1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * PXA2xx SPI DMA engine support. |
4 | * |
5 | * Copyright (C) 2013, 2021 Intel Corporation |
6 | * Author: Mika Westerberg <mika.westerberg@linux.intel.com> |
7 | */ |
8 | |
9 | #include <linux/atomic.h> |
10 | #include <linux/dev_printk.h> |
11 | #include <linux/dma-mapping.h> |
12 | #include <linux/dmaengine.h> |
13 | #include <linux/errno.h> |
14 | #include <linux/irqreturn.h> |
15 | #include <linux/scatterlist.h> |
16 | #include <linux/string.h> |
17 | #include <linux/types.h> |
18 | |
19 | #include <linux/spi/spi.h> |
20 | |
21 | #include "spi-pxa2xx.h" |
22 | |
23 | struct device; |
24 | |
25 | static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, |
26 | bool error) |
27 | { |
28 | struct spi_message *msg = drv_data->controller->cur_msg; |
29 | |
30 | /* |
31 | * It is possible that one CPU is handling ROR interrupt and other |
32 | * just gets DMA completion. Calling pump_transfers() twice for the |
33 | * same transfer leads to problems thus we prevent concurrent calls |
34 | * by using dma_running. |
35 | */ |
36 | if (atomic_dec_and_test(v: &drv_data->dma_running)) { |
37 | /* |
38 | * If the other CPU is still handling the ROR interrupt we |
39 | * might not know about the error yet. So we re-check the |
40 | * ROR bit here before we clear the status register. |
41 | */ |
42 | if (!error) |
43 | error = read_SSSR_bits(drv_data, bits: drv_data->mask_sr) & SSSR_ROR; |
44 | |
45 | /* Clear status & disable interrupts */ |
46 | clear_SSCR1_bits(drv_data, bits: drv_data->dma_cr1); |
47 | write_SSSR_CS(drv_data, val: drv_data->clear_sr); |
48 | if (!pxa25x_ssp_comp(drv_data)) |
49 | pxa2xx_spi_write(drv_data, SSTO, val: 0); |
50 | |
51 | if (error) { |
52 | /* In case we got an error we disable the SSP now */ |
53 | pxa_ssp_disable(ssp: drv_data->ssp); |
54 | msg->status = -EIO; |
55 | } |
56 | |
57 | spi_finalize_current_transfer(ctlr: drv_data->controller); |
58 | } |
59 | } |
60 | |
61 | static void pxa2xx_spi_dma_callback(void *data) |
62 | { |
63 | pxa2xx_spi_dma_transfer_complete(drv_data: data, error: false); |
64 | } |
65 | |
66 | static struct dma_async_tx_descriptor * |
67 | pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, |
68 | enum dma_transfer_direction dir, |
69 | struct spi_transfer *xfer) |
70 | { |
71 | enum dma_slave_buswidth width; |
72 | struct dma_slave_config cfg; |
73 | struct dma_chan *chan; |
74 | struct sg_table *sgt; |
75 | int ret; |
76 | |
77 | switch (drv_data->n_bytes) { |
78 | case 1: |
79 | width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
80 | break; |
81 | case 2: |
82 | width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
83 | break; |
84 | default: |
85 | width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
86 | break; |
87 | } |
88 | |
89 | memset(&cfg, 0, sizeof(cfg)); |
90 | cfg.direction = dir; |
91 | |
92 | if (dir == DMA_MEM_TO_DEV) { |
93 | cfg.dst_addr = drv_data->ssp->phys_base + SSDR; |
94 | cfg.dst_addr_width = width; |
95 | cfg.dst_maxburst = drv_data->controller_info->dma_burst_size; |
96 | |
97 | sgt = &xfer->tx_sg; |
98 | chan = drv_data->controller->dma_tx; |
99 | } else { |
100 | cfg.src_addr = drv_data->ssp->phys_base + SSDR; |
101 | cfg.src_addr_width = width; |
102 | cfg.src_maxburst = drv_data->controller_info->dma_burst_size; |
103 | |
104 | sgt = &xfer->rx_sg; |
105 | chan = drv_data->controller->dma_rx; |
106 | } |
107 | |
108 | ret = dmaengine_slave_config(chan, config: &cfg); |
109 | if (ret) { |
110 | dev_warn(drv_data->ssp->dev, "DMA slave config failed\n" ); |
111 | return NULL; |
112 | } |
113 | |
114 | return dmaengine_prep_slave_sg(chan, sgl: sgt->sgl, sg_len: sgt->nents, dir, |
115 | flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
116 | } |
117 | |
118 | irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) |
119 | { |
120 | u32 status; |
121 | |
122 | status = read_SSSR_bits(drv_data, bits: drv_data->mask_sr); |
123 | if (status & SSSR_ROR) { |
124 | dev_err(drv_data->ssp->dev, "FIFO overrun\n" ); |
125 | |
126 | dmaengine_terminate_async(chan: drv_data->controller->dma_rx); |
127 | dmaengine_terminate_async(chan: drv_data->controller->dma_tx); |
128 | |
129 | pxa2xx_spi_dma_transfer_complete(drv_data, error: true); |
130 | return IRQ_HANDLED; |
131 | } |
132 | |
133 | return IRQ_NONE; |
134 | } |
135 | |
136 | int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, |
137 | struct spi_transfer *xfer) |
138 | { |
139 | struct dma_async_tx_descriptor *tx_desc, *rx_desc; |
140 | int err; |
141 | |
142 | tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, dir: DMA_MEM_TO_DEV, xfer); |
143 | if (!tx_desc) { |
144 | dev_err(drv_data->ssp->dev, "failed to get DMA TX descriptor\n" ); |
145 | err = -EBUSY; |
146 | goto err_tx; |
147 | } |
148 | |
149 | rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, dir: DMA_DEV_TO_MEM, xfer); |
150 | if (!rx_desc) { |
151 | dev_err(drv_data->ssp->dev, "failed to get DMA RX descriptor\n" ); |
152 | err = -EBUSY; |
153 | goto err_rx; |
154 | } |
155 | |
156 | /* We are ready when RX completes */ |
157 | rx_desc->callback = pxa2xx_spi_dma_callback; |
158 | rx_desc->callback_param = drv_data; |
159 | |
160 | dmaengine_submit(desc: rx_desc); |
161 | dmaengine_submit(desc: tx_desc); |
162 | return 0; |
163 | |
164 | err_rx: |
165 | dmaengine_terminate_async(chan: drv_data->controller->dma_tx); |
166 | err_tx: |
167 | return err; |
168 | } |
169 | |
170 | void pxa2xx_spi_dma_start(struct driver_data *drv_data) |
171 | { |
172 | dma_async_issue_pending(chan: drv_data->controller->dma_rx); |
173 | dma_async_issue_pending(chan: drv_data->controller->dma_tx); |
174 | |
175 | atomic_set(v: &drv_data->dma_running, i: 1); |
176 | } |
177 | |
178 | void pxa2xx_spi_dma_stop(struct driver_data *drv_data) |
179 | { |
180 | atomic_set(v: &drv_data->dma_running, i: 0); |
181 | dmaengine_terminate_sync(chan: drv_data->controller->dma_rx); |
182 | dmaengine_terminate_sync(chan: drv_data->controller->dma_tx); |
183 | } |
184 | |
185 | int pxa2xx_spi_dma_setup(struct driver_data *drv_data) |
186 | { |
187 | struct pxa2xx_spi_controller *pdata = drv_data->controller_info; |
188 | struct spi_controller *controller = drv_data->controller; |
189 | struct device *dev = drv_data->ssp->dev; |
190 | dma_cap_mask_t mask; |
191 | |
192 | dma_cap_zero(mask); |
193 | dma_cap_set(DMA_SLAVE, mask); |
194 | |
195 | controller->dma_tx = dma_request_slave_channel_compat(mask, |
196 | fn: pdata->dma_filter, fn_param: pdata->tx_param, dev, name: "tx" ); |
197 | if (!controller->dma_tx) |
198 | return -ENODEV; |
199 | |
200 | controller->dma_rx = dma_request_slave_channel_compat(mask, |
201 | fn: pdata->dma_filter, fn_param: pdata->rx_param, dev, name: "rx" ); |
202 | if (!controller->dma_rx) { |
203 | dma_release_channel(chan: controller->dma_tx); |
204 | controller->dma_tx = NULL; |
205 | return -ENODEV; |
206 | } |
207 | |
208 | return 0; |
209 | } |
210 | |
211 | void pxa2xx_spi_dma_release(struct driver_data *drv_data) |
212 | { |
213 | struct spi_controller *controller = drv_data->controller; |
214 | |
215 | if (controller->dma_rx) { |
216 | dmaengine_terminate_sync(chan: controller->dma_rx); |
217 | dma_release_channel(chan: controller->dma_rx); |
218 | controller->dma_rx = NULL; |
219 | } |
220 | if (controller->dma_tx) { |
221 | dmaengine_terminate_sync(chan: controller->dma_tx); |
222 | dma_release_channel(chan: controller->dma_tx); |
223 | controller->dma_tx = NULL; |
224 | } |
225 | } |
226 | |