1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include <linux/bitfield.h>
35#include "pci.h"
36
37DEFINE_MUTEX(pci_slot_mutex);
38
39const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41};
42EXPORT_SYMBOL_GPL(pci_power_names);
43
44#ifdef CONFIG_X86_32
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47#endif
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
52unsigned int pci_pm_d3hot_delay;
53
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
67/*
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
71 */
72#define PCI_RESET_WAIT 1000 /* msec */
73
74/*
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
78 * responsive.
79 */
80#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81
82static void pci_dev_d3_sleep(struct pci_dev *dev)
83{
84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 unsigned int upper;
86
87 if (delay_ms) {
88 /* Use a 20% upper bound, 1ms minimum */
89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 usleep_range(min: delay_ms * USEC_PER_MSEC,
91 max: (delay_ms + upper) * USEC_PER_MSEC);
92 }
93}
94
95bool pci_reset_supported(struct pci_dev *dev)
96{
97 return dev->reset_methods[0] != 0;
98}
99
100#ifdef CONFIG_PCI_DOMAINS
101int pci_domains_supported = 1;
102#endif
103
104#define DEFAULT_CARDBUS_IO_SIZE (256)
105#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106/* pci=cbmemsize=nnM,cbiosize=nn can override this */
107unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109
110#define DEFAULT_HOTPLUG_IO_SIZE (256)
111#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113/* hpiosize=nn can override this */
114unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
115/*
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
119 */
120unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122
123#define DEFAULT_HOTPLUG_BUS_SIZE 1
124unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125
126
127/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128#ifdef CONFIG_PCIE_BUS_TUNE_OFF
129enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130#elif defined CONFIG_PCIE_BUS_SAFE
131enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132#elif defined CONFIG_PCIE_BUS_PERFORMANCE
133enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134#elif defined CONFIG_PCIE_BUS_PEER2PEER
135enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136#else
137enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138#endif
139
140/*
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value. Arch can override either
143 * the dfl or actual value as it sees fit. Don't forget this is
144 * measured in 32-bit words, not bytes.
145 */
146u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147u8 pci_cache_line_size;
148
149/*
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
152 */
153unsigned int pcibios_max_latency = 255;
154
155/* If set, the PCIe ARI capability will not be used. */
156static bool pcie_ari_disabled;
157
158/* If set, the PCIe ATS capability will not be used. */
159static bool pcie_ats_disabled;
160
161/* If set, the PCI config space of each device is printed during boot. */
162bool pci_early_dump;
163
164bool pci_ats_disabled(void)
165{
166 return pcie_ats_disabled;
167}
168EXPORT_SYMBOL_GPL(pci_ats_disabled);
169
170/* Disable bridge_d3 for all PCIe ports */
171static bool pci_bridge_d3_disable;
172/* Force bridge_d3 for all PCIe ports */
173static bool pci_bridge_d3_force;
174
175static int __init pcie_port_pm_setup(char *str)
176{
177 if (!strcmp(str, "off"))
178 pci_bridge_d3_disable = true;
179 else if (!strcmp(str, "force"))
180 pci_bridge_d3_force = true;
181 return 1;
182}
183__setup("pcie_port_pm=", pcie_port_pm_setup);
184
185/**
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
188 *
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
191 */
192unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193{
194 struct pci_bus *tmp;
195 unsigned char max, n;
196
197 max = bus->busn_res.end;
198 list_for_each_entry(tmp, &bus->children, node) {
199 n = pci_bus_max_busnr(bus: tmp);
200 if (n > max)
201 max = n;
202 }
203 return max;
204}
205EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206
207/**
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
210 *
211 * Returns error bits set in PCI_STATUS and clears them.
212 */
213int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214{
215 u16 status;
216 int ret;
217
218 ret = pci_read_config_word(dev: pdev, PCI_STATUS, val: &status);
219 if (ret != PCIBIOS_SUCCESSFUL)
220 return -EIO;
221
222 status &= PCI_STATUS_ERROR_BITS;
223 if (status)
224 pci_write_config_word(dev: pdev, PCI_STATUS, val: status);
225
226 return status;
227}
228EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229
230#ifdef CONFIG_HAS_IOMEM
231static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 bool write_combine)
233{
234 struct resource *res = &pdev->resource[bar];
235 resource_size_t start = res->start;
236 resource_size_t size = resource_size(res);
237
238 /*
239 * Make sure the BAR is actually a memory resource, not an IO resource
240 */
241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 return NULL;
244 }
245
246 if (write_combine)
247 return ioremap_wc(offset: start, size);
248
249 return ioremap(offset: start, size);
250}
251
252void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253{
254 return __pci_ioremap_resource(pdev, bar, write_combine: false);
255}
256EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257
258void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259{
260 return __pci_ioremap_resource(pdev, bar, write_combine: true);
261}
262EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263#endif
264
265/**
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
270 *
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
273 * be of the form:
274 *
275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 *
277 * A path for a device can be obtained using 'lspci -t'. Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
280 *
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
283 */
284static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 const char **endptr)
286{
287 int ret;
288 unsigned int seg, bus, slot, func;
289 char *wpath, *p;
290 char end;
291
292 *endptr = strchrnul(path, ';');
293
294 wpath = kmemdup_nul(s: path, len: *endptr - path, GFP_ATOMIC);
295 if (!wpath)
296 return -ENOMEM;
297
298 while (1) {
299 p = strrchr(wpath, '/');
300 if (!p)
301 break;
302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 if (ret != 2) {
304 ret = -EINVAL;
305 goto free_and_exit;
306 }
307
308 if (dev->devfn != PCI_DEVFN(slot, func)) {
309 ret = 0;
310 goto free_and_exit;
311 }
312
313 /*
314 * Note: we don't need to get a reference to the upstream
315 * bridge because we hold a reference to the top level
316 * device which should hold a reference to the bridge,
317 * and so on.
318 */
319 dev = pci_upstream_bridge(dev);
320 if (!dev) {
321 ret = 0;
322 goto free_and_exit;
323 }
324
325 *p = 0;
326 }
327
328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 &func, &end);
330 if (ret != 4) {
331 seg = 0;
332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 if (ret != 3) {
334 ret = -EINVAL;
335 goto free_and_exit;
336 }
337 }
338
339 ret = (seg == pci_domain_nr(bus: dev->bus) &&
340 bus == dev->bus->number &&
341 dev->devfn == PCI_DEVFN(slot, func));
342
343free_and_exit:
344 kfree(objp: wpath);
345 return ret;
346}
347
348/**
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
353 *
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
356 *
357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 *
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0. In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device. The path for a device can be determined
366 * through the use of 'lspci -t'.
367 *
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
374 *
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
377 */
378static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 const char **endptr)
380{
381 int ret;
382 int count;
383 unsigned short vendor, device, subsystem_vendor, subsystem_device;
384
385 if (strncmp(p, "pci:", 4) == 0) {
386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 p += 4;
388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 &subsystem_vendor, &subsystem_device, &count);
390 if (ret != 4) {
391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 if (ret != 2)
393 return -EINVAL;
394
395 subsystem_vendor = 0;
396 subsystem_device = 0;
397 }
398
399 p += count;
400
401 if ((!vendor || vendor == dev->vendor) &&
402 (!device || device == dev->device) &&
403 (!subsystem_vendor ||
404 subsystem_vendor == dev->subsystem_vendor) &&
405 (!subsystem_device ||
406 subsystem_device == dev->subsystem_device))
407 goto found;
408 } else {
409 /*
410 * PCI Bus, Device, Function IDs are specified
411 * (optionally, may include a path of devfns following it)
412 */
413 ret = pci_dev_str_match_path(dev, path: p, endptr: &p);
414 if (ret < 0)
415 return ret;
416 else if (ret)
417 goto found;
418 }
419
420 *endptr = p;
421 return 0;
422
423found:
424 *endptr = p;
425 return 1;
426}
427
428static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 u8 pos, int cap, int *ttl)
430{
431 u8 id;
432 u16 ent;
433
434 pci_bus_read_config_byte(bus, devfn, where: pos, val: &pos);
435
436 while ((*ttl)--) {
437 if (pos < 0x40)
438 break;
439 pos &= ~3;
440 pci_bus_read_config_word(bus, devfn, where: pos, val: &ent);
441
442 id = ent & 0xff;
443 if (id == 0xff)
444 break;
445 if (id == cap)
446 return pos;
447 pos = (ent >> 8);
448 }
449 return 0;
450}
451
452static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 u8 pos, int cap)
454{
455 int ttl = PCI_FIND_CAP_TTL;
456
457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, ttl: &ttl);
458}
459
460u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461{
462 return __pci_find_next_cap(bus: dev->bus, devfn: dev->devfn,
463 pos: pos + PCI_CAP_LIST_NEXT, cap);
464}
465EXPORT_SYMBOL_GPL(pci_find_next_capability);
466
467static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 unsigned int devfn, u8 hdr_type)
469{
470 u16 status;
471
472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, val: &status);
473 if (!(status & PCI_STATUS_CAP_LIST))
474 return 0;
475
476 switch (hdr_type) {
477 case PCI_HEADER_TYPE_NORMAL:
478 case PCI_HEADER_TYPE_BRIDGE:
479 return PCI_CAPABILITY_LIST;
480 case PCI_HEADER_TYPE_CARDBUS:
481 return PCI_CB_CAPABILITY_LIST;
482 }
483
484 return 0;
485}
486
487/**
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
491 *
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it. Possible values for @cap include:
496 *
497 * %PCI_CAP_ID_PM Power Management
498 * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 * %PCI_CAP_ID_VPD Vital Product Data
500 * %PCI_CAP_ID_SLOTID Slot Identification
501 * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 * %PCI_CAP_ID_PCIX PCI-X
504 * %PCI_CAP_ID_EXP PCI Express
505 */
506u8 pci_find_capability(struct pci_dev *dev, int cap)
507{
508 u8 pos;
509
510 pos = __pci_bus_find_cap_start(bus: dev->bus, devfn: dev->devfn, hdr_type: dev->hdr_type);
511 if (pos)
512 pos = __pci_find_next_cap(bus: dev->bus, devfn: dev->devfn, pos, cap);
513
514 return pos;
515}
516EXPORT_SYMBOL(pci_find_capability);
517
518/**
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
523 *
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
526 *
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
529 * support it.
530 */
531u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532{
533 u8 hdr_type, pos;
534
535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, val: &hdr_type);
536
537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type: hdr_type & PCI_HEADER_TYPE_MASK);
538 if (pos)
539 pos = __pci_find_next_cap(bus, devfn, pos, cap);
540
541 return pos;
542}
543EXPORT_SYMBOL(pci_bus_find_capability);
544
545/**
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
550 *
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it. Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
555 */
556u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557{
558 u32 header;
559 int ttl;
560 u16 pos = PCI_CFG_SPACE_SIZE;
561
562 /* minimum 8 bytes per capability */
563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564
565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 return 0;
567
568 if (start)
569 pos = start;
570
571 if (pci_read_config_dword(dev, where: pos, val: &header) != PCIBIOS_SUCCESSFUL)
572 return 0;
573
574 /*
575 * If we have no capabilities, this is indicated by cap ID,
576 * cap version and next pointer all being 0.
577 */
578 if (header == 0)
579 return 0;
580
581 while (ttl-- > 0) {
582 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 return pos;
584
585 pos = PCI_EXT_CAP_NEXT(header);
586 if (pos < PCI_CFG_SPACE_SIZE)
587 break;
588
589 if (pci_read_config_dword(dev, where: pos, val: &header) != PCIBIOS_SUCCESSFUL)
590 break;
591 }
592
593 return 0;
594}
595EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596
597/**
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
601 *
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it. Possible values for @cap include:
605 *
606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 * %PCI_EXT_CAP_ID_VC Virtual Channel
608 * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 * %PCI_EXT_CAP_ID_PWR Power Budgeting
610 */
611u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612{
613 return pci_find_next_ext_capability(dev, 0, cap);
614}
615EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616
617/**
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
620 *
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622 * Number.
623 *
624 * Returns the DSN, or zero if the capability does not exist.
625 */
626u64 pci_get_dsn(struct pci_dev *dev)
627{
628 u32 dword;
629 u64 dsn;
630 int pos;
631
632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 if (!pos)
634 return 0;
635
636 /*
637 * The Device Serial Number is two dwords offset 4 bytes from the
638 * capability position. The specification says that the first dword is
639 * the lower half, and the second dword is the upper half.
640 */
641 pos += 4;
642 pci_read_config_dword(dev, where: pos, val: &dword);
643 dsn = (u64)dword;
644 pci_read_config_dword(dev, where: pos + 4, val: &dword);
645 dsn |= ((u64)dword) << 32;
646
647 return dsn;
648}
649EXPORT_SYMBOL_GPL(pci_get_dsn);
650
651static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652{
653 int rc, ttl = PCI_FIND_CAP_TTL;
654 u8 cap, mask;
655
656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 mask = HT_3BIT_CAP_MASK;
658 else
659 mask = HT_5BIT_CAP_MASK;
660
661 pos = __pci_find_next_cap_ttl(bus: dev->bus, devfn: dev->devfn, pos,
662 PCI_CAP_ID_HT, ttl: &ttl);
663 while (pos) {
664 rc = pci_read_config_byte(dev, where: pos + 3, val: &cap);
665 if (rc != PCIBIOS_SUCCESSFUL)
666 return 0;
667
668 if ((cap & mask) == ht_cap)
669 return pos;
670
671 pos = __pci_find_next_cap_ttl(bus: dev->bus, devfn: dev->devfn,
672 pos: pos + PCI_CAP_LIST_NEXT,
673 PCI_CAP_ID_HT, ttl: &ttl);
674 }
675
676 return 0;
677}
678
679/**
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
684 *
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
688 *
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
691 */
692u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693{
694 return __pci_find_next_ht_cap(dev, pos: pos + PCI_CAP_LIST_NEXT, ht_cap);
695}
696EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697
698/**
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
702 *
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
708 */
709u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710{
711 u8 pos;
712
713 pos = __pci_bus_find_cap_start(bus: dev->bus, devfn: dev->devfn, hdr_type: dev->hdr_type);
714 if (pos)
715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716
717 return pos;
718}
719EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720
721/**
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
726 *
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
730 */
731u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732{
733 u16 vsec = 0;
734 u32 header;
735 int ret;
736
737 if (vendor != dev->vendor)
738 return 0;
739
740 while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 PCI_EXT_CAP_ID_VNDR))) {
742 ret = pci_read_config_dword(dev, where: vsec + PCI_VNDR_HEADER, val: &header);
743 if (ret != PCIBIOS_SUCCESSFUL)
744 continue;
745
746 if (PCI_VNDR_HEADER_ID(header) == cap)
747 return vsec;
748 }
749
750 return 0;
751}
752EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753
754/**
755 * pci_find_dvsec_capability - Find DVSEC for vendor
756 * @dev: PCI device to query
757 * @vendor: Vendor ID to match for the DVSEC
758 * @dvsec: Designated Vendor-specific capability ID
759 *
760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761 * offset in config space; otherwise return 0.
762 */
763u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764{
765 int pos;
766
767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 if (!pos)
769 return 0;
770
771 while (pos) {
772 u16 v, id;
773
774 pci_read_config_word(dev, where: pos + PCI_DVSEC_HEADER1, val: &v);
775 pci_read_config_word(dev, where: pos + PCI_DVSEC_HEADER2, val: &id);
776 if (vendor == v && dvsec == id)
777 return pos;
778
779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 }
781
782 return 0;
783}
784EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785
786/**
787 * pci_find_parent_resource - return resource region of parent bus of given
788 * region
789 * @dev: PCI device structure contains resources to be searched
790 * @res: child resource record for which parent is sought
791 *
792 * For given resource region of given device, return the resource region of
793 * parent bus the given region is contained in.
794 */
795struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 struct resource *res)
797{
798 const struct pci_bus *bus = dev->bus;
799 struct resource *r;
800
801 pci_bus_for_each_resource(bus, r) {
802 if (!r)
803 continue;
804 if (resource_contains(r1: r, r2: res)) {
805
806 /*
807 * If the window is prefetchable but the BAR is
808 * not, the allocator made a mistake.
809 */
810 if (r->flags & IORESOURCE_PREFETCH &&
811 !(res->flags & IORESOURCE_PREFETCH))
812 return NULL;
813
814 /*
815 * If we're below a transparent bridge, there may
816 * be both a positively-decoded aperture and a
817 * subtractively-decoded region that contain the BAR.
818 * We want the positively-decoded one, so this depends
819 * on pci_bus_for_each_resource() giving us those
820 * first.
821 */
822 return r;
823 }
824 }
825 return NULL;
826}
827EXPORT_SYMBOL(pci_find_parent_resource);
828
829/**
830 * pci_find_resource - Return matching PCI device resource
831 * @dev: PCI device to query
832 * @res: Resource to look for
833 *
834 * Goes over standard PCI resources (BARs) and checks if the given resource
835 * is partially or fully contained in any of them. In that case the
836 * matching resource is returned, %NULL otherwise.
837 */
838struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839{
840 int i;
841
842 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 struct resource *r = &dev->resource[i];
844
845 if (r->start && resource_contains(r1: r, r2: res))
846 return r;
847 }
848
849 return NULL;
850}
851EXPORT_SYMBOL(pci_find_resource);
852
853/**
854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855 * @dev: the PCI device to operate on
856 * @pos: config space offset of status word
857 * @mask: mask of bit(s) to care about in status word
858 *
859 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860 */
861int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862{
863 int i;
864
865 /* Wait for Transaction Pending bit clean */
866 for (i = 0; i < 4; i++) {
867 u16 status;
868 if (i)
869 msleep(msecs: (1 << (i - 1)) * 100);
870
871 pci_read_config_word(dev, where: pos, val: &status);
872 if (!(status & mask))
873 return 1;
874 }
875
876 return 0;
877}
878
879static int pci_acs_enable;
880
881/**
882 * pci_request_acs - ask for ACS to be enabled if supported
883 */
884void pci_request_acs(void)
885{
886 pci_acs_enable = 1;
887}
888
889static const char *disable_acs_redir_param;
890
891/**
892 * pci_disable_acs_redir - disable ACS redirect capabilities
893 * @dev: the PCI device
894 *
895 * For only devices specified in the disable_acs_redir parameter.
896 */
897static void pci_disable_acs_redir(struct pci_dev *dev)
898{
899 int ret = 0;
900 const char *p;
901 int pos;
902 u16 ctrl;
903
904 if (!disable_acs_redir_param)
905 return;
906
907 p = disable_acs_redir_param;
908 while (*p) {
909 ret = pci_dev_str_match(dev, p, endptr: &p);
910 if (ret < 0) {
911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 disable_acs_redir_param);
913
914 break;
915 } else if (ret == 1) {
916 /* Found a match */
917 break;
918 }
919
920 if (*p != ';' && *p != ',') {
921 /* End of param or invalid format */
922 break;
923 }
924 p++;
925 }
926
927 if (ret != 1)
928 return;
929
930 if (!pci_dev_specific_disable_acs_redir(dev))
931 return;
932
933 pos = dev->acs_cap;
934 if (!pos) {
935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 return;
937 }
938
939 pci_read_config_word(dev, where: pos + PCI_ACS_CTRL, val: &ctrl);
940
941 /* P2P Request & Completion Redirect */
942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943
944 pci_write_config_word(dev, where: pos + PCI_ACS_CTRL, val: ctrl);
945
946 pci_info(dev, "disabled ACS redirect\n");
947}
948
949/**
950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951 * @dev: the PCI device
952 */
953static void pci_std_enable_acs(struct pci_dev *dev)
954{
955 int pos;
956 u16 cap;
957 u16 ctrl;
958
959 pos = dev->acs_cap;
960 if (!pos)
961 return;
962
963 pci_read_config_word(dev, where: pos + PCI_ACS_CAP, val: &cap);
964 pci_read_config_word(dev, where: pos + PCI_ACS_CTRL, val: &ctrl);
965
966 /* Source Validation */
967 ctrl |= (cap & PCI_ACS_SV);
968
969 /* P2P Request Redirect */
970 ctrl |= (cap & PCI_ACS_RR);
971
972 /* P2P Completion Redirect */
973 ctrl |= (cap & PCI_ACS_CR);
974
975 /* Upstream Forwarding */
976 ctrl |= (cap & PCI_ACS_UF);
977
978 /* Enable Translation Blocking for external devices and noats */
979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 ctrl |= (cap & PCI_ACS_TB);
981
982 pci_write_config_word(dev, where: pos + PCI_ACS_CTRL, val: ctrl);
983}
984
985/**
986 * pci_enable_acs - enable ACS if hardware support it
987 * @dev: the PCI device
988 */
989static void pci_enable_acs(struct pci_dev *dev)
990{
991 if (!pci_acs_enable)
992 goto disable_acs_redir;
993
994 if (!pci_dev_specific_enable_acs(dev))
995 goto disable_acs_redir;
996
997 pci_std_enable_acs(dev);
998
999disable_acs_redir:
1000 /*
1001 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 * enabled by the kernel because it may have been enabled by
1003 * platform firmware. So if we are told to disable it, we should
1004 * always disable it after setting the kernel's default
1005 * preferences.
1006 */
1007 pci_disable_acs_redir(dev);
1008}
1009
1010/**
1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012 * @dev: PCI device to have its BARs restored
1013 *
1014 * Restore the BAR values for a given device, so as to make it
1015 * accessible by its driver.
1016 */
1017static void pci_restore_bars(struct pci_dev *dev)
1018{
1019 int i;
1020
1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 pci_update_resource(dev, resno: i);
1023}
1024
1025static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026{
1027 if (pci_use_mid_pm())
1028 return true;
1029
1030 return acpi_pci_power_manageable(dev);
1031}
1032
1033static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 pci_power_t t)
1035{
1036 if (pci_use_mid_pm())
1037 return mid_pci_set_power_state(pdev: dev, state: t);
1038
1039 return acpi_pci_set_power_state(dev, state: t);
1040}
1041
1042static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043{
1044 if (pci_use_mid_pm())
1045 return mid_pci_get_power_state(pdev: dev);
1046
1047 return acpi_pci_get_power_state(dev);
1048}
1049
1050static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051{
1052 if (!pci_use_mid_pm())
1053 acpi_pci_refresh_power_state(dev);
1054}
1055
1056static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057{
1058 if (pci_use_mid_pm())
1059 return PCI_POWER_ERROR;
1060
1061 return acpi_pci_choose_state(pdev: dev);
1062}
1063
1064static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065{
1066 if (pci_use_mid_pm())
1067 return PCI_POWER_ERROR;
1068
1069 return acpi_pci_wakeup(dev, enable);
1070}
1071
1072static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073{
1074 if (pci_use_mid_pm())
1075 return false;
1076
1077 return acpi_pci_need_resume(dev);
1078}
1079
1080static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081{
1082 if (pci_use_mid_pm())
1083 return false;
1084
1085 return acpi_pci_bridge_d3(dev);
1086}
1087
1088/**
1089 * pci_update_current_state - Read power state of given device and cache it
1090 * @dev: PCI device to handle.
1091 * @state: State to cache in case the device doesn't have the PM capability
1092 *
1093 * The power state is read from the PMCSR register, which however is
1094 * inaccessible in D3cold. The platform firmware is therefore queried first
1095 * to detect accessibility of the register. In case the platform firmware
1096 * reports an incorrect state or the device isn't power manageable by the
1097 * platform at all, we try to detect D3cold by testing accessibility of the
1098 * vendor ID in config space.
1099 */
1100void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101{
1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 dev->current_state = PCI_D3cold;
1104 } else if (dev->pm_cap) {
1105 u16 pmcsr;
1106
1107 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1108 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 dev->current_state = PCI_D3cold;
1110 return;
1111 }
1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 } else {
1114 dev->current_state = state;
1115 }
1116}
1117
1118/**
1119 * pci_refresh_power_state - Refresh the given device's power state data
1120 * @dev: Target PCI device.
1121 *
1122 * Ask the platform to refresh the devices power state information and invoke
1123 * pci_update_current_state() to update its current PCI power state.
1124 */
1125void pci_refresh_power_state(struct pci_dev *dev)
1126{
1127 platform_pci_refresh_power_state(dev);
1128 pci_update_current_state(dev, state: dev->current_state);
1129}
1130
1131/**
1132 * pci_platform_power_transition - Use platform to change device power state
1133 * @dev: PCI device to handle.
1134 * @state: State to put the device into.
1135 */
1136int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137{
1138 int error;
1139
1140 error = platform_pci_set_power_state(dev, t: state);
1141 if (!error)
1142 pci_update_current_state(dev, state);
1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 dev->current_state = PCI_D0;
1145
1146 return error;
1147}
1148EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149
1150static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151{
1152 pm_request_resume(dev: &pci_dev->dev);
1153 return 0;
1154}
1155
1156/**
1157 * pci_resume_bus - Walk given bus and runtime resume devices on it
1158 * @bus: Top bus of the subtree to walk.
1159 */
1160void pci_resume_bus(struct pci_bus *bus)
1161{
1162 if (bus)
1163 pci_walk_bus(top: bus, cb: pci_resume_one, NULL);
1164}
1165
1166static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167{
1168 int delay = 1;
1169 bool retrain = false;
1170 struct pci_dev *bridge;
1171
1172 if (pci_is_pcie(dev)) {
1173 bridge = pci_upstream_bridge(dev);
1174 if (bridge)
1175 retrain = true;
1176 }
1177
1178 /*
1179 * After reset, the device should not silently discard config
1180 * requests, but it may still indicate that it needs more time by
1181 * responding to them with CRS completions. The Root Port will
1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 * the read (except when CRS SV is enabled and the read was for the
1184 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 *
1186 * Wait for the device to return a non-CRS completion. Read the
1187 * Command register instead of Vendor ID so we don't have to
1188 * contend with the CRS SV value.
1189 */
1190 for (;;) {
1191 u32 id;
1192
1193 pci_read_config_dword(dev, PCI_COMMAND, val: &id);
1194 if (!PCI_POSSIBLE_ERROR(id))
1195 break;
1196
1197 if (delay > timeout) {
1198 pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 delay - 1, reset_type);
1200 return -ENOTTY;
1201 }
1202
1203 if (delay > PCI_RESET_WAIT) {
1204 if (retrain) {
1205 retrain = false;
1206 if (pcie_failed_link_retrain(dev: bridge)) {
1207 delay = 1;
1208 continue;
1209 }
1210 }
1211 pci_info(dev, "not ready %dms after %s; waiting\n",
1212 delay - 1, reset_type);
1213 }
1214
1215 msleep(msecs: delay);
1216 delay *= 2;
1217 }
1218
1219 if (delay > PCI_RESET_WAIT)
1220 pci_info(dev, "ready %dms after %s\n", delay - 1,
1221 reset_type);
1222
1223 return 0;
1224}
1225
1226/**
1227 * pci_power_up - Put the given device into D0
1228 * @dev: PCI device to power up
1229 *
1230 * On success, return 0 or 1, depending on whether or not it is necessary to
1231 * restore the device's BARs subsequently (1 is returned in that case).
1232 *
1233 * On failure, return a negative error code. Always return failure if @dev
1234 * lacks a Power Management Capability, even if the platform was able to
1235 * put the device in D0 via non-PCI means.
1236 */
1237int pci_power_up(struct pci_dev *dev)
1238{
1239 bool need_restore;
1240 pci_power_t state;
1241 u16 pmcsr;
1242
1243 platform_pci_set_power_state(dev, PCI_D0);
1244
1245 if (!dev->pm_cap) {
1246 state = platform_pci_get_power_state(dev);
1247 if (state == PCI_UNKNOWN)
1248 dev->current_state = PCI_D0;
1249 else
1250 dev->current_state = state;
1251
1252 return -EIO;
1253 }
1254
1255 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1256 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1257 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1258 pci_power_name(dev->current_state));
1259 dev->current_state = PCI_D3cold;
1260 return -EIO;
1261 }
1262
1263 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1264
1265 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1266 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1267
1268 if (state == PCI_D0)
1269 goto end;
1270
1271 /*
1272 * Force the entire word to 0. This doesn't affect PME_Status, disables
1273 * PME_En, and sets PowerState to 0.
1274 */
1275 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: 0);
1276
1277 /* Mandatory transition delays; see PCI PM 1.2. */
1278 if (state == PCI_D3hot)
1279 pci_dev_d3_sleep(dev);
1280 else if (state == PCI_D2)
1281 udelay(PCI_PM_D2_DELAY);
1282
1283end:
1284 dev->current_state = PCI_D0;
1285 if (need_restore)
1286 return 1;
1287
1288 return 0;
1289}
1290
1291/**
1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1293 * @dev: PCI device to power up
1294 *
1295 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1296 * to confirm the state change, restore its BARs if they might be lost and
1297 * reconfigure ASPM in accordance with the new power state.
1298 *
1299 * If pci_restore_state() is going to be called right after a power state change
1300 * to D0, it is more efficient to use pci_power_up() directly instead of this
1301 * function.
1302 */
1303static int pci_set_full_power_state(struct pci_dev *dev)
1304{
1305 u16 pmcsr;
1306 int ret;
1307
1308 ret = pci_power_up(dev);
1309 if (ret < 0) {
1310 if (dev->current_state == PCI_D0)
1311 return 0;
1312
1313 return ret;
1314 }
1315
1316 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1317 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1318 if (dev->current_state != PCI_D0) {
1319 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1320 pci_power_name(dev->current_state));
1321 } else if (ret > 0) {
1322 /*
1323 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1324 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1325 * from D3hot to D0 _may_ perform an internal reset, thereby
1326 * going to "D0 Uninitialized" rather than "D0 Initialized".
1327 * For example, at least some versions of the 3c905B and the
1328 * 3c556B exhibit this behaviour.
1329 *
1330 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1331 * devices in a D3hot state at boot. Consequently, we need to
1332 * restore at least the BARs so that the device will be
1333 * accessible to its driver.
1334 */
1335 pci_restore_bars(dev);
1336 }
1337
1338 return 0;
1339}
1340
1341/**
1342 * __pci_dev_set_current_state - Set current state of a PCI device
1343 * @dev: Device to handle
1344 * @data: pointer to state to be set
1345 */
1346static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1347{
1348 pci_power_t state = *(pci_power_t *)data;
1349
1350 dev->current_state = state;
1351 return 0;
1352}
1353
1354/**
1355 * pci_bus_set_current_state - Walk given bus and set current state of devices
1356 * @bus: Top bus of the subtree to walk.
1357 * @state: state to be set
1358 */
1359void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1360{
1361 if (bus)
1362 pci_walk_bus(top: bus, cb: __pci_dev_set_current_state, userdata: &state);
1363}
1364
1365/**
1366 * pci_set_low_power_state - Put a PCI device into a low-power state.
1367 * @dev: PCI device to handle.
1368 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1369 *
1370 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1371 *
1372 * RETURN VALUE:
1373 * -EINVAL if the requested state is invalid.
1374 * -EIO if device does not support PCI PM or its PM capabilities register has a
1375 * wrong version, or device doesn't support the requested state.
1376 * 0 if device already is in the requested state.
1377 * 0 if device's power state has been successfully changed.
1378 */
1379static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1380{
1381 u16 pmcsr;
1382
1383 if (!dev->pm_cap)
1384 return -EIO;
1385
1386 /*
1387 * Validate transition: We can enter D0 from any state, but if
1388 * we're already in a low-power state, we can only go deeper. E.g.,
1389 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1390 * we'd have to go from D3 to D0, then to D1.
1391 */
1392 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1393 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1394 pci_power_name(dev->current_state),
1395 pci_power_name(state));
1396 return -EINVAL;
1397 }
1398
1399 /* Check if this device supports the desired state */
1400 if ((state == PCI_D1 && !dev->d1_support)
1401 || (state == PCI_D2 && !dev->d2_support))
1402 return -EIO;
1403
1404 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1405 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1406 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1407 pci_power_name(dev->current_state),
1408 pci_power_name(state));
1409 dev->current_state = PCI_D3cold;
1410 return -EIO;
1411 }
1412
1413 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1414 pmcsr |= state;
1415
1416 /* Enter specified state */
1417 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
1418
1419 /* Mandatory power management transition delays; see PCI PM 1.2. */
1420 if (state == PCI_D3hot)
1421 pci_dev_d3_sleep(dev);
1422 else if (state == PCI_D2)
1423 udelay(PCI_PM_D2_DELAY);
1424
1425 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1426 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1427 if (dev->current_state != state)
1428 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1429 pci_power_name(dev->current_state),
1430 pci_power_name(state));
1431
1432 return 0;
1433}
1434
1435/**
1436 * pci_set_power_state - Set the power state of a PCI device
1437 * @dev: PCI device to handle.
1438 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1439 *
1440 * Transition a device to a new power state, using the platform firmware and/or
1441 * the device's PCI PM registers.
1442 *
1443 * RETURN VALUE:
1444 * -EINVAL if the requested state is invalid.
1445 * -EIO if device does not support PCI PM or its PM capabilities register has a
1446 * wrong version, or device doesn't support the requested state.
1447 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1448 * 0 if device already is in the requested state.
1449 * 0 if the transition is to D3 but D3 is not supported.
1450 * 0 if device's power state has been successfully changed.
1451 */
1452int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1453{
1454 int error;
1455
1456 /* Bound the state we're entering */
1457 if (state > PCI_D3cold)
1458 state = PCI_D3cold;
1459 else if (state < PCI_D0)
1460 state = PCI_D0;
1461 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1462
1463 /*
1464 * If the device or the parent bridge do not support PCI
1465 * PM, ignore the request if we're doing anything other
1466 * than putting it into D0 (which would only happen on
1467 * boot).
1468 */
1469 return 0;
1470
1471 /* Check if we're already there */
1472 if (dev->current_state == state)
1473 return 0;
1474
1475 if (state == PCI_D0)
1476 return pci_set_full_power_state(dev);
1477
1478 /*
1479 * This device is quirked not to be put into D3, so don't put it in
1480 * D3
1481 */
1482 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1483 return 0;
1484
1485 if (state == PCI_D3cold) {
1486 /*
1487 * To put the device in D3cold, put it into D3hot in the native
1488 * way, then put it into D3cold using platform ops.
1489 */
1490 error = pci_set_low_power_state(dev, PCI_D3hot);
1491
1492 if (pci_platform_power_transition(dev, PCI_D3cold))
1493 return error;
1494
1495 /* Powering off a bridge may power off the whole hierarchy */
1496 if (dev->current_state == PCI_D3cold)
1497 pci_bus_set_current_state(bus: dev->subordinate, PCI_D3cold);
1498 } else {
1499 error = pci_set_low_power_state(dev, state);
1500
1501 if (pci_platform_power_transition(dev, state))
1502 return error;
1503 }
1504
1505 return 0;
1506}
1507EXPORT_SYMBOL(pci_set_power_state);
1508
1509#define PCI_EXP_SAVE_REGS 7
1510
1511static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1512 u16 cap, bool extended)
1513{
1514 struct pci_cap_saved_state *tmp;
1515
1516 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1517 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1518 return tmp;
1519 }
1520 return NULL;
1521}
1522
1523struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1524{
1525 return _pci_find_saved_cap(pci_dev: dev, cap, extended: false);
1526}
1527
1528struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1529{
1530 return _pci_find_saved_cap(pci_dev: dev, cap, extended: true);
1531}
1532
1533static int pci_save_pcie_state(struct pci_dev *dev)
1534{
1535 int i = 0;
1536 struct pci_cap_saved_state *save_state;
1537 u16 *cap;
1538
1539 if (!pci_is_pcie(dev))
1540 return 0;
1541
1542 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1543 if (!save_state) {
1544 pci_err(dev, "buffer not found in %s\n", __func__);
1545 return -ENOMEM;
1546 }
1547
1548 cap = (u16 *)&save_state->cap.data[0];
1549 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &cap[i++]);
1550 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, val: &cap[i++]);
1551 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, val: &cap[i++]);
1552 pcie_capability_read_word(dev, PCI_EXP_RTCTL, val: &cap[i++]);
1553 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, val: &cap[i++]);
1554 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, val: &cap[i++]);
1555 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, val: &cap[i++]);
1556
1557 return 0;
1558}
1559
1560void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1561{
1562#ifdef CONFIG_PCIEASPM
1563 struct pci_dev *bridge;
1564 u32 ctl;
1565
1566 bridge = pci_upstream_bridge(dev);
1567 if (bridge && bridge->ltr_path) {
1568 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCTL2, val: &ctl);
1569 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1570 pci_dbg(bridge, "re-enabling LTR\n");
1571 pcie_capability_set_word(dev: bridge, PCI_EXP_DEVCTL2,
1572 PCI_EXP_DEVCTL2_LTR_EN);
1573 }
1574 }
1575#endif
1576}
1577
1578static void pci_restore_pcie_state(struct pci_dev *dev)
1579{
1580 int i = 0;
1581 struct pci_cap_saved_state *save_state;
1582 u16 *cap;
1583
1584 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1585 if (!save_state)
1586 return;
1587
1588 /*
1589 * Downstream ports reset the LTR enable bit when link goes down.
1590 * Check and re-configure the bit here before restoring device.
1591 * PCIe r5.0, sec 7.5.3.16.
1592 */
1593 pci_bridge_reconfigure_ltr(dev);
1594
1595 cap = (u16 *)&save_state->cap.data[0];
1596 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, val: cap[i++]);
1597 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, val: cap[i++]);
1598 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, val: cap[i++]);
1599 pcie_capability_write_word(dev, PCI_EXP_RTCTL, val: cap[i++]);
1600 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, val: cap[i++]);
1601 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, val: cap[i++]);
1602 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, val: cap[i++]);
1603}
1604
1605static int pci_save_pcix_state(struct pci_dev *dev)
1606{
1607 int pos;
1608 struct pci_cap_saved_state *save_state;
1609
1610 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1611 if (!pos)
1612 return 0;
1613
1614 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1615 if (!save_state) {
1616 pci_err(dev, "buffer not found in %s\n", __func__);
1617 return -ENOMEM;
1618 }
1619
1620 pci_read_config_word(dev, where: pos + PCI_X_CMD,
1621 val: (u16 *)save_state->cap.data);
1622
1623 return 0;
1624}
1625
1626static void pci_restore_pcix_state(struct pci_dev *dev)
1627{
1628 int i = 0, pos;
1629 struct pci_cap_saved_state *save_state;
1630 u16 *cap;
1631
1632 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1633 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1634 if (!save_state || !pos)
1635 return;
1636 cap = (u16 *)&save_state->cap.data[0];
1637
1638 pci_write_config_word(dev, where: pos + PCI_X_CMD, val: cap[i++]);
1639}
1640
1641static void pci_save_ltr_state(struct pci_dev *dev)
1642{
1643 int ltr;
1644 struct pci_cap_saved_state *save_state;
1645 u32 *cap;
1646
1647 if (!pci_is_pcie(dev))
1648 return;
1649
1650 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1651 if (!ltr)
1652 return;
1653
1654 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1655 if (!save_state) {
1656 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1657 return;
1658 }
1659
1660 /* Some broken devices only support dword access to LTR */
1661 cap = &save_state->cap.data[0];
1662 pci_read_config_dword(dev, where: ltr + PCI_LTR_MAX_SNOOP_LAT, val: cap);
1663}
1664
1665static void pci_restore_ltr_state(struct pci_dev *dev)
1666{
1667 struct pci_cap_saved_state *save_state;
1668 int ltr;
1669 u32 *cap;
1670
1671 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1672 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1673 if (!save_state || !ltr)
1674 return;
1675
1676 /* Some broken devices only support dword access to LTR */
1677 cap = &save_state->cap.data[0];
1678 pci_write_config_dword(dev, where: ltr + PCI_LTR_MAX_SNOOP_LAT, val: *cap);
1679}
1680
1681/**
1682 * pci_save_state - save the PCI configuration space of a device before
1683 * suspending
1684 * @dev: PCI device that we're dealing with
1685 */
1686int pci_save_state(struct pci_dev *dev)
1687{
1688 int i;
1689 /* XXX: 100% dword access ok here? */
1690 for (i = 0; i < 16; i++) {
1691 pci_read_config_dword(dev, where: i * 4, val: &dev->saved_config_space[i]);
1692 pci_dbg(dev, "save config %#04x: %#010x\n",
1693 i * 4, dev->saved_config_space[i]);
1694 }
1695 dev->state_saved = true;
1696
1697 i = pci_save_pcie_state(dev);
1698 if (i != 0)
1699 return i;
1700
1701 i = pci_save_pcix_state(dev);
1702 if (i != 0)
1703 return i;
1704
1705 pci_save_ltr_state(dev);
1706 pci_save_dpc_state(dev);
1707 pci_save_aer_state(dev);
1708 pci_save_ptm_state(dev);
1709 return pci_save_vc_state(dev);
1710}
1711EXPORT_SYMBOL(pci_save_state);
1712
1713static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1714 u32 saved_val, int retry, bool force)
1715{
1716 u32 val;
1717
1718 pci_read_config_dword(dev: pdev, where: offset, val: &val);
1719 if (!force && val == saved_val)
1720 return;
1721
1722 for (;;) {
1723 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1724 offset, val, saved_val);
1725 pci_write_config_dword(dev: pdev, where: offset, val: saved_val);
1726 if (retry-- <= 0)
1727 return;
1728
1729 pci_read_config_dword(dev: pdev, where: offset, val: &val);
1730 if (val == saved_val)
1731 return;
1732
1733 mdelay(1);
1734 }
1735}
1736
1737static void pci_restore_config_space_range(struct pci_dev *pdev,
1738 int start, int end, int retry,
1739 bool force)
1740{
1741 int index;
1742
1743 for (index = end; index >= start; index--)
1744 pci_restore_config_dword(pdev, offset: 4 * index,
1745 saved_val: pdev->saved_config_space[index],
1746 retry, force);
1747}
1748
1749static void pci_restore_config_space(struct pci_dev *pdev)
1750{
1751 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1752 pci_restore_config_space_range(pdev, start: 10, end: 15, retry: 0, force: false);
1753 /* Restore BARs before the command register. */
1754 pci_restore_config_space_range(pdev, start: 4, end: 9, retry: 10, force: false);
1755 pci_restore_config_space_range(pdev, start: 0, end: 3, retry: 0, force: false);
1756 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1757 pci_restore_config_space_range(pdev, start: 12, end: 15, retry: 0, force: false);
1758
1759 /*
1760 * Force rewriting of prefetch registers to avoid S3 resume
1761 * issues on Intel PCI bridges that occur when these
1762 * registers are not explicitly written.
1763 */
1764 pci_restore_config_space_range(pdev, start: 9, end: 11, retry: 0, force: true);
1765 pci_restore_config_space_range(pdev, start: 0, end: 8, retry: 0, force: false);
1766 } else {
1767 pci_restore_config_space_range(pdev, start: 0, end: 15, retry: 0, force: false);
1768 }
1769}
1770
1771static void pci_restore_rebar_state(struct pci_dev *pdev)
1772{
1773 unsigned int pos, nbars, i;
1774 u32 ctrl;
1775
1776 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1777 if (!pos)
1778 return;
1779
1780 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
1781 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1782
1783 for (i = 0; i < nbars; i++, pos += 8) {
1784 struct resource *res;
1785 int bar_idx, size;
1786
1787 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
1788 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1789 res = pdev->resource + bar_idx;
1790 size = pci_rebar_bytes_to_size(bytes: resource_size(res));
1791 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1792 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1793 pci_write_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: ctrl);
1794 }
1795}
1796
1797/**
1798 * pci_restore_state - Restore the saved state of a PCI device
1799 * @dev: PCI device that we're dealing with
1800 */
1801void pci_restore_state(struct pci_dev *dev)
1802{
1803 if (!dev->state_saved)
1804 return;
1805
1806 /*
1807 * Restore max latencies (in the LTR capability) before enabling
1808 * LTR itself (in the PCIe capability).
1809 */
1810 pci_restore_ltr_state(dev);
1811
1812 pci_restore_pcie_state(dev);
1813 pci_restore_pasid_state(pdev: dev);
1814 pci_restore_pri_state(pdev: dev);
1815 pci_restore_ats_state(dev);
1816 pci_restore_vc_state(dev);
1817 pci_restore_rebar_state(pdev: dev);
1818 pci_restore_dpc_state(dev);
1819 pci_restore_ptm_state(dev);
1820
1821 pci_aer_clear_status(dev);
1822 pci_restore_aer_state(dev);
1823
1824 pci_restore_config_space(pdev: dev);
1825
1826 pci_restore_pcix_state(dev);
1827 pci_restore_msi_state(dev);
1828
1829 /* Restore ACS and IOV configuration state */
1830 pci_enable_acs(dev);
1831 pci_restore_iov_state(dev);
1832
1833 dev->state_saved = false;
1834}
1835EXPORT_SYMBOL(pci_restore_state);
1836
1837struct pci_saved_state {
1838 u32 config_space[16];
1839 struct pci_cap_saved_data cap[];
1840};
1841
1842/**
1843 * pci_store_saved_state - Allocate and return an opaque struct containing
1844 * the device saved state.
1845 * @dev: PCI device that we're dealing with
1846 *
1847 * Return NULL if no state or error.
1848 */
1849struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1850{
1851 struct pci_saved_state *state;
1852 struct pci_cap_saved_state *tmp;
1853 struct pci_cap_saved_data *cap;
1854 size_t size;
1855
1856 if (!dev->state_saved)
1857 return NULL;
1858
1859 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1860
1861 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1862 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1863
1864 state = kzalloc(size, GFP_KERNEL);
1865 if (!state)
1866 return NULL;
1867
1868 memcpy(state->config_space, dev->saved_config_space,
1869 sizeof(state->config_space));
1870
1871 cap = state->cap;
1872 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1873 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1874 memcpy(cap, &tmp->cap, len);
1875 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1876 }
1877 /* Empty cap_save terminates list */
1878
1879 return state;
1880}
1881EXPORT_SYMBOL_GPL(pci_store_saved_state);
1882
1883/**
1884 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_saved_state(struct pci_dev *dev,
1889 struct pci_saved_state *state)
1890{
1891 struct pci_cap_saved_data *cap;
1892
1893 dev->state_saved = false;
1894
1895 if (!state)
1896 return 0;
1897
1898 memcpy(dev->saved_config_space, state->config_space,
1899 sizeof(state->config_space));
1900
1901 cap = state->cap;
1902 while (cap->size) {
1903 struct pci_cap_saved_state *tmp;
1904
1905 tmp = _pci_find_saved_cap(pci_dev: dev, cap: cap->cap_nr, extended: cap->cap_extended);
1906 if (!tmp || tmp->cap.size != cap->size)
1907 return -EINVAL;
1908
1909 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1910 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1911 sizeof(struct pci_cap_saved_data) + cap->size);
1912 }
1913
1914 dev->state_saved = true;
1915 return 0;
1916}
1917EXPORT_SYMBOL_GPL(pci_load_saved_state);
1918
1919/**
1920 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1921 * and free the memory allocated for it.
1922 * @dev: PCI device that we're dealing with
1923 * @state: Pointer to saved state returned from pci_store_saved_state()
1924 */
1925int pci_load_and_free_saved_state(struct pci_dev *dev,
1926 struct pci_saved_state **state)
1927{
1928 int ret = pci_load_saved_state(dev, *state);
1929 kfree(objp: *state);
1930 *state = NULL;
1931 return ret;
1932}
1933EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1934
1935int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1936{
1937 return pci_enable_resources(dev, mask: bars);
1938}
1939
1940static int do_pci_enable_device(struct pci_dev *dev, int bars)
1941{
1942 int err;
1943 struct pci_dev *bridge;
1944 u16 cmd;
1945 u8 pin;
1946
1947 err = pci_set_power_state(dev, PCI_D0);
1948 if (err < 0 && err != -EIO)
1949 return err;
1950
1951 bridge = pci_upstream_bridge(dev);
1952 if (bridge)
1953 pcie_aspm_powersave_config_link(pdev: bridge);
1954
1955 err = pcibios_enable_device(dev, bars);
1956 if (err < 0)
1957 return err;
1958 pci_fixup_device(pass: pci_fixup_enable, dev);
1959
1960 if (dev->msi_enabled || dev->msix_enabled)
1961 return 0;
1962
1963 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, val: &pin);
1964 if (pin) {
1965 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
1966 if (cmd & PCI_COMMAND_INTX_DISABLE)
1967 pci_write_config_word(dev, PCI_COMMAND,
1968 val: cmd & ~PCI_COMMAND_INTX_DISABLE);
1969 }
1970
1971 return 0;
1972}
1973
1974/**
1975 * pci_reenable_device - Resume abandoned device
1976 * @dev: PCI device to be resumed
1977 *
1978 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1979 * to be called by normal code, write proper resume handler and use it instead.
1980 */
1981int pci_reenable_device(struct pci_dev *dev)
1982{
1983 if (pci_is_enabled(pdev: dev))
1984 return do_pci_enable_device(dev, bars: (1 << PCI_NUM_RESOURCES) - 1);
1985 return 0;
1986}
1987EXPORT_SYMBOL(pci_reenable_device);
1988
1989static void pci_enable_bridge(struct pci_dev *dev)
1990{
1991 struct pci_dev *bridge;
1992 int retval;
1993
1994 bridge = pci_upstream_bridge(dev);
1995 if (bridge)
1996 pci_enable_bridge(dev: bridge);
1997
1998 if (pci_is_enabled(pdev: dev)) {
1999 if (!dev->is_busmaster)
2000 pci_set_master(dev);
2001 return;
2002 }
2003
2004 retval = pci_enable_device(dev);
2005 if (retval)
2006 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2007 retval);
2008 pci_set_master(dev);
2009}
2010
2011static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2012{
2013 struct pci_dev *bridge;
2014 int err;
2015 int i, bars = 0;
2016
2017 /*
2018 * Power state could be unknown at this point, either due to a fresh
2019 * boot or a device removal call. So get the current power state
2020 * so that things like MSI message writing will behave as expected
2021 * (e.g. if the device really is in D0 at enable time).
2022 */
2023 pci_update_current_state(dev, state: dev->current_state);
2024
2025 if (atomic_inc_return(v: &dev->enable_cnt) > 1)
2026 return 0; /* already enabled */
2027
2028 bridge = pci_upstream_bridge(dev);
2029 if (bridge)
2030 pci_enable_bridge(dev: bridge);
2031
2032 /* only skip sriov related */
2033 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2034 if (dev->resource[i].flags & flags)
2035 bars |= (1 << i);
2036 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2037 if (dev->resource[i].flags & flags)
2038 bars |= (1 << i);
2039
2040 err = do_pci_enable_device(dev, bars);
2041 if (err < 0)
2042 atomic_dec(v: &dev->enable_cnt);
2043 return err;
2044}
2045
2046/**
2047 * pci_enable_device_io - Initialize a device for use with IO space
2048 * @dev: PCI device to be initialized
2049 *
2050 * Initialize device before it's used by a driver. Ask low-level code
2051 * to enable I/O resources. Wake up the device if it was suspended.
2052 * Beware, this function can fail.
2053 */
2054int pci_enable_device_io(struct pci_dev *dev)
2055{
2056 return pci_enable_device_flags(dev, IORESOURCE_IO);
2057}
2058EXPORT_SYMBOL(pci_enable_device_io);
2059
2060/**
2061 * pci_enable_device_mem - Initialize a device for use with Memory space
2062 * @dev: PCI device to be initialized
2063 *
2064 * Initialize device before it's used by a driver. Ask low-level code
2065 * to enable Memory resources. Wake up the device if it was suspended.
2066 * Beware, this function can fail.
2067 */
2068int pci_enable_device_mem(struct pci_dev *dev)
2069{
2070 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2071}
2072EXPORT_SYMBOL(pci_enable_device_mem);
2073
2074/**
2075 * pci_enable_device - Initialize device before it's used by a driver.
2076 * @dev: PCI device to be initialized
2077 *
2078 * Initialize device before it's used by a driver. Ask low-level code
2079 * to enable I/O and memory. Wake up the device if it was suspended.
2080 * Beware, this function can fail.
2081 *
2082 * Note we don't actually enable the device many times if we call
2083 * this function repeatedly (we just increment the count).
2084 */
2085int pci_enable_device(struct pci_dev *dev)
2086{
2087 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2088}
2089EXPORT_SYMBOL(pci_enable_device);
2090
2091/*
2092 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2093 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2094 * there's no need to track it separately. pci_devres is initialized
2095 * when a device is enabled using managed PCI device enable interface.
2096 */
2097struct pci_devres {
2098 unsigned int enabled:1;
2099 unsigned int pinned:1;
2100 unsigned int orig_intx:1;
2101 unsigned int restore_intx:1;
2102 unsigned int mwi:1;
2103 u32 region_mask;
2104};
2105
2106static void pcim_release(struct device *gendev, void *res)
2107{
2108 struct pci_dev *dev = to_pci_dev(gendev);
2109 struct pci_devres *this = res;
2110 int i;
2111
2112 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2113 if (this->region_mask & (1 << i))
2114 pci_release_region(dev, i);
2115
2116 if (this->mwi)
2117 pci_clear_mwi(dev);
2118
2119 if (this->restore_intx)
2120 pci_intx(dev, enable: this->orig_intx);
2121
2122 if (this->enabled && !this->pinned)
2123 pci_disable_device(dev);
2124}
2125
2126static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2127{
2128 struct pci_devres *dr, *new_dr;
2129
2130 dr = devres_find(dev: &pdev->dev, release: pcim_release, NULL, NULL);
2131 if (dr)
2132 return dr;
2133
2134 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2135 if (!new_dr)
2136 return NULL;
2137 return devres_get(dev: &pdev->dev, new_res: new_dr, NULL, NULL);
2138}
2139
2140static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2141{
2142 if (pci_is_managed(pdev))
2143 return devres_find(dev: &pdev->dev, release: pcim_release, NULL, NULL);
2144 return NULL;
2145}
2146
2147/**
2148 * pcim_enable_device - Managed pci_enable_device()
2149 * @pdev: PCI device to be initialized
2150 *
2151 * Managed pci_enable_device().
2152 */
2153int pcim_enable_device(struct pci_dev *pdev)
2154{
2155 struct pci_devres *dr;
2156 int rc;
2157
2158 dr = get_pci_dr(pdev);
2159 if (unlikely(!dr))
2160 return -ENOMEM;
2161 if (dr->enabled)
2162 return 0;
2163
2164 rc = pci_enable_device(pdev);
2165 if (!rc) {
2166 pdev->is_managed = 1;
2167 dr->enabled = 1;
2168 }
2169 return rc;
2170}
2171EXPORT_SYMBOL(pcim_enable_device);
2172
2173/**
2174 * pcim_pin_device - Pin managed PCI device
2175 * @pdev: PCI device to pin
2176 *
2177 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2178 * driver detach. @pdev must have been enabled with
2179 * pcim_enable_device().
2180 */
2181void pcim_pin_device(struct pci_dev *pdev)
2182{
2183 struct pci_devres *dr;
2184
2185 dr = find_pci_dr(pdev);
2186 WARN_ON(!dr || !dr->enabled);
2187 if (dr)
2188 dr->pinned = 1;
2189}
2190EXPORT_SYMBOL(pcim_pin_device);
2191
2192/*
2193 * pcibios_device_add - provide arch specific hooks when adding device dev
2194 * @dev: the PCI device being added
2195 *
2196 * Permits the platform to provide architecture specific functionality when
2197 * devices are added. This is the default implementation. Architecture
2198 * implementations can override this.
2199 */
2200int __weak pcibios_device_add(struct pci_dev *dev)
2201{
2202 return 0;
2203}
2204
2205/**
2206 * pcibios_release_device - provide arch specific hooks when releasing
2207 * device dev
2208 * @dev: the PCI device being released
2209 *
2210 * Permits the platform to provide architecture specific functionality when
2211 * devices are released. This is the default implementation. Architecture
2212 * implementations can override this.
2213 */
2214void __weak pcibios_release_device(struct pci_dev *dev) {}
2215
2216/**
2217 * pcibios_disable_device - disable arch specific PCI resources for device dev
2218 * @dev: the PCI device to disable
2219 *
2220 * Disables architecture specific PCI resources for the device. This
2221 * is the default implementation. Architecture implementations can
2222 * override this.
2223 */
2224void __weak pcibios_disable_device(struct pci_dev *dev) {}
2225
2226/**
2227 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2228 * @irq: ISA IRQ to penalize
2229 * @active: IRQ active or not
2230 *
2231 * Permits the platform to provide architecture-specific functionality when
2232 * penalizing ISA IRQs. This is the default implementation. Architecture
2233 * implementations can override this.
2234 */
2235void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2236
2237static void do_pci_disable_device(struct pci_dev *dev)
2238{
2239 u16 pci_command;
2240
2241 pci_read_config_word(dev, PCI_COMMAND, val: &pci_command);
2242 if (pci_command & PCI_COMMAND_MASTER) {
2243 pci_command &= ~PCI_COMMAND_MASTER;
2244 pci_write_config_word(dev, PCI_COMMAND, val: pci_command);
2245 }
2246
2247 pcibios_disable_device(dev);
2248}
2249
2250/**
2251 * pci_disable_enabled_device - Disable device without updating enable_cnt
2252 * @dev: PCI device to disable
2253 *
2254 * NOTE: This function is a backend of PCI power management routines and is
2255 * not supposed to be called drivers.
2256 */
2257void pci_disable_enabled_device(struct pci_dev *dev)
2258{
2259 if (pci_is_enabled(pdev: dev))
2260 do_pci_disable_device(dev);
2261}
2262
2263/**
2264 * pci_disable_device - Disable PCI device after use
2265 * @dev: PCI device to be disabled
2266 *
2267 * Signal to the system that the PCI device is not in use by the system
2268 * anymore. This only involves disabling PCI bus-mastering, if active.
2269 *
2270 * Note we don't actually disable the device until all callers of
2271 * pci_enable_device() have called pci_disable_device().
2272 */
2273void pci_disable_device(struct pci_dev *dev)
2274{
2275 struct pci_devres *dr;
2276
2277 dr = find_pci_dr(pdev: dev);
2278 if (dr)
2279 dr->enabled = 0;
2280
2281 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2282 "disabling already-disabled device");
2283
2284 if (atomic_dec_return(v: &dev->enable_cnt) != 0)
2285 return;
2286
2287 do_pci_disable_device(dev);
2288
2289 dev->is_busmaster = 0;
2290}
2291EXPORT_SYMBOL(pci_disable_device);
2292
2293/**
2294 * pcibios_set_pcie_reset_state - set reset state for device dev
2295 * @dev: the PCIe device reset
2296 * @state: Reset state to enter into
2297 *
2298 * Set the PCIe reset state for the device. This is the default
2299 * implementation. Architecture implementations can override this.
2300 */
2301int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2302 enum pcie_reset_state state)
2303{
2304 return -EINVAL;
2305}
2306
2307/**
2308 * pci_set_pcie_reset_state - set reset state for device dev
2309 * @dev: the PCIe device reset
2310 * @state: Reset state to enter into
2311 *
2312 * Sets the PCI reset state for the device.
2313 */
2314int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2315{
2316 return pcibios_set_pcie_reset_state(dev, state);
2317}
2318EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2319
2320#ifdef CONFIG_PCIEAER
2321void pcie_clear_device_status(struct pci_dev *dev)
2322{
2323 u16 sta;
2324
2325 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, val: &sta);
2326 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, val: sta);
2327}
2328#endif
2329
2330/**
2331 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2332 * @dev: PCIe root port or event collector.
2333 */
2334void pcie_clear_root_pme_status(struct pci_dev *dev)
2335{
2336 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2337}
2338
2339/**
2340 * pci_check_pme_status - Check if given device has generated PME.
2341 * @dev: Device to check.
2342 *
2343 * Check the PME status of the device and if set, clear it and clear PME enable
2344 * (if set). Return 'true' if PME status and PME enable were both set or
2345 * 'false' otherwise.
2346 */
2347bool pci_check_pme_status(struct pci_dev *dev)
2348{
2349 int pmcsr_pos;
2350 u16 pmcsr;
2351 bool ret = false;
2352
2353 if (!dev->pm_cap)
2354 return false;
2355
2356 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2357 pci_read_config_word(dev, where: pmcsr_pos, val: &pmcsr);
2358 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2359 return false;
2360
2361 /* Clear PME status. */
2362 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2363 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2364 /* Disable PME to avoid interrupt flood. */
2365 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2366 ret = true;
2367 }
2368
2369 pci_write_config_word(dev, where: pmcsr_pos, val: pmcsr);
2370
2371 return ret;
2372}
2373
2374/**
2375 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2376 * @dev: Device to handle.
2377 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2378 *
2379 * Check if @dev has generated PME and queue a resume request for it in that
2380 * case.
2381 */
2382static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2383{
2384 if (pme_poll_reset && dev->pme_poll)
2385 dev->pme_poll = false;
2386
2387 if (pci_check_pme_status(dev)) {
2388 pci_wakeup_event(dev);
2389 pm_request_resume(dev: &dev->dev);
2390 }
2391 return 0;
2392}
2393
2394/**
2395 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2396 * @bus: Top bus of the subtree to walk.
2397 */
2398void pci_pme_wakeup_bus(struct pci_bus *bus)
2399{
2400 if (bus)
2401 pci_walk_bus(top: bus, cb: pci_pme_wakeup, userdata: (void *)true);
2402}
2403
2404
2405/**
2406 * pci_pme_capable - check the capability of PCI device to generate PME#
2407 * @dev: PCI device to handle.
2408 * @state: PCI state from which device will issue PME#.
2409 */
2410bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2411{
2412 if (!dev->pm_cap)
2413 return false;
2414
2415 return !!(dev->pme_support & (1 << state));
2416}
2417EXPORT_SYMBOL(pci_pme_capable);
2418
2419static void pci_pme_list_scan(struct work_struct *work)
2420{
2421 struct pci_pme_device *pme_dev, *n;
2422
2423 mutex_lock(&pci_pme_list_mutex);
2424 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2425 struct pci_dev *pdev = pme_dev->dev;
2426
2427 if (pdev->pme_poll) {
2428 struct pci_dev *bridge = pdev->bus->self;
2429 struct device *dev = &pdev->dev;
2430 int pm_status;
2431
2432 /*
2433 * If bridge is in low power state, the
2434 * configuration space of subordinate devices
2435 * may be not accessible
2436 */
2437 if (bridge && bridge->current_state != PCI_D0)
2438 continue;
2439
2440 /*
2441 * If the device is in a low power state it
2442 * should not be polled either.
2443 */
2444 pm_status = pm_runtime_get_if_active(dev, ign_usage_count: true);
2445 if (!pm_status)
2446 continue;
2447
2448 if (pdev->current_state != PCI_D3cold)
2449 pci_pme_wakeup(dev: pdev, NULL);
2450
2451 if (pm_status > 0)
2452 pm_runtime_put(dev);
2453 } else {
2454 list_del(entry: &pme_dev->list);
2455 kfree(objp: pme_dev);
2456 }
2457 }
2458 if (!list_empty(head: &pci_pme_list))
2459 queue_delayed_work(wq: system_freezable_wq, dwork: &pci_pme_work,
2460 delay: msecs_to_jiffies(PME_TIMEOUT));
2461 mutex_unlock(lock: &pci_pme_list_mutex);
2462}
2463
2464static void __pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466 u16 pmcsr;
2467
2468 if (!dev->pme_support)
2469 return;
2470
2471 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
2472 /* Clear PME_Status by writing 1 to it and enable PME# */
2473 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2474 if (!enable)
2475 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2476
2477 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
2478}
2479
2480/**
2481 * pci_pme_restore - Restore PME configuration after config space restore.
2482 * @dev: PCI device to update.
2483 */
2484void pci_pme_restore(struct pci_dev *dev)
2485{
2486 u16 pmcsr;
2487
2488 if (!dev->pme_support)
2489 return;
2490
2491 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
2492 if (dev->wakeup_prepared) {
2493 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2494 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2495 } else {
2496 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2497 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2498 }
2499 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
2500}
2501
2502/**
2503 * pci_pme_active - enable or disable PCI device's PME# function
2504 * @dev: PCI device to handle.
2505 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2506 *
2507 * The caller must verify that the device is capable of generating PME# before
2508 * calling this function with @enable equal to 'true'.
2509 */
2510void pci_pme_active(struct pci_dev *dev, bool enable)
2511{
2512 __pci_pme_active(dev, enable);
2513
2514 /*
2515 * PCI (as opposed to PCIe) PME requires that the device have
2516 * its PME# line hooked up correctly. Not all hardware vendors
2517 * do this, so the PME never gets delivered and the device
2518 * remains asleep. The easiest way around this is to
2519 * periodically walk the list of suspended devices and check
2520 * whether any have their PME flag set. The assumption is that
2521 * we'll wake up often enough anyway that this won't be a huge
2522 * hit, and the power savings from the devices will still be a
2523 * win.
2524 *
2525 * Although PCIe uses in-band PME message instead of PME# line
2526 * to report PME, PME does not work for some PCIe devices in
2527 * reality. For example, there are devices that set their PME
2528 * status bits, but don't really bother to send a PME message;
2529 * there are PCI Express Root Ports that don't bother to
2530 * trigger interrupts when they receive PME messages from the
2531 * devices below. So PME poll is used for PCIe devices too.
2532 */
2533
2534 if (dev->pme_poll) {
2535 struct pci_pme_device *pme_dev;
2536 if (enable) {
2537 pme_dev = kmalloc(size: sizeof(struct pci_pme_device),
2538 GFP_KERNEL);
2539 if (!pme_dev) {
2540 pci_warn(dev, "can't enable PME#\n");
2541 return;
2542 }
2543 pme_dev->dev = dev;
2544 mutex_lock(&pci_pme_list_mutex);
2545 list_add(new: &pme_dev->list, head: &pci_pme_list);
2546 if (list_is_singular(head: &pci_pme_list))
2547 queue_delayed_work(wq: system_freezable_wq,
2548 dwork: &pci_pme_work,
2549 delay: msecs_to_jiffies(PME_TIMEOUT));
2550 mutex_unlock(lock: &pci_pme_list_mutex);
2551 } else {
2552 mutex_lock(&pci_pme_list_mutex);
2553 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2554 if (pme_dev->dev == dev) {
2555 list_del(entry: &pme_dev->list);
2556 kfree(objp: pme_dev);
2557 break;
2558 }
2559 }
2560 mutex_unlock(lock: &pci_pme_list_mutex);
2561 }
2562 }
2563
2564 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2565}
2566EXPORT_SYMBOL(pci_pme_active);
2567
2568/**
2569 * __pci_enable_wake - enable PCI device as wakeup event source
2570 * @dev: PCI device affected
2571 * @state: PCI state from which device will issue wakeup events
2572 * @enable: True to enable event generation; false to disable
2573 *
2574 * This enables the device as a wakeup event source, or disables it.
2575 * When such events involves platform-specific hooks, those hooks are
2576 * called automatically by this routine.
2577 *
2578 * Devices with legacy power management (no standard PCI PM capabilities)
2579 * always require such platform hooks.
2580 *
2581 * RETURN VALUE:
2582 * 0 is returned on success
2583 * -EINVAL is returned if device is not supposed to wake up the system
2584 * Error code depending on the platform is returned if both the platform and
2585 * the native mechanism fail to enable the generation of wake-up events
2586 */
2587static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2588{
2589 int ret = 0;
2590
2591 /*
2592 * Bridges that are not power-manageable directly only signal
2593 * wakeup on behalf of subordinate devices which is set up
2594 * elsewhere, so skip them. However, bridges that are
2595 * power-manageable may signal wakeup for themselves (for example,
2596 * on a hotplug event) and they need to be covered here.
2597 */
2598 if (!pci_power_manageable(pci_dev: dev))
2599 return 0;
2600
2601 /* Don't do the same thing twice in a row for one device. */
2602 if (!!enable == !!dev->wakeup_prepared)
2603 return 0;
2604
2605 /*
2606 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2607 * Anderson we should be doing PME# wake enable followed by ACPI wake
2608 * enable. To disable wake-up we call the platform first, for symmetry.
2609 */
2610
2611 if (enable) {
2612 int error;
2613
2614 /*
2615 * Enable PME signaling if the device can signal PME from
2616 * D3cold regardless of whether or not it can signal PME from
2617 * the current target state, because that will allow it to
2618 * signal PME when the hierarchy above it goes into D3cold and
2619 * the device itself ends up in D3cold as a result of that.
2620 */
2621 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2622 pci_pme_active(dev, true);
2623 else
2624 ret = 1;
2625 error = platform_pci_set_wakeup(dev, enable: true);
2626 if (ret)
2627 ret = error;
2628 if (!ret)
2629 dev->wakeup_prepared = true;
2630 } else {
2631 platform_pci_set_wakeup(dev, enable: false);
2632 pci_pme_active(dev, false);
2633 dev->wakeup_prepared = false;
2634 }
2635
2636 return ret;
2637}
2638
2639/**
2640 * pci_enable_wake - change wakeup settings for a PCI device
2641 * @pci_dev: Target device
2642 * @state: PCI state from which device will issue wakeup events
2643 * @enable: Whether or not to enable event generation
2644 *
2645 * If @enable is set, check device_may_wakeup() for the device before calling
2646 * __pci_enable_wake() for it.
2647 */
2648int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2649{
2650 if (enable && !device_may_wakeup(dev: &pci_dev->dev))
2651 return -EINVAL;
2652
2653 return __pci_enable_wake(dev: pci_dev, state, enable);
2654}
2655EXPORT_SYMBOL(pci_enable_wake);
2656
2657/**
2658 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2659 * @dev: PCI device to prepare
2660 * @enable: True to enable wake-up event generation; false to disable
2661 *
2662 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2663 * and this function allows them to set that up cleanly - pci_enable_wake()
2664 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2665 * ordering constraints.
2666 *
2667 * This function only returns error code if the device is not allowed to wake
2668 * up the system from sleep or it is not capable of generating PME# from both
2669 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2670 */
2671int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2672{
2673 return pci_pme_capable(dev, PCI_D3cold) ?
2674 pci_enable_wake(dev, PCI_D3cold, enable) :
2675 pci_enable_wake(dev, PCI_D3hot, enable);
2676}
2677EXPORT_SYMBOL(pci_wake_from_d3);
2678
2679/**
2680 * pci_target_state - find an appropriate low power state for a given PCI dev
2681 * @dev: PCI device
2682 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2683 *
2684 * Use underlying platform code to find a supported low power state for @dev.
2685 * If the platform can't manage @dev, return the deepest state from which it
2686 * can generate wake events, based on any available PME info.
2687 */
2688static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2689{
2690 if (platform_pci_power_manageable(dev)) {
2691 /*
2692 * Call the platform to find the target state for the device.
2693 */
2694 pci_power_t state = platform_pci_choose_state(dev);
2695
2696 switch (state) {
2697 case PCI_POWER_ERROR:
2698 case PCI_UNKNOWN:
2699 return PCI_D3hot;
2700
2701 case PCI_D1:
2702 case PCI_D2:
2703 if (pci_no_d1d2(dev))
2704 return PCI_D3hot;
2705 }
2706
2707 return state;
2708 }
2709
2710 /*
2711 * If the device is in D3cold even though it's not power-manageable by
2712 * the platform, it may have been powered down by non-standard means.
2713 * Best to let it slumber.
2714 */
2715 if (dev->current_state == PCI_D3cold)
2716 return PCI_D3cold;
2717 else if (!dev->pm_cap)
2718 return PCI_D0;
2719
2720 if (wakeup && dev->pme_support) {
2721 pci_power_t state = PCI_D3hot;
2722
2723 /*
2724 * Find the deepest state from which the device can generate
2725 * PME#.
2726 */
2727 while (state && !(dev->pme_support & (1 << state)))
2728 state--;
2729
2730 if (state)
2731 return state;
2732 else if (dev->pme_support & 1)
2733 return PCI_D0;
2734 }
2735
2736 return PCI_D3hot;
2737}
2738
2739/**
2740 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2741 * into a sleep state
2742 * @dev: Device to handle.
2743 *
2744 * Choose the power state appropriate for the device depending on whether
2745 * it can wake up the system and/or is power manageable by the platform
2746 * (PCI_D3hot is the default) and put the device into that state.
2747 */
2748int pci_prepare_to_sleep(struct pci_dev *dev)
2749{
2750 bool wakeup = device_may_wakeup(dev: &dev->dev);
2751 pci_power_t target_state = pci_target_state(dev, wakeup);
2752 int error;
2753
2754 if (target_state == PCI_POWER_ERROR)
2755 return -EIO;
2756
2757 pci_enable_wake(dev, target_state, wakeup);
2758
2759 error = pci_set_power_state(dev, target_state);
2760
2761 if (error)
2762 pci_enable_wake(dev, target_state, false);
2763
2764 return error;
2765}
2766EXPORT_SYMBOL(pci_prepare_to_sleep);
2767
2768/**
2769 * pci_back_from_sleep - turn PCI device on during system-wide transition
2770 * into working state
2771 * @dev: Device to handle.
2772 *
2773 * Disable device's system wake-up capability and put it into D0.
2774 */
2775int pci_back_from_sleep(struct pci_dev *dev)
2776{
2777 int ret = pci_set_power_state(dev, PCI_D0);
2778
2779 if (ret)
2780 return ret;
2781
2782 pci_enable_wake(dev, PCI_D0, false);
2783 return 0;
2784}
2785EXPORT_SYMBOL(pci_back_from_sleep);
2786
2787/**
2788 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2789 * @dev: PCI device being suspended.
2790 *
2791 * Prepare @dev to generate wake-up events at run time and put it into a low
2792 * power state.
2793 */
2794int pci_finish_runtime_suspend(struct pci_dev *dev)
2795{
2796 pci_power_t target_state;
2797 int error;
2798
2799 target_state = pci_target_state(dev, wakeup: device_can_wakeup(dev: &dev->dev));
2800 if (target_state == PCI_POWER_ERROR)
2801 return -EIO;
2802
2803 __pci_enable_wake(dev, state: target_state, enable: pci_dev_run_wake(dev));
2804
2805 error = pci_set_power_state(dev, target_state);
2806
2807 if (error)
2808 pci_enable_wake(dev, target_state, false);
2809
2810 return error;
2811}
2812
2813/**
2814 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2815 * @dev: Device to check.
2816 *
2817 * Return true if the device itself is capable of generating wake-up events
2818 * (through the platform or using the native PCIe PME) or if the device supports
2819 * PME and one of its upstream bridges can generate wake-up events.
2820 */
2821bool pci_dev_run_wake(struct pci_dev *dev)
2822{
2823 struct pci_bus *bus = dev->bus;
2824
2825 if (!dev->pme_support)
2826 return false;
2827
2828 /* PME-capable in principle, but not from the target power state */
2829 if (!pci_pme_capable(dev, pci_target_state(dev, wakeup: true)))
2830 return false;
2831
2832 if (device_can_wakeup(dev: &dev->dev))
2833 return true;
2834
2835 while (bus->parent) {
2836 struct pci_dev *bridge = bus->self;
2837
2838 if (device_can_wakeup(dev: &bridge->dev))
2839 return true;
2840
2841 bus = bus->parent;
2842 }
2843
2844 /* We have reached the root bus. */
2845 if (bus->bridge)
2846 return device_can_wakeup(dev: bus->bridge);
2847
2848 return false;
2849}
2850EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2851
2852/**
2853 * pci_dev_need_resume - Check if it is necessary to resume the device.
2854 * @pci_dev: Device to check.
2855 *
2856 * Return 'true' if the device is not runtime-suspended or it has to be
2857 * reconfigured due to wakeup settings difference between system and runtime
2858 * suspend, or the current power state of it is not suitable for the upcoming
2859 * (system-wide) transition.
2860 */
2861bool pci_dev_need_resume(struct pci_dev *pci_dev)
2862{
2863 struct device *dev = &pci_dev->dev;
2864 pci_power_t target_state;
2865
2866 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(dev: pci_dev))
2867 return true;
2868
2869 target_state = pci_target_state(dev: pci_dev, wakeup: device_may_wakeup(dev));
2870
2871 /*
2872 * If the earlier platform check has not triggered, D3cold is just power
2873 * removal on top of D3hot, so no need to resume the device in that
2874 * case.
2875 */
2876 return target_state != pci_dev->current_state &&
2877 target_state != PCI_D3cold &&
2878 pci_dev->current_state != PCI_D3hot;
2879}
2880
2881/**
2882 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2883 * @pci_dev: Device to check.
2884 *
2885 * If the device is suspended and it is not configured for system wakeup,
2886 * disable PME for it to prevent it from waking up the system unnecessarily.
2887 *
2888 * Note that if the device's power state is D3cold and the platform check in
2889 * pci_dev_need_resume() has not triggered, the device's configuration need not
2890 * be changed.
2891 */
2892void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2893{
2894 struct device *dev = &pci_dev->dev;
2895
2896 spin_lock_irq(lock: &dev->power.lock);
2897
2898 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2899 pci_dev->current_state < PCI_D3cold)
2900 __pci_pme_active(dev: pci_dev, enable: false);
2901
2902 spin_unlock_irq(lock: &dev->power.lock);
2903}
2904
2905/**
2906 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2907 * @pci_dev: Device to handle.
2908 *
2909 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2910 * it might have been disabled during the prepare phase of system suspend if
2911 * the device was not configured for system wakeup.
2912 */
2913void pci_dev_complete_resume(struct pci_dev *pci_dev)
2914{
2915 struct device *dev = &pci_dev->dev;
2916
2917 if (!pci_dev_run_wake(pci_dev))
2918 return;
2919
2920 spin_lock_irq(lock: &dev->power.lock);
2921
2922 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2923 __pci_pme_active(dev: pci_dev, enable: true);
2924
2925 spin_unlock_irq(lock: &dev->power.lock);
2926}
2927
2928/**
2929 * pci_choose_state - Choose the power state of a PCI device.
2930 * @dev: Target PCI device.
2931 * @state: Target state for the whole system.
2932 *
2933 * Returns PCI power state suitable for @dev and @state.
2934 */
2935pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2936{
2937 if (state.event == PM_EVENT_ON)
2938 return PCI_D0;
2939
2940 return pci_target_state(dev, wakeup: false);
2941}
2942EXPORT_SYMBOL(pci_choose_state);
2943
2944void pci_config_pm_runtime_get(struct pci_dev *pdev)
2945{
2946 struct device *dev = &pdev->dev;
2947 struct device *parent = dev->parent;
2948
2949 if (parent)
2950 pm_runtime_get_sync(dev: parent);
2951 pm_runtime_get_noresume(dev);
2952 /*
2953 * pdev->current_state is set to PCI_D3cold during suspending,
2954 * so wait until suspending completes
2955 */
2956 pm_runtime_barrier(dev);
2957 /*
2958 * Only need to resume devices in D3cold, because config
2959 * registers are still accessible for devices suspended but
2960 * not in D3cold.
2961 */
2962 if (pdev->current_state == PCI_D3cold)
2963 pm_runtime_resume(dev);
2964}
2965
2966void pci_config_pm_runtime_put(struct pci_dev *pdev)
2967{
2968 struct device *dev = &pdev->dev;
2969 struct device *parent = dev->parent;
2970
2971 pm_runtime_put(dev);
2972 if (parent)
2973 pm_runtime_put_sync(dev: parent);
2974}
2975
2976static const struct dmi_system_id bridge_d3_blacklist[] = {
2977#ifdef CONFIG_X86
2978 {
2979 /*
2980 * Gigabyte X299 root port is not marked as hotplug capable
2981 * which allows Linux to power manage it. However, this
2982 * confuses the BIOS SMI handler so don't power manage root
2983 * ports on that system.
2984 */
2985 .ident = "X299 DESIGNARE EX-CF",
2986 .matches = {
2987 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2988 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2989 },
2990 },
2991 {
2992 /*
2993 * Downstream device is not accessible after putting a root port
2994 * into D3cold and back into D0 on Elo Continental Z2 board
2995 */
2996 .ident = "Elo Continental Z2",
2997 .matches = {
2998 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2999 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3000 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3001 },
3002 },
3003#endif
3004 { }
3005};
3006
3007/**
3008 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3009 * @bridge: Bridge to check
3010 *
3011 * This function checks if it is possible to move the bridge to D3.
3012 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3013 */
3014bool pci_bridge_d3_possible(struct pci_dev *bridge)
3015{
3016 if (!pci_is_pcie(dev: bridge))
3017 return false;
3018
3019 switch (pci_pcie_type(dev: bridge)) {
3020 case PCI_EXP_TYPE_ROOT_PORT:
3021 case PCI_EXP_TYPE_UPSTREAM:
3022 case PCI_EXP_TYPE_DOWNSTREAM:
3023 if (pci_bridge_d3_disable)
3024 return false;
3025
3026 /*
3027 * Hotplug ports handled by firmware in System Management Mode
3028 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3029 */
3030 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3031 return false;
3032
3033 if (pci_bridge_d3_force)
3034 return true;
3035
3036 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3037 if (bridge->is_thunderbolt)
3038 return true;
3039
3040 /* Platform might know better if the bridge supports D3 */
3041 if (platform_pci_bridge_d3(dev: bridge))
3042 return true;
3043
3044 /*
3045 * Hotplug ports handled natively by the OS were not validated
3046 * by vendors for runtime D3 at least until 2018 because there
3047 * was no OS support.
3048 */
3049 if (bridge->is_hotplug_bridge)
3050 return false;
3051
3052 if (dmi_check_system(list: bridge_d3_blacklist))
3053 return false;
3054
3055 /*
3056 * It should be safe to put PCIe ports from 2015 or newer
3057 * to D3.
3058 */
3059 if (dmi_get_bios_year() >= 2015)
3060 return true;
3061 break;
3062 }
3063
3064 return false;
3065}
3066
3067static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3068{
3069 bool *d3cold_ok = data;
3070
3071 if (/* The device needs to be allowed to go D3cold ... */
3072 dev->no_d3cold || !dev->d3cold_allowed ||
3073
3074 /* ... and if it is wakeup capable to do so from D3cold. */
3075 (device_may_wakeup(dev: &dev->dev) &&
3076 !pci_pme_capable(dev, PCI_D3cold)) ||
3077
3078 /* If it is a bridge it must be allowed to go to D3. */
3079 !pci_power_manageable(pci_dev: dev))
3080
3081 *d3cold_ok = false;
3082
3083 return !*d3cold_ok;
3084}
3085
3086/*
3087 * pci_bridge_d3_update - Update bridge D3 capabilities
3088 * @dev: PCI device which is changed
3089 *
3090 * Update upstream bridge PM capabilities accordingly depending on if the
3091 * device PM configuration was changed or the device is being removed. The
3092 * change is also propagated upstream.
3093 */
3094void pci_bridge_d3_update(struct pci_dev *dev)
3095{
3096 bool remove = !device_is_registered(dev: &dev->dev);
3097 struct pci_dev *bridge;
3098 bool d3cold_ok = true;
3099
3100 bridge = pci_upstream_bridge(dev);
3101 if (!bridge || !pci_bridge_d3_possible(bridge))
3102 return;
3103
3104 /*
3105 * If D3 is currently allowed for the bridge, removing one of its
3106 * children won't change that.
3107 */
3108 if (remove && bridge->bridge_d3)
3109 return;
3110
3111 /*
3112 * If D3 is currently allowed for the bridge and a child is added or
3113 * changed, disallowance of D3 can only be caused by that child, so
3114 * we only need to check that single device, not any of its siblings.
3115 *
3116 * If D3 is currently not allowed for the bridge, checking the device
3117 * first may allow us to skip checking its siblings.
3118 */
3119 if (!remove)
3120 pci_dev_check_d3cold(dev, data: &d3cold_ok);
3121
3122 /*
3123 * If D3 is currently not allowed for the bridge, this may be caused
3124 * either by the device being changed/removed or any of its siblings,
3125 * so we need to go through all children to find out if one of them
3126 * continues to block D3.
3127 */
3128 if (d3cold_ok && !bridge->bridge_d3)
3129 pci_walk_bus(top: bridge->subordinate, cb: pci_dev_check_d3cold,
3130 userdata: &d3cold_ok);
3131
3132 if (bridge->bridge_d3 != d3cold_ok) {
3133 bridge->bridge_d3 = d3cold_ok;
3134 /* Propagate change to upstream bridges */
3135 pci_bridge_d3_update(dev: bridge);
3136 }
3137}
3138
3139/**
3140 * pci_d3cold_enable - Enable D3cold for device
3141 * @dev: PCI device to handle
3142 *
3143 * This function can be used in drivers to enable D3cold from the device
3144 * they handle. It also updates upstream PCI bridge PM capabilities
3145 * accordingly.
3146 */
3147void pci_d3cold_enable(struct pci_dev *dev)
3148{
3149 if (dev->no_d3cold) {
3150 dev->no_d3cold = false;
3151 pci_bridge_d3_update(dev);
3152 }
3153}
3154EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3155
3156/**
3157 * pci_d3cold_disable - Disable D3cold for device
3158 * @dev: PCI device to handle
3159 *
3160 * This function can be used in drivers to disable D3cold from the device
3161 * they handle. It also updates upstream PCI bridge PM capabilities
3162 * accordingly.
3163 */
3164void pci_d3cold_disable(struct pci_dev *dev)
3165{
3166 if (!dev->no_d3cold) {
3167 dev->no_d3cold = true;
3168 pci_bridge_d3_update(dev);
3169 }
3170}
3171EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3172
3173/**
3174 * pci_pm_init - Initialize PM functions of given PCI device
3175 * @dev: PCI device to handle.
3176 */
3177void pci_pm_init(struct pci_dev *dev)
3178{
3179 int pm;
3180 u16 status;
3181 u16 pmc;
3182
3183 pm_runtime_forbid(dev: &dev->dev);
3184 pm_runtime_set_active(dev: &dev->dev);
3185 pm_runtime_enable(dev: &dev->dev);
3186 device_enable_async_suspend(dev: &dev->dev);
3187 dev->wakeup_prepared = false;
3188
3189 dev->pm_cap = 0;
3190 dev->pme_support = 0;
3191
3192 /* find PCI PM capability in list */
3193 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3194 if (!pm)
3195 return;
3196 /* Check device's ability to generate PME# */
3197 pci_read_config_word(dev, where: pm + PCI_PM_PMC, val: &pmc);
3198
3199 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3200 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3201 pmc & PCI_PM_CAP_VER_MASK);
3202 return;
3203 }
3204
3205 dev->pm_cap = pm;
3206 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3207 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3208 dev->bridge_d3 = pci_bridge_d3_possible(bridge: dev);
3209 dev->d3cold_allowed = true;
3210
3211 dev->d1_support = false;
3212 dev->d2_support = false;
3213 if (!pci_no_d1d2(dev)) {
3214 if (pmc & PCI_PM_CAP_D1)
3215 dev->d1_support = true;
3216 if (pmc & PCI_PM_CAP_D2)
3217 dev->d2_support = true;
3218
3219 if (dev->d1_support || dev->d2_support)
3220 pci_info(dev, "supports%s%s\n",
3221 dev->d1_support ? " D1" : "",
3222 dev->d2_support ? " D2" : "");
3223 }
3224
3225 pmc &= PCI_PM_CAP_PME_MASK;
3226 if (pmc) {
3227 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3228 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3229 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3230 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3231 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3232 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3233 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3234 dev->pme_poll = true;
3235 /*
3236 * Make device's PM flags reflect the wake-up capability, but
3237 * let the user space enable it to wake up the system as needed.
3238 */
3239 device_set_wakeup_capable(dev: &dev->dev, capable: true);
3240 /* Disable the PME# generation functionality */
3241 pci_pme_active(dev, false);
3242 }
3243
3244 pci_read_config_word(dev, PCI_STATUS, val: &status);
3245 if (status & PCI_STATUS_IMM_READY)
3246 dev->imm_ready = 1;
3247}
3248
3249static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3250{
3251 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3252
3253 switch (prop) {
3254 case PCI_EA_P_MEM:
3255 case PCI_EA_P_VF_MEM:
3256 flags |= IORESOURCE_MEM;
3257 break;
3258 case PCI_EA_P_MEM_PREFETCH:
3259 case PCI_EA_P_VF_MEM_PREFETCH:
3260 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3261 break;
3262 case PCI_EA_P_IO:
3263 flags |= IORESOURCE_IO;
3264 break;
3265 default:
3266 return 0;
3267 }
3268
3269 return flags;
3270}
3271
3272static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3273 u8 prop)
3274{
3275 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3276 return &dev->resource[bei];
3277#ifdef CONFIG_PCI_IOV
3278 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3279 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3280 return &dev->resource[PCI_IOV_RESOURCES +
3281 bei - PCI_EA_BEI_VF_BAR0];
3282#endif
3283 else if (bei == PCI_EA_BEI_ROM)
3284 return &dev->resource[PCI_ROM_RESOURCE];
3285 else
3286 return NULL;
3287}
3288
3289/* Read an Enhanced Allocation (EA) entry */
3290static int pci_ea_read(struct pci_dev *dev, int offset)
3291{
3292 struct resource *res;
3293 int ent_size, ent_offset = offset;
3294 resource_size_t start, end;
3295 unsigned long flags;
3296 u32 dw0, bei, base, max_offset;
3297 u8 prop;
3298 bool support_64 = (sizeof(resource_size_t) >= 8);
3299
3300 pci_read_config_dword(dev, where: ent_offset, val: &dw0);
3301 ent_offset += 4;
3302
3303 /* Entry size field indicates DWORDs after 1st */
3304 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3305
3306 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3307 goto out;
3308
3309 bei = FIELD_GET(PCI_EA_BEI, dw0);
3310 prop = FIELD_GET(PCI_EA_PP, dw0);
3311
3312 /*
3313 * If the Property is in the reserved range, try the Secondary
3314 * Property instead.
3315 */
3316 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3317 prop = FIELD_GET(PCI_EA_SP, dw0);
3318 if (prop > PCI_EA_P_BRIDGE_IO)
3319 goto out;
3320
3321 res = pci_ea_get_resource(dev, bei, prop);
3322 if (!res) {
3323 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3324 goto out;
3325 }
3326
3327 flags = pci_ea_flags(dev, prop);
3328 if (!flags) {
3329 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3330 goto out;
3331 }
3332
3333 /* Read Base */
3334 pci_read_config_dword(dev, where: ent_offset, val: &base);
3335 start = (base & PCI_EA_FIELD_MASK);
3336 ent_offset += 4;
3337
3338 /* Read MaxOffset */
3339 pci_read_config_dword(dev, where: ent_offset, val: &max_offset);
3340 ent_offset += 4;
3341
3342 /* Read Base MSBs (if 64-bit entry) */
3343 if (base & PCI_EA_IS_64) {
3344 u32 base_upper;
3345
3346 pci_read_config_dword(dev, where: ent_offset, val: &base_upper);
3347 ent_offset += 4;
3348
3349 flags |= IORESOURCE_MEM_64;
3350
3351 /* entry starts above 32-bit boundary, can't use */
3352 if (!support_64 && base_upper)
3353 goto out;
3354
3355 if (support_64)
3356 start |= ((u64)base_upper << 32);
3357 }
3358
3359 end = start + (max_offset | 0x03);
3360
3361 /* Read MaxOffset MSBs (if 64-bit entry) */
3362 if (max_offset & PCI_EA_IS_64) {
3363 u32 max_offset_upper;
3364
3365 pci_read_config_dword(dev, where: ent_offset, val: &max_offset_upper);
3366 ent_offset += 4;
3367
3368 flags |= IORESOURCE_MEM_64;
3369
3370 /* entry too big, can't use */
3371 if (!support_64 && max_offset_upper)
3372 goto out;
3373
3374 if (support_64)
3375 end += ((u64)max_offset_upper << 32);
3376 }
3377
3378 if (end < start) {
3379 pci_err(dev, "EA Entry crosses address boundary\n");
3380 goto out;
3381 }
3382
3383 if (ent_size != ent_offset - offset) {
3384 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3385 ent_size, ent_offset - offset);
3386 goto out;
3387 }
3388
3389 res->name = pci_name(pdev: dev);
3390 res->start = start;
3391 res->end = end;
3392 res->flags = flags;
3393
3394 if (bei <= PCI_EA_BEI_BAR5)
3395 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3396 bei, res, prop);
3397 else if (bei == PCI_EA_BEI_ROM)
3398 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3399 res, prop);
3400 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3401 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3402 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3403 else
3404 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3405 bei, res, prop);
3406
3407out:
3408 return offset + ent_size;
3409}
3410
3411/* Enhanced Allocation Initialization */
3412void pci_ea_init(struct pci_dev *dev)
3413{
3414 int ea;
3415 u8 num_ent;
3416 int offset;
3417 int i;
3418
3419 /* find PCI EA capability in list */
3420 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3421 if (!ea)
3422 return;
3423
3424 /* determine the number of entries */
3425 pci_bus_read_config_byte(bus: dev->bus, devfn: dev->devfn, where: ea + PCI_EA_NUM_ENT,
3426 val: &num_ent);
3427 num_ent &= PCI_EA_NUM_ENT_MASK;
3428
3429 offset = ea + PCI_EA_FIRST_ENT;
3430
3431 /* Skip DWORD 2 for type 1 functions */
3432 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3433 offset += 4;
3434
3435 /* parse each EA entry */
3436 for (i = 0; i < num_ent; ++i)
3437 offset = pci_ea_read(dev, offset);
3438}
3439
3440static void pci_add_saved_cap(struct pci_dev *pci_dev,
3441 struct pci_cap_saved_state *new_cap)
3442{
3443 hlist_add_head(n: &new_cap->next, h: &pci_dev->saved_cap_space);
3444}
3445
3446/**
3447 * _pci_add_cap_save_buffer - allocate buffer for saving given
3448 * capability registers
3449 * @dev: the PCI device
3450 * @cap: the capability to allocate the buffer for
3451 * @extended: Standard or Extended capability ID
3452 * @size: requested size of the buffer
3453 */
3454static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3455 bool extended, unsigned int size)
3456{
3457 int pos;
3458 struct pci_cap_saved_state *save_state;
3459
3460 if (extended)
3461 pos = pci_find_ext_capability(dev, cap);
3462 else
3463 pos = pci_find_capability(dev, cap);
3464
3465 if (!pos)
3466 return 0;
3467
3468 save_state = kzalloc(size: sizeof(*save_state) + size, GFP_KERNEL);
3469 if (!save_state)
3470 return -ENOMEM;
3471
3472 save_state->cap.cap_nr = cap;
3473 save_state->cap.cap_extended = extended;
3474 save_state->cap.size = size;
3475 pci_add_saved_cap(pci_dev: dev, new_cap: save_state);
3476
3477 return 0;
3478}
3479
3480int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3481{
3482 return _pci_add_cap_save_buffer(dev, cap, extended: false, size);
3483}
3484
3485int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3486{
3487 return _pci_add_cap_save_buffer(dev, cap, extended: true, size);
3488}
3489
3490/**
3491 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3492 * @dev: the PCI device
3493 */
3494void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3495{
3496 int error;
3497
3498 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3499 PCI_EXP_SAVE_REGS * sizeof(u16));
3500 if (error)
3501 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3502
3503 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, size: sizeof(u16));
3504 if (error)
3505 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3506
3507 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3508 size: 2 * sizeof(u16));
3509 if (error)
3510 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3511
3512 pci_allocate_vc_save_buffers(dev);
3513}
3514
3515void pci_free_cap_save_buffers(struct pci_dev *dev)
3516{
3517 struct pci_cap_saved_state *tmp;
3518 struct hlist_node *n;
3519
3520 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3521 kfree(objp: tmp);
3522}
3523
3524/**
3525 * pci_configure_ari - enable or disable ARI forwarding
3526 * @dev: the PCI device
3527 *
3528 * If @dev and its upstream bridge both support ARI, enable ARI in the
3529 * bridge. Otherwise, disable ARI in the bridge.
3530 */
3531void pci_configure_ari(struct pci_dev *dev)
3532{
3533 u32 cap;
3534 struct pci_dev *bridge;
3535
3536 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3537 return;
3538
3539 bridge = dev->bus->self;
3540 if (!bridge)
3541 return;
3542
3543 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCAP2, val: &cap);
3544 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3545 return;
3546
3547 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3548 pcie_capability_set_word(dev: bridge, PCI_EXP_DEVCTL2,
3549 PCI_EXP_DEVCTL2_ARI);
3550 bridge->ari_enabled = 1;
3551 } else {
3552 pcie_capability_clear_word(dev: bridge, PCI_EXP_DEVCTL2,
3553 PCI_EXP_DEVCTL2_ARI);
3554 bridge->ari_enabled = 0;
3555 }
3556}
3557
3558static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3559{
3560 int pos;
3561 u16 cap, ctrl;
3562
3563 pos = pdev->acs_cap;
3564 if (!pos)
3565 return false;
3566
3567 /*
3568 * Except for egress control, capabilities are either required
3569 * or only required if controllable. Features missing from the
3570 * capability field can therefore be assumed as hard-wired enabled.
3571 */
3572 pci_read_config_word(dev: pdev, where: pos + PCI_ACS_CAP, val: &cap);
3573 acs_flags &= (cap | PCI_ACS_EC);
3574
3575 pci_read_config_word(dev: pdev, where: pos + PCI_ACS_CTRL, val: &ctrl);
3576 return (ctrl & acs_flags) == acs_flags;
3577}
3578
3579/**
3580 * pci_acs_enabled - test ACS against required flags for a given device
3581 * @pdev: device to test
3582 * @acs_flags: required PCI ACS flags
3583 *
3584 * Return true if the device supports the provided flags. Automatically
3585 * filters out flags that are not implemented on multifunction devices.
3586 *
3587 * Note that this interface checks the effective ACS capabilities of the
3588 * device rather than the actual capabilities. For instance, most single
3589 * function endpoints are not required to support ACS because they have no
3590 * opportunity for peer-to-peer access. We therefore return 'true'
3591 * regardless of whether the device exposes an ACS capability. This makes
3592 * it much easier for callers of this function to ignore the actual type
3593 * or topology of the device when testing ACS support.
3594 */
3595bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3596{
3597 int ret;
3598
3599 ret = pci_dev_specific_acs_enabled(dev: pdev, acs_flags);
3600 if (ret >= 0)
3601 return ret > 0;
3602
3603 /*
3604 * Conventional PCI and PCI-X devices never support ACS, either
3605 * effectively or actually. The shared bus topology implies that
3606 * any device on the bus can receive or snoop DMA.
3607 */
3608 if (!pci_is_pcie(dev: pdev))
3609 return false;
3610
3611 switch (pci_pcie_type(dev: pdev)) {
3612 /*
3613 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3614 * but since their primary interface is PCI/X, we conservatively
3615 * handle them as we would a non-PCIe device.
3616 */
3617 case PCI_EXP_TYPE_PCIE_BRIDGE:
3618 /*
3619 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3620 * applicable... must never implement an ACS Extended Capability...".
3621 * This seems arbitrary, but we take a conservative interpretation
3622 * of this statement.
3623 */
3624 case PCI_EXP_TYPE_PCI_BRIDGE:
3625 case PCI_EXP_TYPE_RC_EC:
3626 return false;
3627 /*
3628 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3629 * implement ACS in order to indicate their peer-to-peer capabilities,
3630 * regardless of whether they are single- or multi-function devices.
3631 */
3632 case PCI_EXP_TYPE_DOWNSTREAM:
3633 case PCI_EXP_TYPE_ROOT_PORT:
3634 return pci_acs_flags_enabled(pdev, acs_flags);
3635 /*
3636 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3637 * implemented by the remaining PCIe types to indicate peer-to-peer
3638 * capabilities, but only when they are part of a multifunction
3639 * device. The footnote for section 6.12 indicates the specific
3640 * PCIe types included here.
3641 */
3642 case PCI_EXP_TYPE_ENDPOINT:
3643 case PCI_EXP_TYPE_UPSTREAM:
3644 case PCI_EXP_TYPE_LEG_END:
3645 case PCI_EXP_TYPE_RC_END:
3646 if (!pdev->multifunction)
3647 break;
3648
3649 return pci_acs_flags_enabled(pdev, acs_flags);
3650 }
3651
3652 /*
3653 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3654 * to single function devices with the exception of downstream ports.
3655 */
3656 return true;
3657}
3658
3659/**
3660 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3661 * @start: starting downstream device
3662 * @end: ending upstream device or NULL to search to the root bus
3663 * @acs_flags: required flags
3664 *
3665 * Walk up a device tree from start to end testing PCI ACS support. If
3666 * any step along the way does not support the required flags, return false.
3667 */
3668bool pci_acs_path_enabled(struct pci_dev *start,
3669 struct pci_dev *end, u16 acs_flags)
3670{
3671 struct pci_dev *pdev, *parent = start;
3672
3673 do {
3674 pdev = parent;
3675
3676 if (!pci_acs_enabled(pdev, acs_flags))
3677 return false;
3678
3679 if (pci_is_root_bus(pbus: pdev->bus))
3680 return (end == NULL);
3681
3682 parent = pdev->bus->self;
3683 } while (pdev != end);
3684
3685 return true;
3686}
3687
3688/**
3689 * pci_acs_init - Initialize ACS if hardware supports it
3690 * @dev: the PCI device
3691 */
3692void pci_acs_init(struct pci_dev *dev)
3693{
3694 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3695
3696 /*
3697 * Attempt to enable ACS regardless of capability because some Root
3698 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3699 * the standard ACS capability but still support ACS via those
3700 * quirks.
3701 */
3702 pci_enable_acs(dev);
3703}
3704
3705/**
3706 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3707 * @pdev: PCI device
3708 * @bar: BAR to find
3709 *
3710 * Helper to find the position of the ctrl register for a BAR.
3711 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3712 * Returns -ENOENT if no ctrl register for the BAR could be found.
3713 */
3714static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3715{
3716 unsigned int pos, nbars, i;
3717 u32 ctrl;
3718
3719 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3720 if (!pos)
3721 return -ENOTSUPP;
3722
3723 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3724 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3725
3726 for (i = 0; i < nbars; i++, pos += 8) {
3727 int bar_idx;
3728
3729 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3730 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3731 if (bar_idx == bar)
3732 return pos;
3733 }
3734
3735 return -ENOENT;
3736}
3737
3738/**
3739 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3740 * @pdev: PCI device
3741 * @bar: BAR to query
3742 *
3743 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3744 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3745 */
3746u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3747{
3748 int pos;
3749 u32 cap;
3750
3751 pos = pci_rebar_find_pos(pdev, bar);
3752 if (pos < 0)
3753 return 0;
3754
3755 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CAP, val: &cap);
3756 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3757
3758 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3759 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3760 bar == 0 && cap == 0x700)
3761 return 0x3f00;
3762
3763 return cap;
3764}
3765EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3766
3767/**
3768 * pci_rebar_get_current_size - get the current size of a BAR
3769 * @pdev: PCI device
3770 * @bar: BAR to set size to
3771 *
3772 * Read the size of a BAR from the resizable BAR config.
3773 * Returns size if found or negative error code.
3774 */
3775int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3776{
3777 int pos;
3778 u32 ctrl;
3779
3780 pos = pci_rebar_find_pos(pdev, bar);
3781 if (pos < 0)
3782 return pos;
3783
3784 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3785 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3786}
3787
3788/**
3789 * pci_rebar_set_size - set a new size for a BAR
3790 * @pdev: PCI device
3791 * @bar: BAR to set size to
3792 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3793 *
3794 * Set the new size of a BAR as defined in the spec.
3795 * Returns zero if resizing was successful, error code otherwise.
3796 */
3797int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3798{
3799 int pos;
3800 u32 ctrl;
3801
3802 pos = pci_rebar_find_pos(pdev, bar);
3803 if (pos < 0)
3804 return pos;
3805
3806 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3807 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3808 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3809 pci_write_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: ctrl);
3810 return 0;
3811}
3812
3813/**
3814 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3815 * @dev: the PCI device
3816 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3817 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3818 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3819 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3820 *
3821 * Return 0 if all upstream bridges support AtomicOp routing, egress
3822 * blocking is disabled on all upstream ports, and the root port supports
3823 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3824 * AtomicOp completion), or negative otherwise.
3825 */
3826int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3827{
3828 struct pci_bus *bus = dev->bus;
3829 struct pci_dev *bridge;
3830 u32 cap, ctl2;
3831
3832 /*
3833 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3834 * in Device Control 2 is reserved in VFs and the PF value applies
3835 * to all associated VFs.
3836 */
3837 if (dev->is_virtfn)
3838 return -EINVAL;
3839
3840 if (!pci_is_pcie(dev))
3841 return -EINVAL;
3842
3843 /*
3844 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3845 * AtomicOp requesters. For now, we only support endpoints as
3846 * requesters and root ports as completers. No endpoints as
3847 * completers, and no peer-to-peer.
3848 */
3849
3850 switch (pci_pcie_type(dev)) {
3851 case PCI_EXP_TYPE_ENDPOINT:
3852 case PCI_EXP_TYPE_LEG_END:
3853 case PCI_EXP_TYPE_RC_END:
3854 break;
3855 default:
3856 return -EINVAL;
3857 }
3858
3859 while (bus->parent) {
3860 bridge = bus->self;
3861
3862 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCAP2, val: &cap);
3863
3864 switch (pci_pcie_type(dev: bridge)) {
3865 /* Ensure switch ports support AtomicOp routing */
3866 case PCI_EXP_TYPE_UPSTREAM:
3867 case PCI_EXP_TYPE_DOWNSTREAM:
3868 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3869 return -EINVAL;
3870 break;
3871
3872 /* Ensure root port supports all the sizes we care about */
3873 case PCI_EXP_TYPE_ROOT_PORT:
3874 if ((cap & cap_mask) != cap_mask)
3875 return -EINVAL;
3876 break;
3877 }
3878
3879 /* Ensure upstream ports don't block AtomicOps on egress */
3880 if (pci_pcie_type(dev: bridge) == PCI_EXP_TYPE_UPSTREAM) {
3881 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCTL2,
3882 val: &ctl2);
3883 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3884 return -EINVAL;
3885 }
3886
3887 bus = bus->parent;
3888 }
3889
3890 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3891 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3892 return 0;
3893}
3894EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3895
3896/**
3897 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3898 * @dev: the PCI device
3899 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3900 *
3901 * Perform INTx swizzling for a device behind one level of bridge. This is
3902 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3903 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3904 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3905 * the PCI Express Base Specification, Revision 2.1)
3906 */
3907u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3908{
3909 int slot;
3910
3911 if (pci_ari_enabled(bus: dev->bus))
3912 slot = 0;
3913 else
3914 slot = PCI_SLOT(dev->devfn);
3915
3916 return (((pin - 1) + slot) % 4) + 1;
3917}
3918
3919int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3920{
3921 u8 pin;
3922
3923 pin = dev->pin;
3924 if (!pin)
3925 return -1;
3926
3927 while (!pci_is_root_bus(pbus: dev->bus)) {
3928 pin = pci_swizzle_interrupt_pin(dev, pin);
3929 dev = dev->bus->self;
3930 }
3931 *bridge = dev;
3932 return pin;
3933}
3934
3935/**
3936 * pci_common_swizzle - swizzle INTx all the way to root bridge
3937 * @dev: the PCI device
3938 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3939 *
3940 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3941 * bridges all the way up to a PCI root bus.
3942 */
3943u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3944{
3945 u8 pin = *pinp;
3946
3947 while (!pci_is_root_bus(pbus: dev->bus)) {
3948 pin = pci_swizzle_interrupt_pin(dev, pin);
3949 dev = dev->bus->self;
3950 }
3951 *pinp = pin;
3952 return PCI_SLOT(dev->devfn);
3953}
3954EXPORT_SYMBOL_GPL(pci_common_swizzle);
3955
3956/**
3957 * pci_release_region - Release a PCI bar
3958 * @pdev: PCI device whose resources were previously reserved by
3959 * pci_request_region()
3960 * @bar: BAR to release
3961 *
3962 * Releases the PCI I/O and memory resources previously reserved by a
3963 * successful call to pci_request_region(). Call this function only
3964 * after all use of the PCI regions has ceased.
3965 */
3966void pci_release_region(struct pci_dev *pdev, int bar)
3967{
3968 struct pci_devres *dr;
3969
3970 if (pci_resource_len(pdev, bar) == 0)
3971 return;
3972 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3973 release_region(pci_resource_start(pdev, bar),
3974 pci_resource_len(pdev, bar));
3975 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3976 release_mem_region(pci_resource_start(pdev, bar),
3977 pci_resource_len(pdev, bar));
3978
3979 dr = find_pci_dr(pdev);
3980 if (dr)
3981 dr->region_mask &= ~(1 << bar);
3982}
3983EXPORT_SYMBOL(pci_release_region);
3984
3985/**
3986 * __pci_request_region - Reserved PCI I/O and memory resource
3987 * @pdev: PCI device whose resources are to be reserved
3988 * @bar: BAR to be reserved
3989 * @res_name: Name to be associated with resource.
3990 * @exclusive: whether the region access is exclusive or not
3991 *
3992 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3993 * being reserved by owner @res_name. Do not access any
3994 * address inside the PCI regions unless this call returns
3995 * successfully.
3996 *
3997 * If @exclusive is set, then the region is marked so that userspace
3998 * is explicitly not allowed to map the resource via /dev/mem or
3999 * sysfs MMIO access.
4000 *
4001 * Returns 0 on success, or %EBUSY on error. A warning
4002 * message is also printed on failure.
4003 */
4004static int __pci_request_region(struct pci_dev *pdev, int bar,
4005 const char *res_name, int exclusive)
4006{
4007 struct pci_devres *dr;
4008
4009 if (pci_resource_len(pdev, bar) == 0)
4010 return 0;
4011
4012 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4013 if (!request_region(pci_resource_start(pdev, bar),
4014 pci_resource_len(pdev, bar), res_name))
4015 goto err_out;
4016 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4017 if (!__request_mem_region(pci_resource_start(pdev, bar),
4018 pci_resource_len(pdev, bar), res_name,
4019 exclusive))
4020 goto err_out;
4021 }
4022
4023 dr = find_pci_dr(pdev);
4024 if (dr)
4025 dr->region_mask |= 1 << bar;
4026
4027 return 0;
4028
4029err_out:
4030 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4031 &pdev->resource[bar]);
4032 return -EBUSY;
4033}
4034
4035/**
4036 * pci_request_region - Reserve PCI I/O and memory resource
4037 * @pdev: PCI device whose resources are to be reserved
4038 * @bar: BAR to be reserved
4039 * @res_name: Name to be associated with resource
4040 *
4041 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4042 * being reserved by owner @res_name. Do not access any
4043 * address inside the PCI regions unless this call returns
4044 * successfully.
4045 *
4046 * Returns 0 on success, or %EBUSY on error. A warning
4047 * message is also printed on failure.
4048 */
4049int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4050{
4051 return __pci_request_region(pdev, bar, res_name, exclusive: 0);
4052}
4053EXPORT_SYMBOL(pci_request_region);
4054
4055/**
4056 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4057 * @pdev: PCI device whose resources were previously reserved
4058 * @bars: Bitmask of BARs to be released
4059 *
4060 * Release selected PCI I/O and memory resources previously reserved.
4061 * Call this function only after all use of the PCI regions has ceased.
4062 */
4063void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4064{
4065 int i;
4066
4067 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4068 if (bars & (1 << i))
4069 pci_release_region(pdev, i);
4070}
4071EXPORT_SYMBOL(pci_release_selected_regions);
4072
4073static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4074 const char *res_name, int excl)
4075{
4076 int i;
4077
4078 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4079 if (bars & (1 << i))
4080 if (__pci_request_region(pdev, bar: i, res_name, exclusive: excl))
4081 goto err_out;
4082 return 0;
4083
4084err_out:
4085 while (--i >= 0)
4086 if (bars & (1 << i))
4087 pci_release_region(pdev, i);
4088
4089 return -EBUSY;
4090}
4091
4092
4093/**
4094 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4095 * @pdev: PCI device whose resources are to be reserved
4096 * @bars: Bitmask of BARs to be requested
4097 * @res_name: Name to be associated with resource
4098 */
4099int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4100 const char *res_name)
4101{
4102 return __pci_request_selected_regions(pdev, bars, res_name, excl: 0);
4103}
4104EXPORT_SYMBOL(pci_request_selected_regions);
4105
4106int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4107 const char *res_name)
4108{
4109 return __pci_request_selected_regions(pdev, bars, res_name,
4110 IORESOURCE_EXCLUSIVE);
4111}
4112EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4113
4114/**
4115 * pci_release_regions - Release reserved PCI I/O and memory resources
4116 * @pdev: PCI device whose resources were previously reserved by
4117 * pci_request_regions()
4118 *
4119 * Releases all PCI I/O and memory resources previously reserved by a
4120 * successful call to pci_request_regions(). Call this function only
4121 * after all use of the PCI regions has ceased.
4122 */
4123
4124void pci_release_regions(struct pci_dev *pdev)
4125{
4126 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4127}
4128EXPORT_SYMBOL(pci_release_regions);
4129
4130/**
4131 * pci_request_regions - Reserve PCI I/O and memory resources
4132 * @pdev: PCI device whose resources are to be reserved
4133 * @res_name: Name to be associated with resource.
4134 *
4135 * Mark all PCI regions associated with PCI device @pdev as
4136 * being reserved by owner @res_name. Do not access any
4137 * address inside the PCI regions unless this call returns
4138 * successfully.
4139 *
4140 * Returns 0 on success, or %EBUSY on error. A warning
4141 * message is also printed on failure.
4142 */
4143int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4144{
4145 return pci_request_selected_regions(pdev,
4146 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4147}
4148EXPORT_SYMBOL(pci_request_regions);
4149
4150/**
4151 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4152 * @pdev: PCI device whose resources are to be reserved
4153 * @res_name: Name to be associated with resource.
4154 *
4155 * Mark all PCI regions associated with PCI device @pdev as being reserved
4156 * by owner @res_name. Do not access any address inside the PCI regions
4157 * unless this call returns successfully.
4158 *
4159 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4160 * and the sysfs MMIO access will not be allowed.
4161 *
4162 * Returns 0 on success, or %EBUSY on error. A warning message is also
4163 * printed on failure.
4164 */
4165int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4166{
4167 return pci_request_selected_regions_exclusive(pdev,
4168 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4169}
4170EXPORT_SYMBOL(pci_request_regions_exclusive);
4171
4172/*
4173 * Record the PCI IO range (expressed as CPU physical address + size).
4174 * Return a negative value if an error has occurred, zero otherwise
4175 */
4176int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4177 resource_size_t size)
4178{
4179 int ret = 0;
4180#ifdef PCI_IOBASE
4181 struct logic_pio_hwaddr *range;
4182
4183 if (!size || addr + size < addr)
4184 return -EINVAL;
4185
4186 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4187 if (!range)
4188 return -ENOMEM;
4189
4190 range->fwnode = fwnode;
4191 range->size = size;
4192 range->hw_start = addr;
4193 range->flags = LOGIC_PIO_CPU_MMIO;
4194
4195 ret = logic_pio_register_range(range);
4196 if (ret)
4197 kfree(range);
4198
4199 /* Ignore duplicates due to deferred probing */
4200 if (ret == -EEXIST)
4201 ret = 0;
4202#endif
4203
4204 return ret;
4205}
4206
4207phys_addr_t pci_pio_to_address(unsigned long pio)
4208{
4209#ifdef PCI_IOBASE
4210 if (pio < MMIO_UPPER_LIMIT)
4211 return logic_pio_to_hwaddr(pio);
4212#endif
4213
4214 return (phys_addr_t) OF_BAD_ADDR;
4215}
4216EXPORT_SYMBOL_GPL(pci_pio_to_address);
4217
4218unsigned long __weak pci_address_to_pio(phys_addr_t address)
4219{
4220#ifdef PCI_IOBASE
4221 return logic_pio_trans_cpuaddr(address);
4222#else
4223 if (address > IO_SPACE_LIMIT)
4224 return (unsigned long)-1;
4225
4226 return (unsigned long) address;
4227#endif
4228}
4229
4230/**
4231 * pci_remap_iospace - Remap the memory mapped I/O space
4232 * @res: Resource describing the I/O space
4233 * @phys_addr: physical address of range to be mapped
4234 *
4235 * Remap the memory mapped I/O space described by the @res and the CPU
4236 * physical address @phys_addr into virtual address space. Only
4237 * architectures that have memory mapped IO functions defined (and the
4238 * PCI_IOBASE value defined) should call this function.
4239 */
4240#ifndef pci_remap_iospace
4241int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4242{
4243#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4244 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4245
4246 if (!(res->flags & IORESOURCE_IO))
4247 return -EINVAL;
4248
4249 if (res->end > IO_SPACE_LIMIT)
4250 return -EINVAL;
4251
4252 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4253 pgprot_device(PAGE_KERNEL));
4254#else
4255 /*
4256 * This architecture does not have memory mapped I/O space,
4257 * so this function should never be called
4258 */
4259 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4260 return -ENODEV;
4261#endif
4262}
4263EXPORT_SYMBOL(pci_remap_iospace);
4264#endif
4265
4266/**
4267 * pci_unmap_iospace - Unmap the memory mapped I/O space
4268 * @res: resource to be unmapped
4269 *
4270 * Unmap the CPU virtual address @res from virtual address space. Only
4271 * architectures that have memory mapped IO functions defined (and the
4272 * PCI_IOBASE value defined) should call this function.
4273 */
4274void pci_unmap_iospace(struct resource *res)
4275{
4276#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4277 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4278
4279 vunmap_range(vaddr, vaddr + resource_size(res));
4280#endif
4281}
4282EXPORT_SYMBOL(pci_unmap_iospace);
4283
4284static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4285{
4286 struct resource **res = ptr;
4287
4288 pci_unmap_iospace(*res);
4289}
4290
4291/**
4292 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4293 * @dev: Generic device to remap IO address for
4294 * @res: Resource describing the I/O space
4295 * @phys_addr: physical address of range to be mapped
4296 *
4297 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4298 * detach.
4299 */
4300int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4301 phys_addr_t phys_addr)
4302{
4303 const struct resource **ptr;
4304 int error;
4305
4306 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4307 if (!ptr)
4308 return -ENOMEM;
4309
4310 error = pci_remap_iospace(res, phys_addr);
4311 if (error) {
4312 devres_free(res: ptr);
4313 } else {
4314 *ptr = res;
4315 devres_add(dev, res: ptr);
4316 }
4317
4318 return error;
4319}
4320EXPORT_SYMBOL(devm_pci_remap_iospace);
4321
4322/**
4323 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4324 * @dev: Generic device to remap IO address for
4325 * @offset: Resource address to map
4326 * @size: Size of map
4327 *
4328 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4329 * detach.
4330 */
4331void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4332 resource_size_t offset,
4333 resource_size_t size)
4334{
4335 void __iomem **ptr, *addr;
4336
4337 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4338 if (!ptr)
4339 return NULL;
4340
4341 addr = pci_remap_cfgspace(offset, size);
4342 if (addr) {
4343 *ptr = addr;
4344 devres_add(dev, res: ptr);
4345 } else
4346 devres_free(res: ptr);
4347
4348 return addr;
4349}
4350EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4351
4352/**
4353 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4354 * @dev: generic device to handle the resource for
4355 * @res: configuration space resource to be handled
4356 *
4357 * Checks that a resource is a valid memory region, requests the memory
4358 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4359 * proper PCI configuration space memory attributes are guaranteed.
4360 *
4361 * All operations are managed and will be undone on driver detach.
4362 *
4363 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4364 * on failure. Usage example::
4365 *
4366 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4367 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4368 * if (IS_ERR(base))
4369 * return PTR_ERR(base);
4370 */
4371void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4372 struct resource *res)
4373{
4374 resource_size_t size;
4375 const char *name;
4376 void __iomem *dest_ptr;
4377
4378 BUG_ON(!dev);
4379
4380 if (!res || resource_type(res) != IORESOURCE_MEM) {
4381 dev_err(dev, "invalid resource\n");
4382 return IOMEM_ERR_PTR(-EINVAL);
4383 }
4384
4385 size = resource_size(res);
4386
4387 if (res->name)
4388 name = devm_kasprintf(dev, GFP_KERNEL, fmt: "%s %s", dev_name(dev),
4389 res->name);
4390 else
4391 name = devm_kstrdup(dev, s: dev_name(dev), GFP_KERNEL);
4392 if (!name)
4393 return IOMEM_ERR_PTR(-ENOMEM);
4394
4395 if (!devm_request_mem_region(dev, res->start, size, name)) {
4396 dev_err(dev, "can't request region for resource %pR\n", res);
4397 return IOMEM_ERR_PTR(-EBUSY);
4398 }
4399
4400 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4401 if (!dest_ptr) {
4402 dev_err(dev, "ioremap failed for resource %pR\n", res);
4403 devm_release_mem_region(dev, res->start, size);
4404 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4405 }
4406
4407 return dest_ptr;
4408}
4409EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4410
4411static void __pci_set_master(struct pci_dev *dev, bool enable)
4412{
4413 u16 old_cmd, cmd;
4414
4415 pci_read_config_word(dev, PCI_COMMAND, val: &old_cmd);
4416 if (enable)
4417 cmd = old_cmd | PCI_COMMAND_MASTER;
4418 else
4419 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4420 if (cmd != old_cmd) {
4421 pci_dbg(dev, "%s bus mastering\n",
4422 enable ? "enabling" : "disabling");
4423 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4424 }
4425 dev->is_busmaster = enable;
4426}
4427
4428/**
4429 * pcibios_setup - process "pci=" kernel boot arguments
4430 * @str: string used to pass in "pci=" kernel boot arguments
4431 *
4432 * Process kernel boot arguments. This is the default implementation.
4433 * Architecture specific implementations can override this as necessary.
4434 */
4435char * __weak __init pcibios_setup(char *str)
4436{
4437 return str;
4438}
4439
4440/**
4441 * pcibios_set_master - enable PCI bus-mastering for device dev
4442 * @dev: the PCI device to enable
4443 *
4444 * Enables PCI bus-mastering for the device. This is the default
4445 * implementation. Architecture specific implementations can override
4446 * this if necessary.
4447 */
4448void __weak pcibios_set_master(struct pci_dev *dev)
4449{
4450 u8 lat;
4451
4452 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4453 if (pci_is_pcie(dev))
4454 return;
4455
4456 pci_read_config_byte(dev, PCI_LATENCY_TIMER, val: &lat);
4457 if (lat < 16)
4458 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4459 else if (lat > pcibios_max_latency)
4460 lat = pcibios_max_latency;
4461 else
4462 return;
4463
4464 pci_write_config_byte(dev, PCI_LATENCY_TIMER, val: lat);
4465}
4466
4467/**
4468 * pci_set_master - enables bus-mastering for device dev
4469 * @dev: the PCI device to enable
4470 *
4471 * Enables bus-mastering on the device and calls pcibios_set_master()
4472 * to do the needed arch specific settings.
4473 */
4474void pci_set_master(struct pci_dev *dev)
4475{
4476 __pci_set_master(dev, enable: true);
4477 pcibios_set_master(dev);
4478}
4479EXPORT_SYMBOL(pci_set_master);
4480
4481/**
4482 * pci_clear_master - disables bus-mastering for device dev
4483 * @dev: the PCI device to disable
4484 */
4485void pci_clear_master(struct pci_dev *dev)
4486{
4487 __pci_set_master(dev, enable: false);
4488}
4489EXPORT_SYMBOL(pci_clear_master);
4490
4491/**
4492 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4493 * @dev: the PCI device for which MWI is to be enabled
4494 *
4495 * Helper function for pci_set_mwi.
4496 * Originally copied from drivers/net/acenic.c.
4497 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4498 *
4499 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4500 */
4501int pci_set_cacheline_size(struct pci_dev *dev)
4502{
4503 u8 cacheline_size;
4504
4505 if (!pci_cache_line_size)
4506 return -EINVAL;
4507
4508 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4509 equal to or multiple of the right value. */
4510 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, val: &cacheline_size);
4511 if (cacheline_size >= pci_cache_line_size &&
4512 (cacheline_size % pci_cache_line_size) == 0)
4513 return 0;
4514
4515 /* Write the correct value. */
4516 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, val: pci_cache_line_size);
4517 /* Read it back. */
4518 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, val: &cacheline_size);
4519 if (cacheline_size == pci_cache_line_size)
4520 return 0;
4521
4522 pci_dbg(dev, "cache line size of %d is not supported\n",
4523 pci_cache_line_size << 2);
4524
4525 return -EINVAL;
4526}
4527EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4528
4529/**
4530 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4531 * @dev: the PCI device for which MWI is enabled
4532 *
4533 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4534 *
4535 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4536 */
4537int pci_set_mwi(struct pci_dev *dev)
4538{
4539#ifdef PCI_DISABLE_MWI
4540 return 0;
4541#else
4542 int rc;
4543 u16 cmd;
4544
4545 rc = pci_set_cacheline_size(dev);
4546 if (rc)
4547 return rc;
4548
4549 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4550 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4551 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4552 cmd |= PCI_COMMAND_INVALIDATE;
4553 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4554 }
4555 return 0;
4556#endif
4557}
4558EXPORT_SYMBOL(pci_set_mwi);
4559
4560/**
4561 * pcim_set_mwi - a device-managed pci_set_mwi()
4562 * @dev: the PCI device for which MWI is enabled
4563 *
4564 * Managed pci_set_mwi().
4565 *
4566 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4567 */
4568int pcim_set_mwi(struct pci_dev *dev)
4569{
4570 struct pci_devres *dr;
4571
4572 dr = find_pci_dr(pdev: dev);
4573 if (!dr)
4574 return -ENOMEM;
4575
4576 dr->mwi = 1;
4577 return pci_set_mwi(dev);
4578}
4579EXPORT_SYMBOL(pcim_set_mwi);
4580
4581/**
4582 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4583 * @dev: the PCI device for which MWI is enabled
4584 *
4585 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4586 * Callers are not required to check the return value.
4587 *
4588 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4589 */
4590int pci_try_set_mwi(struct pci_dev *dev)
4591{
4592#ifdef PCI_DISABLE_MWI
4593 return 0;
4594#else
4595 return pci_set_mwi(dev);
4596#endif
4597}
4598EXPORT_SYMBOL(pci_try_set_mwi);
4599
4600/**
4601 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4602 * @dev: the PCI device to disable
4603 *
4604 * Disables PCI Memory-Write-Invalidate transaction on the device
4605 */
4606void pci_clear_mwi(struct pci_dev *dev)
4607{
4608#ifndef PCI_DISABLE_MWI
4609 u16 cmd;
4610
4611 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4612 if (cmd & PCI_COMMAND_INVALIDATE) {
4613 cmd &= ~PCI_COMMAND_INVALIDATE;
4614 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4615 }
4616#endif
4617}
4618EXPORT_SYMBOL(pci_clear_mwi);
4619
4620/**
4621 * pci_disable_parity - disable parity checking for device
4622 * @dev: the PCI device to operate on
4623 *
4624 * Disable parity checking for device @dev
4625 */
4626void pci_disable_parity(struct pci_dev *dev)
4627{
4628 u16 cmd;
4629
4630 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4631 if (cmd & PCI_COMMAND_PARITY) {
4632 cmd &= ~PCI_COMMAND_PARITY;
4633 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4634 }
4635}
4636
4637/**
4638 * pci_intx - enables/disables PCI INTx for device dev
4639 * @pdev: the PCI device to operate on
4640 * @enable: boolean: whether to enable or disable PCI INTx
4641 *
4642 * Enables/disables PCI INTx for device @pdev
4643 */
4644void pci_intx(struct pci_dev *pdev, int enable)
4645{
4646 u16 pci_command, new;
4647
4648 pci_read_config_word(dev: pdev, PCI_COMMAND, val: &pci_command);
4649
4650 if (enable)
4651 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4652 else
4653 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4654
4655 if (new != pci_command) {
4656 struct pci_devres *dr;
4657
4658 pci_write_config_word(dev: pdev, PCI_COMMAND, val: new);
4659
4660 dr = find_pci_dr(pdev);
4661 if (dr && !dr->restore_intx) {
4662 dr->restore_intx = 1;
4663 dr->orig_intx = !enable;
4664 }
4665 }
4666}
4667EXPORT_SYMBOL_GPL(pci_intx);
4668
4669static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4670{
4671 struct pci_bus *bus = dev->bus;
4672 bool mask_updated = true;
4673 u32 cmd_status_dword;
4674 u16 origcmd, newcmd;
4675 unsigned long flags;
4676 bool irq_pending;
4677
4678 /*
4679 * We do a single dword read to retrieve both command and status.
4680 * Document assumptions that make this possible.
4681 */
4682 BUILD_BUG_ON(PCI_COMMAND % 4);
4683 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4684
4685 raw_spin_lock_irqsave(&pci_lock, flags);
4686
4687 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4688
4689 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4690
4691 /*
4692 * Check interrupt status register to see whether our device
4693 * triggered the interrupt (when masking) or the next IRQ is
4694 * already pending (when unmasking).
4695 */
4696 if (mask != irq_pending) {
4697 mask_updated = false;
4698 goto done;
4699 }
4700
4701 origcmd = cmd_status_dword;
4702 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4703 if (mask)
4704 newcmd |= PCI_COMMAND_INTX_DISABLE;
4705 if (newcmd != origcmd)
4706 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4707
4708done:
4709 raw_spin_unlock_irqrestore(&pci_lock, flags);
4710
4711 return mask_updated;
4712}
4713
4714/**
4715 * pci_check_and_mask_intx - mask INTx on pending interrupt
4716 * @dev: the PCI device to operate on
4717 *
4718 * Check if the device dev has its INTx line asserted, mask it and return
4719 * true in that case. False is returned if no interrupt was pending.
4720 */
4721bool pci_check_and_mask_intx(struct pci_dev *dev)
4722{
4723 return pci_check_and_set_intx_mask(dev, mask: true);
4724}
4725EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4726
4727/**
4728 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4729 * @dev: the PCI device to operate on
4730 *
4731 * Check if the device dev has its INTx line asserted, unmask it if not and
4732 * return true. False is returned and the mask remains active if there was
4733 * still an interrupt pending.
4734 */
4735bool pci_check_and_unmask_intx(struct pci_dev *dev)
4736{
4737 return pci_check_and_set_intx_mask(dev, mask: false);
4738}
4739EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4740
4741/**
4742 * pci_wait_for_pending_transaction - wait for pending transaction
4743 * @dev: the PCI device to operate on
4744 *
4745 * Return 0 if transaction is pending 1 otherwise.
4746 */
4747int pci_wait_for_pending_transaction(struct pci_dev *dev)
4748{
4749 if (!pci_is_pcie(dev))
4750 return 1;
4751
4752 return pci_wait_for_pending(dev, pos: pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4753 PCI_EXP_DEVSTA_TRPND);
4754}
4755EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4756
4757/**
4758 * pcie_flr - initiate a PCIe function level reset
4759 * @dev: device to reset
4760 *
4761 * Initiate a function level reset unconditionally on @dev without
4762 * checking any flags and DEVCAP
4763 */
4764int pcie_flr(struct pci_dev *dev)
4765{
4766 if (!pci_wait_for_pending_transaction(dev))
4767 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4768
4769 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4770
4771 if (dev->imm_ready)
4772 return 0;
4773
4774 /*
4775 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4776 * 100ms, but may silently discard requests while the FLR is in
4777 * progress. Wait 100ms before trying to access the device.
4778 */
4779 msleep(msecs: 100);
4780
4781 return pci_dev_wait(dev, reset_type: "FLR", PCIE_RESET_READY_POLL_MS);
4782}
4783EXPORT_SYMBOL_GPL(pcie_flr);
4784
4785/**
4786 * pcie_reset_flr - initiate a PCIe function level reset
4787 * @dev: device to reset
4788 * @probe: if true, return 0 if device can be reset this way
4789 *
4790 * Initiate a function level reset on @dev.
4791 */
4792int pcie_reset_flr(struct pci_dev *dev, bool probe)
4793{
4794 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4795 return -ENOTTY;
4796
4797 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4798 return -ENOTTY;
4799
4800 if (probe)
4801 return 0;
4802
4803 return pcie_flr(dev);
4804}
4805EXPORT_SYMBOL_GPL(pcie_reset_flr);
4806
4807static int pci_af_flr(struct pci_dev *dev, bool probe)
4808{
4809 int pos;
4810 u8 cap;
4811
4812 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4813 if (!pos)
4814 return -ENOTTY;
4815
4816 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4817 return -ENOTTY;
4818
4819 pci_read_config_byte(dev, where: pos + PCI_AF_CAP, val: &cap);
4820 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4821 return -ENOTTY;
4822
4823 if (probe)
4824 return 0;
4825
4826 /*
4827 * Wait for Transaction Pending bit to clear. A word-aligned test
4828 * is used, so we use the control offset rather than status and shift
4829 * the test bit to match.
4830 */
4831 if (!pci_wait_for_pending(dev, pos: pos + PCI_AF_CTRL,
4832 PCI_AF_STATUS_TP << 8))
4833 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4834
4835 pci_write_config_byte(dev, where: pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4836
4837 if (dev->imm_ready)
4838 return 0;
4839
4840 /*
4841 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4842 * updated 27 July 2006; a device must complete an FLR within
4843 * 100ms, but may silently discard requests while the FLR is in
4844 * progress. Wait 100ms before trying to access the device.
4845 */
4846 msleep(msecs: 100);
4847
4848 return pci_dev_wait(dev, reset_type: "AF_FLR", PCIE_RESET_READY_POLL_MS);
4849}
4850
4851/**
4852 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4853 * @dev: Device to reset.
4854 * @probe: if true, return 0 if the device can be reset this way.
4855 *
4856 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4857 * unset, it will be reinitialized internally when going from PCI_D3hot to
4858 * PCI_D0. If that's the case and the device is not in a low-power state
4859 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4860 *
4861 * NOTE: This causes the caller to sleep for twice the device power transition
4862 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4863 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4864 * Moreover, only devices in D0 can be reset by this function.
4865 */
4866static int pci_pm_reset(struct pci_dev *dev, bool probe)
4867{
4868 u16 csr;
4869
4870 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4871 return -ENOTTY;
4872
4873 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &csr);
4874 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4875 return -ENOTTY;
4876
4877 if (probe)
4878 return 0;
4879
4880 if (dev->current_state != PCI_D0)
4881 return -EINVAL;
4882
4883 csr &= ~PCI_PM_CTRL_STATE_MASK;
4884 csr |= PCI_D3hot;
4885 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: csr);
4886 pci_dev_d3_sleep(dev);
4887
4888 csr &= ~PCI_PM_CTRL_STATE_MASK;
4889 csr |= PCI_D0;
4890 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: csr);
4891 pci_dev_d3_sleep(dev);
4892
4893 return pci_dev_wait(dev, reset_type: "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4894}
4895
4896/**
4897 * pcie_wait_for_link_status - Wait for link status change
4898 * @pdev: Device whose link to wait for.
4899 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4900 * @active: Waiting for active or inactive?
4901 *
4902 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4903 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4904 */
4905static int pcie_wait_for_link_status(struct pci_dev *pdev,
4906 bool use_lt, bool active)
4907{
4908 u16 lnksta_mask, lnksta_match;
4909 unsigned long end_jiffies;
4910 u16 lnksta;
4911
4912 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4913 lnksta_match = active ? lnksta_mask : 0;
4914
4915 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4916 do {
4917 pcie_capability_read_word(dev: pdev, PCI_EXP_LNKSTA, val: &lnksta);
4918 if ((lnksta & lnksta_mask) == lnksta_match)
4919 return 0;
4920 msleep(msecs: 1);
4921 } while (time_before(jiffies, end_jiffies));
4922
4923 return -ETIMEDOUT;
4924}
4925
4926/**
4927 * pcie_retrain_link - Request a link retrain and wait for it to complete
4928 * @pdev: Device whose link to retrain.
4929 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4930 *
4931 * Retrain completion status is retrieved from the Link Status Register
4932 * according to @use_lt. It is not verified whether the use of the DLLLA
4933 * bit is valid.
4934 *
4935 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4936 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4937 */
4938int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4939{
4940 int rc;
4941
4942 /*
4943 * Ensure the updated LNKCTL parameters are used during link
4944 * training by checking that there is no ongoing link training to
4945 * avoid LTSSM race as recommended in Implementation Note at the
4946 * end of PCIe r6.0.1 sec 7.5.3.7.
4947 */
4948 rc = pcie_wait_for_link_status(pdev, use_lt, active: !use_lt);
4949 if (rc)
4950 return rc;
4951
4952 pcie_capability_set_word(dev: pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4953 if (pdev->clear_retrain_link) {
4954 /*
4955 * Due to an erratum in some devices the Retrain Link bit
4956 * needs to be cleared again manually to allow the link
4957 * training to succeed.
4958 */
4959 pcie_capability_clear_word(dev: pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4960 }
4961
4962 return pcie_wait_for_link_status(pdev, use_lt, active: !use_lt);
4963}
4964
4965/**
4966 * pcie_wait_for_link_delay - Wait until link is active or inactive
4967 * @pdev: Bridge device
4968 * @active: waiting for active or inactive?
4969 * @delay: Delay to wait after link has become active (in ms)
4970 *
4971 * Use this to wait till link becomes active or inactive.
4972 */
4973static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4974 int delay)
4975{
4976 int rc;
4977
4978 /*
4979 * Some controllers might not implement link active reporting. In this
4980 * case, we wait for 1000 ms + any delay requested by the caller.
4981 */
4982 if (!pdev->link_active_reporting) {
4983 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4984 return true;
4985 }
4986
4987 /*
4988 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4989 * after which we should expect an link active if the reset was
4990 * successful. If so, software must wait a minimum 100ms before sending
4991 * configuration requests to devices downstream this port.
4992 *
4993 * If the link fails to activate, either the device was physically
4994 * removed or the link is permanently failed.
4995 */
4996 if (active)
4997 msleep(msecs: 20);
4998 rc = pcie_wait_for_link_status(pdev, use_lt: false, active);
4999 if (active) {
5000 if (rc)
5001 rc = pcie_failed_link_retrain(dev: pdev);
5002 if (rc)
5003 return false;
5004
5005 msleep(msecs: delay);
5006 return true;
5007 }
5008
5009 if (rc)
5010 return false;
5011
5012 return true;
5013}
5014
5015/**
5016 * pcie_wait_for_link - Wait until link is active or inactive
5017 * @pdev: Bridge device
5018 * @active: waiting for active or inactive?
5019 *
5020 * Use this to wait till link becomes active or inactive.
5021 */
5022bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5023{
5024 return pcie_wait_for_link_delay(pdev, active, delay: 100);
5025}
5026
5027/*
5028 * Find maximum D3cold delay required by all the devices on the bus. The
5029 * spec says 100 ms, but firmware can lower it and we allow drivers to
5030 * increase it as well.
5031 *
5032 * Called with @pci_bus_sem locked for reading.
5033 */
5034static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5035{
5036 const struct pci_dev *pdev;
5037 int min_delay = 100;
5038 int max_delay = 0;
5039
5040 list_for_each_entry(pdev, &bus->devices, bus_list) {
5041 if (pdev->d3cold_delay < min_delay)
5042 min_delay = pdev->d3cold_delay;
5043 if (pdev->d3cold_delay > max_delay)
5044 max_delay = pdev->d3cold_delay;
5045 }
5046
5047 return max(min_delay, max_delay);
5048}
5049
5050/**
5051 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5052 * @dev: PCI bridge
5053 * @reset_type: reset type in human-readable form
5054 *
5055 * Handle necessary delays before access to the devices on the secondary
5056 * side of the bridge are permitted after D3cold to D0 transition
5057 * or Conventional Reset.
5058 *
5059 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5060 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5061 * 4.3.2.
5062 *
5063 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5064 * failed to become accessible.
5065 */
5066int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5067{
5068 struct pci_dev *child;
5069 int delay;
5070
5071 if (pci_dev_is_disconnected(dev))
5072 return 0;
5073
5074 if (!pci_is_bridge(dev))
5075 return 0;
5076
5077 down_read(sem: &pci_bus_sem);
5078
5079 /*
5080 * We only deal with devices that are present currently on the bus.
5081 * For any hot-added devices the access delay is handled in pciehp
5082 * board_added(). In case of ACPI hotplug the firmware is expected
5083 * to configure the devices before OS is notified.
5084 */
5085 if (!dev->subordinate || list_empty(head: &dev->subordinate->devices)) {
5086 up_read(sem: &pci_bus_sem);
5087 return 0;
5088 }
5089
5090 /* Take d3cold_delay requirements into account */
5091 delay = pci_bus_max_d3cold_delay(bus: dev->subordinate);
5092 if (!delay) {
5093 up_read(sem: &pci_bus_sem);
5094 return 0;
5095 }
5096
5097 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5098 bus_list);
5099 up_read(sem: &pci_bus_sem);
5100
5101 /*
5102 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5103 * accessing the device after reset (that is 1000 ms + 100 ms).
5104 */
5105 if (!pci_is_pcie(dev)) {
5106 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5107 msleep(msecs: 1000 + delay);
5108 return 0;
5109 }
5110
5111 /*
5112 * For PCIe downstream and root ports that do not support speeds
5113 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5114 * speeds (gen3) we need to wait first for the data link layer to
5115 * become active.
5116 *
5117 * However, 100 ms is the minimum and the PCIe spec says the
5118 * software must allow at least 1s before it can determine that the
5119 * device that did not respond is a broken device. Also device can
5120 * take longer than that to respond if it indicates so through Request
5121 * Retry Status completions.
5122 *
5123 * Therefore we wait for 100 ms and check for the device presence
5124 * until the timeout expires.
5125 */
5126 if (!pcie_downstream_port(dev))
5127 return 0;
5128
5129 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5130 u16 status;
5131
5132 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5133 msleep(msecs: delay);
5134
5135 if (!pci_dev_wait(dev: child, reset_type, PCI_RESET_WAIT - delay))
5136 return 0;
5137
5138 /*
5139 * If the port supports active link reporting we now check
5140 * whether the link is active and if not bail out early with
5141 * the assumption that the device is not present anymore.
5142 */
5143 if (!dev->link_active_reporting)
5144 return -ENOTTY;
5145
5146 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, val: &status);
5147 if (!(status & PCI_EXP_LNKSTA_DLLLA))
5148 return -ENOTTY;
5149
5150 return pci_dev_wait(dev: child, reset_type,
5151 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5152 }
5153
5154 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5155 delay);
5156 if (!pcie_wait_for_link_delay(pdev: dev, active: true, delay)) {
5157 /* Did not train, no need to wait any further */
5158 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5159 return -ENOTTY;
5160 }
5161
5162 return pci_dev_wait(dev: child, reset_type,
5163 PCIE_RESET_READY_POLL_MS - delay);
5164}
5165
5166void pci_reset_secondary_bus(struct pci_dev *dev)
5167{
5168 u16 ctrl;
5169
5170 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, val: &ctrl);
5171 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5172 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, val: ctrl);
5173
5174 /*
5175 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5176 * this to 2ms to ensure that we meet the minimum requirement.
5177 */
5178 msleep(msecs: 2);
5179
5180 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5181 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, val: ctrl);
5182}
5183
5184void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5185{
5186 pci_reset_secondary_bus(dev);
5187}
5188
5189/**
5190 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5191 * @dev: Bridge device
5192 *
5193 * Use the bridge control register to assert reset on the secondary bus.
5194 * Devices on the secondary bus are left in power-on state.
5195 */
5196int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5197{
5198 pcibios_reset_secondary_bus(dev);
5199
5200 return pci_bridge_wait_for_secondary_bus(dev, reset_type: "bus reset");
5201}
5202EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5203
5204static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5205{
5206 struct pci_dev *pdev;
5207
5208 if (pci_is_root_bus(pbus: dev->bus) || dev->subordinate ||
5209 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5210 return -ENOTTY;
5211
5212 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5213 if (pdev != dev)
5214 return -ENOTTY;
5215
5216 if (probe)
5217 return 0;
5218
5219 return pci_bridge_secondary_bus_reset(dev->bus->self);
5220}
5221
5222static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5223{
5224 int rc = -ENOTTY;
5225
5226 if (!hotplug || !try_module_get(module: hotplug->owner))
5227 return rc;
5228
5229 if (hotplug->ops->reset_slot)
5230 rc = hotplug->ops->reset_slot(hotplug, probe);
5231
5232 module_put(module: hotplug->owner);
5233
5234 return rc;
5235}
5236
5237static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5238{
5239 if (dev->multifunction || dev->subordinate || !dev->slot ||
5240 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5241 return -ENOTTY;
5242
5243 return pci_reset_hotplug_slot(hotplug: dev->slot->hotplug, probe);
5244}
5245
5246static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5247{
5248 int rc;
5249
5250 rc = pci_dev_reset_slot_function(dev, probe);
5251 if (rc != -ENOTTY)
5252 return rc;
5253 return pci_parent_bus_reset(dev, probe);
5254}
5255
5256void pci_dev_lock(struct pci_dev *dev)
5257{
5258 /* block PM suspend, driver probe, etc. */
5259 device_lock(dev: &dev->dev);
5260 pci_cfg_access_lock(dev);
5261}
5262EXPORT_SYMBOL_GPL(pci_dev_lock);
5263
5264/* Return 1 on successful lock, 0 on contention */
5265int pci_dev_trylock(struct pci_dev *dev)
5266{
5267 if (device_trylock(dev: &dev->dev)) {
5268 if (pci_cfg_access_trylock(dev))
5269 return 1;
5270 device_unlock(dev: &dev->dev);
5271 }
5272
5273 return 0;
5274}
5275EXPORT_SYMBOL_GPL(pci_dev_trylock);
5276
5277void pci_dev_unlock(struct pci_dev *dev)
5278{
5279 pci_cfg_access_unlock(dev);
5280 device_unlock(dev: &dev->dev);
5281}
5282EXPORT_SYMBOL_GPL(pci_dev_unlock);
5283
5284static void pci_dev_save_and_disable(struct pci_dev *dev)
5285{
5286 const struct pci_error_handlers *err_handler =
5287 dev->driver ? dev->driver->err_handler : NULL;
5288
5289 /*
5290 * dev->driver->err_handler->reset_prepare() is protected against
5291 * races with ->remove() by the device lock, which must be held by
5292 * the caller.
5293 */
5294 if (err_handler && err_handler->reset_prepare)
5295 err_handler->reset_prepare(dev);
5296
5297 /*
5298 * Wake-up device prior to save. PM registers default to D0 after
5299 * reset and a simple register restore doesn't reliably return
5300 * to a non-D0 state anyway.
5301 */
5302 pci_set_power_state(dev, PCI_D0);
5303
5304 pci_save_state(dev);
5305 /*
5306 * Disable the device by clearing the Command register, except for
5307 * INTx-disable which is set. This not only disables MMIO and I/O port
5308 * BARs, but also prevents the device from being Bus Master, preventing
5309 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5310 * compliant devices, INTx-disable prevents legacy interrupts.
5311 */
5312 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5313}
5314
5315static void pci_dev_restore(struct pci_dev *dev)
5316{
5317 const struct pci_error_handlers *err_handler =
5318 dev->driver ? dev->driver->err_handler : NULL;
5319
5320 pci_restore_state(dev);
5321
5322 /*
5323 * dev->driver->err_handler->reset_done() is protected against
5324 * races with ->remove() by the device lock, which must be held by
5325 * the caller.
5326 */
5327 if (err_handler && err_handler->reset_done)
5328 err_handler->reset_done(dev);
5329}
5330
5331/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5332static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5333 { },
5334 { pci_dev_specific_reset, .name = "device_specific" },
5335 { pci_dev_acpi_reset, .name = "acpi" },
5336 { pcie_reset_flr, .name = "flr" },
5337 { pci_af_flr, .name = "af_flr" },
5338 { pci_pm_reset, .name = "pm" },
5339 { pci_reset_bus_function, .name = "bus" },
5340};
5341
5342static ssize_t reset_method_show(struct device *dev,
5343 struct device_attribute *attr, char *buf)
5344{
5345 struct pci_dev *pdev = to_pci_dev(dev);
5346 ssize_t len = 0;
5347 int i, m;
5348
5349 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5350 m = pdev->reset_methods[i];
5351 if (!m)
5352 break;
5353
5354 len += sysfs_emit_at(buf, at: len, fmt: "%s%s", len ? " " : "",
5355 pci_reset_fn_methods[m].name);
5356 }
5357
5358 if (len)
5359 len += sysfs_emit_at(buf, at: len, fmt: "\n");
5360
5361 return len;
5362}
5363
5364static int reset_method_lookup(const char *name)
5365{
5366 int m;
5367
5368 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5369 if (sysfs_streq(s1: name, s2: pci_reset_fn_methods[m].name))
5370 return m;
5371 }
5372
5373 return 0; /* not found */
5374}
5375
5376static ssize_t reset_method_store(struct device *dev,
5377 struct device_attribute *attr,
5378 const char *buf, size_t count)
5379{
5380 struct pci_dev *pdev = to_pci_dev(dev);
5381 char *options, *name;
5382 int m, n;
5383 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5384
5385 if (sysfs_streq(s1: buf, s2: "")) {
5386 pdev->reset_methods[0] = 0;
5387 pci_warn(pdev, "All device reset methods disabled by user");
5388 return count;
5389 }
5390
5391 if (sysfs_streq(s1: buf, s2: "default")) {
5392 pci_init_reset_methods(dev: pdev);
5393 return count;
5394 }
5395
5396 options = kstrndup(s: buf, len: count, GFP_KERNEL);
5397 if (!options)
5398 return -ENOMEM;
5399
5400 n = 0;
5401 while ((name = strsep(&options, " ")) != NULL) {
5402 if (sysfs_streq(s1: name, s2: ""))
5403 continue;
5404
5405 name = strim(name);
5406
5407 m = reset_method_lookup(name);
5408 if (!m) {
5409 pci_err(pdev, "Invalid reset method '%s'", name);
5410 goto error;
5411 }
5412
5413 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5414 pci_err(pdev, "Unsupported reset method '%s'", name);
5415 goto error;
5416 }
5417
5418 if (n == PCI_NUM_RESET_METHODS - 1) {
5419 pci_err(pdev, "Too many reset methods\n");
5420 goto error;
5421 }
5422
5423 reset_methods[n++] = m;
5424 }
5425
5426 reset_methods[n] = 0;
5427
5428 /* Warn if dev-specific supported but not highest priority */
5429 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5430 reset_methods[0] != 1)
5431 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5432 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5433 kfree(objp: options);
5434 return count;
5435
5436error:
5437 /* Leave previous methods unchanged */
5438 kfree(objp: options);
5439 return -EINVAL;
5440}
5441static DEVICE_ATTR_RW(reset_method);
5442
5443static struct attribute *pci_dev_reset_method_attrs[] = {
5444 &dev_attr_reset_method.attr,
5445 NULL,
5446};
5447
5448static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5449 struct attribute *a, int n)
5450{
5451 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5452
5453 if (!pci_reset_supported(dev: pdev))
5454 return 0;
5455
5456 return a->mode;
5457}
5458
5459const struct attribute_group pci_dev_reset_method_attr_group = {
5460 .attrs = pci_dev_reset_method_attrs,
5461 .is_visible = pci_dev_reset_method_attr_is_visible,
5462};
5463
5464/**
5465 * __pci_reset_function_locked - reset a PCI device function while holding
5466 * the @dev mutex lock.
5467 * @dev: PCI device to reset
5468 *
5469 * Some devices allow an individual function to be reset without affecting
5470 * other functions in the same device. The PCI device must be responsive
5471 * to PCI config space in order to use this function.
5472 *
5473 * The device function is presumed to be unused and the caller is holding
5474 * the device mutex lock when this function is called.
5475 *
5476 * Resetting the device will make the contents of PCI configuration space
5477 * random, so any caller of this must be prepared to reinitialise the
5478 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5479 * etc.
5480 *
5481 * Returns 0 if the device function was successfully reset or negative if the
5482 * device doesn't support resetting a single function.
5483 */
5484int __pci_reset_function_locked(struct pci_dev *dev)
5485{
5486 int i, m, rc;
5487
5488 might_sleep();
5489
5490 /*
5491 * A reset method returns -ENOTTY if it doesn't support this device and
5492 * we should try the next method.
5493 *
5494 * If it returns 0 (success), we're finished. If it returns any other
5495 * error, we're also finished: this indicates that further reset
5496 * mechanisms might be broken on the device.
5497 */
5498 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5499 m = dev->reset_methods[i];
5500 if (!m)
5501 return -ENOTTY;
5502
5503 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5504 if (!rc)
5505 return 0;
5506 if (rc != -ENOTTY)
5507 return rc;
5508 }
5509
5510 return -ENOTTY;
5511}
5512EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5513
5514/**
5515 * pci_init_reset_methods - check whether device can be safely reset
5516 * and store supported reset mechanisms.
5517 * @dev: PCI device to check for reset mechanisms
5518 *
5519 * Some devices allow an individual function to be reset without affecting
5520 * other functions in the same device. The PCI device must be in D0-D3hot
5521 * state.
5522 *
5523 * Stores reset mechanisms supported by device in reset_methods byte array
5524 * which is a member of struct pci_dev.
5525 */
5526void pci_init_reset_methods(struct pci_dev *dev)
5527{
5528 int m, i, rc;
5529
5530 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5531
5532 might_sleep();
5533
5534 i = 0;
5535 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5536 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5537 if (!rc)
5538 dev->reset_methods[i++] = m;
5539 else if (rc != -ENOTTY)
5540 break;
5541 }
5542
5543 dev->reset_methods[i] = 0;
5544}
5545
5546/**
5547 * pci_reset_function - quiesce and reset a PCI device function
5548 * @dev: PCI device to reset
5549 *
5550 * Some devices allow an individual function to be reset without affecting
5551 * other functions in the same device. The PCI device must be responsive
5552 * to PCI config space in order to use this function.
5553 *
5554 * This function does not just reset the PCI portion of a device, but
5555 * clears all the state associated with the device. This function differs
5556 * from __pci_reset_function_locked() in that it saves and restores device state
5557 * over the reset and takes the PCI device lock.
5558 *
5559 * Returns 0 if the device function was successfully reset or negative if the
5560 * device doesn't support resetting a single function.
5561 */
5562int pci_reset_function(struct pci_dev *dev)
5563{
5564 int rc;
5565
5566 if (!pci_reset_supported(dev))
5567 return -ENOTTY;
5568
5569 pci_dev_lock(dev);
5570 pci_dev_save_and_disable(dev);
5571
5572 rc = __pci_reset_function_locked(dev);
5573
5574 pci_dev_restore(dev);
5575 pci_dev_unlock(dev);
5576
5577 return rc;
5578}
5579EXPORT_SYMBOL_GPL(pci_reset_function);
5580
5581/**
5582 * pci_reset_function_locked - quiesce and reset a PCI device function
5583 * @dev: PCI device to reset
5584 *
5585 * Some devices allow an individual function to be reset without affecting
5586 * other functions in the same device. The PCI device must be responsive
5587 * to PCI config space in order to use this function.
5588 *
5589 * This function does not just reset the PCI portion of a device, but
5590 * clears all the state associated with the device. This function differs
5591 * from __pci_reset_function_locked() in that it saves and restores device state
5592 * over the reset. It also differs from pci_reset_function() in that it
5593 * requires the PCI device lock to be held.
5594 *
5595 * Returns 0 if the device function was successfully reset or negative if the
5596 * device doesn't support resetting a single function.
5597 */
5598int pci_reset_function_locked(struct pci_dev *dev)
5599{
5600 int rc;
5601
5602 if (!pci_reset_supported(dev))
5603 return -ENOTTY;
5604
5605 pci_dev_save_and_disable(dev);
5606
5607 rc = __pci_reset_function_locked(dev);
5608
5609 pci_dev_restore(dev);
5610
5611 return rc;
5612}
5613EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5614
5615/**
5616 * pci_try_reset_function - quiesce and reset a PCI device function
5617 * @dev: PCI device to reset
5618 *
5619 * Same as above, except return -EAGAIN if unable to lock device.
5620 */
5621int pci_try_reset_function(struct pci_dev *dev)
5622{
5623 int rc;
5624
5625 if (!pci_reset_supported(dev))
5626 return -ENOTTY;
5627
5628 if (!pci_dev_trylock(dev))
5629 return -EAGAIN;
5630
5631 pci_dev_save_and_disable(dev);
5632 rc = __pci_reset_function_locked(dev);
5633 pci_dev_restore(dev);
5634 pci_dev_unlock(dev);
5635
5636 return rc;
5637}
5638EXPORT_SYMBOL_GPL(pci_try_reset_function);
5639
5640/* Do any devices on or below this bus prevent a bus reset? */
5641static bool pci_bus_resettable(struct pci_bus *bus)
5642{
5643 struct pci_dev *dev;
5644
5645
5646 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5647 return false;
5648
5649 list_for_each_entry(dev, &bus->devices, bus_list) {
5650 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5651 (dev->subordinate && !pci_bus_resettable(bus: dev->subordinate)))
5652 return false;
5653 }
5654
5655 return true;
5656}
5657
5658/* Lock devices from the top of the tree down */
5659static void pci_bus_lock(struct pci_bus *bus)
5660{
5661 struct pci_dev *dev;
5662
5663 list_for_each_entry(dev, &bus->devices, bus_list) {
5664 pci_dev_lock(dev);
5665 if (dev->subordinate)
5666 pci_bus_lock(bus: dev->subordinate);
5667 }
5668}
5669
5670/* Unlock devices from the bottom of the tree up */
5671static void pci_bus_unlock(struct pci_bus *bus)
5672{
5673 struct pci_dev *dev;
5674
5675 list_for_each_entry(dev, &bus->devices, bus_list) {
5676 if (dev->subordinate)
5677 pci_bus_unlock(bus: dev->subordinate);
5678 pci_dev_unlock(dev);
5679 }
5680}
5681
5682/* Return 1 on successful lock, 0 on contention */
5683static int pci_bus_trylock(struct pci_bus *bus)
5684{
5685 struct pci_dev *dev;
5686
5687 list_for_each_entry(dev, &bus->devices, bus_list) {
5688 if (!pci_dev_trylock(dev))
5689 goto unlock;
5690 if (dev->subordinate) {
5691 if (!pci_bus_trylock(bus: dev->subordinate)) {
5692 pci_dev_unlock(dev);
5693 goto unlock;
5694 }
5695 }
5696 }
5697 return 1;
5698
5699unlock:
5700 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5701 if (dev->subordinate)
5702 pci_bus_unlock(bus: dev->subordinate);
5703 pci_dev_unlock(dev);
5704 }
5705 return 0;
5706}
5707
5708/* Do any devices on or below this slot prevent a bus reset? */
5709static bool pci_slot_resettable(struct pci_slot *slot)
5710{
5711 struct pci_dev *dev;
5712
5713 if (slot->bus->self &&
5714 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5715 return false;
5716
5717 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5718 if (!dev->slot || dev->slot != slot)
5719 continue;
5720 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5721 (dev->subordinate && !pci_bus_resettable(bus: dev->subordinate)))
5722 return false;
5723 }
5724
5725 return true;
5726}
5727
5728/* Lock devices from the top of the tree down */
5729static void pci_slot_lock(struct pci_slot *slot)
5730{
5731 struct pci_dev *dev;
5732
5733 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5734 if (!dev->slot || dev->slot != slot)
5735 continue;
5736 pci_dev_lock(dev);
5737 if (dev->subordinate)
5738 pci_bus_lock(bus: dev->subordinate);
5739 }
5740}
5741
5742/* Unlock devices from the bottom of the tree up */
5743static void pci_slot_unlock(struct pci_slot *slot)
5744{
5745 struct pci_dev *dev;
5746
5747 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5748 if (!dev->slot || dev->slot != slot)
5749 continue;
5750 if (dev->subordinate)
5751 pci_bus_unlock(bus: dev->subordinate);
5752 pci_dev_unlock(dev);
5753 }
5754}
5755
5756/* Return 1 on successful lock, 0 on contention */
5757static int pci_slot_trylock(struct pci_slot *slot)
5758{
5759 struct pci_dev *dev;
5760
5761 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5762 if (!dev->slot || dev->slot != slot)
5763 continue;
5764 if (!pci_dev_trylock(dev))
5765 goto unlock;
5766 if (dev->subordinate) {
5767 if (!pci_bus_trylock(bus: dev->subordinate)) {
5768 pci_dev_unlock(dev);
5769 goto unlock;
5770 }
5771 }
5772 }
5773 return 1;
5774
5775unlock:
5776 list_for_each_entry_continue_reverse(dev,
5777 &slot->bus->devices, bus_list) {
5778 if (!dev->slot || dev->slot != slot)
5779 continue;
5780 if (dev->subordinate)
5781 pci_bus_unlock(bus: dev->subordinate);
5782 pci_dev_unlock(dev);
5783 }
5784 return 0;
5785}
5786
5787/*
5788 * Save and disable devices from the top of the tree down while holding
5789 * the @dev mutex lock for the entire tree.
5790 */
5791static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5792{
5793 struct pci_dev *dev;
5794
5795 list_for_each_entry(dev, &bus->devices, bus_list) {
5796 pci_dev_save_and_disable(dev);
5797 if (dev->subordinate)
5798 pci_bus_save_and_disable_locked(bus: dev->subordinate);
5799 }
5800}
5801
5802/*
5803 * Restore devices from top of the tree down while holding @dev mutex lock
5804 * for the entire tree. Parent bridges need to be restored before we can
5805 * get to subordinate devices.
5806 */
5807static void pci_bus_restore_locked(struct pci_bus *bus)
5808{
5809 struct pci_dev *dev;
5810
5811 list_for_each_entry(dev, &bus->devices, bus_list) {
5812 pci_dev_restore(dev);
5813 if (dev->subordinate)
5814 pci_bus_restore_locked(bus: dev->subordinate);
5815 }
5816}
5817
5818/*
5819 * Save and disable devices from the top of the tree down while holding
5820 * the @dev mutex lock for the entire tree.
5821 */
5822static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5823{
5824 struct pci_dev *dev;
5825
5826 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5827 if (!dev->slot || dev->slot != slot)
5828 continue;
5829 pci_dev_save_and_disable(dev);
5830 if (dev->subordinate)
5831 pci_bus_save_and_disable_locked(bus: dev->subordinate);
5832 }
5833}
5834
5835/*
5836 * Restore devices from top of the tree down while holding @dev mutex lock
5837 * for the entire tree. Parent bridges need to be restored before we can
5838 * get to subordinate devices.
5839 */
5840static void pci_slot_restore_locked(struct pci_slot *slot)
5841{
5842 struct pci_dev *dev;
5843
5844 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5845 if (!dev->slot || dev->slot != slot)
5846 continue;
5847 pci_dev_restore(dev);
5848 if (dev->subordinate)
5849 pci_bus_restore_locked(bus: dev->subordinate);
5850 }
5851}
5852
5853static int pci_slot_reset(struct pci_slot *slot, bool probe)
5854{
5855 int rc;
5856
5857 if (!slot || !pci_slot_resettable(slot))
5858 return -ENOTTY;
5859
5860 if (!probe)
5861 pci_slot_lock(slot);
5862
5863 might_sleep();
5864
5865 rc = pci_reset_hotplug_slot(hotplug: slot->hotplug, probe);
5866
5867 if (!probe)
5868 pci_slot_unlock(slot);
5869
5870 return rc;
5871}
5872
5873/**
5874 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5875 * @slot: PCI slot to probe
5876 *
5877 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5878 */
5879int pci_probe_reset_slot(struct pci_slot *slot)
5880{
5881 return pci_slot_reset(slot, PCI_RESET_PROBE);
5882}
5883EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5884
5885/**
5886 * __pci_reset_slot - Try to reset a PCI slot
5887 * @slot: PCI slot to reset
5888 *
5889 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5890 * independent of other slots. For instance, some slots may support slot power
5891 * control. In the case of a 1:1 bus to slot architecture, this function may
5892 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5893 * Generally a slot reset should be attempted before a bus reset. All of the
5894 * function of the slot and any subordinate buses behind the slot are reset
5895 * through this function. PCI config space of all devices in the slot and
5896 * behind the slot is saved before and restored after reset.
5897 *
5898 * Same as above except return -EAGAIN if the slot cannot be locked
5899 */
5900static int __pci_reset_slot(struct pci_slot *slot)
5901{
5902 int rc;
5903
5904 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5905 if (rc)
5906 return rc;
5907
5908 if (pci_slot_trylock(slot)) {
5909 pci_slot_save_and_disable_locked(slot);
5910 might_sleep();
5911 rc = pci_reset_hotplug_slot(hotplug: slot->hotplug, PCI_RESET_DO_RESET);
5912 pci_slot_restore_locked(slot);
5913 pci_slot_unlock(slot);
5914 } else
5915 rc = -EAGAIN;
5916
5917 return rc;
5918}
5919
5920static int pci_bus_reset(struct pci_bus *bus, bool probe)
5921{
5922 int ret;
5923
5924 if (!bus->self || !pci_bus_resettable(bus))
5925 return -ENOTTY;
5926
5927 if (probe)
5928 return 0;
5929
5930 pci_bus_lock(bus);
5931
5932 might_sleep();
5933
5934 ret = pci_bridge_secondary_bus_reset(bus->self);
5935
5936 pci_bus_unlock(bus);
5937
5938 return ret;
5939}
5940
5941/**
5942 * pci_bus_error_reset - reset the bridge's subordinate bus
5943 * @bridge: The parent device that connects to the bus to reset
5944 *
5945 * This function will first try to reset the slots on this bus if the method is
5946 * available. If slot reset fails or is not available, this will fall back to a
5947 * secondary bus reset.
5948 */
5949int pci_bus_error_reset(struct pci_dev *bridge)
5950{
5951 struct pci_bus *bus = bridge->subordinate;
5952 struct pci_slot *slot;
5953
5954 if (!bus)
5955 return -ENOTTY;
5956
5957 mutex_lock(&pci_slot_mutex);
5958 if (list_empty(head: &bus->slots))
5959 goto bus_reset;
5960
5961 list_for_each_entry(slot, &bus->slots, list)
5962 if (pci_probe_reset_slot(slot))
5963 goto bus_reset;
5964
5965 list_for_each_entry(slot, &bus->slots, list)
5966 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5967 goto bus_reset;
5968
5969 mutex_unlock(lock: &pci_slot_mutex);
5970 return 0;
5971bus_reset:
5972 mutex_unlock(lock: &pci_slot_mutex);
5973 return pci_bus_reset(bus: bridge->subordinate, PCI_RESET_DO_RESET);
5974}
5975
5976/**
5977 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5978 * @bus: PCI bus to probe
5979 *
5980 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5981 */
5982int pci_probe_reset_bus(struct pci_bus *bus)
5983{
5984 return pci_bus_reset(bus, PCI_RESET_PROBE);
5985}
5986EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5987
5988/**
5989 * __pci_reset_bus - Try to reset a PCI bus
5990 * @bus: top level PCI bus to reset
5991 *
5992 * Same as above except return -EAGAIN if the bus cannot be locked
5993 */
5994static int __pci_reset_bus(struct pci_bus *bus)
5995{
5996 int rc;
5997
5998 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5999 if (rc)
6000 return rc;
6001
6002 if (pci_bus_trylock(bus)) {
6003 pci_bus_save_and_disable_locked(bus);
6004 might_sleep();
6005 rc = pci_bridge_secondary_bus_reset(bus->self);
6006 pci_bus_restore_locked(bus);
6007 pci_bus_unlock(bus);
6008 } else
6009 rc = -EAGAIN;
6010
6011 return rc;
6012}
6013
6014/**
6015 * pci_reset_bus - Try to reset a PCI bus
6016 * @pdev: top level PCI device to reset via slot/bus
6017 *
6018 * Same as above except return -EAGAIN if the bus cannot be locked
6019 */
6020int pci_reset_bus(struct pci_dev *pdev)
6021{
6022 return (!pci_probe_reset_slot(pdev->slot)) ?
6023 __pci_reset_slot(slot: pdev->slot) : __pci_reset_bus(bus: pdev->bus);
6024}
6025EXPORT_SYMBOL_GPL(pci_reset_bus);
6026
6027/**
6028 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6029 * @dev: PCI device to query
6030 *
6031 * Returns mmrbc: maximum designed memory read count in bytes or
6032 * appropriate error value.
6033 */
6034int pcix_get_max_mmrbc(struct pci_dev *dev)
6035{
6036 int cap;
6037 u32 stat;
6038
6039 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6040 if (!cap)
6041 return -EINVAL;
6042
6043 if (pci_read_config_dword(dev, where: cap + PCI_X_STATUS, val: &stat))
6044 return -EINVAL;
6045
6046 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6047}
6048EXPORT_SYMBOL(pcix_get_max_mmrbc);
6049
6050/**
6051 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6052 * @dev: PCI device to query
6053 *
6054 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6055 * value.
6056 */
6057int pcix_get_mmrbc(struct pci_dev *dev)
6058{
6059 int cap;
6060 u16 cmd;
6061
6062 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6063 if (!cap)
6064 return -EINVAL;
6065
6066 if (pci_read_config_word(dev, where: cap + PCI_X_CMD, val: &cmd))
6067 return -EINVAL;
6068
6069 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6070}
6071EXPORT_SYMBOL(pcix_get_mmrbc);
6072
6073/**
6074 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6075 * @dev: PCI device to query
6076 * @mmrbc: maximum memory read count in bytes
6077 * valid values are 512, 1024, 2048, 4096
6078 *
6079 * If possible sets maximum memory read byte count, some bridges have errata
6080 * that prevent this.
6081 */
6082int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6083{
6084 int cap;
6085 u32 stat, v, o;
6086 u16 cmd;
6087
6088 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(n: mmrbc))
6089 return -EINVAL;
6090
6091 v = ffs(mmrbc) - 10;
6092
6093 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6094 if (!cap)
6095 return -EINVAL;
6096
6097 if (pci_read_config_dword(dev, where: cap + PCI_X_STATUS, val: &stat))
6098 return -EINVAL;
6099
6100 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6101 return -E2BIG;
6102
6103 if (pci_read_config_word(dev, where: cap + PCI_X_CMD, val: &cmd))
6104 return -EINVAL;
6105
6106 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6107 if (o != v) {
6108 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6109 return -EIO;
6110
6111 cmd &= ~PCI_X_CMD_MAX_READ;
6112 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6113 if (pci_write_config_word(dev, where: cap + PCI_X_CMD, val: cmd))
6114 return -EIO;
6115 }
6116 return 0;
6117}
6118EXPORT_SYMBOL(pcix_set_mmrbc);
6119
6120/**
6121 * pcie_get_readrq - get PCI Express read request size
6122 * @dev: PCI device to query
6123 *
6124 * Returns maximum memory read request in bytes or appropriate error value.
6125 */
6126int pcie_get_readrq(struct pci_dev *dev)
6127{
6128 u16 ctl;
6129
6130 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &ctl);
6131
6132 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6133}
6134EXPORT_SYMBOL(pcie_get_readrq);
6135
6136/**
6137 * pcie_set_readrq - set PCI Express maximum memory read request
6138 * @dev: PCI device to query
6139 * @rq: maximum memory read count in bytes
6140 * valid values are 128, 256, 512, 1024, 2048, 4096
6141 *
6142 * If possible sets maximum memory read request in bytes
6143 */
6144int pcie_set_readrq(struct pci_dev *dev, int rq)
6145{
6146 u16 v;
6147 int ret;
6148 struct pci_host_bridge *bridge = pci_find_host_bridge(bus: dev->bus);
6149
6150 if (rq < 128 || rq > 4096 || !is_power_of_2(n: rq))
6151 return -EINVAL;
6152
6153 /*
6154 * If using the "performance" PCIe config, we clamp the read rq
6155 * size to the max packet size to keep the host bridge from
6156 * generating requests larger than we can cope with.
6157 */
6158 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6159 int mps = pcie_get_mps(dev);
6160
6161 if (mps < rq)
6162 rq = mps;
6163 }
6164
6165 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6166
6167 if (bridge->no_inc_mrrs) {
6168 int max_mrrs = pcie_get_readrq(dev);
6169
6170 if (rq > max_mrrs) {
6171 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6172 return -EINVAL;
6173 }
6174 }
6175
6176 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6177 PCI_EXP_DEVCTL_READRQ, set: v);
6178
6179 return pcibios_err_to_errno(err: ret);
6180}
6181EXPORT_SYMBOL(pcie_set_readrq);
6182
6183/**
6184 * pcie_get_mps - get PCI Express maximum payload size
6185 * @dev: PCI device to query
6186 *
6187 * Returns maximum payload size in bytes
6188 */
6189int pcie_get_mps(struct pci_dev *dev)
6190{
6191 u16 ctl;
6192
6193 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &ctl);
6194
6195 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6196}
6197EXPORT_SYMBOL(pcie_get_mps);
6198
6199/**
6200 * pcie_set_mps - set PCI Express maximum payload size
6201 * @dev: PCI device to query
6202 * @mps: maximum payload size in bytes
6203 * valid values are 128, 256, 512, 1024, 2048, 4096
6204 *
6205 * If possible sets maximum payload size
6206 */
6207int pcie_set_mps(struct pci_dev *dev, int mps)
6208{
6209 u16 v;
6210 int ret;
6211
6212 if (mps < 128 || mps > 4096 || !is_power_of_2(n: mps))
6213 return -EINVAL;
6214
6215 v = ffs(mps) - 8;
6216 if (v > dev->pcie_mpss)
6217 return -EINVAL;
6218 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6219
6220 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6221 PCI_EXP_DEVCTL_PAYLOAD, set: v);
6222
6223 return pcibios_err_to_errno(err: ret);
6224}
6225EXPORT_SYMBOL(pcie_set_mps);
6226
6227/**
6228 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6229 * device and its bandwidth limitation
6230 * @dev: PCI device to query
6231 * @limiting_dev: storage for device causing the bandwidth limitation
6232 * @speed: storage for speed of limiting device
6233 * @width: storage for width of limiting device
6234 *
6235 * Walk up the PCI device chain and find the point where the minimum
6236 * bandwidth is available. Return the bandwidth available there and (if
6237 * limiting_dev, speed, and width pointers are supplied) information about
6238 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6239 * raw bandwidth.
6240 */
6241u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6242 enum pci_bus_speed *speed,
6243 enum pcie_link_width *width)
6244{
6245 u16 lnksta;
6246 enum pci_bus_speed next_speed;
6247 enum pcie_link_width next_width;
6248 u32 bw, next_bw;
6249
6250 if (speed)
6251 *speed = PCI_SPEED_UNKNOWN;
6252 if (width)
6253 *width = PCIE_LNK_WIDTH_UNKNOWN;
6254
6255 bw = 0;
6256
6257 while (dev) {
6258 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, val: &lnksta);
6259
6260 next_speed = pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS,
6261 lnksta)];
6262 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6263
6264 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6265
6266 /* Check if current device limits the total bandwidth */
6267 if (!bw || next_bw <= bw) {
6268 bw = next_bw;
6269
6270 if (limiting_dev)
6271 *limiting_dev = dev;
6272 if (speed)
6273 *speed = next_speed;
6274 if (width)
6275 *width = next_width;
6276 }
6277
6278 dev = pci_upstream_bridge(dev);
6279 }
6280
6281 return bw;
6282}
6283EXPORT_SYMBOL(pcie_bandwidth_available);
6284
6285/**
6286 * pcie_get_speed_cap - query for the PCI device's link speed capability
6287 * @dev: PCI device to query
6288 *
6289 * Query the PCI device speed capability. Return the maximum link speed
6290 * supported by the device.
6291 */
6292enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6293{
6294 u32 lnkcap2, lnkcap;
6295
6296 /*
6297 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6298 * implementation note there recommends using the Supported Link
6299 * Speeds Vector in Link Capabilities 2 when supported.
6300 *
6301 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6302 * should use the Supported Link Speeds field in Link Capabilities,
6303 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6304 */
6305 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, val: &lnkcap2);
6306
6307 /* PCIe r3.0-compliant */
6308 if (lnkcap2)
6309 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6310
6311 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, val: &lnkcap);
6312 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6313 return PCIE_SPEED_5_0GT;
6314 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6315 return PCIE_SPEED_2_5GT;
6316
6317 return PCI_SPEED_UNKNOWN;
6318}
6319EXPORT_SYMBOL(pcie_get_speed_cap);
6320
6321/**
6322 * pcie_get_width_cap - query for the PCI device's link width capability
6323 * @dev: PCI device to query
6324 *
6325 * Query the PCI device width capability. Return the maximum link width
6326 * supported by the device.
6327 */
6328enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6329{
6330 u32 lnkcap;
6331
6332 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, val: &lnkcap);
6333 if (lnkcap)
6334 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6335
6336 return PCIE_LNK_WIDTH_UNKNOWN;
6337}
6338EXPORT_SYMBOL(pcie_get_width_cap);
6339
6340/**
6341 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6342 * @dev: PCI device
6343 * @speed: storage for link speed
6344 * @width: storage for link width
6345 *
6346 * Calculate a PCI device's link bandwidth by querying for its link speed
6347 * and width, multiplying them, and applying encoding overhead. The result
6348 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6349 */
6350u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6351 enum pcie_link_width *width)
6352{
6353 *speed = pcie_get_speed_cap(dev);
6354 *width = pcie_get_width_cap(dev);
6355
6356 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6357 return 0;
6358
6359 return *width * PCIE_SPEED2MBS_ENC(*speed);
6360}
6361
6362/**
6363 * __pcie_print_link_status - Report the PCI device's link speed and width
6364 * @dev: PCI device to query
6365 * @verbose: Print info even when enough bandwidth is available
6366 *
6367 * If the available bandwidth at the device is less than the device is
6368 * capable of, report the device's maximum possible bandwidth and the
6369 * upstream link that limits its performance. If @verbose, always print
6370 * the available bandwidth, even if the device isn't constrained.
6371 */
6372void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6373{
6374 enum pcie_link_width width, width_cap;
6375 enum pci_bus_speed speed, speed_cap;
6376 struct pci_dev *limiting_dev = NULL;
6377 u32 bw_avail, bw_cap;
6378
6379 bw_cap = pcie_bandwidth_capable(dev, speed: &speed_cap, width: &width_cap);
6380 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6381
6382 if (bw_avail >= bw_cap && verbose)
6383 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6384 bw_cap / 1000, bw_cap % 1000,
6385 pci_speed_string(speed_cap), width_cap);
6386 else if (bw_avail < bw_cap)
6387 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6388 bw_avail / 1000, bw_avail % 1000,
6389 pci_speed_string(speed), width,
6390 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6391 bw_cap / 1000, bw_cap % 1000,
6392 pci_speed_string(speed_cap), width_cap);
6393}
6394
6395/**
6396 * pcie_print_link_status - Report the PCI device's link speed and width
6397 * @dev: PCI device to query
6398 *
6399 * Report the available bandwidth at the device.
6400 */
6401void pcie_print_link_status(struct pci_dev *dev)
6402{
6403 __pcie_print_link_status(dev, verbose: true);
6404}
6405EXPORT_SYMBOL(pcie_print_link_status);
6406
6407/**
6408 * pci_select_bars - Make BAR mask from the type of resource
6409 * @dev: the PCI device for which BAR mask is made
6410 * @flags: resource type mask to be selected
6411 *
6412 * This helper routine makes bar mask from the type of resource.
6413 */
6414int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6415{
6416 int i, bars = 0;
6417 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6418 if (pci_resource_flags(dev, i) & flags)
6419 bars |= (1 << i);
6420 return bars;
6421}
6422EXPORT_SYMBOL(pci_select_bars);
6423
6424/* Some architectures require additional programming to enable VGA */
6425static arch_set_vga_state_t arch_set_vga_state;
6426
6427void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6428{
6429 arch_set_vga_state = func; /* NULL disables */
6430}
6431
6432static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6433 unsigned int command_bits, u32 flags)
6434{
6435 if (arch_set_vga_state)
6436 return arch_set_vga_state(dev, decode, command_bits,
6437 flags);
6438 return 0;
6439}
6440
6441/**
6442 * pci_set_vga_state - set VGA decode state on device and parents if requested
6443 * @dev: the PCI device
6444 * @decode: true = enable decoding, false = disable decoding
6445 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6446 * @flags: traverse ancestors and change bridges
6447 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6448 */
6449int pci_set_vga_state(struct pci_dev *dev, bool decode,
6450 unsigned int command_bits, u32 flags)
6451{
6452 struct pci_bus *bus;
6453 struct pci_dev *bridge;
6454 u16 cmd;
6455 int rc;
6456
6457 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6458
6459 /* ARCH specific VGA enables */
6460 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6461 if (rc)
6462 return rc;
6463
6464 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6465 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
6466 if (decode)
6467 cmd |= command_bits;
6468 else
6469 cmd &= ~command_bits;
6470 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
6471 }
6472
6473 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6474 return 0;
6475
6476 bus = dev->bus;
6477 while (bus) {
6478 bridge = bus->self;
6479 if (bridge) {
6480 pci_read_config_word(dev: bridge, PCI_BRIDGE_CONTROL,
6481 val: &cmd);
6482 if (decode)
6483 cmd |= PCI_BRIDGE_CTL_VGA;
6484 else
6485 cmd &= ~PCI_BRIDGE_CTL_VGA;
6486 pci_write_config_word(dev: bridge, PCI_BRIDGE_CONTROL,
6487 val: cmd);
6488 }
6489 bus = bus->parent;
6490 }
6491 return 0;
6492}
6493
6494#ifdef CONFIG_ACPI
6495bool pci_pr3_present(struct pci_dev *pdev)
6496{
6497 struct acpi_device *adev;
6498
6499 if (acpi_disabled)
6500 return false;
6501
6502 adev = ACPI_COMPANION(&pdev->dev);
6503 if (!adev)
6504 return false;
6505
6506 return adev->power.flags.power_resources &&
6507 acpi_has_method(handle: adev->handle, name: "_PR3");
6508}
6509EXPORT_SYMBOL_GPL(pci_pr3_present);
6510#endif
6511
6512/**
6513 * pci_add_dma_alias - Add a DMA devfn alias for a device
6514 * @dev: the PCI device for which alias is added
6515 * @devfn_from: alias slot and function
6516 * @nr_devfns: number of subsequent devfns to alias
6517 *
6518 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6519 * which is used to program permissible bus-devfn source addresses for DMA
6520 * requests in an IOMMU. These aliases factor into IOMMU group creation
6521 * and are useful for devices generating DMA requests beyond or different
6522 * from their logical bus-devfn. Examples include device quirks where the
6523 * device simply uses the wrong devfn, as well as non-transparent bridges
6524 * where the alias may be a proxy for devices in another domain.
6525 *
6526 * IOMMU group creation is performed during device discovery or addition,
6527 * prior to any potential DMA mapping and therefore prior to driver probing
6528 * (especially for userspace assigned devices where IOMMU group definition
6529 * cannot be left as a userspace activity). DMA aliases should therefore
6530 * be configured via quirks, such as the PCI fixup header quirk.
6531 */
6532void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6533 unsigned int nr_devfns)
6534{
6535 int devfn_to;
6536
6537 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6538 devfn_to = devfn_from + nr_devfns - 1;
6539
6540 if (!dev->dma_alias_mask)
6541 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6542 if (!dev->dma_alias_mask) {
6543 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6544 return;
6545 }
6546
6547 bitmap_set(map: dev->dma_alias_mask, start: devfn_from, nbits: nr_devfns);
6548
6549 if (nr_devfns == 1)
6550 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6551 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6552 else if (nr_devfns > 1)
6553 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6554 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6555 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6556}
6557
6558bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6559{
6560 return (dev1->dma_alias_mask &&
6561 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6562 (dev2->dma_alias_mask &&
6563 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6564 pci_real_dma_dev(dev: dev1) == dev2 ||
6565 pci_real_dma_dev(dev: dev2) == dev1;
6566}
6567
6568bool pci_device_is_present(struct pci_dev *pdev)
6569{
6570 u32 v;
6571
6572 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6573 pdev = pci_physfn(dev: pdev);
6574 if (pci_dev_is_disconnected(dev: pdev))
6575 return false;
6576 return pci_bus_read_dev_vendor_id(bus: pdev->bus, devfn: pdev->devfn, pl: &v, crs_timeout: 0);
6577}
6578EXPORT_SYMBOL_GPL(pci_device_is_present);
6579
6580void pci_ignore_hotplug(struct pci_dev *dev)
6581{
6582 struct pci_dev *bridge = dev->bus->self;
6583
6584 dev->ignore_hotplug = 1;
6585 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6586 if (bridge)
6587 bridge->ignore_hotplug = 1;
6588}
6589EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6590
6591/**
6592 * pci_real_dma_dev - Get PCI DMA device for PCI device
6593 * @dev: the PCI device that may have a PCI DMA alias
6594 *
6595 * Permits the platform to provide architecture-specific functionality to
6596 * devices needing to alias DMA to another PCI device on another PCI bus. If
6597 * the PCI device is on the same bus, it is recommended to use
6598 * pci_add_dma_alias(). This is the default implementation. Architecture
6599 * implementations can override this.
6600 */
6601struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6602{
6603 return dev;
6604}
6605
6606resource_size_t __weak pcibios_default_alignment(void)
6607{
6608 return 0;
6609}
6610
6611/*
6612 * Arches that don't want to expose struct resource to userland as-is in
6613 * sysfs and /proc can implement their own pci_resource_to_user().
6614 */
6615void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6616 const struct resource *rsrc,
6617 resource_size_t *start, resource_size_t *end)
6618{
6619 *start = rsrc->start;
6620 *end = rsrc->end;
6621}
6622
6623static char *resource_alignment_param;
6624static DEFINE_SPINLOCK(resource_alignment_lock);
6625
6626/**
6627 * pci_specified_resource_alignment - get resource alignment specified by user.
6628 * @dev: the PCI device to get
6629 * @resize: whether or not to change resources' size when reassigning alignment
6630 *
6631 * RETURNS: Resource alignment if it is specified.
6632 * Zero if it is not specified.
6633 */
6634static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6635 bool *resize)
6636{
6637 int align_order, count;
6638 resource_size_t align = pcibios_default_alignment();
6639 const char *p;
6640 int ret;
6641
6642 spin_lock(lock: &resource_alignment_lock);
6643 p = resource_alignment_param;
6644 if (!p || !*p)
6645 goto out;
6646 if (pci_has_flag(flag: PCI_PROBE_ONLY)) {
6647 align = 0;
6648 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6649 goto out;
6650 }
6651
6652 while (*p) {
6653 count = 0;
6654 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6655 p[count] == '@') {
6656 p += count + 1;
6657 if (align_order > 63) {
6658 pr_err("PCI: Invalid requested alignment (order %d)\n",
6659 align_order);
6660 align_order = PAGE_SHIFT;
6661 }
6662 } else {
6663 align_order = PAGE_SHIFT;
6664 }
6665
6666 ret = pci_dev_str_match(dev, p, endptr: &p);
6667 if (ret == 1) {
6668 *resize = true;
6669 align = 1ULL << align_order;
6670 break;
6671 } else if (ret < 0) {
6672 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6673 p);
6674 break;
6675 }
6676
6677 if (*p != ';' && *p != ',') {
6678 /* End of param or invalid format */
6679 break;
6680 }
6681 p++;
6682 }
6683out:
6684 spin_unlock(lock: &resource_alignment_lock);
6685 return align;
6686}
6687
6688static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6689 resource_size_t align, bool resize)
6690{
6691 struct resource *r = &dev->resource[bar];
6692 resource_size_t size;
6693
6694 if (!(r->flags & IORESOURCE_MEM))
6695 return;
6696
6697 if (r->flags & IORESOURCE_PCI_FIXED) {
6698 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6699 bar, r, (unsigned long long)align);
6700 return;
6701 }
6702
6703 size = resource_size(res: r);
6704 if (size >= align)
6705 return;
6706
6707 /*
6708 * Increase the alignment of the resource. There are two ways we
6709 * can do this:
6710 *
6711 * 1) Increase the size of the resource. BARs are aligned on their
6712 * size, so when we reallocate space for this resource, we'll
6713 * allocate it with the larger alignment. This also prevents
6714 * assignment of any other BARs inside the alignment region, so
6715 * if we're requesting page alignment, this means no other BARs
6716 * will share the page.
6717 *
6718 * The disadvantage is that this makes the resource larger than
6719 * the hardware BAR, which may break drivers that compute things
6720 * based on the resource size, e.g., to find registers at a
6721 * fixed offset before the end of the BAR.
6722 *
6723 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6724 * set r->start to the desired alignment. By itself this
6725 * doesn't prevent other BARs being put inside the alignment
6726 * region, but if we realign *every* resource of every device in
6727 * the system, none of them will share an alignment region.
6728 *
6729 * When the user has requested alignment for only some devices via
6730 * the "pci=resource_alignment" argument, "resize" is true and we
6731 * use the first method. Otherwise we assume we're aligning all
6732 * devices and we use the second.
6733 */
6734
6735 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6736 bar, r, (unsigned long long)align);
6737
6738 if (resize) {
6739 r->start = 0;
6740 r->end = align - 1;
6741 } else {
6742 r->flags &= ~IORESOURCE_SIZEALIGN;
6743 r->flags |= IORESOURCE_STARTALIGN;
6744 r->start = align;
6745 r->end = r->start + size - 1;
6746 }
6747 r->flags |= IORESOURCE_UNSET;
6748}
6749
6750/*
6751 * This function disables memory decoding and releases memory resources
6752 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6753 * It also rounds up size to specified alignment.
6754 * Later on, the kernel will assign page-aligned memory resource back
6755 * to the device.
6756 */
6757void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6758{
6759 int i;
6760 struct resource *r;
6761 resource_size_t align;
6762 u16 command;
6763 bool resize = false;
6764
6765 /*
6766 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6767 * 3.4.1.11. Their resources are allocated from the space
6768 * described by the VF BARx register in the PF's SR-IOV capability.
6769 * We can't influence their alignment here.
6770 */
6771 if (dev->is_virtfn)
6772 return;
6773
6774 /* check if specified PCI is target device to reassign */
6775 align = pci_specified_resource_alignment(dev, resize: &resize);
6776 if (!align)
6777 return;
6778
6779 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6780 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6781 pci_warn(dev, "Can't reassign resources to host bridge\n");
6782 return;
6783 }
6784
6785 pci_read_config_word(dev, PCI_COMMAND, val: &command);
6786 command &= ~PCI_COMMAND_MEMORY;
6787 pci_write_config_word(dev, PCI_COMMAND, val: command);
6788
6789 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6790 pci_request_resource_alignment(dev, bar: i, align, resize);
6791
6792 /*
6793 * Need to disable bridge's resource window,
6794 * to enable the kernel to reassign new resource
6795 * window later on.
6796 */
6797 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6798 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6799 r = &dev->resource[i];
6800 if (!(r->flags & IORESOURCE_MEM))
6801 continue;
6802 r->flags |= IORESOURCE_UNSET;
6803 r->end = resource_size(res: r) - 1;
6804 r->start = 0;
6805 }
6806 pci_disable_bridge_window(dev);
6807 }
6808}
6809
6810static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6811{
6812 size_t count = 0;
6813
6814 spin_lock(lock: &resource_alignment_lock);
6815 if (resource_alignment_param)
6816 count = sysfs_emit(buf, fmt: "%s\n", resource_alignment_param);
6817 spin_unlock(lock: &resource_alignment_lock);
6818
6819 return count;
6820}
6821
6822static ssize_t resource_alignment_store(const struct bus_type *bus,
6823 const char *buf, size_t count)
6824{
6825 char *param, *old, *end;
6826
6827 if (count >= (PAGE_SIZE - 1))
6828 return -EINVAL;
6829
6830 param = kstrndup(s: buf, len: count, GFP_KERNEL);
6831 if (!param)
6832 return -ENOMEM;
6833
6834 end = strchr(param, '\n');
6835 if (end)
6836 *end = '\0';
6837
6838 spin_lock(lock: &resource_alignment_lock);
6839 old = resource_alignment_param;
6840 if (strlen(param)) {
6841 resource_alignment_param = param;
6842 } else {
6843 kfree(objp: param);
6844 resource_alignment_param = NULL;
6845 }
6846 spin_unlock(lock: &resource_alignment_lock);
6847
6848 kfree(objp: old);
6849
6850 return count;
6851}
6852
6853static BUS_ATTR_RW(resource_alignment);
6854
6855static int __init pci_resource_alignment_sysfs_init(void)
6856{
6857 return bus_create_file(bus: &pci_bus_type,
6858 attr: &bus_attr_resource_alignment);
6859}
6860late_initcall(pci_resource_alignment_sysfs_init);
6861
6862static void pci_no_domains(void)
6863{
6864#ifdef CONFIG_PCI_DOMAINS
6865 pci_domains_supported = 0;
6866#endif
6867}
6868
6869#ifdef CONFIG_PCI_DOMAINS_GENERIC
6870static DEFINE_IDA(pci_domain_nr_static_ida);
6871static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6872
6873static void of_pci_reserve_static_domain_nr(void)
6874{
6875 struct device_node *np;
6876 int domain_nr;
6877
6878 for_each_node_by_type(np, "pci") {
6879 domain_nr = of_get_pci_domain_nr(np);
6880 if (domain_nr < 0)
6881 continue;
6882 /*
6883 * Permanently allocate domain_nr in dynamic_ida
6884 * to prevent it from dynamic allocation.
6885 */
6886 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6887 domain_nr, domain_nr, GFP_KERNEL);
6888 }
6889}
6890
6891static int of_pci_bus_find_domain_nr(struct device *parent)
6892{
6893 static bool static_domains_reserved = false;
6894 int domain_nr;
6895
6896 /* On the first call scan device tree for static allocations. */
6897 if (!static_domains_reserved) {
6898 of_pci_reserve_static_domain_nr();
6899 static_domains_reserved = true;
6900 }
6901
6902 if (parent) {
6903 /*
6904 * If domain is in DT, allocate it in static IDA. This
6905 * prevents duplicate static allocations in case of errors
6906 * in DT.
6907 */
6908 domain_nr = of_get_pci_domain_nr(parent->of_node);
6909 if (domain_nr >= 0)
6910 return ida_alloc_range(&pci_domain_nr_static_ida,
6911 domain_nr, domain_nr,
6912 GFP_KERNEL);
6913 }
6914
6915 /*
6916 * If domain was not specified in DT, choose a free ID from dynamic
6917 * allocations. All domain numbers from DT are permanently in
6918 * dynamic allocations to prevent assigning them to other DT nodes
6919 * without static domain.
6920 */
6921 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6922}
6923
6924static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6925{
6926 if (bus->domain_nr < 0)
6927 return;
6928
6929 /* Release domain from IDA where it was allocated. */
6930 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6931 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6932 else
6933 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6934}
6935
6936int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6937{
6938 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6939 acpi_pci_bus_find_domain_nr(bus);
6940}
6941
6942void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6943{
6944 if (!acpi_disabled)
6945 return;
6946 of_pci_bus_release_domain_nr(bus, parent);
6947}
6948#endif
6949
6950/**
6951 * pci_ext_cfg_avail - can we access extended PCI config space?
6952 *
6953 * Returns 1 if we can access PCI extended config space (offsets
6954 * greater than 0xff). This is the default implementation. Architecture
6955 * implementations can override this.
6956 */
6957int __weak pci_ext_cfg_avail(void)
6958{
6959 return 1;
6960}
6961
6962void __weak pci_fixup_cardbus(struct pci_bus *bus)
6963{
6964}
6965EXPORT_SYMBOL(pci_fixup_cardbus);
6966
6967static int __init pci_setup(char *str)
6968{
6969 while (str) {
6970 char *k = strchr(str, ',');
6971 if (k)
6972 *k++ = 0;
6973 if (*str && (str = pcibios_setup(str)) && *str) {
6974 if (!strcmp(str, "nomsi")) {
6975 pci_no_msi();
6976 } else if (!strncmp(str, "noats", 5)) {
6977 pr_info("PCIe: ATS is disabled\n");
6978 pcie_ats_disabled = true;
6979 } else if (!strcmp(str, "noaer")) {
6980 pci_no_aer();
6981 } else if (!strcmp(str, "earlydump")) {
6982 pci_early_dump = true;
6983 } else if (!strncmp(str, "realloc=", 8)) {
6984 pci_realloc_get_opt(str + 8);
6985 } else if (!strncmp(str, "realloc", 7)) {
6986 pci_realloc_get_opt("on");
6987 } else if (!strcmp(str, "nodomains")) {
6988 pci_no_domains();
6989 } else if (!strncmp(str, "noari", 5)) {
6990 pcie_ari_disabled = true;
6991 } else if (!strncmp(str, "cbiosize=", 9)) {
6992 pci_cardbus_io_size = memparse(ptr: str + 9, retptr: &str);
6993 } else if (!strncmp(str, "cbmemsize=", 10)) {
6994 pci_cardbus_mem_size = memparse(ptr: str + 10, retptr: &str);
6995 } else if (!strncmp(str, "resource_alignment=", 19)) {
6996 resource_alignment_param = str + 19;
6997 } else if (!strncmp(str, "ecrc=", 5)) {
6998 pcie_ecrc_get_policy(str: str + 5);
6999 } else if (!strncmp(str, "hpiosize=", 9)) {
7000 pci_hotplug_io_size = memparse(ptr: str + 9, retptr: &str);
7001 } else if (!strncmp(str, "hpmmiosize=", 11)) {
7002 pci_hotplug_mmio_size = memparse(ptr: str + 11, retptr: &str);
7003 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7004 pci_hotplug_mmio_pref_size = memparse(ptr: str + 15, retptr: &str);
7005 } else if (!strncmp(str, "hpmemsize=", 10)) {
7006 pci_hotplug_mmio_size = memparse(ptr: str + 10, retptr: &str);
7007 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7008 } else if (!strncmp(str, "hpbussize=", 10)) {
7009 pci_hotplug_bus_size =
7010 simple_strtoul(str + 10, &str, 0);
7011 if (pci_hotplug_bus_size > 0xff)
7012 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7013 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7014 pcie_bus_config = PCIE_BUS_TUNE_OFF;
7015 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7016 pcie_bus_config = PCIE_BUS_SAFE;
7017 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7018 pcie_bus_config = PCIE_BUS_PERFORMANCE;
7019 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7020 pcie_bus_config = PCIE_BUS_PEER2PEER;
7021 } else if (!strncmp(str, "pcie_scan_all", 13)) {
7022 pci_add_flags(flags: PCI_SCAN_ALL_PCIE_DEVS);
7023 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7024 disable_acs_redir_param = str + 18;
7025 } else {
7026 pr_err("PCI: Unknown option `%s'\n", str);
7027 }
7028 }
7029 str = k;
7030 }
7031 return 0;
7032}
7033early_param("pci", pci_setup);
7034
7035/*
7036 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7037 * in pci_setup(), above, to point to data in the __initdata section which
7038 * will be freed after the init sequence is complete. We can't allocate memory
7039 * in pci_setup() because some architectures do not have any memory allocation
7040 * service available during an early_param() call. So we allocate memory and
7041 * copy the variable here before the init section is freed.
7042 *
7043 */
7044static int __init pci_realloc_setup_params(void)
7045{
7046 resource_alignment_param = kstrdup(s: resource_alignment_param,
7047 GFP_KERNEL);
7048 disable_acs_redir_param = kstrdup(s: disable_acs_redir_param, GFP_KERNEL);
7049
7050 return 0;
7051}
7052pure_initcall(pci_realloc_setup_params);
7053

source code of linux/drivers/pci/pci.c