struct pci_dev *dev, bool probe) |
4492 | { |
4493 | int pos; |
4494 | u8 cap; |
4495 | |
4496 | pos = pci_find_capability(dev, PCI_CAP_ID_AF); |
4497 | if (!pos) |
4498 | return -ENOTTY; |
4499 | |
4500 | if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) |
4501 | return -ENOTTY; |
4502 | |
4503 | pci_read_config_byte(dev, where: pos + PCI_AF_CAP, val: &cap); |
4504 | if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) |
4505 | return -ENOTTY; |
4506 | |
4507 | if (probe) |
4508 | return 0; |
4509 | |
4510 | /* |
4511 | * Wait for Transaction Pending bit to clear. A word-aligned test |
4512 | * is used, so we use the control offset rather than status and shift |
4513 | * the test bit to match. |
4514 | */ |
4515 | if (!pci_wait_for_pending(dev, pos: pos + PCI_AF_CTRL, |
4516 | PCI_AF_STATUS_TP << 8)) |
4517 | pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); |
4518 | |
4519 | pci_write_config_byte(dev, where: pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); |
4520 | |
4521 | if (dev->imm_ready) |
4522 | return 0; |
4523 | |
4524 | /* |
4525 | * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, |
4526 | * updated 27 July 2006; a device must complete an FLR within |
4527 | * 100ms, but may silently discard requests while the FLR is in |
4528 | * progress. Wait 100ms before trying to access the device. |
4529 | */ |
4530 | msleep(msecs: 100); |
4531 | |
4532 | return pci_dev_wait(dev, reset_type: "AF_FLR", PCIE_RESET_READY_POLL_MS); |
4533 | } |
4534 | |
4535 | /** |
4536 | * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. |
4537 | * @dev: Device to reset. |
4538 | * @probe: if true, return 0 if the device can be reset this way. |
4539 | * |
4540 | * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is |
4541 | * unset, it will be reinitialized internally when going from PCI_D3hot to |
4542 | * PCI_D0. If that's the case and the device is not in a low-power state |
4543 | * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. |
4544 | * |
4545 | * NOTE: This causes the caller to sleep for twice the device power transition |
4546 | * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms |
4547 | * by default (i.e. unless the @dev's d3hot_delay field has a different value). |
4548 | * Moreover, only devices in D0 can be reset by this function. |
4549 | */ |
4550 | static int pci_pm_reset(struct pci_dev *dev, bool probe) |
4551 | { |
4552 | u16 csr; |
4553 | |
4554 | if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) |
4555 | return -ENOTTY; |
4556 | |
4557 | pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &csr); |
4558 | if (csr & PCI_PM_CTRL_NO_SOFT_RESET) |
4559 | return -ENOTTY; |
4560 | |
4561 | if (probe) |
4562 | return 0; |
4563 | |
4564 | if (dev->current_state != PCI_D0) |
4565 | return -EINVAL; |
4566 | |
4567 | csr &= ~PCI_PM_CTRL_STATE_MASK; |
4568 | csr |= PCI_D3hot; |
4569 | pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: csr); |
4570 | pci_dev_d3_sleep(dev); |
4571 | |
4572 | csr &= ~PCI_PM_CTRL_STATE_MASK; |
4573 | csr |= PCI_D0; |
4574 | pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: csr); |
4575 | pci_dev_d3_sleep(dev); |
4576 | |
4577 | return pci_dev_wait(dev, reset_type: "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); |
4578 | } |
4579 | |
4580 | /** |
4581 | * pcie_wait_for_link_status - Wait for link status change |
4582 | * @pdev: Device whose link to wait for. |
4583 | * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. |
4584 | * @active: Waiting for active or inactive? |
4585 | * |
4586 | * Return 0 if successful, or -ETIMEDOUT if status has not changed within |
4587 | * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. |
4588 | */ |
4589 | static int pcie_wait_for_link_status(struct pci_dev *pdev, |
4590 | bool use_lt, bool active) |
4591 | { |
4592 | u16 lnksta_mask, lnksta_match; |
4593 | unsigned long end_jiffies; |
4594 | u16 lnksta; |
4595 | |
4596 | lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; |
4597 | lnksta_match = active ? lnksta_mask : 0; |
4598 | |
4599 | end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); |
4600 | do { |
4601 | pcie_capability_read_word(dev: pdev, PCI_EXP_LNKSTA, val: &lnksta); |
4602 | if ((lnksta & lnksta_mask) == lnksta_match) |
4603 | return 0; |
4604 | msleep(msecs: 1); |
4605 | } while (time_before(jiffies, end_jiffies)); |
4606 | |
4607 | return -ETIMEDOUT; |
4608 | } |
4609 | |
4610 | /** |
4611 | * pcie_retrain_link - Request a link retrain and wait for it to complete |
4612 | * @pdev: Device whose link to retrain. |
4613 | * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. |
4614 | * |
4615 | * Retrain completion status is retrieved from the Link Status Register |
4616 | * according to @use_lt. It is not verified whether the use of the DLLLA |
4617 | * bit is valid. |
4618 | * |
4619 | * Return 0 if successful, or -ETIMEDOUT if training has not completed |
4620 | * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. |
4621 | */ |
4622 | int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) |
4623 | { |
4624 | int rc; |
4625 | |
4626 | /* |
4627 | * Ensure the updated LNKCTL parameters are used during link |
4628 | * training by checking that there is no ongoing link training to |
4629 | * avoid LTSSM race as recommended in Implementation Note at the |
4630 | * end of PCIe r6.0.1 sec 7.5.3.7. |
4631 | */ |
4632 | rc = pcie_wait_for_link_status(pdev, use_lt, active: !use_lt); |
4633 | if (rc) |
4634 | return rc; |
4635 | |
4636 | pcie_capability_set_word(dev: pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); |
4637 | if (pdev->clear_retrain_link) { |
4638 | /* |
4639 | * Due to an erratum in some devices the Retrain Link bit |
4640 | * needs to be cleared again manually to allow the link |
4641 | * training to succeed. |
4642 | */ |
4643 | pcie_capability_clear_word(dev: pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); |
4644 | } |
4645 | |
4646 | return pcie_wait_for_link_status(pdev, use_lt, active: !use_lt); |
4647 | } |
4648 | |
4649 | /** |
4650 | * pcie_wait_for_link_delay - Wait until link is active or inactive |
4651 | * @pdev: Bridge device |
4652 | * @active: waiting for active or inactive? |
4653 | * @delay: Delay to wait after link has become active (in ms) |
4654 | * |
4655 | * Use this to wait till link becomes active or inactive. |
4656 | */ |
4657 | static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, |
4658 | int delay) |
4659 | { |
4660 | int rc; |
4661 | |
4662 | /* |
4663 | * Some controllers might not implement link active reporting. In this |
4664 | * case, we wait for 1000 ms + any delay requested by the caller. |
4665 | */ |
4666 | if (!pdev->link_active_reporting) { |
4667 | msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); |
4668 | return true; |
4669 | } |
4670 | |
4671 | /* |
4672 | * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, |
4673 | * after which we should expect an link active if the reset was |
4674 | * successful. If so, software must wait a minimum 100ms before sending |
4675 | * configuration requests to devices downstream this port. |
4676 | * |
4677 | * If the link fails to activate, either the device was physically |
4678 | * removed or the link is permanently failed. |
4679 | */ |
4680 | if (active) |
4681 | msleep(msecs: 20); |
4682 | rc = pcie_wait_for_link_status(pdev, use_lt: false, active); |
4683 | if (active) { |
4684 | if (rc) |
4685 | rc = pcie_failed_link_retrain(dev: pdev); |
4686 | if (rc) |
4687 | return false; |
4688 | |
4689 | msleep(msecs: delay); |
4690 | return true; |
4691 | } |
4692 | |
4693 | if (rc) |
4694 | return false; |
4695 | |
4696 | return true; |
4697 | } |
4698 | |
4699 | /** |
4700 | * pcie_wait_for_link - Wait until link is active or inactive |
4701 | * @pdev: Bridge device |
4702 | * @active: waiting for active or inactive? |
4703 | * |
4704 | * Use this to wait till link becomes active or inactive. |
4705 | */ |
4706 | bool pcie_wait_for_link(struct pci_dev *pdev, bool active) |
4707 | { |
4708 | return pcie_wait_for_link_delay(pdev, active, delay: 100); |
4709 | } |
4710 | |
4711 | /* |
4712 | * Find maximum D3cold delay required by all the devices on the bus. The |
4713 | * spec says 100 ms, but firmware can lower it and we allow drivers to |
4714 | * increase it as well. |
4715 | * |
4716 | * Called with @pci_bus_sem locked for reading. |
4717 | */ |
4718 | static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) |
4719 | { |
4720 | const struct pci_dev *pdev; |
4721 | int min_delay = 100; |
4722 | int max_delay = 0; |
4723 | |
4724 | list_for_each_entry(pdev, &bus->devices, bus_list) { |
4725 | if (pdev->d3cold_delay < min_delay) |
4726 | min_delay = pdev->d3cold_delay; |
4727 | if (pdev->d3cold_delay > max_delay) |
4728 | max_delay = pdev->d3cold_delay; |
4729 | } |
4730 | |
4731 | return max(min_delay, max_delay); |
4732 | } |
4733 | |
4734 | /** |
4735 | * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible |
4736 | * @dev: PCI bridge |
4737 | * @reset_type: reset type in human-readable form |
4738 | * |
4739 | * Handle necessary delays before access to the devices on the secondary |
4740 | * side of the bridge are permitted after D3cold to D0 transition |
4741 | * or Conventional Reset. |
4742 | * |
4743 | * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For |
4744 | * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section |
4745 | * 4.3.2. |
4746 | * |
4747 | * Return 0 on success or -ENOTTY if the first device on the secondary bus |
4748 | * failed to become accessible. |
4749 | */ |
4750 | int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) |
4751 | { |
4752 | struct pci_dev *child; |
4753 | int delay; |
4754 | |
4755 | if (pci_dev_is_disconnected(dev)) |
4756 | return 0; |
4757 | |
4758 | if (!pci_is_bridge(dev)) |
4759 | return 0; |
4760 | |
4761 | down_read(sem: &pci_bus_sem); |
4762 | |
4763 | /* |
4764 | * We only deal with devices that are present currently on the bus. |
4765 | * For any hot-added devices the access delay is handled in pciehp |
4766 | * board_added(). In case of ACPI hotplug the firmware is expected |
4767 | * to configure the devices before OS is notified. |
4768 | */ |
4769 | if (!dev->subordinate || list_empty(head: &dev->subordinate->devices)) { |
4770 | up_read(sem: &pci_bus_sem); |
4771 | return 0; |
4772 | } |
4773 | |
4774 | /* Take d3cold_delay requirements into account */ |
4775 | delay = pci_bus_max_d3cold_delay(bus: dev->subordinate); |
4776 | if (!delay) { |
4777 | up_read(sem: &pci_bus_sem); |
4778 | return 0; |
4779 | } |
4780 | |
4781 | child = list_first_entry(&dev->subordinate->devices, struct pci_dev, |
4782 | bus_list); |
4783 | up_read(sem: &pci_bus_sem); |
4784 | |
4785 | /* |
4786 | * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before |
4787 | * accessing the device after reset (that is 1000 ms + 100 ms). |
4788 | */ |
4789 | if (!pci_is_pcie(dev)) { |
4790 | pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); |
4791 | msleep(msecs: 1000 + delay); |
4792 | return 0; |
4793 | } |
4794 | |
4795 | /* |
4796 | * For PCIe downstream and root ports that do not support speeds |
4797 | * greater than 5 GT/s need to wait minimum 100 ms. For higher |
4798 | * speeds (gen3) we need to wait first for the data link layer to |
4799 | * become active. |
4800 | * |
4801 | * However, 100 ms is the minimum and the PCIe spec says the |
4802 | * software must allow at least 1s before it can determine that the |
4803 | * device that did not respond is a broken device. Also device can |
4804 | * take longer than that to respond if it indicates so through Request |
4805 | * Retry Status completions. |
4806 | * |
4807 | * Therefore we wait for 100 ms and check for the device presence |
4808 | * until the timeout expires. |
4809 | */ |
4810 | if (!pcie_downstream_port(dev)) |
4811 | return 0; |
4812 | |
4813 | if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { |
4814 | u16 status; |
4815 | |
4816 | pci_dbg(dev, "waiting %d ms for downstream link\n", delay); |
4817 | msleep(msecs: delay); |
4818 | |
4819 | if (!pci_dev_wait(dev: child, reset_type, PCI_RESET_WAIT - delay)) |
4820 | return 0; |
4821 | |
4822 | /* |
4823 | * If the port supports active link reporting we now check |
4824 | * whether the link is active and if not bail out early with |
4825 | * the assumption that the device is not present anymore. |
4826 | */ |
4827 | if (!dev->link_active_reporting) |
4828 | return -ENOTTY; |
4829 | |
4830 | pcie_capability_read_word(dev, PCI_EXP_LNKSTA, val: &status); |
4831 | if (!(status & PCI_EXP_LNKSTA_DLLLA)) |
4832 | return -ENOTTY; |
4833 | |
4834 | return pci_dev_wait(dev: child, reset_type, |
4835 | PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); |
4836 | } |
4837 | |
4838 | pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", |
4839 | delay); |
4840 | if (!pcie_wait_for_link_delay(pdev: dev, active: true, delay)) { |
4841 | /* Did not train, no need to wait any further */ |
4842 | pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); |
4843 | return -ENOTTY; |
4844 | } |
4845 | |
4846 | return pci_dev_wait(dev: child, reset_type, |
4847 | PCIE_RESET_READY_POLL_MS - delay); |
4848 | } |
4849 | |
4850 | void pci_reset_secondary_bus(struct pci_dev *dev) |
4851 | { |
4852 | u16 ctrl; |
4853 | |
4854 | pci_read_config_word(dev, PCI_BRIDGE_CONTROL, val: &ctrl); |
4855 | ctrl |= PCI_BRIDGE_CTL_BUS_RESET; |
4856 | pci_write_config_word(dev, PCI_BRIDGE_CONTROL, val: ctrl); |
4857 | |
4858 | /* |
4859 | * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double |
4860 | * this to 2ms to ensure that we meet the minimum requirement. |
4861 | */ |
4862 | msleep(msecs: 2); |
4863 | |
4864 | ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; |
4865 | pci_write_config_word(dev, PCI_BRIDGE_CONTROL, val: ctrl); |
4866 | } |
4867 | |
4868 | void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) |
4869 | { |
4870 | pci_reset_secondary_bus(dev); |
4871 | } |
4872 | |
4873 | /** |
4874 | * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. |
4875 | * @dev: Bridge device |
4876 | * |
4877 | * Use the bridge control register to assert reset on the secondary bus. |
4878 | * Devices on the secondary bus are left in power-on state. |
4879 | */ |
4880 | int pci_bridge_secondary_bus_reset(struct pci_dev *dev) |
4881 | { |
4882 | pcibios_reset_secondary_bus(dev); |
4883 | |
4884 | return pci_bridge_wait_for_secondary_bus(dev, reset_type: "bus reset"); |
4885 | } |
4886 | EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); |
4887 | |
4888 | static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) |
4889 | { |
4890 | struct pci_dev *pdev; |
4891 | |
4892 | if (pci_is_root_bus(pbus: dev->bus) || dev->subordinate || |
4893 | !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) |
4894 | return -ENOTTY; |
4895 | |
4896 | list_for_each_entry(pdev, &dev->bus->devices, bus_list) |
4897 | if (pdev != dev) |
4898 | return -ENOTTY; |
4899 | |
4900 | if (probe) |
4901 | return 0; |
4902 | |
4903 | return pci_bridge_secondary_bus_reset(dev->bus->self); |
4904 | } |
4905 | |
4906 | static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) |
4907 | { |
4908 | int rc = -ENOTTY; |
4909 | |
4910 | if (!hotplug || !try_module_get(module: hotplug->owner)) |
4911 | return rc; |
4912 | |
4913 | if (hotplug->ops->reset_slot) |
4914 | rc = hotplug->ops->reset_slot(hotplug, probe); |
4915 | |
4916 | module_put(module: hotplug->owner); |
4917 | |
4918 | return rc; |
4919 | } |
4920 | |
4921 | static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) |
4922 | { |
4923 | if (dev->multifunction || dev->subordinate || !dev->slot || |
4924 | dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) |
4925 | return -ENOTTY; |
4926 | |
4927 | return pci_reset_hotplug_slot(hotplug: dev->slot->hotplug, probe); |
4928 | } |
4929 | |
4930 | static int pci_reset_bus_function(struct pci_dev *dev, bool probe) |
4931 | { |
4932 | int rc; |
4933 | |
4934 | rc = pci_dev_reset_slot_function(dev, probe); |
4935 | if (rc != -ENOTTY) |
4936 | return rc; |
4937 | return pci_parent_bus_reset(dev, probe); |
4938 | } |
4939 | |
4940 | void pci_dev_lock(struct pci_dev *dev) |
4941 | { |
4942 | /* block PM suspend, driver probe, etc. */ |
4943 | device_lock(dev: &dev->dev); |
4944 | pci_cfg_access_lock(dev); |
4945 | } |
4946 | EXPORT_SYMBOL_GPL(pci_dev_lock); |
4947 | |
4948 | /* Return 1 on successful lock, 0 on contention */ |
4949 | int pci_dev_trylock(struct pci_dev *dev) |
4950 | { |
4951 | if (device_trylock(dev: &dev->dev)) { |
4952 | if (pci_cfg_access_trylock(dev)) |
4953 | return 1; |
4954 | device_unlock(dev: &dev->dev); |
4955 | } |
4956 | |
4957 | return 0; |
4958 | } |
4959 | EXPORT_SYMBOL_GPL(pci_dev_trylock); |
4960 | |
4961 | void pci_dev_unlock(struct pci_dev *dev) |
4962 | { |
4963 | pci_cfg_access_unlock(dev); |
4964 | device_unlock(dev: &dev->dev); |
4965 | } |
4966 | EXPORT_SYMBOL_GPL(pci_dev_unlock); |
4967 | |
4968 | static void pci_dev_save_and_disable(struct pci_dev *dev) |
4969 | { |
4970 | const struct pci_error_handlers *err_handler = |
4971 | dev->driver ? dev->driver->err_handler : NULL; |
4972 | |
4973 | /* |
4974 | * dev->driver->err_handler->reset_prepare() is protected against |
4975 | * races with ->remove() by the device lock, which must be held by |
4976 | * the caller. |
4977 | */ |
4978 | if (err_handler && err_handler->reset_prepare) |
4979 | err_handler->reset_prepare(dev); |
4980 | |
4981 | /* |
4982 | * Wake-up device prior to save. PM registers default to D0 after |
4983 | * reset and a simple register restore doesn't reliably return |
4984 | * to a non-D0 state anyway. |
4985 | */ |
4986 | pci_set_power_state(dev, PCI_D0); |
4987 | |
4988 | pci_save_state(dev); |
4989 | /* |
4990 | * Disable the device by clearing the Command register, except for |
4991 | * INTx-disable which is set. This not only disables MMIO and I/O port |
4992 | * BARs, but also prevents the device from being Bus Master, preventing |
4993 | * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 |
4994 | * compliant devices, INTx-disable prevents legacy interrupts. |
4995 | */ |
4996 | pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); |
4997 | } |
4998 | |
4999 | static void pci_dev_restore(struct pci_dev *dev) |
5000 | { |
5001 | const struct pci_error_handlers *err_handler = |
5002 | dev->driver ? dev->driver->err_handler : NULL; |
5003 | |
5004 | pci_restore_state(dev); |
5005 | |
5006 | /* |
5007 | * dev->driver->err_handler->reset_done() is protected against |
5008 | * races with ->remove() by the device lock, which must be held by |
5009 | * the caller. |
5010 | */ |
5011 | if (err_handler && err_handler->reset_done) |
5012 | err_handler->reset_done(dev); |
5013 | } |
5014 | |
5015 | /* dev->reset_methods[] is a 0-terminated list of indices into this array */ |
5016 | static const struct pci_reset_fn_method pci_reset_fn_methods[] = { |
5017 | { }, |
5018 | { pci_dev_specific_reset, .name = "device_specific"}, |
5019 | { pci_dev_acpi_reset, .name = "acpi"}, |
5020 | { pcie_reset_flr, .name = "flr"}, |
5021 | { pci_af_flr, .name = "af_flr"}, |
5022 | { pci_pm_reset, .name = "pm"}, |
5023 | { pci_reset_bus_function, .name = "bus"}, |
5024 | }; |
5025 | |
5026 | static ssize_t reset_method_show(struct device *dev, |
5027 | struct device_attribute *attr, char *buf) |
5028 | { |
5029 | struct pci_dev *pdev = to_pci_dev(dev); |
5030 | ssize_t len = 0; |
5031 | int i, m; |
5032 | |
5033 | for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { |
5034 | m = pdev->reset_methods[i]; |
5035 | if (!m) |
5036 | break; |
5037 | |
5038 | len += sysfs_emit_at(buf, at: len, fmt: "%s%s", len ? " ": "", |
5039 | pci_reset_fn_methods[m].name); |
5040 | } |
5041 | |
5042 | if (len) |
5043 | len += sysfs_emit_at(buf, at: len, fmt: "\n"); |
5044 | |
5045 | return len; |
5046 | } |
5047 | |
5048 | static int reset_method_lookup(const char *name) |
5049 | { |
5050 | int m; |
5051 | |
5052 | for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { |
5053 | if (sysfs_streq(s1: name, s2: pci_reset_fn_methods[m].name)) |
5054 | return m; |
5055 | } |
5056 | |
5057 | return 0; /* not found */ |
5058 | } |
5059 | |
5060 | static ssize_t reset_method_store(struct device *dev, |
5061 | struct device_attribute *attr, |
5062 | const char *buf, size_t count) |
5063 | { |
5064 | struct pci_dev *pdev = to_pci_dev(dev); |
5065 | char *options, *name; |
5066 | int m, n; |
5067 | u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; |
5068 | |
5069 | if (sysfs_streq(s1: buf, s2: "")) { |
5070 | pdev->reset_methods[0] = 0; |
5071 | pci_warn(pdev, "All device reset methods disabled by user"); |
5072 | return count; |
5073 | } |
5074 | |
5075 | if (sysfs_streq(s1: buf, s2: "default")) { |
5076 | pci_init_reset_methods(dev: pdev); |
5077 | return count; |
5078 | } |
5079 | |
5080 | options = kstrndup(s: buf, len: count, GFP_KERNEL); |
5081 | if (!options) |
5082 | return -ENOMEM; |
5083 | |
5084 | n = 0; |
5085 | while ((name = strsep(&options, " ")) != NULL) { |
5086 | if (sysfs_streq(s1: name, s2: "")) |
5087 | continue; |
5088 | |
5089 | name = strim(name); |
5090 | |
5091 | m = reset_method_lookup(name); |
5092 | if (!m) { |
5093 | pci_err(pdev, "Invalid reset method '%s'", name); |
5094 | goto error; |
5095 | } |
5096 | |
5097 | if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { |
5098 | pci_err(pdev, "Unsupported reset method '%s'", name); |
5099 | goto error; |
5100 | } |
5101 | |
5102 | if (n == PCI_NUM_RESET_METHODS - 1) { |
5103 | pci_err(pdev, "Too many reset methods\n"); |
5104 | goto error; |
5105 | } |
5106 | |
5107 | reset_methods[n++] = m; |
5108 | } |
5109 | |
5110 | reset_methods[n] = 0; |
5111 | |
5112 | /* Warn if dev-specific supported but not highest priority */ |
5113 | if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && |
5114 | reset_methods[0] != 1) |
5115 | pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); |
5116 | memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); |
5117 | kfree(objp: options); |
5118 | return count; |
5119 | |
5120 | error: |
5121 | /* Leave previous methods unchanged */ |
5122 | kfree(objp: options); |
5123 | return -EINVAL; |
5124 | } |
5125 | static DEVICE_ATTR_RW(reset_method); |
5126 | |
5127 | static struct attribute *pci_dev_reset_method_attrs[] = { |
5128 | &dev_attr_reset_method.attr, |
5129 | NULL, |
5130 | }; |
5131 | |
5132 | static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, |
5133 | struct attribute *a, int n) |
5134 | { |
5135 | struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); |
5136 | |
5137 | if (!pci_reset_supported(dev: pdev)) |
5138 | return 0; |
5139 | |
5140 | return a->mode; |
5141 | } |
5142 | |
5143 | const struct attribute_group pci_dev_reset_method_attr_group = { |
5144 | .attrs = pci_dev_reset_method_attrs, |
5145 | .is_visible = pci_dev_reset_method_attr_is_visible, |
5146 | }; |
5147 | |
5148 | /** |
5149 | * __pci_reset_function_locked - reset a PCI device function while holding |
5150 | * the @dev mutex lock. |
5151 | * @dev: PCI device to reset |
5152 | * |
5153 | * Some devices allow an individual function to be reset without affecting |
5154 | * other functions in the same device. The PCI device must be responsive |
5155 | * to PCI config space in order to use this function. |
5156 | * |
5157 | * The device function is presumed to be unused and the caller is holding |
5158 | * the device mutex lock when this function is called. |
5159 | * |
5160 | * Resetting the device will make the contents of PCI configuration space |
5161 | * random, so any caller of this must be prepared to reinitialise the |
5162 | * device including MSI, bus mastering, BARs, decoding IO and memory spaces, |
5163 | * etc. |
5164 | * |
5165 | * Returns 0 if the device function was successfully reset or negative if the |
5166 | * device doesn't support resetting a single function. |
5167 | */ |
5168 | int __pci_reset_function_locked(struct pci_dev *dev) |
5169 | { |
5170 | int i, m, rc; |
5171 | |
5172 | might_sleep(); |
5173 | |
5174 | /* |
5175 | * A reset method returns -ENOTTY if it doesn't support this device and |
5176 | * we should try the next method. |
5177 | * |
5178 | * If it returns 0 (success), we're finished. If it returns any other |
5179 | * error, we're also finished: this indicates that further reset |
5180 | * mechanisms might be broken on the device. |
5181 | */ |
5182 | for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { |
5183 | m = dev->reset_methods[i]; |
5184 | if (!m) |
5185 | return -ENOTTY; |
5186 | |
5187 | rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); |
5188 | if (!rc) |
5189 | return 0; |
5190 | if (rc != -ENOTTY) |
5191 | return rc; |
5192 | } |
5193 | |
5194 | return -ENOTTY; |
5195 | } |
5196 | EXPORT_SYMBOL_GPL(__pci_reset_function_locked); |
5197 | |
5198 | /** |
5199 | * pci_init_reset_methods - check whether device can be safely reset |
5200 | * and store supported reset mechanisms. |
5201 | * @dev: PCI device to check for reset mechanisms |
5202 | * |
5203 | * Some devices allow an individual function to be reset without affecting |
5204 | * other functions in the same device. The PCI device must be in D0-D3hot |
5205 | * state. |
5206 | * |
5207 | * Stores reset mechanisms supported by device in reset_methods byte array |
5208 | * which is a member of struct pci_dev. |
5209 | */ |
5210 | void pci_init_reset_methods(struct pci_dev *dev) |
5211 | { |
5212 | int m, i, rc; |
5213 | |
5214 | BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); |
5215 | |
5216 | might_sleep(); |
5217 | |
5218 | i = 0; |
5219 | for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { |
5220 | rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); |
5221 | if (!rc) |
5222 | dev->reset_methods[i++] = m; |
5223 | else if (rc != -ENOTTY) |
5224 | break; |
5225 | } |
5226 | |
5227 | dev->reset_methods[i] = 0; |
5228 | } |
5229 | |
5230 | /** |
5231 | * pci_reset_function - quiesce and reset a PCI device function |
5232 | * @dev: PCI device to reset |
5233 | * |
5234 | * Some devices allow an individual function to be reset without affecting |
5235 | * other functions in the same device. The PCI device must be responsive |
5236 | * to PCI config space in order to use this function. |
5237 | * |
5238 | * This function does not just reset the PCI portion of a device, but |
5239 | * clears all the state associated with the device. This function differs |
5240 | * from __pci_reset_function_locked() in that it saves and restores device state |
5241 | * over the reset and takes the PCI device lock. |
5242 | * |
5243 | * Returns 0 if the device function was successfully reset or negative if the |
5244 | * device doesn't support resetting a single function. |
5245 | */ |
5246 | int pci_reset_function(struct pci_dev *dev) |
5247 | { |
5248 | int rc; |
5249 | |
5250 | if (!pci_reset_supported(dev)) |
5251 | return -ENOTTY; |
5252 | |
5253 | pci_dev_lock(dev); |
5254 | pci_dev_save_and_disable(dev); |
5255 | |
5256 | rc = __pci_reset_function_locked(dev); |
5257 | |
5258 | pci_dev_restore(dev); |
5259 | pci_dev_unlock(dev); |
5260 | |
5261 | return rc; |
5262 | } |
5263 | EXPORT_SYMBOL_GPL(pci_reset_function); |
5264 | |
5265 | /** |
5266 | * pci_reset_function_locked - quiesce and reset a PCI device function |
5267 | * @dev: PCI device to reset |
5268 | * |
5269 | * Some devices allow an individual function to be reset without affecting |
5270 | * other functions in the same device. The PCI device must be responsive |
5271 | * to PCI config space in order to use this function. |
5272 | * |
5273 | * This function does not just reset the PCI portion of a device, but |
5274 | * clears all the state associated with the device. This function differs |
5275 | * from __pci_reset_function_locked() in that it saves and restores device state |
5276 | * over the reset. It also differs from pci_reset_function() in that it |
5277 | * requires the PCI device lock to be held. |
5278 | * |
5279 | * Returns 0 if the device function was successfully reset or negative if the |
5280 | * device doesn't support resetting a single function. |
5281 | */ |
5282 | int pci_reset_function_locked(struct pci_dev *dev) |
5283 | { |
5284 | int rc; |
5285 | |
5286 | if (!pci_reset_supported(dev)) |
5287 | return -ENOTTY; |
5288 | |
5289 | pci_dev_save_and_disable(dev); |
5290 | |
5291 | rc = __pci_reset_function_locked(dev); |
5292 | |
5293 | pci_dev_restore(dev); |
5294 | |
5295 | return rc; |
5296 | } |
5297 | EXPORT_SYMBOL_GPL(pci_reset_function_locked); |
5298 | |
5299 | /** |
5300 | * pci_try_reset_function - quiesce and reset a PCI device function |
5301 | * @dev: PCI device to reset |
5302 | * |
5303 | * Same as above, except return -EAGAIN if unable to lock device. |
5304 | */ |
5305 | int pci_try_reset_function(struct pci_dev *dev) |
5306 | { |
5307 | int rc; |
5308 | |
5309 | if (!pci_reset_supported(dev)) |
5310 | return -ENOTTY; |
5311 | |
5312 | if (!pci_dev_trylock(dev)) |
5313 | return -EAGAIN; |
5314 | |
5315 | pci_dev_save_and_disable(dev); |
5316 | rc = __pci_reset_function_locked(dev); |
5317 | pci_dev_restore(dev); |
5318 | pci_dev_unlock(dev); |
5319 | |
5320 | return rc; |
5321 | } |
5322 | EXPORT_SYMBOL_GPL(pci_try_reset_function); |
5323 | |
5324 | /* Do any devices on or below this bus prevent a bus reset? */ |
5325 | static bool pci_bus_resettable(struct pci_bus *bus) |
5326 | { |
5327 | struct pci_dev *dev; |
5328 | |
5329 | |
5330 | if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) |
5331 | return false; |
5332 | |
5333 | list_for_each_entry(dev, &bus->devices, bus_list) { |
5334 | if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || |
5335 | (dev->subordinate && !pci_bus_resettable(bus: dev->subordinate))) |
5336 | return false; |
5337 | } |
5338 | |
5339 | return true; |
5340 | } |
5341 | |
5342 | /* Lock devices from the top of the tree down */ |
5343 | static void pci_bus_lock(struct pci_bus *bus) |
5344 | { |
5345 | struct pci_dev *dev; |
5346 | |
5347 | list_for_each_entry(dev, &bus->devices, bus_list) { |
5348 | pci_dev_lock(dev); |
5349 | if (dev->subordinate) |
5350 | pci_bus_lock(bus: dev->subordinate); |
5351 | } |
5352 | } |
5353 | |
5354 | /* Unlock devices from the bottom of the tree up */ |
5355 | static void pci_bus_unlock(struct pci_bus *bus) |
5356 | { |
5357 | struct pci_dev *dev; |
5358 | |
5359 | list_for_each_entry(dev, &bus->devices, bus_list) { |
5360 | if (dev->subordinate) |
5361 | pci_bus_unlock(bus: dev->subordinate); |
5362 | pci_dev_unlock(dev); |
5363 | } |
5364 | } |
5365 | |
5366 | /* Return 1 on successful lock, 0 on contention */ |
5367 | static int pci_bus_trylock(struct pci_bus *bus) |
5368 | { |
5369 | struct pci_dev *dev; |
5370 | |
5371 | list_for_each_entry(dev, &bus->devices, bus_list) { |
5372 | if (!pci_dev_trylock(dev)) |
5373 | goto unlock; |
5374 | if (dev->subordinate) { |
5375 | if (!pci_bus_trylock(bus: dev->subordinate)) { |
5376 | pci_dev_unlock(dev); |
5377 | goto unlock; |
5378 | } |
5379 | } |
5380 | } |
5381 | return 1; |
5382 | |
5383 | unlock: |
5384 | list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { |
5385 | if (dev->subordinate) |
5386 | pci_bus_unlock(bus: dev->subordinate); |
5387 | pci_dev_unlock(dev); |
5388 | } |
5389 | return 0; |
5390 | } |
5391 | |
5392 | /* Do any devices on or below this slot prevent a bus reset? */ |
5393 | static bool pci_slot_resettable(struct pci_slot *slot) |
5394 | { |
5395 | struct pci_dev *dev; |
5396 | |
5397 | if (slot->bus->self && |
5398 | (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) |
5399 | return false; |
5400 | |
5401 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
5402 | if (!dev->slot || dev->slot != slot) |
5403 | continue; |
5404 | if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || |
5405 | (dev->subordinate && !pci_bus_resettable(bus: dev->subordinate))) |
5406 | return false; |
5407 | } |
5408 | |
5409 | return true; |
5410 | } |
5411 | |
5412 | /* Lock devices from the top of the tree down */ |
5413 | static void pci_slot_lock(struct pci_slot *slot) |
5414 | { |
5415 | struct pci_dev *dev; |
5416 | |
5417 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
5418 | if (!dev->slot || dev->slot != slot) |
5419 | continue; |
5420 | pci_dev_lock(dev); |
5421 | if (dev->subordinate) |
5422 | pci_bus_lock(bus: dev->subordinate); |
5423 | } |
5424 | } |
5425 | |
5426 | /* Unlock devices from the bottom of the tree up */ |
5427 | static void pci_slot_unlock(struct pci_slot *slot) |
5428 | { |
5429 | struct pci_dev *dev; |
5430 | |
5431 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
5432 | if (!dev->slot || dev->slot != slot) |
5433 | continue; |
5434 | if (dev->subordinate) |
5435 | pci_bus_unlock(bus: dev->subordinate); |
5436 | pci_dev_unlock(dev); |
5437 | } |
5438 | } |
5439 | |
5440 | /* Return 1 on successful lock, 0 on contention */ |
5441 | static int pci_slot_trylock(struct pci_slot *slot) |
5442 | { |
5443 | struct pci_dev *dev; |
5444 | |
5445 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
5446 | if (!dev->slot || dev->slot != slot) |
5447 | continue; |
5448 | if (!pci_dev_trylock(dev)) |
5449 | goto unlock; |
5450 | if (dev->subordinate) { |
5451 | if (!pci_bus_trylock(bus: dev->subordinate)) { |
5452 | pci_dev_unlock(dev); |
5453 | goto unlock; |
5454 | } |
5455 | } |
5456 | } |
5457 | return 1; |
5458 | |
5459 | unlock: |
5460 | list_for_each_entry_continue_reverse(dev, |
5461 | &slot->bus->devices, bus_list) { |
5462 | if (!dev->slot || dev->slot != slot) |
5463 | continue; |
5464 | if (dev->subordinate) |
5465 | pci_bus_unlock(bus: dev->subordinate); |
5466 | pci_dev_unlock(dev); |
5467 | } |
5468 | return 0; |
5469 | } |
5470 | |
5471 | /* |
5472 | * Save and disable devices from the top of the tree down while holding |
5473 | * the @dev mutex lock for the entire tree. |
5474 | */ |
5475 | static void pci_bus_save_and_disable_locked(struct pci_bus *bus) |
5476 | { |
5477 | struct pci_dev *dev; |
5478 | |
5479 | list_for_each_entry(dev, &bus->devices, bus_list) { |
5480 | pci_dev_save_and_disable(dev); |
5481 | if (dev->subordinate) |
5482 | pci_bus_save_and_disable_locked(bus: dev->subordinate); |
5483 | } |
5484 | } |
5485 | |
5486 | /* |
5487 | * Restore devices from top of the tree down while holding @dev mutex lock |
5488 | * for the entire tree. Parent bridges need to be restored before we can |
5489 | * get to subordinate devices. |
5490 | */ |
5491 | static void pci_bus_restore_locked(struct pci_bus *bus) |
5492 | { |
5493 | struct pci_dev *dev; |
5494 | |
5495 | list_for_each_entry(dev, &bus->devices, bus_list) { |
5496 | pci_dev_restore(dev); |
5497 | if (dev->subordinate) |
5498 | pci_bus_restore_locked(bus: dev->subordinate); |
5499 | } |
5500 | } |
5501 | |
5502 | /* |
5503 | * Save and disable devices from the top of the tree down while holding |
5504 | * the @dev mutex lock for the entire tree. |
5505 | */ |
5506 | static void pci_slot_save_and_disable_locked(struct pci_slot *slot) |
5507 | { |
5508 | struct pci_dev *dev; |
5509 | |
5510 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
5511 | if (!dev->slot || dev->slot != slot) |
5512 | continue; |
5513 | pci_dev_save_and_disable(dev); |
5514 | if (dev->subordinate) |
5515 | pci_bus_save_and_disable_locked(bus: dev->subordinate); |
5516 | } |
5517 | } |
5518 | |
5519 | /* |
5520 | * Restore devices from top of the tree down while holding @dev mutex lock |
5521 | * for the entire tree. Parent bridges need to be restored before we can |
5522 | * get to subordinate devices. |
5523 | */ |
5524 | static void pci_slot_restore_locked(struct pci_slot *slot) |
5525 | { |
5526 | struct pci_dev *dev; |
5527 | |
5528 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
5529 | if (!dev->slot || dev->slot != slot) |
5530 | continue; |
5531 | pci_dev_restore(dev); |
5532 | if (dev->subordinate) |
5533 | pci_bus_restore_locked(bus: dev->subordinate); |
5534 | } |
5535 | } |
5536 | |
5537 | static int pci_slot_reset(struct pci_slot *slot, bool probe) |
5538 | { |
5539 | int rc; |
5540 | |
5541 | if (!slot || !pci_slot_resettable(slot)) |
5542 | return -ENOTTY; |
5543 | |
5544 | if (!probe) |
5545 | pci_slot_lock(slot); |
5546 | |
5547 | might_sleep(); |
5548 | |
5549 | rc = pci_reset_hotplug_slot(hotplug: slot->hotplug, probe); |
5550 | |
5551 | if (!probe) |
5552 | pci_slot_unlock(slot); |
5553 | |
5554 | return rc; |
5555 | } |
5556 | |
5557 | /** |
5558 | * pci_probe_reset_slot - probe whether a PCI slot can be reset |
5559 | * @slot: PCI slot to probe |
5560 | * |
5561 | * Return 0 if slot can be reset, negative if a slot reset is not supported. |
5562 | */ |
5563 | int pci_probe_reset_slot(struct pci_slot *slot) |
5564 | { |
5565 | return pci_slot_reset(slot, PCI_RESET_PROBE); |
5566 | } |
5567 | EXPORT_SYMBOL_GPL(pci_probe_reset_slot); |
5568 | |
5569 | /** |
5570 | * __pci_reset_slot - Try to reset a PCI slot |
5571 | * @slot: PCI slot to reset |
5572 | * |
5573 | * A PCI bus may host multiple slots, each slot may support a reset mechanism |
5574 | * independent of other slots. For instance, some slots may support slot power |
5575 | * control. In the case of a 1:1 bus to slot architecture, this function may |
5576 | * wrap the bus reset to avoid spurious slot related events such as hotplug. |
5577 | * Generally a slot reset should be attempted before a bus reset. All of the |
5578 | * function of the slot and any subordinate buses behind the slot are reset |
5579 | * through this function. PCI config space of all devices in the slot and |
5580 | * behind the slot is saved before and restored after reset. |
5581 | * |
5582 | * Same as above except return -EAGAIN if the slot cannot be locked |
5583 | */ |
5584 | static int __pci_reset_slot(struct pci_slot *slot) |
5585 | { |
5586 | int rc; |
5587 | |
5588 | rc = pci_slot_reset(slot, PCI_RESET_PROBE); |
5589 | if (rc) |
5590 | return rc; |
5591 | |
5592 | if (pci_slot_trylock(slot)) { |
5593 | pci_slot_save_and_disable_locked(slot); |
5594 | might_sleep(); |
5595 | rc = pci_reset_hotplug_slot(hotplug: slot->hotplug, PCI_RESET_DO_RESET); |
5596 | pci_slot_restore_locked(slot); |
5597 | pci_slot_unlock(slot); |
5598 | } else |
5599 | rc = -EAGAIN; |
5600 | |
5601 | return rc; |
5602 | } |
5603 | |
5604 | static int pci_bus_reset(struct pci_bus *bus, bool probe) |
5605 | { |
5606 | int ret; |
5607 | |
5608 | if (!bus->self || !pci_bus_resettable(bus)) |
5609 | return -ENOTTY; |
5610 | |
5611 | if (probe) |
5612 | return 0; |
5613 | |
5614 | pci_bus_lock(bus); |
5615 | |
5616 | might_sleep(); |
5617 | |
5618 | ret = pci_bridge_secondary_bus_reset(bus->self); |
5619 | |
5620 | pci_bus_unlock(bus); |
5621 | |
5622 | return ret; |
5623 | } |
5624 | |
5625 | /** |
5626 | * pci_bus_error_reset - reset the bridge's subordinate bus |
5627 | * @bridge: The parent device that connects to the bus to reset |
5628 | * |
5629 | * This function will first try to reset the slots on this bus if the method is |
5630 | * available. If slot reset fails or is not available, this will fall back to a |
5631 | * secondary bus reset. |
5632 | */ |
5633 | int pci_bus_error_reset(struct pci_dev *bridge) |
5634 | { |
5635 | struct pci_bus *bus = bridge->subordinate; |
5636 | struct pci_slot *slot; |
5637 | |
5638 | if (!bus) |
5639 | return -ENOTTY; |
5640 | |
5641 | mutex_lock(&pci_slot_mutex); |
5642 | if (list_empty(head: &bus->slots)) |
5643 | goto bus_reset; |
5644 | |
5645 | list_for_each_entry(slot, &bus->slots, list) |
5646 | if (pci_probe_reset_slot(slot)) |
5647 | goto bus_reset; |
5648 | |
5649 | list_for_each_entry(slot, &bus->slots, list) |
5650 | if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) |
5651 | goto bus_reset; |
5652 | |
5653 | mutex_unlock(lock: &pci_slot_mutex); |
5654 | return 0; |
5655 | bus_reset: |
5656 | mutex_unlock(lock: &pci_slot_mutex); |
5657 | return pci_bus_reset(bus: bridge->subordinate, PCI_RESET_DO_RESET); |
5658 | } |
5659 | |
5660 | /** |
5661 | * pci_probe_reset_bus - probe whether a PCI bus can be reset |
5662 | * @bus: PCI bus to probe |
5663 | * |
5664 | * Return 0 if bus can be reset, negative if a bus reset is not supported. |
5665 | */ |
5666 | int pci_probe_reset_bus(struct pci_bus *bus) |
5667 | { |
5668 | return pci_bus_reset(bus, PCI_RESET_PROBE); |
5669 | } |
5670 | EXPORT_SYMBOL_GPL(pci_probe_reset_bus); |
5671 | |
5672 | /** |
5673 | * __pci_reset_bus - Try to reset a PCI bus |
5674 | * @bus: top level PCI bus to reset |
5675 | * |
5676 | * Same as above except return -EAGAIN if the bus cannot be locked |
5677 | */ |
5678 | static int __pci_reset_bus(struct pci_bus *bus) |
5679 | { |
5680 | int rc; |
5681 | |
5682 | rc = pci_bus_reset(bus, PCI_RESET_PROBE); |
5683 | if (rc) |
5684 | return rc; |
5685 | |
5686 | if (pci_bus_trylock(bus)) { |
5687 | pci_bus_save_and_disable_locked(bus); |
5688 | might_sleep(); |
5689 | rc = pci_bridge_secondary_bus_reset(bus->self); |
5690 | pci_bus_restore_locked(bus); |
5691 | pci_bus_unlock(bus); |
5692 | } else |
5693 | rc = -EAGAIN; |
5694 | |
5695 | return rc; |
5696 | } |
5697 | |
5698 | /** |
5699 | * pci_reset_bus - Try to reset a PCI bus |
5700 | * @pdev: top level PCI device to reset via slot/bus |
5701 | * |
5702 | * Same as above except return -EAGAIN if the bus cannot be locked |
5703 | */ |
5704 | int pci_reset_bus(struct pci_dev *pdev) |
5705 | { |
5706 | return (!pci_probe_reset_slot(pdev->slot)) ? |
5707 | __pci_reset_slot(slot: pdev->slot) : __pci_reset_bus(bus: pdev->bus); |
5708 | } |
5709 | EXPORT_SYMBOL_GPL(pci_reset_bus); |
5710 | |
5711 | /** |
5712 | * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count |
5713 | * @dev: PCI device to query |
5714 | * |
5715 | * Returns mmrbc: maximum designed memory read count in bytes or |
5716 | * appropriate error value. |
5717 | */ |
5718 | int pcix_get_max_mmrbc(struct pci_dev *dev) |
5719 | { |
5720 | int cap; |
5721 | u32 stat; |
5722 | |
5723 | cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
5724 | if (!cap) |
5725 | return -EINVAL; |
5726 | |
5727 | if (pci_read_config_dword(dev, where: cap + PCI_X_STATUS, val: &stat)) |
5728 | return -EINVAL; |
5729 | |
5730 | return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); |
5731 | } |
5732 | EXPORT_SYMBOL(pcix_get_max_mmrbc); |
5733 | |
5734 | /** |
5735 | * pcix_get_mmrbc - get PCI-X maximum memory read byte count |
5736 | * @dev: PCI device to query |
5737 | * |
5738 | * Returns mmrbc: maximum memory read count in bytes or appropriate error |
5739 | * value. |
5740 | */ |
5741 | int pcix_get_mmrbc(struct pci_dev *dev) |
5742 | { |
5743 | int cap; |
5744 | u16 cmd; |
5745 | |
5746 | cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
5747 | if (!cap) |
5748 | return -EINVAL; |
5749 | |
5750 | if (pci_read_config_word(dev, where: cap + PCI_X_CMD, val: &cmd)) |
5751 | return -EINVAL; |
5752 | |
5753 | return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); |
5754 | } |
5755 | EXPORT_SYMBOL(pcix_get_mmrbc); |
5756 | |
5757 | /** |
5758 | * pcix_set_mmrbc - set PCI-X maximum memory read byte count |
5759 | * @dev: PCI device to query |
5760 | * @mmrbc: maximum memory read count in bytes |
5761 | * valid values are 512, 1024, 2048, 4096 |
5762 | * |
5763 | * If possible sets maximum memory read byte count, some bridges have errata |
5764 | * that prevent this. |
5765 | */ |
5766 | int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) |
5767 | { |
5768 | int cap; |
5769 | u32 stat, v, o; |
5770 | u16 cmd; |
5771 | |
5772 | if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(n: mmrbc)) |
5773 | return -EINVAL; |
5774 | |
5775 | v = ffs(mmrbc) - 10; |
5776 | |
5777 | cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
5778 | if (!cap) |
5779 | return -EINVAL; |
5780 | |
5781 | if (pci_read_config_dword(dev, where: cap + PCI_X_STATUS, val: &stat)) |
5782 | return -EINVAL; |
5783 | |
5784 | if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) |
5785 | return -E2BIG; |
5786 | |
5787 | if (pci_read_config_word(dev, where: cap + PCI_X_CMD, val: &cmd)) |
5788 | return -EINVAL; |
5789 | |
5790 | o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); |
5791 | if (o != v) { |
5792 | if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) |
5793 | return -EIO; |
5794 | |
5795 | cmd &= ~PCI_X_CMD_MAX_READ; |
5796 | cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); |
5797 | if (pci_write_config_word(dev, where: cap + PCI_X_CMD, val: cmd)) |
5798 | return -EIO; |
5799 | } |
5800 | return 0; |
5801 | } |
5802 | EXPORT_SYMBOL(pcix_set_mmrbc); |
5803 | |
5804 | /** |
5805 | * pcie_get_readrq - get PCI Express read request size |
5806 | * @dev: PCI device to query |
5807 | * |
5808 | * Returns maximum memory read request in bytes or appropriate error value. |
5809 | */ |
5810 | int pcie_get_readrq(struct pci_dev *dev) |
5811 | { |
5812 | u16 ctl; |
5813 | |
5814 | pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &ctl); |
5815 | |
5816 | return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); |
5817 | } |
5818 | EXPORT_SYMBOL(pcie_get_readrq); |
5819 | |
5820 | /** |
5821 | * pcie_set_readrq - set PCI Express maximum memory read request |
5822 | * @dev: PCI device to query |
5823 | * @rq: maximum memory read count in bytes |
5824 | * valid values are 128, 256, 512, 1024, 2048, 4096 |
5825 | * |
5826 | * If possible sets maximum memory read request in bytes |
5827 | */ |
5828 | int pcie_set_readrq(struct pci_dev *dev, int rq) |
5829 | { |
5830 | u16 v; |
5831 | int ret; |
5832 | struct pci_host_bridge *bridge = pci_find_host_bridge(bus: dev->bus); |
5833 | |
5834 | if (rq < 128 || rq > 4096 || !is_power_of_2(n: rq)) |
5835 | return -EINVAL; |
5836 | |
5837 | /* |
5838 | * If using the "performance" PCIe config, we clamp the read rq |
5839 | * size to the max packet size to keep the host bridge from |
5840 | * generating requests larger than we can cope with. |
5841 | */ |
5842 | if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { |
5843 | int mps = pcie_get_mps(dev); |
5844 | |
5845 | if (mps < rq) |
5846 | rq = mps; |
5847 | } |
5848 | |
5849 | v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); |
5850 | |
5851 | if (bridge->no_inc_mrrs) { |
5852 | int max_mrrs = pcie_get_readrq(dev); |
5853 | |
5854 | if (rq > max_mrrs) { |
5855 | pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); |
5856 | return -EINVAL; |
5857 | } |
5858 | } |
5859 | |
5860 | ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, |
5861 | PCI_EXP_DEVCTL_READRQ, set: v); |
5862 | |
5863 | return pcibios_err_to_errno(err: ret); |
5864 | } |
5865 | EXPORT_SYMBOL(pcie_set_readrq); |
5866 | |
5867 | /** |
5868 | * pcie_get_mps - get PCI Express maximum payload size |
5869 | * @dev: PCI device to query |
5870 | * |
5871 | * Returns maximum payload size in bytes |
5872 | */ |
5873 | int pcie_get_mps(struct pci_dev *dev) |
5874 | { |
5875 | u16 ctl; |
5876 | |
5877 | pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &ctl); |
5878 | |
5879 | return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); |
5880 | } |
5881 | EXPORT_SYMBOL(pcie_get_mps); |
5882 | |
5883 | /** |
5884 | * pcie_set_mps - set PCI Express maximum payload size |
5885 | * @dev: PCI device to query |
5886 | * @mps: maximum payload size in bytes |
5887 | * valid values are 128, 256, 512, 1024, 2048, 4096 |
5888 | * |
5889 | * If possible sets maximum payload size |
5890 | */ |
5891 | int pcie_set_mps(struct pci_dev *dev, int mps) |
5892 | { |
5893 | u16 v; |
5894 | int ret; |
5895 | |
5896 | if (mps < 128 || mps > 4096 || !is_power_of_2(n: mps)) |
5897 | return -EINVAL; |
5898 | |
5899 | v = ffs(mps) - 8; |
5900 | if (v > dev->pcie_mpss) |
5901 | return -EINVAL; |
5902 | v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); |
5903 | |
5904 | ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, |
5905 | PCI_EXP_DEVCTL_PAYLOAD, set: v); |
5906 | |
5907 | return pcibios_err_to_errno(err: ret); |
5908 | } |
5909 | EXPORT_SYMBOL(pcie_set_mps); |
5910 | |
5911 | static enum pci_bus_speed to_pcie_link_speed(u16 lnksta) |
5912 | { |
5913 | return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)]; |
5914 | } |
5915 | |
5916 | int pcie_link_speed_mbps(struct pci_dev *pdev) |
5917 | { |
5918 | u16 lnksta; |
5919 | int err; |
5920 | |
5921 | err = pcie_capability_read_word(dev: pdev, PCI_EXP_LNKSTA, val: &lnksta); |
5922 | if (err) |
5923 | return err; |
5924 | |
5925 | switch (to_pcie_link_speed(lnksta)) { |
5926 | case PCIE_SPEED_2_5GT: |
5927 | return 2500; |
5928 | case PCIE_SPEED_5_0GT: |
5929 | return 5000; |
5930 | case PCIE_SPEED_8_0GT: |
5931 | return 8000; |
5932 | case PCIE_SPEED_16_0GT: |
5933 | return 16000; |
5934 | case PCIE_SPEED_32_0GT: |
5935 | return 32000; |
5936 | case PCIE_SPEED_64_0GT: |
5937 | return 64000; |
5938 | default: |
5939 | break; |
5940 | } |
5941 | |
5942 | return -EINVAL; |
5943 | } |
5944 | EXPORT_SYMBOL(pcie_link_speed_mbps); |
5945 | |
5946 | /** |
5947 | * pcie_bandwidth_available - determine minimum link settings of a PCIe |
5948 | * device and its bandwidth limitation |
5949 | * @dev: PCI device to query |
5950 | * @limiting_dev: storage for device causing the bandwidth limitation |
5951 | * @speed: storage for speed of limiting device |
5952 | * @width: storage for width of limiting device |
5953 | * |
5954 | * Walk up the PCI device chain and find the point where the minimum |
5955 | * bandwidth is available. Return the bandwidth available there and (if |
5956 | * limiting_dev, speed, and width pointers are supplied) information about |
5957 | * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of |
5958 | * raw bandwidth. |
5959 | */ |
5960 | u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, |
5961 | enum pci_bus_speed *speed, |
5962 | enum pcie_link_width *width) |
5963 | { |
5964 | u16 lnksta; |
5965 | enum pci_bus_speed next_speed; |
5966 | enum pcie_link_width next_width; |
5967 | u32 bw, next_bw; |
5968 | |
5969 | if (speed) |
5970 | *speed = PCI_SPEED_UNKNOWN; |
5971 | if (width) |
5972 | *width = PCIE_LNK_WIDTH_UNKNOWN; |
5973 | |
5974 | bw = 0; |
5975 | |
5976 | while (dev) { |
5977 | pcie_capability_read_word(dev, PCI_EXP_LNKSTA, val: &lnksta); |
5978 | |
5979 | next_speed = to_pcie_link_speed(lnksta); |
5980 | next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); |
5981 | |
5982 | next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); |
5983 | |
5984 | /* Check if current device limits the total bandwidth */ |
5985 | if (!bw || next_bw <= bw) { |
5986 | bw = next_bw; |
5987 | |
5988 | if (limiting_dev) |
5989 | *limiting_dev = dev; |
5990 | if (speed) |
5991 | *speed = next_speed; |
5992 | if (width) |
5993 | *width = next_width; |
5994 | } |
5995 | |
5996 | dev = pci_upstream_bridge(dev); |
5997 | } |
5998 | |
5999 | return bw; |
6000 | } |
6001 | EXPORT_SYMBOL(pcie_bandwidth_available); |
6002 | |
6003 | /** |
6004 | * pcie_get_speed_cap - query for the PCI device's link speed capability |
6005 | * @dev: PCI device to query |
6006 | * |
6007 | * Query the PCI device speed capability. Return the maximum link speed |
6008 | * supported by the device. |
6009 | */ |
6010 | enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) |
6011 | { |
6012 | u32 lnkcap2, lnkcap; |
6013 | |
6014 | /* |
6015 | * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The |
6016 | * implementation note there recommends using the Supported Link |
6017 | * Speeds Vector in Link Capabilities 2 when supported. |
6018 | * |
6019 | * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software |
6020 | * should use the Supported Link Speeds field in Link Capabilities, |
6021 | * where only 2.5 GT/s and 5.0 GT/s speeds were defined. |
6022 | */ |
6023 | pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, val: &lnkcap2); |
6024 | |
6025 | /* PCIe r3.0-compliant */ |
6026 | if (lnkcap2) |
6027 | return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); |
6028 | |
6029 | pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, val: &lnkcap); |
6030 | if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) |
6031 | return PCIE_SPEED_5_0GT; |
6032 | else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) |
6033 | return PCIE_SPEED_2_5GT; |
6034 | |
6035 | return PCI_SPEED_UNKNOWN; |
6036 | } |
6037 | EXPORT_SYMBOL(pcie_get_speed_cap); |
6038 | |
6039 | /** |
6040 | * pcie_get_width_cap - query for the PCI device's link width capability |
6041 | * @dev: PCI device to query |
6042 | * |
6043 | * Query the PCI device width capability. Return the maximum link width |
6044 | * supported by the device. |
6045 | */ |
6046 | enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) |
6047 | { |
6048 | u32 lnkcap; |
6049 | |
6050 | pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, val: &lnkcap); |
6051 | if (lnkcap) |
6052 | return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); |
6053 | |
6054 | return PCIE_LNK_WIDTH_UNKNOWN; |
6055 | } |
6056 | EXPORT_SYMBOL(pcie_get_width_cap); |
6057 | |
6058 | /** |
6059 | * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability |
6060 | * @dev: PCI device |
6061 | * @speed: storage for link speed |
6062 | * @width: storage for link width |
6063 | * |
6064 | * Calculate a PCI device's link bandwidth by querying for its link speed |
6065 | * and width, multiplying them, and applying encoding overhead. The result |
6066 | * is in Mb/s, i.e., megabits/second of raw bandwidth. |
6067 | */ |
6068 | u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, |
6069 | enum pcie_link_width *width) |
6070 | { |
6071 | *speed = pcie_get_speed_cap(dev); |
6072 | *width = pcie_get_width_cap(dev); |
6073 | |
6074 | if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) |
6075 | return 0; |
6076 | |
6077 | return *width * PCIE_SPEED2MBS_ENC(*speed); |
6078 | } |
6079 | |
6080 | /** |
6081 | * __pcie_print_link_status - Report the PCI device's link speed and width |
6082 | * @dev: PCI device to query |
6083 | * @verbose: Print info even when enough bandwidth is available |
6084 | * |
6085 | * If the available bandwidth at the device is less than the device is |
6086 | * capable of, report the device's maximum possible bandwidth and the |
6087 | * upstream link that limits its performance. If @verbose, always print |
6088 | * the available bandwidth, even if the device isn't constrained. |
6089 | */ |
6090 | void __pcie_print_link_status(struct pci_dev *dev, bool verbose) |
6091 | { |
6092 | enum pcie_link_width width, width_cap; |
6093 | enum pci_bus_speed speed, speed_cap; |
6094 | struct pci_dev *limiting_dev = NULL; |
6095 | u32 bw_avail, bw_cap; |
6096 | |
6097 | bw_cap = pcie_bandwidth_capable(dev, speed: &speed_cap, width: &width_cap); |
6098 | bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); |
6099 | |
6100 | if (bw_avail >= bw_cap && verbose) |
6101 | pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", |
6102 | bw_cap / 1000, bw_cap % 1000, |
6103 | pci_speed_string(speed_cap), width_cap); |
6104 | else if (bw_avail < bw_cap) |
6105 | pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", |
6106 | bw_avail / 1000, bw_avail % 1000, |
6107 | pci_speed_string(speed), width, |
6108 | limiting_dev ? pci_name(limiting_dev) : "<unknown>", |
6109 | bw_cap / 1000, bw_cap % 1000, |
6110 | pci_speed_string(speed_cap), width_cap); |
6111 | } |
6112 | |
6113 | /** |
6114 | * pcie_print_link_status - Report the PCI device's link speed and width |
6115 | * @dev: PCI device to query |
6116 | * |
6117 | * Report the available bandwidth at the device. |
6118 | */ |
6119 | void pcie_print_link_status(struct pci_dev *dev) |
6120 | { |
6121 | __pcie_print_link_status(dev, verbose: true); |
6122 | } |
6123 | EXPORT_SYMBOL(pcie_print_link_status); |
6124 | |
6125 | /** |
6126 | * pci_select_bars - Make BAR mask from the type of resource |
6127 | * @dev: the PCI device for which BAR mask is made |
6128 | * @flags: resource type mask to be selected |
6129 | * |
6130 | * This helper routine makes bar mask from the type of resource. |
6131 | */ |
6132 | int pci_select_bars(struct pci_dev *dev, unsigned long flags) |
6133 | { |
6134 | int i, bars = 0; |
6135 | for (i = 0; i < PCI_NUM_RESOURCES; i++) |
6136 | if (pci_resource_flags(dev, i) & flags) |
6137 | bars |= (1 << i); |
6138 | return bars; |
6139 | } |
6140 | EXPORT_SYMBOL(pci_select_bars); |
6141 | |
6142 | /* Some architectures require additional programming to enable VGA */ |
6143 | static arch_set_vga_state_t arch_set_vga_state; |
6144 | |
6145 | void __init pci_register_set_vga_state(arch_set_vga_state_t func) |
6146 | { |
6147 | arch_set_vga_state = func; /* NULL disables */ |
6148 | } |
6149 | |
6150 | static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, |
6151 | unsigned int command_bits, u32 flags) |
6152 | { |
6153 | if (arch_set_vga_state) |
6154 | return arch_set_vga_state(dev, decode, command_bits, |
6155 | flags); |
6156 | return 0; |
6157 | } |
6158 | |
6159 | /** |
6160 | * pci_set_vga_state - set VGA decode state on device and parents if requested |
6161 | * @dev: the PCI device |
6162 | * @decode: true = enable decoding, false = disable decoding |
6163 | * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY |
6164 | * @flags: traverse ancestors and change bridges |
6165 | * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE |
6166 | */ |
6167 | int pci_set_vga_state(struct pci_dev *dev, bool decode, |
6168 | unsigned int command_bits, u32 flags) |
6169 | { |
6170 | struct pci_bus *bus; |
6171 | struct pci_dev *bridge; |
6172 | u16 cmd; |
6173 | int rc; |
6174 | |
6175 | WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); |
6176 | |
6177 | /* ARCH specific VGA enables */ |
6178 | rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); |
6179 | if (rc) |
6180 | return rc; |
6181 | |
6182 | if (flags & PCI_VGA_STATE_CHANGE_DECODES) { |
6183 | pci_read_config_word(dev, PCI_COMMAND, val: &cmd); |
6184 | if (decode) |
6185 | cmd |= command_bits; |
6186 | else |
6187 | cmd &= ~command_bits; |
6188 | pci_write_config_word(dev, PCI_COMMAND, val: cmd); |
6189 | } |
6190 | |
6191 | if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) |
6192 | return 0; |
6193 | |
6194 | bus = dev->bus; |
6195 | while (bus) { |
6196 | bridge = bus->self; |
6197 | if (bridge) { |
6198 | pci_read_config_word(dev: bridge, PCI_BRIDGE_CONTROL, |
6199 | val: &cmd); |
6200 | if (decode) |
6201 | cmd |= PCI_BRIDGE_CTL_VGA; |
6202 | else |
6203 | cmd &= ~PCI_BRIDGE_CTL_VGA; |
6204 | pci_write_config_word(dev: bridge, PCI_BRIDGE_CONTROL, |
6205 | val: cmd); |
6206 | } |
6207 | bus = bus->parent; |
6208 | } |
6209 | return 0; |
6210 | } |
6211 | |
6212 | #ifdef CONFIG_ACPI |
6213 | bool pci_pr3_present(struct pci_dev *pdev) |
6214 | { |
6215 | struct acpi_device *adev; |
6216 | |
6217 | if (acpi_disabled) |
6218 | return false; |
6219 | |
6220 | adev = ACPI_COMPANION(&pdev->dev); |
6221 | if (!adev) |
6222 | return false; |
6223 | |
6224 | return adev->power.flags.power_resources && |
6225 | acpi_has_method(handle: adev->handle, name: "_PR3"); |
6226 | } |
6227 | EXPORT_SYMBOL_GPL(pci_pr3_present); |
6228 | #endif |
6229 | |
6230 | /** |
6231 | * pci_add_dma_alias - Add a DMA devfn alias for a device |
6232 | * @dev: the PCI device for which alias is added |
6233 | * @devfn_from: alias slot and function |
6234 | * @nr_devfns: number of subsequent devfns to alias |
6235 | * |
6236 | * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask |
6237 | * which is used to program permissible bus-devfn source addresses for DMA |
6238 | * requests in an IOMMU. These aliases factor into IOMMU group creation |
6239 | * and are useful for devices generating DMA requests beyond or different |
6240 | * from their logical bus-devfn. Examples include device quirks where the |
6241 | * device simply uses the wrong devfn, as well as non-transparent bridges |
6242 | * where the alias may be a proxy for devices in another domain. |
6243 | * |
6244 | * IOMMU group creation is performed during device discovery or addition, |
6245 | * prior to any potential DMA mapping and therefore prior to driver probing |
6246 | * (especially for userspace assigned devices where IOMMU group definition |
6247 | * cannot be left as a userspace activity). DMA aliases should therefore |
6248 | * be configured via quirks, such as the PCI fixup header quirk. |
6249 | */ |
6250 | void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, |
6251 | unsigned int nr_devfns) |
6252 | { |
6253 | int devfn_to; |
6254 | |
6255 | nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); |
6256 | devfn_to = devfn_from + nr_devfns - 1; |
6257 | |
6258 | if (!dev->dma_alias_mask) |
6259 | dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); |
6260 | if (!dev->dma_alias_mask) { |
6261 | pci_warn(dev, "Unable to allocate DMA alias mask\n"); |
6262 | return; |
6263 | } |
6264 | |
6265 | bitmap_set(map: dev->dma_alias_mask, start: devfn_from, nbits: nr_devfns); |
6266 | |
6267 | if (nr_devfns == 1) |
6268 | pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", |
6269 | PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); |
6270 | else if (nr_devfns > 1) |
6271 | pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", |
6272 | PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), |
6273 | PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); |
6274 | } |
6275 | |
6276 | bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) |
6277 | { |
6278 | return (dev1->dma_alias_mask && |
6279 | test_bit(dev2->devfn, dev1->dma_alias_mask)) || |
6280 | (dev2->dma_alias_mask && |
6281 | test_bit(dev1->devfn, dev2->dma_alias_mask)) || |
6282 | pci_real_dma_dev(dev: dev1) == dev2 || |
6283 | pci_real_dma_dev(dev: dev2) == dev1; |
6284 | } |
6285 | |
6286 | bool pci_device_is_present(struct pci_dev *pdev) |
6287 | { |
6288 | u32 v; |
6289 | |
6290 | /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ |
6291 | pdev = pci_physfn(dev: pdev); |
6292 | if (pci_dev_is_disconnected(dev: pdev)) |
6293 | return false; |
6294 | return pci_bus_read_dev_vendor_id(bus: pdev->bus, devfn: pdev->devfn, pl: &v, crs_timeout: 0); |
6295 | } |
6296 | EXPORT_SYMBOL_GPL(pci_device_is_present); |
6297 | |
6298 | void pci_ignore_hotplug(struct pci_dev *dev) |
6299 | { |
6300 | struct pci_dev *bridge = dev->bus->self; |
6301 | |
6302 | dev->ignore_hotplug = 1; |
6303 | /* Propagate the "ignore hotplug" setting to the parent bridge. */ |
6304 | if (bridge) |
6305 | bridge->ignore_hotplug = 1; |
6306 | } |
6307 | EXPORT_SYMBOL_GPL(pci_ignore_hotplug); |
6308 | |
6309 | /** |
6310 | * pci_real_dma_dev - Get PCI DMA device for PCI device |
6311 | * @dev: the PCI device that may have a PCI DMA alias |
6312 | * |
6313 | * Permits the platform to provide architecture-specific functionality to |
6314 | * devices needing to alias DMA to another PCI device on another PCI bus. If |
6315 | * the PCI device is on the same bus, it is recommended to use |
6316 | * pci_add_dma_alias(). This is the default implementation. Architecture |
6317 | * implementations can override this. |
6318 | */ |
6319 | struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) |
6320 | { |
6321 | return dev; |
6322 | } |
6323 | |
6324 | resource_size_t __weak pcibios_default_alignment(void) |
6325 | { |
6326 | return 0; |
6327 | } |
6328 | |
6329 | /* |
6330 | * Arches that don't want to expose struct resource to userland as-is in |
6331 | * sysfs and /proc can implement their own pci_resource_to_user(). |
6332 | */ |
6333 | void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, |
6334 | const struct resource *rsrc, |
6335 | resource_size_t *start, resource_size_t *end) |
6336 | { |
6337 | *start = rsrc->start; |
6338 | *end = rsrc->end; |
6339 | } |
6340 | |
6341 | static char *resource_alignment_param; |
6342 | static DEFINE_SPINLOCK(resource_alignment_lock); |
6343 | |
6344 | /** |
6345 | * pci_specified_resource_alignment - get resource alignment specified by user. |
6346 | * @dev: the PCI device to get |
6347 | * @resize: whether or not to change resources' size when reassigning alignment |
6348 | * |
6349 | * RETURNS: Resource alignment if it is specified. |
6350 | * Zero if it is not specified. |
6351 | */ |
6352 | static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, |
6353 | bool *resize) |
6354 | { |
6355 | int align_order, count; |
6356 | resource_size_t align = pcibios_default_alignment(); |
6357 | const char *p; |
6358 | int ret; |
6359 | |
6360 | spin_lock(lock: &resource_alignment_lock); |
6361 | p = resource_alignment_param; |
6362 | if (!p || !*p) |
6363 | goto out; |
6364 | if (pci_has_flag(flag: PCI_PROBE_ONLY)) { |
6365 | align = 0; |
6366 | pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); |
6367 | goto out; |
6368 | } |
6369 | |
6370 | while (*p) { |
6371 | count = 0; |
6372 | if (sscanf(p, "%d%n", &align_order, &count) == 1 && |
6373 | p[count] == '@') { |
6374 | p += count + 1; |
6375 | if (align_order > 63) { |
6376 | pr_err("PCI: Invalid requested alignment (order %d)\n", |
6377 | align_order); |
6378 | align_order = PAGE_SHIFT; |
6379 | } |
6380 | } else { |
6381 | align_order = PAGE_SHIFT; |
6382 | } |
6383 | |
6384 | ret = pci_dev_str_match(dev, p, endptr: &p); |
6385 | if (ret == 1) { |
6386 | *resize = true; |
6387 | align = 1ULL << align_order; |
6388 | break; |
6389 | } else if (ret < 0) { |
6390 | pr_err("PCI: Can't parse resource_alignment parameter: %s\n", |
6391 | p); |
6392 | break; |
6393 | } |
6394 | |
6395 | if (*p != ';' && *p != ',') { |
6396 | /* End of param or invalid format */ |
6397 | break; |
6398 | } |
6399 | p++; |
6400 | } |
6401 | out: |
6402 | spin_unlock(lock: &resource_alignment_lock); |
6403 | return align; |
6404 | } |
6405 | |
6406 | static void pci_request_resource_alignment(struct pci_dev *dev, int bar, |
6407 | resource_size_t align, bool resize) |
6408 | { |
6409 | struct resource *r = &dev->resource[bar]; |
6410 | const char *r_name = pci_resource_name(dev, i: bar); |
6411 | resource_size_t size; |
6412 | |
6413 | if (!(r->flags & IORESOURCE_MEM)) |
6414 | return; |
6415 | |
6416 | if (r->flags & IORESOURCE_PCI_FIXED) { |
6417 | pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n", |
6418 | r_name, r, (unsigned long long)align); |
6419 | return; |
6420 | } |
6421 | |
6422 | size = resource_size(res: r); |
6423 | if (size >= align) |
6424 | return; |
6425 | |
6426 | /* |
6427 | * Increase the alignment of the resource. There are two ways we |
6428 | * can do this: |
6429 | * |
6430 | * 1) Increase the size of the resource. BARs are aligned on their |
6431 | * size, so when we reallocate space for this resource, we'll |
6432 | * allocate it with the larger alignment. This also prevents |
6433 | * assignment of any other BARs inside the alignment region, so |
6434 | * if we're requesting page alignment, this means no other BARs |
6435 | * will share the page. |
6436 | * |
6437 | * The disadvantage is that this makes the resource larger than |
6438 | * the hardware BAR, which may break drivers that compute things |
6439 | * based on the resource size, e.g., to find registers at a |
6440 | * fixed offset before the end of the BAR. |
6441 | * |
6442 | * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and |
6443 | * set r->start to the desired alignment. By itself this |
6444 | * doesn't prevent other BARs being put inside the alignment |
6445 | * region, but if we realign *every* resource of every device in |
6446 | * the system, none of them will share an alignment region. |
6447 | * |
6448 | * When the user has requested alignment for only some devices via |
6449 | * the "pci=resource_alignment" argument, "resize" is true and we |
6450 | * use the first method. Otherwise we assume we're aligning all |
6451 | * devices and we use the second. |
6452 | */ |
6453 | |
6454 | pci_info(dev, "%s %pR: requesting alignment to %#llx\n", |
6455 | r_name, r, (unsigned long long)align); |
6456 | |
6457 | if (resize) { |
6458 | r->start = 0; |
6459 | r->end = align - 1; |
6460 | } else { |
6461 | r->flags &= ~IORESOURCE_SIZEALIGN; |
6462 | r->flags |= IORESOURCE_STARTALIGN; |
6463 | r->start = align; |
6464 | r->end = r->start + size - 1; |
6465 | } |
6466 | r->flags |= IORESOURCE_UNSET; |
6467 | } |
6468 | |
6469 | /* |
6470 | * This function disables memory decoding and releases memory resources |
6471 | * of the device specified by kernel's boot parameter 'pci=resource_alignment='. |
6472 | * It also rounds up size to specified alignment. |
6473 | * Later on, the kernel will assign page-aligned memory resource back |
6474 | * to the device. |
6475 | */ |
6476 | void pci_reassigndev_resource_alignment(struct pci_dev *dev) |
6477 | { |
6478 | int i; |
6479 | struct resource *r; |
6480 | resource_size_t align; |
6481 | u16 command; |
6482 | bool resize = false; |
6483 | |
6484 | /* |
6485 | * VF BARs are read-only zero according to SR-IOV spec r1.1, sec |
6486 | * 3.4.1.11. Their resources are allocated from the space |
6487 | * described by the VF BARx register in the PF's SR-IOV capability. |
6488 | * We can't influence their alignment here. |
6489 | */ |
6490 | if (dev->is_virtfn) |
6491 | return; |
6492 | |
6493 | /* check if specified PCI is target device to reassign */ |
6494 | align = pci_specified_resource_alignment(dev, resize: &resize); |
6495 | if (!align) |
6496 | return; |
6497 | |
6498 | if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && |
6499 | (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { |
6500 | pci_warn(dev, "Can't reassign resources to host bridge\n"); |
6501 | return; |
6502 | } |
6503 | |
6504 | pci_read_config_word(dev, PCI_COMMAND, val: &command); |
6505 | command &= ~PCI_COMMAND_MEMORY; |
6506 | pci_write_config_word(dev, PCI_COMMAND, val: command); |
6507 | |
6508 | for (i = 0; i <= PCI_ROM_RESOURCE; i++) |
6509 | pci_request_resource_alignment(dev, bar: i, align, resize); |
6510 | |
6511 | /* |
6512 | * Need to disable bridge's resource window, |
6513 | * to enable the kernel to reassign new resource |
6514 | * window later on. |
6515 | */ |
6516 | if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
6517 | for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { |
6518 | r = &dev->resource[i]; |
6519 | if (!(r->flags & IORESOURCE_MEM)) |
6520 | continue; |
6521 | r->flags |= IORESOURCE_UNSET; |
6522 | r->end = resource_size(res: r) - 1; |
6523 | r->start = 0; |
6524 | } |
6525 | pci_disable_bridge_window(dev); |
6526 | } |
6527 | } |
6528 | |
6529 | static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) |
6530 | { |
6531 | size_t count = 0; |
6532 | |
6533 | spin_lock(lock: &resource_alignment_lock); |
6534 | if (resource_alignment_param) |
6535 | count = sysfs_emit(buf, fmt: "%s\n", resource_alignment_param); |
6536 | spin_unlock(lock: &resource_alignment_lock); |
6537 | |
6538 | return count; |
6539 | } |
6540 | |
6541 | static ssize_t resource_alignment_store(const struct bus_type *bus, |
6542 | const char *buf, size_t count) |
6543 | { |
6544 | char *param, *old, *end; |
6545 | |
6546 | if (count >= (PAGE_SIZE - 1)) |
6547 | return -EINVAL; |
6548 | |
6549 | param = kstrndup(s: buf, len: count, GFP_KERNEL); |
6550 | if (!param) |
6551 | return -ENOMEM; |
6552 | |
6553 | end = strchr(param, '\n'); |
6554 | if (end) |
6555 | *end = '\0'; |
6556 | |
6557 | spin_lock(lock: &resource_alignment_lock); |
6558 | old = resource_alignment_param; |
6559 | if (strlen(param)) { |
6560 | resource_alignment_param = param; |
6561 | } else { |
6562 | kfree(objp: param); |
6563 | resource_alignment_param = NULL; |
6564 | } |
6565 | spin_unlock(lock: &resource_alignment_lock); |
6566 | |
6567 | kfree(objp: old); |
6568 | |
6569 | return count; |
6570 | } |
6571 | |
6572 | static BUS_ATTR_RW(resource_alignment); |
6573 | |
6574 | static int __init pci_resource_alignment_sysfs_init(void) |
6575 | { |
6576 | return bus_create_file(bus: &pci_bus_type, |
6577 | attr: &bus_attr_resource_alignment); |
6578 | } |
6579 | late_initcall(pci_resource_alignment_sysfs_init); |
6580 | |
6581 | static void pci_no_domains(void) |
6582 | { |
6583 | #ifdef CONFIG_PCI_DOMAINS |
6584 | pci_domains_supported = 0; |
6585 | #endif |
6586 | } |
6587 | |
6588 | #ifdef CONFIG_PCI_DOMAINS_GENERIC |
6589 | static DEFINE_IDA(pci_domain_nr_static_ida); |
6590 | static DEFINE_IDA(pci_domain_nr_dynamic_ida); |
6591 | |
6592 | static void of_pci_reserve_static_domain_nr(void) |
6593 | { |
6594 | struct device_node *np; |
6595 | int domain_nr; |
6596 | |
6597 | for_each_node_by_type(np, "pci") { |
6598 | domain_nr = of_get_pci_domain_nr(np); |
6599 | if (domain_nr < 0) |
6600 | continue; |
6601 | /* |
6602 | * Permanently allocate domain_nr in dynamic_ida |
6603 | * to prevent it from dynamic allocation. |
6604 | */ |
6605 | ida_alloc_range(&pci_domain_nr_dynamic_ida, |
6606 | domain_nr, domain_nr, GFP_KERNEL); |
6607 | } |
6608 | } |
6609 | |
6610 | static int of_pci_bus_find_domain_nr(struct device *parent) |
6611 | { |
6612 | static bool static_domains_reserved = false; |
6613 | int domain_nr; |
6614 | |
6615 | /* On the first call scan device tree for static allocations. */ |
6616 | if (!static_domains_reserved) { |
6617 | of_pci_reserve_static_domain_nr(); |
6618 | static_domains_reserved = true; |
6619 | } |
6620 | |
6621 | if (parent) { |
6622 | /* |
6623 | * If domain is in DT, allocate it in static IDA. This |
6624 | * prevents duplicate static allocations in case of errors |
6625 | * in DT. |
6626 | */ |
6627 | domain_nr = of_get_pci_domain_nr(parent->of_node); |
6628 | if (domain_nr >= 0) |
6629 | return ida_alloc_range(&pci_domain_nr_static_ida, |
6630 | domain_nr, domain_nr, |
6631 | GFP_KERNEL); |
6632 | } |
6633 | |
6634 | /* |
6635 | * If domain was not specified in DT, choose a free ID from dynamic |
6636 | * allocations. All domain numbers from DT are permanently in |
6637 | * dynamic allocations to prevent assigning them to other DT nodes |
6638 | * without static domain. |
6639 | */ |
6640 | return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); |
6641 | } |
6642 | |
6643 | static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) |
6644 | { |
6645 | if (bus->domain_nr < 0) |
6646 | return; |
6647 | |
6648 | /* Release domain from IDA where it was allocated. */ |
6649 | if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) |
6650 | ida_free(&pci_domain_nr_static_ida, bus->domain_nr); |
6651 | else |
6652 | ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); |
6653 | } |
6654 | |
6655 | int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) |
6656 | { |
6657 | return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : |
6658 | acpi_pci_bus_find_domain_nr(bus); |
6659 | } |
6660 | |
6661 | void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) |
6662 | { |
6663 | if (!acpi_disabled) |
6664 | return; |
6665 | of_pci_bus_release_domain_nr(bus, parent); |
6666 | } |
6667 | #endif |
6668 | |
6669 | /** |
6670 | * pci_ext_cfg_avail - can we access extended PCI config space? |
6671 | * |
6672 | * Returns 1 if we can access PCI extended config space (offsets |
6673 | * greater than 0xff). This is the default implementation. Architecture |
6674 | * implementations can override this. |
6675 | */ |
6676 | int __weak pci_ext_cfg_avail(void) |
6677 | { |
6678 | return 1; |
6679 | } |
6680 | |
6681 | void __weak pci_fixup_cardbus(struct pci_bus *bus) |
6682 | { |
6683 | } |
6684 | EXPORT_SYMBOL(pci_fixup_cardbus); |
6685 | |
6686 | static int __init pci_setup(char *str) |
6687 | { |
6688 | while (str) { |
6689 | char *k = strchr(str, ','); |
6690 | if (k) |
6691 | *k++ = 0; |
6692 | if (*str && (str = pcibios_setup(str)) && *str) { |
6693 | if (!strcmp(str, "nomsi")) { |
6694 | pci_no_msi(); |
6695 | } else if (!strncmp(str, "noats", 5)) { |
6696 | pr_info("PCIe: ATS is disabled\n"); |
6697 | pcie_ats_disabled = true; |
6698 | } else if (!strcmp(str, "noaer")) { |
6699 | pci_no_aer(); |
6700 | } else if (!strcmp(str, "earlydump")) { |
6701 | pci_early_dump = true; |
6702 | } else if (!strncmp(str, "realloc=", 8)) { |
6703 | pci_realloc_get_opt(str + 8); |
6704 | } else if (!strncmp(str, "realloc", 7)) { |
6705 | pci_realloc_get_opt("on"); |
6706 | } else if (!strcmp(str, "nodomains")) { |
6707 | pci_no_domains(); |
6708 | } else if (!strncmp(str, "noari", 5)) { |
6709 | pcie_ari_disabled = true; |
6710 | } else if (!strncmp(str, "cbiosize=", 9)) { |
6711 | pci_cardbus_io_size = memparse(ptr: str + 9, retptr: &str); |
6712 | } else if (!strncmp(str, "cbmemsize=", 10)) { |
6713 | pci_cardbus_mem_size = memparse(ptr: str + 10, retptr: &str); |
6714 | } else if (!strncmp(str, "resource_alignment=", 19)) { |
6715 | resource_alignment_param = str + 19; |
6716 | } else if (!strncmp(str, "ecrc=", 5)) { |
6717 | pcie_ecrc_get_policy(str: str + 5); |
6718 | } else if (!strncmp(str, "hpiosize=", 9)) { |
6719 | pci_hotplug_io_size = memparse(ptr: str + 9, retptr: &str); |
6720 | } else if (!strncmp(str, "hpmmiosize=", 11)) { |
6721 | pci_hotplug_mmio_size = memparse(ptr: str + 11, retptr: &str); |
6722 | } else if (!strncmp(str, "hpmmioprefsize=", 15)) { |
6723 | pci_hotplug_mmio_pref_size = memparse(ptr: str + 15, retptr: &str); |
6724 | } else if (!strncmp(str, "hpmemsize=", 10)) { |
6725 | pci_hotplug_mmio_size = memparse(ptr: str + 10, retptr: &str); |
6726 | pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; |
6727 | } else if (!strncmp(str, "hpbussize=", 10)) { |
6728 | pci_hotplug_bus_size = |
6729 | simple_strtoul(str + 10, &str, 0); |
6730 | if (pci_hotplug_bus_size > 0xff) |
6731 | pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; |
6732 | } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { |
6733 | pcie_bus_config = PCIE_BUS_TUNE_OFF; |
6734 | } else if (!strncmp(str, "pcie_bus_safe", 13)) { |
6735 | pcie_bus_config = PCIE_BUS_SAFE; |
6736 | } else if (!strncmp(str, "pcie_bus_perf", 13)) { |
6737 | pcie_bus_config = PCIE_BUS_PERFORMANCE; |
6738 | } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { |
6739 | pcie_bus_config = PCIE_BUS_PEER2PEER; |
6740 | } else if (!strncmp(str, "pcie_scan_all", 13)) { |
6741 | pci_add_flags(flags: PCI_SCAN_ALL_PCIE_DEVS); |
6742 | } else if (!strncmp(str, "disable_acs_redir=", 18)) { |
6743 | disable_acs_redir_param = str + 18; |
6744 | } else { |
6745 | pr_err("PCI: Unknown option `%s'\n", str); |
6746 | } |
6747 | } |
6748 | str = k; |
6749 | } |
6750 | return 0; |
6751 | } |
6752 | early_param("pci", pci_setup); |
6753 | |
6754 | /* |
6755 | * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized |
6756 | * in pci_setup(), above, to point to data in the __initdata section which |
6757 | * will be freed after the init sequence is complete. We can't allocate memory |
6758 | * in pci_setup() because some architectures do not have any memory allocation |
6759 | * service available during an early_param() call. So we allocate memory and |
6760 | * copy the variable here before the init section is freed. |
6761 | * |
6762 | */ |
6763 | static int __init pci_realloc_setup_params(void) |
6764 | { |
6765 | resource_alignment_param = kstrdup(s: resource_alignment_param, |
6766 | GFP_KERNEL); |
6767 | disable_acs_redir_param = kstrdup(s: disable_acs_redir_param, GFP_KERNEL); |
6768 | |
6769 | return 0; |
6770 | } |
6771 | pure_initcall(pci_realloc_setup_params); |
6772 |
Definitions
- pci_slot_mutex
- pci_power_names
- pci_pci_problems
- pci_pm_d3hot_delay
- pci_pme_list
- pci_pme_list_mutex
- pci_pme_work
- pci_pme_device
- pci_dev_d3_sleep
- pci_reset_supported
- pci_domains_supported
- pci_cardbus_io_size
- pci_cardbus_mem_size
- pci_hotplug_io_size
- pci_hotplug_mmio_size
- pci_hotplug_mmio_pref_size
- pci_hotplug_bus_size
- pcie_bus_config
- pci_dfl_cache_line_size
- pci_cache_line_size
- pcibios_max_latency
- pcie_ari_disabled
- pcie_ats_disabled
- pci_early_dump
- pci_ats_disabled
- pci_bridge_d3_disable
- pci_bridge_d3_force
- pcie_port_pm_setup
- pci_bus_max_busnr
- pci_status_get_and_clear_errors
- __pci_ioremap_resource
- pci_ioremap_bar
- pci_ioremap_wc_bar
- pci_dev_str_match_path
- pci_dev_str_match
- __pci_find_next_cap_ttl
- __pci_find_next_cap
- pci_find_next_capability
- __pci_bus_find_cap_start
- pci_find_capability
- pci_bus_find_capability
- pci_find_next_ext_capability
- pci_find_ext_capability
- pci_get_dsn
- __pci_find_next_ht_cap
- pci_find_next_ht_capability
- pci_find_ht_capability
- pci_find_vsec_capability
- pci_find_dvsec_capability
- pci_find_parent_resource
- pci_find_resource
- pci_resource_name
- pci_wait_for_pending
- pci_acs_enable
- pci_request_acs
- disable_acs_redir_param
- pci_disable_acs_redir
- pci_std_enable_acs
- pci_enable_acs
- pcie_read_tlp_log
- pci_restore_bars
- platform_pci_power_manageable
- platform_pci_set_power_state
- platform_pci_get_power_state
- platform_pci_refresh_power_state
- platform_pci_choose_state
- platform_pci_set_wakeup
- platform_pci_need_resume
- platform_pci_bridge_d3
- pci_update_current_state
- pci_refresh_power_state
- pci_platform_power_transition
- pci_resume_one
- pci_resume_bus
- pci_dev_wait
- pci_power_up
- pci_set_full_power_state
- __pci_dev_set_current_state
- pci_bus_set_current_state
- __pci_bus_set_current_state
- pci_set_low_power_state
- __pci_set_power_state
- pci_set_power_state
- pci_set_power_state_locked
- _pci_find_saved_cap
- pci_find_saved_cap
- pci_find_saved_ext_cap
- pci_save_pcie_state
- pci_restore_pcie_state
- pci_save_pcix_state
- pci_restore_pcix_state
- pci_save_state
- pci_restore_config_dword
- pci_restore_config_space_range
- pci_restore_config_space
- pci_restore_rebar_state
- pci_restore_state
- pci_saved_state
- pci_store_saved_state
- pci_load_saved_state
- pci_load_and_free_saved_state
- pcibios_enable_device
- do_pci_enable_device
- pci_reenable_device
- pci_enable_bridge
- pci_enable_device_flags
- pci_enable_device_io
- pci_enable_device_mem
- pci_enable_device
- pcibios_device_add
- pcibios_release_device
- pcibios_disable_device
- do_pci_disable_device
- pci_disable_enabled_device
- pci_disable_device
- pcibios_set_pcie_reset_state
- pci_set_pcie_reset_state
- pcie_clear_device_status
- pcie_clear_root_pme_status
- pci_check_pme_status
- pci_pme_wakeup
- pci_pme_wakeup_bus
- pci_pme_capable
- pci_pme_list_scan
- __pci_pme_active
- pci_pme_restore
- pci_pme_active
- __pci_enable_wake
- pci_enable_wake
- pci_wake_from_d3
- pci_target_state
- pci_prepare_to_sleep
- pci_back_from_sleep
- pci_finish_runtime_suspend
- pci_dev_run_wake
- pci_dev_need_resume
- pci_dev_adjust_pme
- pci_dev_complete_resume
- pci_choose_state
- pci_config_pm_runtime_get
- pci_config_pm_runtime_put
- bridge_d3_blacklist
- pci_bridge_d3_possible
- pci_dev_check_d3cold
- pci_bridge_d3_update
- pci_d3cold_enable
- pci_d3cold_disable
- pci_pm_init
- pci_ea_flags
- pci_ea_get_resource
- pci_ea_read
- pci_ea_init
- pci_add_saved_cap
- _pci_add_cap_save_buffer
- pci_add_cap_save_buffer
- pci_add_ext_cap_save_buffer
- pci_allocate_cap_save_buffers
- pci_free_cap_save_buffers
- pci_configure_ari
- pci_acs_flags_enabled
- pci_acs_enabled
- pci_acs_path_enabled
- pci_acs_init
- pci_rebar_find_pos
- pci_rebar_get_possible_sizes
- pci_rebar_get_current_size
- pci_rebar_set_size
- pci_enable_atomic_ops_to_root
- pci_release_region
- __pci_request_region
- pci_request_region
- pci_release_selected_regions
- __pci_request_selected_regions
- pci_request_selected_regions
- pci_request_selected_regions_exclusive
- pci_release_regions
- pci_request_regions
- pci_request_regions_exclusive
- pci_register_io_range
- pci_pio_to_address
- pci_address_to_pio
- pci_remap_iospace
- pci_unmap_iospace
- __pci_set_master
- pcibios_setup
- pcibios_set_master
- pci_set_master
- pci_clear_master
- pci_set_cacheline_size
- pci_set_mwi
- pci_try_set_mwi
- pci_clear_mwi
- pci_disable_parity
- pci_intx
- pci_wait_for_pending_transaction
- pcie_flr
- pcie_reset_flr
- pci_af_flr
- pci_pm_reset
- pcie_wait_for_link_status
- pcie_retrain_link
- pcie_wait_for_link_delay
- pcie_wait_for_link
- pci_bus_max_d3cold_delay
- pci_bridge_wait_for_secondary_bus
- pci_reset_secondary_bus
- pcibios_reset_secondary_bus
- pci_bridge_secondary_bus_reset
- pci_parent_bus_reset
- pci_reset_hotplug_slot
- pci_dev_reset_slot_function
- pci_reset_bus_function
- pci_dev_lock
- pci_dev_trylock
- pci_dev_unlock
- pci_dev_save_and_disable
- pci_dev_restore
- pci_reset_fn_methods
- reset_method_show
- reset_method_lookup
- reset_method_store
- pci_dev_reset_method_attrs
- pci_dev_reset_method_attr_is_visible
- pci_dev_reset_method_attr_group
- __pci_reset_function_locked
- pci_init_reset_methods
- pci_reset_function
- pci_reset_function_locked
- pci_try_reset_function
- pci_bus_resettable
- pci_bus_lock
- pci_bus_unlock
- pci_bus_trylock
- pci_slot_resettable
- pci_slot_lock
- pci_slot_unlock
- pci_slot_trylock
- pci_bus_save_and_disable_locked
- pci_bus_restore_locked
- pci_slot_save_and_disable_locked
- pci_slot_restore_locked
- pci_slot_reset
- pci_probe_reset_slot
- __pci_reset_slot
- pci_bus_reset
- pci_bus_error_reset
- pci_probe_reset_bus
- __pci_reset_bus
- pci_reset_bus
- pcix_get_max_mmrbc
- pcix_get_mmrbc
- pcix_set_mmrbc
- pcie_get_readrq
- pcie_set_readrq
- pcie_get_mps
- pcie_set_mps
- to_pcie_link_speed
- pcie_link_speed_mbps
- pcie_bandwidth_available
- pcie_get_speed_cap
- pcie_get_width_cap
- pcie_bandwidth_capable
- __pcie_print_link_status
- pcie_print_link_status
- pci_select_bars
- arch_set_vga_state
- pci_register_set_vga_state
- pci_set_vga_state_arch
- pci_set_vga_state
- pci_pr3_present
- pci_add_dma_alias
- pci_devs_are_dma_aliases
- pci_device_is_present
- pci_ignore_hotplug
- pci_real_dma_dev
- pcibios_default_alignment
- pci_resource_to_user
- resource_alignment_param
- resource_alignment_lock
- pci_specified_resource_alignment
- pci_request_resource_alignment
- pci_reassigndev_resource_alignment
- resource_alignment_show
- resource_alignment_store
- pci_resource_alignment_sysfs_init
- pci_no_domains
- pci_ext_cfg_avail
- pci_fixup_cardbus
- pci_setup
Improve your Profiling and Debugging skills
Find out more