1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS journal.
13 *
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
23 *
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
28 *
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
32 *
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
38 *
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
42 *
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
47 */
48
49#include "ubifs.h"
50
51/**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
54 */
55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56{
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
59}
60
61/**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 * entry node.
64 * @dent: the directory entry to zero out
65 */
66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67{
68 dent->padding1 = 0;
69}
70
71/**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 * node.
74 * @trun: the truncation node to zero out
75 */
76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77{
78 memset(trun->padding, 0, 12);
79}
80
81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82{
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, dirty: ubifs_auth_node_sz(c));
85}
86
87/**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
92 *
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
97 */
98static int reserve_space(struct ubifs_info *c, int jhead, int len)
99{
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102
103 /*
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
107 */
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
110again:
111 mutex_lock_nested(lock: &wbuf->io_mutex, subclass: wbuf->jhead);
112
113 if (c->ro_error) {
114 err = -EROFS;
115 goto out_unlock;
116 }
117
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
120 return 0;
121
122 /*
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
125 */
126 lnum = ubifs_find_free_space(c, min_space: len, offs: &offs, squeeze);
127 if (lnum >= 0)
128 goto out;
129
130 err = lnum;
131 if (err != -ENOSPC)
132 goto out_unlock;
133
134 /*
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
137 * GC also takes it.
138 */
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(lock: &wbuf->io_mutex);
141
142 lnum = ubifs_garbage_collect(c, anyway: 0);
143 if (lnum < 0) {
144 err = lnum;
145 if (err != -ENOSPC)
146 return err;
147
148 /*
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
152 * again.
153 */
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 dbg_jhead(jhead));
156 if (retries++ < 2) {
157 dbg_jnl("retry (%d)", retries);
158 goto again;
159 }
160
161 dbg_jnl("return -ENOSPC");
162 return err;
163 }
164
165 mutex_lock_nested(lock: &wbuf->io_mutex, subclass: wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
168
169 if (wbuf->lnum != -1 && avail >= len) {
170 /*
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
174 */
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
178 if (err)
179 goto out_unlock;
180 return 0;
181 }
182
183 offs = 0;
184
185out:
186 /*
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
193 */
194 err = ubifs_wbuf_sync_nolock(wbuf);
195 if (err)
196 goto out_return;
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 if (err)
199 goto out_return;
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 if (err)
202 goto out_unlock;
203
204 return 0;
205
206out_unlock:
207 mutex_unlock(lock: &wbuf->io_mutex);
208 return err;
209
210out_return:
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
215 /*
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
219 */
220 err = err1;
221 mutex_unlock(lock: &wbuf->io_mutex);
222 return err;
223}
224
225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
227{
228 int auth_node_size = ubifs_auth_node_sz(c);
229 int err;
230
231 while (1) {
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
234
235 ubifs_assert(c, len >= auth_node_size);
236
237 if (len == auth_node_size)
238 break;
239
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242
243 err = ubifs_shash_update(c, desc: hash, buf: (void *)node, len: nodelen);
244 if (err)
245 return err;
246
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
249 }
250
251 return ubifs_prepare_auth_node(c, node, inhash: hash);
252}
253
254/**
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
263 *
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
267 */
268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
270{
271 int err;
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273
274 ubifs_assert(c, jhead != GCHD);
275
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
280
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, node: buf, len, hash: c->jheads[jhead].log_hash);
283 if (err)
284 return err;
285 }
286
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 if (err)
289 return err;
290 if (sync)
291 err = ubifs_wbuf_sync_nolock(wbuf);
292 return err;
293}
294
295/**
296 * __queue_and_wait - queue a task and wait until the task is waked up.
297 * @c: UBIFS file-system description object
298 *
299 * This function adds current task in queue and waits until the task is waked
300 * up. This function should be called with @c->reserve_space_wq locked.
301 */
302static void __queue_and_wait(struct ubifs_info *c)
303{
304 DEFINE_WAIT(wait);
305
306 __add_wait_queue_entry_tail_exclusive(wq_head: &c->reserve_space_wq, wq_entry: &wait);
307 set_current_state(TASK_UNINTERRUPTIBLE);
308 spin_unlock(lock: &c->reserve_space_wq.lock);
309
310 schedule();
311 finish_wait(wq_head: &c->reserve_space_wq, wq_entry: &wait);
312}
313
314/**
315 * wait_for_reservation - try queuing current task to wait until waked up.
316 * @c: UBIFS file-system description object
317 *
318 * This function queues current task to wait until waked up, if queuing is
319 * started(@c->need_wait_space is not %0). Returns %true if current task is
320 * added in queue, otherwise %false is returned.
321 */
322static bool wait_for_reservation(struct ubifs_info *c)
323{
324 if (likely(atomic_read(&c->need_wait_space) == 0))
325 /* Quick path to check whether queuing is started. */
326 return false;
327
328 spin_lock(lock: &c->reserve_space_wq.lock);
329 if (atomic_read(v: &c->need_wait_space) == 0) {
330 /* Queuing is not started, don't queue current task. */
331 spin_unlock(lock: &c->reserve_space_wq.lock);
332 return false;
333 }
334
335 __queue_and_wait(c);
336 return true;
337}
338
339/**
340 * wake_up_reservation - wake up first task in queue or stop queuing.
341 * @c: UBIFS file-system description object
342 *
343 * This function wakes up the first task in queue if it exists, or stops
344 * queuing if no tasks in queue.
345 */
346static void wake_up_reservation(struct ubifs_info *c)
347{
348 spin_lock(lock: &c->reserve_space_wq.lock);
349 if (waitqueue_active(wq_head: &c->reserve_space_wq))
350 wake_up_locked(&c->reserve_space_wq);
351 else
352 /*
353 * Compared with wait_for_reservation(), set @c->need_wait_space
354 * under the protection of wait queue lock, which can avoid that
355 * @c->need_wait_space is set to 0 after new task queued.
356 */
357 atomic_set(v: &c->need_wait_space, i: 0);
358 spin_unlock(lock: &c->reserve_space_wq.lock);
359}
360
361/**
362 * wake_up_reservation - add current task in queue or start queuing.
363 * @c: UBIFS file-system description object
364 *
365 * This function starts queuing if queuing is not started, otherwise adds
366 * current task in queue.
367 */
368static void add_or_start_queue(struct ubifs_info *c)
369{
370 spin_lock(lock: &c->reserve_space_wq.lock);
371 if (atomic_cmpxchg(v: &c->need_wait_space, old: 0, new: 1) == 0) {
372 /* Starts queuing, task can go on directly. */
373 spin_unlock(lock: &c->reserve_space_wq.lock);
374 return;
375 }
376
377 /*
378 * There are at least two tasks have retried more than 32 times
379 * at certain point, first task has started queuing, just queue
380 * the left tasks.
381 */
382 __queue_and_wait(c);
383}
384
385/**
386 * make_reservation - reserve journal space.
387 * @c: UBIFS file-system description object
388 * @jhead: journal head
389 * @len: how many bytes to reserve
390 *
391 * This function makes space reservation in journal head @jhead. The function
392 * takes the commit lock and locks the journal head, and the caller has to
393 * unlock the head and finish the reservation with 'finish_reservation()'.
394 * Returns zero in case of success and a negative error code in case of
395 * failure.
396 *
397 * Note, the journal head may be unlocked as soon as the data is written, while
398 * the commit lock has to be released after the data has been added to the
399 * TNC.
400 */
401static int make_reservation(struct ubifs_info *c, int jhead, int len)
402{
403 int err, cmt_retries = 0, nospc_retries = 0;
404 bool blocked = wait_for_reservation(c);
405
406again:
407 down_read(sem: &c->commit_sem);
408 err = reserve_space(c, jhead, len);
409 if (!err) {
410 /* c->commit_sem will get released via finish_reservation(). */
411 goto out_wake_up;
412 }
413 up_read(sem: &c->commit_sem);
414
415 if (err == -ENOSPC) {
416 /*
417 * GC could not make any progress. We should try to commit
418 * because it could make some dirty space and GC would make
419 * progress, so make the error -EAGAIN so that the below
420 * will commit and re-try.
421 */
422 nospc_retries++;
423 dbg_jnl("no space, retry");
424 err = -EAGAIN;
425 }
426
427 if (err != -EAGAIN)
428 goto out;
429
430 /*
431 * -EAGAIN means that the journal is full or too large, or the above
432 * code wants to do one commit. Do this and re-try.
433 */
434 if (cmt_retries > 128) {
435 /*
436 * This should not happen unless:
437 * 1. The journal size limitations are too tough.
438 * 2. The budgeting is incorrect. We always have to be able to
439 * write to the media, because all operations are budgeted.
440 * Deletions are not budgeted, though, but we reserve an
441 * extra LEB for them.
442 */
443 ubifs_err(c, fmt: "stuck in space allocation, nospc_retries %d",
444 nospc_retries);
445 err = -ENOSPC;
446 goto out;
447 } else if (cmt_retries > 32) {
448 /*
449 * It's almost impossible to happen, unless there are many tasks
450 * making reservation concurrently and someone task has retried
451 * gc + commit for many times, generated available space during
452 * this period are grabbed by other tasks.
453 * But if it happens, start queuing up all tasks that will make
454 * space reservation, then there is only one task making space
455 * reservation at any time, and it can always make success under
456 * the premise of correct budgeting.
457 */
458 ubifs_warn(c, fmt: "too many space allocation cmt_retries (%d) "
459 "nospc_retries (%d), start queuing tasks",
460 cmt_retries, nospc_retries);
461
462 if (!blocked) {
463 blocked = true;
464 add_or_start_queue(c);
465 }
466 }
467
468 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
469 cmt_retries);
470 cmt_retries += 1;
471
472 err = ubifs_run_commit(c);
473 if (err)
474 goto out_wake_up;
475 goto again;
476
477out:
478 ubifs_err(c, fmt: "cannot reserve %d bytes in jhead %d, error %d",
479 len, jhead, err);
480 if (err == -ENOSPC) {
481 /* This are some budgeting problems, print useful information */
482 down_write(sem: &c->commit_sem);
483 dump_stack();
484 ubifs_dump_budg(c, bi: &c->bi);
485 ubifs_dump_lprops(c);
486 cmt_retries = dbg_check_lprops(c);
487 up_write(sem: &c->commit_sem);
488 }
489out_wake_up:
490 if (blocked) {
491 /*
492 * Only tasks that have ever started queuing or ever been queued
493 * can wake up other queued tasks, which can make sure that
494 * there is only one task waked up to make space reservation.
495 * For example:
496 * task A task B task C
497 * make_reservation make_reservation
498 * reserve_space // 0
499 * wake_up_reservation
500 * atomic_cmpxchg // 0, start queuing
501 * reserve_space
502 * wait_for_reservation
503 * __queue_and_wait
504 * add_wait_queue
505 * if (blocked) // false
506 * // So that task C won't be waked up to race with task B
507 */
508 wake_up_reservation(c);
509 }
510 return err;
511}
512
513/**
514 * release_head - release a journal head.
515 * @c: UBIFS file-system description object
516 * @jhead: journal head
517 *
518 * This function releases journal head @jhead which was locked by
519 * the 'make_reservation()' function. It has to be called after each successful
520 * 'make_reservation()' invocation.
521 */
522static inline void release_head(struct ubifs_info *c, int jhead)
523{
524 mutex_unlock(lock: &c->jheads[jhead].wbuf.io_mutex);
525}
526
527/**
528 * finish_reservation - finish a reservation.
529 * @c: UBIFS file-system description object
530 *
531 * This function finishes journal space reservation. It must be called after
532 * 'make_reservation()'.
533 */
534static void finish_reservation(struct ubifs_info *c)
535{
536 up_read(sem: &c->commit_sem);
537}
538
539/**
540 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
541 * @mode: inode mode
542 */
543static int get_dent_type(int mode)
544{
545 switch (mode & S_IFMT) {
546 case S_IFREG:
547 return UBIFS_ITYPE_REG;
548 case S_IFDIR:
549 return UBIFS_ITYPE_DIR;
550 case S_IFLNK:
551 return UBIFS_ITYPE_LNK;
552 case S_IFBLK:
553 return UBIFS_ITYPE_BLK;
554 case S_IFCHR:
555 return UBIFS_ITYPE_CHR;
556 case S_IFIFO:
557 return UBIFS_ITYPE_FIFO;
558 case S_IFSOCK:
559 return UBIFS_ITYPE_SOCK;
560 default:
561 BUG();
562 }
563 return 0;
564}
565
566/**
567 * pack_inode - pack an inode node.
568 * @c: UBIFS file-system description object
569 * @ino: buffer in which to pack inode node
570 * @inode: inode to pack
571 * @last: indicates the last node of the group
572 */
573static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
574 const struct inode *inode, int last)
575{
576 int data_len = 0, last_reference = !inode->i_nlink;
577 struct ubifs_inode *ui = ubifs_inode(inode);
578
579 ino->ch.node_type = UBIFS_INO_NODE;
580 ino_key_init_flash(c, k: &ino->key, inum: inode->i_ino);
581 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
582 ino->atime_sec = cpu_to_le64(inode_get_atime_sec(inode));
583 ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
584 ino->ctime_sec = cpu_to_le64(inode_get_ctime_sec(inode));
585 ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
586 ino->mtime_sec = cpu_to_le64(inode_get_mtime_sec(inode));
587 ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
588 ino->uid = cpu_to_le32(i_uid_read(inode));
589 ino->gid = cpu_to_le32(i_gid_read(inode));
590 ino->mode = cpu_to_le32(inode->i_mode);
591 ino->flags = cpu_to_le32(ui->flags);
592 ino->size = cpu_to_le64(ui->ui_size);
593 ino->nlink = cpu_to_le32(inode->i_nlink);
594 ino->compr_type = cpu_to_le16(ui->compr_type);
595 ino->data_len = cpu_to_le32(ui->data_len);
596 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
597 ino->xattr_size = cpu_to_le32(ui->xattr_size);
598 ino->xattr_names = cpu_to_le32(ui->xattr_names);
599 zero_ino_node_unused(ino);
600
601 /*
602 * Drop the attached data if this is a deletion inode, the data is not
603 * needed anymore.
604 */
605 if (!last_reference) {
606 memcpy(ino->data, ui->data, ui->data_len);
607 data_len = ui->data_len;
608 }
609
610 ubifs_prep_grp_node(c, node: ino, UBIFS_INO_NODE_SZ + data_len, last);
611}
612
613/**
614 * mark_inode_clean - mark UBIFS inode as clean.
615 * @c: UBIFS file-system description object
616 * @ui: UBIFS inode to mark as clean
617 *
618 * This helper function marks UBIFS inode @ui as clean by cleaning the
619 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
620 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
621 * just do nothing.
622 */
623static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
624{
625 if (ui->dirty)
626 ubifs_release_dirty_inode_budget(c, ui);
627 ui->dirty = 0;
628}
629
630static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
631{
632 if (c->double_hash)
633 dent->cookie = (__force __le32) get_random_u32();
634 else
635 dent->cookie = 0;
636}
637
638/**
639 * ubifs_jnl_update - update inode.
640 * @c: UBIFS file-system description object
641 * @dir: parent inode or host inode in case of extended attributes
642 * @nm: directory entry name
643 * @inode: inode to update
644 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
645 * @xent: non-zero if the directory entry is an extended attribute entry
646 *
647 * This function updates an inode by writing a directory entry (or extended
648 * attribute entry), the inode itself, and the parent directory inode (or the
649 * host inode) to the journal.
650 *
651 * The function writes the host inode @dir last, which is important in case of
652 * extended attributes. Indeed, then we guarantee that if the host inode gets
653 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
654 * the extended attribute inode gets flushed too. And this is exactly what the
655 * user expects - synchronizing the host inode synchronizes its extended
656 * attributes. Similarly, this guarantees that if @dir is synchronized, its
657 * directory entry corresponding to @nm gets synchronized too.
658 *
659 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
660 * function synchronizes the write-buffer.
661 *
662 * This function marks the @dir and @inode inodes as clean and returns zero on
663 * success. In case of failure, a negative error code is returned.
664 */
665int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
666 const struct fscrypt_name *nm, const struct inode *inode,
667 int deletion, int xent)
668{
669 int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
670 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
671 int last_reference = !!(deletion && inode->i_nlink == 0);
672 struct ubifs_inode *ui = ubifs_inode(inode);
673 struct ubifs_inode *host_ui = ubifs_inode(inode: dir);
674 struct ubifs_dent_node *dent;
675 struct ubifs_ino_node *ino;
676 union ubifs_key dent_key, ino_key;
677 u8 hash_dent[UBIFS_HASH_ARR_SZ];
678 u8 hash_ino[UBIFS_HASH_ARR_SZ];
679 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
680
681 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
682
683 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
684 ilen = UBIFS_INO_NODE_SZ;
685
686 /*
687 * If the last reference to the inode is being deleted, then there is
688 * no need to attach and write inode data, it is being deleted anyway.
689 * And if the inode is being deleted, no need to synchronize
690 * write-buffer even if the inode is synchronous.
691 */
692 if (!last_reference) {
693 ilen += ui->data_len;
694 sync |= IS_SYNC(inode);
695 }
696
697 aligned_dlen = ALIGN(dlen, 8);
698 aligned_ilen = ALIGN(ilen, 8);
699
700 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
701 /* Make sure to also account for extended attributes */
702 if (ubifs_authenticated(c))
703 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
704 else
705 len += host_ui->data_len;
706
707 dent = kzalloc(size: len, GFP_NOFS);
708 if (!dent)
709 return -ENOMEM;
710
711 /* Make reservation before allocating sequence numbers */
712 err = make_reservation(c, BASEHD, len);
713 if (err)
714 goto out_free;
715
716 if (!xent) {
717 dent->ch.node_type = UBIFS_DENT_NODE;
718 if (fname_name(nm) == NULL)
719 dent_key_init_hash(c, key: &dent_key, inum: dir->i_ino, hash: nm->hash);
720 else
721 dent_key_init(c, key: &dent_key, inum: dir->i_ino, nm);
722 } else {
723 dent->ch.node_type = UBIFS_XENT_NODE;
724 xent_key_init(c, key: &dent_key, inum: dir->i_ino, nm);
725 }
726
727 key_write(c, from: &dent_key, to: dent->key);
728 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
729 dent->type = get_dent_type(mode: inode->i_mode);
730 dent->nlen = cpu_to_le16(fname_len(nm));
731 memcpy(dent->name, fname_name(nm), fname_len(nm));
732 dent->name[fname_len(nm)] = '\0';
733 set_dent_cookie(c, dent);
734
735 zero_dent_node_unused(dent);
736 ubifs_prep_grp_node(c, node: dent, len: dlen, last: 0);
737 err = ubifs_node_calc_hash(c, buf: dent, hash: hash_dent);
738 if (err)
739 goto out_release;
740
741 ino = (void *)dent + aligned_dlen;
742 pack_inode(c, ino, inode, last: 0);
743 err = ubifs_node_calc_hash(c, buf: ino, hash: hash_ino);
744 if (err)
745 goto out_release;
746
747 ino = (void *)ino + aligned_ilen;
748 pack_inode(c, ino, inode: dir, last: 1);
749 err = ubifs_node_calc_hash(c, buf: ino, hash: hash_ino_host);
750 if (err)
751 goto out_release;
752
753 if (last_reference) {
754 err = ubifs_add_orphan(c, inum: inode->i_ino);
755 if (err) {
756 release_head(c, BASEHD);
757 goto out_finish;
758 }
759 ui->del_cmtno = c->cmt_no;
760 orphan_added = 1;
761 }
762
763 err = write_head(c, BASEHD, buf: dent, len, lnum: &lnum, offs: &dent_offs, sync);
764 if (err)
765 goto out_release;
766 if (!sync) {
767 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
768
769 ubifs_wbuf_add_ino_nolock(wbuf, inum: inode->i_ino);
770 ubifs_wbuf_add_ino_nolock(wbuf, inum: dir->i_ino);
771 }
772 release_head(c, BASEHD);
773 kfree(objp: dent);
774 ubifs_add_auth_dirt(c, lnum);
775
776 if (deletion) {
777 if (fname_name(nm) == NULL)
778 err = ubifs_tnc_remove_dh(c, key: &dent_key, cookie: nm->minor_hash);
779 else
780 err = ubifs_tnc_remove_nm(c, key: &dent_key, nm);
781 if (err)
782 goto out_ro;
783 err = ubifs_add_dirt(c, lnum, dirty: dlen);
784 } else
785 err = ubifs_tnc_add_nm(c, key: &dent_key, lnum, offs: dent_offs, len: dlen,
786 hash: hash_dent, nm);
787 if (err)
788 goto out_ro;
789
790 /*
791 * Note, we do not remove the inode from TNC even if the last reference
792 * to it has just been deleted, because the inode may still be opened.
793 * Instead, the inode has been added to orphan lists and the orphan
794 * subsystem will take further care about it.
795 */
796 ino_key_init(c, key: &ino_key, inum: inode->i_ino);
797 ino_offs = dent_offs + aligned_dlen;
798 err = ubifs_tnc_add(c, key: &ino_key, lnum, offs: ino_offs, len: ilen, hash: hash_ino);
799 if (err)
800 goto out_ro;
801
802 ino_key_init(c, key: &ino_key, inum: dir->i_ino);
803 ino_offs += aligned_ilen;
804 err = ubifs_tnc_add(c, key: &ino_key, lnum, offs: ino_offs,
805 UBIFS_INO_NODE_SZ + host_ui->data_len, hash: hash_ino_host);
806 if (err)
807 goto out_ro;
808
809 finish_reservation(c);
810 spin_lock(lock: &ui->ui_lock);
811 ui->synced_i_size = ui->ui_size;
812 spin_unlock(lock: &ui->ui_lock);
813 if (xent) {
814 spin_lock(lock: &host_ui->ui_lock);
815 host_ui->synced_i_size = host_ui->ui_size;
816 spin_unlock(lock: &host_ui->ui_lock);
817 }
818 mark_inode_clean(c, ui);
819 mark_inode_clean(c, ui: host_ui);
820 return 0;
821
822out_finish:
823 finish_reservation(c);
824out_free:
825 kfree(objp: dent);
826 return err;
827
828out_release:
829 release_head(c, BASEHD);
830 kfree(objp: dent);
831out_ro:
832 ubifs_ro_mode(c, err);
833 if (orphan_added)
834 ubifs_delete_orphan(c, inum: inode->i_ino);
835 finish_reservation(c);
836 return err;
837}
838
839/**
840 * ubifs_jnl_write_data - write a data node to the journal.
841 * @c: UBIFS file-system description object
842 * @inode: inode the data node belongs to
843 * @key: node key
844 * @buf: buffer to write
845 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
846 *
847 * This function writes a data node to the journal. Returns %0 if the data node
848 * was successfully written, and a negative error code in case of failure.
849 */
850int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
851 const union ubifs_key *key, const void *buf, int len)
852{
853 struct ubifs_data_node *data;
854 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
855 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
856 int write_len;
857 struct ubifs_inode *ui = ubifs_inode(inode);
858 bool encrypted = IS_ENCRYPTED(inode);
859 u8 hash[UBIFS_HASH_ARR_SZ];
860
861 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
862 (unsigned long)key_inum(c, key), key_block(c, key), len);
863 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
864
865 if (encrypted)
866 dlen += UBIFS_CIPHER_BLOCK_SIZE;
867
868 auth_len = ubifs_auth_node_sz(c);
869
870 data = kmalloc(size: dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
871 if (!data) {
872 /*
873 * Fall-back to the write reserve buffer. Note, we might be
874 * currently on the memory reclaim path, when the kernel is
875 * trying to free some memory by writing out dirty pages. The
876 * write reserve buffer helps us to guarantee that we are
877 * always able to write the data.
878 */
879 allocated = 0;
880 mutex_lock(&c->write_reserve_mutex);
881 data = c->write_reserve_buf;
882 }
883
884 data->ch.node_type = UBIFS_DATA_NODE;
885 key_write(c, from: key, to: &data->key);
886 data->size = cpu_to_le32(len);
887
888 if (!(ui->flags & UBIFS_COMPR_FL))
889 /* Compression is disabled for this inode */
890 compr_type = UBIFS_COMPR_NONE;
891 else
892 compr_type = ui->compr_type;
893
894 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
895 ubifs_compress(c, in_buf: buf, in_len: len, out_buf: &data->data, out_len: &compr_len, compr_type: &compr_type);
896 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
897
898 if (encrypted) {
899 err = ubifs_encrypt(inode, dn: data, in_len: compr_len, out_len: &out_len, block: key_block(c, key));
900 if (err)
901 goto out_free;
902
903 } else {
904 data->compr_size = 0;
905 out_len = compr_len;
906 }
907
908 dlen = UBIFS_DATA_NODE_SZ + out_len;
909 if (ubifs_authenticated(c))
910 write_len = ALIGN(dlen, 8) + auth_len;
911 else
912 write_len = dlen;
913
914 data->compr_type = cpu_to_le16(compr_type);
915
916 /* Make reservation before allocating sequence numbers */
917 err = make_reservation(c, DATAHD, len: write_len);
918 if (err)
919 goto out_free;
920
921 ubifs_prepare_node(c, buf: data, len: dlen, pad: 0);
922 err = write_head(c, DATAHD, buf: data, len: write_len, lnum: &lnum, offs: &offs, sync: 0);
923 if (err)
924 goto out_release;
925
926 err = ubifs_node_calc_hash(c, buf: data, hash);
927 if (err)
928 goto out_release;
929
930 ubifs_wbuf_add_ino_nolock(wbuf: &c->jheads[DATAHD].wbuf, inum: key_inum(c, k: key));
931 release_head(c, DATAHD);
932
933 ubifs_add_auth_dirt(c, lnum);
934
935 err = ubifs_tnc_add(c, key, lnum, offs, len: dlen, hash);
936 if (err)
937 goto out_ro;
938
939 finish_reservation(c);
940 if (!allocated)
941 mutex_unlock(lock: &c->write_reserve_mutex);
942 else
943 kfree(objp: data);
944 return 0;
945
946out_release:
947 release_head(c, DATAHD);
948out_ro:
949 ubifs_ro_mode(c, err);
950 finish_reservation(c);
951out_free:
952 if (!allocated)
953 mutex_unlock(lock: &c->write_reserve_mutex);
954 else
955 kfree(objp: data);
956 return err;
957}
958
959/**
960 * ubifs_jnl_write_inode - flush inode to the journal.
961 * @c: UBIFS file-system description object
962 * @inode: inode to flush
963 *
964 * This function writes inode @inode to the journal. If the inode is
965 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
966 * success and a negative error code in case of failure.
967 */
968int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
969{
970 int err, lnum, offs;
971 struct ubifs_ino_node *ino, *ino_start;
972 struct ubifs_inode *ui = ubifs_inode(inode);
973 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
974 int last_reference = !inode->i_nlink;
975 int kill_xattrs = ui->xattr_cnt && last_reference;
976 u8 hash[UBIFS_HASH_ARR_SZ];
977
978 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
979
980 /*
981 * If the inode is being deleted, do not write the attached data. No
982 * need to synchronize the write-buffer either.
983 */
984 if (!last_reference) {
985 ilen += ui->data_len;
986 sync = IS_SYNC(inode);
987 } else if (kill_xattrs) {
988 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
989 }
990
991 if (ubifs_authenticated(c))
992 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
993 else
994 write_len += ilen;
995
996 ino_start = ino = kmalloc(size: write_len, GFP_NOFS);
997 if (!ino)
998 return -ENOMEM;
999
1000 /* Make reservation before allocating sequence numbers */
1001 err = make_reservation(c, BASEHD, len: write_len);
1002 if (err)
1003 goto out_free;
1004
1005 if (kill_xattrs) {
1006 union ubifs_key key;
1007 struct fscrypt_name nm = {0};
1008 struct inode *xino;
1009 struct ubifs_dent_node *xent, *pxent = NULL;
1010
1011 if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
1012 err = -EPERM;
1013 ubifs_err(c, fmt: "Cannot delete inode, it has too much xattrs!");
1014 goto out_release;
1015 }
1016
1017 lowest_xent_key(c, key: &key, inum: inode->i_ino);
1018 while (1) {
1019 xent = ubifs_tnc_next_ent(c, key: &key, nm: &nm);
1020 if (IS_ERR(ptr: xent)) {
1021 err = PTR_ERR(ptr: xent);
1022 if (err == -ENOENT)
1023 break;
1024
1025 kfree(objp: pxent);
1026 goto out_release;
1027 }
1028
1029 fname_name(&nm) = xent->name;
1030 fname_len(&nm) = le16_to_cpu(xent->nlen);
1031
1032 xino = ubifs_iget(sb: c->vfs_sb, le64_to_cpu(xent->inum));
1033 if (IS_ERR(ptr: xino)) {
1034 err = PTR_ERR(ptr: xino);
1035 ubifs_err(c, fmt: "dead directory entry '%s', error %d",
1036 xent->name, err);
1037 ubifs_ro_mode(c, err);
1038 kfree(objp: pxent);
1039 kfree(objp: xent);
1040 goto out_release;
1041 }
1042 ubifs_assert(c, ubifs_inode(xino)->xattr);
1043
1044 clear_nlink(inode: xino);
1045 pack_inode(c, ino, inode: xino, last: 0);
1046 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1047 iput(xino);
1048
1049 kfree(objp: pxent);
1050 pxent = xent;
1051 key_read(c, from: &xent->key, to: &key);
1052 }
1053 kfree(objp: pxent);
1054 }
1055
1056 pack_inode(c, ino, inode, last: 1);
1057 err = ubifs_node_calc_hash(c, buf: ino, hash);
1058 if (err)
1059 goto out_release;
1060
1061 err = write_head(c, BASEHD, buf: ino_start, len: write_len, lnum: &lnum, offs: &offs, sync);
1062 if (err)
1063 goto out_release;
1064 if (!sync)
1065 ubifs_wbuf_add_ino_nolock(wbuf: &c->jheads[BASEHD].wbuf,
1066 inum: inode->i_ino);
1067 release_head(c, BASEHD);
1068
1069 if (last_reference) {
1070 err = ubifs_tnc_remove_ino(c, inum: inode->i_ino);
1071 if (err)
1072 goto out_ro;
1073 ubifs_delete_orphan(c, inum: inode->i_ino);
1074 err = ubifs_add_dirt(c, lnum, dirty: write_len);
1075 } else {
1076 union ubifs_key key;
1077
1078 ubifs_add_auth_dirt(c, lnum);
1079
1080 ino_key_init(c, key: &key, inum: inode->i_ino);
1081 err = ubifs_tnc_add(c, key: &key, lnum, offs, len: ilen, hash);
1082 }
1083 if (err)
1084 goto out_ro;
1085
1086 finish_reservation(c);
1087 spin_lock(lock: &ui->ui_lock);
1088 ui->synced_i_size = ui->ui_size;
1089 spin_unlock(lock: &ui->ui_lock);
1090 kfree(objp: ino_start);
1091 return 0;
1092
1093out_release:
1094 release_head(c, BASEHD);
1095out_ro:
1096 ubifs_ro_mode(c, err);
1097 finish_reservation(c);
1098out_free:
1099 kfree(objp: ino_start);
1100 return err;
1101}
1102
1103/**
1104 * ubifs_jnl_delete_inode - delete an inode.
1105 * @c: UBIFS file-system description object
1106 * @inode: inode to delete
1107 *
1108 * This function deletes inode @inode which includes removing it from orphans,
1109 * deleting it from TNC and, in some cases, writing a deletion inode to the
1110 * journal.
1111 *
1112 * When regular file inodes are unlinked or a directory inode is removed, the
1113 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
1114 * direntry to the media, and adds the inode to orphans. After this, when the
1115 * last reference to this inode has been dropped, this function is called. In
1116 * general, it has to write one more deletion inode to the media, because if
1117 * a commit happened between 'ubifs_jnl_update()' and
1118 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
1119 * anymore, and in fact it might not be on the flash anymore, because it might
1120 * have been garbage-collected already. And for optimization reasons UBIFS does
1121 * not read the orphan area if it has been unmounted cleanly, so it would have
1122 * no indication in the journal that there is a deleted inode which has to be
1123 * removed from TNC.
1124 *
1125 * However, if there was no commit between 'ubifs_jnl_update()' and
1126 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1127 * inode to the media for the second time. And this is quite a typical case.
1128 *
1129 * This function returns zero in case of success and a negative error code in
1130 * case of failure.
1131 */
1132int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1133{
1134 int err;
1135 struct ubifs_inode *ui = ubifs_inode(inode);
1136
1137 ubifs_assert(c, inode->i_nlink == 0);
1138
1139 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1140 /* A commit happened for sure or inode hosts xattrs */
1141 return ubifs_jnl_write_inode(c, inode);
1142
1143 down_read(sem: &c->commit_sem);
1144 /*
1145 * Check commit number again, because the first test has been done
1146 * without @c->commit_sem, so a commit might have happened.
1147 */
1148 if (ui->del_cmtno != c->cmt_no) {
1149 up_read(sem: &c->commit_sem);
1150 return ubifs_jnl_write_inode(c, inode);
1151 }
1152
1153 err = ubifs_tnc_remove_ino(c, inum: inode->i_ino);
1154 if (err)
1155 ubifs_ro_mode(c, err);
1156 else
1157 ubifs_delete_orphan(c, inum: inode->i_ino);
1158 up_read(sem: &c->commit_sem);
1159 return err;
1160}
1161
1162/**
1163 * ubifs_jnl_xrename - cross rename two directory entries.
1164 * @c: UBIFS file-system description object
1165 * @fst_dir: parent inode of 1st directory entry to exchange
1166 * @fst_inode: 1st inode to exchange
1167 * @fst_nm: name of 1st inode to exchange
1168 * @snd_dir: parent inode of 2nd directory entry to exchange
1169 * @snd_inode: 2nd inode to exchange
1170 * @snd_nm: name of 2nd inode to exchange
1171 * @sync: non-zero if the write-buffer has to be synchronized
1172 *
1173 * This function implements the cross rename operation which may involve
1174 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1175 * and returns zero on success. In case of failure, a negative error code is
1176 * returned.
1177 */
1178int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1179 const struct inode *fst_inode,
1180 const struct fscrypt_name *fst_nm,
1181 const struct inode *snd_dir,
1182 const struct inode *snd_inode,
1183 const struct fscrypt_name *snd_nm, int sync)
1184{
1185 union ubifs_key key;
1186 struct ubifs_dent_node *dent1, *dent2;
1187 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1188 int aligned_dlen1, aligned_dlen2;
1189 int twoparents = (fst_dir != snd_dir);
1190 void *p;
1191 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1192 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1193 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1194 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1195
1196 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1197 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1198 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1199 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1200
1201 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1202 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1203 aligned_dlen1 = ALIGN(dlen1, 8);
1204 aligned_dlen2 = ALIGN(dlen2, 8);
1205
1206 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1207 if (twoparents)
1208 len += plen;
1209
1210 len += ubifs_auth_node_sz(c);
1211
1212 dent1 = kzalloc(size: len, GFP_NOFS);
1213 if (!dent1)
1214 return -ENOMEM;
1215
1216 /* Make reservation before allocating sequence numbers */
1217 err = make_reservation(c, BASEHD, len);
1218 if (err)
1219 goto out_free;
1220
1221 /* Make new dent for 1st entry */
1222 dent1->ch.node_type = UBIFS_DENT_NODE;
1223 dent_key_init_flash(c, k: &dent1->key, inum: snd_dir->i_ino, nm: snd_nm);
1224 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1225 dent1->type = get_dent_type(mode: fst_inode->i_mode);
1226 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1227 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1228 dent1->name[fname_len(snd_nm)] = '\0';
1229 set_dent_cookie(c, dent: dent1);
1230 zero_dent_node_unused(dent: dent1);
1231 ubifs_prep_grp_node(c, node: dent1, len: dlen1, last: 0);
1232 err = ubifs_node_calc_hash(c, buf: dent1, hash: hash_dent1);
1233 if (err)
1234 goto out_release;
1235
1236 /* Make new dent for 2nd entry */
1237 dent2 = (void *)dent1 + aligned_dlen1;
1238 dent2->ch.node_type = UBIFS_DENT_NODE;
1239 dent_key_init_flash(c, k: &dent2->key, inum: fst_dir->i_ino, nm: fst_nm);
1240 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1241 dent2->type = get_dent_type(mode: snd_inode->i_mode);
1242 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1243 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1244 dent2->name[fname_len(fst_nm)] = '\0';
1245 set_dent_cookie(c, dent: dent2);
1246 zero_dent_node_unused(dent: dent2);
1247 ubifs_prep_grp_node(c, node: dent2, len: dlen2, last: 0);
1248 err = ubifs_node_calc_hash(c, buf: dent2, hash: hash_dent2);
1249 if (err)
1250 goto out_release;
1251
1252 p = (void *)dent2 + aligned_dlen2;
1253 if (!twoparents) {
1254 pack_inode(c, ino: p, inode: fst_dir, last: 1);
1255 err = ubifs_node_calc_hash(c, buf: p, hash: hash_p1);
1256 if (err)
1257 goto out_release;
1258 } else {
1259 pack_inode(c, ino: p, inode: fst_dir, last: 0);
1260 err = ubifs_node_calc_hash(c, buf: p, hash: hash_p1);
1261 if (err)
1262 goto out_release;
1263 p += ALIGN(plen, 8);
1264 pack_inode(c, ino: p, inode: snd_dir, last: 1);
1265 err = ubifs_node_calc_hash(c, buf: p, hash: hash_p2);
1266 if (err)
1267 goto out_release;
1268 }
1269
1270 err = write_head(c, BASEHD, buf: dent1, len, lnum: &lnum, offs: &offs, sync);
1271 if (err)
1272 goto out_release;
1273 if (!sync) {
1274 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1275
1276 ubifs_wbuf_add_ino_nolock(wbuf, inum: fst_dir->i_ino);
1277 ubifs_wbuf_add_ino_nolock(wbuf, inum: snd_dir->i_ino);
1278 }
1279 release_head(c, BASEHD);
1280
1281 ubifs_add_auth_dirt(c, lnum);
1282
1283 dent_key_init(c, key: &key, inum: snd_dir->i_ino, nm: snd_nm);
1284 err = ubifs_tnc_add_nm(c, key: &key, lnum, offs, len: dlen1, hash: hash_dent1, nm: snd_nm);
1285 if (err)
1286 goto out_ro;
1287
1288 offs += aligned_dlen1;
1289 dent_key_init(c, key: &key, inum: fst_dir->i_ino, nm: fst_nm);
1290 err = ubifs_tnc_add_nm(c, key: &key, lnum, offs, len: dlen2, hash: hash_dent2, nm: fst_nm);
1291 if (err)
1292 goto out_ro;
1293
1294 offs += aligned_dlen2;
1295
1296 ino_key_init(c, key: &key, inum: fst_dir->i_ino);
1297 err = ubifs_tnc_add(c, key: &key, lnum, offs, len: plen, hash: hash_p1);
1298 if (err)
1299 goto out_ro;
1300
1301 if (twoparents) {
1302 offs += ALIGN(plen, 8);
1303 ino_key_init(c, key: &key, inum: snd_dir->i_ino);
1304 err = ubifs_tnc_add(c, key: &key, lnum, offs, len: plen, hash: hash_p2);
1305 if (err)
1306 goto out_ro;
1307 }
1308
1309 finish_reservation(c);
1310
1311 mark_inode_clean(c, ui: ubifs_inode(inode: fst_dir));
1312 if (twoparents)
1313 mark_inode_clean(c, ui: ubifs_inode(inode: snd_dir));
1314 kfree(objp: dent1);
1315 return 0;
1316
1317out_release:
1318 release_head(c, BASEHD);
1319out_ro:
1320 ubifs_ro_mode(c, err);
1321 finish_reservation(c);
1322out_free:
1323 kfree(objp: dent1);
1324 return err;
1325}
1326
1327/**
1328 * ubifs_jnl_rename - rename a directory entry.
1329 * @c: UBIFS file-system description object
1330 * @old_dir: parent inode of directory entry to rename
1331 * @old_inode: directory entry's inode to rename
1332 * @old_nm: name of the old directory entry to rename
1333 * @new_dir: parent inode of directory entry to rename
1334 * @new_inode: new directory entry's inode (or directory entry's inode to
1335 * replace)
1336 * @new_nm: new name of the new directory entry
1337 * @whiteout: whiteout inode
1338 * @sync: non-zero if the write-buffer has to be synchronized
1339 *
1340 * This function implements the re-name operation which may involve writing up
1341 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1342 * and 2 directory entries. It marks the written inodes as clean and returns
1343 * zero on success. In case of failure, a negative error code is returned.
1344 */
1345int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1346 const struct inode *old_inode,
1347 const struct fscrypt_name *old_nm,
1348 const struct inode *new_dir,
1349 const struct inode *new_inode,
1350 const struct fscrypt_name *new_nm,
1351 const struct inode *whiteout, int sync)
1352{
1353 void *p;
1354 union ubifs_key key;
1355 struct ubifs_dent_node *dent, *dent2;
1356 int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1357 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1358 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1359 int move = (old_dir != new_dir);
1360 struct ubifs_inode *new_ui, *whiteout_ui;
1361 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1362 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1363 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1364 u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1365 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1366 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1367
1368 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1369 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1370 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1371 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1372
1373 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1374 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1375 if (new_inode) {
1376 new_ui = ubifs_inode(inode: new_inode);
1377 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1378 ilen = UBIFS_INO_NODE_SZ;
1379 if (!last_reference)
1380 ilen += new_ui->data_len;
1381 } else
1382 ilen = 0;
1383
1384 if (whiteout) {
1385 whiteout_ui = ubifs_inode(inode: whiteout);
1386 ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1387 ubifs_assert(c, whiteout->i_nlink == 1);
1388 ubifs_assert(c, !whiteout_ui->dirty);
1389 wlen = UBIFS_INO_NODE_SZ;
1390 wlen += whiteout_ui->data_len;
1391 } else
1392 wlen = 0;
1393
1394 aligned_dlen1 = ALIGN(dlen1, 8);
1395 aligned_dlen2 = ALIGN(dlen2, 8);
1396 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1397 ALIGN(wlen, 8) + ALIGN(plen, 8);
1398 if (move)
1399 len += plen;
1400
1401 len += ubifs_auth_node_sz(c);
1402
1403 dent = kzalloc(size: len, GFP_NOFS);
1404 if (!dent)
1405 return -ENOMEM;
1406
1407 /* Make reservation before allocating sequence numbers */
1408 err = make_reservation(c, BASEHD, len);
1409 if (err)
1410 goto out_free;
1411
1412 /* Make new dent */
1413 dent->ch.node_type = UBIFS_DENT_NODE;
1414 dent_key_init_flash(c, k: &dent->key, inum: new_dir->i_ino, nm: new_nm);
1415 dent->inum = cpu_to_le64(old_inode->i_ino);
1416 dent->type = get_dent_type(mode: old_inode->i_mode);
1417 dent->nlen = cpu_to_le16(fname_len(new_nm));
1418 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1419 dent->name[fname_len(new_nm)] = '\0';
1420 set_dent_cookie(c, dent);
1421 zero_dent_node_unused(dent);
1422 ubifs_prep_grp_node(c, node: dent, len: dlen1, last: 0);
1423 err = ubifs_node_calc_hash(c, buf: dent, hash: hash_dent1);
1424 if (err)
1425 goto out_release;
1426
1427 dent2 = (void *)dent + aligned_dlen1;
1428 dent2->ch.node_type = UBIFS_DENT_NODE;
1429 dent_key_init_flash(c, k: &dent2->key, inum: old_dir->i_ino, nm: old_nm);
1430
1431 if (whiteout) {
1432 dent2->inum = cpu_to_le64(whiteout->i_ino);
1433 dent2->type = get_dent_type(mode: whiteout->i_mode);
1434 } else {
1435 /* Make deletion dent */
1436 dent2->inum = 0;
1437 dent2->type = DT_UNKNOWN;
1438 }
1439 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1440 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1441 dent2->name[fname_len(old_nm)] = '\0';
1442 set_dent_cookie(c, dent: dent2);
1443 zero_dent_node_unused(dent: dent2);
1444 ubifs_prep_grp_node(c, node: dent2, len: dlen2, last: 0);
1445 err = ubifs_node_calc_hash(c, buf: dent2, hash: hash_dent2);
1446 if (err)
1447 goto out_release;
1448
1449 p = (void *)dent2 + aligned_dlen2;
1450 if (new_inode) {
1451 pack_inode(c, ino: p, inode: new_inode, last: 0);
1452 err = ubifs_node_calc_hash(c, buf: p, hash: hash_new_inode);
1453 if (err)
1454 goto out_release;
1455
1456 p += ALIGN(ilen, 8);
1457 }
1458
1459 if (whiteout) {
1460 pack_inode(c, ino: p, inode: whiteout, last: 0);
1461 err = ubifs_node_calc_hash(c, buf: p, hash: hash_whiteout_inode);
1462 if (err)
1463 goto out_release;
1464
1465 p += ALIGN(wlen, 8);
1466 }
1467
1468 if (!move) {
1469 pack_inode(c, ino: p, inode: old_dir, last: 1);
1470 err = ubifs_node_calc_hash(c, buf: p, hash: hash_old_dir);
1471 if (err)
1472 goto out_release;
1473 } else {
1474 pack_inode(c, ino: p, inode: old_dir, last: 0);
1475 err = ubifs_node_calc_hash(c, buf: p, hash: hash_old_dir);
1476 if (err)
1477 goto out_release;
1478
1479 p += ALIGN(plen, 8);
1480 pack_inode(c, ino: p, inode: new_dir, last: 1);
1481 err = ubifs_node_calc_hash(c, buf: p, hash: hash_new_dir);
1482 if (err)
1483 goto out_release;
1484 }
1485
1486 if (last_reference) {
1487 err = ubifs_add_orphan(c, inum: new_inode->i_ino);
1488 if (err) {
1489 release_head(c, BASEHD);
1490 goto out_finish;
1491 }
1492 new_ui->del_cmtno = c->cmt_no;
1493 orphan_added = 1;
1494 }
1495
1496 err = write_head(c, BASEHD, buf: dent, len, lnum: &lnum, offs: &offs, sync);
1497 if (err)
1498 goto out_release;
1499 if (!sync) {
1500 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1501
1502 ubifs_wbuf_add_ino_nolock(wbuf, inum: new_dir->i_ino);
1503 ubifs_wbuf_add_ino_nolock(wbuf, inum: old_dir->i_ino);
1504 if (new_inode)
1505 ubifs_wbuf_add_ino_nolock(wbuf: &c->jheads[BASEHD].wbuf,
1506 inum: new_inode->i_ino);
1507 if (whiteout)
1508 ubifs_wbuf_add_ino_nolock(wbuf: &c->jheads[BASEHD].wbuf,
1509 inum: whiteout->i_ino);
1510 }
1511 release_head(c, BASEHD);
1512
1513 ubifs_add_auth_dirt(c, lnum);
1514
1515 dent_key_init(c, key: &key, inum: new_dir->i_ino, nm: new_nm);
1516 err = ubifs_tnc_add_nm(c, key: &key, lnum, offs, len: dlen1, hash: hash_dent1, nm: new_nm);
1517 if (err)
1518 goto out_ro;
1519
1520 offs += aligned_dlen1;
1521 if (whiteout) {
1522 dent_key_init(c, key: &key, inum: old_dir->i_ino, nm: old_nm);
1523 err = ubifs_tnc_add_nm(c, key: &key, lnum, offs, len: dlen2, hash: hash_dent2, nm: old_nm);
1524 if (err)
1525 goto out_ro;
1526 } else {
1527 err = ubifs_add_dirt(c, lnum, dirty: dlen2);
1528 if (err)
1529 goto out_ro;
1530
1531 dent_key_init(c, key: &key, inum: old_dir->i_ino, nm: old_nm);
1532 err = ubifs_tnc_remove_nm(c, key: &key, nm: old_nm);
1533 if (err)
1534 goto out_ro;
1535 }
1536
1537 offs += aligned_dlen2;
1538 if (new_inode) {
1539 ino_key_init(c, key: &key, inum: new_inode->i_ino);
1540 err = ubifs_tnc_add(c, key: &key, lnum, offs, len: ilen, hash: hash_new_inode);
1541 if (err)
1542 goto out_ro;
1543 offs += ALIGN(ilen, 8);
1544 }
1545
1546 if (whiteout) {
1547 ino_key_init(c, key: &key, inum: whiteout->i_ino);
1548 err = ubifs_tnc_add(c, key: &key, lnum, offs, len: wlen,
1549 hash: hash_whiteout_inode);
1550 if (err)
1551 goto out_ro;
1552 offs += ALIGN(wlen, 8);
1553 }
1554
1555 ino_key_init(c, key: &key, inum: old_dir->i_ino);
1556 err = ubifs_tnc_add(c, key: &key, lnum, offs, len: plen, hash: hash_old_dir);
1557 if (err)
1558 goto out_ro;
1559
1560 if (move) {
1561 offs += ALIGN(plen, 8);
1562 ino_key_init(c, key: &key, inum: new_dir->i_ino);
1563 err = ubifs_tnc_add(c, key: &key, lnum, offs, len: plen, hash: hash_new_dir);
1564 if (err)
1565 goto out_ro;
1566 }
1567
1568 finish_reservation(c);
1569 if (new_inode) {
1570 mark_inode_clean(c, ui: new_ui);
1571 spin_lock(lock: &new_ui->ui_lock);
1572 new_ui->synced_i_size = new_ui->ui_size;
1573 spin_unlock(lock: &new_ui->ui_lock);
1574 }
1575 /*
1576 * No need to mark whiteout inode clean.
1577 * Whiteout doesn't have non-zero size, no need to update
1578 * synced_i_size for whiteout_ui.
1579 */
1580 mark_inode_clean(c, ui: ubifs_inode(inode: old_dir));
1581 if (move)
1582 mark_inode_clean(c, ui: ubifs_inode(inode: new_dir));
1583 kfree(objp: dent);
1584 return 0;
1585
1586out_release:
1587 release_head(c, BASEHD);
1588out_ro:
1589 ubifs_ro_mode(c, err);
1590 if (orphan_added)
1591 ubifs_delete_orphan(c, inum: new_inode->i_ino);
1592out_finish:
1593 finish_reservation(c);
1594out_free:
1595 kfree(objp: dent);
1596 return err;
1597}
1598
1599/**
1600 * truncate_data_node - re-compress/encrypt a truncated data node.
1601 * @c: UBIFS file-system description object
1602 * @inode: inode which refers to the data node
1603 * @block: data block number
1604 * @dn: data node to re-compress
1605 * @new_len: new length
1606 * @dn_size: size of the data node @dn in memory
1607 *
1608 * This function is used when an inode is truncated and the last data node of
1609 * the inode has to be re-compressed/encrypted and re-written.
1610 */
1611static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1612 unsigned int block, struct ubifs_data_node *dn,
1613 int *new_len, int dn_size)
1614{
1615 void *buf;
1616 int err, dlen, compr_type, out_len, data_size;
1617
1618 out_len = le32_to_cpu(dn->size);
1619 buf = kmalloc_array(n: out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1620 if (!buf)
1621 return -ENOMEM;
1622
1623 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1624 data_size = dn_size - UBIFS_DATA_NODE_SZ;
1625 compr_type = le16_to_cpu(dn->compr_type);
1626
1627 if (IS_ENCRYPTED(inode)) {
1628 err = ubifs_decrypt(inode, dn, out_len: &dlen, block);
1629 if (err)
1630 goto out;
1631 }
1632
1633 if (compr_type == UBIFS_COMPR_NONE) {
1634 out_len = *new_len;
1635 } else {
1636 err = ubifs_decompress(c, buf: &dn->data, len: dlen, out: buf, out_len: &out_len, compr_type);
1637 if (err)
1638 goto out;
1639
1640 ubifs_compress(c, in_buf: buf, in_len: *new_len, out_buf: &dn->data, out_len: &out_len, compr_type: &compr_type);
1641 }
1642
1643 if (IS_ENCRYPTED(inode)) {
1644 err = ubifs_encrypt(inode, dn, in_len: out_len, out_len: &data_size, block);
1645 if (err)
1646 goto out;
1647
1648 out_len = data_size;
1649 } else {
1650 dn->compr_size = 0;
1651 }
1652
1653 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1654 dn->compr_type = cpu_to_le16(compr_type);
1655 dn->size = cpu_to_le32(*new_len);
1656 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1657 err = 0;
1658out:
1659 kfree(objp: buf);
1660 return err;
1661}
1662
1663/**
1664 * ubifs_jnl_truncate - update the journal for a truncation.
1665 * @c: UBIFS file-system description object
1666 * @inode: inode to truncate
1667 * @old_size: old size
1668 * @new_size: new size
1669 *
1670 * When the size of a file decreases due to truncation, a truncation node is
1671 * written, the journal tree is updated, and the last data block is re-written
1672 * if it has been affected. The inode is also updated in order to synchronize
1673 * the new inode size.
1674 *
1675 * This function marks the inode as clean and returns zero on success. In case
1676 * of failure, a negative error code is returned.
1677 */
1678int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1679 loff_t old_size, loff_t new_size)
1680{
1681 union ubifs_key key, to_key;
1682 struct ubifs_ino_node *ino;
1683 struct ubifs_trun_node *trun;
1684 struct ubifs_data_node *dn;
1685 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1686 int dn_size;
1687 struct ubifs_inode *ui = ubifs_inode(inode);
1688 ino_t inum = inode->i_ino;
1689 unsigned int blk;
1690 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1691 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1692
1693 dbg_jnl("ino %lu, size %lld -> %lld",
1694 (unsigned long)inum, old_size, new_size);
1695 ubifs_assert(c, !ui->data_len);
1696 ubifs_assert(c, S_ISREG(inode->i_mode));
1697 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1698
1699 dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1700
1701 if (IS_ENCRYPTED(inode))
1702 dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1703
1704 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1705 dn_size + ubifs_auth_node_sz(c);
1706
1707 ino = kmalloc(size: sz, GFP_NOFS);
1708 if (!ino)
1709 return -ENOMEM;
1710
1711 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1712 trun->ch.node_type = UBIFS_TRUN_NODE;
1713 trun->inum = cpu_to_le32(inum);
1714 trun->old_size = cpu_to_le64(old_size);
1715 trun->new_size = cpu_to_le64(new_size);
1716 zero_trun_node_unused(trun);
1717
1718 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1719 if (dlen) {
1720 /* Get last data block so it can be truncated */
1721 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1722 blk = new_size >> UBIFS_BLOCK_SHIFT;
1723 data_key_init(c, key: &key, inum, block: blk);
1724 dbg_jnlk(&key, "last block key ");
1725 err = ubifs_tnc_lookup(c, key: &key, node: dn);
1726 if (err == -ENOENT)
1727 dlen = 0; /* Not found (so it is a hole) */
1728 else if (err)
1729 goto out_free;
1730 else {
1731 int dn_len = le32_to_cpu(dn->size);
1732
1733 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1734 ubifs_err(c, fmt: "bad data node (block %u, inode %lu)",
1735 blk, inode->i_ino);
1736 ubifs_dump_node(c, node: dn, node_len: dn_size);
1737 err = -EUCLEAN;
1738 goto out_free;
1739 }
1740
1741 if (dn_len <= dlen)
1742 dlen = 0; /* Nothing to do */
1743 else {
1744 err = truncate_data_node(c, inode, block: blk, dn,
1745 new_len: &dlen, dn_size);
1746 if (err)
1747 goto out_free;
1748 }
1749 }
1750 }
1751
1752 /* Must make reservation before allocating sequence numbers */
1753 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1754
1755 if (ubifs_authenticated(c))
1756 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1757 else
1758 len += dlen;
1759
1760 err = make_reservation(c, BASEHD, len);
1761 if (err)
1762 goto out_free;
1763
1764 pack_inode(c, ino, inode, last: 0);
1765 err = ubifs_node_calc_hash(c, buf: ino, hash: hash_ino);
1766 if (err)
1767 goto out_release;
1768
1769 ubifs_prep_grp_node(c, node: trun, UBIFS_TRUN_NODE_SZ, last: dlen ? 0 : 1);
1770 if (dlen) {
1771 ubifs_prep_grp_node(c, node: dn, len: dlen, last: 1);
1772 err = ubifs_node_calc_hash(c, buf: dn, hash: hash_dn);
1773 if (err)
1774 goto out_release;
1775 }
1776
1777 err = write_head(c, BASEHD, buf: ino, len, lnum: &lnum, offs: &offs, sync);
1778 if (err)
1779 goto out_release;
1780 if (!sync)
1781 ubifs_wbuf_add_ino_nolock(wbuf: &c->jheads[BASEHD].wbuf, inum);
1782 release_head(c, BASEHD);
1783
1784 ubifs_add_auth_dirt(c, lnum);
1785
1786 if (dlen) {
1787 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1788 err = ubifs_tnc_add(c, key: &key, lnum, offs: sz, len: dlen, hash: hash_dn);
1789 if (err)
1790 goto out_ro;
1791 }
1792
1793 ino_key_init(c, key: &key, inum);
1794 err = ubifs_tnc_add(c, key: &key, lnum, offs, UBIFS_INO_NODE_SZ, hash: hash_ino);
1795 if (err)
1796 goto out_ro;
1797
1798 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1799 if (err)
1800 goto out_ro;
1801
1802 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1803 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1804 data_key_init(c, key: &key, inum, block: blk);
1805
1806 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1807 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1808 data_key_init(c, key: &to_key, inum, block: blk);
1809
1810 err = ubifs_tnc_remove_range(c, from_key: &key, to_key: &to_key);
1811 if (err)
1812 goto out_ro;
1813
1814 finish_reservation(c);
1815 spin_lock(lock: &ui->ui_lock);
1816 ui->synced_i_size = ui->ui_size;
1817 spin_unlock(lock: &ui->ui_lock);
1818 mark_inode_clean(c, ui);
1819 kfree(objp: ino);
1820 return 0;
1821
1822out_release:
1823 release_head(c, BASEHD);
1824out_ro:
1825 ubifs_ro_mode(c, err);
1826 finish_reservation(c);
1827out_free:
1828 kfree(objp: ino);
1829 return err;
1830}
1831
1832
1833/**
1834 * ubifs_jnl_delete_xattr - delete an extended attribute.
1835 * @c: UBIFS file-system description object
1836 * @host: host inode
1837 * @inode: extended attribute inode
1838 * @nm: extended attribute entry name
1839 *
1840 * This function delete an extended attribute which is very similar to
1841 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1842 * updates the target inode. Returns zero in case of success and a negative
1843 * error code in case of failure.
1844 */
1845int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1846 const struct inode *inode,
1847 const struct fscrypt_name *nm)
1848{
1849 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1850 struct ubifs_dent_node *xent;
1851 struct ubifs_ino_node *ino;
1852 union ubifs_key xent_key, key1, key2;
1853 int sync = IS_DIRSYNC(host);
1854 struct ubifs_inode *host_ui = ubifs_inode(inode: host);
1855 u8 hash[UBIFS_HASH_ARR_SZ];
1856
1857 ubifs_assert(c, inode->i_nlink == 0);
1858 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1859
1860 /*
1861 * Since we are deleting the inode, we do not bother to attach any data
1862 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1863 */
1864 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1865 aligned_xlen = ALIGN(xlen, 8);
1866 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1867 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1868
1869 write_len = len + ubifs_auth_node_sz(c);
1870
1871 xent = kzalloc(size: write_len, GFP_NOFS);
1872 if (!xent)
1873 return -ENOMEM;
1874
1875 /* Make reservation before allocating sequence numbers */
1876 err = make_reservation(c, BASEHD, len: write_len);
1877 if (err) {
1878 kfree(objp: xent);
1879 return err;
1880 }
1881
1882 xent->ch.node_type = UBIFS_XENT_NODE;
1883 xent_key_init(c, key: &xent_key, inum: host->i_ino, nm);
1884 key_write(c, from: &xent_key, to: xent->key);
1885 xent->inum = 0;
1886 xent->type = get_dent_type(mode: inode->i_mode);
1887 xent->nlen = cpu_to_le16(fname_len(nm));
1888 memcpy(xent->name, fname_name(nm), fname_len(nm));
1889 xent->name[fname_len(nm)] = '\0';
1890 zero_dent_node_unused(dent: xent);
1891 ubifs_prep_grp_node(c, node: xent, len: xlen, last: 0);
1892
1893 ino = (void *)xent + aligned_xlen;
1894 pack_inode(c, ino, inode, last: 0);
1895 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1896 pack_inode(c, ino, inode: host, last: 1);
1897 err = ubifs_node_calc_hash(c, buf: ino, hash);
1898 if (err)
1899 goto out_release;
1900
1901 err = write_head(c, BASEHD, buf: xent, len: write_len, lnum: &lnum, offs: &xent_offs, sync);
1902 if (!sync && !err)
1903 ubifs_wbuf_add_ino_nolock(wbuf: &c->jheads[BASEHD].wbuf, inum: host->i_ino);
1904 release_head(c, BASEHD);
1905
1906 ubifs_add_auth_dirt(c, lnum);
1907 kfree(objp: xent);
1908 if (err)
1909 goto out_ro;
1910
1911 /* Remove the extended attribute entry from TNC */
1912 err = ubifs_tnc_remove_nm(c, key: &xent_key, nm);
1913 if (err)
1914 goto out_ro;
1915 err = ubifs_add_dirt(c, lnum, dirty: xlen);
1916 if (err)
1917 goto out_ro;
1918
1919 /*
1920 * Remove all nodes belonging to the extended attribute inode from TNC.
1921 * Well, there actually must be only one node - the inode itself.
1922 */
1923 lowest_ino_key(c, key: &key1, inum: inode->i_ino);
1924 highest_ino_key(c, key: &key2, inum: inode->i_ino);
1925 err = ubifs_tnc_remove_range(c, from_key: &key1, to_key: &key2);
1926 if (err)
1927 goto out_ro;
1928 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1929 if (err)
1930 goto out_ro;
1931
1932 /* And update TNC with the new host inode position */
1933 ino_key_init(c, key: &key1, inum: host->i_ino);
1934 err = ubifs_tnc_add(c, key: &key1, lnum, offs: xent_offs + len - hlen, len: hlen, hash);
1935 if (err)
1936 goto out_ro;
1937
1938 finish_reservation(c);
1939 spin_lock(lock: &host_ui->ui_lock);
1940 host_ui->synced_i_size = host_ui->ui_size;
1941 spin_unlock(lock: &host_ui->ui_lock);
1942 mark_inode_clean(c, ui: host_ui);
1943 return 0;
1944
1945out_release:
1946 kfree(objp: xent);
1947 release_head(c, BASEHD);
1948out_ro:
1949 ubifs_ro_mode(c, err);
1950 finish_reservation(c);
1951 return err;
1952}
1953
1954/**
1955 * ubifs_jnl_change_xattr - change an extended attribute.
1956 * @c: UBIFS file-system description object
1957 * @inode: extended attribute inode
1958 * @host: host inode
1959 *
1960 * This function writes the updated version of an extended attribute inode and
1961 * the host inode to the journal (to the base head). The host inode is written
1962 * after the extended attribute inode in order to guarantee that the extended
1963 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1964 * consequently, the write-buffer is synchronized. This function returns zero
1965 * in case of success and a negative error code in case of failure.
1966 */
1967int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1968 const struct inode *host)
1969{
1970 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1971 struct ubifs_inode *host_ui = ubifs_inode(inode: host);
1972 struct ubifs_ino_node *ino;
1973 union ubifs_key key;
1974 int sync = IS_DIRSYNC(host);
1975 u8 hash_host[UBIFS_HASH_ARR_SZ];
1976 u8 hash[UBIFS_HASH_ARR_SZ];
1977
1978 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1979 ubifs_assert(c, inode->i_nlink > 0);
1980 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1981
1982 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1983 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1984 aligned_len1 = ALIGN(len1, 8);
1985 aligned_len = aligned_len1 + ALIGN(len2, 8);
1986
1987 aligned_len += ubifs_auth_node_sz(c);
1988
1989 ino = kzalloc(size: aligned_len, GFP_NOFS);
1990 if (!ino)
1991 return -ENOMEM;
1992
1993 /* Make reservation before allocating sequence numbers */
1994 err = make_reservation(c, BASEHD, len: aligned_len);
1995 if (err)
1996 goto out_free;
1997
1998 pack_inode(c, ino, inode: host, last: 0);
1999 err = ubifs_node_calc_hash(c, buf: ino, hash: hash_host);
2000 if (err)
2001 goto out_release;
2002 pack_inode(c, ino: (void *)ino + aligned_len1, inode, last: 1);
2003 err = ubifs_node_calc_hash(c, buf: (void *)ino + aligned_len1, hash);
2004 if (err)
2005 goto out_release;
2006
2007 err = write_head(c, BASEHD, buf: ino, len: aligned_len, lnum: &lnum, offs: &offs, sync: 0);
2008 if (!sync && !err) {
2009 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
2010
2011 ubifs_wbuf_add_ino_nolock(wbuf, inum: host->i_ino);
2012 ubifs_wbuf_add_ino_nolock(wbuf, inum: inode->i_ino);
2013 }
2014 release_head(c, BASEHD);
2015 if (err)
2016 goto out_ro;
2017
2018 ubifs_add_auth_dirt(c, lnum);
2019
2020 ino_key_init(c, key: &key, inum: host->i_ino);
2021 err = ubifs_tnc_add(c, key: &key, lnum, offs, len: len1, hash: hash_host);
2022 if (err)
2023 goto out_ro;
2024
2025 ino_key_init(c, key: &key, inum: inode->i_ino);
2026 err = ubifs_tnc_add(c, key: &key, lnum, offs: offs + aligned_len1, len: len2, hash);
2027 if (err)
2028 goto out_ro;
2029
2030 finish_reservation(c);
2031 spin_lock(lock: &host_ui->ui_lock);
2032 host_ui->synced_i_size = host_ui->ui_size;
2033 spin_unlock(lock: &host_ui->ui_lock);
2034 mark_inode_clean(c, ui: host_ui);
2035 kfree(objp: ino);
2036 return 0;
2037
2038out_release:
2039 release_head(c, BASEHD);
2040out_ro:
2041 ubifs_ro_mode(c, err);
2042 finish_reservation(c);
2043out_free:
2044 kfree(objp: ino);
2045 return err;
2046}
2047
2048

source code of linux/fs/ubifs/journal.c