1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
8#include "free-space-cache.h"
9#include "ordered-data.h"
10#include "transaction.h"
11#include "block-group.h"
12#include "fs.h"
13#include "accessors.h"
14#include "extent-tree.h"
15
16/*
17 * HOW DOES SPACE RESERVATION WORK
18 *
19 * If you want to know about delalloc specifically, there is a separate comment
20 * for that with the delalloc code. This comment is about how the whole system
21 * works generally.
22 *
23 * BASIC CONCEPTS
24 *
25 * 1) space_info. This is the ultimate arbiter of how much space we can use.
26 * There's a description of the bytes_ fields with the struct declaration,
27 * refer to that for specifics on each field. Suffice it to say that for
28 * reservations we care about total_bytes - SUM(space_info->bytes_) when
29 * determining if there is space to make an allocation. There is a space_info
30 * for METADATA, SYSTEM, and DATA areas.
31 *
32 * 2) block_rsv's. These are basically buckets for every different type of
33 * metadata reservation we have. You can see the comment in the block_rsv
34 * code on the rules for each type, but generally block_rsv->reserved is how
35 * much space is accounted for in space_info->bytes_may_use.
36 *
37 * 3) btrfs_calc*_size. These are the worst case calculations we used based
38 * on the number of items we will want to modify. We have one for changing
39 * items, and one for inserting new items. Generally we use these helpers to
40 * determine the size of the block reserves, and then use the actual bytes
41 * values to adjust the space_info counters.
42 *
43 * MAKING RESERVATIONS, THE NORMAL CASE
44 *
45 * We call into either btrfs_reserve_data_bytes() or
46 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
47 * num_bytes we want to reserve.
48 *
49 * ->reserve
50 * space_info->bytes_may_reserve += num_bytes
51 *
52 * ->extent allocation
53 * Call btrfs_add_reserved_bytes() which does
54 * space_info->bytes_may_reserve -= num_bytes
55 * space_info->bytes_reserved += extent_bytes
56 *
57 * ->insert reference
58 * Call btrfs_update_block_group() which does
59 * space_info->bytes_reserved -= extent_bytes
60 * space_info->bytes_used += extent_bytes
61 *
62 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
63 *
64 * Assume we are unable to simply make the reservation because we do not have
65 * enough space
66 *
67 * -> __reserve_bytes
68 * create a reserve_ticket with ->bytes set to our reservation, add it to
69 * the tail of space_info->tickets, kick async flush thread
70 *
71 * ->handle_reserve_ticket
72 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
73 * on the ticket.
74 *
75 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
76 * Flushes various things attempting to free up space.
77 *
78 * -> btrfs_try_granting_tickets()
79 * This is called by anything that either subtracts space from
80 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
81 * space_info->total_bytes. This loops through the ->priority_tickets and
82 * then the ->tickets list checking to see if the reservation can be
83 * completed. If it can the space is added to space_info->bytes_may_use and
84 * the ticket is woken up.
85 *
86 * -> ticket wakeup
87 * Check if ->bytes == 0, if it does we got our reservation and we can carry
88 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
89 * were interrupted.)
90 *
91 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
92 *
93 * Same as the above, except we add ourselves to the
94 * space_info->priority_tickets, and we do not use ticket->wait, we simply
95 * call flush_space() ourselves for the states that are safe for us to call
96 * without deadlocking and hope for the best.
97 *
98 * THE FLUSHING STATES
99 *
100 * Generally speaking we will have two cases for each state, a "nice" state
101 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
102 * reduce the locking over head on the various trees, and even to keep from
103 * doing any work at all in the case of delayed refs. Each of these delayed
104 * things however hold reservations, and so letting them run allows us to
105 * reclaim space so we can make new reservations.
106 *
107 * FLUSH_DELAYED_ITEMS
108 * Every inode has a delayed item to update the inode. Take a simple write
109 * for example, we would update the inode item at write time to update the
110 * mtime, and then again at finish_ordered_io() time in order to update the
111 * isize or bytes. We keep these delayed items to coalesce these operations
112 * into a single operation done on demand. These are an easy way to reclaim
113 * metadata space.
114 *
115 * FLUSH_DELALLOC
116 * Look at the delalloc comment to get an idea of how much space is reserved
117 * for delayed allocation. We can reclaim some of this space simply by
118 * running delalloc, but usually we need to wait for ordered extents to
119 * reclaim the bulk of this space.
120 *
121 * FLUSH_DELAYED_REFS
122 * We have a block reserve for the outstanding delayed refs space, and every
123 * delayed ref operation holds a reservation. Running these is a quick way
124 * to reclaim space, but we want to hold this until the end because COW can
125 * churn a lot and we can avoid making some extent tree modifications if we
126 * are able to delay for as long as possible.
127 *
128 * ALLOC_CHUNK
129 * We will skip this the first time through space reservation, because of
130 * overcommit and we don't want to have a lot of useless metadata space when
131 * our worst case reservations will likely never come true.
132 *
133 * RUN_DELAYED_IPUTS
134 * If we're freeing inodes we're likely freeing checksums, file extent
135 * items, and extent tree items. Loads of space could be freed up by these
136 * operations, however they won't be usable until the transaction commits.
137 *
138 * COMMIT_TRANS
139 * This will commit the transaction. Historically we had a lot of logic
140 * surrounding whether or not we'd commit the transaction, but this waits born
141 * out of a pre-tickets era where we could end up committing the transaction
142 * thousands of times in a row without making progress. Now thanks to our
143 * ticketing system we know if we're not making progress and can error
144 * everybody out after a few commits rather than burning the disk hoping for
145 * a different answer.
146 *
147 * OVERCOMMIT
148 *
149 * Because we hold so many reservations for metadata we will allow you to
150 * reserve more space than is currently free in the currently allocate
151 * metadata space. This only happens with metadata, data does not allow
152 * overcommitting.
153 *
154 * You can see the current logic for when we allow overcommit in
155 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
156 * is no unallocated space to be had, all reservations are kept within the
157 * free space in the allocated metadata chunks.
158 *
159 * Because of overcommitting, you generally want to use the
160 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
161 * thing with or without extra unallocated space.
162 */
163
164u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
165 bool may_use_included)
166{
167 ASSERT(s_info);
168 return s_info->bytes_used + s_info->bytes_reserved +
169 s_info->bytes_pinned + s_info->bytes_readonly +
170 s_info->bytes_zone_unusable +
171 (may_use_included ? s_info->bytes_may_use : 0);
172}
173
174/*
175 * after adding space to the filesystem, we need to clear the full flags
176 * on all the space infos.
177 */
178void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
179{
180 struct list_head *head = &info->space_info;
181 struct btrfs_space_info *found;
182
183 list_for_each_entry(found, head, list)
184 found->full = 0;
185}
186
187/*
188 * Block groups with more than this value (percents) of unusable space will be
189 * scheduled for background reclaim.
190 */
191#define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
192
193/*
194 * Calculate chunk size depending on volume type (regular or zoned).
195 */
196static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
197{
198 if (btrfs_is_zoned(fs_info))
199 return fs_info->zone_size;
200
201 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
202
203 if (flags & BTRFS_BLOCK_GROUP_DATA)
204 return BTRFS_MAX_DATA_CHUNK_SIZE;
205 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
206 return SZ_32M;
207
208 /* Handle BTRFS_BLOCK_GROUP_METADATA */
209 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
210 return SZ_1G;
211
212 return SZ_256M;
213}
214
215/*
216 * Update default chunk size.
217 */
218void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
219 u64 chunk_size)
220{
221 WRITE_ONCE(space_info->chunk_size, chunk_size);
222}
223
224static int create_space_info(struct btrfs_fs_info *info, u64 flags)
225{
226
227 struct btrfs_space_info *space_info;
228 int i;
229 int ret;
230
231 space_info = kzalloc(size: sizeof(*space_info), GFP_NOFS);
232 if (!space_info)
233 return -ENOMEM;
234
235 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
236 INIT_LIST_HEAD(list: &space_info->block_groups[i]);
237 init_rwsem(&space_info->groups_sem);
238 spin_lock_init(&space_info->lock);
239 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
240 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
241 INIT_LIST_HEAD(list: &space_info->ro_bgs);
242 INIT_LIST_HEAD(list: &space_info->tickets);
243 INIT_LIST_HEAD(list: &space_info->priority_tickets);
244 space_info->clamp = 1;
245 btrfs_update_space_info_chunk_size(space_info, chunk_size: calc_chunk_size(fs_info: info, flags));
246
247 if (btrfs_is_zoned(fs_info: info))
248 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
249
250 ret = btrfs_sysfs_add_space_info_type(fs_info: info, space_info);
251 if (ret)
252 return ret;
253
254 list_add(new: &space_info->list, head: &info->space_info);
255 if (flags & BTRFS_BLOCK_GROUP_DATA)
256 info->data_sinfo = space_info;
257
258 return ret;
259}
260
261int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
262{
263 struct btrfs_super_block *disk_super;
264 u64 features;
265 u64 flags;
266 int mixed = 0;
267 int ret;
268
269 disk_super = fs_info->super_copy;
270 if (!btrfs_super_root(s: disk_super))
271 return -EINVAL;
272
273 features = btrfs_super_incompat_flags(s: disk_super);
274 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
275 mixed = 1;
276
277 flags = BTRFS_BLOCK_GROUP_SYSTEM;
278 ret = create_space_info(info: fs_info, flags);
279 if (ret)
280 goto out;
281
282 if (mixed) {
283 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
284 ret = create_space_info(info: fs_info, flags);
285 } else {
286 flags = BTRFS_BLOCK_GROUP_METADATA;
287 ret = create_space_info(info: fs_info, flags);
288 if (ret)
289 goto out;
290
291 flags = BTRFS_BLOCK_GROUP_DATA;
292 ret = create_space_info(info: fs_info, flags);
293 }
294out:
295 return ret;
296}
297
298void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
299 struct btrfs_block_group *block_group)
300{
301 struct btrfs_space_info *found;
302 int factor, index;
303
304 factor = btrfs_bg_type_to_factor(flags: block_group->flags);
305
306 found = btrfs_find_space_info(info, flags: block_group->flags);
307 ASSERT(found);
308 spin_lock(lock: &found->lock);
309 found->total_bytes += block_group->length;
310 found->disk_total += block_group->length * factor;
311 found->bytes_used += block_group->used;
312 found->disk_used += block_group->used * factor;
313 found->bytes_readonly += block_group->bytes_super;
314 found->bytes_zone_unusable += block_group->zone_unusable;
315 if (block_group->length > 0)
316 found->full = 0;
317 btrfs_try_granting_tickets(fs_info: info, space_info: found);
318 spin_unlock(lock: &found->lock);
319
320 block_group->space_info = found;
321
322 index = btrfs_bg_flags_to_raid_index(flags: block_group->flags);
323 down_write(sem: &found->groups_sem);
324 list_add_tail(new: &block_group->list, head: &found->block_groups[index]);
325 up_write(sem: &found->groups_sem);
326}
327
328struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
329 u64 flags)
330{
331 struct list_head *head = &info->space_info;
332 struct btrfs_space_info *found;
333
334 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
335
336 list_for_each_entry(found, head, list) {
337 if (found->flags & flags)
338 return found;
339 }
340 return NULL;
341}
342
343static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
344 struct btrfs_space_info *space_info,
345 enum btrfs_reserve_flush_enum flush)
346{
347 struct btrfs_space_info *data_sinfo;
348 u64 profile;
349 u64 avail;
350 u64 data_chunk_size;
351 int factor;
352
353 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
354 profile = btrfs_system_alloc_profile(fs_info);
355 else
356 profile = btrfs_metadata_alloc_profile(fs_info);
357
358 avail = atomic64_read(v: &fs_info->free_chunk_space);
359
360 /*
361 * If we have dup, raid1 or raid10 then only half of the free
362 * space is actually usable. For raid56, the space info used
363 * doesn't include the parity drive, so we don't have to
364 * change the math
365 */
366 factor = btrfs_bg_type_to_factor(flags: profile);
367 avail = div_u64(dividend: avail, divisor: factor);
368 if (avail == 0)
369 return 0;
370
371 /*
372 * Calculate the data_chunk_size, space_info->chunk_size is the
373 * "optimal" chunk size based on the fs size. However when we actually
374 * allocate the chunk we will strip this down further, making it no more
375 * than 10% of the disk or 1G, whichever is smaller.
376 */
377 data_sinfo = btrfs_find_space_info(info: fs_info, BTRFS_BLOCK_GROUP_DATA);
378 data_chunk_size = min(data_sinfo->chunk_size,
379 mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
380 data_chunk_size = min_t(u64, data_chunk_size, SZ_1G);
381
382 /*
383 * Since data allocations immediately use block groups as part of the
384 * reservation, because we assume that data reservations will == actual
385 * usage, we could potentially overcommit and then immediately have that
386 * available space used by a data allocation, which could put us in a
387 * bind when we get close to filling the file system.
388 *
389 * To handle this simply remove the data_chunk_size from the available
390 * space. If we are relatively empty this won't affect our ability to
391 * overcommit much, and if we're very close to full it'll keep us from
392 * getting into a position where we've given ourselves very little
393 * metadata wiggle room.
394 */
395 if (avail <= data_chunk_size)
396 return 0;
397 avail -= data_chunk_size;
398
399 /*
400 * If we aren't flushing all things, let us overcommit up to
401 * 1/2th of the space. If we can flush, don't let us overcommit
402 * too much, let it overcommit up to 1/8 of the space.
403 */
404 if (flush == BTRFS_RESERVE_FLUSH_ALL)
405 avail >>= 3;
406 else
407 avail >>= 1;
408 return avail;
409}
410
411int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
412 struct btrfs_space_info *space_info, u64 bytes,
413 enum btrfs_reserve_flush_enum flush)
414{
415 u64 avail;
416 u64 used;
417
418 /* Don't overcommit when in mixed mode */
419 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
420 return 0;
421
422 used = btrfs_space_info_used(s_info: space_info, may_use_included: true);
423 avail = calc_available_free_space(fs_info, space_info, flush);
424
425 if (used + bytes < space_info->total_bytes + avail)
426 return 1;
427 return 0;
428}
429
430static void remove_ticket(struct btrfs_space_info *space_info,
431 struct reserve_ticket *ticket)
432{
433 if (!list_empty(head: &ticket->list)) {
434 list_del_init(entry: &ticket->list);
435 ASSERT(space_info->reclaim_size >= ticket->bytes);
436 space_info->reclaim_size -= ticket->bytes;
437 }
438}
439
440/*
441 * This is for space we already have accounted in space_info->bytes_may_use, so
442 * basically when we're returning space from block_rsv's.
443 */
444void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
445 struct btrfs_space_info *space_info)
446{
447 struct list_head *head;
448 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
449
450 lockdep_assert_held(&space_info->lock);
451
452 head = &space_info->priority_tickets;
453again:
454 while (!list_empty(head)) {
455 struct reserve_ticket *ticket;
456 u64 used = btrfs_space_info_used(s_info: space_info, may_use_included: true);
457
458 ticket = list_first_entry(head, struct reserve_ticket, list);
459
460 /* Check and see if our ticket can be satisfied now. */
461 if ((used + ticket->bytes <= space_info->total_bytes) ||
462 btrfs_can_overcommit(fs_info, space_info, bytes: ticket->bytes,
463 flush)) {
464 btrfs_space_info_update_bytes_may_use(fs_info,
465 sinfo: space_info,
466 bytes: ticket->bytes);
467 remove_ticket(space_info, ticket);
468 ticket->bytes = 0;
469 space_info->tickets_id++;
470 wake_up(&ticket->wait);
471 } else {
472 break;
473 }
474 }
475
476 if (head == &space_info->priority_tickets) {
477 head = &space_info->tickets;
478 flush = BTRFS_RESERVE_FLUSH_ALL;
479 goto again;
480 }
481}
482
483#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
484do { \
485 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
486 spin_lock(&__rsv->lock); \
487 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
488 __rsv->size, __rsv->reserved); \
489 spin_unlock(&__rsv->lock); \
490} while (0)
491
492static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
493{
494 switch (space_info->flags) {
495 case BTRFS_BLOCK_GROUP_SYSTEM:
496 return "SYSTEM";
497 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
498 return "DATA+METADATA";
499 case BTRFS_BLOCK_GROUP_DATA:
500 return "DATA";
501 case BTRFS_BLOCK_GROUP_METADATA:
502 return "METADATA";
503 default:
504 return "UNKNOWN";
505 }
506}
507
508static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
509{
510 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
511 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
512 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
513 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
514 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
515}
516
517static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
518 struct btrfs_space_info *info)
519{
520 const char *flag_str = space_info_flag_to_str(space_info: info);
521 lockdep_assert_held(&info->lock);
522
523 /* The free space could be negative in case of overcommit */
524 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
525 flag_str,
526 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
527 info->full ? "" : "not ");
528 btrfs_info(fs_info,
529"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
530 info->total_bytes, info->bytes_used, info->bytes_pinned,
531 info->bytes_reserved, info->bytes_may_use,
532 info->bytes_readonly, info->bytes_zone_unusable);
533}
534
535void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
536 struct btrfs_space_info *info, u64 bytes,
537 int dump_block_groups)
538{
539 struct btrfs_block_group *cache;
540 u64 total_avail = 0;
541 int index = 0;
542
543 spin_lock(lock: &info->lock);
544 __btrfs_dump_space_info(fs_info, info);
545 dump_global_block_rsv(fs_info);
546 spin_unlock(lock: &info->lock);
547
548 if (!dump_block_groups)
549 return;
550
551 down_read(sem: &info->groups_sem);
552again:
553 list_for_each_entry(cache, &info->block_groups[index], list) {
554 u64 avail;
555
556 spin_lock(lock: &cache->lock);
557 avail = cache->length - cache->used - cache->pinned -
558 cache->reserved - cache->delalloc_bytes -
559 cache->bytes_super - cache->zone_unusable;
560 btrfs_info(fs_info,
561"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
562 cache->start, cache->length, cache->used, cache->pinned,
563 cache->reserved, cache->delalloc_bytes,
564 cache->bytes_super, cache->zone_unusable,
565 avail, cache->ro ? "[readonly]" : "");
566 spin_unlock(lock: &cache->lock);
567 btrfs_dump_free_space(block_group: cache, bytes);
568 total_avail += avail;
569 }
570 if (++index < BTRFS_NR_RAID_TYPES)
571 goto again;
572 up_read(sem: &info->groups_sem);
573
574 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
575}
576
577static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
578 u64 to_reclaim)
579{
580 u64 bytes;
581 u64 nr;
582
583 bytes = btrfs_calc_insert_metadata_size(fs_info, num_items: 1);
584 nr = div64_u64(dividend: to_reclaim, divisor: bytes);
585 if (!nr)
586 nr = 1;
587 return nr;
588}
589
590#define EXTENT_SIZE_PER_ITEM SZ_256K
591
592/*
593 * shrink metadata reservation for delalloc
594 */
595static void shrink_delalloc(struct btrfs_fs_info *fs_info,
596 struct btrfs_space_info *space_info,
597 u64 to_reclaim, bool wait_ordered,
598 bool for_preempt)
599{
600 struct btrfs_trans_handle *trans;
601 u64 delalloc_bytes;
602 u64 ordered_bytes;
603 u64 items;
604 long time_left;
605 int loops;
606
607 delalloc_bytes = percpu_counter_sum_positive(fbc: &fs_info->delalloc_bytes);
608 ordered_bytes = percpu_counter_sum_positive(fbc: &fs_info->ordered_bytes);
609 if (delalloc_bytes == 0 && ordered_bytes == 0)
610 return;
611
612 /* Calc the number of the pages we need flush for space reservation */
613 if (to_reclaim == U64_MAX) {
614 items = U64_MAX;
615 } else {
616 /*
617 * to_reclaim is set to however much metadata we need to
618 * reclaim, but reclaiming that much data doesn't really track
619 * exactly. What we really want to do is reclaim full inode's
620 * worth of reservations, however that's not available to us
621 * here. We will take a fraction of the delalloc bytes for our
622 * flushing loops and hope for the best. Delalloc will expand
623 * the amount we write to cover an entire dirty extent, which
624 * will reclaim the metadata reservation for that range. If
625 * it's not enough subsequent flush stages will be more
626 * aggressive.
627 */
628 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
629 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
630 }
631
632 trans = current->journal_info;
633
634 /*
635 * If we are doing more ordered than delalloc we need to just wait on
636 * ordered extents, otherwise we'll waste time trying to flush delalloc
637 * that likely won't give us the space back we need.
638 */
639 if (ordered_bytes > delalloc_bytes && !for_preempt)
640 wait_ordered = true;
641
642 loops = 0;
643 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
644 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
645 long nr_pages = min_t(u64, temp, LONG_MAX);
646 int async_pages;
647
648 btrfs_start_delalloc_roots(fs_info, nr: nr_pages, in_reclaim_context: true);
649
650 /*
651 * We need to make sure any outstanding async pages are now
652 * processed before we continue. This is because things like
653 * sync_inode() try to be smart and skip writing if the inode is
654 * marked clean. We don't use filemap_fwrite for flushing
655 * because we want to control how many pages we write out at a
656 * time, thus this is the only safe way to make sure we've
657 * waited for outstanding compressed workers to have started
658 * their jobs and thus have ordered extents set up properly.
659 *
660 * This exists because we do not want to wait for each
661 * individual inode to finish its async work, we simply want to
662 * start the IO on everybody, and then come back here and wait
663 * for all of the async work to catch up. Once we're done with
664 * that we know we'll have ordered extents for everything and we
665 * can decide if we wait for that or not.
666 *
667 * If we choose to replace this in the future, make absolutely
668 * sure that the proper waiting is being done in the async case,
669 * as there have been bugs in that area before.
670 */
671 async_pages = atomic_read(v: &fs_info->async_delalloc_pages);
672 if (!async_pages)
673 goto skip_async;
674
675 /*
676 * We don't want to wait forever, if we wrote less pages in this
677 * loop than we have outstanding, only wait for that number of
678 * pages, otherwise we can wait for all async pages to finish
679 * before continuing.
680 */
681 if (async_pages > nr_pages)
682 async_pages -= nr_pages;
683 else
684 async_pages = 0;
685 wait_event(fs_info->async_submit_wait,
686 atomic_read(&fs_info->async_delalloc_pages) <=
687 async_pages);
688skip_async:
689 loops++;
690 if (wait_ordered && !trans) {
691 btrfs_wait_ordered_roots(fs_info, nr: items, range_start: 0, range_len: (u64)-1);
692 } else {
693 time_left = schedule_timeout_killable(timeout: 1);
694 if (time_left)
695 break;
696 }
697
698 /*
699 * If we are for preemption we just want a one-shot of delalloc
700 * flushing so we can stop flushing if we decide we don't need
701 * to anymore.
702 */
703 if (for_preempt)
704 break;
705
706 spin_lock(lock: &space_info->lock);
707 if (list_empty(head: &space_info->tickets) &&
708 list_empty(head: &space_info->priority_tickets)) {
709 spin_unlock(lock: &space_info->lock);
710 break;
711 }
712 spin_unlock(lock: &space_info->lock);
713
714 delalloc_bytes = percpu_counter_sum_positive(
715 fbc: &fs_info->delalloc_bytes);
716 ordered_bytes = percpu_counter_sum_positive(
717 fbc: &fs_info->ordered_bytes);
718 }
719}
720
721/*
722 * Try to flush some data based on policy set by @state. This is only advisory
723 * and may fail for various reasons. The caller is supposed to examine the
724 * state of @space_info to detect the outcome.
725 */
726static void flush_space(struct btrfs_fs_info *fs_info,
727 struct btrfs_space_info *space_info, u64 num_bytes,
728 enum btrfs_flush_state state, bool for_preempt)
729{
730 struct btrfs_root *root = fs_info->tree_root;
731 struct btrfs_trans_handle *trans;
732 int nr;
733 int ret = 0;
734
735 switch (state) {
736 case FLUSH_DELAYED_ITEMS_NR:
737 case FLUSH_DELAYED_ITEMS:
738 if (state == FLUSH_DELAYED_ITEMS_NR)
739 nr = calc_reclaim_items_nr(fs_info, to_reclaim: num_bytes) * 2;
740 else
741 nr = -1;
742
743 trans = btrfs_join_transaction_nostart(root);
744 if (IS_ERR(ptr: trans)) {
745 ret = PTR_ERR(ptr: trans);
746 if (ret == -ENOENT)
747 ret = 0;
748 break;
749 }
750 ret = btrfs_run_delayed_items_nr(trans, nr);
751 btrfs_end_transaction(trans);
752 break;
753 case FLUSH_DELALLOC:
754 case FLUSH_DELALLOC_WAIT:
755 case FLUSH_DELALLOC_FULL:
756 if (state == FLUSH_DELALLOC_FULL)
757 num_bytes = U64_MAX;
758 shrink_delalloc(fs_info, space_info, to_reclaim: num_bytes,
759 wait_ordered: state != FLUSH_DELALLOC, for_preempt);
760 break;
761 case FLUSH_DELAYED_REFS_NR:
762 case FLUSH_DELAYED_REFS:
763 trans = btrfs_join_transaction_nostart(root);
764 if (IS_ERR(ptr: trans)) {
765 ret = PTR_ERR(ptr: trans);
766 if (ret == -ENOENT)
767 ret = 0;
768 break;
769 }
770 if (state == FLUSH_DELAYED_REFS_NR)
771 btrfs_run_delayed_refs(trans, min_bytes: num_bytes);
772 else
773 btrfs_run_delayed_refs(trans, min_bytes: 0);
774 btrfs_end_transaction(trans);
775 break;
776 case ALLOC_CHUNK:
777 case ALLOC_CHUNK_FORCE:
778 trans = btrfs_join_transaction(root);
779 if (IS_ERR(ptr: trans)) {
780 ret = PTR_ERR(ptr: trans);
781 break;
782 }
783 ret = btrfs_chunk_alloc(trans,
784 flags: btrfs_get_alloc_profile(fs_info, orig_flags: space_info->flags),
785 force: (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
786 CHUNK_ALLOC_FORCE);
787 btrfs_end_transaction(trans);
788
789 if (ret > 0 || ret == -ENOSPC)
790 ret = 0;
791 break;
792 case RUN_DELAYED_IPUTS:
793 /*
794 * If we have pending delayed iputs then we could free up a
795 * bunch of pinned space, so make sure we run the iputs before
796 * we do our pinned bytes check below.
797 */
798 btrfs_run_delayed_iputs(fs_info);
799 btrfs_wait_on_delayed_iputs(fs_info);
800 break;
801 case COMMIT_TRANS:
802 ASSERT(current->journal_info == NULL);
803 /*
804 * We don't want to start a new transaction, just attach to the
805 * current one or wait it fully commits in case its commit is
806 * happening at the moment. Note: we don't use a nostart join
807 * because that does not wait for a transaction to fully commit
808 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
809 */
810 trans = btrfs_attach_transaction_barrier(root);
811 if (IS_ERR(ptr: trans)) {
812 ret = PTR_ERR(ptr: trans);
813 if (ret == -ENOENT)
814 ret = 0;
815 break;
816 }
817 ret = btrfs_commit_transaction(trans);
818 break;
819 default:
820 ret = -ENOSPC;
821 break;
822 }
823
824 trace_btrfs_flush_space(fs_info, flags: space_info->flags, num_bytes, state,
825 ret, for_preempt);
826 return;
827}
828
829static inline u64
830btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
831 struct btrfs_space_info *space_info)
832{
833 u64 used;
834 u64 avail;
835 u64 to_reclaim = space_info->reclaim_size;
836
837 lockdep_assert_held(&space_info->lock);
838
839 avail = calc_available_free_space(fs_info, space_info,
840 flush: BTRFS_RESERVE_FLUSH_ALL);
841 used = btrfs_space_info_used(s_info: space_info, may_use_included: true);
842
843 /*
844 * We may be flushing because suddenly we have less space than we had
845 * before, and now we're well over-committed based on our current free
846 * space. If that's the case add in our overage so we make sure to put
847 * appropriate pressure on the flushing state machine.
848 */
849 if (space_info->total_bytes + avail < used)
850 to_reclaim += used - (space_info->total_bytes + avail);
851
852 return to_reclaim;
853}
854
855static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
856 struct btrfs_space_info *space_info)
857{
858 const u64 global_rsv_size = btrfs_block_rsv_reserved(rsv: &fs_info->global_block_rsv);
859 u64 ordered, delalloc;
860 u64 thresh;
861 u64 used;
862
863 thresh = mult_perc(num: space_info->total_bytes, percent: 90);
864
865 lockdep_assert_held(&space_info->lock);
866
867 /* If we're just plain full then async reclaim just slows us down. */
868 if ((space_info->bytes_used + space_info->bytes_reserved +
869 global_rsv_size) >= thresh)
870 return false;
871
872 used = space_info->bytes_may_use + space_info->bytes_pinned;
873
874 /* The total flushable belongs to the global rsv, don't flush. */
875 if (global_rsv_size >= used)
876 return false;
877
878 /*
879 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
880 * that devoted to other reservations then there's no sense in flushing,
881 * we don't have a lot of things that need flushing.
882 */
883 if (used - global_rsv_size <= SZ_128M)
884 return false;
885
886 /*
887 * We have tickets queued, bail so we don't compete with the async
888 * flushers.
889 */
890 if (space_info->reclaim_size)
891 return false;
892
893 /*
894 * If we have over half of the free space occupied by reservations or
895 * pinned then we want to start flushing.
896 *
897 * We do not do the traditional thing here, which is to say
898 *
899 * if (used >= ((total_bytes + avail) / 2))
900 * return 1;
901 *
902 * because this doesn't quite work how we want. If we had more than 50%
903 * of the space_info used by bytes_used and we had 0 available we'd just
904 * constantly run the background flusher. Instead we want it to kick in
905 * if our reclaimable space exceeds our clamped free space.
906 *
907 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
908 * the following:
909 *
910 * Amount of RAM Minimum threshold Maximum threshold
911 *
912 * 256GiB 1GiB 128GiB
913 * 128GiB 512MiB 64GiB
914 * 64GiB 256MiB 32GiB
915 * 32GiB 128MiB 16GiB
916 * 16GiB 64MiB 8GiB
917 *
918 * These are the range our thresholds will fall in, corresponding to how
919 * much delalloc we need for the background flusher to kick in.
920 */
921
922 thresh = calc_available_free_space(fs_info, space_info,
923 flush: BTRFS_RESERVE_FLUSH_ALL);
924 used = space_info->bytes_used + space_info->bytes_reserved +
925 space_info->bytes_readonly + global_rsv_size;
926 if (used < space_info->total_bytes)
927 thresh += space_info->total_bytes - used;
928 thresh >>= space_info->clamp;
929
930 used = space_info->bytes_pinned;
931
932 /*
933 * If we have more ordered bytes than delalloc bytes then we're either
934 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
935 * around. Preemptive flushing is only useful in that it can free up
936 * space before tickets need to wait for things to finish. In the case
937 * of ordered extents, preemptively waiting on ordered extents gets us
938 * nothing, if our reservations are tied up in ordered extents we'll
939 * simply have to slow down writers by forcing them to wait on ordered
940 * extents.
941 *
942 * In the case that ordered is larger than delalloc, only include the
943 * block reserves that we would actually be able to directly reclaim
944 * from. In this case if we're heavy on metadata operations this will
945 * clearly be heavy enough to warrant preemptive flushing. In the case
946 * of heavy DIO or ordered reservations, preemptive flushing will just
947 * waste time and cause us to slow down.
948 *
949 * We want to make sure we truly are maxed out on ordered however, so
950 * cut ordered in half, and if it's still higher than delalloc then we
951 * can keep flushing. This is to avoid the case where we start
952 * flushing, and now delalloc == ordered and we stop preemptively
953 * flushing when we could still have several gigs of delalloc to flush.
954 */
955 ordered = percpu_counter_read_positive(fbc: &fs_info->ordered_bytes) >> 1;
956 delalloc = percpu_counter_read_positive(fbc: &fs_info->delalloc_bytes);
957 if (ordered >= delalloc)
958 used += btrfs_block_rsv_reserved(rsv: &fs_info->delayed_refs_rsv) +
959 btrfs_block_rsv_reserved(rsv: &fs_info->delayed_block_rsv);
960 else
961 used += space_info->bytes_may_use - global_rsv_size;
962
963 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
964 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
965}
966
967static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
968 struct btrfs_space_info *space_info,
969 struct reserve_ticket *ticket)
970{
971 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
972 u64 min_bytes;
973
974 if (!ticket->steal)
975 return false;
976
977 if (global_rsv->space_info != space_info)
978 return false;
979
980 spin_lock(lock: &global_rsv->lock);
981 min_bytes = mult_perc(num: global_rsv->size, percent: 10);
982 if (global_rsv->reserved < min_bytes + ticket->bytes) {
983 spin_unlock(lock: &global_rsv->lock);
984 return false;
985 }
986 global_rsv->reserved -= ticket->bytes;
987 remove_ticket(space_info, ticket);
988 ticket->bytes = 0;
989 wake_up(&ticket->wait);
990 space_info->tickets_id++;
991 if (global_rsv->reserved < global_rsv->size)
992 global_rsv->full = 0;
993 spin_unlock(lock: &global_rsv->lock);
994
995 return true;
996}
997
998/*
999 * We've exhausted our flushing, start failing tickets.
1000 *
1001 * @fs_info - fs_info for this fs
1002 * @space_info - the space info we were flushing
1003 *
1004 * We call this when we've exhausted our flushing ability and haven't made
1005 * progress in satisfying tickets. The reservation code handles tickets in
1006 * order, so if there is a large ticket first and then smaller ones we could
1007 * very well satisfy the smaller tickets. This will attempt to wake up any
1008 * tickets in the list to catch this case.
1009 *
1010 * This function returns true if it was able to make progress by clearing out
1011 * other tickets, or if it stumbles across a ticket that was smaller than the
1012 * first ticket.
1013 */
1014static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1015 struct btrfs_space_info *space_info)
1016{
1017 struct reserve_ticket *ticket;
1018 u64 tickets_id = space_info->tickets_id;
1019 const bool aborted = BTRFS_FS_ERROR(fs_info);
1020
1021 trace_btrfs_fail_all_tickets(fs_info, sinfo: space_info);
1022
1023 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1024 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1025 __btrfs_dump_space_info(fs_info, info: space_info);
1026 }
1027
1028 while (!list_empty(head: &space_info->tickets) &&
1029 tickets_id == space_info->tickets_id) {
1030 ticket = list_first_entry(&space_info->tickets,
1031 struct reserve_ticket, list);
1032
1033 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1034 return true;
1035
1036 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1037 btrfs_info(fs_info, "failing ticket with %llu bytes",
1038 ticket->bytes);
1039
1040 remove_ticket(space_info, ticket);
1041 if (aborted)
1042 ticket->error = -EIO;
1043 else
1044 ticket->error = -ENOSPC;
1045 wake_up(&ticket->wait);
1046
1047 /*
1048 * We're just throwing tickets away, so more flushing may not
1049 * trip over btrfs_try_granting_tickets, so we need to call it
1050 * here to see if we can make progress with the next ticket in
1051 * the list.
1052 */
1053 if (!aborted)
1054 btrfs_try_granting_tickets(fs_info, space_info);
1055 }
1056 return (tickets_id != space_info->tickets_id);
1057}
1058
1059/*
1060 * This is for normal flushers, we can wait all goddamned day if we want to. We
1061 * will loop and continuously try to flush as long as we are making progress.
1062 * We count progress as clearing off tickets each time we have to loop.
1063 */
1064static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1065{
1066 struct btrfs_fs_info *fs_info;
1067 struct btrfs_space_info *space_info;
1068 u64 to_reclaim;
1069 enum btrfs_flush_state flush_state;
1070 int commit_cycles = 0;
1071 u64 last_tickets_id;
1072
1073 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1074 space_info = btrfs_find_space_info(info: fs_info, BTRFS_BLOCK_GROUP_METADATA);
1075
1076 spin_lock(lock: &space_info->lock);
1077 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1078 if (!to_reclaim) {
1079 space_info->flush = 0;
1080 spin_unlock(lock: &space_info->lock);
1081 return;
1082 }
1083 last_tickets_id = space_info->tickets_id;
1084 spin_unlock(lock: &space_info->lock);
1085
1086 flush_state = FLUSH_DELAYED_ITEMS_NR;
1087 do {
1088 flush_space(fs_info, space_info, num_bytes: to_reclaim, state: flush_state, for_preempt: false);
1089 spin_lock(lock: &space_info->lock);
1090 if (list_empty(head: &space_info->tickets)) {
1091 space_info->flush = 0;
1092 spin_unlock(lock: &space_info->lock);
1093 return;
1094 }
1095 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1096 space_info);
1097 if (last_tickets_id == space_info->tickets_id) {
1098 flush_state++;
1099 } else {
1100 last_tickets_id = space_info->tickets_id;
1101 flush_state = FLUSH_DELAYED_ITEMS_NR;
1102 if (commit_cycles)
1103 commit_cycles--;
1104 }
1105
1106 /*
1107 * We do not want to empty the system of delalloc unless we're
1108 * under heavy pressure, so allow one trip through the flushing
1109 * logic before we start doing a FLUSH_DELALLOC_FULL.
1110 */
1111 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1112 flush_state++;
1113
1114 /*
1115 * We don't want to force a chunk allocation until we've tried
1116 * pretty hard to reclaim space. Think of the case where we
1117 * freed up a bunch of space and so have a lot of pinned space
1118 * to reclaim. We would rather use that than possibly create a
1119 * underutilized metadata chunk. So if this is our first run
1120 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1121 * commit the transaction. If nothing has changed the next go
1122 * around then we can force a chunk allocation.
1123 */
1124 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1125 flush_state++;
1126
1127 if (flush_state > COMMIT_TRANS) {
1128 commit_cycles++;
1129 if (commit_cycles > 2) {
1130 if (maybe_fail_all_tickets(fs_info, space_info)) {
1131 flush_state = FLUSH_DELAYED_ITEMS_NR;
1132 commit_cycles--;
1133 } else {
1134 space_info->flush = 0;
1135 }
1136 } else {
1137 flush_state = FLUSH_DELAYED_ITEMS_NR;
1138 }
1139 }
1140 spin_unlock(lock: &space_info->lock);
1141 } while (flush_state <= COMMIT_TRANS);
1142}
1143
1144/*
1145 * This handles pre-flushing of metadata space before we get to the point that
1146 * we need to start blocking threads on tickets. The logic here is different
1147 * from the other flush paths because it doesn't rely on tickets to tell us how
1148 * much we need to flush, instead it attempts to keep us below the 80% full
1149 * watermark of space by flushing whichever reservation pool is currently the
1150 * largest.
1151 */
1152static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1153{
1154 struct btrfs_fs_info *fs_info;
1155 struct btrfs_space_info *space_info;
1156 struct btrfs_block_rsv *delayed_block_rsv;
1157 struct btrfs_block_rsv *delayed_refs_rsv;
1158 struct btrfs_block_rsv *global_rsv;
1159 struct btrfs_block_rsv *trans_rsv;
1160 int loops = 0;
1161
1162 fs_info = container_of(work, struct btrfs_fs_info,
1163 preempt_reclaim_work);
1164 space_info = btrfs_find_space_info(info: fs_info, BTRFS_BLOCK_GROUP_METADATA);
1165 delayed_block_rsv = &fs_info->delayed_block_rsv;
1166 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1167 global_rsv = &fs_info->global_block_rsv;
1168 trans_rsv = &fs_info->trans_block_rsv;
1169
1170 spin_lock(lock: &space_info->lock);
1171 while (need_preemptive_reclaim(fs_info, space_info)) {
1172 enum btrfs_flush_state flush;
1173 u64 delalloc_size = 0;
1174 u64 to_reclaim, block_rsv_size;
1175 const u64 global_rsv_size = btrfs_block_rsv_reserved(rsv: global_rsv);
1176
1177 loops++;
1178
1179 /*
1180 * We don't have a precise counter for the metadata being
1181 * reserved for delalloc, so we'll approximate it by subtracting
1182 * out the block rsv's space from the bytes_may_use. If that
1183 * amount is higher than the individual reserves, then we can
1184 * assume it's tied up in delalloc reservations.
1185 */
1186 block_rsv_size = global_rsv_size +
1187 btrfs_block_rsv_reserved(rsv: delayed_block_rsv) +
1188 btrfs_block_rsv_reserved(rsv: delayed_refs_rsv) +
1189 btrfs_block_rsv_reserved(rsv: trans_rsv);
1190 if (block_rsv_size < space_info->bytes_may_use)
1191 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1192
1193 /*
1194 * We don't want to include the global_rsv in our calculation,
1195 * because that's space we can't touch. Subtract it from the
1196 * block_rsv_size for the next checks.
1197 */
1198 block_rsv_size -= global_rsv_size;
1199
1200 /*
1201 * We really want to avoid flushing delalloc too much, as it
1202 * could result in poor allocation patterns, so only flush it if
1203 * it's larger than the rest of the pools combined.
1204 */
1205 if (delalloc_size > block_rsv_size) {
1206 to_reclaim = delalloc_size;
1207 flush = FLUSH_DELALLOC;
1208 } else if (space_info->bytes_pinned >
1209 (btrfs_block_rsv_reserved(rsv: delayed_block_rsv) +
1210 btrfs_block_rsv_reserved(rsv: delayed_refs_rsv))) {
1211 to_reclaim = space_info->bytes_pinned;
1212 flush = COMMIT_TRANS;
1213 } else if (btrfs_block_rsv_reserved(rsv: delayed_block_rsv) >
1214 btrfs_block_rsv_reserved(rsv: delayed_refs_rsv)) {
1215 to_reclaim = btrfs_block_rsv_reserved(rsv: delayed_block_rsv);
1216 flush = FLUSH_DELAYED_ITEMS_NR;
1217 } else {
1218 to_reclaim = btrfs_block_rsv_reserved(rsv: delayed_refs_rsv);
1219 flush = FLUSH_DELAYED_REFS_NR;
1220 }
1221
1222 spin_unlock(lock: &space_info->lock);
1223
1224 /*
1225 * We don't want to reclaim everything, just a portion, so scale
1226 * down the to_reclaim by 1/4. If it takes us down to 0,
1227 * reclaim 1 items worth.
1228 */
1229 to_reclaim >>= 2;
1230 if (!to_reclaim)
1231 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, num_items: 1);
1232 flush_space(fs_info, space_info, num_bytes: to_reclaim, state: flush, for_preempt: true);
1233 cond_resched();
1234 spin_lock(lock: &space_info->lock);
1235 }
1236
1237 /* We only went through once, back off our clamping. */
1238 if (loops == 1 && !space_info->reclaim_size)
1239 space_info->clamp = max(1, space_info->clamp - 1);
1240 trace_btrfs_done_preemptive_reclaim(fs_info, sinfo: space_info);
1241 spin_unlock(lock: &space_info->lock);
1242}
1243
1244/*
1245 * FLUSH_DELALLOC_WAIT:
1246 * Space is freed from flushing delalloc in one of two ways.
1247 *
1248 * 1) compression is on and we allocate less space than we reserved
1249 * 2) we are overwriting existing space
1250 *
1251 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1252 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1253 * length to ->bytes_reserved, and subtracts the reserved space from
1254 * ->bytes_may_use.
1255 *
1256 * For #2 this is trickier. Once the ordered extent runs we will drop the
1257 * extent in the range we are overwriting, which creates a delayed ref for
1258 * that freed extent. This however is not reclaimed until the transaction
1259 * commits, thus the next stages.
1260 *
1261 * RUN_DELAYED_IPUTS
1262 * If we are freeing inodes, we want to make sure all delayed iputs have
1263 * completed, because they could have been on an inode with i_nlink == 0, and
1264 * thus have been truncated and freed up space. But again this space is not
1265 * immediately re-usable, it comes in the form of a delayed ref, which must be
1266 * run and then the transaction must be committed.
1267 *
1268 * COMMIT_TRANS
1269 * This is where we reclaim all of the pinned space generated by running the
1270 * iputs
1271 *
1272 * ALLOC_CHUNK_FORCE
1273 * For data we start with alloc chunk force, however we could have been full
1274 * before, and then the transaction commit could have freed new block groups,
1275 * so if we now have space to allocate do the force chunk allocation.
1276 */
1277static const enum btrfs_flush_state data_flush_states[] = {
1278 FLUSH_DELALLOC_FULL,
1279 RUN_DELAYED_IPUTS,
1280 COMMIT_TRANS,
1281 ALLOC_CHUNK_FORCE,
1282};
1283
1284static void btrfs_async_reclaim_data_space(struct work_struct *work)
1285{
1286 struct btrfs_fs_info *fs_info;
1287 struct btrfs_space_info *space_info;
1288 u64 last_tickets_id;
1289 enum btrfs_flush_state flush_state = 0;
1290
1291 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1292 space_info = fs_info->data_sinfo;
1293
1294 spin_lock(lock: &space_info->lock);
1295 if (list_empty(head: &space_info->tickets)) {
1296 space_info->flush = 0;
1297 spin_unlock(lock: &space_info->lock);
1298 return;
1299 }
1300 last_tickets_id = space_info->tickets_id;
1301 spin_unlock(lock: &space_info->lock);
1302
1303 while (!space_info->full) {
1304 flush_space(fs_info, space_info, U64_MAX, state: ALLOC_CHUNK_FORCE, for_preempt: false);
1305 spin_lock(lock: &space_info->lock);
1306 if (list_empty(head: &space_info->tickets)) {
1307 space_info->flush = 0;
1308 spin_unlock(lock: &space_info->lock);
1309 return;
1310 }
1311
1312 /* Something happened, fail everything and bail. */
1313 if (BTRFS_FS_ERROR(fs_info))
1314 goto aborted_fs;
1315 last_tickets_id = space_info->tickets_id;
1316 spin_unlock(lock: &space_info->lock);
1317 }
1318
1319 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1320 flush_space(fs_info, space_info, U64_MAX,
1321 state: data_flush_states[flush_state], for_preempt: false);
1322 spin_lock(lock: &space_info->lock);
1323 if (list_empty(head: &space_info->tickets)) {
1324 space_info->flush = 0;
1325 spin_unlock(lock: &space_info->lock);
1326 return;
1327 }
1328
1329 if (last_tickets_id == space_info->tickets_id) {
1330 flush_state++;
1331 } else {
1332 last_tickets_id = space_info->tickets_id;
1333 flush_state = 0;
1334 }
1335
1336 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1337 if (space_info->full) {
1338 if (maybe_fail_all_tickets(fs_info, space_info))
1339 flush_state = 0;
1340 else
1341 space_info->flush = 0;
1342 } else {
1343 flush_state = 0;
1344 }
1345
1346 /* Something happened, fail everything and bail. */
1347 if (BTRFS_FS_ERROR(fs_info))
1348 goto aborted_fs;
1349
1350 }
1351 spin_unlock(lock: &space_info->lock);
1352 }
1353 return;
1354
1355aborted_fs:
1356 maybe_fail_all_tickets(fs_info, space_info);
1357 space_info->flush = 0;
1358 spin_unlock(lock: &space_info->lock);
1359}
1360
1361void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1362{
1363 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1364 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1365 INIT_WORK(&fs_info->preempt_reclaim_work,
1366 btrfs_preempt_reclaim_metadata_space);
1367}
1368
1369static const enum btrfs_flush_state priority_flush_states[] = {
1370 FLUSH_DELAYED_ITEMS_NR,
1371 FLUSH_DELAYED_ITEMS,
1372 ALLOC_CHUNK,
1373};
1374
1375static const enum btrfs_flush_state evict_flush_states[] = {
1376 FLUSH_DELAYED_ITEMS_NR,
1377 FLUSH_DELAYED_ITEMS,
1378 FLUSH_DELAYED_REFS_NR,
1379 FLUSH_DELAYED_REFS,
1380 FLUSH_DELALLOC,
1381 FLUSH_DELALLOC_WAIT,
1382 FLUSH_DELALLOC_FULL,
1383 ALLOC_CHUNK,
1384 COMMIT_TRANS,
1385};
1386
1387static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1388 struct btrfs_space_info *space_info,
1389 struct reserve_ticket *ticket,
1390 const enum btrfs_flush_state *states,
1391 int states_nr)
1392{
1393 u64 to_reclaim;
1394 int flush_state = 0;
1395
1396 spin_lock(lock: &space_info->lock);
1397 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1398 /*
1399 * This is the priority reclaim path, so to_reclaim could be >0 still
1400 * because we may have only satisfied the priority tickets and still
1401 * left non priority tickets on the list. We would then have
1402 * to_reclaim but ->bytes == 0.
1403 */
1404 if (ticket->bytes == 0) {
1405 spin_unlock(lock: &space_info->lock);
1406 return;
1407 }
1408
1409 while (flush_state < states_nr) {
1410 spin_unlock(lock: &space_info->lock);
1411 flush_space(fs_info, space_info, num_bytes: to_reclaim, state: states[flush_state],
1412 for_preempt: false);
1413 flush_state++;
1414 spin_lock(lock: &space_info->lock);
1415 if (ticket->bytes == 0) {
1416 spin_unlock(lock: &space_info->lock);
1417 return;
1418 }
1419 }
1420
1421 /*
1422 * Attempt to steal from the global rsv if we can, except if the fs was
1423 * turned into error mode due to a transaction abort when flushing space
1424 * above, in that case fail with the abort error instead of returning
1425 * success to the caller if we can steal from the global rsv - this is
1426 * just to have caller fail immeditelly instead of later when trying to
1427 * modify the fs, making it easier to debug -ENOSPC problems.
1428 */
1429 if (BTRFS_FS_ERROR(fs_info)) {
1430 ticket->error = BTRFS_FS_ERROR(fs_info);
1431 remove_ticket(space_info, ticket);
1432 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1433 ticket->error = -ENOSPC;
1434 remove_ticket(space_info, ticket);
1435 }
1436
1437 /*
1438 * We must run try_granting_tickets here because we could be a large
1439 * ticket in front of a smaller ticket that can now be satisfied with
1440 * the available space.
1441 */
1442 btrfs_try_granting_tickets(fs_info, space_info);
1443 spin_unlock(lock: &space_info->lock);
1444}
1445
1446static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1447 struct btrfs_space_info *space_info,
1448 struct reserve_ticket *ticket)
1449{
1450 spin_lock(lock: &space_info->lock);
1451
1452 /* We could have been granted before we got here. */
1453 if (ticket->bytes == 0) {
1454 spin_unlock(lock: &space_info->lock);
1455 return;
1456 }
1457
1458 while (!space_info->full) {
1459 spin_unlock(lock: &space_info->lock);
1460 flush_space(fs_info, space_info, U64_MAX, state: ALLOC_CHUNK_FORCE, for_preempt: false);
1461 spin_lock(lock: &space_info->lock);
1462 if (ticket->bytes == 0) {
1463 spin_unlock(lock: &space_info->lock);
1464 return;
1465 }
1466 }
1467
1468 ticket->error = -ENOSPC;
1469 remove_ticket(space_info, ticket);
1470 btrfs_try_granting_tickets(fs_info, space_info);
1471 spin_unlock(lock: &space_info->lock);
1472}
1473
1474static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1475 struct btrfs_space_info *space_info,
1476 struct reserve_ticket *ticket)
1477
1478{
1479 DEFINE_WAIT(wait);
1480 int ret = 0;
1481
1482 spin_lock(lock: &space_info->lock);
1483 while (ticket->bytes > 0 && ticket->error == 0) {
1484 ret = prepare_to_wait_event(wq_head: &ticket->wait, wq_entry: &wait, TASK_KILLABLE);
1485 if (ret) {
1486 /*
1487 * Delete us from the list. After we unlock the space
1488 * info, we don't want the async reclaim job to reserve
1489 * space for this ticket. If that would happen, then the
1490 * ticket's task would not known that space was reserved
1491 * despite getting an error, resulting in a space leak
1492 * (bytes_may_use counter of our space_info).
1493 */
1494 remove_ticket(space_info, ticket);
1495 ticket->error = -EINTR;
1496 break;
1497 }
1498 spin_unlock(lock: &space_info->lock);
1499
1500 schedule();
1501
1502 finish_wait(wq_head: &ticket->wait, wq_entry: &wait);
1503 spin_lock(lock: &space_info->lock);
1504 }
1505 spin_unlock(lock: &space_info->lock);
1506}
1507
1508/*
1509 * Do the appropriate flushing and waiting for a ticket.
1510 *
1511 * @fs_info: the filesystem
1512 * @space_info: space info for the reservation
1513 * @ticket: ticket for the reservation
1514 * @start_ns: timestamp when the reservation started
1515 * @orig_bytes: amount of bytes originally reserved
1516 * @flush: how much we can flush
1517 *
1518 * This does the work of figuring out how to flush for the ticket, waiting for
1519 * the reservation, and returning the appropriate error if there is one.
1520 */
1521static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1522 struct btrfs_space_info *space_info,
1523 struct reserve_ticket *ticket,
1524 u64 start_ns, u64 orig_bytes,
1525 enum btrfs_reserve_flush_enum flush)
1526{
1527 int ret;
1528
1529 switch (flush) {
1530 case BTRFS_RESERVE_FLUSH_DATA:
1531 case BTRFS_RESERVE_FLUSH_ALL:
1532 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1533 wait_reserve_ticket(fs_info, space_info, ticket);
1534 break;
1535 case BTRFS_RESERVE_FLUSH_LIMIT:
1536 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1537 states: priority_flush_states,
1538 ARRAY_SIZE(priority_flush_states));
1539 break;
1540 case BTRFS_RESERVE_FLUSH_EVICT:
1541 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1542 states: evict_flush_states,
1543 ARRAY_SIZE(evict_flush_states));
1544 break;
1545 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1546 priority_reclaim_data_space(fs_info, space_info, ticket);
1547 break;
1548 default:
1549 ASSERT(0);
1550 break;
1551 }
1552
1553 ret = ticket->error;
1554 ASSERT(list_empty(&ticket->list));
1555 /*
1556 * Check that we can't have an error set if the reservation succeeded,
1557 * as that would confuse tasks and lead them to error out without
1558 * releasing reserved space (if an error happens the expectation is that
1559 * space wasn't reserved at all).
1560 */
1561 ASSERT(!(ticket->bytes == 0 && ticket->error));
1562 trace_btrfs_reserve_ticket(fs_info, flags: space_info->flags, bytes: orig_bytes,
1563 start_ns, flush, error: ticket->error);
1564 return ret;
1565}
1566
1567/*
1568 * This returns true if this flush state will go through the ordinary flushing
1569 * code.
1570 */
1571static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1572{
1573 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1574 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1575}
1576
1577static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1578 struct btrfs_space_info *space_info)
1579{
1580 u64 ordered = percpu_counter_sum_positive(fbc: &fs_info->ordered_bytes);
1581 u64 delalloc = percpu_counter_sum_positive(fbc: &fs_info->delalloc_bytes);
1582
1583 /*
1584 * If we're heavy on ordered operations then clamping won't help us. We
1585 * need to clamp specifically to keep up with dirty'ing buffered
1586 * writers, because there's not a 1:1 correlation of writing delalloc
1587 * and freeing space, like there is with flushing delayed refs or
1588 * delayed nodes. If we're already more ordered than delalloc then
1589 * we're keeping up, otherwise we aren't and should probably clamp.
1590 */
1591 if (ordered < delalloc)
1592 space_info->clamp = min(space_info->clamp + 1, 8);
1593}
1594
1595static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1596{
1597 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1598 flush == BTRFS_RESERVE_FLUSH_EVICT);
1599}
1600
1601/*
1602 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1603 * fail as quickly as possible.
1604 */
1605static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1606{
1607 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1608 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1609}
1610
1611/*
1612 * Try to reserve bytes from the block_rsv's space.
1613 *
1614 * @fs_info: the filesystem
1615 * @space_info: space info we want to allocate from
1616 * @orig_bytes: number of bytes we want
1617 * @flush: whether or not we can flush to make our reservation
1618 *
1619 * This will reserve orig_bytes number of bytes from the space info associated
1620 * with the block_rsv. If there is not enough space it will make an attempt to
1621 * flush out space to make room. It will do this by flushing delalloc if
1622 * possible or committing the transaction. If flush is 0 then no attempts to
1623 * regain reservations will be made and this will fail if there is not enough
1624 * space already.
1625 */
1626static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1627 struct btrfs_space_info *space_info, u64 orig_bytes,
1628 enum btrfs_reserve_flush_enum flush)
1629{
1630 struct work_struct *async_work;
1631 struct reserve_ticket ticket;
1632 u64 start_ns = 0;
1633 u64 used;
1634 int ret = -ENOSPC;
1635 bool pending_tickets;
1636
1637 ASSERT(orig_bytes);
1638 /*
1639 * If have a transaction handle (current->journal_info != NULL), then
1640 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1641 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1642 * flushing methods can trigger transaction commits.
1643 */
1644 if (current->journal_info) {
1645 /* One assert per line for easier debugging. */
1646 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1647 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1648 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1649 }
1650
1651 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1652 async_work = &fs_info->async_data_reclaim_work;
1653 else
1654 async_work = &fs_info->async_reclaim_work;
1655
1656 spin_lock(lock: &space_info->lock);
1657 used = btrfs_space_info_used(s_info: space_info, may_use_included: true);
1658
1659 /*
1660 * We don't want NO_FLUSH allocations to jump everybody, they can
1661 * generally handle ENOSPC in a different way, so treat them the same as
1662 * normal flushers when it comes to skipping pending tickets.
1663 */
1664 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1665 pending_tickets = !list_empty(head: &space_info->tickets) ||
1666 !list_empty(head: &space_info->priority_tickets);
1667 else
1668 pending_tickets = !list_empty(head: &space_info->priority_tickets);
1669
1670 /*
1671 * Carry on if we have enough space (short-circuit) OR call
1672 * can_overcommit() to ensure we can overcommit to continue.
1673 */
1674 if (!pending_tickets &&
1675 ((used + orig_bytes <= space_info->total_bytes) ||
1676 btrfs_can_overcommit(fs_info, space_info, bytes: orig_bytes, flush))) {
1677 btrfs_space_info_update_bytes_may_use(fs_info, sinfo: space_info,
1678 bytes: orig_bytes);
1679 ret = 0;
1680 }
1681
1682 /*
1683 * Things are dire, we need to make a reservation so we don't abort. We
1684 * will let this reservation go through as long as we have actual space
1685 * left to allocate for the block.
1686 */
1687 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1688 used = btrfs_space_info_used(s_info: space_info, may_use_included: false);
1689 if (used + orig_bytes <= space_info->total_bytes) {
1690 btrfs_space_info_update_bytes_may_use(fs_info, sinfo: space_info,
1691 bytes: orig_bytes);
1692 ret = 0;
1693 }
1694 }
1695
1696 /*
1697 * If we couldn't make a reservation then setup our reservation ticket
1698 * and kick the async worker if it's not already running.
1699 *
1700 * If we are a priority flusher then we just need to add our ticket to
1701 * the list and we will do our own flushing further down.
1702 */
1703 if (ret && can_ticket(flush)) {
1704 ticket.bytes = orig_bytes;
1705 ticket.error = 0;
1706 space_info->reclaim_size += ticket.bytes;
1707 init_waitqueue_head(&ticket.wait);
1708 ticket.steal = can_steal(flush);
1709 if (trace_btrfs_reserve_ticket_enabled())
1710 start_ns = ktime_get_ns();
1711
1712 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1713 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1714 flush == BTRFS_RESERVE_FLUSH_DATA) {
1715 list_add_tail(new: &ticket.list, head: &space_info->tickets);
1716 if (!space_info->flush) {
1717 /*
1718 * We were forced to add a reserve ticket, so
1719 * our preemptive flushing is unable to keep
1720 * up. Clamp down on the threshold for the
1721 * preemptive flushing in order to keep up with
1722 * the workload.
1723 */
1724 maybe_clamp_preempt(fs_info, space_info);
1725
1726 space_info->flush = 1;
1727 trace_btrfs_trigger_flush(fs_info,
1728 flags: space_info->flags,
1729 bytes: orig_bytes, flush,
1730 reason: "enospc");
1731 queue_work(wq: system_unbound_wq, work: async_work);
1732 }
1733 } else {
1734 list_add_tail(new: &ticket.list,
1735 head: &space_info->priority_tickets);
1736 }
1737 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1738 /*
1739 * We will do the space reservation dance during log replay,
1740 * which means we won't have fs_info->fs_root set, so don't do
1741 * the async reclaim as we will panic.
1742 */
1743 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1744 !work_busy(work: &fs_info->preempt_reclaim_work) &&
1745 need_preemptive_reclaim(fs_info, space_info)) {
1746 trace_btrfs_trigger_flush(fs_info, flags: space_info->flags,
1747 bytes: orig_bytes, flush, reason: "preempt");
1748 queue_work(wq: system_unbound_wq,
1749 work: &fs_info->preempt_reclaim_work);
1750 }
1751 }
1752 spin_unlock(lock: &space_info->lock);
1753 if (!ret || !can_ticket(flush))
1754 return ret;
1755
1756 return handle_reserve_ticket(fs_info, space_info, ticket: &ticket, start_ns,
1757 orig_bytes, flush);
1758}
1759
1760/*
1761 * Try to reserve metadata bytes from the block_rsv's space.
1762 *
1763 * @fs_info: the filesystem
1764 * @space_info: the space_info we're allocating for
1765 * @orig_bytes: number of bytes we want
1766 * @flush: whether or not we can flush to make our reservation
1767 *
1768 * This will reserve orig_bytes number of bytes from the space info associated
1769 * with the block_rsv. If there is not enough space it will make an attempt to
1770 * flush out space to make room. It will do this by flushing delalloc if
1771 * possible or committing the transaction. If flush is 0 then no attempts to
1772 * regain reservations will be made and this will fail if there is not enough
1773 * space already.
1774 */
1775int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1776 struct btrfs_space_info *space_info,
1777 u64 orig_bytes,
1778 enum btrfs_reserve_flush_enum flush)
1779{
1780 int ret;
1781
1782 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1783 if (ret == -ENOSPC) {
1784 trace_btrfs_space_reservation(fs_info, type: "space_info:enospc",
1785 val: space_info->flags, bytes: orig_bytes, reserve: 1);
1786
1787 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1788 btrfs_dump_space_info(fs_info, info: space_info, bytes: orig_bytes, dump_block_groups: 0);
1789 }
1790 return ret;
1791}
1792
1793/*
1794 * Try to reserve data bytes for an allocation.
1795 *
1796 * @fs_info: the filesystem
1797 * @bytes: number of bytes we need
1798 * @flush: how we are allowed to flush
1799 *
1800 * This will reserve bytes from the data space info. If there is not enough
1801 * space then we will attempt to flush space as specified by flush.
1802 */
1803int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1804 enum btrfs_reserve_flush_enum flush)
1805{
1806 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1807 int ret;
1808
1809 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1810 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1811 flush == BTRFS_RESERVE_NO_FLUSH);
1812 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1813
1814 ret = __reserve_bytes(fs_info, space_info: data_sinfo, orig_bytes: bytes, flush);
1815 if (ret == -ENOSPC) {
1816 trace_btrfs_space_reservation(fs_info, type: "space_info:enospc",
1817 val: data_sinfo->flags, bytes, reserve: 1);
1818 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1819 btrfs_dump_space_info(fs_info, info: data_sinfo, bytes, dump_block_groups: 0);
1820 }
1821 return ret;
1822}
1823
1824/* Dump all the space infos when we abort a transaction due to ENOSPC. */
1825__cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1826{
1827 struct btrfs_space_info *space_info;
1828
1829 btrfs_info(fs_info, "dumping space info:");
1830 list_for_each_entry(space_info, &fs_info->space_info, list) {
1831 spin_lock(lock: &space_info->lock);
1832 __btrfs_dump_space_info(fs_info, info: space_info);
1833 spin_unlock(lock: &space_info->lock);
1834 }
1835 dump_global_block_rsv(fs_info);
1836}
1837
1838/*
1839 * Account the unused space of all the readonly block group in the space_info.
1840 * takes mirrors into account.
1841 */
1842u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1843{
1844 struct btrfs_block_group *block_group;
1845 u64 free_bytes = 0;
1846 int factor;
1847
1848 /* It's df, we don't care if it's racy */
1849 if (list_empty(head: &sinfo->ro_bgs))
1850 return 0;
1851
1852 spin_lock(lock: &sinfo->lock);
1853 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1854 spin_lock(lock: &block_group->lock);
1855
1856 if (!block_group->ro) {
1857 spin_unlock(lock: &block_group->lock);
1858 continue;
1859 }
1860
1861 factor = btrfs_bg_type_to_factor(flags: block_group->flags);
1862 free_bytes += (block_group->length -
1863 block_group->used) * factor;
1864
1865 spin_unlock(lock: &block_group->lock);
1866 }
1867 spin_unlock(lock: &sinfo->lock);
1868
1869 return free_bytes;
1870}
1871

source code of linux/fs/btrfs/space-info.c