| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * PXA2xx SPI DMA engine support. |
| 4 | * |
| 5 | * Copyright (C) 2013, 2021 Intel Corporation |
| 6 | * Author: Mika Westerberg <mika.westerberg@linux.intel.com> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/atomic.h> |
| 10 | #include <linux/dev_printk.h> |
| 11 | #include <linux/dma-mapping.h> |
| 12 | #include <linux/dmaengine.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/irqreturn.h> |
| 15 | #include <linux/scatterlist.h> |
| 16 | #include <linux/string.h> |
| 17 | #include <linux/types.h> |
| 18 | |
| 19 | #include <linux/spi/spi.h> |
| 20 | |
| 21 | #include "spi-pxa2xx.h" |
| 22 | |
| 23 | struct device; |
| 24 | |
| 25 | static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, |
| 26 | bool error) |
| 27 | { |
| 28 | struct spi_message *msg = drv_data->controller->cur_msg; |
| 29 | |
| 30 | /* |
| 31 | * It is possible that one CPU is handling ROR interrupt and other |
| 32 | * just gets DMA completion. Calling pump_transfers() twice for the |
| 33 | * same transfer leads to problems thus we prevent concurrent calls |
| 34 | * by using dma_running. |
| 35 | */ |
| 36 | if (atomic_dec_and_test(v: &drv_data->dma_running)) { |
| 37 | /* |
| 38 | * If the other CPU is still handling the ROR interrupt we |
| 39 | * might not know about the error yet. So we re-check the |
| 40 | * ROR bit here before we clear the status register. |
| 41 | */ |
| 42 | if (!error) |
| 43 | error = read_SSSR_bits(drv_data, bits: drv_data->mask_sr) & SSSR_ROR; |
| 44 | |
| 45 | /* Clear status & disable interrupts */ |
| 46 | clear_SSCR1_bits(drv_data, bits: drv_data->dma_cr1); |
| 47 | write_SSSR_CS(drv_data, val: drv_data->clear_sr); |
| 48 | if (!pxa25x_ssp_comp(drv_data)) |
| 49 | pxa2xx_spi_write(drv_data, SSTO, val: 0); |
| 50 | |
| 51 | if (error) { |
| 52 | /* In case we got an error we disable the SSP now */ |
| 53 | pxa_ssp_disable(ssp: drv_data->ssp); |
| 54 | msg->status = -EIO; |
| 55 | } |
| 56 | |
| 57 | spi_finalize_current_transfer(ctlr: drv_data->controller); |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | static void pxa2xx_spi_dma_callback(void *data) |
| 62 | { |
| 63 | pxa2xx_spi_dma_transfer_complete(drv_data: data, error: false); |
| 64 | } |
| 65 | |
| 66 | static struct dma_async_tx_descriptor * |
| 67 | pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, |
| 68 | enum dma_transfer_direction dir, |
| 69 | struct spi_transfer *xfer) |
| 70 | { |
| 71 | enum dma_slave_buswidth width; |
| 72 | struct dma_slave_config cfg; |
| 73 | struct dma_chan *chan; |
| 74 | struct sg_table *sgt; |
| 75 | int ret; |
| 76 | |
| 77 | switch (drv_data->n_bytes) { |
| 78 | case 1: |
| 79 | width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| 80 | break; |
| 81 | case 2: |
| 82 | width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| 83 | break; |
| 84 | default: |
| 85 | width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 86 | break; |
| 87 | } |
| 88 | |
| 89 | memset(&cfg, 0, sizeof(cfg)); |
| 90 | cfg.direction = dir; |
| 91 | |
| 92 | if (dir == DMA_MEM_TO_DEV) { |
| 93 | cfg.dst_addr = drv_data->ssp->phys_base + SSDR; |
| 94 | cfg.dst_addr_width = width; |
| 95 | cfg.dst_maxburst = drv_data->controller_info->dma_burst_size; |
| 96 | |
| 97 | sgt = &xfer->tx_sg; |
| 98 | chan = drv_data->controller->dma_tx; |
| 99 | } else { |
| 100 | cfg.src_addr = drv_data->ssp->phys_base + SSDR; |
| 101 | cfg.src_addr_width = width; |
| 102 | cfg.src_maxburst = drv_data->controller_info->dma_burst_size; |
| 103 | |
| 104 | sgt = &xfer->rx_sg; |
| 105 | chan = drv_data->controller->dma_rx; |
| 106 | } |
| 107 | |
| 108 | ret = dmaengine_slave_config(chan, config: &cfg); |
| 109 | if (ret) { |
| 110 | dev_warn(drv_data->ssp->dev, "DMA slave config failed\n" ); |
| 111 | return NULL; |
| 112 | } |
| 113 | |
| 114 | return dmaengine_prep_slave_sg(chan, sgl: sgt->sgl, sg_len: sgt->nents, dir, |
| 115 | flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| 116 | } |
| 117 | |
| 118 | irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) |
| 119 | { |
| 120 | u32 status; |
| 121 | |
| 122 | status = read_SSSR_bits(drv_data, bits: drv_data->mask_sr); |
| 123 | if (status & SSSR_ROR) { |
| 124 | dev_err(drv_data->ssp->dev, "FIFO overrun\n" ); |
| 125 | |
| 126 | dmaengine_terminate_async(chan: drv_data->controller->dma_rx); |
| 127 | dmaengine_terminate_async(chan: drv_data->controller->dma_tx); |
| 128 | |
| 129 | pxa2xx_spi_dma_transfer_complete(drv_data, error: true); |
| 130 | return IRQ_HANDLED; |
| 131 | } |
| 132 | |
| 133 | return IRQ_NONE; |
| 134 | } |
| 135 | |
| 136 | int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, |
| 137 | struct spi_transfer *xfer) |
| 138 | { |
| 139 | struct dma_async_tx_descriptor *tx_desc, *rx_desc; |
| 140 | int err; |
| 141 | |
| 142 | tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, dir: DMA_MEM_TO_DEV, xfer); |
| 143 | if (!tx_desc) { |
| 144 | dev_err(drv_data->ssp->dev, "failed to get DMA TX descriptor\n" ); |
| 145 | err = -EBUSY; |
| 146 | goto err_tx; |
| 147 | } |
| 148 | |
| 149 | rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, dir: DMA_DEV_TO_MEM, xfer); |
| 150 | if (!rx_desc) { |
| 151 | dev_err(drv_data->ssp->dev, "failed to get DMA RX descriptor\n" ); |
| 152 | err = -EBUSY; |
| 153 | goto err_rx; |
| 154 | } |
| 155 | |
| 156 | /* We are ready when RX completes */ |
| 157 | rx_desc->callback = pxa2xx_spi_dma_callback; |
| 158 | rx_desc->callback_param = drv_data; |
| 159 | |
| 160 | dmaengine_submit(desc: rx_desc); |
| 161 | dmaengine_submit(desc: tx_desc); |
| 162 | return 0; |
| 163 | |
| 164 | err_rx: |
| 165 | dmaengine_terminate_async(chan: drv_data->controller->dma_tx); |
| 166 | err_tx: |
| 167 | return err; |
| 168 | } |
| 169 | |
| 170 | void pxa2xx_spi_dma_start(struct driver_data *drv_data) |
| 171 | { |
| 172 | dma_async_issue_pending(chan: drv_data->controller->dma_rx); |
| 173 | dma_async_issue_pending(chan: drv_data->controller->dma_tx); |
| 174 | |
| 175 | atomic_set(v: &drv_data->dma_running, i: 1); |
| 176 | } |
| 177 | |
| 178 | void pxa2xx_spi_dma_stop(struct driver_data *drv_data) |
| 179 | { |
| 180 | atomic_set(v: &drv_data->dma_running, i: 0); |
| 181 | dmaengine_terminate_sync(chan: drv_data->controller->dma_rx); |
| 182 | dmaengine_terminate_sync(chan: drv_data->controller->dma_tx); |
| 183 | } |
| 184 | |
| 185 | int pxa2xx_spi_dma_setup(struct driver_data *drv_data) |
| 186 | { |
| 187 | struct pxa2xx_spi_controller *pdata = drv_data->controller_info; |
| 188 | struct spi_controller *controller = drv_data->controller; |
| 189 | struct device *dev = drv_data->ssp->dev; |
| 190 | dma_cap_mask_t mask; |
| 191 | |
| 192 | dma_cap_zero(mask); |
| 193 | dma_cap_set(DMA_SLAVE, mask); |
| 194 | |
| 195 | controller->dma_tx = dma_request_slave_channel_compat(mask, |
| 196 | fn: pdata->dma_filter, fn_param: pdata->tx_param, dev, name: "tx" ); |
| 197 | if (!controller->dma_tx) |
| 198 | return -ENODEV; |
| 199 | |
| 200 | controller->dma_rx = dma_request_slave_channel_compat(mask, |
| 201 | fn: pdata->dma_filter, fn_param: pdata->rx_param, dev, name: "rx" ); |
| 202 | if (!controller->dma_rx) { |
| 203 | dma_release_channel(chan: controller->dma_tx); |
| 204 | controller->dma_tx = NULL; |
| 205 | return -ENODEV; |
| 206 | } |
| 207 | |
| 208 | return 0; |
| 209 | } |
| 210 | |
| 211 | void pxa2xx_spi_dma_release(struct driver_data *drv_data) |
| 212 | { |
| 213 | struct spi_controller *controller = drv_data->controller; |
| 214 | |
| 215 | if (controller->dma_rx) { |
| 216 | dmaengine_terminate_sync(chan: controller->dma_rx); |
| 217 | dma_release_channel(chan: controller->dma_rx); |
| 218 | controller->dma_rx = NULL; |
| 219 | } |
| 220 | if (controller->dma_tx) { |
| 221 | dmaengine_terminate_sync(chan: controller->dma_tx); |
| 222 | dma_release_channel(chan: controller->dma_tx); |
| 223 | controller->dma_tx = NULL; |
| 224 | } |
| 225 | } |
| 226 | |