1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/device.h>
27#include <linux/pm_runtime.h>
28#include <linux/pci_hotplug.h>
29#include <linux/vmalloc.h>
30#include <asm/dma.h>
31#include <linux/aer.h>
32#include <linux/bitfield.h>
33#include "pci.h"
34
35DEFINE_MUTEX(pci_slot_mutex);
36
37const char *pci_power_names[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39};
40EXPORT_SYMBOL_GPL(pci_power_names);
41
42#ifdef CONFIG_X86_32
43int isa_dma_bridge_buggy;
44EXPORT_SYMBOL(isa_dma_bridge_buggy);
45#endif
46
47int pci_pci_problems;
48EXPORT_SYMBOL(pci_pci_problems);
49
50unsigned int pci_pm_d3hot_delay;
51
52static void pci_pme_list_scan(struct work_struct *work);
53
54static LIST_HEAD(pci_pme_list);
55static DEFINE_MUTEX(pci_pme_list_mutex);
56static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57
58struct pci_pme_device {
59 struct list_head list;
60 struct pci_dev *dev;
61};
62
63#define PME_TIMEOUT 1000 /* How long between PME checks */
64
65/*
66 * Following exit from Conventional Reset, devices must be ready within 1 sec
67 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
68 * Reset (PCIe r6.0 sec 5.8).
69 */
70#define PCI_RESET_WAIT 1000 /* msec */
71
72/*
73 * Devices may extend the 1 sec period through Request Retry Status
74 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
75 * limit, but 60 sec ought to be enough for any device to become
76 * responsive.
77 */
78#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
79
80static void pci_dev_d3_sleep(struct pci_dev *dev)
81{
82 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
83 unsigned int upper;
84
85 if (delay_ms) {
86 /* Use a 20% upper bound, 1ms minimum */
87 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
88 usleep_range(min: delay_ms * USEC_PER_MSEC,
89 max: (delay_ms + upper) * USEC_PER_MSEC);
90 }
91}
92
93bool pci_reset_supported(struct pci_dev *dev)
94{
95 return dev->reset_methods[0] != 0;
96}
97
98#ifdef CONFIG_PCI_DOMAINS
99int pci_domains_supported = 1;
100#endif
101
102#define DEFAULT_CARDBUS_IO_SIZE (256)
103#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
104/* pci=cbmemsize=nnM,cbiosize=nn can override this */
105unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
106unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
107
108#define DEFAULT_HOTPLUG_IO_SIZE (256)
109#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
110#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
111/* hpiosize=nn can override this */
112unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
113/*
114 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
115 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
116 * pci=hpmemsize=nnM overrides both
117 */
118unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
119unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
120
121#define DEFAULT_HOTPLUG_BUS_SIZE 1
122unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
123
124
125/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
126#ifdef CONFIG_PCIE_BUS_TUNE_OFF
127enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
128#elif defined CONFIG_PCIE_BUS_SAFE
129enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
130#elif defined CONFIG_PCIE_BUS_PERFORMANCE
131enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
132#elif defined CONFIG_PCIE_BUS_PEER2PEER
133enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
134#else
135enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
136#endif
137
138/*
139 * The default CLS is used if arch didn't set CLS explicitly and not
140 * all pci devices agree on the same value. Arch can override either
141 * the dfl or actual value as it sees fit. Don't forget this is
142 * measured in 32-bit words, not bytes.
143 */
144u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
145u8 pci_cache_line_size __ro_after_init ;
146
147/*
148 * If we set up a device for bus mastering, we need to check the latency
149 * timer as certain BIOSes forget to set it properly.
150 */
151unsigned int pcibios_max_latency = 255;
152
153/* If set, the PCIe ARI capability will not be used. */
154static bool pcie_ari_disabled;
155
156/* If set, the PCIe ATS capability will not be used. */
157static bool pcie_ats_disabled;
158
159/* If set, the PCI config space of each device is printed during boot. */
160bool pci_early_dump;
161
162bool pci_ats_disabled(void)
163{
164 return pcie_ats_disabled;
165}
166EXPORT_SYMBOL_GPL(pci_ats_disabled);
167
168/* Disable bridge_d3 for all PCIe ports */
169static bool pci_bridge_d3_disable;
170/* Force bridge_d3 for all PCIe ports */
171static bool pci_bridge_d3_force;
172
173static int __init pcie_port_pm_setup(char *str)
174{
175 if (!strcmp(str, "off"))
176 pci_bridge_d3_disable = true;
177 else if (!strcmp(str, "force"))
178 pci_bridge_d3_force = true;
179 return 1;
180}
181__setup("pcie_port_pm=", pcie_port_pm_setup);
182
183/**
184 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
185 * @bus: pointer to PCI bus structure to search
186 *
187 * Given a PCI bus, returns the highest PCI bus number present in the set
188 * including the given PCI bus and its list of child PCI buses.
189 */
190unsigned char pci_bus_max_busnr(struct pci_bus *bus)
191{
192 struct pci_bus *tmp;
193 unsigned char max, n;
194
195 max = bus->busn_res.end;
196 list_for_each_entry(tmp, &bus->children, node) {
197 n = pci_bus_max_busnr(bus: tmp);
198 if (n > max)
199 max = n;
200 }
201 return max;
202}
203EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
204
205/**
206 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
207 * @pdev: the PCI device
208 *
209 * Returns error bits set in PCI_STATUS and clears them.
210 */
211int pci_status_get_and_clear_errors(struct pci_dev *pdev)
212{
213 u16 status;
214 int ret;
215
216 ret = pci_read_config_word(dev: pdev, PCI_STATUS, val: &status);
217 if (ret != PCIBIOS_SUCCESSFUL)
218 return -EIO;
219
220 status &= PCI_STATUS_ERROR_BITS;
221 if (status)
222 pci_write_config_word(dev: pdev, PCI_STATUS, val: status);
223
224 return status;
225}
226EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
227
228#ifdef CONFIG_HAS_IOMEM
229static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
230 bool write_combine)
231{
232 struct resource *res = &pdev->resource[bar];
233 resource_size_t start = res->start;
234 resource_size_t size = resource_size(res);
235
236 /*
237 * Make sure the BAR is actually a memory resource, not an IO resource
238 */
239 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
240 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
241 return NULL;
242 }
243
244 if (write_combine)
245 return ioremap_wc(offset: start, size);
246
247 return ioremap(offset: start, size);
248}
249
250void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
251{
252 return __pci_ioremap_resource(pdev, bar, write_combine: false);
253}
254EXPORT_SYMBOL_GPL(pci_ioremap_bar);
255
256void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
257{
258 return __pci_ioremap_resource(pdev, bar, write_combine: true);
259}
260EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
261#endif
262
263/**
264 * pci_dev_str_match_path - test if a path string matches a device
265 * @dev: the PCI device to test
266 * @path: string to match the device against
267 * @endptr: pointer to the string after the match
268 *
269 * Test if a string (typically from a kernel parameter) formatted as a
270 * path of device/function addresses matches a PCI device. The string must
271 * be of the form:
272 *
273 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
274 *
275 * A path for a device can be obtained using 'lspci -t'. Using a path
276 * is more robust against bus renumbering than using only a single bus,
277 * device and function address.
278 *
279 * Returns 1 if the string matches the device, 0 if it does not and
280 * a negative error code if it fails to parse the string.
281 */
282static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
283 const char **endptr)
284{
285 int ret;
286 unsigned int seg, bus, slot, func;
287 char *wpath, *p;
288 char end;
289
290 *endptr = strchrnul(path, ';');
291
292 wpath = kmemdup_nul(s: path, len: *endptr - path, GFP_ATOMIC);
293 if (!wpath)
294 return -ENOMEM;
295
296 while (1) {
297 p = strrchr(wpath, '/');
298 if (!p)
299 break;
300 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
301 if (ret != 2) {
302 ret = -EINVAL;
303 goto free_and_exit;
304 }
305
306 if (dev->devfn != PCI_DEVFN(slot, func)) {
307 ret = 0;
308 goto free_and_exit;
309 }
310
311 /*
312 * Note: we don't need to get a reference to the upstream
313 * bridge because we hold a reference to the top level
314 * device which should hold a reference to the bridge,
315 * and so on.
316 */
317 dev = pci_upstream_bridge(dev);
318 if (!dev) {
319 ret = 0;
320 goto free_and_exit;
321 }
322
323 *p = 0;
324 }
325
326 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
327 &func, &end);
328 if (ret != 4) {
329 seg = 0;
330 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
331 if (ret != 3) {
332 ret = -EINVAL;
333 goto free_and_exit;
334 }
335 }
336
337 ret = (seg == pci_domain_nr(bus: dev->bus) &&
338 bus == dev->bus->number &&
339 dev->devfn == PCI_DEVFN(slot, func));
340
341free_and_exit:
342 kfree(objp: wpath);
343 return ret;
344}
345
346/**
347 * pci_dev_str_match - test if a string matches a device
348 * @dev: the PCI device to test
349 * @p: string to match the device against
350 * @endptr: pointer to the string after the match
351 *
352 * Test if a string (typically from a kernel parameter) matches a specified
353 * PCI device. The string may be of one of the following formats:
354 *
355 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
356 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
357 *
358 * The first format specifies a PCI bus/device/function address which
359 * may change if new hardware is inserted, if motherboard firmware changes,
360 * or due to changes caused in kernel parameters. If the domain is
361 * left unspecified, it is taken to be 0. In order to be robust against
362 * bus renumbering issues, a path of PCI device/function numbers may be used
363 * to address the specific device. The path for a device can be determined
364 * through the use of 'lspci -t'.
365 *
366 * The second format matches devices using IDs in the configuration
367 * space which may match multiple devices in the system. A value of 0
368 * for any field will match all devices. (Note: this differs from
369 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
370 * legacy reasons and convenience so users don't have to specify
371 * FFFFFFFFs on the command line.)
372 *
373 * Returns 1 if the string matches the device, 0 if it does not and
374 * a negative error code if the string cannot be parsed.
375 */
376static int pci_dev_str_match(struct pci_dev *dev, const char *p,
377 const char **endptr)
378{
379 int ret;
380 int count;
381 unsigned short vendor, device, subsystem_vendor, subsystem_device;
382
383 if (strncmp(p, "pci:", 4) == 0) {
384 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
385 p += 4;
386 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
387 &subsystem_vendor, &subsystem_device, &count);
388 if (ret != 4) {
389 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
390 if (ret != 2)
391 return -EINVAL;
392
393 subsystem_vendor = 0;
394 subsystem_device = 0;
395 }
396
397 p += count;
398
399 if ((!vendor || vendor == dev->vendor) &&
400 (!device || device == dev->device) &&
401 (!subsystem_vendor ||
402 subsystem_vendor == dev->subsystem_vendor) &&
403 (!subsystem_device ||
404 subsystem_device == dev->subsystem_device))
405 goto found;
406 } else {
407 /*
408 * PCI Bus, Device, Function IDs are specified
409 * (optionally, may include a path of devfns following it)
410 */
411 ret = pci_dev_str_match_path(dev, path: p, endptr: &p);
412 if (ret < 0)
413 return ret;
414 else if (ret)
415 goto found;
416 }
417
418 *endptr = p;
419 return 0;
420
421found:
422 *endptr = p;
423 return 1;
424}
425
426static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap, int *ttl)
428{
429 u8 id;
430 u16 ent;
431
432 pci_bus_read_config_byte(bus, devfn, where: pos, val: &pos);
433
434 while ((*ttl)--) {
435 if (pos < 0x40)
436 break;
437 pos &= ~3;
438 pci_bus_read_config_word(bus, devfn, where: pos, val: &ent);
439
440 id = ent & 0xff;
441 if (id == 0xff)
442 break;
443 if (id == cap)
444 return pos;
445 pos = (ent >> 8);
446 }
447 return 0;
448}
449
450static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
451 u8 pos, int cap)
452{
453 int ttl = PCI_FIND_CAP_TTL;
454
455 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, ttl: &ttl);
456}
457
458u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
459{
460 return __pci_find_next_cap(bus: dev->bus, devfn: dev->devfn,
461 pos: pos + PCI_CAP_LIST_NEXT, cap);
462}
463EXPORT_SYMBOL_GPL(pci_find_next_capability);
464
465static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
466 unsigned int devfn, u8 hdr_type)
467{
468 u16 status;
469
470 pci_bus_read_config_word(bus, devfn, PCI_STATUS, val: &status);
471 if (!(status & PCI_STATUS_CAP_LIST))
472 return 0;
473
474 switch (hdr_type) {
475 case PCI_HEADER_TYPE_NORMAL:
476 case PCI_HEADER_TYPE_BRIDGE:
477 return PCI_CAPABILITY_LIST;
478 case PCI_HEADER_TYPE_CARDBUS:
479 return PCI_CB_CAPABILITY_LIST;
480 }
481
482 return 0;
483}
484
485/**
486 * pci_find_capability - query for devices' capabilities
487 * @dev: PCI device to query
488 * @cap: capability code
489 *
490 * Tell if a device supports a given PCI capability.
491 * Returns the address of the requested capability structure within the
492 * device's PCI configuration space or 0 in case the device does not
493 * support it. Possible values for @cap include:
494 *
495 * %PCI_CAP_ID_PM Power Management
496 * %PCI_CAP_ID_AGP Accelerated Graphics Port
497 * %PCI_CAP_ID_VPD Vital Product Data
498 * %PCI_CAP_ID_SLOTID Slot Identification
499 * %PCI_CAP_ID_MSI Message Signalled Interrupts
500 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
501 * %PCI_CAP_ID_PCIX PCI-X
502 * %PCI_CAP_ID_EXP PCI Express
503 */
504u8 pci_find_capability(struct pci_dev *dev, int cap)
505{
506 u8 pos;
507
508 pos = __pci_bus_find_cap_start(bus: dev->bus, devfn: dev->devfn, hdr_type: dev->hdr_type);
509 if (pos)
510 pos = __pci_find_next_cap(bus: dev->bus, devfn: dev->devfn, pos, cap);
511
512 return pos;
513}
514EXPORT_SYMBOL(pci_find_capability);
515
516/**
517 * pci_bus_find_capability - query for devices' capabilities
518 * @bus: the PCI bus to query
519 * @devfn: PCI device to query
520 * @cap: capability code
521 *
522 * Like pci_find_capability() but works for PCI devices that do not have a
523 * pci_dev structure set up yet.
524 *
525 * Returns the address of the requested capability structure within the
526 * device's PCI configuration space or 0 in case the device does not
527 * support it.
528 */
529u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
530{
531 u8 hdr_type, pos;
532
533 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, val: &hdr_type);
534
535 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type: hdr_type & PCI_HEADER_TYPE_MASK);
536 if (pos)
537 pos = __pci_find_next_cap(bus, devfn, pos, cap);
538
539 return pos;
540}
541EXPORT_SYMBOL(pci_bus_find_capability);
542
543/**
544 * pci_find_next_ext_capability - Find an extended capability
545 * @dev: PCI device to query
546 * @start: address at which to start looking (0 to start at beginning of list)
547 * @cap: capability code
548 *
549 * Returns the address of the next matching extended capability structure
550 * within the device's PCI configuration space or 0 if the device does
551 * not support it. Some capabilities can occur several times, e.g., the
552 * vendor-specific capability, and this provides a way to find them all.
553 */
554u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
555{
556 u32 header;
557 int ttl;
558 u16 pos = PCI_CFG_SPACE_SIZE;
559
560 /* minimum 8 bytes per capability */
561 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
562
563 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
564 return 0;
565
566 if (start)
567 pos = start;
568
569 if (pci_read_config_dword(dev, where: pos, val: &header) != PCIBIOS_SUCCESSFUL)
570 return 0;
571
572 /*
573 * If we have no capabilities, this is indicated by cap ID,
574 * cap version and next pointer all being 0.
575 */
576 if (header == 0)
577 return 0;
578
579 while (ttl-- > 0) {
580 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
581 return pos;
582
583 pos = PCI_EXT_CAP_NEXT(header);
584 if (pos < PCI_CFG_SPACE_SIZE)
585 break;
586
587 if (pci_read_config_dword(dev, where: pos, val: &header) != PCIBIOS_SUCCESSFUL)
588 break;
589 }
590
591 return 0;
592}
593EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
594
595/**
596 * pci_find_ext_capability - Find an extended capability
597 * @dev: PCI device to query
598 * @cap: capability code
599 *
600 * Returns the address of the requested extended capability structure
601 * within the device's PCI configuration space or 0 if the device does
602 * not support it. Possible values for @cap include:
603 *
604 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
605 * %PCI_EXT_CAP_ID_VC Virtual Channel
606 * %PCI_EXT_CAP_ID_DSN Device Serial Number
607 * %PCI_EXT_CAP_ID_PWR Power Budgeting
608 */
609u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
610{
611 return pci_find_next_ext_capability(dev, 0, cap);
612}
613EXPORT_SYMBOL_GPL(pci_find_ext_capability);
614
615/**
616 * pci_get_dsn - Read and return the 8-byte Device Serial Number
617 * @dev: PCI device to query
618 *
619 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
620 * Number.
621 *
622 * Returns the DSN, or zero if the capability does not exist.
623 */
624u64 pci_get_dsn(struct pci_dev *dev)
625{
626 u32 dword;
627 u64 dsn;
628 int pos;
629
630 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
631 if (!pos)
632 return 0;
633
634 /*
635 * The Device Serial Number is two dwords offset 4 bytes from the
636 * capability position. The specification says that the first dword is
637 * the lower half, and the second dword is the upper half.
638 */
639 pos += 4;
640 pci_read_config_dword(dev, where: pos, val: &dword);
641 dsn = (u64)dword;
642 pci_read_config_dword(dev, where: pos + 4, val: &dword);
643 dsn |= ((u64)dword) << 32;
644
645 return dsn;
646}
647EXPORT_SYMBOL_GPL(pci_get_dsn);
648
649static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
650{
651 int rc, ttl = PCI_FIND_CAP_TTL;
652 u8 cap, mask;
653
654 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
655 mask = HT_3BIT_CAP_MASK;
656 else
657 mask = HT_5BIT_CAP_MASK;
658
659 pos = __pci_find_next_cap_ttl(bus: dev->bus, devfn: dev->devfn, pos,
660 PCI_CAP_ID_HT, ttl: &ttl);
661 while (pos) {
662 rc = pci_read_config_byte(dev, where: pos + 3, val: &cap);
663 if (rc != PCIBIOS_SUCCESSFUL)
664 return 0;
665
666 if ((cap & mask) == ht_cap)
667 return pos;
668
669 pos = __pci_find_next_cap_ttl(bus: dev->bus, devfn: dev->devfn,
670 pos: pos + PCI_CAP_LIST_NEXT,
671 PCI_CAP_ID_HT, ttl: &ttl);
672 }
673
674 return 0;
675}
676
677/**
678 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
679 * @dev: PCI device to query
680 * @pos: Position from which to continue searching
681 * @ht_cap: HyperTransport capability code
682 *
683 * To be used in conjunction with pci_find_ht_capability() to search for
684 * all capabilities matching @ht_cap. @pos should always be a value returned
685 * from pci_find_ht_capability().
686 *
687 * NB. To be 100% safe against broken PCI devices, the caller should take
688 * steps to avoid an infinite loop.
689 */
690u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
691{
692 return __pci_find_next_ht_cap(dev, pos: pos + PCI_CAP_LIST_NEXT, ht_cap);
693}
694EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
695
696/**
697 * pci_find_ht_capability - query a device's HyperTransport capabilities
698 * @dev: PCI device to query
699 * @ht_cap: HyperTransport capability code
700 *
701 * Tell if a device supports a given HyperTransport capability.
702 * Returns an address within the device's PCI configuration space
703 * or 0 in case the device does not support the request capability.
704 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
705 * which has a HyperTransport capability matching @ht_cap.
706 */
707u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
708{
709 u8 pos;
710
711 pos = __pci_bus_find_cap_start(bus: dev->bus, devfn: dev->devfn, hdr_type: dev->hdr_type);
712 if (pos)
713 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
714
715 return pos;
716}
717EXPORT_SYMBOL_GPL(pci_find_ht_capability);
718
719/**
720 * pci_find_vsec_capability - Find a vendor-specific extended capability
721 * @dev: PCI device to query
722 * @vendor: Vendor ID for which capability is defined
723 * @cap: Vendor-specific capability ID
724 *
725 * If @dev has Vendor ID @vendor, search for a VSEC capability with
726 * VSEC ID @cap. If found, return the capability offset in
727 * config space; otherwise return 0.
728 */
729u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
730{
731 u16 vsec = 0;
732 u32 header;
733 int ret;
734
735 if (vendor != dev->vendor)
736 return 0;
737
738 while ((vsec = pci_find_next_ext_capability(dev, vsec,
739 PCI_EXT_CAP_ID_VNDR))) {
740 ret = pci_read_config_dword(dev, where: vsec + PCI_VNDR_HEADER, val: &header);
741 if (ret != PCIBIOS_SUCCESSFUL)
742 continue;
743
744 if (PCI_VNDR_HEADER_ID(header) == cap)
745 return vsec;
746 }
747
748 return 0;
749}
750EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
751
752/**
753 * pci_find_dvsec_capability - Find DVSEC for vendor
754 * @dev: PCI device to query
755 * @vendor: Vendor ID to match for the DVSEC
756 * @dvsec: Designated Vendor-specific capability ID
757 *
758 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
759 * offset in config space; otherwise return 0.
760 */
761u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
762{
763 int pos;
764
765 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
766 if (!pos)
767 return 0;
768
769 while (pos) {
770 u16 v, id;
771
772 pci_read_config_word(dev, where: pos + PCI_DVSEC_HEADER1, val: &v);
773 pci_read_config_word(dev, where: pos + PCI_DVSEC_HEADER2, val: &id);
774 if (vendor == v && dvsec == id)
775 return pos;
776
777 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
778 }
779
780 return 0;
781}
782EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
783
784/**
785 * pci_find_parent_resource - return resource region of parent bus of given
786 * region
787 * @dev: PCI device structure contains resources to be searched
788 * @res: child resource record for which parent is sought
789 *
790 * For given resource region of given device, return the resource region of
791 * parent bus the given region is contained in.
792 */
793struct resource *pci_find_parent_resource(const struct pci_dev *dev,
794 struct resource *res)
795{
796 const struct pci_bus *bus = dev->bus;
797 struct resource *r;
798
799 pci_bus_for_each_resource(bus, r) {
800 if (!r)
801 continue;
802 if (resource_contains(r1: r, r2: res)) {
803
804 /*
805 * If the window is prefetchable but the BAR is
806 * not, the allocator made a mistake.
807 */
808 if (r->flags & IORESOURCE_PREFETCH &&
809 !(res->flags & IORESOURCE_PREFETCH))
810 return NULL;
811
812 /*
813 * If we're below a transparent bridge, there may
814 * be both a positively-decoded aperture and a
815 * subtractively-decoded region that contain the BAR.
816 * We want the positively-decoded one, so this depends
817 * on pci_bus_for_each_resource() giving us those
818 * first.
819 */
820 return r;
821 }
822 }
823 return NULL;
824}
825EXPORT_SYMBOL(pci_find_parent_resource);
826
827/**
828 * pci_find_resource - Return matching PCI device resource
829 * @dev: PCI device to query
830 * @res: Resource to look for
831 *
832 * Goes over standard PCI resources (BARs) and checks if the given resource
833 * is partially or fully contained in any of them. In that case the
834 * matching resource is returned, %NULL otherwise.
835 */
836struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
837{
838 int i;
839
840 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
841 struct resource *r = &dev->resource[i];
842
843 if (r->start && resource_contains(r1: r, r2: res))
844 return r;
845 }
846
847 return NULL;
848}
849EXPORT_SYMBOL(pci_find_resource);
850
851/**
852 * pci_resource_name - Return the name of the PCI resource
853 * @dev: PCI device to query
854 * @i: index of the resource
855 *
856 * Return the standard PCI resource (BAR) name according to their index.
857 */
858const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
859{
860 static const char * const bar_name[] = {
861 "BAR 0",
862 "BAR 1",
863 "BAR 2",
864 "BAR 3",
865 "BAR 4",
866 "BAR 5",
867 "ROM",
868#ifdef CONFIG_PCI_IOV
869 "VF BAR 0",
870 "VF BAR 1",
871 "VF BAR 2",
872 "VF BAR 3",
873 "VF BAR 4",
874 "VF BAR 5",
875#endif
876 "bridge window", /* "io" included in %pR */
877 "bridge window", /* "mem" included in %pR */
878 "bridge window", /* "mem pref" included in %pR */
879 };
880 static const char * const cardbus_name[] = {
881 "BAR 1",
882 "unknown",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887#ifdef CONFIG_PCI_IOV
888 "unknown",
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894#endif
895 "CardBus bridge window 0", /* I/O */
896 "CardBus bridge window 1", /* I/O */
897 "CardBus bridge window 0", /* mem */
898 "CardBus bridge window 1", /* mem */
899 };
900
901 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
902 i < ARRAY_SIZE(cardbus_name))
903 return cardbus_name[i];
904
905 if (i < ARRAY_SIZE(bar_name))
906 return bar_name[i];
907
908 return "unknown";
909}
910
911/**
912 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
913 * @dev: the PCI device to operate on
914 * @pos: config space offset of status word
915 * @mask: mask of bit(s) to care about in status word
916 *
917 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
918 */
919int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
920{
921 int i;
922
923 /* Wait for Transaction Pending bit clean */
924 for (i = 0; i < 4; i++) {
925 u16 status;
926 if (i)
927 msleep(msecs: (1 << (i - 1)) * 100);
928
929 pci_read_config_word(dev, where: pos, val: &status);
930 if (!(status & mask))
931 return 1;
932 }
933
934 return 0;
935}
936
937static int pci_acs_enable;
938
939/**
940 * pci_request_acs - ask for ACS to be enabled if supported
941 */
942void pci_request_acs(void)
943{
944 pci_acs_enable = 1;
945}
946
947static const char *disable_acs_redir_param;
948static const char *config_acs_param;
949
950struct pci_acs {
951 u16 cap;
952 u16 ctrl;
953 u16 fw_ctrl;
954};
955
956static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
957 const char *p, const u16 acs_mask, const u16 acs_flags)
958{
959 u16 flags = acs_flags;
960 u16 mask = acs_mask;
961 char *delimit;
962 int ret = 0;
963
964 if (!p)
965 return;
966
967 while (*p) {
968 if (!acs_mask) {
969 /* Check for ACS flags */
970 delimit = strstr(p, "@");
971 if (delimit) {
972 int end;
973 u32 shift = 0;
974
975 end = delimit - p - 1;
976 mask = 0;
977 flags = 0;
978
979 while (end > -1) {
980 if (*(p + end) == '0') {
981 mask |= 1 << shift;
982 shift++;
983 end--;
984 } else if (*(p + end) == '1') {
985 mask |= 1 << shift;
986 flags |= 1 << shift;
987 shift++;
988 end--;
989 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
990 shift++;
991 end--;
992 } else {
993 pci_err(dev, "Invalid ACS flags... Ignoring\n");
994 return;
995 }
996 }
997 p = delimit + 1;
998 } else {
999 pci_err(dev, "ACS Flags missing\n");
1000 return;
1001 }
1002 }
1003
1004 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1005 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1006 pci_err(dev, "Invalid ACS flags specified\n");
1007 return;
1008 }
1009
1010 ret = pci_dev_str_match(dev, p, endptr: &p);
1011 if (ret < 0) {
1012 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1013 break;
1014 } else if (ret == 1) {
1015 /* Found a match */
1016 break;
1017 }
1018
1019 if (*p != ';' && *p != ',') {
1020 /* End of param or invalid format */
1021 break;
1022 }
1023 p++;
1024 }
1025
1026 if (ret != 1)
1027 return;
1028
1029 if (!pci_dev_specific_disable_acs_redir(dev))
1030 return;
1031
1032 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1033 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1034 pci_dbg(dev, "ACS control = %#06x\n", caps->ctrl);
1035 pci_dbg(dev, "ACS fw_ctrl = %#06x\n", caps->fw_ctrl);
1036
1037 /*
1038 * For mask bits that are 0, copy them from the firmware setting
1039 * and apply flags for all the mask bits that are 1.
1040 */
1041 caps->ctrl = (caps->fw_ctrl & ~mask) | (flags & mask);
1042
1043 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1044}
1045
1046/**
1047 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1048 * @dev: the PCI device
1049 * @caps: default ACS controls
1050 */
1051static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1052{
1053 /* Source Validation */
1054 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1055
1056 /* P2P Request Redirect */
1057 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1058
1059 /* P2P Completion Redirect */
1060 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1061
1062 /* Upstream Forwarding */
1063 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1064
1065 /* Enable Translation Blocking for external devices and noats */
1066 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1067 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1068}
1069
1070/**
1071 * pci_enable_acs - enable ACS if hardware support it
1072 * @dev: the PCI device
1073 */
1074static void pci_enable_acs(struct pci_dev *dev)
1075{
1076 struct pci_acs caps;
1077 bool enable_acs = false;
1078 int pos;
1079
1080 /* If an iommu is present we start with kernel default caps */
1081 if (pci_acs_enable) {
1082 if (pci_dev_specific_enable_acs(dev))
1083 enable_acs = true;
1084 }
1085
1086 pos = dev->acs_cap;
1087 if (!pos)
1088 return;
1089
1090 pci_read_config_word(dev, where: pos + PCI_ACS_CAP, val: &caps.cap);
1091 pci_read_config_word(dev, where: pos + PCI_ACS_CTRL, val: &caps.ctrl);
1092 caps.fw_ctrl = caps.ctrl;
1093
1094 if (enable_acs)
1095 pci_std_enable_acs(dev, caps: &caps);
1096
1097 /*
1098 * Always apply caps from the command line, even if there is no iommu.
1099 * Trust that the admin has a reason to change the ACS settings.
1100 */
1101 __pci_config_acs(dev, caps: &caps, p: disable_acs_redir_param,
1102 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1103 acs_flags: ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1104 __pci_config_acs(dev, caps: &caps, p: config_acs_param, acs_mask: 0, acs_flags: 0);
1105
1106 pci_write_config_word(dev, where: pos + PCI_ACS_CTRL, val: caps.ctrl);
1107}
1108
1109/**
1110 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1111 * @dev: PCI device to have its BARs restored
1112 *
1113 * Restore the BAR values for a given device, so as to make it
1114 * accessible by its driver.
1115 */
1116static void pci_restore_bars(struct pci_dev *dev)
1117{
1118 int i;
1119
1120 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1121 pci_update_resource(dev, resno: i);
1122}
1123
1124static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1125{
1126 if (pci_use_mid_pm())
1127 return true;
1128
1129 return acpi_pci_power_manageable(dev);
1130}
1131
1132static inline int platform_pci_set_power_state(struct pci_dev *dev,
1133 pci_power_t t)
1134{
1135 if (pci_use_mid_pm())
1136 return mid_pci_set_power_state(pdev: dev, state: t);
1137
1138 return acpi_pci_set_power_state(dev, state: t);
1139}
1140
1141static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1142{
1143 if (pci_use_mid_pm())
1144 return mid_pci_get_power_state(pdev: dev);
1145
1146 return acpi_pci_get_power_state(dev);
1147}
1148
1149static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1150{
1151 if (!pci_use_mid_pm())
1152 acpi_pci_refresh_power_state(dev);
1153}
1154
1155static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1156{
1157 if (pci_use_mid_pm())
1158 return PCI_POWER_ERROR;
1159
1160 return acpi_pci_choose_state(pdev: dev);
1161}
1162
1163static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1164{
1165 if (pci_use_mid_pm())
1166 return PCI_POWER_ERROR;
1167
1168 return acpi_pci_wakeup(dev, enable);
1169}
1170
1171static inline bool platform_pci_need_resume(struct pci_dev *dev)
1172{
1173 if (pci_use_mid_pm())
1174 return false;
1175
1176 return acpi_pci_need_resume(dev);
1177}
1178
1179static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1180{
1181 if (pci_use_mid_pm())
1182 return false;
1183
1184 return acpi_pci_bridge_d3(dev);
1185}
1186
1187/**
1188 * pci_update_current_state - Read power state of given device and cache it
1189 * @dev: PCI device to handle.
1190 * @state: State to cache in case the device doesn't have the PM capability
1191 *
1192 * The power state is read from the PMCSR register, which however is
1193 * inaccessible in D3cold. The platform firmware is therefore queried first
1194 * to detect accessibility of the register. In case the platform firmware
1195 * reports an incorrect state or the device isn't power manageable by the
1196 * platform at all, we try to detect D3cold by testing accessibility of the
1197 * vendor ID in config space.
1198 */
1199void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1200{
1201 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1202 dev->current_state = PCI_D3cold;
1203 } else if (dev->pm_cap) {
1204 u16 pmcsr;
1205
1206 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1207 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1208 dev->current_state = PCI_D3cold;
1209 return;
1210 }
1211 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1212 } else {
1213 dev->current_state = state;
1214 }
1215}
1216
1217/**
1218 * pci_refresh_power_state - Refresh the given device's power state data
1219 * @dev: Target PCI device.
1220 *
1221 * Ask the platform to refresh the devices power state information and invoke
1222 * pci_update_current_state() to update its current PCI power state.
1223 */
1224void pci_refresh_power_state(struct pci_dev *dev)
1225{
1226 platform_pci_refresh_power_state(dev);
1227 pci_update_current_state(dev, state: dev->current_state);
1228}
1229
1230/**
1231 * pci_platform_power_transition - Use platform to change device power state
1232 * @dev: PCI device to handle.
1233 * @state: State to put the device into.
1234 */
1235int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1236{
1237 int error;
1238
1239 error = platform_pci_set_power_state(dev, t: state);
1240 if (!error)
1241 pci_update_current_state(dev, state);
1242 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1243 dev->current_state = PCI_D0;
1244
1245 return error;
1246}
1247EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1248
1249static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1250{
1251 pm_request_resume(dev: &pci_dev->dev);
1252 return 0;
1253}
1254
1255/**
1256 * pci_resume_bus - Walk given bus and runtime resume devices on it
1257 * @bus: Top bus of the subtree to walk.
1258 */
1259void pci_resume_bus(struct pci_bus *bus)
1260{
1261 if (bus)
1262 pci_walk_bus(top: bus, cb: pci_resume_one, NULL);
1263}
1264
1265static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1266{
1267 int delay = 1;
1268 bool retrain = false;
1269 struct pci_dev *root, *bridge;
1270
1271 root = pcie_find_root_port(dev);
1272
1273 if (pci_is_pcie(dev)) {
1274 bridge = pci_upstream_bridge(dev);
1275 if (bridge)
1276 retrain = true;
1277 }
1278
1279 /*
1280 * The caller has already waited long enough after a reset that the
1281 * device should respond to config requests, but it may respond
1282 * with Request Retry Status (RRS) if it needs more time to
1283 * initialize.
1284 *
1285 * If the device is below a Root Port with Configuration RRS
1286 * Software Visibility enabled, reading the Vendor ID returns a
1287 * special data value if the device responded with RRS. Read the
1288 * Vendor ID until we get non-RRS status.
1289 *
1290 * If there's no Root Port or Configuration RRS Software Visibility
1291 * is not enabled, the device may still respond with RRS, but
1292 * hardware may retry the config request. If no retries receive
1293 * Successful Completion, hardware generally synthesizes ~0
1294 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1295 * ID for VFs and non-existent devices also returns ~0, so read the
1296 * Command register until it returns something other than ~0.
1297 */
1298 for (;;) {
1299 u32 id;
1300
1301 if (pci_dev_is_disconnected(dev)) {
1302 pci_dbg(dev, "disconnected; not waiting\n");
1303 return -ENOTTY;
1304 }
1305
1306 if (root && root->config_rrs_sv) {
1307 pci_read_config_dword(dev, PCI_VENDOR_ID, val: &id);
1308 if (!pci_bus_rrs_vendor_id(l: id))
1309 break;
1310 } else {
1311 pci_read_config_dword(dev, PCI_COMMAND, val: &id);
1312 if (!PCI_POSSIBLE_ERROR(id))
1313 break;
1314 }
1315
1316 if (delay > timeout) {
1317 pci_warn(dev, "not ready %dms after %s; giving up\n",
1318 delay - 1, reset_type);
1319 return -ENOTTY;
1320 }
1321
1322 if (delay > PCI_RESET_WAIT) {
1323 if (retrain) {
1324 retrain = false;
1325 if (pcie_failed_link_retrain(dev: bridge) == 0) {
1326 delay = 1;
1327 continue;
1328 }
1329 }
1330 pci_info(dev, "not ready %dms after %s; waiting\n",
1331 delay - 1, reset_type);
1332 }
1333
1334 msleep(msecs: delay);
1335 delay *= 2;
1336 }
1337
1338 if (delay > PCI_RESET_WAIT)
1339 pci_info(dev, "ready %dms after %s\n", delay - 1,
1340 reset_type);
1341 else
1342 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1343 reset_type);
1344
1345 return 0;
1346}
1347
1348/**
1349 * pci_power_up - Put the given device into D0
1350 * @dev: PCI device to power up
1351 *
1352 * On success, return 0 or 1, depending on whether or not it is necessary to
1353 * restore the device's BARs subsequently (1 is returned in that case).
1354 *
1355 * On failure, return a negative error code. Always return failure if @dev
1356 * lacks a Power Management Capability, even if the platform was able to
1357 * put the device in D0 via non-PCI means.
1358 */
1359int pci_power_up(struct pci_dev *dev)
1360{
1361 bool need_restore;
1362 pci_power_t state;
1363 u16 pmcsr;
1364
1365 platform_pci_set_power_state(dev, PCI_D0);
1366
1367 if (!dev->pm_cap) {
1368 state = platform_pci_get_power_state(dev);
1369 if (state == PCI_UNKNOWN)
1370 dev->current_state = PCI_D0;
1371 else
1372 dev->current_state = state;
1373
1374 return -EIO;
1375 }
1376
1377 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1378 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1379 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1380 pci_power_name(dev->current_state));
1381 dev->current_state = PCI_D3cold;
1382 return -EIO;
1383 }
1384
1385 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1386
1387 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1388 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1389
1390 if (state == PCI_D0)
1391 goto end;
1392
1393 /*
1394 * Force the entire word to 0. This doesn't affect PME_Status, disables
1395 * PME_En, and sets PowerState to 0.
1396 */
1397 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: 0);
1398
1399 /* Mandatory transition delays; see PCI PM 1.2. */
1400 if (state == PCI_D3hot)
1401 pci_dev_d3_sleep(dev);
1402 else if (state == PCI_D2)
1403 udelay(PCI_PM_D2_DELAY);
1404
1405end:
1406 dev->current_state = PCI_D0;
1407 if (need_restore)
1408 return 1;
1409
1410 return 0;
1411}
1412
1413/**
1414 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1415 * @dev: PCI device to power up
1416 * @locked: whether pci_bus_sem is held
1417 *
1418 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1419 * to confirm the state change, restore its BARs if they might be lost and
1420 * reconfigure ASPM in accordance with the new power state.
1421 *
1422 * If pci_restore_state() is going to be called right after a power state change
1423 * to D0, it is more efficient to use pci_power_up() directly instead of this
1424 * function.
1425 */
1426static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1427{
1428 u16 pmcsr;
1429 int ret;
1430
1431 ret = pci_power_up(dev);
1432 if (ret < 0) {
1433 if (dev->current_state == PCI_D0)
1434 return 0;
1435
1436 return ret;
1437 }
1438
1439 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1440 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1441 if (dev->current_state != PCI_D0) {
1442 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1443 pci_power_name(dev->current_state));
1444 } else if (ret > 0) {
1445 /*
1446 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1447 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1448 * from D3hot to D0 _may_ perform an internal reset, thereby
1449 * going to "D0 Uninitialized" rather than "D0 Initialized".
1450 * For example, at least some versions of the 3c905B and the
1451 * 3c556B exhibit this behaviour.
1452 *
1453 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1454 * devices in a D3hot state at boot. Consequently, we need to
1455 * restore at least the BARs so that the device will be
1456 * accessible to its driver.
1457 */
1458 pci_restore_bars(dev);
1459 }
1460
1461 if (dev->bus->self)
1462 pcie_aspm_pm_state_change(pdev: dev->bus->self, locked);
1463
1464 return 0;
1465}
1466
1467/**
1468 * __pci_dev_set_current_state - Set current state of a PCI device
1469 * @dev: Device to handle
1470 * @data: pointer to state to be set
1471 */
1472static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1473{
1474 pci_power_t state = *(pci_power_t *)data;
1475
1476 dev->current_state = state;
1477 return 0;
1478}
1479
1480/**
1481 * pci_bus_set_current_state - Walk given bus and set current state of devices
1482 * @bus: Top bus of the subtree to walk.
1483 * @state: state to be set
1484 */
1485void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1486{
1487 if (bus)
1488 pci_walk_bus(top: bus, cb: __pci_dev_set_current_state, userdata: &state);
1489}
1490
1491static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1492{
1493 if (!bus)
1494 return;
1495
1496 if (locked)
1497 pci_walk_bus_locked(top: bus, cb: __pci_dev_set_current_state, userdata: &state);
1498 else
1499 pci_walk_bus(top: bus, cb: __pci_dev_set_current_state, userdata: &state);
1500}
1501
1502/**
1503 * pci_set_low_power_state - Put a PCI device into a low-power state.
1504 * @dev: PCI device to handle.
1505 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1506 * @locked: whether pci_bus_sem is held
1507 *
1508 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1509 *
1510 * RETURN VALUE:
1511 * -EINVAL if the requested state is invalid.
1512 * -EIO if device does not support PCI PM or its PM capabilities register has a
1513 * wrong version, or device doesn't support the requested state.
1514 * 0 if device already is in the requested state.
1515 * 0 if device's power state has been successfully changed.
1516 */
1517static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1518{
1519 u16 pmcsr;
1520
1521 if (!dev->pm_cap)
1522 return -EIO;
1523
1524 /*
1525 * Validate transition: We can enter D0 from any state, but if
1526 * we're already in a low-power state, we can only go deeper. E.g.,
1527 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1528 * we'd have to go from D3 to D0, then to D1.
1529 */
1530 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1531 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1532 pci_power_name(dev->current_state),
1533 pci_power_name(state));
1534 return -EINVAL;
1535 }
1536
1537 /* Check if this device supports the desired state */
1538 if ((state == PCI_D1 && !dev->d1_support)
1539 || (state == PCI_D2 && !dev->d2_support))
1540 return -EIO;
1541
1542 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1543 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1544 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1545 pci_power_name(dev->current_state),
1546 pci_power_name(state));
1547 dev->current_state = PCI_D3cold;
1548 return -EIO;
1549 }
1550
1551 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1552 pmcsr |= state;
1553
1554 /* Enter specified state */
1555 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
1556
1557 /* Mandatory power management transition delays; see PCI PM 1.2. */
1558 if (state == PCI_D3hot)
1559 pci_dev_d3_sleep(dev);
1560 else if (state == PCI_D2)
1561 udelay(PCI_PM_D2_DELAY);
1562
1563 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1564 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1565 if (dev->current_state != state)
1566 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1567 pci_power_name(dev->current_state),
1568 pci_power_name(state));
1569
1570 if (dev->bus->self)
1571 pcie_aspm_pm_state_change(pdev: dev->bus->self, locked);
1572
1573 return 0;
1574}
1575
1576static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1577{
1578 int error;
1579
1580 /* Bound the state we're entering */
1581 if (state > PCI_D3cold)
1582 state = PCI_D3cold;
1583 else if (state < PCI_D0)
1584 state = PCI_D0;
1585 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1586
1587 /*
1588 * If the device or the parent bridge do not support PCI
1589 * PM, ignore the request if we're doing anything other
1590 * than putting it into D0 (which would only happen on
1591 * boot).
1592 */
1593 return 0;
1594
1595 /* Check if we're already there */
1596 if (dev->current_state == state)
1597 return 0;
1598
1599 if (state == PCI_D0)
1600 return pci_set_full_power_state(dev, locked);
1601
1602 /*
1603 * This device is quirked not to be put into D3, so don't put it in
1604 * D3
1605 */
1606 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1607 return 0;
1608
1609 if (state == PCI_D3cold) {
1610 /*
1611 * To put the device in D3cold, put it into D3hot in the native
1612 * way, then put it into D3cold using platform ops.
1613 */
1614 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1615
1616 if (pci_platform_power_transition(dev, PCI_D3cold))
1617 return error;
1618
1619 /* Powering off a bridge may power off the whole hierarchy */
1620 if (dev->current_state == PCI_D3cold)
1621 __pci_bus_set_current_state(bus: dev->subordinate, PCI_D3cold, locked);
1622 } else {
1623 error = pci_set_low_power_state(dev, state, locked);
1624
1625 if (pci_platform_power_transition(dev, state))
1626 return error;
1627 }
1628
1629 return 0;
1630}
1631
1632/**
1633 * pci_set_power_state - Set the power state of a PCI device
1634 * @dev: PCI device to handle.
1635 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1636 *
1637 * Transition a device to a new power state, using the platform firmware and/or
1638 * the device's PCI PM registers.
1639 *
1640 * RETURN VALUE:
1641 * -EINVAL if the requested state is invalid.
1642 * -EIO if device does not support PCI PM or its PM capabilities register has a
1643 * wrong version, or device doesn't support the requested state.
1644 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1645 * 0 if device already is in the requested state.
1646 * 0 if the transition is to D3 but D3 is not supported.
1647 * 0 if device's power state has been successfully changed.
1648 */
1649int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1650{
1651 return __pci_set_power_state(dev, state, locked: false);
1652}
1653EXPORT_SYMBOL(pci_set_power_state);
1654
1655int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1656{
1657 lockdep_assert_held(&pci_bus_sem);
1658
1659 return __pci_set_power_state(dev, state, locked: true);
1660}
1661EXPORT_SYMBOL(pci_set_power_state_locked);
1662
1663#define PCI_EXP_SAVE_REGS 7
1664
1665static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1666 u16 cap, bool extended)
1667{
1668 struct pci_cap_saved_state *tmp;
1669
1670 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1671 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1672 return tmp;
1673 }
1674 return NULL;
1675}
1676
1677struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1678{
1679 return _pci_find_saved_cap(pci_dev: dev, cap, extended: false);
1680}
1681
1682struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1683{
1684 return _pci_find_saved_cap(pci_dev: dev, cap, extended: true);
1685}
1686
1687static int pci_save_pcie_state(struct pci_dev *dev)
1688{
1689 int i = 0;
1690 struct pci_cap_saved_state *save_state;
1691 u16 *cap;
1692
1693 if (!pci_is_pcie(dev))
1694 return 0;
1695
1696 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1697 if (!save_state) {
1698 pci_err(dev, "buffer not found in %s\n", __func__);
1699 return -ENOMEM;
1700 }
1701
1702 cap = (u16 *)&save_state->cap.data[0];
1703 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &cap[i++]);
1704 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, val: &cap[i++]);
1705 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, val: &cap[i++]);
1706 pcie_capability_read_word(dev, PCI_EXP_RTCTL, val: &cap[i++]);
1707 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, val: &cap[i++]);
1708 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, val: &cap[i++]);
1709 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, val: &cap[i++]);
1710
1711 pci_save_aspm_l1ss_state(dev);
1712 pci_save_ltr_state(dev);
1713
1714 return 0;
1715}
1716
1717static void pci_restore_pcie_state(struct pci_dev *dev)
1718{
1719 int i = 0;
1720 struct pci_cap_saved_state *save_state;
1721 u16 *cap;
1722
1723 /*
1724 * Restore max latencies (in the LTR capability) before enabling
1725 * LTR itself in PCI_EXP_DEVCTL2.
1726 */
1727 pci_restore_ltr_state(dev);
1728 pci_restore_aspm_l1ss_state(dev);
1729
1730 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1731 if (!save_state)
1732 return;
1733
1734 /*
1735 * Downstream ports reset the LTR enable bit when link goes down.
1736 * Check and re-configure the bit here before restoring device.
1737 * PCIe r5.0, sec 7.5.3.16.
1738 */
1739 pci_bridge_reconfigure_ltr(pdev: dev);
1740
1741 cap = (u16 *)&save_state->cap.data[0];
1742 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, val: cap[i++]);
1743 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, val: cap[i++]);
1744 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, val: cap[i++]);
1745 pcie_capability_write_word(dev, PCI_EXP_RTCTL, val: cap[i++]);
1746 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, val: cap[i++]);
1747 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, val: cap[i++]);
1748 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, val: cap[i++]);
1749}
1750
1751static int pci_save_pcix_state(struct pci_dev *dev)
1752{
1753 int pos;
1754 struct pci_cap_saved_state *save_state;
1755
1756 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1757 if (!pos)
1758 return 0;
1759
1760 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1761 if (!save_state) {
1762 pci_err(dev, "buffer not found in %s\n", __func__);
1763 return -ENOMEM;
1764 }
1765
1766 pci_read_config_word(dev, where: pos + PCI_X_CMD,
1767 val: (u16 *)save_state->cap.data);
1768
1769 return 0;
1770}
1771
1772static void pci_restore_pcix_state(struct pci_dev *dev)
1773{
1774 int i = 0, pos;
1775 struct pci_cap_saved_state *save_state;
1776 u16 *cap;
1777
1778 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1779 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1780 if (!save_state || !pos)
1781 return;
1782 cap = (u16 *)&save_state->cap.data[0];
1783
1784 pci_write_config_word(dev, where: pos + PCI_X_CMD, val: cap[i++]);
1785}
1786
1787/**
1788 * pci_save_state - save the PCI configuration space of a device before
1789 * suspending
1790 * @dev: PCI device that we're dealing with
1791 */
1792int pci_save_state(struct pci_dev *dev)
1793{
1794 int i;
1795 /* XXX: 100% dword access ok here? */
1796 for (i = 0; i < 16; i++) {
1797 pci_read_config_dword(dev, where: i * 4, val: &dev->saved_config_space[i]);
1798 pci_dbg(dev, "save config %#04x: %#010x\n",
1799 i * 4, dev->saved_config_space[i]);
1800 }
1801 dev->state_saved = true;
1802
1803 i = pci_save_pcie_state(dev);
1804 if (i != 0)
1805 return i;
1806
1807 i = pci_save_pcix_state(dev);
1808 if (i != 0)
1809 return i;
1810
1811 pci_save_dpc_state(dev);
1812 pci_save_aer_state(dev);
1813 pci_save_ptm_state(dev);
1814 pci_save_tph_state(dev);
1815 return pci_save_vc_state(dev);
1816}
1817EXPORT_SYMBOL(pci_save_state);
1818
1819static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1820 u32 saved_val, int retry, bool force)
1821{
1822 u32 val;
1823
1824 pci_read_config_dword(dev: pdev, where: offset, val: &val);
1825 if (!force && val == saved_val)
1826 return;
1827
1828 for (;;) {
1829 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1830 offset, val, saved_val);
1831 pci_write_config_dword(dev: pdev, where: offset, val: saved_val);
1832 if (retry-- <= 0)
1833 return;
1834
1835 pci_read_config_dword(dev: pdev, where: offset, val: &val);
1836 if (val == saved_val)
1837 return;
1838
1839 mdelay(1);
1840 }
1841}
1842
1843static void pci_restore_config_space_range(struct pci_dev *pdev,
1844 int start, int end, int retry,
1845 bool force)
1846{
1847 int index;
1848
1849 for (index = end; index >= start; index--)
1850 pci_restore_config_dword(pdev, offset: 4 * index,
1851 saved_val: pdev->saved_config_space[index],
1852 retry, force);
1853}
1854
1855static void pci_restore_config_space(struct pci_dev *pdev)
1856{
1857 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1858 pci_restore_config_space_range(pdev, start: 10, end: 15, retry: 0, force: false);
1859 /* Restore BARs before the command register. */
1860 pci_restore_config_space_range(pdev, start: 4, end: 9, retry: 10, force: false);
1861 pci_restore_config_space_range(pdev, start: 0, end: 3, retry: 0, force: false);
1862 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1863 pci_restore_config_space_range(pdev, start: 12, end: 15, retry: 0, force: false);
1864
1865 /*
1866 * Force rewriting of prefetch registers to avoid S3 resume
1867 * issues on Intel PCI bridges that occur when these
1868 * registers are not explicitly written.
1869 */
1870 pci_restore_config_space_range(pdev, start: 9, end: 11, retry: 0, force: true);
1871 pci_restore_config_space_range(pdev, start: 0, end: 8, retry: 0, force: false);
1872 } else {
1873 pci_restore_config_space_range(pdev, start: 0, end: 15, retry: 0, force: false);
1874 }
1875}
1876
1877static void pci_restore_rebar_state(struct pci_dev *pdev)
1878{
1879 unsigned int pos, nbars, i;
1880 u32 ctrl;
1881
1882 pos = pdev->rebar_cap;
1883 if (!pos)
1884 return;
1885
1886 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
1887 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1888
1889 for (i = 0; i < nbars; i++, pos += 8) {
1890 struct resource *res;
1891 int bar_idx, size;
1892
1893 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
1894 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1895 res = pci_resource_n(pdev, bar_idx);
1896 size = pci_rebar_bytes_to_size(bytes: resource_size(res));
1897 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1898 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1899 pci_write_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: ctrl);
1900 }
1901}
1902
1903/**
1904 * pci_restore_state - Restore the saved state of a PCI device
1905 * @dev: PCI device that we're dealing with
1906 */
1907void pci_restore_state(struct pci_dev *dev)
1908{
1909 if (!dev->state_saved)
1910 return;
1911
1912 pci_restore_pcie_state(dev);
1913 pci_restore_pasid_state(pdev: dev);
1914 pci_restore_pri_state(pdev: dev);
1915 pci_restore_ats_state(dev);
1916 pci_restore_vc_state(dev);
1917 pci_restore_rebar_state(pdev: dev);
1918 pci_restore_dpc_state(dev);
1919 pci_restore_ptm_state(dev);
1920 pci_restore_tph_state(dev);
1921
1922 pci_aer_clear_status(dev);
1923 pci_restore_aer_state(dev);
1924
1925 pci_restore_config_space(pdev: dev);
1926
1927 pci_restore_pcix_state(dev);
1928 pci_restore_msi_state(dev);
1929
1930 /* Restore ACS and IOV configuration state */
1931 pci_enable_acs(dev);
1932 pci_restore_iov_state(dev);
1933
1934 dev->state_saved = false;
1935}
1936EXPORT_SYMBOL(pci_restore_state);
1937
1938struct pci_saved_state {
1939 u32 config_space[16];
1940 struct pci_cap_saved_data cap[];
1941};
1942
1943/**
1944 * pci_store_saved_state - Allocate and return an opaque struct containing
1945 * the device saved state.
1946 * @dev: PCI device that we're dealing with
1947 *
1948 * Return NULL if no state or error.
1949 */
1950struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1951{
1952 struct pci_saved_state *state;
1953 struct pci_cap_saved_state *tmp;
1954 struct pci_cap_saved_data *cap;
1955 size_t size;
1956
1957 if (!dev->state_saved)
1958 return NULL;
1959
1960 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1961
1962 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1963 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1964
1965 state = kzalloc(size, GFP_KERNEL);
1966 if (!state)
1967 return NULL;
1968
1969 memcpy(state->config_space, dev->saved_config_space,
1970 sizeof(state->config_space));
1971
1972 cap = state->cap;
1973 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1974 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1975 memcpy(cap, &tmp->cap, len);
1976 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1977 }
1978 /* Empty cap_save terminates list */
1979
1980 return state;
1981}
1982EXPORT_SYMBOL_GPL(pci_store_saved_state);
1983
1984/**
1985 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1986 * @dev: PCI device that we're dealing with
1987 * @state: Saved state returned from pci_store_saved_state()
1988 */
1989int pci_load_saved_state(struct pci_dev *dev,
1990 struct pci_saved_state *state)
1991{
1992 struct pci_cap_saved_data *cap;
1993
1994 dev->state_saved = false;
1995
1996 if (!state)
1997 return 0;
1998
1999 memcpy(dev->saved_config_space, state->config_space,
2000 sizeof(state->config_space));
2001
2002 cap = state->cap;
2003 while (cap->size) {
2004 struct pci_cap_saved_state *tmp;
2005
2006 tmp = _pci_find_saved_cap(pci_dev: dev, cap: cap->cap_nr, extended: cap->cap_extended);
2007 if (!tmp || tmp->cap.size != cap->size)
2008 return -EINVAL;
2009
2010 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2011 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2012 sizeof(struct pci_cap_saved_data) + cap->size);
2013 }
2014
2015 dev->state_saved = true;
2016 return 0;
2017}
2018EXPORT_SYMBOL_GPL(pci_load_saved_state);
2019
2020/**
2021 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2022 * and free the memory allocated for it.
2023 * @dev: PCI device that we're dealing with
2024 * @state: Pointer to saved state returned from pci_store_saved_state()
2025 */
2026int pci_load_and_free_saved_state(struct pci_dev *dev,
2027 struct pci_saved_state **state)
2028{
2029 int ret = pci_load_saved_state(dev, *state);
2030 kfree(objp: *state);
2031 *state = NULL;
2032 return ret;
2033}
2034EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2035
2036int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2037{
2038 return pci_enable_resources(dev, mask: bars);
2039}
2040
2041static int pci_host_bridge_enable_device(struct pci_dev *dev)
2042{
2043 struct pci_host_bridge *host_bridge = pci_find_host_bridge(bus: dev->bus);
2044 int err;
2045
2046 if (host_bridge && host_bridge->enable_device) {
2047 err = host_bridge->enable_device(host_bridge, dev);
2048 if (err)
2049 return err;
2050 }
2051
2052 return 0;
2053}
2054
2055static void pci_host_bridge_disable_device(struct pci_dev *dev)
2056{
2057 struct pci_host_bridge *host_bridge = pci_find_host_bridge(bus: dev->bus);
2058
2059 if (host_bridge && host_bridge->disable_device)
2060 host_bridge->disable_device(host_bridge, dev);
2061}
2062
2063static int do_pci_enable_device(struct pci_dev *dev, int bars)
2064{
2065 int err;
2066 struct pci_dev *bridge;
2067 u16 cmd;
2068 u8 pin;
2069
2070 err = pci_set_power_state(dev, PCI_D0);
2071 if (err < 0 && err != -EIO)
2072 return err;
2073
2074 bridge = pci_upstream_bridge(dev);
2075 if (bridge)
2076 pcie_aspm_powersave_config_link(pdev: bridge);
2077
2078 err = pci_host_bridge_enable_device(dev);
2079 if (err)
2080 return err;
2081
2082 err = pcibios_enable_device(dev, bars);
2083 if (err < 0)
2084 goto err_enable;
2085 pci_fixup_device(pass: pci_fixup_enable, dev);
2086
2087 if (dev->msi_enabled || dev->msix_enabled)
2088 return 0;
2089
2090 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, val: &pin);
2091 if (pin) {
2092 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
2093 if (cmd & PCI_COMMAND_INTX_DISABLE)
2094 pci_write_config_word(dev, PCI_COMMAND,
2095 val: cmd & ~PCI_COMMAND_INTX_DISABLE);
2096 }
2097
2098 return 0;
2099
2100err_enable:
2101 pci_host_bridge_disable_device(dev);
2102
2103 return err;
2104
2105}
2106
2107/**
2108 * pci_reenable_device - Resume abandoned device
2109 * @dev: PCI device to be resumed
2110 *
2111 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2112 * to be called by normal code, write proper resume handler and use it instead.
2113 */
2114int pci_reenable_device(struct pci_dev *dev)
2115{
2116 if (pci_is_enabled(pdev: dev))
2117 return do_pci_enable_device(dev, bars: (1 << PCI_NUM_RESOURCES) - 1);
2118 return 0;
2119}
2120EXPORT_SYMBOL(pci_reenable_device);
2121
2122static void pci_enable_bridge(struct pci_dev *dev)
2123{
2124 struct pci_dev *bridge;
2125 int retval;
2126
2127 bridge = pci_upstream_bridge(dev);
2128 if (bridge)
2129 pci_enable_bridge(dev: bridge);
2130
2131 if (pci_is_enabled(pdev: dev)) {
2132 if (!dev->is_busmaster)
2133 pci_set_master(dev);
2134 return;
2135 }
2136
2137 retval = pci_enable_device(dev);
2138 if (retval)
2139 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2140 retval);
2141 pci_set_master(dev);
2142}
2143
2144static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2145{
2146 struct pci_dev *bridge;
2147 int err;
2148 int i, bars = 0;
2149
2150 /*
2151 * Power state could be unknown at this point, either due to a fresh
2152 * boot or a device removal call. So get the current power state
2153 * so that things like MSI message writing will behave as expected
2154 * (e.g. if the device really is in D0 at enable time).
2155 */
2156 pci_update_current_state(dev, state: dev->current_state);
2157
2158 if (atomic_inc_return(v: &dev->enable_cnt) > 1)
2159 return 0; /* already enabled */
2160
2161 bridge = pci_upstream_bridge(dev);
2162 if (bridge)
2163 pci_enable_bridge(dev: bridge);
2164
2165 /* only skip sriov related */
2166 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2167 if (dev->resource[i].flags & flags)
2168 bars |= (1 << i);
2169 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2170 if (dev->resource[i].flags & flags)
2171 bars |= (1 << i);
2172
2173 err = do_pci_enable_device(dev, bars);
2174 if (err < 0)
2175 atomic_dec(v: &dev->enable_cnt);
2176 return err;
2177}
2178
2179/**
2180 * pci_enable_device_mem - Initialize a device for use with Memory space
2181 * @dev: PCI device to be initialized
2182 *
2183 * Initialize device before it's used by a driver. Ask low-level code
2184 * to enable Memory resources. Wake up the device if it was suspended.
2185 * Beware, this function can fail.
2186 */
2187int pci_enable_device_mem(struct pci_dev *dev)
2188{
2189 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2190}
2191EXPORT_SYMBOL(pci_enable_device_mem);
2192
2193/**
2194 * pci_enable_device - Initialize device before it's used by a driver.
2195 * @dev: PCI device to be initialized
2196 *
2197 * Initialize device before it's used by a driver. Ask low-level code
2198 * to enable I/O and memory. Wake up the device if it was suspended.
2199 * Beware, this function can fail.
2200 *
2201 * Note we don't actually enable the device many times if we call
2202 * this function repeatedly (we just increment the count).
2203 */
2204int pci_enable_device(struct pci_dev *dev)
2205{
2206 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2207}
2208EXPORT_SYMBOL(pci_enable_device);
2209
2210/*
2211 * pcibios_device_add - provide arch specific hooks when adding device dev
2212 * @dev: the PCI device being added
2213 *
2214 * Permits the platform to provide architecture specific functionality when
2215 * devices are added. This is the default implementation. Architecture
2216 * implementations can override this.
2217 */
2218int __weak pcibios_device_add(struct pci_dev *dev)
2219{
2220 return 0;
2221}
2222
2223/**
2224 * pcibios_release_device - provide arch specific hooks when releasing
2225 * device dev
2226 * @dev: the PCI device being released
2227 *
2228 * Permits the platform to provide architecture specific functionality when
2229 * devices are released. This is the default implementation. Architecture
2230 * implementations can override this.
2231 */
2232void __weak pcibios_release_device(struct pci_dev *dev) {}
2233
2234/**
2235 * pcibios_disable_device - disable arch specific PCI resources for device dev
2236 * @dev: the PCI device to disable
2237 *
2238 * Disables architecture specific PCI resources for the device. This
2239 * is the default implementation. Architecture implementations can
2240 * override this.
2241 */
2242void __weak pcibios_disable_device(struct pci_dev *dev) {}
2243
2244static void do_pci_disable_device(struct pci_dev *dev)
2245{
2246 u16 pci_command;
2247
2248 pci_read_config_word(dev, PCI_COMMAND, val: &pci_command);
2249 if (pci_command & PCI_COMMAND_MASTER) {
2250 pci_command &= ~PCI_COMMAND_MASTER;
2251 pci_write_config_word(dev, PCI_COMMAND, val: pci_command);
2252 }
2253
2254 pcibios_disable_device(dev);
2255}
2256
2257/**
2258 * pci_disable_enabled_device - Disable device without updating enable_cnt
2259 * @dev: PCI device to disable
2260 *
2261 * NOTE: This function is a backend of PCI power management routines and is
2262 * not supposed to be called drivers.
2263 */
2264void pci_disable_enabled_device(struct pci_dev *dev)
2265{
2266 if (pci_is_enabled(pdev: dev))
2267 do_pci_disable_device(dev);
2268}
2269
2270/**
2271 * pci_disable_device - Disable PCI device after use
2272 * @dev: PCI device to be disabled
2273 *
2274 * Signal to the system that the PCI device is not in use by the system
2275 * anymore. This only involves disabling PCI bus-mastering, if active.
2276 *
2277 * Note we don't actually disable the device until all callers of
2278 * pci_enable_device() have called pci_disable_device().
2279 */
2280void pci_disable_device(struct pci_dev *dev)
2281{
2282 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2283 "disabling already-disabled device");
2284
2285 if (atomic_dec_return(v: &dev->enable_cnt) != 0)
2286 return;
2287
2288 pci_host_bridge_disable_device(dev);
2289
2290 do_pci_disable_device(dev);
2291
2292 dev->is_busmaster = 0;
2293}
2294EXPORT_SYMBOL(pci_disable_device);
2295
2296/**
2297 * pcibios_set_pcie_reset_state - set reset state for device dev
2298 * @dev: the PCIe device reset
2299 * @state: Reset state to enter into
2300 *
2301 * Set the PCIe reset state for the device. This is the default
2302 * implementation. Architecture implementations can override this.
2303 */
2304int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2305 enum pcie_reset_state state)
2306{
2307 return -EINVAL;
2308}
2309
2310/**
2311 * pci_set_pcie_reset_state - set reset state for device dev
2312 * @dev: the PCIe device reset
2313 * @state: Reset state to enter into
2314 *
2315 * Sets the PCI reset state for the device.
2316 */
2317int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2318{
2319 return pcibios_set_pcie_reset_state(dev, state);
2320}
2321EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2322
2323#ifdef CONFIG_PCIEAER
2324void pcie_clear_device_status(struct pci_dev *dev)
2325{
2326 u16 sta;
2327
2328 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, val: &sta);
2329 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, val: sta);
2330}
2331#endif
2332
2333/**
2334 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2335 * @dev: PCIe root port or event collector.
2336 */
2337void pcie_clear_root_pme_status(struct pci_dev *dev)
2338{
2339 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2340}
2341
2342/**
2343 * pci_check_pme_status - Check if given device has generated PME.
2344 * @dev: Device to check.
2345 *
2346 * Check the PME status of the device and if set, clear it and clear PME enable
2347 * (if set). Return 'true' if PME status and PME enable were both set or
2348 * 'false' otherwise.
2349 */
2350bool pci_check_pme_status(struct pci_dev *dev)
2351{
2352 int pmcsr_pos;
2353 u16 pmcsr;
2354 bool ret = false;
2355
2356 if (!dev->pm_cap)
2357 return false;
2358
2359 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2360 pci_read_config_word(dev, where: pmcsr_pos, val: &pmcsr);
2361 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2362 return false;
2363
2364 /* Clear PME status. */
2365 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2366 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2367 /* Disable PME to avoid interrupt flood. */
2368 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2369 ret = true;
2370 }
2371
2372 pci_write_config_word(dev, where: pmcsr_pos, val: pmcsr);
2373
2374 return ret;
2375}
2376
2377/**
2378 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2379 * @dev: Device to handle.
2380 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2381 *
2382 * Check if @dev has generated PME and queue a resume request for it in that
2383 * case.
2384 */
2385static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2386{
2387 if (pme_poll_reset && dev->pme_poll)
2388 dev->pme_poll = false;
2389
2390 if (pci_check_pme_status(dev)) {
2391 pci_wakeup_event(dev);
2392 pm_request_resume(dev: &dev->dev);
2393 }
2394 return 0;
2395}
2396
2397/**
2398 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2399 * @bus: Top bus of the subtree to walk.
2400 */
2401void pci_pme_wakeup_bus(struct pci_bus *bus)
2402{
2403 if (bus)
2404 pci_walk_bus(top: bus, cb: pci_pme_wakeup, userdata: (void *)true);
2405}
2406
2407
2408/**
2409 * pci_pme_capable - check the capability of PCI device to generate PME#
2410 * @dev: PCI device to handle.
2411 * @state: PCI state from which device will issue PME#.
2412 */
2413bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2414{
2415 if (!dev->pm_cap)
2416 return false;
2417
2418 return !!(dev->pme_support & (1 << state));
2419}
2420EXPORT_SYMBOL(pci_pme_capable);
2421
2422static void pci_pme_list_scan(struct work_struct *work)
2423{
2424 struct pci_pme_device *pme_dev, *n;
2425
2426 mutex_lock(&pci_pme_list_mutex);
2427 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2428 struct pci_dev *pdev = pme_dev->dev;
2429
2430 if (pdev->pme_poll) {
2431 struct pci_dev *bridge = pdev->bus->self;
2432 struct device *dev = &pdev->dev;
2433 struct device *bdev = bridge ? &bridge->dev : NULL;
2434 int bref = 0;
2435
2436 /*
2437 * If we have a bridge, it should be in an active/D0
2438 * state or the configuration space of subordinate
2439 * devices may not be accessible or stable over the
2440 * course of the call.
2441 */
2442 if (bdev) {
2443 bref = pm_runtime_get_if_active(dev: bdev);
2444 if (!bref)
2445 continue;
2446
2447 if (bridge->current_state != PCI_D0)
2448 goto put_bridge;
2449 }
2450
2451 /*
2452 * The device itself should be suspended but config
2453 * space must be accessible, therefore it cannot be in
2454 * D3cold.
2455 */
2456 if (pm_runtime_suspended(dev) &&
2457 pdev->current_state != PCI_D3cold)
2458 pci_pme_wakeup(dev: pdev, NULL);
2459
2460put_bridge:
2461 if (bref > 0)
2462 pm_runtime_put(dev: bdev);
2463 } else {
2464 list_del(entry: &pme_dev->list);
2465 kfree(objp: pme_dev);
2466 }
2467 }
2468 if (!list_empty(head: &pci_pme_list))
2469 queue_delayed_work(wq: system_freezable_wq, dwork: &pci_pme_work,
2470 delay: msecs_to_jiffies(PME_TIMEOUT));
2471 mutex_unlock(lock: &pci_pme_list_mutex);
2472}
2473
2474static void __pci_pme_active(struct pci_dev *dev, bool enable)
2475{
2476 u16 pmcsr;
2477
2478 if (!dev->pme_support)
2479 return;
2480
2481 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
2482 /* Clear PME_Status by writing 1 to it and enable PME# */
2483 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2484 if (!enable)
2485 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2486
2487 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
2488}
2489
2490/**
2491 * pci_pme_restore - Restore PME configuration after config space restore.
2492 * @dev: PCI device to update.
2493 */
2494void pci_pme_restore(struct pci_dev *dev)
2495{
2496 u16 pmcsr;
2497
2498 if (!dev->pme_support)
2499 return;
2500
2501 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
2502 if (dev->wakeup_prepared) {
2503 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2504 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2505 } else {
2506 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2507 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2508 }
2509 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
2510}
2511
2512/**
2513 * pci_pme_active - enable or disable PCI device's PME# function
2514 * @dev: PCI device to handle.
2515 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2516 *
2517 * The caller must verify that the device is capable of generating PME# before
2518 * calling this function with @enable equal to 'true'.
2519 */
2520void pci_pme_active(struct pci_dev *dev, bool enable)
2521{
2522 __pci_pme_active(dev, enable);
2523
2524 /*
2525 * PCI (as opposed to PCIe) PME requires that the device have
2526 * its PME# line hooked up correctly. Not all hardware vendors
2527 * do this, so the PME never gets delivered and the device
2528 * remains asleep. The easiest way around this is to
2529 * periodically walk the list of suspended devices and check
2530 * whether any have their PME flag set. The assumption is that
2531 * we'll wake up often enough anyway that this won't be a huge
2532 * hit, and the power savings from the devices will still be a
2533 * win.
2534 *
2535 * Although PCIe uses in-band PME message instead of PME# line
2536 * to report PME, PME does not work for some PCIe devices in
2537 * reality. For example, there are devices that set their PME
2538 * status bits, but don't really bother to send a PME message;
2539 * there are PCI Express Root Ports that don't bother to
2540 * trigger interrupts when they receive PME messages from the
2541 * devices below. So PME poll is used for PCIe devices too.
2542 */
2543
2544 if (dev->pme_poll) {
2545 struct pci_pme_device *pme_dev;
2546 if (enable) {
2547 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2548 GFP_KERNEL);
2549 if (!pme_dev) {
2550 pci_warn(dev, "can't enable PME#\n");
2551 return;
2552 }
2553 pme_dev->dev = dev;
2554 mutex_lock(&pci_pme_list_mutex);
2555 list_add(new: &pme_dev->list, head: &pci_pme_list);
2556 if (list_is_singular(head: &pci_pme_list))
2557 queue_delayed_work(wq: system_freezable_wq,
2558 dwork: &pci_pme_work,
2559 delay: msecs_to_jiffies(PME_TIMEOUT));
2560 mutex_unlock(lock: &pci_pme_list_mutex);
2561 } else {
2562 mutex_lock(&pci_pme_list_mutex);
2563 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2564 if (pme_dev->dev == dev) {
2565 list_del(entry: &pme_dev->list);
2566 kfree(objp: pme_dev);
2567 break;
2568 }
2569 }
2570 mutex_unlock(lock: &pci_pme_list_mutex);
2571 }
2572 }
2573
2574 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2575}
2576EXPORT_SYMBOL(pci_pme_active);
2577
2578/**
2579 * __pci_enable_wake - enable PCI device as wakeup event source
2580 * @dev: PCI device affected
2581 * @state: PCI state from which device will issue wakeup events
2582 * @enable: True to enable event generation; false to disable
2583 *
2584 * This enables the device as a wakeup event source, or disables it.
2585 * When such events involves platform-specific hooks, those hooks are
2586 * called automatically by this routine.
2587 *
2588 * Devices with legacy power management (no standard PCI PM capabilities)
2589 * always require such platform hooks.
2590 *
2591 * RETURN VALUE:
2592 * 0 is returned on success
2593 * -EINVAL is returned if device is not supposed to wake up the system
2594 * Error code depending on the platform is returned if both the platform and
2595 * the native mechanism fail to enable the generation of wake-up events
2596 */
2597static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2598{
2599 int ret = 0;
2600
2601 /*
2602 * Bridges that are not power-manageable directly only signal
2603 * wakeup on behalf of subordinate devices which is set up
2604 * elsewhere, so skip them. However, bridges that are
2605 * power-manageable may signal wakeup for themselves (for example,
2606 * on a hotplug event) and they need to be covered here.
2607 */
2608 if (!pci_power_manageable(pci_dev: dev))
2609 return 0;
2610
2611 /* Don't do the same thing twice in a row for one device. */
2612 if (!!enable == !!dev->wakeup_prepared)
2613 return 0;
2614
2615 /*
2616 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2617 * Anderson we should be doing PME# wake enable followed by ACPI wake
2618 * enable. To disable wake-up we call the platform first, for symmetry.
2619 */
2620
2621 if (enable) {
2622 int error;
2623
2624 /*
2625 * Enable PME signaling if the device can signal PME from
2626 * D3cold regardless of whether or not it can signal PME from
2627 * the current target state, because that will allow it to
2628 * signal PME when the hierarchy above it goes into D3cold and
2629 * the device itself ends up in D3cold as a result of that.
2630 */
2631 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2632 pci_pme_active(dev, true);
2633 else
2634 ret = 1;
2635 error = platform_pci_set_wakeup(dev, enable: true);
2636 if (ret)
2637 ret = error;
2638 if (!ret)
2639 dev->wakeup_prepared = true;
2640 } else {
2641 platform_pci_set_wakeup(dev, enable: false);
2642 pci_pme_active(dev, false);
2643 dev->wakeup_prepared = false;
2644 }
2645
2646 return ret;
2647}
2648
2649/**
2650 * pci_enable_wake - change wakeup settings for a PCI device
2651 * @pci_dev: Target device
2652 * @state: PCI state from which device will issue wakeup events
2653 * @enable: Whether or not to enable event generation
2654 *
2655 * If @enable is set, check device_may_wakeup() for the device before calling
2656 * __pci_enable_wake() for it.
2657 */
2658int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2659{
2660 if (enable && !device_may_wakeup(dev: &pci_dev->dev))
2661 return -EINVAL;
2662
2663 return __pci_enable_wake(dev: pci_dev, state, enable);
2664}
2665EXPORT_SYMBOL(pci_enable_wake);
2666
2667/**
2668 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2669 * @dev: PCI device to prepare
2670 * @enable: True to enable wake-up event generation; false to disable
2671 *
2672 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2673 * and this function allows them to set that up cleanly - pci_enable_wake()
2674 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2675 * ordering constraints.
2676 *
2677 * This function only returns error code if the device is not allowed to wake
2678 * up the system from sleep or it is not capable of generating PME# from both
2679 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2680 */
2681int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2682{
2683 return pci_pme_capable(dev, PCI_D3cold) ?
2684 pci_enable_wake(dev, PCI_D3cold, enable) :
2685 pci_enable_wake(dev, PCI_D3hot, enable);
2686}
2687EXPORT_SYMBOL(pci_wake_from_d3);
2688
2689/**
2690 * pci_target_state - find an appropriate low power state for a given PCI dev
2691 * @dev: PCI device
2692 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2693 *
2694 * Use underlying platform code to find a supported low power state for @dev.
2695 * If the platform can't manage @dev, return the deepest state from which it
2696 * can generate wake events, based on any available PME info.
2697 */
2698static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2699{
2700 if (platform_pci_power_manageable(dev)) {
2701 /*
2702 * Call the platform to find the target state for the device.
2703 */
2704 pci_power_t state = platform_pci_choose_state(dev);
2705
2706 switch (state) {
2707 case PCI_POWER_ERROR:
2708 case PCI_UNKNOWN:
2709 return PCI_D3hot;
2710
2711 case PCI_D1:
2712 case PCI_D2:
2713 if (pci_no_d1d2(dev))
2714 return PCI_D3hot;
2715 }
2716
2717 return state;
2718 }
2719
2720 /*
2721 * If the device is in D3cold even though it's not power-manageable by
2722 * the platform, it may have been powered down by non-standard means.
2723 * Best to let it slumber.
2724 */
2725 if (dev->current_state == PCI_D3cold)
2726 return PCI_D3cold;
2727 else if (!dev->pm_cap)
2728 return PCI_D0;
2729
2730 if (wakeup && dev->pme_support) {
2731 pci_power_t state = PCI_D3hot;
2732
2733 /*
2734 * Find the deepest state from which the device can generate
2735 * PME#.
2736 */
2737 while (state && !(dev->pme_support & (1 << state)))
2738 state--;
2739
2740 if (state)
2741 return state;
2742 else if (dev->pme_support & 1)
2743 return PCI_D0;
2744 }
2745
2746 return PCI_D3hot;
2747}
2748
2749/**
2750 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2751 * into a sleep state
2752 * @dev: Device to handle.
2753 *
2754 * Choose the power state appropriate for the device depending on whether
2755 * it can wake up the system and/or is power manageable by the platform
2756 * (PCI_D3hot is the default) and put the device into that state.
2757 */
2758int pci_prepare_to_sleep(struct pci_dev *dev)
2759{
2760 bool wakeup = device_may_wakeup(dev: &dev->dev);
2761 pci_power_t target_state = pci_target_state(dev, wakeup);
2762 int error;
2763
2764 if (target_state == PCI_POWER_ERROR)
2765 return -EIO;
2766
2767 pci_enable_wake(dev, target_state, wakeup);
2768
2769 error = pci_set_power_state(dev, target_state);
2770
2771 if (error)
2772 pci_enable_wake(dev, target_state, false);
2773
2774 return error;
2775}
2776EXPORT_SYMBOL(pci_prepare_to_sleep);
2777
2778/**
2779 * pci_back_from_sleep - turn PCI device on during system-wide transition
2780 * into working state
2781 * @dev: Device to handle.
2782 *
2783 * Disable device's system wake-up capability and put it into D0.
2784 */
2785int pci_back_from_sleep(struct pci_dev *dev)
2786{
2787 int ret = pci_set_power_state(dev, PCI_D0);
2788
2789 if (ret)
2790 return ret;
2791
2792 pci_enable_wake(dev, PCI_D0, false);
2793 return 0;
2794}
2795EXPORT_SYMBOL(pci_back_from_sleep);
2796
2797/**
2798 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2799 * @dev: PCI device being suspended.
2800 *
2801 * Prepare @dev to generate wake-up events at run time and put it into a low
2802 * power state.
2803 */
2804int pci_finish_runtime_suspend(struct pci_dev *dev)
2805{
2806 pci_power_t target_state;
2807 int error;
2808
2809 target_state = pci_target_state(dev, wakeup: device_can_wakeup(dev: &dev->dev));
2810 if (target_state == PCI_POWER_ERROR)
2811 return -EIO;
2812
2813 __pci_enable_wake(dev, state: target_state, enable: pci_dev_run_wake(dev));
2814
2815 error = pci_set_power_state(dev, target_state);
2816
2817 if (error)
2818 pci_enable_wake(dev, target_state, false);
2819
2820 return error;
2821}
2822
2823/**
2824 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2825 * @dev: Device to check.
2826 *
2827 * Return true if the device itself is capable of generating wake-up events
2828 * (through the platform or using the native PCIe PME) or if the device supports
2829 * PME and one of its upstream bridges can generate wake-up events.
2830 */
2831bool pci_dev_run_wake(struct pci_dev *dev)
2832{
2833 struct pci_bus *bus = dev->bus;
2834
2835 if (!dev->pme_support)
2836 return false;
2837
2838 /* PME-capable in principle, but not from the target power state */
2839 if (!pci_pme_capable(dev, pci_target_state(dev, wakeup: true)))
2840 return false;
2841
2842 if (device_can_wakeup(dev: &dev->dev))
2843 return true;
2844
2845 while (bus->parent) {
2846 struct pci_dev *bridge = bus->self;
2847
2848 if (device_can_wakeup(dev: &bridge->dev))
2849 return true;
2850
2851 bus = bus->parent;
2852 }
2853
2854 /* We have reached the root bus. */
2855 if (bus->bridge)
2856 return device_can_wakeup(dev: bus->bridge);
2857
2858 return false;
2859}
2860EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2861
2862/**
2863 * pci_dev_need_resume - Check if it is necessary to resume the device.
2864 * @pci_dev: Device to check.
2865 *
2866 * Return 'true' if the device is not runtime-suspended or it has to be
2867 * reconfigured due to wakeup settings difference between system and runtime
2868 * suspend, or the current power state of it is not suitable for the upcoming
2869 * (system-wide) transition.
2870 */
2871bool pci_dev_need_resume(struct pci_dev *pci_dev)
2872{
2873 struct device *dev = &pci_dev->dev;
2874 pci_power_t target_state;
2875
2876 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(dev: pci_dev))
2877 return true;
2878
2879 target_state = pci_target_state(dev: pci_dev, wakeup: device_may_wakeup(dev));
2880
2881 /*
2882 * If the earlier platform check has not triggered, D3cold is just power
2883 * removal on top of D3hot, so no need to resume the device in that
2884 * case.
2885 */
2886 return target_state != pci_dev->current_state &&
2887 target_state != PCI_D3cold &&
2888 pci_dev->current_state != PCI_D3hot;
2889}
2890
2891/**
2892 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2893 * @pci_dev: Device to check.
2894 *
2895 * If the device is suspended and it is not configured for system wakeup,
2896 * disable PME for it to prevent it from waking up the system unnecessarily.
2897 *
2898 * Note that if the device's power state is D3cold and the platform check in
2899 * pci_dev_need_resume() has not triggered, the device's configuration need not
2900 * be changed.
2901 */
2902void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2903{
2904 struct device *dev = &pci_dev->dev;
2905
2906 spin_lock_irq(lock: &dev->power.lock);
2907
2908 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2909 pci_dev->current_state < PCI_D3cold)
2910 __pci_pme_active(dev: pci_dev, enable: false);
2911
2912 spin_unlock_irq(lock: &dev->power.lock);
2913}
2914
2915/**
2916 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2917 * @pci_dev: Device to handle.
2918 *
2919 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2920 * it might have been disabled during the prepare phase of system suspend if
2921 * the device was not configured for system wakeup.
2922 */
2923void pci_dev_complete_resume(struct pci_dev *pci_dev)
2924{
2925 struct device *dev = &pci_dev->dev;
2926
2927 if (!pci_dev_run_wake(pci_dev))
2928 return;
2929
2930 spin_lock_irq(lock: &dev->power.lock);
2931
2932 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2933 __pci_pme_active(dev: pci_dev, enable: true);
2934
2935 spin_unlock_irq(lock: &dev->power.lock);
2936}
2937
2938/**
2939 * pci_choose_state - Choose the power state of a PCI device.
2940 * @dev: Target PCI device.
2941 * @state: Target state for the whole system.
2942 *
2943 * Returns PCI power state suitable for @dev and @state.
2944 */
2945pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2946{
2947 if (state.event == PM_EVENT_ON)
2948 return PCI_D0;
2949
2950 return pci_target_state(dev, wakeup: false);
2951}
2952EXPORT_SYMBOL(pci_choose_state);
2953
2954void pci_config_pm_runtime_get(struct pci_dev *pdev)
2955{
2956 struct device *dev = &pdev->dev;
2957 struct device *parent = dev->parent;
2958
2959 if (parent)
2960 pm_runtime_get_sync(dev: parent);
2961 pm_runtime_get_noresume(dev);
2962 /*
2963 * pdev->current_state is set to PCI_D3cold during suspending,
2964 * so wait until suspending completes
2965 */
2966 pm_runtime_barrier(dev);
2967 /*
2968 * Only need to resume devices in D3cold, because config
2969 * registers are still accessible for devices suspended but
2970 * not in D3cold.
2971 */
2972 if (pdev->current_state == PCI_D3cold)
2973 pm_runtime_resume(dev);
2974}
2975
2976void pci_config_pm_runtime_put(struct pci_dev *pdev)
2977{
2978 struct device *dev = &pdev->dev;
2979 struct device *parent = dev->parent;
2980
2981 pm_runtime_put(dev);
2982 if (parent)
2983 pm_runtime_put_sync(dev: parent);
2984}
2985
2986static const struct dmi_system_id bridge_d3_blacklist[] = {
2987#ifdef CONFIG_X86
2988 {
2989 /*
2990 * Gigabyte X299 root port is not marked as hotplug capable
2991 * which allows Linux to power manage it. However, this
2992 * confuses the BIOS SMI handler so don't power manage root
2993 * ports on that system.
2994 */
2995 .ident = "X299 DESIGNARE EX-CF",
2996 .matches = {
2997 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2998 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2999 },
3000 },
3001 {
3002 /*
3003 * Downstream device is not accessible after putting a root port
3004 * into D3cold and back into D0 on Elo Continental Z2 board
3005 */
3006 .ident = "Elo Continental Z2",
3007 .matches = {
3008 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3009 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3010 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3011 },
3012 },
3013 {
3014 /*
3015 * Changing power state of root port dGPU is connected fails
3016 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3017 */
3018 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3019 .matches = {
3020 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3021 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3022 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3023 },
3024 },
3025#endif
3026 { }
3027};
3028
3029/**
3030 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3031 * @bridge: Bridge to check
3032 *
3033 * This function checks if it is possible to move the bridge to D3.
3034 * Currently we only allow D3 for some PCIe ports and for Thunderbolt.
3035 */
3036bool pci_bridge_d3_possible(struct pci_dev *bridge)
3037{
3038 if (!pci_is_pcie(dev: bridge))
3039 return false;
3040
3041 switch (pci_pcie_type(dev: bridge)) {
3042 case PCI_EXP_TYPE_ROOT_PORT:
3043 case PCI_EXP_TYPE_UPSTREAM:
3044 case PCI_EXP_TYPE_DOWNSTREAM:
3045 if (pci_bridge_d3_disable)
3046 return false;
3047
3048 /*
3049 * Hotplug ports handled by firmware in System Management Mode
3050 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3051 */
3052 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3053 return false;
3054
3055 if (pci_bridge_d3_force)
3056 return true;
3057
3058 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3059 if (bridge->is_thunderbolt)
3060 return true;
3061
3062 /* Platform might know better if the bridge supports D3 */
3063 if (platform_pci_bridge_d3(dev: bridge))
3064 return true;
3065
3066 /*
3067 * Hotplug ports handled natively by the OS were not validated
3068 * by vendors for runtime D3 at least until 2018 because there
3069 * was no OS support.
3070 */
3071 if (bridge->is_hotplug_bridge)
3072 return false;
3073
3074 if (dmi_check_system(list: bridge_d3_blacklist))
3075 return false;
3076
3077 /*
3078 * Out of caution, we only allow PCIe ports from 2015 or newer
3079 * into D3 on x86.
3080 */
3081 if (!IS_ENABLED(CONFIG_X86) || dmi_get_bios_year() >= 2015)
3082 return true;
3083 break;
3084 }
3085
3086 return false;
3087}
3088
3089static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3090{
3091 bool *d3cold_ok = data;
3092
3093 if (/* The device needs to be allowed to go D3cold ... */
3094 dev->no_d3cold || !dev->d3cold_allowed ||
3095
3096 /* ... and if it is wakeup capable to do so from D3cold. */
3097 (device_may_wakeup(dev: &dev->dev) &&
3098 !pci_pme_capable(dev, PCI_D3cold)) ||
3099
3100 /* If it is a bridge it must be allowed to go to D3. */
3101 !pci_power_manageable(pci_dev: dev))
3102
3103 *d3cold_ok = false;
3104
3105 return !*d3cold_ok;
3106}
3107
3108/*
3109 * pci_bridge_d3_update - Update bridge D3 capabilities
3110 * @dev: PCI device which is changed
3111 *
3112 * Update upstream bridge PM capabilities accordingly depending on if the
3113 * device PM configuration was changed or the device is being removed. The
3114 * change is also propagated upstream.
3115 */
3116void pci_bridge_d3_update(struct pci_dev *dev)
3117{
3118 bool remove = !device_is_registered(dev: &dev->dev);
3119 struct pci_dev *bridge;
3120 bool d3cold_ok = true;
3121
3122 bridge = pci_upstream_bridge(dev);
3123 if (!bridge || !pci_bridge_d3_possible(bridge))
3124 return;
3125
3126 /*
3127 * If D3 is currently allowed for the bridge, removing one of its
3128 * children won't change that.
3129 */
3130 if (remove && bridge->bridge_d3)
3131 return;
3132
3133 /*
3134 * If D3 is currently allowed for the bridge and a child is added or
3135 * changed, disallowance of D3 can only be caused by that child, so
3136 * we only need to check that single device, not any of its siblings.
3137 *
3138 * If D3 is currently not allowed for the bridge, checking the device
3139 * first may allow us to skip checking its siblings.
3140 */
3141 if (!remove)
3142 pci_dev_check_d3cold(dev, data: &d3cold_ok);
3143
3144 /*
3145 * If D3 is currently not allowed for the bridge, this may be caused
3146 * either by the device being changed/removed or any of its siblings,
3147 * so we need to go through all children to find out if one of them
3148 * continues to block D3.
3149 */
3150 if (d3cold_ok && !bridge->bridge_d3)
3151 pci_walk_bus(top: bridge->subordinate, cb: pci_dev_check_d3cold,
3152 userdata: &d3cold_ok);
3153
3154 if (bridge->bridge_d3 != d3cold_ok) {
3155 bridge->bridge_d3 = d3cold_ok;
3156 /* Propagate change to upstream bridges */
3157 pci_bridge_d3_update(dev: bridge);
3158 }
3159}
3160
3161/**
3162 * pci_d3cold_enable - Enable D3cold for device
3163 * @dev: PCI device to handle
3164 *
3165 * This function can be used in drivers to enable D3cold from the device
3166 * they handle. It also updates upstream PCI bridge PM capabilities
3167 * accordingly.
3168 */
3169void pci_d3cold_enable(struct pci_dev *dev)
3170{
3171 if (dev->no_d3cold) {
3172 dev->no_d3cold = false;
3173 pci_bridge_d3_update(dev);
3174 }
3175}
3176EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3177
3178/**
3179 * pci_d3cold_disable - Disable D3cold for device
3180 * @dev: PCI device to handle
3181 *
3182 * This function can be used in drivers to disable D3cold from the device
3183 * they handle. It also updates upstream PCI bridge PM capabilities
3184 * accordingly.
3185 */
3186void pci_d3cold_disable(struct pci_dev *dev)
3187{
3188 if (!dev->no_d3cold) {
3189 dev->no_d3cold = true;
3190 pci_bridge_d3_update(dev);
3191 }
3192}
3193EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3194
3195void pci_pm_power_up_and_verify_state(struct pci_dev *pci_dev)
3196{
3197 pci_power_up(dev: pci_dev);
3198 pci_update_current_state(dev: pci_dev, PCI_D0);
3199}
3200
3201/**
3202 * pci_pm_init - Initialize PM functions of given PCI device
3203 * @dev: PCI device to handle.
3204 */
3205void pci_pm_init(struct pci_dev *dev)
3206{
3207 int pm;
3208 u16 status;
3209 u16 pmc;
3210
3211 device_enable_async_suspend(dev: &dev->dev);
3212 dev->wakeup_prepared = false;
3213
3214 dev->pm_cap = 0;
3215 dev->pme_support = 0;
3216
3217 /* find PCI PM capability in list */
3218 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3219 if (!pm)
3220 return;
3221 /* Check device's ability to generate PME# */
3222 pci_read_config_word(dev, where: pm + PCI_PM_PMC, val: &pmc);
3223
3224 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3225 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3226 pmc & PCI_PM_CAP_VER_MASK);
3227 return;
3228 }
3229
3230 dev->pm_cap = pm;
3231 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3232 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3233 dev->bridge_d3 = pci_bridge_d3_possible(bridge: dev);
3234 dev->d3cold_allowed = true;
3235
3236 dev->d1_support = false;
3237 dev->d2_support = false;
3238 if (!pci_no_d1d2(dev)) {
3239 if (pmc & PCI_PM_CAP_D1)
3240 dev->d1_support = true;
3241 if (pmc & PCI_PM_CAP_D2)
3242 dev->d2_support = true;
3243
3244 if (dev->d1_support || dev->d2_support)
3245 pci_info(dev, "supports%s%s\n",
3246 dev->d1_support ? " D1" : "",
3247 dev->d2_support ? " D2" : "");
3248 }
3249
3250 pmc &= PCI_PM_CAP_PME_MASK;
3251 if (pmc) {
3252 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3253 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3254 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3255 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3256 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3257 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3258 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3259 dev->pme_poll = true;
3260 /*
3261 * Make device's PM flags reflect the wake-up capability, but
3262 * let the user space enable it to wake up the system as needed.
3263 */
3264 device_set_wakeup_capable(dev: &dev->dev, capable: true);
3265 /* Disable the PME# generation functionality */
3266 pci_pme_active(dev, false);
3267 }
3268
3269 pci_read_config_word(dev, PCI_STATUS, val: &status);
3270 if (status & PCI_STATUS_IMM_READY)
3271 dev->imm_ready = 1;
3272 pci_pm_power_up_and_verify_state(pci_dev: dev);
3273 pm_runtime_forbid(dev: &dev->dev);
3274 pm_runtime_set_active(dev: &dev->dev);
3275 pm_runtime_enable(dev: &dev->dev);
3276}
3277
3278static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3279{
3280 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3281
3282 switch (prop) {
3283 case PCI_EA_P_MEM:
3284 case PCI_EA_P_VF_MEM:
3285 flags |= IORESOURCE_MEM;
3286 break;
3287 case PCI_EA_P_MEM_PREFETCH:
3288 case PCI_EA_P_VF_MEM_PREFETCH:
3289 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3290 break;
3291 case PCI_EA_P_IO:
3292 flags |= IORESOURCE_IO;
3293 break;
3294 default:
3295 return 0;
3296 }
3297
3298 return flags;
3299}
3300
3301static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3302 u8 prop)
3303{
3304 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3305 return &dev->resource[bei];
3306#ifdef CONFIG_PCI_IOV
3307 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3308 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3309 return &dev->resource[PCI_IOV_RESOURCES +
3310 bei - PCI_EA_BEI_VF_BAR0];
3311#endif
3312 else if (bei == PCI_EA_BEI_ROM)
3313 return &dev->resource[PCI_ROM_RESOURCE];
3314 else
3315 return NULL;
3316}
3317
3318/* Read an Enhanced Allocation (EA) entry */
3319static int pci_ea_read(struct pci_dev *dev, int offset)
3320{
3321 struct resource *res;
3322 const char *res_name;
3323 int ent_size, ent_offset = offset;
3324 resource_size_t start, end;
3325 unsigned long flags;
3326 u32 dw0, bei, base, max_offset;
3327 u8 prop;
3328 bool support_64 = (sizeof(resource_size_t) >= 8);
3329
3330 pci_read_config_dword(dev, where: ent_offset, val: &dw0);
3331 ent_offset += 4;
3332
3333 /* Entry size field indicates DWORDs after 1st */
3334 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3335
3336 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3337 goto out;
3338
3339 bei = FIELD_GET(PCI_EA_BEI, dw0);
3340 prop = FIELD_GET(PCI_EA_PP, dw0);
3341
3342 /*
3343 * If the Property is in the reserved range, try the Secondary
3344 * Property instead.
3345 */
3346 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3347 prop = FIELD_GET(PCI_EA_SP, dw0);
3348 if (prop > PCI_EA_P_BRIDGE_IO)
3349 goto out;
3350
3351 res = pci_ea_get_resource(dev, bei, prop);
3352 res_name = pci_resource_name(dev, i: bei);
3353 if (!res) {
3354 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3355 goto out;
3356 }
3357
3358 flags = pci_ea_flags(dev, prop);
3359 if (!flags) {
3360 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3361 goto out;
3362 }
3363
3364 /* Read Base */
3365 pci_read_config_dword(dev, where: ent_offset, val: &base);
3366 start = (base & PCI_EA_FIELD_MASK);
3367 ent_offset += 4;
3368
3369 /* Read MaxOffset */
3370 pci_read_config_dword(dev, where: ent_offset, val: &max_offset);
3371 ent_offset += 4;
3372
3373 /* Read Base MSBs (if 64-bit entry) */
3374 if (base & PCI_EA_IS_64) {
3375 u32 base_upper;
3376
3377 pci_read_config_dword(dev, where: ent_offset, val: &base_upper);
3378 ent_offset += 4;
3379
3380 flags |= IORESOURCE_MEM_64;
3381
3382 /* entry starts above 32-bit boundary, can't use */
3383 if (!support_64 && base_upper)
3384 goto out;
3385
3386 if (support_64)
3387 start |= ((u64)base_upper << 32);
3388 }
3389
3390 end = start + (max_offset | 0x03);
3391
3392 /* Read MaxOffset MSBs (if 64-bit entry) */
3393 if (max_offset & PCI_EA_IS_64) {
3394 u32 max_offset_upper;
3395
3396 pci_read_config_dword(dev, where: ent_offset, val: &max_offset_upper);
3397 ent_offset += 4;
3398
3399 flags |= IORESOURCE_MEM_64;
3400
3401 /* entry too big, can't use */
3402 if (!support_64 && max_offset_upper)
3403 goto out;
3404
3405 if (support_64)
3406 end += ((u64)max_offset_upper << 32);
3407 }
3408
3409 if (end < start) {
3410 pci_err(dev, "EA Entry crosses address boundary\n");
3411 goto out;
3412 }
3413
3414 if (ent_size != ent_offset - offset) {
3415 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3416 ent_size, ent_offset - offset);
3417 goto out;
3418 }
3419
3420 res->name = pci_name(pdev: dev);
3421 res->start = start;
3422 res->end = end;
3423 res->flags = flags;
3424
3425 if (bei <= PCI_EA_BEI_BAR5)
3426 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3427 res_name, res, prop);
3428 else if (bei == PCI_EA_BEI_ROM)
3429 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3430 res_name, res, prop);
3431 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3432 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3433 res_name, res, prop);
3434 else
3435 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3436 bei, res, prop);
3437
3438out:
3439 return offset + ent_size;
3440}
3441
3442/* Enhanced Allocation Initialization */
3443void pci_ea_init(struct pci_dev *dev)
3444{
3445 int ea;
3446 u8 num_ent;
3447 int offset;
3448 int i;
3449
3450 /* find PCI EA capability in list */
3451 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3452 if (!ea)
3453 return;
3454
3455 /* determine the number of entries */
3456 pci_bus_read_config_byte(bus: dev->bus, devfn: dev->devfn, where: ea + PCI_EA_NUM_ENT,
3457 val: &num_ent);
3458 num_ent &= PCI_EA_NUM_ENT_MASK;
3459
3460 offset = ea + PCI_EA_FIRST_ENT;
3461
3462 /* Skip DWORD 2 for type 1 functions */
3463 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3464 offset += 4;
3465
3466 /* parse each EA entry */
3467 for (i = 0; i < num_ent; ++i)
3468 offset = pci_ea_read(dev, offset);
3469}
3470
3471static void pci_add_saved_cap(struct pci_dev *pci_dev,
3472 struct pci_cap_saved_state *new_cap)
3473{
3474 hlist_add_head(n: &new_cap->next, h: &pci_dev->saved_cap_space);
3475}
3476
3477/**
3478 * _pci_add_cap_save_buffer - allocate buffer for saving given
3479 * capability registers
3480 * @dev: the PCI device
3481 * @cap: the capability to allocate the buffer for
3482 * @extended: Standard or Extended capability ID
3483 * @size: requested size of the buffer
3484 */
3485static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3486 bool extended, unsigned int size)
3487{
3488 int pos;
3489 struct pci_cap_saved_state *save_state;
3490
3491 if (extended)
3492 pos = pci_find_ext_capability(dev, cap);
3493 else
3494 pos = pci_find_capability(dev, cap);
3495
3496 if (!pos)
3497 return 0;
3498
3499 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3500 if (!save_state)
3501 return -ENOMEM;
3502
3503 save_state->cap.cap_nr = cap;
3504 save_state->cap.cap_extended = extended;
3505 save_state->cap.size = size;
3506 pci_add_saved_cap(pci_dev: dev, new_cap: save_state);
3507
3508 return 0;
3509}
3510
3511int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3512{
3513 return _pci_add_cap_save_buffer(dev, cap, extended: false, size);
3514}
3515
3516int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3517{
3518 return _pci_add_cap_save_buffer(dev, cap, extended: true, size);
3519}
3520
3521/**
3522 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3523 * @dev: the PCI device
3524 */
3525void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3526{
3527 int error;
3528
3529 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3530 PCI_EXP_SAVE_REGS * sizeof(u16));
3531 if (error)
3532 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3533
3534 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, size: sizeof(u16));
3535 if (error)
3536 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3537
3538 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3539 size: 2 * sizeof(u16));
3540 if (error)
3541 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3542
3543 pci_allocate_vc_save_buffers(dev);
3544}
3545
3546void pci_free_cap_save_buffers(struct pci_dev *dev)
3547{
3548 struct pci_cap_saved_state *tmp;
3549 struct hlist_node *n;
3550
3551 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3552 kfree(objp: tmp);
3553}
3554
3555/**
3556 * pci_configure_ari - enable or disable ARI forwarding
3557 * @dev: the PCI device
3558 *
3559 * If @dev and its upstream bridge both support ARI, enable ARI in the
3560 * bridge. Otherwise, disable ARI in the bridge.
3561 */
3562void pci_configure_ari(struct pci_dev *dev)
3563{
3564 u32 cap;
3565 struct pci_dev *bridge;
3566
3567 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3568 return;
3569
3570 bridge = dev->bus->self;
3571 if (!bridge)
3572 return;
3573
3574 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCAP2, val: &cap);
3575 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3576 return;
3577
3578 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3579 pcie_capability_set_word(dev: bridge, PCI_EXP_DEVCTL2,
3580 PCI_EXP_DEVCTL2_ARI);
3581 bridge->ari_enabled = 1;
3582 } else {
3583 pcie_capability_clear_word(dev: bridge, PCI_EXP_DEVCTL2,
3584 PCI_EXP_DEVCTL2_ARI);
3585 bridge->ari_enabled = 0;
3586 }
3587}
3588
3589static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3590{
3591 int pos;
3592 u16 cap, ctrl;
3593
3594 pos = pdev->acs_cap;
3595 if (!pos)
3596 return false;
3597
3598 /*
3599 * Except for egress control, capabilities are either required
3600 * or only required if controllable. Features missing from the
3601 * capability field can therefore be assumed as hard-wired enabled.
3602 */
3603 pci_read_config_word(dev: pdev, where: pos + PCI_ACS_CAP, val: &cap);
3604 acs_flags &= (cap | PCI_ACS_EC);
3605
3606 pci_read_config_word(dev: pdev, where: pos + PCI_ACS_CTRL, val: &ctrl);
3607 return (ctrl & acs_flags) == acs_flags;
3608}
3609
3610/**
3611 * pci_acs_enabled - test ACS against required flags for a given device
3612 * @pdev: device to test
3613 * @acs_flags: required PCI ACS flags
3614 *
3615 * Return true if the device supports the provided flags. Automatically
3616 * filters out flags that are not implemented on multifunction devices.
3617 *
3618 * Note that this interface checks the effective ACS capabilities of the
3619 * device rather than the actual capabilities. For instance, most single
3620 * function endpoints are not required to support ACS because they have no
3621 * opportunity for peer-to-peer access. We therefore return 'true'
3622 * regardless of whether the device exposes an ACS capability. This makes
3623 * it much easier for callers of this function to ignore the actual type
3624 * or topology of the device when testing ACS support.
3625 */
3626bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3627{
3628 int ret;
3629
3630 ret = pci_dev_specific_acs_enabled(dev: pdev, acs_flags);
3631 if (ret >= 0)
3632 return ret > 0;
3633
3634 /*
3635 * Conventional PCI and PCI-X devices never support ACS, either
3636 * effectively or actually. The shared bus topology implies that
3637 * any device on the bus can receive or snoop DMA.
3638 */
3639 if (!pci_is_pcie(dev: pdev))
3640 return false;
3641
3642 switch (pci_pcie_type(dev: pdev)) {
3643 /*
3644 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3645 * but since their primary interface is PCI/X, we conservatively
3646 * handle them as we would a non-PCIe device.
3647 */
3648 case PCI_EXP_TYPE_PCIE_BRIDGE:
3649 /*
3650 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3651 * applicable... must never implement an ACS Extended Capability...".
3652 * This seems arbitrary, but we take a conservative interpretation
3653 * of this statement.
3654 */
3655 case PCI_EXP_TYPE_PCI_BRIDGE:
3656 case PCI_EXP_TYPE_RC_EC:
3657 return false;
3658 /*
3659 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3660 * implement ACS in order to indicate their peer-to-peer capabilities,
3661 * regardless of whether they are single- or multi-function devices.
3662 */
3663 case PCI_EXP_TYPE_DOWNSTREAM:
3664 case PCI_EXP_TYPE_ROOT_PORT:
3665 return pci_acs_flags_enabled(pdev, acs_flags);
3666 /*
3667 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3668 * implemented by the remaining PCIe types to indicate peer-to-peer
3669 * capabilities, but only when they are part of a multifunction
3670 * device. The footnote for section 6.12 indicates the specific
3671 * PCIe types included here.
3672 */
3673 case PCI_EXP_TYPE_ENDPOINT:
3674 case PCI_EXP_TYPE_UPSTREAM:
3675 case PCI_EXP_TYPE_LEG_END:
3676 case PCI_EXP_TYPE_RC_END:
3677 if (!pdev->multifunction)
3678 break;
3679
3680 return pci_acs_flags_enabled(pdev, acs_flags);
3681 }
3682
3683 /*
3684 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3685 * to single function devices with the exception of downstream ports.
3686 */
3687 return true;
3688}
3689
3690/**
3691 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3692 * @start: starting downstream device
3693 * @end: ending upstream device or NULL to search to the root bus
3694 * @acs_flags: required flags
3695 *
3696 * Walk up a device tree from start to end testing PCI ACS support. If
3697 * any step along the way does not support the required flags, return false.
3698 */
3699bool pci_acs_path_enabled(struct pci_dev *start,
3700 struct pci_dev *end, u16 acs_flags)
3701{
3702 struct pci_dev *pdev, *parent = start;
3703
3704 do {
3705 pdev = parent;
3706
3707 if (!pci_acs_enabled(pdev, acs_flags))
3708 return false;
3709
3710 if (pci_is_root_bus(pbus: pdev->bus))
3711 return (end == NULL);
3712
3713 parent = pdev->bus->self;
3714 } while (pdev != end);
3715
3716 return true;
3717}
3718
3719/**
3720 * pci_acs_init - Initialize ACS if hardware supports it
3721 * @dev: the PCI device
3722 */
3723void pci_acs_init(struct pci_dev *dev)
3724{
3725 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3726
3727 /*
3728 * Attempt to enable ACS regardless of capability because some Root
3729 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3730 * the standard ACS capability but still support ACS via those
3731 * quirks.
3732 */
3733 pci_enable_acs(dev);
3734}
3735
3736void pci_rebar_init(struct pci_dev *pdev)
3737{
3738 pdev->rebar_cap = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3739}
3740
3741/**
3742 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3743 * @pdev: PCI device
3744 * @bar: BAR to find
3745 *
3746 * Helper to find the position of the ctrl register for a BAR.
3747 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3748 * Returns -ENOENT if no ctrl register for the BAR could be found.
3749 */
3750static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3751{
3752 unsigned int pos, nbars, i;
3753 u32 ctrl;
3754
3755 pos = pdev->rebar_cap;
3756 if (!pos)
3757 return -ENOTSUPP;
3758
3759 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3760 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3761
3762 for (i = 0; i < nbars; i++, pos += 8) {
3763 int bar_idx;
3764
3765 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3766 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3767 if (bar_idx == bar)
3768 return pos;
3769 }
3770
3771 return -ENOENT;
3772}
3773
3774/**
3775 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3776 * @pdev: PCI device
3777 * @bar: BAR to query
3778 *
3779 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3780 * (bit 0=1MB, bit 31=128TB). Returns 0 if BAR isn't resizable.
3781 */
3782u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3783{
3784 int pos;
3785 u32 cap;
3786
3787 pos = pci_rebar_find_pos(pdev, bar);
3788 if (pos < 0)
3789 return 0;
3790
3791 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CAP, val: &cap);
3792 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3793
3794 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3795 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3796 bar == 0 && cap == 0x700)
3797 return 0x3f00;
3798
3799 return cap;
3800}
3801EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3802
3803/**
3804 * pci_rebar_get_current_size - get the current size of a BAR
3805 * @pdev: PCI device
3806 * @bar: BAR to set size to
3807 *
3808 * Read the size of a BAR from the resizable BAR config.
3809 * Returns size if found or negative error code.
3810 */
3811int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3812{
3813 int pos;
3814 u32 ctrl;
3815
3816 pos = pci_rebar_find_pos(pdev, bar);
3817 if (pos < 0)
3818 return pos;
3819
3820 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3821 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3822}
3823
3824/**
3825 * pci_rebar_set_size - set a new size for a BAR
3826 * @pdev: PCI device
3827 * @bar: BAR to set size to
3828 * @size: new size as defined in the spec (0=1MB, 31=128TB)
3829 *
3830 * Set the new size of a BAR as defined in the spec.
3831 * Returns zero if resizing was successful, error code otherwise.
3832 */
3833int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3834{
3835 int pos;
3836 u32 ctrl;
3837
3838 pos = pci_rebar_find_pos(pdev, bar);
3839 if (pos < 0)
3840 return pos;
3841
3842 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3843 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3844 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3845 pci_write_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: ctrl);
3846 return 0;
3847}
3848
3849/**
3850 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3851 * @dev: the PCI device
3852 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3853 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3854 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3855 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3856 *
3857 * Return 0 if all upstream bridges support AtomicOp routing, egress
3858 * blocking is disabled on all upstream ports, and the root port supports
3859 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3860 * AtomicOp completion), or negative otherwise.
3861 */
3862int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3863{
3864 struct pci_bus *bus = dev->bus;
3865 struct pci_dev *bridge;
3866 u32 cap, ctl2;
3867
3868 /*
3869 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3870 * in Device Control 2 is reserved in VFs and the PF value applies
3871 * to all associated VFs.
3872 */
3873 if (dev->is_virtfn)
3874 return -EINVAL;
3875
3876 if (!pci_is_pcie(dev))
3877 return -EINVAL;
3878
3879 /*
3880 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3881 * AtomicOp requesters. For now, we only support endpoints as
3882 * requesters and root ports as completers. No endpoints as
3883 * completers, and no peer-to-peer.
3884 */
3885
3886 switch (pci_pcie_type(dev)) {
3887 case PCI_EXP_TYPE_ENDPOINT:
3888 case PCI_EXP_TYPE_LEG_END:
3889 case PCI_EXP_TYPE_RC_END:
3890 break;
3891 default:
3892 return -EINVAL;
3893 }
3894
3895 while (bus->parent) {
3896 bridge = bus->self;
3897
3898 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCAP2, val: &cap);
3899
3900 switch (pci_pcie_type(dev: bridge)) {
3901 /* Ensure switch ports support AtomicOp routing */
3902 case PCI_EXP_TYPE_UPSTREAM:
3903 case PCI_EXP_TYPE_DOWNSTREAM:
3904 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3905 return -EINVAL;
3906 break;
3907
3908 /* Ensure root port supports all the sizes we care about */
3909 case PCI_EXP_TYPE_ROOT_PORT:
3910 if ((cap & cap_mask) != cap_mask)
3911 return -EINVAL;
3912 break;
3913 }
3914
3915 /* Ensure upstream ports don't block AtomicOps on egress */
3916 if (pci_pcie_type(dev: bridge) == PCI_EXP_TYPE_UPSTREAM) {
3917 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCTL2,
3918 val: &ctl2);
3919 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3920 return -EINVAL;
3921 }
3922
3923 bus = bus->parent;
3924 }
3925
3926 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3927 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3928 return 0;
3929}
3930EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3931
3932/**
3933 * pci_release_region - Release a PCI bar
3934 * @pdev: PCI device whose resources were previously reserved by
3935 * pci_request_region()
3936 * @bar: BAR to release
3937 *
3938 * Releases the PCI I/O and memory resources previously reserved by a
3939 * successful call to pci_request_region(). Call this function only
3940 * after all use of the PCI regions has ceased.
3941 */
3942void pci_release_region(struct pci_dev *pdev, int bar)
3943{
3944 if (!pci_bar_index_is_valid(bar))
3945 return;
3946
3947 if (pci_resource_len(pdev, bar) == 0)
3948 return;
3949 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3950 release_region(pci_resource_start(pdev, bar),
3951 pci_resource_len(pdev, bar));
3952 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3953 release_mem_region(pci_resource_start(pdev, bar),
3954 pci_resource_len(pdev, bar));
3955}
3956EXPORT_SYMBOL(pci_release_region);
3957
3958/**
3959 * __pci_request_region - Reserved PCI I/O and memory resource
3960 * @pdev: PCI device whose resources are to be reserved
3961 * @bar: BAR to be reserved
3962 * @name: name of the driver requesting the resource
3963 * @exclusive: whether the region access is exclusive or not
3964 *
3965 * Returns: 0 on success, negative error code on failure.
3966 *
3967 * Mark the PCI region associated with PCI device @pdev BAR @bar as being
3968 * reserved by owner @name. Do not access any address inside the PCI regions
3969 * unless this call returns successfully.
3970 *
3971 * If @exclusive is set, then the region is marked so that userspace
3972 * is explicitly not allowed to map the resource via /dev/mem or
3973 * sysfs MMIO access.
3974 *
3975 * Returns 0 on success, or %EBUSY on error. A warning
3976 * message is also printed on failure.
3977 */
3978static int __pci_request_region(struct pci_dev *pdev, int bar,
3979 const char *name, int exclusive)
3980{
3981 if (!pci_bar_index_is_valid(bar))
3982 return -EINVAL;
3983
3984 if (pci_resource_len(pdev, bar) == 0)
3985 return 0;
3986
3987 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3988 if (!request_region(pci_resource_start(pdev, bar),
3989 pci_resource_len(pdev, bar), name))
3990 goto err_out;
3991 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3992 if (!__request_mem_region(pci_resource_start(pdev, bar),
3993 pci_resource_len(pdev, bar), name,
3994 exclusive))
3995 goto err_out;
3996 }
3997
3998 return 0;
3999
4000err_out:
4001 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4002 &pdev->resource[bar]);
4003 return -EBUSY;
4004}
4005
4006/**
4007 * pci_request_region - Reserve PCI I/O and memory resource
4008 * @pdev: PCI device whose resources are to be reserved
4009 * @bar: BAR to be reserved
4010 * @name: name of the driver requesting the resource
4011 *
4012 * Returns: 0 on success, negative error code on failure.
4013 *
4014 * Mark the PCI region associated with PCI device @pdev BAR @bar as being
4015 * reserved by owner @name. Do not access any address inside the PCI regions
4016 * unless this call returns successfully.
4017 *
4018 * Returns 0 on success, or %EBUSY on error. A warning
4019 * message is also printed on failure.
4020 */
4021int pci_request_region(struct pci_dev *pdev, int bar, const char *name)
4022{
4023 return __pci_request_region(pdev, bar, name, exclusive: 0);
4024}
4025EXPORT_SYMBOL(pci_request_region);
4026
4027/**
4028 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4029 * @pdev: PCI device whose resources were previously reserved
4030 * @bars: Bitmask of BARs to be released
4031 *
4032 * Release selected PCI I/O and memory resources previously reserved.
4033 * Call this function only after all use of the PCI regions has ceased.
4034 */
4035void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4036{
4037 int i;
4038
4039 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4040 if (bars & (1 << i))
4041 pci_release_region(pdev, i);
4042}
4043EXPORT_SYMBOL(pci_release_selected_regions);
4044
4045static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4046 const char *name, int excl)
4047{
4048 int i;
4049
4050 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4051 if (bars & (1 << i))
4052 if (__pci_request_region(pdev, bar: i, name, exclusive: excl))
4053 goto err_out;
4054 return 0;
4055
4056err_out:
4057 while (--i >= 0)
4058 if (bars & (1 << i))
4059 pci_release_region(pdev, i);
4060
4061 return -EBUSY;
4062}
4063
4064
4065/**
4066 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4067 * @pdev: PCI device whose resources are to be reserved
4068 * @bars: Bitmask of BARs to be requested
4069 * @name: Name of the driver requesting the resources
4070 *
4071 * Returns: 0 on success, negative error code on failure.
4072 */
4073int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4074 const char *name)
4075{
4076 return __pci_request_selected_regions(pdev, bars, name, excl: 0);
4077}
4078EXPORT_SYMBOL(pci_request_selected_regions);
4079
4080/**
4081 * pci_request_selected_regions_exclusive - Request regions exclusively
4082 * @pdev: PCI device to request regions from
4083 * @bars: bit mask of BARs to request
4084 * @name: name of the driver requesting the resources
4085 *
4086 * Returns: 0 on success, negative error code on failure.
4087 */
4088int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4089 const char *name)
4090{
4091 return __pci_request_selected_regions(pdev, bars, name,
4092 IORESOURCE_EXCLUSIVE);
4093}
4094EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4095
4096/**
4097 * pci_release_regions - Release reserved PCI I/O and memory resources
4098 * @pdev: PCI device whose resources were previously reserved by
4099 * pci_request_regions()
4100 *
4101 * Releases all PCI I/O and memory resources previously reserved by a
4102 * successful call to pci_request_regions(). Call this function only
4103 * after all use of the PCI regions has ceased.
4104 */
4105void pci_release_regions(struct pci_dev *pdev)
4106{
4107 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4108}
4109EXPORT_SYMBOL(pci_release_regions);
4110
4111/**
4112 * pci_request_regions - Reserve PCI I/O and memory resources
4113 * @pdev: PCI device whose resources are to be reserved
4114 * @name: name of the driver requesting the resources
4115 *
4116 * Mark all PCI regions associated with PCI device @pdev as being reserved by
4117 * owner @name. Do not access any address inside the PCI regions unless this
4118 * call returns successfully.
4119 *
4120 * Returns 0 on success, or %EBUSY on error. A warning
4121 * message is also printed on failure.
4122 */
4123int pci_request_regions(struct pci_dev *pdev, const char *name)
4124{
4125 return pci_request_selected_regions(pdev,
4126 ((1 << PCI_STD_NUM_BARS) - 1), name);
4127}
4128EXPORT_SYMBOL(pci_request_regions);
4129
4130/**
4131 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4132 * @pdev: PCI device whose resources are to be reserved
4133 * @name: name of the driver requesting the resources
4134 *
4135 * Returns: 0 on success, negative error code on failure.
4136 *
4137 * Mark all PCI regions associated with PCI device @pdev as being reserved
4138 * by owner @name. Do not access any address inside the PCI regions
4139 * unless this call returns successfully.
4140 *
4141 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4142 * and the sysfs MMIO access will not be allowed.
4143 *
4144 * Returns 0 on success, or %EBUSY on error. A warning message is also
4145 * printed on failure.
4146 */
4147int pci_request_regions_exclusive(struct pci_dev *pdev, const char *name)
4148{
4149 return pci_request_selected_regions_exclusive(pdev,
4150 ((1 << PCI_STD_NUM_BARS) - 1), name);
4151}
4152EXPORT_SYMBOL(pci_request_regions_exclusive);
4153
4154/*
4155 * Record the PCI IO range (expressed as CPU physical address + size).
4156 * Return a negative value if an error has occurred, zero otherwise
4157 */
4158int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4159 resource_size_t size)
4160{
4161 int ret = 0;
4162#ifdef PCI_IOBASE
4163 struct logic_pio_hwaddr *range;
4164
4165 if (!size || addr + size < addr)
4166 return -EINVAL;
4167
4168 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4169 if (!range)
4170 return -ENOMEM;
4171
4172 range->fwnode = fwnode;
4173 range->size = size;
4174 range->hw_start = addr;
4175 range->flags = LOGIC_PIO_CPU_MMIO;
4176
4177 ret = logic_pio_register_range(range);
4178 if (ret)
4179 kfree(range);
4180
4181 /* Ignore duplicates due to deferred probing */
4182 if (ret == -EEXIST)
4183 ret = 0;
4184#endif
4185
4186 return ret;
4187}
4188
4189phys_addr_t pci_pio_to_address(unsigned long pio)
4190{
4191#ifdef PCI_IOBASE
4192 if (pio < MMIO_UPPER_LIMIT)
4193 return logic_pio_to_hwaddr(pio);
4194#endif
4195
4196 return (phys_addr_t) OF_BAD_ADDR;
4197}
4198EXPORT_SYMBOL_GPL(pci_pio_to_address);
4199
4200unsigned long __weak pci_address_to_pio(phys_addr_t address)
4201{
4202#ifdef PCI_IOBASE
4203 return logic_pio_trans_cpuaddr(address);
4204#else
4205 if (address > IO_SPACE_LIMIT)
4206 return (unsigned long)-1;
4207
4208 return (unsigned long) address;
4209#endif
4210}
4211
4212/**
4213 * pci_remap_iospace - Remap the memory mapped I/O space
4214 * @res: Resource describing the I/O space
4215 * @phys_addr: physical address of range to be mapped
4216 *
4217 * Remap the memory mapped I/O space described by the @res and the CPU
4218 * physical address @phys_addr into virtual address space. Only
4219 * architectures that have memory mapped IO functions defined (and the
4220 * PCI_IOBASE value defined) should call this function.
4221 */
4222#ifndef pci_remap_iospace
4223int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4224{
4225#if defined(PCI_IOBASE)
4226 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4227
4228 if (!(res->flags & IORESOURCE_IO))
4229 return -EINVAL;
4230
4231 if (res->end > IO_SPACE_LIMIT)
4232 return -EINVAL;
4233
4234 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4235 pgprot_device(PAGE_KERNEL));
4236#else
4237 /*
4238 * This architecture does not have memory mapped I/O space,
4239 * so this function should never be called
4240 */
4241 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4242 return -ENODEV;
4243#endif
4244}
4245EXPORT_SYMBOL(pci_remap_iospace);
4246#endif
4247
4248/**
4249 * pci_unmap_iospace - Unmap the memory mapped I/O space
4250 * @res: resource to be unmapped
4251 *
4252 * Unmap the CPU virtual address @res from virtual address space. Only
4253 * architectures that have memory mapped IO functions defined (and the
4254 * PCI_IOBASE value defined) should call this function.
4255 */
4256void pci_unmap_iospace(struct resource *res)
4257{
4258#if defined(PCI_IOBASE)
4259 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4260
4261 vunmap_range(vaddr, vaddr + resource_size(res));
4262#endif
4263}
4264EXPORT_SYMBOL(pci_unmap_iospace);
4265
4266static void __pci_set_master(struct pci_dev *dev, bool enable)
4267{
4268 u16 old_cmd, cmd;
4269
4270 pci_read_config_word(dev, PCI_COMMAND, val: &old_cmd);
4271 if (enable)
4272 cmd = old_cmd | PCI_COMMAND_MASTER;
4273 else
4274 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4275 if (cmd != old_cmd) {
4276 pci_dbg(dev, "%s bus mastering\n",
4277 enable ? "enabling" : "disabling");
4278 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4279 }
4280 dev->is_busmaster = enable;
4281}
4282
4283/**
4284 * pcibios_setup - process "pci=" kernel boot arguments
4285 * @str: string used to pass in "pci=" kernel boot arguments
4286 *
4287 * Process kernel boot arguments. This is the default implementation.
4288 * Architecture specific implementations can override this as necessary.
4289 */
4290char * __weak __init pcibios_setup(char *str)
4291{
4292 return str;
4293}
4294
4295/**
4296 * pcibios_set_master - enable PCI bus-mastering for device dev
4297 * @dev: the PCI device to enable
4298 *
4299 * Enables PCI bus-mastering for the device. This is the default
4300 * implementation. Architecture specific implementations can override
4301 * this if necessary.
4302 */
4303void __weak pcibios_set_master(struct pci_dev *dev)
4304{
4305 u8 lat;
4306
4307 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4308 if (pci_is_pcie(dev))
4309 return;
4310
4311 pci_read_config_byte(dev, PCI_LATENCY_TIMER, val: &lat);
4312 if (lat < 16)
4313 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4314 else if (lat > pcibios_max_latency)
4315 lat = pcibios_max_latency;
4316 else
4317 return;
4318
4319 pci_write_config_byte(dev, PCI_LATENCY_TIMER, val: lat);
4320}
4321
4322/**
4323 * pci_set_master - enables bus-mastering for device dev
4324 * @dev: the PCI device to enable
4325 *
4326 * Enables bus-mastering on the device and calls pcibios_set_master()
4327 * to do the needed arch specific settings.
4328 */
4329void pci_set_master(struct pci_dev *dev)
4330{
4331 __pci_set_master(dev, enable: true);
4332 pcibios_set_master(dev);
4333}
4334EXPORT_SYMBOL(pci_set_master);
4335
4336/**
4337 * pci_clear_master - disables bus-mastering for device dev
4338 * @dev: the PCI device to disable
4339 */
4340void pci_clear_master(struct pci_dev *dev)
4341{
4342 __pci_set_master(dev, enable: false);
4343}
4344EXPORT_SYMBOL(pci_clear_master);
4345
4346/**
4347 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4348 * @dev: the PCI device for which MWI is to be enabled
4349 *
4350 * Helper function for pci_set_mwi.
4351 * Originally copied from drivers/net/acenic.c.
4352 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4353 *
4354 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4355 */
4356int pci_set_cacheline_size(struct pci_dev *dev)
4357{
4358 u8 cacheline_size;
4359
4360 if (!pci_cache_line_size)
4361 return -EINVAL;
4362
4363 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4364 equal to or multiple of the right value. */
4365 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, val: &cacheline_size);
4366 if (cacheline_size >= pci_cache_line_size &&
4367 (cacheline_size % pci_cache_line_size) == 0)
4368 return 0;
4369
4370 /* Write the correct value. */
4371 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, val: pci_cache_line_size);
4372 /* Read it back. */
4373 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, val: &cacheline_size);
4374 if (cacheline_size == pci_cache_line_size)
4375 return 0;
4376
4377 pci_dbg(dev, "cache line size of %d is not supported\n",
4378 pci_cache_line_size << 2);
4379
4380 return -EINVAL;
4381}
4382EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4383
4384/**
4385 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4386 * @dev: the PCI device for which MWI is enabled
4387 *
4388 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4389 *
4390 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4391 */
4392int pci_set_mwi(struct pci_dev *dev)
4393{
4394#ifdef PCI_DISABLE_MWI
4395 return 0;
4396#else
4397 int rc;
4398 u16 cmd;
4399
4400 rc = pci_set_cacheline_size(dev);
4401 if (rc)
4402 return rc;
4403
4404 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4405 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4406 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4407 cmd |= PCI_COMMAND_INVALIDATE;
4408 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4409 }
4410 return 0;
4411#endif
4412}
4413EXPORT_SYMBOL(pci_set_mwi);
4414
4415/**
4416 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4417 * @dev: the PCI device for which MWI is enabled
4418 *
4419 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4420 * Callers are not required to check the return value.
4421 *
4422 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4423 */
4424int pci_try_set_mwi(struct pci_dev *dev)
4425{
4426#ifdef PCI_DISABLE_MWI
4427 return 0;
4428#else
4429 return pci_set_mwi(dev);
4430#endif
4431}
4432EXPORT_SYMBOL(pci_try_set_mwi);
4433
4434/**
4435 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4436 * @dev: the PCI device to disable
4437 *
4438 * Disables PCI Memory-Write-Invalidate transaction on the device
4439 */
4440void pci_clear_mwi(struct pci_dev *dev)
4441{
4442#ifndef PCI_DISABLE_MWI
4443 u16 cmd;
4444
4445 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4446 if (cmd & PCI_COMMAND_INVALIDATE) {
4447 cmd &= ~PCI_COMMAND_INVALIDATE;
4448 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4449 }
4450#endif
4451}
4452EXPORT_SYMBOL(pci_clear_mwi);
4453
4454/**
4455 * pci_disable_parity - disable parity checking for device
4456 * @dev: the PCI device to operate on
4457 *
4458 * Disable parity checking for device @dev
4459 */
4460void pci_disable_parity(struct pci_dev *dev)
4461{
4462 u16 cmd;
4463
4464 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4465 if (cmd & PCI_COMMAND_PARITY) {
4466 cmd &= ~PCI_COMMAND_PARITY;
4467 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4468 }
4469}
4470
4471/**
4472 * pci_intx - enables/disables PCI INTx for device dev
4473 * @pdev: the PCI device to operate on
4474 * @enable: boolean: whether to enable or disable PCI INTx
4475 *
4476 * Enables/disables PCI INTx for device @pdev
4477 */
4478void pci_intx(struct pci_dev *pdev, int enable)
4479{
4480 u16 pci_command, new;
4481
4482 pci_read_config_word(dev: pdev, PCI_COMMAND, val: &pci_command);
4483
4484 if (enable)
4485 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4486 else
4487 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4488
4489 if (new == pci_command)
4490 return;
4491
4492 pci_write_config_word(dev: pdev, PCI_COMMAND, val: new);
4493}
4494EXPORT_SYMBOL_GPL(pci_intx);
4495
4496/**
4497 * pci_wait_for_pending_transaction - wait for pending transaction
4498 * @dev: the PCI device to operate on
4499 *
4500 * Return 0 if transaction is pending 1 otherwise.
4501 */
4502int pci_wait_for_pending_transaction(struct pci_dev *dev)
4503{
4504 if (!pci_is_pcie(dev))
4505 return 1;
4506
4507 return pci_wait_for_pending(dev, pos: pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4508 PCI_EXP_DEVSTA_TRPND);
4509}
4510EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4511
4512/**
4513 * pcie_flr - initiate a PCIe function level reset
4514 * @dev: device to reset
4515 *
4516 * Initiate a function level reset unconditionally on @dev without
4517 * checking any flags and DEVCAP
4518 */
4519int pcie_flr(struct pci_dev *dev)
4520{
4521 if (!pci_wait_for_pending_transaction(dev))
4522 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4523
4524 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4525
4526 if (dev->imm_ready)
4527 return 0;
4528
4529 /*
4530 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4531 * 100ms, but may silently discard requests while the FLR is in
4532 * progress. Wait 100ms before trying to access the device.
4533 */
4534 msleep(msecs: 100);
4535
4536 return pci_dev_wait(dev, reset_type: "FLR", PCIE_RESET_READY_POLL_MS);
4537}
4538EXPORT_SYMBOL_GPL(pcie_flr);
4539
4540/**
4541 * pcie_reset_flr - initiate a PCIe function level reset
4542 * @dev: device to reset
4543 * @probe: if true, return 0 if device can be reset this way
4544 *
4545 * Initiate a function level reset on @dev.
4546 */
4547int pcie_reset_flr(struct pci_dev *dev, bool probe)
4548{
4549 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4550 return -ENOTTY;
4551
4552 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4553 return -ENOTTY;
4554
4555 if (probe)
4556 return 0;
4557
4558 return pcie_flr(dev);
4559}
4560EXPORT_SYMBOL_GPL(pcie_reset_flr);
4561
4562static int pci_af_flr(struct pci_dev *dev, bool probe)
4563{
4564 int pos;
4565 u8 cap;
4566
4567 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4568 if (!pos)
4569 return -ENOTTY;
4570
4571 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4572 return -ENOTTY;
4573
4574 pci_read_config_byte(dev, where: pos + PCI_AF_CAP, val: &cap);
4575 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4576 return -ENOTTY;
4577
4578 if (probe)
4579 return 0;
4580
4581 /*
4582 * Wait for Transaction Pending bit to clear. A word-aligned test
4583 * is used, so we use the control offset rather than status and shift
4584 * the test bit to match.
4585 */
4586 if (!pci_wait_for_pending(dev, pos: pos + PCI_AF_CTRL,
4587 PCI_AF_STATUS_TP << 8))
4588 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4589
4590 pci_write_config_byte(dev, where: pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4591
4592 if (dev->imm_ready)
4593 return 0;
4594
4595 /*
4596 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4597 * updated 27 July 2006; a device must complete an FLR within
4598 * 100ms, but may silently discard requests while the FLR is in
4599 * progress. Wait 100ms before trying to access the device.
4600 */
4601 msleep(msecs: 100);
4602
4603 return pci_dev_wait(dev, reset_type: "AF_FLR", PCIE_RESET_READY_POLL_MS);
4604}
4605
4606/**
4607 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4608 * @dev: Device to reset.
4609 * @probe: if true, return 0 if the device can be reset this way.
4610 *
4611 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4612 * unset, it will be reinitialized internally when going from PCI_D3hot to
4613 * PCI_D0. If that's the case and the device is not in a low-power state
4614 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4615 *
4616 * NOTE: This causes the caller to sleep for twice the device power transition
4617 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4618 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4619 * Moreover, only devices in D0 can be reset by this function.
4620 */
4621static int pci_pm_reset(struct pci_dev *dev, bool probe)
4622{
4623 u16 csr;
4624
4625 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4626 return -ENOTTY;
4627
4628 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &csr);
4629 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4630 return -ENOTTY;
4631
4632 if (probe)
4633 return 0;
4634
4635 if (dev->current_state != PCI_D0)
4636 return -EINVAL;
4637
4638 csr &= ~PCI_PM_CTRL_STATE_MASK;
4639 csr |= PCI_D3hot;
4640 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: csr);
4641 pci_dev_d3_sleep(dev);
4642
4643 csr &= ~PCI_PM_CTRL_STATE_MASK;
4644 csr |= PCI_D0;
4645 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: csr);
4646 pci_dev_d3_sleep(dev);
4647
4648 return pci_dev_wait(dev, reset_type: "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4649}
4650
4651/**
4652 * pcie_wait_for_link_status - Wait for link status change
4653 * @pdev: Device whose link to wait for.
4654 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4655 * @active: Waiting for active or inactive?
4656 *
4657 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4658 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4659 */
4660static int pcie_wait_for_link_status(struct pci_dev *pdev,
4661 bool use_lt, bool active)
4662{
4663 u16 lnksta_mask, lnksta_match;
4664 unsigned long end_jiffies;
4665 u16 lnksta;
4666
4667 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4668 lnksta_match = active ? lnksta_mask : 0;
4669
4670 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4671 do {
4672 pcie_capability_read_word(dev: pdev, PCI_EXP_LNKSTA, val: &lnksta);
4673 if ((lnksta & lnksta_mask) == lnksta_match)
4674 return 0;
4675 msleep(msecs: 1);
4676 } while (time_before(jiffies, end_jiffies));
4677
4678 return -ETIMEDOUT;
4679}
4680
4681/**
4682 * pcie_retrain_link - Request a link retrain and wait for it to complete
4683 * @pdev: Device whose link to retrain.
4684 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4685 *
4686 * Trigger retraining of the PCIe Link and wait for the completion of the
4687 * retraining. As link retraining is known to asserts LBMS and may change
4688 * the Link Speed, LBMS is cleared after the retraining and the Link Speed
4689 * of the subordinate bus is updated.
4690 *
4691 * Retrain completion status is retrieved from the Link Status Register
4692 * according to @use_lt. It is not verified whether the use of the DLLLA
4693 * bit is valid.
4694 *
4695 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4696 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4697 */
4698int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4699{
4700 int rc;
4701
4702 /*
4703 * Ensure the updated LNKCTL parameters are used during link
4704 * training by checking that there is no ongoing link training that
4705 * may have started before link parameters were changed, so as to
4706 * avoid LTSSM race as recommended in Implementation Note at the end
4707 * of PCIe r6.1 sec 7.5.3.7.
4708 */
4709 rc = pcie_wait_for_link_status(pdev, use_lt: true, active: false);
4710 if (rc)
4711 return rc;
4712
4713 pcie_capability_set_word(dev: pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4714 if (pdev->clear_retrain_link) {
4715 /*
4716 * Due to an erratum in some devices the Retrain Link bit
4717 * needs to be cleared again manually to allow the link
4718 * training to succeed.
4719 */
4720 pcie_capability_clear_word(dev: pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4721 }
4722
4723 rc = pcie_wait_for_link_status(pdev, use_lt, active: !use_lt);
4724
4725 /*
4726 * Clear LBMS after a manual retrain so that the bit can be used
4727 * to track link speed or width changes made by hardware itself
4728 * in attempt to correct unreliable link operation.
4729 */
4730 pcie_reset_lbms(port: pdev);
4731
4732 /*
4733 * Ensure the Link Speed updates after retraining in case the Link
4734 * Speed was changed because of the retraining. While the bwctrl's
4735 * IRQ handler normally picks up the new Link Speed, clearing LBMS
4736 * races with the IRQ handler reading the Link Status register and
4737 * can result in the handler returning early without updating the
4738 * Link Speed.
4739 */
4740 if (pdev->subordinate)
4741 pcie_update_link_speed(bus: pdev->subordinate);
4742
4743 return rc;
4744}
4745
4746/**
4747 * pcie_wait_for_link_delay - Wait until link is active or inactive
4748 * @pdev: Bridge device
4749 * @active: waiting for active or inactive?
4750 * @delay: Delay to wait after link has become active (in ms)
4751 *
4752 * Use this to wait till link becomes active or inactive.
4753 */
4754static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4755 int delay)
4756{
4757 int rc;
4758
4759 /*
4760 * Some controllers might not implement link active reporting. In this
4761 * case, we wait for 1000 ms + any delay requested by the caller.
4762 */
4763 if (!pdev->link_active_reporting) {
4764 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4765 return true;
4766 }
4767
4768 /*
4769 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4770 * after which we should expect the link to be active if the reset was
4771 * successful. If so, software must wait a minimum 100ms before sending
4772 * configuration requests to devices downstream this port.
4773 *
4774 * If the link fails to activate, either the device was physically
4775 * removed or the link is permanently failed.
4776 */
4777 if (active)
4778 msleep(msecs: 20);
4779 rc = pcie_wait_for_link_status(pdev, use_lt: false, active);
4780 if (active) {
4781 if (rc)
4782 rc = pcie_failed_link_retrain(dev: pdev);
4783 if (rc)
4784 return false;
4785
4786 msleep(msecs: delay);
4787 return true;
4788 }
4789
4790 if (rc)
4791 return false;
4792
4793 return true;
4794}
4795
4796/**
4797 * pcie_wait_for_link - Wait until link is active or inactive
4798 * @pdev: Bridge device
4799 * @active: waiting for active or inactive?
4800 *
4801 * Use this to wait till link becomes active or inactive.
4802 */
4803bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4804{
4805 return pcie_wait_for_link_delay(pdev, active, delay: 100);
4806}
4807
4808/*
4809 * Find maximum D3cold delay required by all the devices on the bus. The
4810 * spec says 100 ms, but firmware can lower it and we allow drivers to
4811 * increase it as well.
4812 *
4813 * Called with @pci_bus_sem locked for reading.
4814 */
4815static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4816{
4817 const struct pci_dev *pdev;
4818 int min_delay = 100;
4819 int max_delay = 0;
4820
4821 list_for_each_entry(pdev, &bus->devices, bus_list) {
4822 if (pdev->d3cold_delay < min_delay)
4823 min_delay = pdev->d3cold_delay;
4824 if (pdev->d3cold_delay > max_delay)
4825 max_delay = pdev->d3cold_delay;
4826 }
4827
4828 return max(min_delay, max_delay);
4829}
4830
4831/**
4832 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4833 * @dev: PCI bridge
4834 * @reset_type: reset type in human-readable form
4835 *
4836 * Handle necessary delays before access to the devices on the secondary
4837 * side of the bridge are permitted after D3cold to D0 transition
4838 * or Conventional Reset.
4839 *
4840 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4841 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4842 * 4.3.2.
4843 *
4844 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4845 * failed to become accessible.
4846 */
4847int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4848{
4849 struct pci_dev *child __free(pci_dev_put) = NULL;
4850 int delay;
4851
4852 if (pci_dev_is_disconnected(dev))
4853 return 0;
4854
4855 if (!pci_is_bridge(dev))
4856 return 0;
4857
4858 down_read(sem: &pci_bus_sem);
4859
4860 /*
4861 * We only deal with devices that are present currently on the bus.
4862 * For any hot-added devices the access delay is handled in pciehp
4863 * board_added(). In case of ACPI hotplug the firmware is expected
4864 * to configure the devices before OS is notified.
4865 */
4866 if (!dev->subordinate || list_empty(head: &dev->subordinate->devices)) {
4867 up_read(sem: &pci_bus_sem);
4868 return 0;
4869 }
4870
4871 /* Take d3cold_delay requirements into account */
4872 delay = pci_bus_max_d3cold_delay(bus: dev->subordinate);
4873 if (!delay) {
4874 up_read(sem: &pci_bus_sem);
4875 return 0;
4876 }
4877
4878 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4879 struct pci_dev, bus_list));
4880 up_read(sem: &pci_bus_sem);
4881
4882 /*
4883 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4884 * accessing the device after reset (that is 1000 ms + 100 ms).
4885 */
4886 if (!pci_is_pcie(dev)) {
4887 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4888 msleep(msecs: 1000 + delay);
4889 return 0;
4890 }
4891
4892 /*
4893 * For PCIe downstream and root ports that do not support speeds
4894 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4895 * speeds (gen3) we need to wait first for the data link layer to
4896 * become active.
4897 *
4898 * However, 100 ms is the minimum and the PCIe spec says the
4899 * software must allow at least 1s before it can determine that the
4900 * device that did not respond is a broken device. Also device can
4901 * take longer than that to respond if it indicates so through Request
4902 * Retry Status completions.
4903 *
4904 * Therefore we wait for 100 ms and check for the device presence
4905 * until the timeout expires.
4906 */
4907 if (!pcie_downstream_port(dev))
4908 return 0;
4909
4910 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4911 u16 status;
4912
4913 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4914 msleep(msecs: delay);
4915
4916 if (!pci_dev_wait(dev: child, reset_type, PCI_RESET_WAIT - delay))
4917 return 0;
4918
4919 /*
4920 * If the port supports active link reporting we now check
4921 * whether the link is active and if not bail out early with
4922 * the assumption that the device is not present anymore.
4923 */
4924 if (!dev->link_active_reporting)
4925 return -ENOTTY;
4926
4927 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, val: &status);
4928 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4929 return -ENOTTY;
4930
4931 return pci_dev_wait(dev: child, reset_type,
4932 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4933 }
4934
4935 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4936 delay);
4937 if (!pcie_wait_for_link_delay(pdev: dev, active: true, delay)) {
4938 /* Did not train, no need to wait any further */
4939 pci_info(dev, "Data Link Layer Link Active not set in %d msec\n", delay);
4940 return -ENOTTY;
4941 }
4942
4943 return pci_dev_wait(dev: child, reset_type,
4944 PCIE_RESET_READY_POLL_MS - delay);
4945}
4946
4947void pci_reset_secondary_bus(struct pci_dev *dev)
4948{
4949 u16 ctrl;
4950
4951 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, val: &ctrl);
4952 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4953 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, val: ctrl);
4954
4955 /*
4956 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4957 * this to 2ms to ensure that we meet the minimum requirement.
4958 */
4959 msleep(msecs: 2);
4960
4961 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4962 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, val: ctrl);
4963}
4964
4965void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4966{
4967 pci_reset_secondary_bus(dev);
4968}
4969
4970/**
4971 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4972 * @dev: Bridge device
4973 *
4974 * Use the bridge control register to assert reset on the secondary bus.
4975 * Devices on the secondary bus are left in power-on state.
4976 */
4977int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4978{
4979 if (!dev->block_cfg_access)
4980 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4981 __builtin_return_address(0));
4982 pcibios_reset_secondary_bus(dev);
4983
4984 return pci_bridge_wait_for_secondary_bus(dev, reset_type: "bus reset");
4985}
4986EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4987
4988static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4989{
4990 struct pci_dev *pdev;
4991
4992 if (pci_is_root_bus(pbus: dev->bus) || dev->subordinate ||
4993 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4994 return -ENOTTY;
4995
4996 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4997 if (pdev != dev)
4998 return -ENOTTY;
4999
5000 if (probe)
5001 return 0;
5002
5003 return pci_bridge_secondary_bus_reset(dev->bus->self);
5004}
5005
5006static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5007{
5008 int rc = -ENOTTY;
5009
5010 if (!hotplug || !try_module_get(module: hotplug->owner))
5011 return rc;
5012
5013 if (hotplug->ops->reset_slot)
5014 rc = hotplug->ops->reset_slot(hotplug, probe);
5015
5016 module_put(module: hotplug->owner);
5017
5018 return rc;
5019}
5020
5021static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5022{
5023 if (dev->multifunction || dev->subordinate || !dev->slot ||
5024 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5025 return -ENOTTY;
5026
5027 return pci_reset_hotplug_slot(hotplug: dev->slot->hotplug, probe);
5028}
5029
5030static u16 cxl_port_dvsec(struct pci_dev *dev)
5031{
5032 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5033 PCI_DVSEC_CXL_PORT);
5034}
5035
5036static bool cxl_sbr_masked(struct pci_dev *dev)
5037{
5038 u16 dvsec, reg;
5039 int rc;
5040
5041 dvsec = cxl_port_dvsec(dev);
5042 if (!dvsec)
5043 return false;
5044
5045 rc = pci_read_config_word(dev, where: dvsec + PCI_DVSEC_CXL_PORT_CTL, val: &reg);
5046 if (rc || PCI_POSSIBLE_ERROR(reg))
5047 return false;
5048
5049 /*
5050 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5051 * bit in Bridge Control has no effect. When 1, the Port generates
5052 * hot reset when the SBR bit is set to 1.
5053 */
5054 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5055 return false;
5056
5057 return true;
5058}
5059
5060static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5061{
5062 struct pci_dev *bridge = pci_upstream_bridge(dev);
5063 int rc;
5064
5065 /*
5066 * If "dev" is below a CXL port that has SBR control masked, SBR
5067 * won't do anything, so return error.
5068 */
5069 if (bridge && cxl_sbr_masked(dev: bridge)) {
5070 if (probe)
5071 return 0;
5072
5073 return -ENOTTY;
5074 }
5075
5076 rc = pci_dev_reset_slot_function(dev, probe);
5077 if (rc != -ENOTTY)
5078 return rc;
5079 return pci_parent_bus_reset(dev, probe);
5080}
5081
5082static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5083{
5084 struct pci_dev *bridge;
5085 u16 dvsec, reg, val;
5086 int rc;
5087
5088 bridge = pci_upstream_bridge(dev);
5089 if (!bridge)
5090 return -ENOTTY;
5091
5092 dvsec = cxl_port_dvsec(dev: bridge);
5093 if (!dvsec)
5094 return -ENOTTY;
5095
5096 if (probe)
5097 return 0;
5098
5099 rc = pci_read_config_word(dev: bridge, where: dvsec + PCI_DVSEC_CXL_PORT_CTL, val: &reg);
5100 if (rc)
5101 return -ENOTTY;
5102
5103 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5104 val = reg;
5105 } else {
5106 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5107 pci_write_config_word(dev: bridge, where: dvsec + PCI_DVSEC_CXL_PORT_CTL,
5108 val);
5109 }
5110
5111 rc = pci_reset_bus_function(dev, probe);
5112
5113 if (reg != val)
5114 pci_write_config_word(dev: bridge, where: dvsec + PCI_DVSEC_CXL_PORT_CTL,
5115 val: reg);
5116
5117 return rc;
5118}
5119
5120void pci_dev_lock(struct pci_dev *dev)
5121{
5122 /* block PM suspend, driver probe, etc. */
5123 device_lock(dev: &dev->dev);
5124 pci_cfg_access_lock(dev);
5125}
5126EXPORT_SYMBOL_GPL(pci_dev_lock);
5127
5128/* Return 1 on successful lock, 0 on contention */
5129int pci_dev_trylock(struct pci_dev *dev)
5130{
5131 if (device_trylock(dev: &dev->dev)) {
5132 if (pci_cfg_access_trylock(dev))
5133 return 1;
5134 device_unlock(dev: &dev->dev);
5135 }
5136
5137 return 0;
5138}
5139EXPORT_SYMBOL_GPL(pci_dev_trylock);
5140
5141void pci_dev_unlock(struct pci_dev *dev)
5142{
5143 pci_cfg_access_unlock(dev);
5144 device_unlock(dev: &dev->dev);
5145}
5146EXPORT_SYMBOL_GPL(pci_dev_unlock);
5147
5148static void pci_dev_save_and_disable(struct pci_dev *dev)
5149{
5150 const struct pci_error_handlers *err_handler =
5151 dev->driver ? dev->driver->err_handler : NULL;
5152
5153 /*
5154 * dev->driver->err_handler->reset_prepare() is protected against
5155 * races with ->remove() by the device lock, which must be held by
5156 * the caller.
5157 */
5158 if (err_handler && err_handler->reset_prepare)
5159 err_handler->reset_prepare(dev);
5160 else if (dev->driver)
5161 pci_warn(dev, "resetting");
5162
5163 /*
5164 * Wake-up device prior to save. PM registers default to D0 after
5165 * reset and a simple register restore doesn't reliably return
5166 * to a non-D0 state anyway.
5167 */
5168 pci_set_power_state(dev, PCI_D0);
5169
5170 pci_save_state(dev);
5171 /*
5172 * Disable the device by clearing the Command register, except for
5173 * INTx-disable which is set. This not only disables MMIO and I/O port
5174 * BARs, but also prevents the device from being Bus Master, preventing
5175 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5176 * compliant devices, INTx-disable prevents legacy interrupts.
5177 */
5178 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5179}
5180
5181static void pci_dev_restore(struct pci_dev *dev)
5182{
5183 const struct pci_error_handlers *err_handler =
5184 dev->driver ? dev->driver->err_handler : NULL;
5185
5186 pci_restore_state(dev);
5187
5188 /*
5189 * dev->driver->err_handler->reset_done() is protected against
5190 * races with ->remove() by the device lock, which must be held by
5191 * the caller.
5192 */
5193 if (err_handler && err_handler->reset_done)
5194 err_handler->reset_done(dev);
5195 else if (dev->driver)
5196 pci_warn(dev, "reset done");
5197}
5198
5199/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5200const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5201 { },
5202 { pci_dev_specific_reset, .name = "device_specific" },
5203 { pci_dev_acpi_reset, .name = "acpi" },
5204 { pcie_reset_flr, .name = "flr" },
5205 { pci_af_flr, .name = "af_flr" },
5206 { pci_pm_reset, .name = "pm" },
5207 { pci_reset_bus_function, .name = "bus" },
5208 { cxl_reset_bus_function, .name = "cxl_bus" },
5209};
5210
5211/**
5212 * __pci_reset_function_locked - reset a PCI device function while holding
5213 * the @dev mutex lock.
5214 * @dev: PCI device to reset
5215 *
5216 * Some devices allow an individual function to be reset without affecting
5217 * other functions in the same device. The PCI device must be responsive
5218 * to PCI config space in order to use this function.
5219 *
5220 * The device function is presumed to be unused and the caller is holding
5221 * the device mutex lock when this function is called.
5222 *
5223 * Resetting the device will make the contents of PCI configuration space
5224 * random, so any caller of this must be prepared to reinitialise the
5225 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5226 * etc.
5227 *
5228 * Returns 0 if the device function was successfully reset or negative if the
5229 * device doesn't support resetting a single function.
5230 */
5231int __pci_reset_function_locked(struct pci_dev *dev)
5232{
5233 int i, m, rc;
5234 const struct pci_reset_fn_method *method;
5235
5236 might_sleep();
5237
5238 /*
5239 * A reset method returns -ENOTTY if it doesn't support this device and
5240 * we should try the next method.
5241 *
5242 * If it returns 0 (success), we're finished. If it returns any other
5243 * error, we're also finished: this indicates that further reset
5244 * mechanisms might be broken on the device.
5245 */
5246 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5247 m = dev->reset_methods[i];
5248 if (!m)
5249 return -ENOTTY;
5250
5251 method = &pci_reset_fn_methods[m];
5252 pci_dbg(dev, "reset via %s\n", method->name);
5253 rc = method->reset_fn(dev, PCI_RESET_DO_RESET);
5254 if (!rc)
5255 return 0;
5256
5257 pci_dbg(dev, "%s failed with %d\n", method->name, rc);
5258 if (rc != -ENOTTY)
5259 return rc;
5260 }
5261
5262 return -ENOTTY;
5263}
5264EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5265
5266/**
5267 * pci_init_reset_methods - check whether device can be safely reset
5268 * and store supported reset mechanisms.
5269 * @dev: PCI device to check for reset mechanisms
5270 *
5271 * Some devices allow an individual function to be reset without affecting
5272 * other functions in the same device. The PCI device must be in D0-D3hot
5273 * state.
5274 *
5275 * Stores reset mechanisms supported by device in reset_methods byte array
5276 * which is a member of struct pci_dev.
5277 */
5278void pci_init_reset_methods(struct pci_dev *dev)
5279{
5280 int m, i, rc;
5281
5282 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5283
5284 might_sleep();
5285
5286 i = 0;
5287 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5288 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5289 if (!rc)
5290 dev->reset_methods[i++] = m;
5291 else if (rc != -ENOTTY)
5292 break;
5293 }
5294
5295 dev->reset_methods[i] = 0;
5296}
5297
5298/**
5299 * pci_reset_function - quiesce and reset a PCI device function
5300 * @dev: PCI device to reset
5301 *
5302 * Some devices allow an individual function to be reset without affecting
5303 * other functions in the same device. The PCI device must be responsive
5304 * to PCI config space in order to use this function.
5305 *
5306 * This function does not just reset the PCI portion of a device, but
5307 * clears all the state associated with the device. This function differs
5308 * from __pci_reset_function_locked() in that it saves and restores device state
5309 * over the reset and takes the PCI device lock.
5310 *
5311 * Returns 0 if the device function was successfully reset or negative if the
5312 * device doesn't support resetting a single function.
5313 */
5314int pci_reset_function(struct pci_dev *dev)
5315{
5316 struct pci_dev *bridge;
5317 int rc;
5318
5319 if (!pci_reset_supported(dev))
5320 return -ENOTTY;
5321
5322 /*
5323 * If there's no upstream bridge, no locking is needed since there is
5324 * no upstream bridge configuration to hold consistent.
5325 */
5326 bridge = pci_upstream_bridge(dev);
5327 if (bridge)
5328 pci_dev_lock(bridge);
5329
5330 pci_dev_lock(dev);
5331 pci_dev_save_and_disable(dev);
5332
5333 rc = __pci_reset_function_locked(dev);
5334
5335 pci_dev_restore(dev);
5336 pci_dev_unlock(dev);
5337
5338 if (bridge)
5339 pci_dev_unlock(bridge);
5340
5341 return rc;
5342}
5343EXPORT_SYMBOL_GPL(pci_reset_function);
5344
5345/**
5346 * pci_reset_function_locked - quiesce and reset a PCI device function
5347 * @dev: PCI device to reset
5348 *
5349 * Some devices allow an individual function to be reset without affecting
5350 * other functions in the same device. The PCI device must be responsive
5351 * to PCI config space in order to use this function.
5352 *
5353 * This function does not just reset the PCI portion of a device, but
5354 * clears all the state associated with the device. This function differs
5355 * from __pci_reset_function_locked() in that it saves and restores device state
5356 * over the reset. It also differs from pci_reset_function() in that it
5357 * requires the PCI device lock to be held.
5358 *
5359 * Returns 0 if the device function was successfully reset or negative if the
5360 * device doesn't support resetting a single function.
5361 */
5362int pci_reset_function_locked(struct pci_dev *dev)
5363{
5364 int rc;
5365
5366 if (!pci_reset_supported(dev))
5367 return -ENOTTY;
5368
5369 pci_dev_save_and_disable(dev);
5370
5371 rc = __pci_reset_function_locked(dev);
5372
5373 pci_dev_restore(dev);
5374
5375 return rc;
5376}
5377EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5378
5379/**
5380 * pci_try_reset_function - quiesce and reset a PCI device function
5381 * @dev: PCI device to reset
5382 *
5383 * Same as above, except return -EAGAIN if unable to lock device.
5384 */
5385int pci_try_reset_function(struct pci_dev *dev)
5386{
5387 int rc;
5388
5389 if (!pci_reset_supported(dev))
5390 return -ENOTTY;
5391
5392 if (!pci_dev_trylock(dev))
5393 return -EAGAIN;
5394
5395 pci_dev_save_and_disable(dev);
5396 rc = __pci_reset_function_locked(dev);
5397 pci_dev_restore(dev);
5398 pci_dev_unlock(dev);
5399
5400 return rc;
5401}
5402EXPORT_SYMBOL_GPL(pci_try_reset_function);
5403
5404/* Do any devices on or below this bus prevent a bus reset? */
5405static bool pci_bus_resettable(struct pci_bus *bus)
5406{
5407 struct pci_dev *dev;
5408
5409
5410 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5411 return false;
5412
5413 list_for_each_entry(dev, &bus->devices, bus_list) {
5414 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5415 (dev->subordinate && !pci_bus_resettable(bus: dev->subordinate)))
5416 return false;
5417 }
5418
5419 return true;
5420}
5421
5422/* Lock devices from the top of the tree down */
5423static void pci_bus_lock(struct pci_bus *bus)
5424{
5425 struct pci_dev *dev;
5426
5427 pci_dev_lock(bus->self);
5428 list_for_each_entry(dev, &bus->devices, bus_list) {
5429 if (dev->subordinate)
5430 pci_bus_lock(bus: dev->subordinate);
5431 else
5432 pci_dev_lock(dev);
5433 }
5434}
5435
5436/* Unlock devices from the bottom of the tree up */
5437static void pci_bus_unlock(struct pci_bus *bus)
5438{
5439 struct pci_dev *dev;
5440
5441 list_for_each_entry(dev, &bus->devices, bus_list) {
5442 if (dev->subordinate)
5443 pci_bus_unlock(bus: dev->subordinate);
5444 else
5445 pci_dev_unlock(dev);
5446 }
5447 pci_dev_unlock(bus->self);
5448}
5449
5450/* Return 1 on successful lock, 0 on contention */
5451static int pci_bus_trylock(struct pci_bus *bus)
5452{
5453 struct pci_dev *dev;
5454
5455 if (!pci_dev_trylock(bus->self))
5456 return 0;
5457
5458 list_for_each_entry(dev, &bus->devices, bus_list) {
5459 if (dev->subordinate) {
5460 if (!pci_bus_trylock(bus: dev->subordinate))
5461 goto unlock;
5462 } else if (!pci_dev_trylock(dev))
5463 goto unlock;
5464 }
5465 return 1;
5466
5467unlock:
5468 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5469 if (dev->subordinate)
5470 pci_bus_unlock(bus: dev->subordinate);
5471 else
5472 pci_dev_unlock(dev);
5473 }
5474 pci_dev_unlock(bus->self);
5475 return 0;
5476}
5477
5478/* Do any devices on or below this slot prevent a bus reset? */
5479static bool pci_slot_resettable(struct pci_slot *slot)
5480{
5481 struct pci_dev *dev;
5482
5483 if (slot->bus->self &&
5484 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5485 return false;
5486
5487 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5488 if (!dev->slot || dev->slot != slot)
5489 continue;
5490 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5491 (dev->subordinate && !pci_bus_resettable(bus: dev->subordinate)))
5492 return false;
5493 }
5494
5495 return true;
5496}
5497
5498/* Lock devices from the top of the tree down */
5499static void pci_slot_lock(struct pci_slot *slot)
5500{
5501 struct pci_dev *dev;
5502
5503 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5504 if (!dev->slot || dev->slot != slot)
5505 continue;
5506 if (dev->subordinate)
5507 pci_bus_lock(bus: dev->subordinate);
5508 else
5509 pci_dev_lock(dev);
5510 }
5511}
5512
5513/* Unlock devices from the bottom of the tree up */
5514static void pci_slot_unlock(struct pci_slot *slot)
5515{
5516 struct pci_dev *dev;
5517
5518 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5519 if (!dev->slot || dev->slot != slot)
5520 continue;
5521 if (dev->subordinate)
5522 pci_bus_unlock(bus: dev->subordinate);
5523 else
5524 pci_dev_unlock(dev);
5525 }
5526}
5527
5528/* Return 1 on successful lock, 0 on contention */
5529static int pci_slot_trylock(struct pci_slot *slot)
5530{
5531 struct pci_dev *dev;
5532
5533 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5534 if (!dev->slot || dev->slot != slot)
5535 continue;
5536 if (dev->subordinate) {
5537 if (!pci_bus_trylock(bus: dev->subordinate)) {
5538 pci_dev_unlock(dev);
5539 goto unlock;
5540 }
5541 } else if (!pci_dev_trylock(dev))
5542 goto unlock;
5543 }
5544 return 1;
5545
5546unlock:
5547 list_for_each_entry_continue_reverse(dev,
5548 &slot->bus->devices, bus_list) {
5549 if (!dev->slot || dev->slot != slot)
5550 continue;
5551 if (dev->subordinate)
5552 pci_bus_unlock(bus: dev->subordinate);
5553 else
5554 pci_dev_unlock(dev);
5555 }
5556 return 0;
5557}
5558
5559/*
5560 * Save and disable devices from the top of the tree down while holding
5561 * the @dev mutex lock for the entire tree.
5562 */
5563static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5564{
5565 struct pci_dev *dev;
5566
5567 list_for_each_entry(dev, &bus->devices, bus_list) {
5568 pci_dev_save_and_disable(dev);
5569 if (dev->subordinate)
5570 pci_bus_save_and_disable_locked(bus: dev->subordinate);
5571 }
5572}
5573
5574/*
5575 * Restore devices from top of the tree down while holding @dev mutex lock
5576 * for the entire tree. Parent bridges need to be restored before we can
5577 * get to subordinate devices.
5578 */
5579static void pci_bus_restore_locked(struct pci_bus *bus)
5580{
5581 struct pci_dev *dev;
5582
5583 list_for_each_entry(dev, &bus->devices, bus_list) {
5584 pci_dev_restore(dev);
5585 if (dev->subordinate) {
5586 pci_bridge_wait_for_secondary_bus(dev, reset_type: "bus reset");
5587 pci_bus_restore_locked(bus: dev->subordinate);
5588 }
5589 }
5590}
5591
5592/*
5593 * Save and disable devices from the top of the tree down while holding
5594 * the @dev mutex lock for the entire tree.
5595 */
5596static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5597{
5598 struct pci_dev *dev;
5599
5600 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5601 if (!dev->slot || dev->slot != slot)
5602 continue;
5603 pci_dev_save_and_disable(dev);
5604 if (dev->subordinate)
5605 pci_bus_save_and_disable_locked(bus: dev->subordinate);
5606 }
5607}
5608
5609/*
5610 * Restore devices from top of the tree down while holding @dev mutex lock
5611 * for the entire tree. Parent bridges need to be restored before we can
5612 * get to subordinate devices.
5613 */
5614static void pci_slot_restore_locked(struct pci_slot *slot)
5615{
5616 struct pci_dev *dev;
5617
5618 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5619 if (!dev->slot || dev->slot != slot)
5620 continue;
5621 pci_dev_restore(dev);
5622 if (dev->subordinate) {
5623 pci_bridge_wait_for_secondary_bus(dev, reset_type: "slot reset");
5624 pci_bus_restore_locked(bus: dev->subordinate);
5625 }
5626 }
5627}
5628
5629static int pci_slot_reset(struct pci_slot *slot, bool probe)
5630{
5631 int rc;
5632
5633 if (!slot || !pci_slot_resettable(slot))
5634 return -ENOTTY;
5635
5636 if (!probe)
5637 pci_slot_lock(slot);
5638
5639 might_sleep();
5640
5641 rc = pci_reset_hotplug_slot(hotplug: slot->hotplug, probe);
5642
5643 if (!probe)
5644 pci_slot_unlock(slot);
5645
5646 return rc;
5647}
5648
5649/**
5650 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5651 * @slot: PCI slot to probe
5652 *
5653 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5654 */
5655int pci_probe_reset_slot(struct pci_slot *slot)
5656{
5657 return pci_slot_reset(slot, PCI_RESET_PROBE);
5658}
5659EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5660
5661/**
5662 * __pci_reset_slot - Try to reset a PCI slot
5663 * @slot: PCI slot to reset
5664 *
5665 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5666 * independent of other slots. For instance, some slots may support slot power
5667 * control. In the case of a 1:1 bus to slot architecture, this function may
5668 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5669 * Generally a slot reset should be attempted before a bus reset. All of the
5670 * function of the slot and any subordinate buses behind the slot are reset
5671 * through this function. PCI config space of all devices in the slot and
5672 * behind the slot is saved before and restored after reset.
5673 *
5674 * Same as above except return -EAGAIN if the slot cannot be locked
5675 */
5676static int __pci_reset_slot(struct pci_slot *slot)
5677{
5678 int rc;
5679
5680 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5681 if (rc)
5682 return rc;
5683
5684 if (pci_slot_trylock(slot)) {
5685 pci_slot_save_and_disable_locked(slot);
5686 might_sleep();
5687 rc = pci_reset_hotplug_slot(hotplug: slot->hotplug, PCI_RESET_DO_RESET);
5688 pci_slot_restore_locked(slot);
5689 pci_slot_unlock(slot);
5690 } else
5691 rc = -EAGAIN;
5692
5693 return rc;
5694}
5695
5696static int pci_bus_reset(struct pci_bus *bus, bool probe)
5697{
5698 int ret;
5699
5700 if (!bus->self || !pci_bus_resettable(bus))
5701 return -ENOTTY;
5702
5703 if (probe)
5704 return 0;
5705
5706 pci_bus_lock(bus);
5707
5708 might_sleep();
5709
5710 ret = pci_bridge_secondary_bus_reset(bus->self);
5711
5712 pci_bus_unlock(bus);
5713
5714 return ret;
5715}
5716
5717/**
5718 * pci_bus_error_reset - reset the bridge's subordinate bus
5719 * @bridge: The parent device that connects to the bus to reset
5720 *
5721 * This function will first try to reset the slots on this bus if the method is
5722 * available. If slot reset fails or is not available, this will fall back to a
5723 * secondary bus reset.
5724 */
5725int pci_bus_error_reset(struct pci_dev *bridge)
5726{
5727 struct pci_bus *bus = bridge->subordinate;
5728 struct pci_slot *slot;
5729
5730 if (!bus)
5731 return -ENOTTY;
5732
5733 mutex_lock(&pci_slot_mutex);
5734 if (list_empty(head: &bus->slots))
5735 goto bus_reset;
5736
5737 list_for_each_entry(slot, &bus->slots, list)
5738 if (pci_probe_reset_slot(slot))
5739 goto bus_reset;
5740
5741 list_for_each_entry(slot, &bus->slots, list)
5742 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5743 goto bus_reset;
5744
5745 mutex_unlock(lock: &pci_slot_mutex);
5746 return 0;
5747bus_reset:
5748 mutex_unlock(lock: &pci_slot_mutex);
5749 return pci_bus_reset(bus: bridge->subordinate, PCI_RESET_DO_RESET);
5750}
5751
5752/**
5753 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5754 * @bus: PCI bus to probe
5755 *
5756 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5757 */
5758int pci_probe_reset_bus(struct pci_bus *bus)
5759{
5760 return pci_bus_reset(bus, PCI_RESET_PROBE);
5761}
5762EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5763
5764/**
5765 * __pci_reset_bus - Try to reset a PCI bus
5766 * @bus: top level PCI bus to reset
5767 *
5768 * Same as above except return -EAGAIN if the bus cannot be locked
5769 */
5770int __pci_reset_bus(struct pci_bus *bus)
5771{
5772 int rc;
5773
5774 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5775 if (rc)
5776 return rc;
5777
5778 if (pci_bus_trylock(bus)) {
5779 pci_bus_save_and_disable_locked(bus);
5780 might_sleep();
5781 rc = pci_bridge_secondary_bus_reset(bus->self);
5782 pci_bus_restore_locked(bus);
5783 pci_bus_unlock(bus);
5784 } else
5785 rc = -EAGAIN;
5786
5787 return rc;
5788}
5789
5790/**
5791 * pci_reset_bus - Try to reset a PCI bus
5792 * @pdev: top level PCI device to reset via slot/bus
5793 *
5794 * Same as above except return -EAGAIN if the bus cannot be locked
5795 */
5796int pci_reset_bus(struct pci_dev *pdev)
5797{
5798 return (!pci_probe_reset_slot(pdev->slot)) ?
5799 __pci_reset_slot(slot: pdev->slot) : __pci_reset_bus(bus: pdev->bus);
5800}
5801EXPORT_SYMBOL_GPL(pci_reset_bus);
5802
5803/**
5804 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5805 * @dev: PCI device to query
5806 *
5807 * Returns mmrbc: maximum designed memory read count in bytes or
5808 * appropriate error value.
5809 */
5810int pcix_get_max_mmrbc(struct pci_dev *dev)
5811{
5812 int cap;
5813 u32 stat;
5814
5815 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5816 if (!cap)
5817 return -EINVAL;
5818
5819 if (pci_read_config_dword(dev, where: cap + PCI_X_STATUS, val: &stat))
5820 return -EINVAL;
5821
5822 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5823}
5824EXPORT_SYMBOL(pcix_get_max_mmrbc);
5825
5826/**
5827 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5828 * @dev: PCI device to query
5829 *
5830 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5831 * value.
5832 */
5833int pcix_get_mmrbc(struct pci_dev *dev)
5834{
5835 int cap;
5836 u16 cmd;
5837
5838 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5839 if (!cap)
5840 return -EINVAL;
5841
5842 if (pci_read_config_word(dev, where: cap + PCI_X_CMD, val: &cmd))
5843 return -EINVAL;
5844
5845 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5846}
5847EXPORT_SYMBOL(pcix_get_mmrbc);
5848
5849/**
5850 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5851 * @dev: PCI device to query
5852 * @mmrbc: maximum memory read count in bytes
5853 * valid values are 512, 1024, 2048, 4096
5854 *
5855 * If possible sets maximum memory read byte count, some bridges have errata
5856 * that prevent this.
5857 */
5858int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5859{
5860 int cap;
5861 u32 stat, v, o;
5862 u16 cmd;
5863
5864 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(n: mmrbc))
5865 return -EINVAL;
5866
5867 v = ffs(mmrbc) - 10;
5868
5869 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5870 if (!cap)
5871 return -EINVAL;
5872
5873 if (pci_read_config_dword(dev, where: cap + PCI_X_STATUS, val: &stat))
5874 return -EINVAL;
5875
5876 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5877 return -E2BIG;
5878
5879 if (pci_read_config_word(dev, where: cap + PCI_X_CMD, val: &cmd))
5880 return -EINVAL;
5881
5882 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5883 if (o != v) {
5884 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5885 return -EIO;
5886
5887 cmd &= ~PCI_X_CMD_MAX_READ;
5888 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5889 if (pci_write_config_word(dev, where: cap + PCI_X_CMD, val: cmd))
5890 return -EIO;
5891 }
5892 return 0;
5893}
5894EXPORT_SYMBOL(pcix_set_mmrbc);
5895
5896/**
5897 * pcie_get_readrq - get PCI Express read request size
5898 * @dev: PCI device to query
5899 *
5900 * Returns maximum memory read request in bytes or appropriate error value.
5901 */
5902int pcie_get_readrq(struct pci_dev *dev)
5903{
5904 u16 ctl;
5905
5906 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &ctl);
5907
5908 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5909}
5910EXPORT_SYMBOL(pcie_get_readrq);
5911
5912/**
5913 * pcie_set_readrq - set PCI Express maximum memory read request
5914 * @dev: PCI device to query
5915 * @rq: maximum memory read count in bytes
5916 * valid values are 128, 256, 512, 1024, 2048, 4096
5917 *
5918 * If possible sets maximum memory read request in bytes
5919 */
5920int pcie_set_readrq(struct pci_dev *dev, int rq)
5921{
5922 u16 v;
5923 int ret;
5924 struct pci_host_bridge *bridge = pci_find_host_bridge(bus: dev->bus);
5925
5926 if (rq < 128 || rq > 4096 || !is_power_of_2(n: rq))
5927 return -EINVAL;
5928
5929 /*
5930 * If using the "performance" PCIe config, we clamp the read rq
5931 * size to the max packet size to keep the host bridge from
5932 * generating requests larger than we can cope with.
5933 */
5934 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5935 int mps = pcie_get_mps(dev);
5936
5937 if (mps < rq)
5938 rq = mps;
5939 }
5940
5941 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
5942
5943 if (bridge->no_inc_mrrs) {
5944 int max_mrrs = pcie_get_readrq(dev);
5945
5946 if (rq > max_mrrs) {
5947 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5948 return -EINVAL;
5949 }
5950 }
5951
5952 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5953 PCI_EXP_DEVCTL_READRQ, set: v);
5954
5955 return pcibios_err_to_errno(err: ret);
5956}
5957EXPORT_SYMBOL(pcie_set_readrq);
5958
5959/**
5960 * pcie_get_mps - get PCI Express maximum payload size
5961 * @dev: PCI device to query
5962 *
5963 * Returns maximum payload size in bytes
5964 */
5965int pcie_get_mps(struct pci_dev *dev)
5966{
5967 u16 ctl;
5968
5969 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &ctl);
5970
5971 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5972}
5973EXPORT_SYMBOL(pcie_get_mps);
5974
5975/**
5976 * pcie_set_mps - set PCI Express maximum payload size
5977 * @dev: PCI device to query
5978 * @mps: maximum payload size in bytes
5979 * valid values are 128, 256, 512, 1024, 2048, 4096
5980 *
5981 * If possible sets maximum payload size
5982 */
5983int pcie_set_mps(struct pci_dev *dev, int mps)
5984{
5985 u16 v;
5986 int ret;
5987
5988 if (mps < 128 || mps > 4096 || !is_power_of_2(n: mps))
5989 return -EINVAL;
5990
5991 v = ffs(mps) - 8;
5992 if (v > dev->pcie_mpss)
5993 return -EINVAL;
5994 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
5995
5996 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5997 PCI_EXP_DEVCTL_PAYLOAD, set: v);
5998
5999 return pcibios_err_to_errno(err: ret);
6000}
6001EXPORT_SYMBOL(pcie_set_mps);
6002
6003static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6004{
6005 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6006}
6007
6008int pcie_link_speed_mbps(struct pci_dev *pdev)
6009{
6010 u16 lnksta;
6011 int err;
6012
6013 err = pcie_capability_read_word(dev: pdev, PCI_EXP_LNKSTA, val: &lnksta);
6014 if (err)
6015 return err;
6016
6017 return pcie_dev_speed_mbps(speed: to_pcie_link_speed(lnksta));
6018}
6019EXPORT_SYMBOL(pcie_link_speed_mbps);
6020
6021/**
6022 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6023 * device and its bandwidth limitation
6024 * @dev: PCI device to query
6025 * @limiting_dev: storage for device causing the bandwidth limitation
6026 * @speed: storage for speed of limiting device
6027 * @width: storage for width of limiting device
6028 *
6029 * Walk up the PCI device chain and find the point where the minimum
6030 * bandwidth is available. Return the bandwidth available there and (if
6031 * limiting_dev, speed, and width pointers are supplied) information about
6032 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6033 * raw bandwidth.
6034 */
6035u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6036 enum pci_bus_speed *speed,
6037 enum pcie_link_width *width)
6038{
6039 u16 lnksta;
6040 enum pci_bus_speed next_speed;
6041 enum pcie_link_width next_width;
6042 u32 bw, next_bw;
6043
6044 if (speed)
6045 *speed = PCI_SPEED_UNKNOWN;
6046 if (width)
6047 *width = PCIE_LNK_WIDTH_UNKNOWN;
6048
6049 bw = 0;
6050
6051 while (dev) {
6052 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, val: &lnksta);
6053
6054 next_speed = to_pcie_link_speed(lnksta);
6055 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6056
6057 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6058
6059 /* Check if current device limits the total bandwidth */
6060 if (!bw || next_bw <= bw) {
6061 bw = next_bw;
6062
6063 if (limiting_dev)
6064 *limiting_dev = dev;
6065 if (speed)
6066 *speed = next_speed;
6067 if (width)
6068 *width = next_width;
6069 }
6070
6071 dev = pci_upstream_bridge(dev);
6072 }
6073
6074 return bw;
6075}
6076EXPORT_SYMBOL(pcie_bandwidth_available);
6077
6078/**
6079 * pcie_get_supported_speeds - query Supported Link Speed Vector
6080 * @dev: PCI device to query
6081 *
6082 * Query @dev supported link speeds.
6083 *
6084 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6085 * supported link speeds using the Supported Link Speeds Vector in the Link
6086 * Capabilities 2 Register (when available).
6087 *
6088 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6089 *
6090 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6091 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6092 * speeds were defined.
6093 *
6094 * For @dev without Supported Link Speed Vector, the field is synthesized
6095 * from the Max Link Speed field in the Link Capabilities Register.
6096 *
6097 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6098 */
6099u8 pcie_get_supported_speeds(struct pci_dev *dev)
6100{
6101 u32 lnkcap2, lnkcap;
6102 u8 speeds;
6103
6104 /*
6105 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6106 * Speeds Vector to allow using SLS Vector bit defines directly.
6107 */
6108 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, val: &lnkcap2);
6109 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6110
6111 /* Ignore speeds higher than Max Link Speed */
6112 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, val: &lnkcap);
6113 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6114
6115 /* PCIe r3.0-compliant */
6116 if (speeds)
6117 return speeds;
6118
6119 /* Synthesize from the Max Link Speed field */
6120 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6121 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6122 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6123 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6124
6125 return speeds;
6126}
6127
6128/**
6129 * pcie_get_speed_cap - query for the PCI device's link speed capability
6130 * @dev: PCI device to query
6131 *
6132 * Query the PCI device speed capability.
6133 *
6134 * Return: the maximum link speed supported by the device.
6135 */
6136enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6137{
6138 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6139}
6140EXPORT_SYMBOL(pcie_get_speed_cap);
6141
6142/**
6143 * pcie_get_width_cap - query for the PCI device's link width capability
6144 * @dev: PCI device to query
6145 *
6146 * Query the PCI device width capability. Return the maximum link width
6147 * supported by the device.
6148 */
6149enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6150{
6151 u32 lnkcap;
6152
6153 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, val: &lnkcap);
6154 if (lnkcap)
6155 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6156
6157 return PCIE_LNK_WIDTH_UNKNOWN;
6158}
6159EXPORT_SYMBOL(pcie_get_width_cap);
6160
6161/**
6162 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6163 * @dev: PCI device
6164 * @speed: storage for link speed
6165 * @width: storage for link width
6166 *
6167 * Calculate a PCI device's link bandwidth by querying for its link speed
6168 * and width, multiplying them, and applying encoding overhead. The result
6169 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6170 */
6171static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6172 enum pci_bus_speed *speed,
6173 enum pcie_link_width *width)
6174{
6175 *speed = pcie_get_speed_cap(dev);
6176 *width = pcie_get_width_cap(dev);
6177
6178 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6179 return 0;
6180
6181 return *width * PCIE_SPEED2MBS_ENC(*speed);
6182}
6183
6184/**
6185 * __pcie_print_link_status - Report the PCI device's link speed and width
6186 * @dev: PCI device to query
6187 * @verbose: Print info even when enough bandwidth is available
6188 *
6189 * If the available bandwidth at the device is less than the device is
6190 * capable of, report the device's maximum possible bandwidth and the
6191 * upstream link that limits its performance. If @verbose, always print
6192 * the available bandwidth, even if the device isn't constrained.
6193 */
6194void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6195{
6196 enum pcie_link_width width, width_cap;
6197 enum pci_bus_speed speed, speed_cap;
6198 struct pci_dev *limiting_dev = NULL;
6199 u32 bw_avail, bw_cap;
6200 char *flit_mode = "";
6201
6202 bw_cap = pcie_bandwidth_capable(dev, speed: &speed_cap, width: &width_cap);
6203 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6204
6205 if (dev->bus && dev->bus->flit_mode)
6206 flit_mode = ", in Flit mode";
6207
6208 if (bw_avail >= bw_cap && verbose)
6209 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)%s\n",
6210 bw_cap / 1000, bw_cap % 1000,
6211 pci_speed_string(speed_cap), width_cap, flit_mode);
6212 else if (bw_avail < bw_cap)
6213 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)%s\n",
6214 bw_avail / 1000, bw_avail % 1000,
6215 pci_speed_string(speed), width,
6216 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6217 bw_cap / 1000, bw_cap % 1000,
6218 pci_speed_string(speed_cap), width_cap, flit_mode);
6219}
6220
6221/**
6222 * pcie_print_link_status - Report the PCI device's link speed and width
6223 * @dev: PCI device to query
6224 *
6225 * Report the available bandwidth at the device.
6226 */
6227void pcie_print_link_status(struct pci_dev *dev)
6228{
6229 __pcie_print_link_status(dev, verbose: true);
6230}
6231EXPORT_SYMBOL(pcie_print_link_status);
6232
6233/**
6234 * pci_select_bars - Make BAR mask from the type of resource
6235 * @dev: the PCI device for which BAR mask is made
6236 * @flags: resource type mask to be selected
6237 *
6238 * This helper routine makes bar mask from the type of resource.
6239 */
6240int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6241{
6242 int i, bars = 0;
6243 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6244 if (pci_resource_flags(dev, i) & flags)
6245 bars |= (1 << i);
6246 return bars;
6247}
6248EXPORT_SYMBOL(pci_select_bars);
6249
6250/* Some architectures require additional programming to enable VGA */
6251static arch_set_vga_state_t arch_set_vga_state;
6252
6253void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6254{
6255 arch_set_vga_state = func; /* NULL disables */
6256}
6257
6258static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6259 unsigned int command_bits, u32 flags)
6260{
6261 if (arch_set_vga_state)
6262 return arch_set_vga_state(dev, decode, command_bits,
6263 flags);
6264 return 0;
6265}
6266
6267/**
6268 * pci_set_vga_state - set VGA decode state on device and parents if requested
6269 * @dev: the PCI device
6270 * @decode: true = enable decoding, false = disable decoding
6271 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6272 * @flags: traverse ancestors and change bridges
6273 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6274 */
6275int pci_set_vga_state(struct pci_dev *dev, bool decode,
6276 unsigned int command_bits, u32 flags)
6277{
6278 struct pci_bus *bus;
6279 struct pci_dev *bridge;
6280 u16 cmd;
6281 int rc;
6282
6283 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6284
6285 /* ARCH specific VGA enables */
6286 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6287 if (rc)
6288 return rc;
6289
6290 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6291 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
6292 if (decode)
6293 cmd |= command_bits;
6294 else
6295 cmd &= ~command_bits;
6296 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
6297 }
6298
6299 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6300 return 0;
6301
6302 bus = dev->bus;
6303 while (bus) {
6304 bridge = bus->self;
6305 if (bridge) {
6306 pci_read_config_word(dev: bridge, PCI_BRIDGE_CONTROL,
6307 val: &cmd);
6308 if (decode)
6309 cmd |= PCI_BRIDGE_CTL_VGA;
6310 else
6311 cmd &= ~PCI_BRIDGE_CTL_VGA;
6312 pci_write_config_word(dev: bridge, PCI_BRIDGE_CONTROL,
6313 val: cmd);
6314 }
6315 bus = bus->parent;
6316 }
6317 return 0;
6318}
6319
6320#ifdef CONFIG_ACPI
6321bool pci_pr3_present(struct pci_dev *pdev)
6322{
6323 struct acpi_device *adev;
6324
6325 if (acpi_disabled)
6326 return false;
6327
6328 adev = ACPI_COMPANION(&pdev->dev);
6329 if (!adev)
6330 return false;
6331
6332 return adev->power.flags.power_resources &&
6333 acpi_has_method(handle: adev->handle, name: "_PR3");
6334}
6335EXPORT_SYMBOL_GPL(pci_pr3_present);
6336#endif
6337
6338/**
6339 * pci_add_dma_alias - Add a DMA devfn alias for a device
6340 * @dev: the PCI device for which alias is added
6341 * @devfn_from: alias slot and function
6342 * @nr_devfns: number of subsequent devfns to alias
6343 *
6344 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6345 * which is used to program permissible bus-devfn source addresses for DMA
6346 * requests in an IOMMU. These aliases factor into IOMMU group creation
6347 * and are useful for devices generating DMA requests beyond or different
6348 * from their logical bus-devfn. Examples include device quirks where the
6349 * device simply uses the wrong devfn, as well as non-transparent bridges
6350 * where the alias may be a proxy for devices in another domain.
6351 *
6352 * IOMMU group creation is performed during device discovery or addition,
6353 * prior to any potential DMA mapping and therefore prior to driver probing
6354 * (especially for userspace assigned devices where IOMMU group definition
6355 * cannot be left as a userspace activity). DMA aliases should therefore
6356 * be configured via quirks, such as the PCI fixup header quirk.
6357 */
6358void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6359 unsigned int nr_devfns)
6360{
6361 int devfn_to;
6362
6363 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6364 devfn_to = devfn_from + nr_devfns - 1;
6365
6366 if (!dev->dma_alias_mask)
6367 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6368 if (!dev->dma_alias_mask) {
6369 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6370 return;
6371 }
6372
6373 bitmap_set(map: dev->dma_alias_mask, start: devfn_from, nbits: nr_devfns);
6374
6375 if (nr_devfns == 1)
6376 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6377 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6378 else if (nr_devfns > 1)
6379 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6380 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6381 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6382}
6383
6384bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6385{
6386 return (dev1->dma_alias_mask &&
6387 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6388 (dev2->dma_alias_mask &&
6389 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6390 pci_real_dma_dev(dev: dev1) == dev2 ||
6391 pci_real_dma_dev(dev: dev2) == dev1;
6392}
6393
6394bool pci_device_is_present(struct pci_dev *pdev)
6395{
6396 u32 v;
6397
6398 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6399 pdev = pci_physfn(dev: pdev);
6400 if (pci_dev_is_disconnected(dev: pdev))
6401 return false;
6402 return pci_bus_read_dev_vendor_id(bus: pdev->bus, devfn: pdev->devfn, pl: &v, rrs_timeout: 0);
6403}
6404EXPORT_SYMBOL_GPL(pci_device_is_present);
6405
6406void pci_ignore_hotplug(struct pci_dev *dev)
6407{
6408 struct pci_dev *bridge = dev->bus->self;
6409
6410 dev->ignore_hotplug = 1;
6411 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6412 if (bridge)
6413 bridge->ignore_hotplug = 1;
6414}
6415EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6416
6417/**
6418 * pci_real_dma_dev - Get PCI DMA device for PCI device
6419 * @dev: the PCI device that may have a PCI DMA alias
6420 *
6421 * Permits the platform to provide architecture-specific functionality to
6422 * devices needing to alias DMA to another PCI device on another PCI bus. If
6423 * the PCI device is on the same bus, it is recommended to use
6424 * pci_add_dma_alias(). This is the default implementation. Architecture
6425 * implementations can override this.
6426 */
6427struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6428{
6429 return dev;
6430}
6431
6432resource_size_t __weak pcibios_default_alignment(void)
6433{
6434 return 0;
6435}
6436
6437/*
6438 * Arches that don't want to expose struct resource to userland as-is in
6439 * sysfs and /proc can implement their own pci_resource_to_user().
6440 */
6441void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6442 const struct resource *rsrc,
6443 resource_size_t *start, resource_size_t *end)
6444{
6445 *start = rsrc->start;
6446 *end = rsrc->end;
6447}
6448
6449static char *resource_alignment_param;
6450static DEFINE_SPINLOCK(resource_alignment_lock);
6451
6452/**
6453 * pci_specified_resource_alignment - get resource alignment specified by user.
6454 * @dev: the PCI device to get
6455 * @resize: whether or not to change resources' size when reassigning alignment
6456 *
6457 * RETURNS: Resource alignment if it is specified.
6458 * Zero if it is not specified.
6459 */
6460static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6461 bool *resize)
6462{
6463 int align_order, count;
6464 resource_size_t align = pcibios_default_alignment();
6465 const char *p;
6466 int ret;
6467
6468 spin_lock(lock: &resource_alignment_lock);
6469 p = resource_alignment_param;
6470 if (!p || !*p)
6471 goto out;
6472 if (pci_has_flag(flag: PCI_PROBE_ONLY)) {
6473 align = 0;
6474 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6475 goto out;
6476 }
6477
6478 while (*p) {
6479 count = 0;
6480 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6481 p[count] == '@') {
6482 p += count + 1;
6483 if (align_order > 63) {
6484 pr_err("PCI: Invalid requested alignment (order %d)\n",
6485 align_order);
6486 align_order = PAGE_SHIFT;
6487 }
6488 } else {
6489 align_order = PAGE_SHIFT;
6490 }
6491
6492 ret = pci_dev_str_match(dev, p, endptr: &p);
6493 if (ret == 1) {
6494 *resize = true;
6495 align = 1ULL << align_order;
6496 break;
6497 } else if (ret < 0) {
6498 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6499 p);
6500 break;
6501 }
6502
6503 if (*p != ';' && *p != ',') {
6504 /* End of param or invalid format */
6505 break;
6506 }
6507 p++;
6508 }
6509out:
6510 spin_unlock(lock: &resource_alignment_lock);
6511 return align;
6512}
6513
6514static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6515 resource_size_t align, bool resize)
6516{
6517 struct resource *r = &dev->resource[bar];
6518 const char *r_name = pci_resource_name(dev, i: bar);
6519 resource_size_t size;
6520
6521 if (!(r->flags & IORESOURCE_MEM))
6522 return;
6523
6524 if (r->flags & IORESOURCE_PCI_FIXED) {
6525 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6526 r_name, r, (unsigned long long)align);
6527 return;
6528 }
6529
6530 size = resource_size(res: r);
6531 if (size >= align)
6532 return;
6533
6534 /*
6535 * Increase the alignment of the resource. There are two ways we
6536 * can do this:
6537 *
6538 * 1) Increase the size of the resource. BARs are aligned on their
6539 * size, so when we reallocate space for this resource, we'll
6540 * allocate it with the larger alignment. This also prevents
6541 * assignment of any other BARs inside the alignment region, so
6542 * if we're requesting page alignment, this means no other BARs
6543 * will share the page.
6544 *
6545 * The disadvantage is that this makes the resource larger than
6546 * the hardware BAR, which may break drivers that compute things
6547 * based on the resource size, e.g., to find registers at a
6548 * fixed offset before the end of the BAR.
6549 *
6550 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6551 * set r->start to the desired alignment. By itself this
6552 * doesn't prevent other BARs being put inside the alignment
6553 * region, but if we realign *every* resource of every device in
6554 * the system, none of them will share an alignment region.
6555 *
6556 * When the user has requested alignment for only some devices via
6557 * the "pci=resource_alignment" argument, "resize" is true and we
6558 * use the first method. Otherwise we assume we're aligning all
6559 * devices and we use the second.
6560 */
6561
6562 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6563 r_name, r, (unsigned long long)align);
6564
6565 if (resize) {
6566 r->start = 0;
6567 r->end = align - 1;
6568 } else {
6569 r->flags &= ~IORESOURCE_SIZEALIGN;
6570 r->flags |= IORESOURCE_STARTALIGN;
6571 resource_set_range(res: r, start: align, size);
6572 }
6573 r->flags |= IORESOURCE_UNSET;
6574}
6575
6576/*
6577 * This function disables memory decoding and releases memory resources
6578 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6579 * It also rounds up size to specified alignment.
6580 * Later on, the kernel will assign page-aligned memory resource back
6581 * to the device.
6582 */
6583void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6584{
6585 int i;
6586 struct resource *r;
6587 resource_size_t align;
6588 u16 command;
6589 bool resize = false;
6590
6591 /*
6592 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6593 * 3.4.1.11. Their resources are allocated from the space
6594 * described by the VF BARx register in the PF's SR-IOV capability.
6595 * We can't influence their alignment here.
6596 */
6597 if (dev->is_virtfn)
6598 return;
6599
6600 /* check if specified PCI is target device to reassign */
6601 align = pci_specified_resource_alignment(dev, resize: &resize);
6602 if (!align)
6603 return;
6604
6605 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6606 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6607 pci_warn(dev, "Can't reassign resources to host bridge\n");
6608 return;
6609 }
6610
6611 pci_read_config_word(dev, PCI_COMMAND, val: &command);
6612 command &= ~PCI_COMMAND_MEMORY;
6613 pci_write_config_word(dev, PCI_COMMAND, val: command);
6614
6615 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6616 pci_request_resource_alignment(dev, bar: i, align, resize);
6617
6618 /*
6619 * Need to disable bridge's resource window,
6620 * to enable the kernel to reassign new resource
6621 * window later on.
6622 */
6623 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6624 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6625 r = &dev->resource[i];
6626 if (!(r->flags & IORESOURCE_MEM))
6627 continue;
6628 r->flags |= IORESOURCE_UNSET;
6629 r->end = resource_size(res: r) - 1;
6630 r->start = 0;
6631 }
6632 pci_disable_bridge_window(dev);
6633 }
6634}
6635
6636static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6637{
6638 size_t count = 0;
6639
6640 spin_lock(lock: &resource_alignment_lock);
6641 if (resource_alignment_param)
6642 count = sysfs_emit(buf, fmt: "%s\n", resource_alignment_param);
6643 spin_unlock(lock: &resource_alignment_lock);
6644
6645 return count;
6646}
6647
6648static ssize_t resource_alignment_store(const struct bus_type *bus,
6649 const char *buf, size_t count)
6650{
6651 char *param, *old, *end;
6652
6653 if (count >= (PAGE_SIZE - 1))
6654 return -EINVAL;
6655
6656 param = kstrndup(s: buf, len: count, GFP_KERNEL);
6657 if (!param)
6658 return -ENOMEM;
6659
6660 end = strchr(param, '\n');
6661 if (end)
6662 *end = '\0';
6663
6664 spin_lock(lock: &resource_alignment_lock);
6665 old = resource_alignment_param;
6666 if (strlen(param)) {
6667 resource_alignment_param = param;
6668 } else {
6669 kfree(objp: param);
6670 resource_alignment_param = NULL;
6671 }
6672 spin_unlock(lock: &resource_alignment_lock);
6673
6674 kfree(objp: old);
6675
6676 return count;
6677}
6678
6679static BUS_ATTR_RW(resource_alignment);
6680
6681static int __init pci_resource_alignment_sysfs_init(void)
6682{
6683 return bus_create_file(bus: &pci_bus_type,
6684 attr: &bus_attr_resource_alignment);
6685}
6686late_initcall(pci_resource_alignment_sysfs_init);
6687
6688static void pci_no_domains(void)
6689{
6690#ifdef CONFIG_PCI_DOMAINS
6691 pci_domains_supported = 0;
6692#endif
6693}
6694
6695#ifdef CONFIG_PCI_DOMAINS_GENERIC
6696static DEFINE_IDA(pci_domain_nr_static_ida);
6697static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6698
6699static void of_pci_reserve_static_domain_nr(void)
6700{
6701 struct device_node *np;
6702 int domain_nr;
6703
6704 for_each_node_by_type(np, "pci") {
6705 domain_nr = of_get_pci_domain_nr(np);
6706 if (domain_nr < 0)
6707 continue;
6708 /*
6709 * Permanently allocate domain_nr in dynamic_ida
6710 * to prevent it from dynamic allocation.
6711 */
6712 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6713 domain_nr, domain_nr, GFP_KERNEL);
6714 }
6715}
6716
6717static int of_pci_bus_find_domain_nr(struct device *parent)
6718{
6719 static bool static_domains_reserved = false;
6720 int domain_nr;
6721
6722 /* On the first call scan device tree for static allocations. */
6723 if (!static_domains_reserved) {
6724 of_pci_reserve_static_domain_nr();
6725 static_domains_reserved = true;
6726 }
6727
6728 if (parent) {
6729 /*
6730 * If domain is in DT, allocate it in static IDA. This
6731 * prevents duplicate static allocations in case of errors
6732 * in DT.
6733 */
6734 domain_nr = of_get_pci_domain_nr(parent->of_node);
6735 if (domain_nr >= 0)
6736 return ida_alloc_range(&pci_domain_nr_static_ida,
6737 domain_nr, domain_nr,
6738 GFP_KERNEL);
6739 }
6740
6741 /*
6742 * If domain was not specified in DT, choose a free ID from dynamic
6743 * allocations. All domain numbers from DT are permanently in
6744 * dynamic allocations to prevent assigning them to other DT nodes
6745 * without static domain.
6746 */
6747 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6748}
6749
6750static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6751{
6752 if (domain_nr < 0)
6753 return;
6754
6755 /* Release domain from IDA where it was allocated. */
6756 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6757 ida_free(&pci_domain_nr_static_ida, domain_nr);
6758 else
6759 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6760}
6761
6762int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6763{
6764 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6765 acpi_pci_bus_find_domain_nr(bus);
6766}
6767
6768void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6769{
6770 if (!acpi_disabled)
6771 return;
6772 of_pci_bus_release_domain_nr(parent, domain_nr);
6773}
6774#endif
6775
6776/**
6777 * pci_ext_cfg_avail - can we access extended PCI config space?
6778 *
6779 * Returns 1 if we can access PCI extended config space (offsets
6780 * greater than 0xff). This is the default implementation. Architecture
6781 * implementations can override this.
6782 */
6783int __weak pci_ext_cfg_avail(void)
6784{
6785 return 1;
6786}
6787
6788static int __init pci_setup(char *str)
6789{
6790 while (str) {
6791 char *k = strchr(str, ',');
6792 if (k)
6793 *k++ = 0;
6794 if (*str && (str = pcibios_setup(str)) && *str) {
6795 if (!strcmp(str, "nomsi")) {
6796 pci_no_msi();
6797 } else if (!strncmp(str, "noats", 5)) {
6798 pr_info("PCIe: ATS is disabled\n");
6799 pcie_ats_disabled = true;
6800 } else if (!strcmp(str, "noaer")) {
6801 pci_no_aer();
6802 } else if (!strcmp(str, "earlydump")) {
6803 pci_early_dump = true;
6804 } else if (!strncmp(str, "realloc=", 8)) {
6805 pci_realloc_get_opt(str + 8);
6806 } else if (!strncmp(str, "realloc", 7)) {
6807 pci_realloc_get_opt("on");
6808 } else if (!strcmp(str, "nodomains")) {
6809 pci_no_domains();
6810 } else if (!strncmp(str, "noari", 5)) {
6811 pcie_ari_disabled = true;
6812 } else if (!strncmp(str, "notph", 5)) {
6813 pci_no_tph();
6814 } else if (!strncmp(str, "cbiosize=", 9)) {
6815 pci_cardbus_io_size = memparse(ptr: str + 9, retptr: &str);
6816 } else if (!strncmp(str, "cbmemsize=", 10)) {
6817 pci_cardbus_mem_size = memparse(ptr: str + 10, retptr: &str);
6818 } else if (!strncmp(str, "resource_alignment=", 19)) {
6819 resource_alignment_param = str + 19;
6820 } else if (!strncmp(str, "ecrc=", 5)) {
6821 pcie_ecrc_get_policy(str: str + 5);
6822 } else if (!strncmp(str, "hpiosize=", 9)) {
6823 pci_hotplug_io_size = memparse(ptr: str + 9, retptr: &str);
6824 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6825 pci_hotplug_mmio_size = memparse(ptr: str + 11, retptr: &str);
6826 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6827 pci_hotplug_mmio_pref_size = memparse(ptr: str + 15, retptr: &str);
6828 } else if (!strncmp(str, "hpmemsize=", 10)) {
6829 pci_hotplug_mmio_size = memparse(ptr: str + 10, retptr: &str);
6830 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6831 } else if (!strncmp(str, "hpbussize=", 10)) {
6832 pci_hotplug_bus_size =
6833 simple_strtoul(str + 10, &str, 0);
6834 if (pci_hotplug_bus_size > 0xff)
6835 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6836 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6837 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6838 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6839 pcie_bus_config = PCIE_BUS_SAFE;
6840 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6841 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6842 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6843 pcie_bus_config = PCIE_BUS_PEER2PEER;
6844 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6845 pci_add_flags(flags: PCI_SCAN_ALL_PCIE_DEVS);
6846 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6847 disable_acs_redir_param = str + 18;
6848 } else if (!strncmp(str, "config_acs=", 11)) {
6849 config_acs_param = str + 11;
6850 } else {
6851 pr_err("PCI: Unknown option `%s'\n", str);
6852 }
6853 }
6854 str = k;
6855 }
6856 return 0;
6857}
6858early_param("pci", pci_setup);
6859
6860/*
6861 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6862 * in pci_setup(), above, to point to data in the __initdata section which
6863 * will be freed after the init sequence is complete. We can't allocate memory
6864 * in pci_setup() because some architectures do not have any memory allocation
6865 * service available during an early_param() call. So we allocate memory and
6866 * copy the variable here before the init section is freed.
6867 *
6868 */
6869static int __init pci_realloc_setup_params(void)
6870{
6871 resource_alignment_param = kstrdup(s: resource_alignment_param,
6872 GFP_KERNEL);
6873 disable_acs_redir_param = kstrdup(s: disable_acs_redir_param, GFP_KERNEL);
6874 config_acs_param = kstrdup(s: config_acs_param, GFP_KERNEL);
6875
6876 return 0;
6877}
6878pure_initcall(pci_realloc_setup_params);
6879

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/pci/pci.c