| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | // Copyright (C) IBM Corporation 2020 |
| 3 | |
| 4 | #include <linux/bitfield.h> |
| 5 | #include <linux/bits.h> |
| 6 | #include <linux/fsi.h> |
| 7 | #include <linux/jiffies.h> |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/of.h> |
| 11 | #include <linux/spi/spi.h> |
| 12 | |
| 13 | #define FSI_ENGID_SPI 0x23 |
| 14 | #define FSI_MBOX_ROOT_CTRL_8 0x2860 |
| 15 | #define FSI_MBOX_ROOT_CTRL_8_SPI_MUX 0xf0000000 |
| 16 | |
| 17 | #define FSI2SPI_DATA0 0x00 |
| 18 | #define FSI2SPI_DATA1 0x04 |
| 19 | #define FSI2SPI_CMD 0x08 |
| 20 | #define FSI2SPI_CMD_WRITE BIT(31) |
| 21 | #define FSI2SPI_RESET 0x18 |
| 22 | #define FSI2SPI_STATUS 0x1c |
| 23 | #define FSI2SPI_STATUS_ANY_ERROR BIT(31) |
| 24 | #define FSI2SPI_IRQ 0x20 |
| 25 | |
| 26 | #define SPI_FSI_BASE 0x70000 |
| 27 | #define SPI_FSI_TIMEOUT_MS 1000 |
| 28 | #define SPI_FSI_MAX_RX_SIZE 8 |
| 29 | #define SPI_FSI_MAX_TX_SIZE 40 |
| 30 | |
| 31 | #define SPI_FSI_ERROR 0x0 |
| 32 | #define SPI_FSI_COUNTER_CFG 0x1 |
| 33 | #define SPI_FSI_CFG1 0x2 |
| 34 | #define SPI_FSI_CLOCK_CFG 0x3 |
| 35 | #define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32) |
| 36 | #define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33)) |
| 37 | #define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38)) |
| 38 | #define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39)) |
| 39 | #define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42)) |
| 40 | #define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44) |
| 41 | #define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51) |
| 42 | #define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52) |
| 43 | #define SPI_FSI_MMAP 0x4 |
| 44 | #define SPI_FSI_DATA_TX 0x5 |
| 45 | #define SPI_FSI_DATA_RX 0x6 |
| 46 | #define SPI_FSI_SEQUENCE 0x7 |
| 47 | #define SPI_FSI_SEQUENCE_STOP 0x00 |
| 48 | #define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf)) |
| 49 | #define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf)) |
| 50 | #define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf)) |
| 51 | #define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0 |
| 52 | #define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf)) |
| 53 | #define SPI_FSI_STATUS 0x8 |
| 54 | #define SPI_FSI_STATUS_ERROR \ |
| 55 | (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12)) |
| 56 | #define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48) |
| 57 | #define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48) |
| 58 | #define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57) |
| 59 | #define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58) |
| 60 | #define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59) |
| 61 | #define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61) |
| 62 | #define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62) |
| 63 | #define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63) |
| 64 | #define SPI_FSI_STATUS_ANY_ERROR \ |
| 65 | (SPI_FSI_STATUS_ERROR | \ |
| 66 | SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \ |
| 67 | SPI_FSI_STATUS_RDR_OVERRUN) |
| 68 | #define SPI_FSI_PORT_CTRL 0x9 |
| 69 | |
| 70 | struct fsi2spi { |
| 71 | struct fsi_device *fsi; /* FSI2SPI CFAM engine device */ |
| 72 | struct mutex lock; /* lock access to the device */ |
| 73 | }; |
| 74 | |
| 75 | struct fsi_spi { |
| 76 | struct device *dev; /* SPI controller device */ |
| 77 | struct fsi2spi *bridge; /* FSI2SPI device */ |
| 78 | u32 base; |
| 79 | }; |
| 80 | |
| 81 | struct fsi_spi_sequence { |
| 82 | int bit; |
| 83 | u64 data; |
| 84 | }; |
| 85 | |
| 86 | static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev) |
| 87 | { |
| 88 | int rc; |
| 89 | u32 root_ctrl_8; |
| 90 | __be32 root_ctrl_8_be; |
| 91 | |
| 92 | rc = fsi_slave_read(slave: fsi->slave, FSI_MBOX_ROOT_CTRL_8, val: &root_ctrl_8_be, |
| 93 | size: sizeof(root_ctrl_8_be)); |
| 94 | if (rc) |
| 95 | return rc; |
| 96 | |
| 97 | root_ctrl_8 = be32_to_cpu(root_ctrl_8_be); |
| 98 | dev_dbg(dev, "Root control register 8: %08x\n" , root_ctrl_8); |
| 99 | if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) == |
| 100 | FSI_MBOX_ROOT_CTRL_8_SPI_MUX) |
| 101 | return 0; |
| 102 | |
| 103 | return -ENOLINK; |
| 104 | } |
| 105 | |
| 106 | static int fsi_spi_check_status(struct fsi_spi *ctx) |
| 107 | { |
| 108 | int rc; |
| 109 | u32 sts; |
| 110 | __be32 sts_be; |
| 111 | |
| 112 | rc = fsi_device_read(dev: ctx->bridge->fsi, FSI2SPI_STATUS, val: &sts_be, |
| 113 | size: sizeof(sts_be)); |
| 114 | if (rc) |
| 115 | return rc; |
| 116 | |
| 117 | sts = be32_to_cpu(sts_be); |
| 118 | if (sts & FSI2SPI_STATUS_ANY_ERROR) { |
| 119 | dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n" , sts); |
| 120 | return -EIO; |
| 121 | } |
| 122 | |
| 123 | return 0; |
| 124 | } |
| 125 | |
| 126 | static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value) |
| 127 | { |
| 128 | int rc = 0; |
| 129 | __be32 cmd_be; |
| 130 | __be32 data_be; |
| 131 | u32 cmd = offset + ctx->base; |
| 132 | struct fsi2spi *bridge = ctx->bridge; |
| 133 | |
| 134 | *value = 0ULL; |
| 135 | |
| 136 | if (cmd & FSI2SPI_CMD_WRITE) |
| 137 | return -EINVAL; |
| 138 | |
| 139 | rc = mutex_lock_interruptible(&bridge->lock); |
| 140 | if (rc) |
| 141 | return rc; |
| 142 | |
| 143 | cmd_be = cpu_to_be32(cmd); |
| 144 | rc = fsi_device_write(dev: bridge->fsi, FSI2SPI_CMD, val: &cmd_be, |
| 145 | size: sizeof(cmd_be)); |
| 146 | if (rc) |
| 147 | goto unlock; |
| 148 | |
| 149 | rc = fsi_spi_check_status(ctx); |
| 150 | if (rc) |
| 151 | goto unlock; |
| 152 | |
| 153 | rc = fsi_device_read(dev: bridge->fsi, FSI2SPI_DATA0, val: &data_be, |
| 154 | size: sizeof(data_be)); |
| 155 | if (rc) |
| 156 | goto unlock; |
| 157 | |
| 158 | *value |= (u64)be32_to_cpu(data_be) << 32; |
| 159 | |
| 160 | rc = fsi_device_read(dev: bridge->fsi, FSI2SPI_DATA1, val: &data_be, |
| 161 | size: sizeof(data_be)); |
| 162 | if (rc) |
| 163 | goto unlock; |
| 164 | |
| 165 | *value |= (u64)be32_to_cpu(data_be); |
| 166 | dev_dbg(ctx->dev, "Read %02x[%016llx].\n" , offset, *value); |
| 167 | |
| 168 | unlock: |
| 169 | mutex_unlock(lock: &bridge->lock); |
| 170 | return rc; |
| 171 | } |
| 172 | |
| 173 | static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value) |
| 174 | { |
| 175 | int rc = 0; |
| 176 | __be32 cmd_be; |
| 177 | __be32 data_be; |
| 178 | u32 cmd = offset + ctx->base; |
| 179 | struct fsi2spi *bridge = ctx->bridge; |
| 180 | |
| 181 | if (cmd & FSI2SPI_CMD_WRITE) |
| 182 | return -EINVAL; |
| 183 | |
| 184 | rc = mutex_lock_interruptible(&bridge->lock); |
| 185 | if (rc) |
| 186 | return rc; |
| 187 | |
| 188 | dev_dbg(ctx->dev, "Write %02x[%016llx].\n" , offset, value); |
| 189 | |
| 190 | data_be = cpu_to_be32(upper_32_bits(value)); |
| 191 | rc = fsi_device_write(dev: bridge->fsi, FSI2SPI_DATA0, val: &data_be, |
| 192 | size: sizeof(data_be)); |
| 193 | if (rc) |
| 194 | goto unlock; |
| 195 | |
| 196 | data_be = cpu_to_be32(lower_32_bits(value)); |
| 197 | rc = fsi_device_write(dev: bridge->fsi, FSI2SPI_DATA1, val: &data_be, |
| 198 | size: sizeof(data_be)); |
| 199 | if (rc) |
| 200 | goto unlock; |
| 201 | |
| 202 | cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE); |
| 203 | rc = fsi_device_write(dev: bridge->fsi, FSI2SPI_CMD, val: &cmd_be, |
| 204 | size: sizeof(cmd_be)); |
| 205 | if (rc) |
| 206 | goto unlock; |
| 207 | |
| 208 | rc = fsi_spi_check_status(ctx); |
| 209 | |
| 210 | unlock: |
| 211 | mutex_unlock(lock: &bridge->lock); |
| 212 | return rc; |
| 213 | } |
| 214 | |
| 215 | static int fsi_spi_data_in(u64 in, u8 *rx, int len) |
| 216 | { |
| 217 | int i; |
| 218 | int num_bytes = min(len, 8); |
| 219 | |
| 220 | for (i = 0; i < num_bytes; ++i) |
| 221 | rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i))); |
| 222 | |
| 223 | return num_bytes; |
| 224 | } |
| 225 | |
| 226 | static int fsi_spi_data_out(u64 *out, const u8 *tx, int len) |
| 227 | { |
| 228 | int i; |
| 229 | int num_bytes = min(len, 8); |
| 230 | u8 *out_bytes = (u8 *)out; |
| 231 | |
| 232 | /* Unused bytes of the tx data should be 0. */ |
| 233 | *out = 0ULL; |
| 234 | |
| 235 | for (i = 0; i < num_bytes; ++i) |
| 236 | out_bytes[8 - (i + 1)] = tx[i]; |
| 237 | |
| 238 | return num_bytes; |
| 239 | } |
| 240 | |
| 241 | static int fsi_spi_reset(struct fsi_spi *ctx) |
| 242 | { |
| 243 | int rc; |
| 244 | |
| 245 | dev_dbg(ctx->dev, "Resetting SPI controller.\n" ); |
| 246 | |
| 247 | rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| 248 | SPI_FSI_CLOCK_CFG_RESET1); |
| 249 | if (rc) |
| 250 | return rc; |
| 251 | |
| 252 | rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| 253 | SPI_FSI_CLOCK_CFG_RESET2); |
| 254 | if (rc) |
| 255 | return rc; |
| 256 | |
| 257 | return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, value: 0ULL); |
| 258 | } |
| 259 | |
| 260 | static int fsi_spi_status(struct fsi_spi *ctx, u64 *status, const char *dir) |
| 261 | { |
| 262 | int rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, value: status); |
| 263 | |
| 264 | if (rc) |
| 265 | return rc; |
| 266 | |
| 267 | if (*status & SPI_FSI_STATUS_ANY_ERROR) { |
| 268 | dev_err(ctx->dev, "%s error: %016llx\n" , dir, *status); |
| 269 | |
| 270 | rc = fsi_spi_reset(ctx); |
| 271 | if (rc) |
| 272 | return rc; |
| 273 | |
| 274 | return -EREMOTEIO; |
| 275 | } |
| 276 | |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | static void fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val) |
| 281 | { |
| 282 | /* |
| 283 | * Add the next byte of instruction to the 8-byte sequence register. |
| 284 | * Then decrement the counter so that the next instruction will go in |
| 285 | * the right place. Return the index of the slot we just filled in the |
| 286 | * sequence register. |
| 287 | */ |
| 288 | seq->data |= (u64)val << seq->bit; |
| 289 | seq->bit -= 8; |
| 290 | } |
| 291 | |
| 292 | static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq) |
| 293 | { |
| 294 | seq->bit = 56; |
| 295 | seq->data = 0ULL; |
| 296 | } |
| 297 | |
| 298 | static int fsi_spi_transfer_data(struct fsi_spi *ctx, |
| 299 | struct spi_transfer *transfer) |
| 300 | { |
| 301 | int loops; |
| 302 | int rc = 0; |
| 303 | unsigned long end; |
| 304 | u64 status = 0ULL; |
| 305 | |
| 306 | if (transfer->tx_buf) { |
| 307 | int nb; |
| 308 | int sent = 0; |
| 309 | u64 out = 0ULL; |
| 310 | const u8 *tx = transfer->tx_buf; |
| 311 | |
| 312 | while (transfer->len > sent) { |
| 313 | nb = fsi_spi_data_out(out: &out, tx: &tx[sent], |
| 314 | len: (int)transfer->len - sent); |
| 315 | |
| 316 | rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, value: out); |
| 317 | if (rc) |
| 318 | return rc; |
| 319 | |
| 320 | loops = 0; |
| 321 | end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); |
| 322 | do { |
| 323 | if (loops++ && time_after(jiffies, end)) |
| 324 | return -ETIMEDOUT; |
| 325 | |
| 326 | rc = fsi_spi_status(ctx, status: &status, dir: "TX" ); |
| 327 | if (rc) |
| 328 | return rc; |
| 329 | } while (status & SPI_FSI_STATUS_TDR_FULL); |
| 330 | |
| 331 | sent += nb; |
| 332 | } |
| 333 | } else if (transfer->rx_buf) { |
| 334 | int recv = 0; |
| 335 | u64 in = 0ULL; |
| 336 | u8 *rx = transfer->rx_buf; |
| 337 | |
| 338 | while (transfer->len > recv) { |
| 339 | loops = 0; |
| 340 | end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); |
| 341 | do { |
| 342 | if (loops++ && time_after(jiffies, end)) |
| 343 | return -ETIMEDOUT; |
| 344 | |
| 345 | rc = fsi_spi_status(ctx, status: &status, dir: "RX" ); |
| 346 | if (rc) |
| 347 | return rc; |
| 348 | } while (!(status & SPI_FSI_STATUS_RDR_FULL)); |
| 349 | |
| 350 | rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, value: &in); |
| 351 | if (rc) |
| 352 | return rc; |
| 353 | |
| 354 | recv += fsi_spi_data_in(in, rx: &rx[recv], |
| 355 | len: (int)transfer->len - recv); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | return 0; |
| 360 | } |
| 361 | |
| 362 | static int fsi_spi_transfer_init(struct fsi_spi *ctx) |
| 363 | { |
| 364 | int loops = 0; |
| 365 | int rc; |
| 366 | bool reset = false; |
| 367 | unsigned long end; |
| 368 | u64 seq_state; |
| 369 | u64 clock_cfg = 0ULL; |
| 370 | u64 status = 0ULL; |
| 371 | u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE | |
| 372 | SPI_FSI_CLOCK_CFG_SCK_NO_DEL | |
| 373 | FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19); |
| 374 | |
| 375 | end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); |
| 376 | do { |
| 377 | if (loops++ && time_after(jiffies, end)) |
| 378 | return -ETIMEDOUT; |
| 379 | |
| 380 | rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, value: &status); |
| 381 | if (rc) |
| 382 | return rc; |
| 383 | |
| 384 | seq_state = status & SPI_FSI_STATUS_SEQ_STATE; |
| 385 | |
| 386 | if (status & (SPI_FSI_STATUS_ANY_ERROR | |
| 387 | SPI_FSI_STATUS_TDR_FULL | |
| 388 | SPI_FSI_STATUS_RDR_FULL)) { |
| 389 | if (reset) { |
| 390 | dev_err(ctx->dev, |
| 391 | "Initialization error: %08llx\n" , |
| 392 | status); |
| 393 | return -EIO; |
| 394 | } |
| 395 | |
| 396 | rc = fsi_spi_reset(ctx); |
| 397 | if (rc) |
| 398 | return rc; |
| 399 | |
| 400 | reset = true; |
| 401 | continue; |
| 402 | } |
| 403 | } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE)); |
| 404 | |
| 405 | rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, value: 0ULL); |
| 406 | if (rc) |
| 407 | return rc; |
| 408 | |
| 409 | rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, value: &clock_cfg); |
| 410 | if (rc) |
| 411 | return rc; |
| 412 | |
| 413 | if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE | |
| 414 | SPI_FSI_CLOCK_CFG_ECC_DISABLE | |
| 415 | SPI_FSI_CLOCK_CFG_MODE | |
| 416 | SPI_FSI_CLOCK_CFG_SCK_RECV_DEL | |
| 417 | SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg) |
| 418 | rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| 419 | value: wanted_clock_cfg); |
| 420 | |
| 421 | return rc; |
| 422 | } |
| 423 | |
| 424 | static int fsi_spi_transfer_one_message(struct spi_controller *ctlr, |
| 425 | struct spi_message *mesg) |
| 426 | { |
| 427 | int rc; |
| 428 | u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(spi_get_chipselect(mesg->spi, 0) + 1); |
| 429 | unsigned int len; |
| 430 | struct spi_transfer *transfer; |
| 431 | struct fsi_spi *ctx = spi_controller_get_devdata(ctlr); |
| 432 | |
| 433 | rc = fsi_spi_check_mux(fsi: ctx->bridge->fsi, dev: ctx->dev); |
| 434 | if (rc) |
| 435 | goto error; |
| 436 | |
| 437 | list_for_each_entry(transfer, &mesg->transfers, transfer_list) { |
| 438 | struct fsi_spi_sequence seq; |
| 439 | struct spi_transfer *next = NULL; |
| 440 | |
| 441 | /* Sequencer must do shift out (tx) first. */ |
| 442 | if (!transfer->tx_buf || transfer->len > SPI_FSI_MAX_TX_SIZE) { |
| 443 | rc = -EINVAL; |
| 444 | goto error; |
| 445 | } |
| 446 | |
| 447 | dev_dbg(ctx->dev, "Start tx of %d bytes.\n" , transfer->len); |
| 448 | |
| 449 | rc = fsi_spi_transfer_init(ctx); |
| 450 | if (rc < 0) |
| 451 | goto error; |
| 452 | |
| 453 | fsi_spi_sequence_init(seq: &seq); |
| 454 | fsi_spi_sequence_add(seq: &seq, val: seq_slave); |
| 455 | |
| 456 | len = transfer->len; |
| 457 | while (len > 8) { |
| 458 | fsi_spi_sequence_add(seq: &seq, |
| 459 | SPI_FSI_SEQUENCE_SHIFT_OUT(8)); |
| 460 | len -= 8; |
| 461 | } |
| 462 | fsi_spi_sequence_add(seq: &seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len)); |
| 463 | |
| 464 | if (!list_is_last(list: &transfer->transfer_list, |
| 465 | head: &mesg->transfers)) { |
| 466 | next = list_next_entry(transfer, transfer_list); |
| 467 | |
| 468 | /* Sequencer can only do shift in (rx) after tx. */ |
| 469 | if (next->rx_buf) { |
| 470 | u8 shift; |
| 471 | |
| 472 | if (next->len > SPI_FSI_MAX_RX_SIZE) { |
| 473 | rc = -EINVAL; |
| 474 | goto error; |
| 475 | } |
| 476 | |
| 477 | dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n" , |
| 478 | next->len); |
| 479 | |
| 480 | shift = SPI_FSI_SEQUENCE_SHIFT_IN(next->len); |
| 481 | fsi_spi_sequence_add(seq: &seq, val: shift); |
| 482 | } else if (next->tx_buf) { |
| 483 | if ((next->len + transfer->len) > (SPI_FSI_MAX_TX_SIZE + 8)) { |
| 484 | rc = -EINVAL; |
| 485 | goto error; |
| 486 | } |
| 487 | |
| 488 | len = next->len; |
| 489 | while (len > 8) { |
| 490 | fsi_spi_sequence_add(seq: &seq, |
| 491 | SPI_FSI_SEQUENCE_SHIFT_OUT(8)); |
| 492 | len -= 8; |
| 493 | } |
| 494 | fsi_spi_sequence_add(seq: &seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len)); |
| 495 | } else { |
| 496 | next = NULL; |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | fsi_spi_sequence_add(seq: &seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0)); |
| 501 | |
| 502 | rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, value: seq.data); |
| 503 | if (rc) |
| 504 | goto error; |
| 505 | |
| 506 | rc = fsi_spi_transfer_data(ctx, transfer); |
| 507 | if (rc) |
| 508 | goto error; |
| 509 | |
| 510 | if (next) { |
| 511 | rc = fsi_spi_transfer_data(ctx, transfer: next); |
| 512 | if (rc) |
| 513 | goto error; |
| 514 | |
| 515 | transfer = next; |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | error: |
| 520 | mesg->status = rc; |
| 521 | spi_finalize_current_message(ctlr); |
| 522 | |
| 523 | return rc; |
| 524 | } |
| 525 | |
| 526 | static size_t fsi_spi_max_transfer_size(struct spi_device *spi) |
| 527 | { |
| 528 | return SPI_FSI_MAX_RX_SIZE; |
| 529 | } |
| 530 | |
| 531 | static int fsi_spi_probe(struct device *dev) |
| 532 | { |
| 533 | int rc; |
| 534 | struct device_node *np; |
| 535 | int num_controllers_registered = 0; |
| 536 | struct fsi2spi *bridge; |
| 537 | struct fsi_device *fsi = to_fsi_dev(dev); |
| 538 | |
| 539 | rc = fsi_spi_check_mux(fsi, dev); |
| 540 | if (rc) |
| 541 | return -ENODEV; |
| 542 | |
| 543 | bridge = devm_kzalloc(dev, size: sizeof(*bridge), GFP_KERNEL); |
| 544 | if (!bridge) |
| 545 | return -ENOMEM; |
| 546 | |
| 547 | bridge->fsi = fsi; |
| 548 | mutex_init(&bridge->lock); |
| 549 | |
| 550 | for_each_available_child_of_node(dev->of_node, np) { |
| 551 | u32 base; |
| 552 | struct fsi_spi *ctx; |
| 553 | struct spi_controller *ctlr; |
| 554 | |
| 555 | if (of_property_read_u32(np, propname: "reg" , out_value: &base)) |
| 556 | continue; |
| 557 | |
| 558 | ctlr = spi_alloc_host(dev, size: sizeof(*ctx)); |
| 559 | if (!ctlr) { |
| 560 | of_node_put(node: np); |
| 561 | break; |
| 562 | } |
| 563 | |
| 564 | ctlr->dev.of_node = np; |
| 565 | ctlr->num_chipselect = of_get_available_child_count(np) ?: 1; |
| 566 | ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX; |
| 567 | ctlr->max_transfer_size = fsi_spi_max_transfer_size; |
| 568 | ctlr->transfer_one_message = fsi_spi_transfer_one_message; |
| 569 | |
| 570 | ctx = spi_controller_get_devdata(ctlr); |
| 571 | ctx->dev = &ctlr->dev; |
| 572 | ctx->bridge = bridge; |
| 573 | ctx->base = base + SPI_FSI_BASE; |
| 574 | |
| 575 | rc = devm_spi_register_controller(dev, ctlr); |
| 576 | if (rc) |
| 577 | spi_controller_put(ctlr); |
| 578 | else |
| 579 | num_controllers_registered++; |
| 580 | } |
| 581 | |
| 582 | if (!num_controllers_registered) |
| 583 | return -ENODEV; |
| 584 | |
| 585 | return 0; |
| 586 | } |
| 587 | |
| 588 | static const struct fsi_device_id fsi_spi_ids[] = { |
| 589 | { FSI_ENGID_SPI, FSI_VERSION_ANY }, |
| 590 | { } |
| 591 | }; |
| 592 | MODULE_DEVICE_TABLE(fsi, fsi_spi_ids); |
| 593 | |
| 594 | static struct fsi_driver fsi_spi_driver = { |
| 595 | .id_table = fsi_spi_ids, |
| 596 | .drv = { |
| 597 | .name = "spi-fsi" , |
| 598 | .bus = &fsi_bus_type, |
| 599 | .probe = fsi_spi_probe, |
| 600 | }, |
| 601 | }; |
| 602 | module_fsi_driver(fsi_spi_driver); |
| 603 | |
| 604 | MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>" ); |
| 605 | MODULE_DESCRIPTION("FSI attached SPI controller" ); |
| 606 | MODULE_LICENSE("GPL" ); |
| 607 | |