1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
9#include <linux/buffer_head.h>
10#include <linux/fs.h>
11#include <linux/kernel.h>
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20} s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24};
25
26/*
27 * cmp_fnames - Compare two names in index.
28 *
29 * if l1 != 0
30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
34static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36{
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(fname: f2);
47 if (l2 < fsize2)
48 return -1;
49
50 both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
56 * try to compare it case sensitive.
57 */
58 return ntfs_cmp_names_cpu(uni1: key1, uni2: s2, upcase: sbi->upcase, bothcase: both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(s1: f1->name, l1: f1->name_len, s2: f2->name, l2: f2->name_len,
63 upcase: sbi->upcase, bothcase: both_case);
64}
65
66/*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
69static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71{
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83}
84
85/*
86 * cmp_sdh - $SDH of $Secure
87 */
88static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90{
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
101 /* First value is a hash value itself. */
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
107 /* Second value is security Id. */
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118}
119
120/*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
123static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125{
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166}
167
168static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169{
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
186 break;
187 default:
188 break;
189 }
190
191 return NULL;
192}
193
194struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202};
203
204static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206{
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, entry_o: &le, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
220 vcn: &vcn, mi: &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(attr: b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
240 /* Looks like filesystem error. */
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, run: &indx->bitmap_run, vbo: off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(ptr: bh))
251 return PTR_ERR(ptr: bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284}
285
286static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287{
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308out:
309 unlock_buffer(bh);
310 put_bh(bh);
311}
312
313/*
314 * indx_mark_used - Mark the bit @bit as used.
315 */
316static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318{
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, bbuf: &bbuf);
323 if (err)
324 return err;
325
326 __set_bit_le(nr: bit - bbuf.bit, addr: bbuf.buf);
327
328 bmp_buf_put(bbuf: &bbuf, dirty: true);
329
330 return 0;
331}
332
333/*
334 * indx_mark_free - Mark the bit @bit as free.
335 */
336static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338{
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, bbuf: &bbuf);
343 if (err)
344 return err;
345
346 __clear_bit_le(nr: bit - bbuf.bit, addr: bbuf.buf);
347
348 bmp_buf_put(bbuf: &bbuf, dirty: true);
349
350 return 0;
351}
352
353/*
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
359 */
360static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365{
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, size: data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(sem: lock);
393 ok = run_lookup_entry(run, vcn, lcn: &lcn, len: &clen, index: &idx);
394 up_read(sem: lock);
395
396next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(sem: lock);
402 err = attr_load_runs_vcn(ni, type: ATTR_BITMAP, name: name->name,
403 name_len: name->name_len, run, vcn);
404 up_write(sem: lock);
405 if (err)
406 return err;
407 down_read(sem: lock);
408 ok = run_lookup_entry(run, vcn, lcn: &lcn, len: &clen, index: &idx);
409 up_read(sem: lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block: block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
434 ok = nbits > from ?
435 (*fn)((ulong *)bh->b_data, from, nbits, ret) :
436 false;
437 put_bh(bh);
438
439 if (ok) {
440 *ret += 8 * vbo;
441 return 0;
442 }
443
444 if (++vblock >= eblock) {
445 *ret = MINUS_ONE_T;
446 return 0;
447 }
448 }
449 blk = 0;
450 vcn_next = vcn + clen;
451 down_read(sem: lock);
452 ok = run_get_entry(run, index: ++idx, vcn: &vcn, lcn: &lcn, len: &clen) && vcn == vcn_next;
453 if (!ok)
454 vcn = vcn_next;
455 up_read(sem: lock);
456 goto next_run;
457}
458
459static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
460{
461 size_t pos = find_next_zero_bit_le(addr: buf, size: bits, offset: bit);
462
463 if (pos >= bits)
464 return false;
465 *ret = pos;
466 return true;
467}
468
469/*
470 * indx_find_free - Look for free bit.
471 *
472 * Return: -1 if no free bits.
473 */
474static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
475 size_t *bit, struct ATTRIB **bitmap)
476{
477 struct ATTRIB *b;
478 struct ATTR_LIST_ENTRY *le = NULL;
479 const struct INDEX_NAMES *in = &s_index_names[indx->type];
480 int err;
481
482 b = ni_find_attr(ni, NULL, entry_o: &le, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
483 NULL, NULL);
484
485 if (!b)
486 return -ENOENT;
487
488 *bitmap = b;
489 *bit = MINUS_ONE_T;
490
491 if (!b->non_res) {
492 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
493 size_t pos = find_next_zero_bit_le(addr: resident_data(attr: b), size: nbits, offset: 0);
494
495 if (pos < nbits)
496 *bit = pos;
497 } else {
498 err = scan_nres_bitmap(ni, bitmap: b, indx, from: 0, fn: &scan_for_free, ret: bit);
499
500 if (err)
501 return err;
502 }
503
504 return 0;
505}
506
507static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
508{
509 size_t pos = find_next_bit_le(addr: buf, size: bits, offset: bit);
510
511 if (pos >= bits)
512 return false;
513 *ret = pos;
514 return true;
515}
516
517/*
518 * indx_used_bit - Look for used bit.
519 *
520 * Return: MINUS_ONE_T if no used bits.
521 */
522int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
523{
524 struct ATTRIB *b;
525 struct ATTR_LIST_ENTRY *le = NULL;
526 size_t from = *bit;
527 const struct INDEX_NAMES *in = &s_index_names[indx->type];
528 int err;
529
530 b = ni_find_attr(ni, NULL, entry_o: &le, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
531 NULL, NULL);
532
533 if (!b)
534 return -ENOENT;
535
536 *bit = MINUS_ONE_T;
537
538 if (!b->non_res) {
539 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
540 size_t pos = find_next_bit_le(addr: resident_data(attr: b), size: nbits, offset: from);
541
542 if (pos < nbits)
543 *bit = pos;
544 } else {
545 err = scan_nres_bitmap(ni, bitmap: b, indx, from, fn: &scan_for_used, ret: bit);
546 if (err)
547 return err;
548 }
549
550 return 0;
551}
552
553/*
554 * hdr_find_split
555 *
556 * Find a point at which the index allocation buffer would like to be split.
557 * NOTE: This function should never return 'END' entry NULL returns on error.
558 */
559static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
560{
561 size_t o;
562 const struct NTFS_DE *e = hdr_first_de(hdr);
563 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
564 u16 esize;
565
566 if (!e || de_is_last(e))
567 return NULL;
568
569 esize = le16_to_cpu(e->size);
570 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
571 const struct NTFS_DE *p = e;
572
573 e = Add2Ptr(hdr, o);
574
575 /* We must not return END entry. */
576 if (de_is_last(e))
577 return p;
578
579 esize = le16_to_cpu(e->size);
580 }
581
582 return e;
583}
584
585/*
586 * hdr_insert_head - Insert some entries at the beginning of the buffer.
587 *
588 * It is used to insert entries into a newly-created buffer.
589 */
590static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
591 const void *ins, u32 ins_bytes)
592{
593 u32 to_move;
594 struct NTFS_DE *e = hdr_first_de(hdr);
595 u32 used = le32_to_cpu(hdr->used);
596
597 if (!e)
598 return NULL;
599
600 /* Now we just make room for the inserted entries and jam it in. */
601 to_move = used - le32_to_cpu(hdr->de_off);
602 memmove(Add2Ptr(e, ins_bytes), e, to_move);
603 memcpy(e, ins, ins_bytes);
604 hdr->used = cpu_to_le32(used + ins_bytes);
605
606 return e;
607}
608
609/*
610 * index_hdr_check
611 *
612 * return true if INDEX_HDR is valid
613 */
614static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
615{
616 u32 end = le32_to_cpu(hdr->used);
617 u32 tot = le32_to_cpu(hdr->total);
618 u32 off = le32_to_cpu(hdr->de_off);
619
620 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
621 off + sizeof(struct NTFS_DE) > end) {
622 /* incorrect index buffer. */
623 return false;
624 }
625
626 return true;
627}
628
629/*
630 * index_buf_check
631 *
632 * return true if INDEX_BUFFER seems is valid
633 */
634static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
635 const CLST *vbn)
636{
637 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
638 u16 fo = le16_to_cpu(rhdr->fix_off);
639 u16 fn = le16_to_cpu(rhdr->fix_num);
640
641 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
642 rhdr->sign != NTFS_INDX_SIGNATURE ||
643 fo < sizeof(struct INDEX_BUFFER)
644 /* Check index buffer vbn. */
645 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
646 fo + fn * sizeof(short) >= bytes ||
647 fn != ((bytes >> SECTOR_SHIFT) + 1)) {
648 /* incorrect index buffer. */
649 return false;
650 }
651
652 return index_hdr_check(hdr: &ib->ihdr,
653 bytes: bytes - offsetof(struct INDEX_BUFFER, ihdr));
654}
655
656void fnd_clear(struct ntfs_fnd *fnd)
657{
658 int i;
659
660 for (i = fnd->level - 1; i >= 0; i--) {
661 struct indx_node *n = fnd->nodes[i];
662
663 if (!n)
664 continue;
665
666 put_indx_node(in: n);
667 fnd->nodes[i] = NULL;
668 }
669 fnd->level = 0;
670 fnd->root_de = NULL;
671}
672
673static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
674 struct NTFS_DE *e)
675{
676 int i = fnd->level;
677
678 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 return -EINVAL;
680 fnd->nodes[i] = n;
681 fnd->de[i] = e;
682 fnd->level += 1;
683 return 0;
684}
685
686static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687{
688 struct indx_node *n;
689 int i = fnd->level;
690
691 i -= 1;
692 n = fnd->nodes[i];
693 fnd->nodes[i] = NULL;
694 fnd->level = i;
695
696 return n;
697}
698
699static bool fnd_is_empty(struct ntfs_fnd *fnd)
700{
701 if (!fnd->level)
702 return !fnd->root_de;
703
704 return !fnd->de[fnd->level - 1];
705}
706
707/*
708 * hdr_find_e - Locate an entry the index buffer.
709 *
710 * If no matching entry is found, it returns the first entry which is greater
711 * than the desired entry If the search key is greater than all the entries the
712 * buffer, it returns the 'end' entry. This function does a binary search of the
713 * current index buffer, for the first entry that is <= to the search value.
714 *
715 * Return: NULL if error.
716 */
717static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 const struct INDEX_HDR *hdr, const void *key,
719 size_t key_len, const void *ctx, int *diff)
720{
721 struct NTFS_DE *e, *found = NULL;
722 NTFS_CMP_FUNC cmp = indx->cmp;
723 int min_idx = 0, mid_idx, max_idx = 0;
724 int diff2;
725 int table_size = 8;
726 u32 e_size, e_key_len;
727 u32 end = le32_to_cpu(hdr->used);
728 u32 off = le32_to_cpu(hdr->de_off);
729 u32 total = le32_to_cpu(hdr->total);
730 u16 offs[128];
731
732 if (unlikely(!cmp))
733 return NULL;
734
735fill_table:
736 if (end > total)
737 return NULL;
738
739 if (off + sizeof(struct NTFS_DE) > end)
740 return NULL;
741
742 e = Add2Ptr(hdr, off);
743 e_size = le16_to_cpu(e->size);
744
745 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746 return NULL;
747
748 if (!de_is_last(e)) {
749 offs[max_idx] = off;
750 off += e_size;
751
752 max_idx++;
753 if (max_idx < table_size)
754 goto fill_table;
755
756 max_idx--;
757 }
758
759binary_search:
760 e_key_len = le16_to_cpu(e->key_size);
761
762 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763 if (diff2 > 0) {
764 if (found) {
765 min_idx = mid_idx + 1;
766 } else {
767 if (de_is_last(e))
768 return NULL;
769
770 max_idx = 0;
771 table_size = min(table_size * 2, (int)ARRAY_SIZE(offs));
772 goto fill_table;
773 }
774 } else if (diff2 < 0) {
775 if (found)
776 max_idx = mid_idx - 1;
777 else
778 max_idx--;
779
780 found = e;
781 } else {
782 *diff = 0;
783 return e;
784 }
785
786 if (min_idx > max_idx) {
787 *diff = -1;
788 return found;
789 }
790
791 mid_idx = (min_idx + max_idx) >> 1;
792 e = Add2Ptr(hdr, offs[mid_idx]);
793
794 goto binary_search;
795}
796
797/*
798 * hdr_insert_de - Insert an index entry into the buffer.
799 *
800 * 'before' should be a pointer previously returned from hdr_find_e.
801 */
802static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
803 struct INDEX_HDR *hdr,
804 const struct NTFS_DE *de,
805 struct NTFS_DE *before, const void *ctx)
806{
807 int diff;
808 size_t off = PtrOffset(hdr, before);
809 u32 used = le32_to_cpu(hdr->used);
810 u32 total = le32_to_cpu(hdr->total);
811 u16 de_size = le16_to_cpu(de->size);
812
813 /* First, check to see if there's enough room. */
814 if (used + de_size > total)
815 return NULL;
816
817 /* We know there's enough space, so we know we'll succeed. */
818 if (before) {
819 /* Check that before is inside Index. */
820 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
821 off + le16_to_cpu(before->size) > total) {
822 return NULL;
823 }
824 goto ok;
825 }
826 /* No insert point is applied. Get it manually. */
827 before = hdr_find_e(indx, hdr, key: de + 1, le16_to_cpu(de->key_size), ctx,
828 diff: &diff);
829 if (!before)
830 return NULL;
831 off = PtrOffset(hdr, before);
832
833ok:
834 /* Now we just make room for the entry and jam it in. */
835 memmove(Add2Ptr(before, de_size), before, used - off);
836
837 hdr->used = cpu_to_le32(used + de_size);
838 memcpy(before, de, de_size);
839
840 return before;
841}
842
843/*
844 * hdr_delete_de - Remove an entry from the index buffer.
845 */
846static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
847 struct NTFS_DE *re)
848{
849 u32 used = le32_to_cpu(hdr->used);
850 u16 esize = le16_to_cpu(re->size);
851 u32 off = PtrOffset(hdr, re);
852 int bytes = used - (off + esize);
853
854 /* check INDEX_HDR valid before using INDEX_HDR */
855 if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
856 return NULL;
857
858 if (off >= used || esize < sizeof(struct NTFS_DE) ||
859 bytes < sizeof(struct NTFS_DE))
860 return NULL;
861
862 hdr->used = cpu_to_le32(used - esize);
863 memmove(re, Add2Ptr(re, esize), bytes);
864
865 return re;
866}
867
868void indx_clear(struct ntfs_index *indx)
869{
870 run_close(run: &indx->alloc_run);
871 run_close(run: &indx->bitmap_run);
872}
873
874int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
875 const struct ATTRIB *attr, enum index_mutex_classed type)
876{
877 u32 t32;
878 const struct INDEX_ROOT *root = resident_data(attr);
879
880 t32 = le32_to_cpu(attr->res.data_size);
881 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
882 !index_hdr_check(hdr: &root->ihdr,
883 bytes: t32 - offsetof(struct INDEX_ROOT, ihdr))) {
884 goto out;
885 }
886
887 /* Check root fields. */
888 if (!root->index_block_clst)
889 goto out;
890
891 indx->type = type;
892 indx->idx2vbn_bits = __ffs(root->index_block_clst);
893
894 t32 = le32_to_cpu(root->index_block_size);
895 indx->index_bits = blksize_bits(size: t32);
896
897 /* Check index record size. */
898 if (t32 < sbi->cluster_size) {
899 /* Index record is smaller than a cluster, use 512 blocks. */
900 if (t32 != root->index_block_clst * SECTOR_SIZE)
901 goto out;
902
903 /* Check alignment to a cluster. */
904 if ((sbi->cluster_size >> SECTOR_SHIFT) &
905 (root->index_block_clst - 1)) {
906 goto out;
907 }
908
909 indx->vbn2vbo_bits = SECTOR_SHIFT;
910 } else {
911 /* Index record must be a multiple of cluster size. */
912 if (t32 != root->index_block_clst << sbi->cluster_bits)
913 goto out;
914
915 indx->vbn2vbo_bits = sbi->cluster_bits;
916 }
917
918 init_rwsem(&indx->run_lock);
919
920 indx->cmp = get_cmp_func(root);
921 if (!indx->cmp)
922 goto out;
923
924 return 0;
925
926out:
927 ntfs_set_state(sbi, dirty: NTFS_DIRTY_DIRTY);
928 return -EINVAL;
929}
930
931static struct indx_node *indx_new(struct ntfs_index *indx,
932 struct ntfs_inode *ni, CLST vbn,
933 const __le64 *sub_vbn)
934{
935 int err;
936 struct NTFS_DE *e;
937 struct indx_node *r;
938 struct INDEX_HDR *hdr;
939 struct INDEX_BUFFER *index;
940 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
941 u32 bytes = 1u << indx->index_bits;
942 u16 fn;
943 u32 eo;
944
945 r = kzalloc(size: sizeof(struct indx_node), GFP_NOFS);
946 if (!r)
947 return ERR_PTR(error: -ENOMEM);
948
949 index = kzalloc(size: bytes, GFP_NOFS);
950 if (!index) {
951 kfree(objp: r);
952 return ERR_PTR(error: -ENOMEM);
953 }
954
955 err = ntfs_get_bh(sbi: ni->mi.sbi, run: &indx->alloc_run, vbo, bytes, nb: &r->nb);
956
957 if (err) {
958 kfree(objp: index);
959 kfree(objp: r);
960 return ERR_PTR(error: err);
961 }
962
963 /* Create header. */
964 index->rhdr.sign = NTFS_INDX_SIGNATURE;
965 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
966 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
967 index->rhdr.fix_num = cpu_to_le16(fn);
968 index->vbn = cpu_to_le64(vbn);
969 hdr = &index->ihdr;
970 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
971 hdr->de_off = cpu_to_le32(eo);
972
973 e = Add2Ptr(hdr, eo);
974
975 if (sub_vbn) {
976 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
977 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
978 hdr->used =
979 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
980 de_set_vbn_le(e, vcn: *sub_vbn);
981 hdr->flags = 1;
982 } else {
983 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
984 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
985 e->flags = NTFS_IE_LAST;
986 }
987
988 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
989
990 r->index = index;
991 return r;
992}
993
994struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
995 struct ATTRIB **attr, struct mft_inode **mi)
996{
997 struct ATTR_LIST_ENTRY *le = NULL;
998 struct ATTRIB *a;
999 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1000 struct INDEX_ROOT *root;
1001
1002 a = ni_find_attr(ni, NULL, entry_o: &le, type: ATTR_ROOT, name: in->name, name_len: in->name_len, NULL,
1003 mi);
1004 if (!a)
1005 return NULL;
1006
1007 if (attr)
1008 *attr = a;
1009
1010 root = resident_data_ex(attr: a, datasize: sizeof(struct INDEX_ROOT));
1011
1012 /* length check */
1013 if (root &&
1014 offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1015 le32_to_cpu(a->res.data_size)) {
1016 return NULL;
1017 }
1018
1019 return root;
1020}
1021
1022static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1023 struct indx_node *node, int sync)
1024{
1025 struct INDEX_BUFFER *ib = node->index;
1026
1027 return ntfs_write_bh(sbi: ni->mi.sbi, rhdr: &ib->rhdr, nb: &node->nb, sync);
1028}
1029
1030/*
1031 * indx_read
1032 *
1033 * If ntfs_readdir calls this function
1034 * inode is shared locked and no ni_lock.
1035 * Use rw_semaphore for read/write access to alloc_run.
1036 */
1037int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1038 struct indx_node **node)
1039{
1040 int err;
1041 struct INDEX_BUFFER *ib;
1042 struct runs_tree *run = &indx->alloc_run;
1043 struct rw_semaphore *lock = &indx->run_lock;
1044 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1045 u32 bytes = 1u << indx->index_bits;
1046 struct indx_node *in = *node;
1047 const struct INDEX_NAMES *name;
1048
1049 if (!in) {
1050 in = kzalloc(size: sizeof(struct indx_node), GFP_NOFS);
1051 if (!in)
1052 return -ENOMEM;
1053 } else {
1054 nb_put(nb: &in->nb);
1055 }
1056
1057 ib = in->index;
1058 if (!ib) {
1059 ib = kmalloc(size: bytes, GFP_NOFS);
1060 if (!ib) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
1064 }
1065
1066 down_read(sem: lock);
1067 err = ntfs_read_bh(sbi: ni->mi.sbi, run, vbo, rhdr: &ib->rhdr, bytes, nb: &in->nb);
1068 up_read(sem: lock);
1069 if (!err)
1070 goto ok;
1071
1072 if (err == -E_NTFS_FIXUP)
1073 goto ok;
1074
1075 if (err != -ENOENT)
1076 goto out;
1077
1078 name = &s_index_names[indx->type];
1079 down_write(sem: lock);
1080 err = attr_load_runs_range(ni, type: ATTR_ALLOC, name: name->name, name_len: name->name_len,
1081 run, from: vbo, to: vbo + bytes);
1082 up_write(sem: lock);
1083 if (err)
1084 goto out;
1085
1086 down_read(sem: lock);
1087 err = ntfs_read_bh(sbi: ni->mi.sbi, run, vbo, rhdr: &ib->rhdr, bytes, nb: &in->nb);
1088 up_read(sem: lock);
1089 if (err == -E_NTFS_FIXUP)
1090 goto ok;
1091
1092 if (err)
1093 goto out;
1094
1095ok:
1096 if (!index_buf_check(ib, bytes, vbn: &vbn)) {
1097 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1098 ntfs_set_state(sbi: ni->mi.sbi, dirty: NTFS_DIRTY_ERROR);
1099 err = -EINVAL;
1100 goto out;
1101 }
1102
1103 if (err == -E_NTFS_FIXUP) {
1104 ntfs_write_bh(sbi: ni->mi.sbi, rhdr: &ib->rhdr, nb: &in->nb, sync: 0);
1105 err = 0;
1106 }
1107
1108 /* check for index header length */
1109 if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1110 bytes) {
1111 err = -EINVAL;
1112 goto out;
1113 }
1114
1115 in->index = ib;
1116 *node = in;
1117
1118out:
1119 if (err == -E_NTFS_CORRUPT) {
1120 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1121 ntfs_set_state(sbi: ni->mi.sbi, dirty: NTFS_DIRTY_ERROR);
1122 err = -EINVAL;
1123 }
1124
1125 if (ib != in->index)
1126 kfree(objp: ib);
1127
1128 if (*node != in) {
1129 nb_put(nb: &in->nb);
1130 kfree(objp: in);
1131 }
1132
1133 return err;
1134}
1135
1136/*
1137 * indx_find - Scan NTFS directory for given entry.
1138 */
1139int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1140 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1141 const void *ctx, int *diff, struct NTFS_DE **entry,
1142 struct ntfs_fnd *fnd)
1143{
1144 int err;
1145 struct NTFS_DE *e;
1146 struct indx_node *node;
1147
1148 if (!root)
1149 root = indx_get_root(indx: &ni->dir, ni, NULL, NULL);
1150
1151 if (!root) {
1152 /* Should not happen. */
1153 return -EINVAL;
1154 }
1155
1156 /* Check cache. */
1157 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1158 if (e && !de_is_last(e) &&
1159 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1160 *entry = e;
1161 *diff = 0;
1162 return 0;
1163 }
1164
1165 /* Soft finder reset. */
1166 fnd_clear(fnd);
1167
1168 /* Lookup entry that is <= to the search value. */
1169 e = hdr_find_e(indx, hdr: &root->ihdr, key, key_len, ctx, diff);
1170 if (!e)
1171 return -EINVAL;
1172
1173 fnd->root_de = e;
1174
1175 for (;;) {
1176 node = NULL;
1177 if (*diff >= 0 || !de_has_vcn_ex(e))
1178 break;
1179
1180 /* Read next level. */
1181 err = indx_read(indx, ni, vbn: de_get_vbn(e), node: &node);
1182 if (err) {
1183 /* io error? */
1184 return err;
1185 }
1186
1187 /* Lookup entry that is <= to the search value. */
1188 e = hdr_find_e(indx, hdr: &node->index->ihdr, key, key_len, ctx,
1189 diff);
1190 if (!e) {
1191 put_indx_node(in: node);
1192 return -EINVAL;
1193 }
1194
1195 fnd_push(fnd, n: node, e);
1196 }
1197
1198 *entry = e;
1199 return 0;
1200}
1201
1202int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1203 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1204 struct ntfs_fnd *fnd)
1205{
1206 int err;
1207 struct indx_node *n = NULL;
1208 struct NTFS_DE *e;
1209 size_t iter = 0;
1210 int level = fnd->level;
1211
1212 if (!*entry) {
1213 /* Start find. */
1214 e = hdr_first_de(hdr: &root->ihdr);
1215 if (!e)
1216 return 0;
1217 fnd_clear(fnd);
1218 fnd->root_de = e;
1219 } else if (!level) {
1220 if (de_is_last(e: fnd->root_de)) {
1221 *entry = NULL;
1222 return 0;
1223 }
1224
1225 e = hdr_next_de(hdr: &root->ihdr, e: fnd->root_de);
1226 if (!e)
1227 return -EINVAL;
1228 fnd->root_de = e;
1229 } else {
1230 n = fnd->nodes[level - 1];
1231 e = fnd->de[level - 1];
1232
1233 if (de_is_last(e))
1234 goto pop_level;
1235
1236 e = hdr_next_de(hdr: &n->index->ihdr, e);
1237 if (!e)
1238 return -EINVAL;
1239
1240 fnd->de[level - 1] = e;
1241 }
1242
1243 /* Just to avoid tree cycle. */
1244next_iter:
1245 if (iter++ >= 1000)
1246 return -EINVAL;
1247
1248 while (de_has_vcn_ex(e)) {
1249 if (le16_to_cpu(e->size) <
1250 sizeof(struct NTFS_DE) + sizeof(u64)) {
1251 if (n) {
1252 fnd_pop(fnd);
1253 kfree(objp: n);
1254 }
1255 return -EINVAL;
1256 }
1257
1258 /* Read next level. */
1259 err = indx_read(indx, ni, vbn: de_get_vbn(e), node: &n);
1260 if (err)
1261 return err;
1262
1263 /* Try next level. */
1264 e = hdr_first_de(hdr: &n->index->ihdr);
1265 if (!e) {
1266 kfree(objp: n);
1267 return -EINVAL;
1268 }
1269
1270 fnd_push(fnd, n, e);
1271 }
1272
1273 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1274 *entry = e;
1275 return 0;
1276 }
1277
1278pop_level:
1279 for (;;) {
1280 if (!de_is_last(e))
1281 goto next_iter;
1282
1283 /* Pop one level. */
1284 if (n) {
1285 fnd_pop(fnd);
1286 kfree(objp: n);
1287 }
1288
1289 level = fnd->level;
1290
1291 if (level) {
1292 n = fnd->nodes[level - 1];
1293 e = fnd->de[level - 1];
1294 } else if (fnd->root_de) {
1295 n = NULL;
1296 e = fnd->root_de;
1297 fnd->root_de = NULL;
1298 } else {
1299 *entry = NULL;
1300 return 0;
1301 }
1302
1303 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1304 *entry = e;
1305 if (!fnd->root_de)
1306 fnd->root_de = e;
1307 return 0;
1308 }
1309 }
1310}
1311
1312int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1313 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1314 size_t *off, struct ntfs_fnd *fnd)
1315{
1316 int err;
1317 struct indx_node *n = NULL;
1318 struct NTFS_DE *e = NULL;
1319 struct NTFS_DE *e2;
1320 size_t bit;
1321 CLST next_used_vbn;
1322 CLST next_vbn;
1323 u32 record_size = ni->mi.sbi->record_size;
1324
1325 /* Use non sorted algorithm. */
1326 if (!*entry) {
1327 /* This is the first call. */
1328 e = hdr_first_de(hdr: &root->ihdr);
1329 if (!e)
1330 return 0;
1331 fnd_clear(fnd);
1332 fnd->root_de = e;
1333
1334 /* The first call with setup of initial element. */
1335 if (*off >= record_size) {
1336 next_vbn = (((*off - record_size) >> indx->index_bits))
1337 << indx->idx2vbn_bits;
1338 /* Jump inside cycle 'for'. */
1339 goto next;
1340 }
1341
1342 /* Start enumeration from root. */
1343 *off = 0;
1344 } else if (!fnd->root_de)
1345 return -EINVAL;
1346
1347 for (;;) {
1348 /* Check if current entry can be used. */
1349 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1350 goto ok;
1351
1352 if (!fnd->level) {
1353 /* Continue to enumerate root. */
1354 if (!de_is_last(e: fnd->root_de)) {
1355 e = hdr_next_de(hdr: &root->ihdr, e: fnd->root_de);
1356 if (!e)
1357 return -EINVAL;
1358 fnd->root_de = e;
1359 continue;
1360 }
1361
1362 /* Start to enumerate indexes from 0. */
1363 next_vbn = 0;
1364 } else {
1365 /* Continue to enumerate indexes. */
1366 e2 = fnd->de[fnd->level - 1];
1367
1368 n = fnd->nodes[fnd->level - 1];
1369
1370 if (!de_is_last(e: e2)) {
1371 e = hdr_next_de(hdr: &n->index->ihdr, e: e2);
1372 if (!e)
1373 return -EINVAL;
1374 fnd->de[fnd->level - 1] = e;
1375 continue;
1376 }
1377
1378 /* Continue with next index. */
1379 next_vbn = le64_to_cpu(n->index->vbn) +
1380 root->index_block_clst;
1381 }
1382
1383next:
1384 /* Release current index. */
1385 if (n) {
1386 fnd_pop(fnd);
1387 put_indx_node(in: n);
1388 n = NULL;
1389 }
1390
1391 /* Skip all free indexes. */
1392 bit = next_vbn >> indx->idx2vbn_bits;
1393 err = indx_used_bit(indx, ni, bit: &bit);
1394 if (err == -ENOENT || bit == MINUS_ONE_T) {
1395 /* No used indexes. */
1396 *entry = NULL;
1397 return 0;
1398 }
1399
1400 next_used_vbn = bit << indx->idx2vbn_bits;
1401
1402 /* Read buffer into memory. */
1403 err = indx_read(indx, ni, vbn: next_used_vbn, node: &n);
1404 if (err)
1405 return err;
1406
1407 e = hdr_first_de(hdr: &n->index->ihdr);
1408 fnd_push(fnd, n, e);
1409 if (!e)
1410 return -EINVAL;
1411 }
1412
1413ok:
1414 /* Return offset to restore enumerator if necessary. */
1415 if (!n) {
1416 /* 'e' points in root, */
1417 *off = PtrOffset(&root->ihdr, e);
1418 } else {
1419 /* 'e' points in index, */
1420 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1421 record_size + PtrOffset(&n->index->ihdr, e);
1422 }
1423
1424 *entry = e;
1425 return 0;
1426}
1427
1428/*
1429 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1430 */
1431static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1432 CLST *vbn)
1433{
1434 int err;
1435 struct ntfs_sb_info *sbi = ni->mi.sbi;
1436 struct ATTRIB *bitmap;
1437 struct ATTRIB *alloc;
1438 u32 data_size = 1u << indx->index_bits;
1439 u32 alloc_size = ntfs_up_cluster(sbi, size: data_size);
1440 CLST len = alloc_size >> sbi->cluster_bits;
1441 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1442 CLST alen;
1443 struct runs_tree run;
1444
1445 run_init(run: &run);
1446
1447 err = attr_allocate_clusters(sbi, run: &run, vcn: 0, lcn: 0, len, NULL, opt: ALLOCATE_DEF,
1448 alen: &alen, fr: 0, NULL, NULL);
1449 if (err)
1450 goto out;
1451
1452 err = ni_insert_nonresident(ni, type: ATTR_ALLOC, name: in->name, name_len: in->name_len,
1453 run: &run, svcn: 0, len, flags: 0, new_attr: &alloc, NULL, NULL);
1454 if (err)
1455 goto out1;
1456
1457 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1458
1459 err = ni_insert_resident(ni, data_size: bitmap_size(bits: 1), type: ATTR_BITMAP, name: in->name,
1460 name_len: in->name_len, new_attr: &bitmap, NULL, NULL);
1461 if (err)
1462 goto out2;
1463
1464 if (in->name == I30_NAME) {
1465 i_size_write(inode: &ni->vfs_inode, i_size: data_size);
1466 inode_set_bytes(inode: &ni->vfs_inode, bytes: alloc_size);
1467 }
1468
1469 memcpy(&indx->alloc_run, &run, sizeof(run));
1470
1471 *vbn = 0;
1472
1473 return 0;
1474
1475out2:
1476 mi_remove_attr(NULL, mi: &ni->mi, attr: alloc);
1477
1478out1:
1479 run_deallocate(sbi, run: &run, trim: false);
1480
1481out:
1482 return err;
1483}
1484
1485/*
1486 * indx_add_allocate - Add clusters to index.
1487 */
1488static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1489 CLST *vbn)
1490{
1491 int err;
1492 size_t bit;
1493 u64 data_size;
1494 u64 bmp_size, bmp_size_v;
1495 struct ATTRIB *bmp, *alloc;
1496 struct mft_inode *mi;
1497 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1498
1499 err = indx_find_free(indx, ni, bit: &bit, bitmap: &bmp);
1500 if (err)
1501 goto out1;
1502
1503 if (bit != MINUS_ONE_T) {
1504 bmp = NULL;
1505 } else {
1506 if (bmp->non_res) {
1507 bmp_size = le64_to_cpu(bmp->nres.data_size);
1508 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1509 } else {
1510 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1511 }
1512
1513 bit = bmp_size << 3;
1514 }
1515
1516 data_size = (u64)(bit + 1) << indx->index_bits;
1517
1518 if (bmp) {
1519 /* Increase bitmap. */
1520 err = attr_set_size(ni, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
1521 run: &indx->bitmap_run, new_size: bitmap_size(bits: bit + 1),
1522 NULL, keep_prealloc: true, NULL);
1523 if (err)
1524 goto out1;
1525 }
1526
1527 alloc = ni_find_attr(ni, NULL, NULL, type: ATTR_ALLOC, name: in->name, name_len: in->name_len,
1528 NULL, mi: &mi);
1529 if (!alloc) {
1530 err = -EINVAL;
1531 if (bmp)
1532 goto out2;
1533 goto out1;
1534 }
1535
1536 /* Increase allocation. */
1537 err = attr_set_size(ni, type: ATTR_ALLOC, name: in->name, name_len: in->name_len,
1538 run: &indx->alloc_run, new_size: data_size, new_valid: &data_size, keep_prealloc: true,
1539 NULL);
1540 if (err) {
1541 if (bmp)
1542 goto out2;
1543 goto out1;
1544 }
1545
1546 if (in->name == I30_NAME)
1547 i_size_write(inode: &ni->vfs_inode, i_size: data_size);
1548
1549 *vbn = bit << indx->idx2vbn_bits;
1550
1551 return 0;
1552
1553out2:
1554 /* Ops. No space? */
1555 attr_set_size(ni, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
1556 run: &indx->bitmap_run, new_size: bmp_size, new_valid: &bmp_size_v, keep_prealloc: false, NULL);
1557
1558out1:
1559 return err;
1560}
1561
1562/*
1563 * indx_insert_into_root - Attempt to insert an entry into the index root.
1564 *
1565 * @undo - True if we undoing previous remove.
1566 * If necessary, it will twiddle the index b-tree.
1567 */
1568static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1569 const struct NTFS_DE *new_de,
1570 struct NTFS_DE *root_de, const void *ctx,
1571 struct ntfs_fnd *fnd, bool undo)
1572{
1573 int err = 0;
1574 struct NTFS_DE *e, *e0, *re;
1575 struct mft_inode *mi;
1576 struct ATTRIB *attr;
1577 struct INDEX_HDR *hdr;
1578 struct indx_node *n;
1579 CLST new_vbn;
1580 __le64 *sub_vbn, t_vbn;
1581 u16 new_de_size;
1582 u32 hdr_used, hdr_total, asize, to_move;
1583 u32 root_size, new_root_size;
1584 struct ntfs_sb_info *sbi;
1585 int ds_root;
1586 struct INDEX_ROOT *root, *a_root;
1587
1588 /* Get the record this root placed in. */
1589 root = indx_get_root(indx, ni, attr: &attr, mi: &mi);
1590 if (!root)
1591 return -EINVAL;
1592
1593 /*
1594 * Try easy case:
1595 * hdr_insert_de will succeed if there's
1596 * room the root for the new entry.
1597 */
1598 hdr = &root->ihdr;
1599 sbi = ni->mi.sbi;
1600 new_de_size = le16_to_cpu(new_de->size);
1601 hdr_used = le32_to_cpu(hdr->used);
1602 hdr_total = le32_to_cpu(hdr->total);
1603 asize = le32_to_cpu(attr->size);
1604 root_size = le32_to_cpu(attr->res.data_size);
1605
1606 ds_root = new_de_size + hdr_used - hdr_total;
1607
1608 /* If 'undo' is set then reduce requirements. */
1609 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1610 mi_resize_attr(mi, attr, bytes: ds_root)) {
1611 hdr->total = cpu_to_le32(hdr_total + ds_root);
1612 e = hdr_insert_de(indx, hdr, de: new_de, before: root_de, ctx);
1613 WARN_ON(!e);
1614 fnd_clear(fnd);
1615 fnd->root_de = e;
1616
1617 return 0;
1618 }
1619
1620 /* Make a copy of root attribute to restore if error. */
1621 a_root = kmemdup(p: attr, size: asize, GFP_NOFS);
1622 if (!a_root)
1623 return -ENOMEM;
1624
1625 /*
1626 * Copy all the non-end entries from
1627 * the index root to the new buffer.
1628 */
1629 to_move = 0;
1630 e0 = hdr_first_de(hdr);
1631
1632 /* Calculate the size to copy. */
1633 for (e = e0;; e = hdr_next_de(hdr, e)) {
1634 if (!e) {
1635 err = -EINVAL;
1636 goto out_free_root;
1637 }
1638
1639 if (de_is_last(e))
1640 break;
1641 to_move += le16_to_cpu(e->size);
1642 }
1643
1644 if (!to_move) {
1645 re = NULL;
1646 } else {
1647 re = kmemdup(p: e0, size: to_move, GFP_NOFS);
1648 if (!re) {
1649 err = -ENOMEM;
1650 goto out_free_root;
1651 }
1652 }
1653
1654 sub_vbn = NULL;
1655 if (de_has_vcn(e)) {
1656 t_vbn = de_get_vbn_le(e);
1657 sub_vbn = &t_vbn;
1658 }
1659
1660 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1661 sizeof(u64);
1662 ds_root = new_root_size - root_size;
1663
1664 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1665 /* Make root external. */
1666 err = -EOPNOTSUPP;
1667 goto out_free_re;
1668 }
1669
1670 if (ds_root)
1671 mi_resize_attr(mi, attr, bytes: ds_root);
1672
1673 /* Fill first entry (vcn will be set later). */
1674 e = (struct NTFS_DE *)(root + 1);
1675 memset(e, 0, sizeof(struct NTFS_DE));
1676 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1677 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1678
1679 hdr->flags = 1;
1680 hdr->used = hdr->total =
1681 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1682
1683 fnd->root_de = hdr_first_de(hdr);
1684 mi->dirty = true;
1685
1686 /* Create alloc and bitmap attributes (if not). */
1687 err = run_is_empty(run: &indx->alloc_run) ?
1688 indx_create_allocate(indx, ni, vbn: &new_vbn) :
1689 indx_add_allocate(indx, ni, vbn: &new_vbn);
1690
1691 /* Layout of record may be changed, so rescan root. */
1692 root = indx_get_root(indx, ni, attr: &attr, mi: &mi);
1693 if (!root) {
1694 /* Bug? */
1695 ntfs_set_state(sbi, dirty: NTFS_DIRTY_ERROR);
1696 err = -EINVAL;
1697 goto out_free_re;
1698 }
1699
1700 if (err) {
1701 /* Restore root. */
1702 if (mi_resize_attr(mi, attr, bytes: -ds_root)) {
1703 memcpy(attr, a_root, asize);
1704 } else {
1705 /* Bug? */
1706 ntfs_set_state(sbi, dirty: NTFS_DIRTY_ERROR);
1707 }
1708 goto out_free_re;
1709 }
1710
1711 e = (struct NTFS_DE *)(root + 1);
1712 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1713 mi->dirty = true;
1714
1715 /* Now we can create/format the new buffer and copy the entries into. */
1716 n = indx_new(indx, ni, vbn: new_vbn, sub_vbn);
1717 if (IS_ERR(ptr: n)) {
1718 err = PTR_ERR(ptr: n);
1719 goto out_free_re;
1720 }
1721
1722 hdr = &n->index->ihdr;
1723 hdr_used = le32_to_cpu(hdr->used);
1724 hdr_total = le32_to_cpu(hdr->total);
1725
1726 /* Copy root entries into new buffer. */
1727 hdr_insert_head(hdr, ins: re, ins_bytes: to_move);
1728
1729 /* Update bitmap attribute. */
1730 indx_mark_used(indx, ni, bit: new_vbn >> indx->idx2vbn_bits);
1731
1732 /* Check if we can insert new entry new index buffer. */
1733 if (hdr_used + new_de_size > hdr_total) {
1734 /*
1735 * This occurs if MFT record is the same or bigger than index
1736 * buffer. Move all root new index and have no space to add
1737 * new entry classic case when MFT record is 1K and index
1738 * buffer 4K the problem should not occurs.
1739 */
1740 kfree(objp: re);
1741 indx_write(indx, ni, node: n, sync: 0);
1742
1743 put_indx_node(in: n);
1744 fnd_clear(fnd);
1745 err = indx_insert_entry(indx, ni, new_de, param: ctx, fnd, undo);
1746 goto out_free_root;
1747 }
1748
1749 /*
1750 * Now root is a parent for new index buffer.
1751 * Insert NewEntry a new buffer.
1752 */
1753 e = hdr_insert_de(indx, hdr, de: new_de, NULL, ctx);
1754 if (!e) {
1755 err = -EINVAL;
1756 goto out_put_n;
1757 }
1758 fnd_push(fnd, n, e);
1759
1760 /* Just write updates index into disk. */
1761 indx_write(indx, ni, node: n, sync: 0);
1762
1763 n = NULL;
1764
1765out_put_n:
1766 put_indx_node(in: n);
1767out_free_re:
1768 kfree(objp: re);
1769out_free_root:
1770 kfree(objp: a_root);
1771 return err;
1772}
1773
1774/*
1775 * indx_insert_into_buffer
1776 *
1777 * Attempt to insert an entry into an Index Allocation Buffer.
1778 * If necessary, it will split the buffer.
1779 */
1780static int
1781indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1782 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1783 const void *ctx, int level, struct ntfs_fnd *fnd)
1784{
1785 int err;
1786 const struct NTFS_DE *sp;
1787 struct NTFS_DE *e, *de_t, *up_e;
1788 struct indx_node *n2;
1789 struct indx_node *n1 = fnd->nodes[level];
1790 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1791 struct INDEX_HDR *hdr2;
1792 u32 to_copy, used, used1;
1793 CLST new_vbn;
1794 __le64 t_vbn, *sub_vbn;
1795 u16 sp_size;
1796 void *hdr1_saved = NULL;
1797
1798 /* Try the most easy case. */
1799 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1800 e = hdr_insert_de(indx, hdr: hdr1, de: new_de, before: e, ctx);
1801 fnd->de[level] = e;
1802 if (e) {
1803 /* Just write updated index into disk. */
1804 indx_write(indx, ni, node: n1, sync: 0);
1805 return 0;
1806 }
1807
1808 /*
1809 * No space to insert into buffer. Split it.
1810 * To split we:
1811 * - Save split point ('cause index buffers will be changed)
1812 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1813 * - Remove all entries (sp including) from TargetBuffer
1814 * - Insert NewEntry into left or right buffer (depending on sp <=>
1815 * NewEntry)
1816 * - Insert sp into parent buffer (or root)
1817 * - Make sp a parent for new buffer
1818 */
1819 sp = hdr_find_split(hdr: hdr1);
1820 if (!sp)
1821 return -EINVAL;
1822
1823 sp_size = le16_to_cpu(sp->size);
1824 up_e = kmalloc(size: sp_size + sizeof(u64), GFP_NOFS);
1825 if (!up_e)
1826 return -ENOMEM;
1827 memcpy(up_e, sp, sp_size);
1828
1829 used1 = le32_to_cpu(hdr1->used);
1830 hdr1_saved = kmemdup(p: hdr1, size: used1, GFP_NOFS);
1831 if (!hdr1_saved) {
1832 err = -ENOMEM;
1833 goto out;
1834 }
1835
1836 if (!hdr1->flags) {
1837 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1838 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1839 sub_vbn = NULL;
1840 } else {
1841 t_vbn = de_get_vbn_le(e: up_e);
1842 sub_vbn = &t_vbn;
1843 }
1844
1845 /* Allocate on disk a new index allocation buffer. */
1846 err = indx_add_allocate(indx, ni, vbn: &new_vbn);
1847 if (err)
1848 goto out;
1849
1850 /* Allocate and format memory a new index buffer. */
1851 n2 = indx_new(indx, ni, vbn: new_vbn, sub_vbn);
1852 if (IS_ERR(ptr: n2)) {
1853 err = PTR_ERR(ptr: n2);
1854 goto out;
1855 }
1856
1857 hdr2 = &n2->index->ihdr;
1858
1859 /* Make sp a parent for new buffer. */
1860 de_set_vbn(e: up_e, vcn: new_vbn);
1861
1862 /* Copy all the entries <= sp into the new buffer. */
1863 de_t = hdr_first_de(hdr: hdr1);
1864 to_copy = PtrOffset(de_t, sp);
1865 hdr_insert_head(hdr: hdr2, ins: de_t, ins_bytes: to_copy);
1866
1867 /* Remove all entries (sp including) from hdr1. */
1868 used = used1 - to_copy - sp_size;
1869 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1870 hdr1->used = cpu_to_le32(used);
1871
1872 /*
1873 * Insert new entry into left or right buffer
1874 * (depending on sp <=> new_de).
1875 */
1876 hdr_insert_de(indx,
1877 hdr: (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1878 up_e + 1, le16_to_cpu(up_e->key_size),
1879 ctx) < 0 ?
1880 hdr2 :
1881 hdr1,
1882 de: new_de, NULL, ctx);
1883
1884 indx_mark_used(indx, ni, bit: new_vbn >> indx->idx2vbn_bits);
1885
1886 indx_write(indx, ni, node: n1, sync: 0);
1887 indx_write(indx, ni, node: n2, sync: 0);
1888
1889 put_indx_node(in: n2);
1890
1891 /*
1892 * We've finished splitting everybody, so we are ready to
1893 * insert the promoted entry into the parent.
1894 */
1895 if (!level) {
1896 /* Insert in root. */
1897 err = indx_insert_into_root(indx, ni, new_de: up_e, NULL, ctx, fnd, undo: 0);
1898 } else {
1899 /*
1900 * The target buffer's parent is another index buffer.
1901 * TODO: Remove recursion.
1902 */
1903 err = indx_insert_into_buffer(indx, ni, root, new_de: up_e, ctx,
1904 level: level - 1, fnd);
1905 }
1906
1907 if (err) {
1908 /*
1909 * Undo critical operations.
1910 */
1911 indx_mark_free(indx, ni, bit: new_vbn >> indx->idx2vbn_bits);
1912 memcpy(hdr1, hdr1_saved, used1);
1913 indx_write(indx, ni, node: n1, sync: 0);
1914 }
1915
1916out:
1917 kfree(objp: up_e);
1918 kfree(objp: hdr1_saved);
1919
1920 return err;
1921}
1922
1923/*
1924 * indx_insert_entry - Insert new entry into index.
1925 *
1926 * @undo - True if we undoing previous remove.
1927 */
1928int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1929 const struct NTFS_DE *new_de, const void *ctx,
1930 struct ntfs_fnd *fnd, bool undo)
1931{
1932 int err;
1933 int diff;
1934 struct NTFS_DE *e;
1935 struct ntfs_fnd *fnd_a = NULL;
1936 struct INDEX_ROOT *root;
1937
1938 if (!fnd) {
1939 fnd_a = fnd_get();
1940 if (!fnd_a) {
1941 err = -ENOMEM;
1942 goto out1;
1943 }
1944 fnd = fnd_a;
1945 }
1946
1947 root = indx_get_root(indx, ni, NULL, NULL);
1948 if (!root) {
1949 err = -EINVAL;
1950 goto out;
1951 }
1952
1953 if (fnd_is_empty(fnd)) {
1954 /*
1955 * Find the spot the tree where we want to
1956 * insert the new entry.
1957 */
1958 err = indx_find(indx, ni, root, key: new_de + 1,
1959 le16_to_cpu(new_de->key_size), ctx, diff: &diff, entry: &e,
1960 fnd);
1961 if (err)
1962 goto out;
1963
1964 if (!diff) {
1965 err = -EEXIST;
1966 goto out;
1967 }
1968 }
1969
1970 if (!fnd->level) {
1971 /*
1972 * The root is also a leaf, so we'll insert the
1973 * new entry into it.
1974 */
1975 err = indx_insert_into_root(indx, ni, new_de, root_de: fnd->root_de, ctx,
1976 fnd, undo);
1977 } else {
1978 /*
1979 * Found a leaf buffer, so we'll insert the new entry into it.
1980 */
1981 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1982 level: fnd->level - 1, fnd);
1983 }
1984
1985out:
1986 fnd_put(fnd: fnd_a);
1987out1:
1988 return err;
1989}
1990
1991/*
1992 * indx_find_buffer - Locate a buffer from the tree.
1993 */
1994static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1995 struct ntfs_inode *ni,
1996 const struct INDEX_ROOT *root,
1997 __le64 vbn, struct indx_node *n)
1998{
1999 int err;
2000 const struct NTFS_DE *e;
2001 struct indx_node *r;
2002 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
2003
2004 /* Step 1: Scan one level. */
2005 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2006 if (!e)
2007 return ERR_PTR(error: -EINVAL);
2008
2009 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2010 return n;
2011
2012 if (de_is_last(e))
2013 break;
2014 }
2015
2016 /* Step2: Do recursion. */
2017 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2018 for (;;) {
2019 if (de_has_vcn_ex(e)) {
2020 err = indx_read(indx, ni, vbn: de_get_vbn(e), node: &n);
2021 if (err)
2022 return ERR_PTR(error: err);
2023
2024 r = indx_find_buffer(indx, ni, root, vbn, n);
2025 if (r)
2026 return r;
2027 }
2028
2029 if (de_is_last(e))
2030 break;
2031
2032 e = Add2Ptr(e, le16_to_cpu(e->size));
2033 }
2034
2035 return NULL;
2036}
2037
2038/*
2039 * indx_shrink - Deallocate unused tail indexes.
2040 */
2041static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2042 size_t bit)
2043{
2044 int err = 0;
2045 u64 bpb, new_data;
2046 size_t nbits;
2047 struct ATTRIB *b;
2048 struct ATTR_LIST_ENTRY *le = NULL;
2049 const struct INDEX_NAMES *in = &s_index_names[indx->type];
2050
2051 b = ni_find_attr(ni, NULL, entry_o: &le, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
2052 NULL, NULL);
2053
2054 if (!b)
2055 return -ENOENT;
2056
2057 if (!b->non_res) {
2058 unsigned long pos;
2059 const unsigned long *bm = resident_data(attr: b);
2060
2061 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2062
2063 if (bit >= nbits)
2064 return 0;
2065
2066 pos = find_next_bit_le(addr: bm, size: nbits, offset: bit);
2067 if (pos < nbits)
2068 return 0;
2069 } else {
2070 size_t used = MINUS_ONE_T;
2071
2072 nbits = le64_to_cpu(b->nres.data_size) * 8;
2073
2074 if (bit >= nbits)
2075 return 0;
2076
2077 err = scan_nres_bitmap(ni, bitmap: b, indx, from: bit, fn: &scan_for_used, ret: &used);
2078 if (err)
2079 return err;
2080
2081 if (used != MINUS_ONE_T)
2082 return 0;
2083 }
2084
2085 new_data = (u64)bit << indx->index_bits;
2086
2087 err = attr_set_size(ni, type: ATTR_ALLOC, name: in->name, name_len: in->name_len,
2088 run: &indx->alloc_run, new_size: new_data, new_valid: &new_data, keep_prealloc: false, NULL);
2089 if (err)
2090 return err;
2091
2092 if (in->name == I30_NAME)
2093 i_size_write(inode: &ni->vfs_inode, i_size: new_data);
2094
2095 bpb = bitmap_size(bits: bit);
2096 if (bpb * 8 == nbits)
2097 return 0;
2098
2099 err = attr_set_size(ni, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
2100 run: &indx->bitmap_run, new_size: bpb, new_valid: &bpb, keep_prealloc: false, NULL);
2101
2102 return err;
2103}
2104
2105static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2106 const struct NTFS_DE *e, bool trim)
2107{
2108 int err;
2109 struct indx_node *n = NULL;
2110 struct INDEX_HDR *hdr;
2111 CLST vbn = de_get_vbn(e);
2112 size_t i;
2113
2114 err = indx_read(indx, ni, vbn, node: &n);
2115 if (err)
2116 return err;
2117
2118 hdr = &n->index->ihdr;
2119 /* First, recurse into the children, if any. */
2120 if (hdr_has_subnode(hdr)) {
2121 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2122 indx_free_children(indx, ni, e, trim: false);
2123 if (de_is_last(e))
2124 break;
2125 }
2126 }
2127
2128 put_indx_node(in: n);
2129
2130 i = vbn >> indx->idx2vbn_bits;
2131 /*
2132 * We've gotten rid of the children; add this buffer to the free list.
2133 */
2134 indx_mark_free(indx, ni, bit: i);
2135
2136 if (!trim)
2137 return 0;
2138
2139 /*
2140 * If there are no used indexes after current free index
2141 * then we can truncate allocation and bitmap.
2142 * Use bitmap to estimate the case.
2143 */
2144 indx_shrink(indx, ni, bit: i + 1);
2145 return 0;
2146}
2147
2148/*
2149 * indx_get_entry_to_replace
2150 *
2151 * Find a replacement entry for a deleted entry.
2152 * Always returns a node entry:
2153 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2154 */
2155static int indx_get_entry_to_replace(struct ntfs_index *indx,
2156 struct ntfs_inode *ni,
2157 const struct NTFS_DE *de_next,
2158 struct NTFS_DE **de_to_replace,
2159 struct ntfs_fnd *fnd)
2160{
2161 int err;
2162 int level = -1;
2163 CLST vbn;
2164 struct NTFS_DE *e, *te, *re;
2165 struct indx_node *n;
2166 struct INDEX_BUFFER *ib;
2167
2168 *de_to_replace = NULL;
2169
2170 /* Find first leaf entry down from de_next. */
2171 vbn = de_get_vbn(e: de_next);
2172 for (;;) {
2173 n = NULL;
2174 err = indx_read(indx, ni, vbn, node: &n);
2175 if (err)
2176 goto out;
2177
2178 e = hdr_first_de(hdr: &n->index->ihdr);
2179 fnd_push(fnd, n, e);
2180
2181 if (!de_is_last(e)) {
2182 /*
2183 * This buffer is non-empty, so its first entry
2184 * could be used as the replacement entry.
2185 */
2186 level = fnd->level - 1;
2187 }
2188
2189 if (!de_has_vcn(e))
2190 break;
2191
2192 /* This buffer is a node. Continue to go down. */
2193 vbn = de_get_vbn(e);
2194 }
2195
2196 if (level == -1)
2197 goto out;
2198
2199 n = fnd->nodes[level];
2200 te = hdr_first_de(hdr: &n->index->ihdr);
2201 /* Copy the candidate entry into the replacement entry buffer. */
2202 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2203 if (!re) {
2204 err = -ENOMEM;
2205 goto out;
2206 }
2207
2208 *de_to_replace = re;
2209 memcpy(re, te, le16_to_cpu(te->size));
2210
2211 if (!de_has_vcn(e: re)) {
2212 /*
2213 * The replacement entry we found doesn't have a sub_vcn.
2214 * increase its size to hold one.
2215 */
2216 le16_add_cpu(var: &re->size, val: sizeof(u64));
2217 re->flags |= NTFS_IE_HAS_SUBNODES;
2218 } else {
2219 /*
2220 * The replacement entry we found was a node entry, which
2221 * means that all its child buffers are empty. Return them
2222 * to the free pool.
2223 */
2224 indx_free_children(indx, ni, e: te, trim: true);
2225 }
2226
2227 /*
2228 * Expunge the replacement entry from its former location,
2229 * and then write that buffer.
2230 */
2231 ib = n->index;
2232 e = hdr_delete_de(hdr: &ib->ihdr, re: te);
2233
2234 fnd->de[level] = e;
2235 indx_write(indx, ni, node: n, sync: 0);
2236
2237 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2238 /* An empty leaf. */
2239 return 0;
2240 }
2241
2242out:
2243 fnd_clear(fnd);
2244 return err;
2245}
2246
2247/*
2248 * indx_delete_entry - Delete an entry from the index.
2249 */
2250int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2251 const void *key, u32 key_len, const void *ctx)
2252{
2253 int err, diff;
2254 struct INDEX_ROOT *root;
2255 struct INDEX_HDR *hdr;
2256 struct ntfs_fnd *fnd, *fnd2;
2257 struct INDEX_BUFFER *ib;
2258 struct NTFS_DE *e, *re, *next, *prev, *me;
2259 struct indx_node *n, *n2d = NULL;
2260 __le64 sub_vbn;
2261 int level, level2;
2262 struct ATTRIB *attr;
2263 struct mft_inode *mi;
2264 u32 e_size, root_size, new_root_size;
2265 size_t trim_bit;
2266 const struct INDEX_NAMES *in;
2267
2268 fnd = fnd_get();
2269 if (!fnd) {
2270 err = -ENOMEM;
2271 goto out2;
2272 }
2273
2274 fnd2 = fnd_get();
2275 if (!fnd2) {
2276 err = -ENOMEM;
2277 goto out1;
2278 }
2279
2280 root = indx_get_root(indx, ni, attr: &attr, mi: &mi);
2281 if (!root) {
2282 err = -EINVAL;
2283 goto out;
2284 }
2285
2286 /* Locate the entry to remove. */
2287 err = indx_find(indx, ni, root, key, key_len, ctx, diff: &diff, entry: &e, fnd);
2288 if (err)
2289 goto out;
2290
2291 if (!e || diff) {
2292 err = -ENOENT;
2293 goto out;
2294 }
2295
2296 level = fnd->level;
2297
2298 if (level) {
2299 n = fnd->nodes[level - 1];
2300 e = fnd->de[level - 1];
2301 ib = n->index;
2302 hdr = &ib->ihdr;
2303 } else {
2304 hdr = &root->ihdr;
2305 e = fnd->root_de;
2306 n = NULL;
2307 }
2308
2309 e_size = le16_to_cpu(e->size);
2310
2311 if (!de_has_vcn_ex(e)) {
2312 /* The entry to delete is a leaf, so we can just rip it out. */
2313 hdr_delete_de(hdr, re: e);
2314
2315 if (!level) {
2316 hdr->total = hdr->used;
2317
2318 /* Shrink resident root attribute. */
2319 mi_resize_attr(mi, attr, bytes: 0 - e_size);
2320 goto out;
2321 }
2322
2323 indx_write(indx, ni, node: n, sync: 0);
2324
2325 /*
2326 * Check to see if removing that entry made
2327 * the leaf empty.
2328 */
2329 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2330 fnd_pop(fnd);
2331 fnd_push(fnd: fnd2, n, e);
2332 }
2333 } else {
2334 /*
2335 * The entry we wish to delete is a node buffer, so we
2336 * have to find a replacement for it.
2337 */
2338 next = de_get_next(e);
2339
2340 err = indx_get_entry_to_replace(indx, ni, de_next: next, de_to_replace: &re, fnd: fnd2);
2341 if (err)
2342 goto out;
2343
2344 if (re) {
2345 de_set_vbn_le(e: re, vcn: de_get_vbn_le(e));
2346 hdr_delete_de(hdr, re: e);
2347
2348 err = level ? indx_insert_into_buffer(indx, ni, root,
2349 new_de: re, ctx,
2350 level: fnd->level - 1,
2351 fnd) :
2352 indx_insert_into_root(indx, ni, new_de: re, root_de: e,
2353 ctx, fnd, undo: 0);
2354 kfree(objp: re);
2355
2356 if (err)
2357 goto out;
2358 } else {
2359 /*
2360 * There is no replacement for the current entry.
2361 * This means that the subtree rooted at its node
2362 * is empty, and can be deleted, which turn means
2363 * that the node can just inherit the deleted
2364 * entry sub_vcn.
2365 */
2366 indx_free_children(indx, ni, e: next, trim: true);
2367
2368 de_set_vbn_le(e: next, vcn: de_get_vbn_le(e));
2369 hdr_delete_de(hdr, re: e);
2370 if (level) {
2371 indx_write(indx, ni, node: n, sync: 0);
2372 } else {
2373 hdr->total = hdr->used;
2374
2375 /* Shrink resident root attribute. */
2376 mi_resize_attr(mi, attr, bytes: 0 - e_size);
2377 }
2378 }
2379 }
2380
2381 /* Delete a branch of tree. */
2382 if (!fnd2 || !fnd2->level)
2383 goto out;
2384
2385 /* Reinit root 'cause it can be changed. */
2386 root = indx_get_root(indx, ni, attr: &attr, mi: &mi);
2387 if (!root) {
2388 err = -EINVAL;
2389 goto out;
2390 }
2391
2392 n2d = NULL;
2393 sub_vbn = fnd2->nodes[0]->index->vbn;
2394 level2 = 0;
2395 level = fnd->level;
2396
2397 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2398
2399 /* Scan current level. */
2400 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2401 if (!e) {
2402 err = -EINVAL;
2403 goto out;
2404 }
2405
2406 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2407 break;
2408
2409 if (de_is_last(e)) {
2410 e = NULL;
2411 break;
2412 }
2413 }
2414
2415 if (!e) {
2416 /* Do slow search from root. */
2417 struct indx_node *in;
2418
2419 fnd_clear(fnd);
2420
2421 in = indx_find_buffer(indx, ni, root, vbn: sub_vbn, NULL);
2422 if (IS_ERR(ptr: in)) {
2423 err = PTR_ERR(ptr: in);
2424 goto out;
2425 }
2426
2427 if (in)
2428 fnd_push(fnd, n: in, NULL);
2429 }
2430
2431 /* Merge fnd2 -> fnd. */
2432 for (level = 0; level < fnd2->level; level++) {
2433 fnd_push(fnd, n: fnd2->nodes[level], e: fnd2->de[level]);
2434 fnd2->nodes[level] = NULL;
2435 }
2436 fnd2->level = 0;
2437
2438 hdr = NULL;
2439 for (level = fnd->level; level; level--) {
2440 struct indx_node *in = fnd->nodes[level - 1];
2441
2442 ib = in->index;
2443 if (ib_is_empty(ib)) {
2444 sub_vbn = ib->vbn;
2445 } else {
2446 hdr = &ib->ihdr;
2447 n2d = in;
2448 level2 = level;
2449 break;
2450 }
2451 }
2452
2453 if (!hdr)
2454 hdr = &root->ihdr;
2455
2456 e = hdr_first_de(hdr);
2457 if (!e) {
2458 err = -EINVAL;
2459 goto out;
2460 }
2461
2462 if (hdr != &root->ihdr || !de_is_last(e)) {
2463 prev = NULL;
2464 while (!de_is_last(e)) {
2465 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2466 break;
2467 prev = e;
2468 e = hdr_next_de(hdr, e);
2469 if (!e) {
2470 err = -EINVAL;
2471 goto out;
2472 }
2473 }
2474
2475 if (sub_vbn != de_get_vbn_le(e)) {
2476 /*
2477 * Didn't find the parent entry, although this buffer
2478 * is the parent trail. Something is corrupt.
2479 */
2480 err = -EINVAL;
2481 goto out;
2482 }
2483
2484 if (de_is_last(e)) {
2485 /*
2486 * Since we can't remove the end entry, we'll remove
2487 * its predecessor instead. This means we have to
2488 * transfer the predecessor's sub_vcn to the end entry.
2489 * Note: This index block is not empty, so the
2490 * predecessor must exist.
2491 */
2492 if (!prev) {
2493 err = -EINVAL;
2494 goto out;
2495 }
2496
2497 if (de_has_vcn(e: prev)) {
2498 de_set_vbn_le(e, vcn: de_get_vbn_le(e: prev));
2499 } else if (de_has_vcn(e)) {
2500 le16_sub_cpu(var: &e->size, val: sizeof(u64));
2501 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2502 le32_sub_cpu(var: &hdr->used, val: sizeof(u64));
2503 }
2504 e = prev;
2505 }
2506
2507 /*
2508 * Copy the current entry into a temporary buffer (stripping
2509 * off its down-pointer, if any) and delete it from the current
2510 * buffer or root, as appropriate.
2511 */
2512 e_size = le16_to_cpu(e->size);
2513 me = kmemdup(p: e, size: e_size, GFP_NOFS);
2514 if (!me) {
2515 err = -ENOMEM;
2516 goto out;
2517 }
2518
2519 if (de_has_vcn(e: me)) {
2520 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2521 le16_sub_cpu(var: &me->size, val: sizeof(u64));
2522 }
2523
2524 hdr_delete_de(hdr, re: e);
2525
2526 if (hdr == &root->ihdr) {
2527 level = 0;
2528 hdr->total = hdr->used;
2529
2530 /* Shrink resident root attribute. */
2531 mi_resize_attr(mi, attr, bytes: 0 - e_size);
2532 } else {
2533 indx_write(indx, ni, node: n2d, sync: 0);
2534 level = level2;
2535 }
2536
2537 /* Mark unused buffers as free. */
2538 trim_bit = -1;
2539 for (; level < fnd->level; level++) {
2540 ib = fnd->nodes[level]->index;
2541 if (ib_is_empty(ib)) {
2542 size_t k = le64_to_cpu(ib->vbn) >>
2543 indx->idx2vbn_bits;
2544
2545 indx_mark_free(indx, ni, bit: k);
2546 if (k < trim_bit)
2547 trim_bit = k;
2548 }
2549 }
2550
2551 fnd_clear(fnd);
2552 /*fnd->root_de = NULL;*/
2553
2554 /*
2555 * Re-insert the entry into the tree.
2556 * Find the spot the tree where we want to insert the new entry.
2557 */
2558 err = indx_insert_entry(indx, ni, new_de: me, ctx, fnd, undo: 0);
2559 kfree(objp: me);
2560 if (err)
2561 goto out;
2562
2563 if (trim_bit != -1)
2564 indx_shrink(indx, ni, bit: trim_bit);
2565 } else {
2566 /*
2567 * This tree needs to be collapsed down to an empty root.
2568 * Recreate the index root as an empty leaf and free all
2569 * the bits the index allocation bitmap.
2570 */
2571 fnd_clear(fnd);
2572 fnd_clear(fnd: fnd2);
2573
2574 in = &s_index_names[indx->type];
2575
2576 err = attr_set_size(ni, type: ATTR_ALLOC, name: in->name, name_len: in->name_len,
2577 run: &indx->alloc_run, new_size: 0, NULL, keep_prealloc: false, NULL);
2578 if (in->name == I30_NAME)
2579 i_size_write(inode: &ni->vfs_inode, i_size: 0);
2580
2581 err = ni_remove_attr(ni, type: ATTR_ALLOC, name: in->name, name_len: in->name_len,
2582 base_only: false, NULL);
2583 run_close(run: &indx->alloc_run);
2584
2585 err = attr_set_size(ni, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
2586 run: &indx->bitmap_run, new_size: 0, NULL, keep_prealloc: false, NULL);
2587 err = ni_remove_attr(ni, type: ATTR_BITMAP, name: in->name, name_len: in->name_len,
2588 base_only: false, NULL);
2589 run_close(run: &indx->bitmap_run);
2590
2591 root = indx_get_root(indx, ni, attr: &attr, mi: &mi);
2592 if (!root) {
2593 err = -EINVAL;
2594 goto out;
2595 }
2596
2597 root_size = le32_to_cpu(attr->res.data_size);
2598 new_root_size =
2599 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2600
2601 if (new_root_size != root_size &&
2602 !mi_resize_attr(mi, attr, bytes: new_root_size - root_size)) {
2603 err = -EINVAL;
2604 goto out;
2605 }
2606
2607 /* Fill first entry. */
2608 e = (struct NTFS_DE *)(root + 1);
2609 e->ref.low = 0;
2610 e->ref.high = 0;
2611 e->ref.seq = 0;
2612 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2613 e->flags = NTFS_IE_LAST; // 0x02
2614 e->key_size = 0;
2615 e->res = 0;
2616
2617 hdr = &root->ihdr;
2618 hdr->flags = 0;
2619 hdr->used = hdr->total = cpu_to_le32(
2620 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2621 mi->dirty = true;
2622 }
2623
2624out:
2625 fnd_put(fnd: fnd2);
2626out1:
2627 fnd_put(fnd);
2628out2:
2629 return err;
2630}
2631
2632/*
2633 * Update duplicated information in directory entry
2634 * 'dup' - info from MFT record
2635 */
2636int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2637 const struct ATTR_FILE_NAME *fname,
2638 const struct NTFS_DUP_INFO *dup, int sync)
2639{
2640 int err, diff;
2641 struct NTFS_DE *e = NULL;
2642 struct ATTR_FILE_NAME *e_fname;
2643 struct ntfs_fnd *fnd;
2644 struct INDEX_ROOT *root;
2645 struct mft_inode *mi;
2646 struct ntfs_index *indx = &ni->dir;
2647
2648 fnd = fnd_get();
2649 if (!fnd)
2650 return -ENOMEM;
2651
2652 root = indx_get_root(indx, ni, NULL, mi: &mi);
2653 if (!root) {
2654 err = -EINVAL;
2655 goto out;
2656 }
2657
2658 /* Find entry in directory. */
2659 err = indx_find(indx, ni, root, key: fname, key_len: fname_full_size(fname), ctx: sbi,
2660 diff: &diff, entry: &e, fnd);
2661 if (err)
2662 goto out;
2663
2664 if (!e) {
2665 err = -EINVAL;
2666 goto out;
2667 }
2668
2669 if (diff) {
2670 err = -EINVAL;
2671 goto out;
2672 }
2673
2674 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2675
2676 if (!memcmp(p: &e_fname->dup, q: dup, size: sizeof(*dup))) {
2677 /*
2678 * Nothing to update in index! Try to avoid this call.
2679 */
2680 goto out;
2681 }
2682
2683 memcpy(&e_fname->dup, dup, sizeof(*dup));
2684
2685 if (fnd->level) {
2686 /* Directory entry in index. */
2687 err = indx_write(indx, ni, node: fnd->nodes[fnd->level - 1], sync);
2688 } else {
2689 /* Directory entry in directory MFT record. */
2690 mi->dirty = true;
2691 if (sync)
2692 err = mi_write(mi, wait: 1);
2693 else
2694 mark_inode_dirty(inode: &ni->vfs_inode);
2695 }
2696
2697out:
2698 fnd_put(fnd);
2699 return err;
2700}
2701

source code of linux/fs/ntfs3/index.c