1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_trans.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_log_recover.h"
21#include "xfs_trans_priv.h"
22#include "xfs_alloc.h"
23#include "xfs_ialloc.h"
24#include "xfs_trace.h"
25#include "xfs_icache.h"
26#include "xfs_error.h"
27#include "xfs_buf_item.h"
28#include "xfs_ag.h"
29#include "xfs_quota.h"
30#include "xfs_reflink.h"
31
32#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
33
34STATIC int
35xlog_find_zeroed(
36 struct xlog *,
37 xfs_daddr_t *);
38STATIC int
39xlog_clear_stale_blocks(
40 struct xlog *,
41 xfs_lsn_t);
42STATIC int
43xlog_do_recovery_pass(
44 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
45
46/*
47 * Sector aligned buffer routines for buffer create/read/write/access
48 */
49
50/*
51 * Verify the log-relative block number and length in basic blocks are valid for
52 * an operation involving the given XFS log buffer. Returns true if the fields
53 * are valid, false otherwise.
54 */
55static inline bool
56xlog_verify_bno(
57 struct xlog *log,
58 xfs_daddr_t blk_no,
59 int bbcount)
60{
61 if (blk_no < 0 || blk_no >= log->l_logBBsize)
62 return false;
63 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
64 return false;
65 return true;
66}
67
68/*
69 * Allocate a buffer to hold log data. The buffer needs to be able to map to
70 * a range of nbblks basic blocks at any valid offset within the log.
71 */
72static char *
73xlog_alloc_buffer(
74 struct xlog *log,
75 int nbblks)
76{
77 /*
78 * Pass log block 0 since we don't have an addr yet, buffer will be
79 * verified on read.
80 */
81 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
82 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
83 nbblks);
84 return NULL;
85 }
86
87 /*
88 * We do log I/O in units of log sectors (a power-of-2 multiple of the
89 * basic block size), so we round up the requested size to accommodate
90 * the basic blocks required for complete log sectors.
91 *
92 * In addition, the buffer may be used for a non-sector-aligned block
93 * offset, in which case an I/O of the requested size could extend
94 * beyond the end of the buffer. If the requested size is only 1 basic
95 * block it will never straddle a sector boundary, so this won't be an
96 * issue. Nor will this be a problem if the log I/O is done in basic
97 * blocks (sector size 1). But otherwise we extend the buffer by one
98 * extra log sector to ensure there's space to accommodate this
99 * possibility.
100 */
101 if (nbblks > 1 && log->l_sectBBsize > 1)
102 nbblks += log->l_sectBBsize;
103 nbblks = round_up(nbblks, log->l_sectBBsize);
104 return kvzalloc(size: BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
105}
106
107/*
108 * Return the address of the start of the given block number's data
109 * in a log buffer. The buffer covers a log sector-aligned region.
110 */
111static inline unsigned int
112xlog_align(
113 struct xlog *log,
114 xfs_daddr_t blk_no)
115{
116 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
117}
118
119static int
120xlog_do_io(
121 struct xlog *log,
122 xfs_daddr_t blk_no,
123 unsigned int nbblks,
124 char *data,
125 enum req_op op)
126{
127 int error;
128
129 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
130 xfs_warn(log->l_mp,
131 "Invalid log block/length (0x%llx, 0x%x) for buffer",
132 blk_no, nbblks);
133 return -EFSCORRUPTED;
134 }
135
136 blk_no = round_down(blk_no, log->l_sectBBsize);
137 nbblks = round_up(nbblks, log->l_sectBBsize);
138 ASSERT(nbblks > 0);
139
140 error = xfs_rw_bdev(bdev: log->l_targ->bt_bdev, sector: log->l_logBBstart + blk_no,
141 count: BBTOB(nbblks), data, op);
142 if (error && !xlog_is_shutdown(log)) {
143 xfs_alert(log->l_mp,
144 "log recovery %s I/O error at daddr 0x%llx len %d error %d",
145 op == REQ_OP_WRITE ? "write" : "read",
146 blk_no, nbblks, error);
147 }
148 return error;
149}
150
151STATIC int
152xlog_bread_noalign(
153 struct xlog *log,
154 xfs_daddr_t blk_no,
155 int nbblks,
156 char *data)
157{
158 return xlog_do_io(log, blk_no, nbblks, data, op: REQ_OP_READ);
159}
160
161STATIC int
162xlog_bread(
163 struct xlog *log,
164 xfs_daddr_t blk_no,
165 int nbblks,
166 char *data,
167 char **offset)
168{
169 int error;
170
171 error = xlog_do_io(log, blk_no, nbblks, data, op: REQ_OP_READ);
172 if (!error)
173 *offset = data + xlog_align(log, blk_no);
174 return error;
175}
176
177STATIC int
178xlog_bwrite(
179 struct xlog *log,
180 xfs_daddr_t blk_no,
181 int nbblks,
182 char *data)
183{
184 return xlog_do_io(log, blk_no, nbblks, data, op: REQ_OP_WRITE);
185}
186
187#ifdef DEBUG
188/*
189 * dump debug superblock and log record information
190 */
191STATIC void
192xlog_header_check_dump(
193 xfs_mount_t *mp,
194 xlog_rec_header_t *head)
195{
196 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
197 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
198 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
199 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
200}
201#else
202#define xlog_header_check_dump(mp, head)
203#endif
204
205/*
206 * check log record header for recovery
207 */
208STATIC int
209xlog_header_check_recover(
210 xfs_mount_t *mp,
211 xlog_rec_header_t *head)
212{
213 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
214
215 /*
216 * IRIX doesn't write the h_fmt field and leaves it zeroed
217 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
218 * a dirty log created in IRIX.
219 */
220 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
221 xfs_warn(mp,
222 "dirty log written in incompatible format - can't recover");
223 xlog_header_check_dump(mp, head);
224 return -EFSCORRUPTED;
225 }
226 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
227 &head->h_fs_uuid))) {
228 xfs_warn(mp,
229 "dirty log entry has mismatched uuid - can't recover");
230 xlog_header_check_dump(mp, head);
231 return -EFSCORRUPTED;
232 }
233 return 0;
234}
235
236/*
237 * read the head block of the log and check the header
238 */
239STATIC int
240xlog_header_check_mount(
241 xfs_mount_t *mp,
242 xlog_rec_header_t *head)
243{
244 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
245
246 if (uuid_is_null(uuid: &head->h_fs_uuid)) {
247 /*
248 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
249 * h_fs_uuid is null, we assume this log was last mounted
250 * by IRIX and continue.
251 */
252 xfs_warn(mp, "null uuid in log - IRIX style log");
253 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
254 &head->h_fs_uuid))) {
255 xfs_warn(mp, "log has mismatched uuid - can't recover");
256 xlog_header_check_dump(mp, head);
257 return -EFSCORRUPTED;
258 }
259 return 0;
260}
261
262/*
263 * This routine finds (to an approximation) the first block in the physical
264 * log which contains the given cycle. It uses a binary search algorithm.
265 * Note that the algorithm can not be perfect because the disk will not
266 * necessarily be perfect.
267 */
268STATIC int
269xlog_find_cycle_start(
270 struct xlog *log,
271 char *buffer,
272 xfs_daddr_t first_blk,
273 xfs_daddr_t *last_blk,
274 uint cycle)
275{
276 char *offset;
277 xfs_daddr_t mid_blk;
278 xfs_daddr_t end_blk;
279 uint mid_cycle;
280 int error;
281
282 end_blk = *last_blk;
283 mid_blk = BLK_AVG(first_blk, end_blk);
284 while (mid_blk != first_blk && mid_blk != end_blk) {
285 error = xlog_bread(log, blk_no: mid_blk, nbblks: 1, data: buffer, offset: &offset);
286 if (error)
287 return error;
288 mid_cycle = xlog_get_cycle(offset);
289 if (mid_cycle == cycle)
290 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
291 else
292 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
293 mid_blk = BLK_AVG(first_blk, end_blk);
294 }
295 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
296 (mid_blk == end_blk && mid_blk-1 == first_blk));
297
298 *last_blk = end_blk;
299
300 return 0;
301}
302
303/*
304 * Check that a range of blocks does not contain stop_on_cycle_no.
305 * Fill in *new_blk with the block offset where such a block is
306 * found, or with -1 (an invalid block number) if there is no such
307 * block in the range. The scan needs to occur from front to back
308 * and the pointer into the region must be updated since a later
309 * routine will need to perform another test.
310 */
311STATIC int
312xlog_find_verify_cycle(
313 struct xlog *log,
314 xfs_daddr_t start_blk,
315 int nbblks,
316 uint stop_on_cycle_no,
317 xfs_daddr_t *new_blk)
318{
319 xfs_daddr_t i, j;
320 uint cycle;
321 char *buffer;
322 xfs_daddr_t bufblks;
323 char *buf = NULL;
324 int error = 0;
325
326 /*
327 * Greedily allocate a buffer big enough to handle the full
328 * range of basic blocks we'll be examining. If that fails,
329 * try a smaller size. We need to be able to read at least
330 * a log sector, or we're out of luck.
331 */
332 bufblks = roundup_pow_of_two(nbblks);
333 while (bufblks > log->l_logBBsize)
334 bufblks >>= 1;
335 while (!(buffer = xlog_alloc_buffer(log, nbblks: bufblks))) {
336 bufblks >>= 1;
337 if (bufblks < log->l_sectBBsize)
338 return -ENOMEM;
339 }
340
341 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
342 int bcount;
343
344 bcount = min(bufblks, (start_blk + nbblks - i));
345
346 error = xlog_bread(log, blk_no: i, nbblks: bcount, data: buffer, offset: &buf);
347 if (error)
348 goto out;
349
350 for (j = 0; j < bcount; j++) {
351 cycle = xlog_get_cycle(buf);
352 if (cycle == stop_on_cycle_no) {
353 *new_blk = i+j;
354 goto out;
355 }
356
357 buf += BBSIZE;
358 }
359 }
360
361 *new_blk = -1;
362
363out:
364 kvfree(addr: buffer);
365 return error;
366}
367
368static inline int
369xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
370{
371 if (xfs_has_logv2(mp: log->l_mp)) {
372 int h_size = be32_to_cpu(rh->h_size);
373
374 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
375 h_size > XLOG_HEADER_CYCLE_SIZE)
376 return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
377 }
378 return 1;
379}
380
381/*
382 * Potentially backup over partial log record write.
383 *
384 * In the typical case, last_blk is the number of the block directly after
385 * a good log record. Therefore, we subtract one to get the block number
386 * of the last block in the given buffer. extra_bblks contains the number
387 * of blocks we would have read on a previous read. This happens when the
388 * last log record is split over the end of the physical log.
389 *
390 * extra_bblks is the number of blocks potentially verified on a previous
391 * call to this routine.
392 */
393STATIC int
394xlog_find_verify_log_record(
395 struct xlog *log,
396 xfs_daddr_t start_blk,
397 xfs_daddr_t *last_blk,
398 int extra_bblks)
399{
400 xfs_daddr_t i;
401 char *buffer;
402 char *offset = NULL;
403 xlog_rec_header_t *head = NULL;
404 int error = 0;
405 int smallmem = 0;
406 int num_blks = *last_blk - start_blk;
407 int xhdrs;
408
409 ASSERT(start_blk != 0 || *last_blk != start_blk);
410
411 buffer = xlog_alloc_buffer(log, nbblks: num_blks);
412 if (!buffer) {
413 buffer = xlog_alloc_buffer(log, nbblks: 1);
414 if (!buffer)
415 return -ENOMEM;
416 smallmem = 1;
417 } else {
418 error = xlog_bread(log, blk_no: start_blk, nbblks: num_blks, data: buffer, offset: &offset);
419 if (error)
420 goto out;
421 offset += ((num_blks - 1) << BBSHIFT);
422 }
423
424 for (i = (*last_blk) - 1; i >= 0; i--) {
425 if (i < start_blk) {
426 /* valid log record not found */
427 xfs_warn(log->l_mp,
428 "Log inconsistent (didn't find previous header)");
429 ASSERT(0);
430 error = -EFSCORRUPTED;
431 goto out;
432 }
433
434 if (smallmem) {
435 error = xlog_bread(log, blk_no: i, nbblks: 1, data: buffer, offset: &offset);
436 if (error)
437 goto out;
438 }
439
440 head = (xlog_rec_header_t *)offset;
441
442 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
443 break;
444
445 if (!smallmem)
446 offset -= BBSIZE;
447 }
448
449 /*
450 * We hit the beginning of the physical log & still no header. Return
451 * to caller. If caller can handle a return of -1, then this routine
452 * will be called again for the end of the physical log.
453 */
454 if (i == -1) {
455 error = 1;
456 goto out;
457 }
458
459 /*
460 * We have the final block of the good log (the first block
461 * of the log record _before_ the head. So we check the uuid.
462 */
463 if ((error = xlog_header_check_mount(log->l_mp, head)))
464 goto out;
465
466 /*
467 * We may have found a log record header before we expected one.
468 * last_blk will be the 1st block # with a given cycle #. We may end
469 * up reading an entire log record. In this case, we don't want to
470 * reset last_blk. Only when last_blk points in the middle of a log
471 * record do we update last_blk.
472 */
473 xhdrs = xlog_logrec_hblks(log, head);
474
475 if (*last_blk - i + extra_bblks !=
476 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
477 *last_blk = i;
478
479out:
480 kvfree(addr: buffer);
481 return error;
482}
483
484/*
485 * Head is defined to be the point of the log where the next log write
486 * could go. This means that incomplete LR writes at the end are
487 * eliminated when calculating the head. We aren't guaranteed that previous
488 * LR have complete transactions. We only know that a cycle number of
489 * current cycle number -1 won't be present in the log if we start writing
490 * from our current block number.
491 *
492 * last_blk contains the block number of the first block with a given
493 * cycle number.
494 *
495 * Return: zero if normal, non-zero if error.
496 */
497STATIC int
498xlog_find_head(
499 struct xlog *log,
500 xfs_daddr_t *return_head_blk)
501{
502 char *buffer;
503 char *offset;
504 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
505 int num_scan_bblks;
506 uint first_half_cycle, last_half_cycle;
507 uint stop_on_cycle;
508 int error, log_bbnum = log->l_logBBsize;
509
510 /* Is the end of the log device zeroed? */
511 error = xlog_find_zeroed(log, &first_blk);
512 if (error < 0) {
513 xfs_warn(log->l_mp, "empty log check failed");
514 return error;
515 }
516 if (error == 1) {
517 *return_head_blk = first_blk;
518
519 /* Is the whole lot zeroed? */
520 if (!first_blk) {
521 /* Linux XFS shouldn't generate totally zeroed logs -
522 * mkfs etc write a dummy unmount record to a fresh
523 * log so we can store the uuid in there
524 */
525 xfs_warn(log->l_mp, "totally zeroed log");
526 }
527
528 return 0;
529 }
530
531 first_blk = 0; /* get cycle # of 1st block */
532 buffer = xlog_alloc_buffer(log, nbblks: 1);
533 if (!buffer)
534 return -ENOMEM;
535
536 error = xlog_bread(log, blk_no: 0, nbblks: 1, data: buffer, offset: &offset);
537 if (error)
538 goto out_free_buffer;
539
540 first_half_cycle = xlog_get_cycle(offset);
541
542 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
543 error = xlog_bread(log, blk_no: last_blk, nbblks: 1, data: buffer, offset: &offset);
544 if (error)
545 goto out_free_buffer;
546
547 last_half_cycle = xlog_get_cycle(offset);
548 ASSERT(last_half_cycle != 0);
549
550 /*
551 * If the 1st half cycle number is equal to the last half cycle number,
552 * then the entire log is stamped with the same cycle number. In this
553 * case, head_blk can't be set to zero (which makes sense). The below
554 * math doesn't work out properly with head_blk equal to zero. Instead,
555 * we set it to log_bbnum which is an invalid block number, but this
556 * value makes the math correct. If head_blk doesn't changed through
557 * all the tests below, *head_blk is set to zero at the very end rather
558 * than log_bbnum. In a sense, log_bbnum and zero are the same block
559 * in a circular file.
560 */
561 if (first_half_cycle == last_half_cycle) {
562 /*
563 * In this case we believe that the entire log should have
564 * cycle number last_half_cycle. We need to scan backwards
565 * from the end verifying that there are no holes still
566 * containing last_half_cycle - 1. If we find such a hole,
567 * then the start of that hole will be the new head. The
568 * simple case looks like
569 * x | x ... | x - 1 | x
570 * Another case that fits this picture would be
571 * x | x + 1 | x ... | x
572 * In this case the head really is somewhere at the end of the
573 * log, as one of the latest writes at the beginning was
574 * incomplete.
575 * One more case is
576 * x | x + 1 | x ... | x - 1 | x
577 * This is really the combination of the above two cases, and
578 * the head has to end up at the start of the x-1 hole at the
579 * end of the log.
580 *
581 * In the 256k log case, we will read from the beginning to the
582 * end of the log and search for cycle numbers equal to x-1.
583 * We don't worry about the x+1 blocks that we encounter,
584 * because we know that they cannot be the head since the log
585 * started with x.
586 */
587 head_blk = log_bbnum;
588 stop_on_cycle = last_half_cycle - 1;
589 } else {
590 /*
591 * In this case we want to find the first block with cycle
592 * number matching last_half_cycle. We expect the log to be
593 * some variation on
594 * x + 1 ... | x ... | x
595 * The first block with cycle number x (last_half_cycle) will
596 * be where the new head belongs. First we do a binary search
597 * for the first occurrence of last_half_cycle. The binary
598 * search may not be totally accurate, so then we scan back
599 * from there looking for occurrences of last_half_cycle before
600 * us. If that backwards scan wraps around the beginning of
601 * the log, then we look for occurrences of last_half_cycle - 1
602 * at the end of the log. The cases we're looking for look
603 * like
604 * v binary search stopped here
605 * x + 1 ... | x | x + 1 | x ... | x
606 * ^ but we want to locate this spot
607 * or
608 * <---------> less than scan distance
609 * x + 1 ... | x ... | x - 1 | x
610 * ^ we want to locate this spot
611 */
612 stop_on_cycle = last_half_cycle;
613 error = xlog_find_cycle_start(log, buffer, first_blk, last_blk: &head_blk,
614 cycle: last_half_cycle);
615 if (error)
616 goto out_free_buffer;
617 }
618
619 /*
620 * Now validate the answer. Scan back some number of maximum possible
621 * blocks and make sure each one has the expected cycle number. The
622 * maximum is determined by the total possible amount of buffering
623 * in the in-core log. The following number can be made tighter if
624 * we actually look at the block size of the filesystem.
625 */
626 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
627 if (head_blk >= num_scan_bblks) {
628 /*
629 * We are guaranteed that the entire check can be performed
630 * in one buffer.
631 */
632 start_blk = head_blk - num_scan_bblks;
633 if ((error = xlog_find_verify_cycle(log,
634 start_blk, nbblks: num_scan_bblks,
635 stop_on_cycle_no: stop_on_cycle, new_blk: &new_blk)))
636 goto out_free_buffer;
637 if (new_blk != -1)
638 head_blk = new_blk;
639 } else { /* need to read 2 parts of log */
640 /*
641 * We are going to scan backwards in the log in two parts.
642 * First we scan the physical end of the log. In this part
643 * of the log, we are looking for blocks with cycle number
644 * last_half_cycle - 1.
645 * If we find one, then we know that the log starts there, as
646 * we've found a hole that didn't get written in going around
647 * the end of the physical log. The simple case for this is
648 * x + 1 ... | x ... | x - 1 | x
649 * <---------> less than scan distance
650 * If all of the blocks at the end of the log have cycle number
651 * last_half_cycle, then we check the blocks at the start of
652 * the log looking for occurrences of last_half_cycle. If we
653 * find one, then our current estimate for the location of the
654 * first occurrence of last_half_cycle is wrong and we move
655 * back to the hole we've found. This case looks like
656 * x + 1 ... | x | x + 1 | x ...
657 * ^ binary search stopped here
658 * Another case we need to handle that only occurs in 256k
659 * logs is
660 * x + 1 ... | x ... | x+1 | x ...
661 * ^ binary search stops here
662 * In a 256k log, the scan at the end of the log will see the
663 * x + 1 blocks. We need to skip past those since that is
664 * certainly not the head of the log. By searching for
665 * last_half_cycle-1 we accomplish that.
666 */
667 ASSERT(head_blk <= INT_MAX &&
668 (xfs_daddr_t) num_scan_bblks >= head_blk);
669 start_blk = log_bbnum - (num_scan_bblks - head_blk);
670 if ((error = xlog_find_verify_cycle(log, start_blk,
671 nbblks: num_scan_bblks - (int)head_blk,
672 stop_on_cycle_no: (stop_on_cycle - 1), new_blk: &new_blk)))
673 goto out_free_buffer;
674 if (new_blk != -1) {
675 head_blk = new_blk;
676 goto validate_head;
677 }
678
679 /*
680 * Scan beginning of log now. The last part of the physical
681 * log is good. This scan needs to verify that it doesn't find
682 * the last_half_cycle.
683 */
684 start_blk = 0;
685 ASSERT(head_blk <= INT_MAX);
686 if ((error = xlog_find_verify_cycle(log,
687 start_blk, nbblks: (int)head_blk,
688 stop_on_cycle_no: stop_on_cycle, new_blk: &new_blk)))
689 goto out_free_buffer;
690 if (new_blk != -1)
691 head_blk = new_blk;
692 }
693
694validate_head:
695 /*
696 * Now we need to make sure head_blk is not pointing to a block in
697 * the middle of a log record.
698 */
699 num_scan_bblks = XLOG_REC_SHIFT(log);
700 if (head_blk >= num_scan_bblks) {
701 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
702
703 /* start ptr at last block ptr before head_blk */
704 error = xlog_find_verify_log_record(log, start_blk, last_blk: &head_blk, extra_bblks: 0);
705 if (error == 1)
706 error = -EIO;
707 if (error)
708 goto out_free_buffer;
709 } else {
710 start_blk = 0;
711 ASSERT(head_blk <= INT_MAX);
712 error = xlog_find_verify_log_record(log, start_blk, last_blk: &head_blk, extra_bblks: 0);
713 if (error < 0)
714 goto out_free_buffer;
715 if (error == 1) {
716 /* We hit the beginning of the log during our search */
717 start_blk = log_bbnum - (num_scan_bblks - head_blk);
718 new_blk = log_bbnum;
719 ASSERT(start_blk <= INT_MAX &&
720 (xfs_daddr_t) log_bbnum-start_blk >= 0);
721 ASSERT(head_blk <= INT_MAX);
722 error = xlog_find_verify_log_record(log, start_blk,
723 last_blk: &new_blk, extra_bblks: (int)head_blk);
724 if (error == 1)
725 error = -EIO;
726 if (error)
727 goto out_free_buffer;
728 if (new_blk != log_bbnum)
729 head_blk = new_blk;
730 } else if (error)
731 goto out_free_buffer;
732 }
733
734 kvfree(addr: buffer);
735 if (head_blk == log_bbnum)
736 *return_head_blk = 0;
737 else
738 *return_head_blk = head_blk;
739 /*
740 * When returning here, we have a good block number. Bad block
741 * means that during a previous crash, we didn't have a clean break
742 * from cycle number N to cycle number N-1. In this case, we need
743 * to find the first block with cycle number N-1.
744 */
745 return 0;
746
747out_free_buffer:
748 kvfree(addr: buffer);
749 if (error)
750 xfs_warn(log->l_mp, "failed to find log head");
751 return error;
752}
753
754/*
755 * Seek backwards in the log for log record headers.
756 *
757 * Given a starting log block, walk backwards until we find the provided number
758 * of records or hit the provided tail block. The return value is the number of
759 * records encountered or a negative error code. The log block and buffer
760 * pointer of the last record seen are returned in rblk and rhead respectively.
761 */
762STATIC int
763xlog_rseek_logrec_hdr(
764 struct xlog *log,
765 xfs_daddr_t head_blk,
766 xfs_daddr_t tail_blk,
767 int count,
768 char *buffer,
769 xfs_daddr_t *rblk,
770 struct xlog_rec_header **rhead,
771 bool *wrapped)
772{
773 int i;
774 int error;
775 int found = 0;
776 char *offset = NULL;
777 xfs_daddr_t end_blk;
778
779 *wrapped = false;
780
781 /*
782 * Walk backwards from the head block until we hit the tail or the first
783 * block in the log.
784 */
785 end_blk = head_blk > tail_blk ? tail_blk : 0;
786 for (i = (int) head_blk - 1; i >= end_blk; i--) {
787 error = xlog_bread(log, blk_no: i, nbblks: 1, data: buffer, offset: &offset);
788 if (error)
789 goto out_error;
790
791 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
792 *rblk = i;
793 *rhead = (struct xlog_rec_header *) offset;
794 if (++found == count)
795 break;
796 }
797 }
798
799 /*
800 * If we haven't hit the tail block or the log record header count,
801 * start looking again from the end of the physical log. Note that
802 * callers can pass head == tail if the tail is not yet known.
803 */
804 if (tail_blk >= head_blk && found != count) {
805 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
806 error = xlog_bread(log, blk_no: i, nbblks: 1, data: buffer, offset: &offset);
807 if (error)
808 goto out_error;
809
810 if (*(__be32 *)offset ==
811 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
812 *wrapped = true;
813 *rblk = i;
814 *rhead = (struct xlog_rec_header *) offset;
815 if (++found == count)
816 break;
817 }
818 }
819 }
820
821 return found;
822
823out_error:
824 return error;
825}
826
827/*
828 * Seek forward in the log for log record headers.
829 *
830 * Given head and tail blocks, walk forward from the tail block until we find
831 * the provided number of records or hit the head block. The return value is the
832 * number of records encountered or a negative error code. The log block and
833 * buffer pointer of the last record seen are returned in rblk and rhead
834 * respectively.
835 */
836STATIC int
837xlog_seek_logrec_hdr(
838 struct xlog *log,
839 xfs_daddr_t head_blk,
840 xfs_daddr_t tail_blk,
841 int count,
842 char *buffer,
843 xfs_daddr_t *rblk,
844 struct xlog_rec_header **rhead,
845 bool *wrapped)
846{
847 int i;
848 int error;
849 int found = 0;
850 char *offset = NULL;
851 xfs_daddr_t end_blk;
852
853 *wrapped = false;
854
855 /*
856 * Walk forward from the tail block until we hit the head or the last
857 * block in the log.
858 */
859 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
860 for (i = (int) tail_blk; i <= end_blk; i++) {
861 error = xlog_bread(log, blk_no: i, nbblks: 1, data: buffer, offset: &offset);
862 if (error)
863 goto out_error;
864
865 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
866 *rblk = i;
867 *rhead = (struct xlog_rec_header *) offset;
868 if (++found == count)
869 break;
870 }
871 }
872
873 /*
874 * If we haven't hit the head block or the log record header count,
875 * start looking again from the start of the physical log.
876 */
877 if (tail_blk > head_blk && found != count) {
878 for (i = 0; i < (int) head_blk; i++) {
879 error = xlog_bread(log, blk_no: i, nbblks: 1, data: buffer, offset: &offset);
880 if (error)
881 goto out_error;
882
883 if (*(__be32 *)offset ==
884 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
885 *wrapped = true;
886 *rblk = i;
887 *rhead = (struct xlog_rec_header *) offset;
888 if (++found == count)
889 break;
890 }
891 }
892 }
893
894 return found;
895
896out_error:
897 return error;
898}
899
900/*
901 * Calculate distance from head to tail (i.e., unused space in the log).
902 */
903static inline int
904xlog_tail_distance(
905 struct xlog *log,
906 xfs_daddr_t head_blk,
907 xfs_daddr_t tail_blk)
908{
909 if (head_blk < tail_blk)
910 return tail_blk - head_blk;
911
912 return tail_blk + (log->l_logBBsize - head_blk);
913}
914
915/*
916 * Verify the log tail. This is particularly important when torn or incomplete
917 * writes have been detected near the front of the log and the head has been
918 * walked back accordingly.
919 *
920 * We also have to handle the case where the tail was pinned and the head
921 * blocked behind the tail right before a crash. If the tail had been pushed
922 * immediately prior to the crash and the subsequent checkpoint was only
923 * partially written, it's possible it overwrote the last referenced tail in the
924 * log with garbage. This is not a coherency problem because the tail must have
925 * been pushed before it can be overwritten, but appears as log corruption to
926 * recovery because we have no way to know the tail was updated if the
927 * subsequent checkpoint didn't write successfully.
928 *
929 * Therefore, CRC check the log from tail to head. If a failure occurs and the
930 * offending record is within max iclog bufs from the head, walk the tail
931 * forward and retry until a valid tail is found or corruption is detected out
932 * of the range of a possible overwrite.
933 */
934STATIC int
935xlog_verify_tail(
936 struct xlog *log,
937 xfs_daddr_t head_blk,
938 xfs_daddr_t *tail_blk,
939 int hsize)
940{
941 struct xlog_rec_header *thead;
942 char *buffer;
943 xfs_daddr_t first_bad;
944 int error = 0;
945 bool wrapped;
946 xfs_daddr_t tmp_tail;
947 xfs_daddr_t orig_tail = *tail_blk;
948
949 buffer = xlog_alloc_buffer(log, nbblks: 1);
950 if (!buffer)
951 return -ENOMEM;
952
953 /*
954 * Make sure the tail points to a record (returns positive count on
955 * success).
956 */
957 error = xlog_seek_logrec_hdr(log, head_blk, tail_blk: *tail_blk, count: 1, buffer,
958 rblk: &tmp_tail, rhead: &thead, wrapped: &wrapped);
959 if (error < 0)
960 goto out;
961 if (*tail_blk != tmp_tail)
962 *tail_blk = tmp_tail;
963
964 /*
965 * Run a CRC check from the tail to the head. We can't just check
966 * MAX_ICLOGS records past the tail because the tail may point to stale
967 * blocks cleared during the search for the head/tail. These blocks are
968 * overwritten with zero-length records and thus record count is not a
969 * reliable indicator of the iclog state before a crash.
970 */
971 first_bad = 0;
972 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
973 XLOG_RECOVER_CRCPASS, &first_bad);
974 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
975 int tail_distance;
976
977 /*
978 * Is corruption within range of the head? If so, retry from
979 * the next record. Otherwise return an error.
980 */
981 tail_distance = xlog_tail_distance(log, head_blk, tail_blk: first_bad);
982 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
983 break;
984
985 /* skip to the next record; returns positive count on success */
986 error = xlog_seek_logrec_hdr(log, head_blk, tail_blk: first_bad, count: 2,
987 buffer, rblk: &tmp_tail, rhead: &thead, wrapped: &wrapped);
988 if (error < 0)
989 goto out;
990
991 *tail_blk = tmp_tail;
992 first_bad = 0;
993 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
994 XLOG_RECOVER_CRCPASS, &first_bad);
995 }
996
997 if (!error && *tail_blk != orig_tail)
998 xfs_warn(log->l_mp,
999 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1000 orig_tail, *tail_blk);
1001out:
1002 kvfree(addr: buffer);
1003 return error;
1004}
1005
1006/*
1007 * Detect and trim torn writes from the head of the log.
1008 *
1009 * Storage without sector atomicity guarantees can result in torn writes in the
1010 * log in the event of a crash. Our only means to detect this scenario is via
1011 * CRC verification. While we can't always be certain that CRC verification
1012 * failure is due to a torn write vs. an unrelated corruption, we do know that
1013 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1014 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1015 * the log and treat failures in this range as torn writes as a matter of
1016 * policy. In the event of CRC failure, the head is walked back to the last good
1017 * record in the log and the tail is updated from that record and verified.
1018 */
1019STATIC int
1020xlog_verify_head(
1021 struct xlog *log,
1022 xfs_daddr_t *head_blk, /* in/out: unverified head */
1023 xfs_daddr_t *tail_blk, /* out: tail block */
1024 char *buffer,
1025 xfs_daddr_t *rhead_blk, /* start blk of last record */
1026 struct xlog_rec_header **rhead, /* ptr to last record */
1027 bool *wrapped) /* last rec. wraps phys. log */
1028{
1029 struct xlog_rec_header *tmp_rhead;
1030 char *tmp_buffer;
1031 xfs_daddr_t first_bad;
1032 xfs_daddr_t tmp_rhead_blk;
1033 int found;
1034 int error;
1035 bool tmp_wrapped;
1036
1037 /*
1038 * Check the head of the log for torn writes. Search backwards from the
1039 * head until we hit the tail or the maximum number of log record I/Os
1040 * that could have been in flight at one time. Use a temporary buffer so
1041 * we don't trash the rhead/buffer pointers from the caller.
1042 */
1043 tmp_buffer = xlog_alloc_buffer(log, nbblks: 1);
1044 if (!tmp_buffer)
1045 return -ENOMEM;
1046 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1047 XLOG_MAX_ICLOGS, tmp_buffer,
1048 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1049 kvfree(addr: tmp_buffer);
1050 if (error < 0)
1051 return error;
1052
1053 /*
1054 * Now run a CRC verification pass over the records starting at the
1055 * block found above to the current head. If a CRC failure occurs, the
1056 * log block of the first bad record is saved in first_bad.
1057 */
1058 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1059 XLOG_RECOVER_CRCPASS, &first_bad);
1060 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1061 /*
1062 * We've hit a potential torn write. Reset the error and warn
1063 * about it.
1064 */
1065 error = 0;
1066 xfs_warn(log->l_mp,
1067"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1068 first_bad, *head_blk);
1069
1070 /*
1071 * Get the header block and buffer pointer for the last good
1072 * record before the bad record.
1073 *
1074 * Note that xlog_find_tail() clears the blocks at the new head
1075 * (i.e., the records with invalid CRC) if the cycle number
1076 * matches the current cycle.
1077 */
1078 found = xlog_rseek_logrec_hdr(log, head_blk: first_bad, tail_blk: *tail_blk, count: 1,
1079 buffer, rblk: rhead_blk, rhead, wrapped);
1080 if (found < 0)
1081 return found;
1082 if (found == 0) /* XXX: right thing to do here? */
1083 return -EIO;
1084
1085 /*
1086 * Reset the head block to the starting block of the first bad
1087 * log record and set the tail block based on the last good
1088 * record.
1089 *
1090 * Bail out if the updated head/tail match as this indicates
1091 * possible corruption outside of the acceptable
1092 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1093 */
1094 *head_blk = first_bad;
1095 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1096 if (*head_blk == *tail_blk) {
1097 ASSERT(0);
1098 return 0;
1099 }
1100 }
1101 if (error)
1102 return error;
1103
1104 return xlog_verify_tail(log, head_blk: *head_blk, tail_blk,
1105 be32_to_cpu((*rhead)->h_size));
1106}
1107
1108/*
1109 * We need to make sure we handle log wrapping properly, so we can't use the
1110 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1111 * log.
1112 *
1113 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1114 * operation here and cast it back to a 64 bit daddr on return.
1115 */
1116static inline xfs_daddr_t
1117xlog_wrap_logbno(
1118 struct xlog *log,
1119 xfs_daddr_t bno)
1120{
1121 int mod;
1122
1123 div_s64_rem(dividend: bno, divisor: log->l_logBBsize, remainder: &mod);
1124 return mod;
1125}
1126
1127/*
1128 * Check whether the head of the log points to an unmount record. In other
1129 * words, determine whether the log is clean. If so, update the in-core state
1130 * appropriately.
1131 */
1132static int
1133xlog_check_unmount_rec(
1134 struct xlog *log,
1135 xfs_daddr_t *head_blk,
1136 xfs_daddr_t *tail_blk,
1137 struct xlog_rec_header *rhead,
1138 xfs_daddr_t rhead_blk,
1139 char *buffer,
1140 bool *clean)
1141{
1142 struct xlog_op_header *op_head;
1143 xfs_daddr_t umount_data_blk;
1144 xfs_daddr_t after_umount_blk;
1145 int hblks;
1146 int error;
1147 char *offset;
1148
1149 *clean = false;
1150
1151 /*
1152 * Look for unmount record. If we find it, then we know there was a
1153 * clean unmount. Since 'i' could be the last block in the physical
1154 * log, we convert to a log block before comparing to the head_blk.
1155 *
1156 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1157 * below. We won't want to clear the unmount record if there is one, so
1158 * we pass the lsn of the unmount record rather than the block after it.
1159 */
1160 hblks = xlog_logrec_hblks(log, rh: rhead);
1161 after_umount_blk = xlog_wrap_logbno(log,
1162 bno: rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1163
1164 if (*head_blk == after_umount_blk &&
1165 be32_to_cpu(rhead->h_num_logops) == 1) {
1166 umount_data_blk = xlog_wrap_logbno(log, bno: rhead_blk + hblks);
1167 error = xlog_bread(log, blk_no: umount_data_blk, nbblks: 1, data: buffer, offset: &offset);
1168 if (error)
1169 return error;
1170
1171 op_head = (struct xlog_op_header *)offset;
1172 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1173 /*
1174 * Set tail and last sync so that newly written log
1175 * records will point recovery to after the current
1176 * unmount record.
1177 */
1178 xlog_assign_atomic_lsn(lsn: &log->l_tail_lsn,
1179 cycle: log->l_curr_cycle, block: after_umount_blk);
1180 xlog_assign_atomic_lsn(lsn: &log->l_last_sync_lsn,
1181 cycle: log->l_curr_cycle, block: after_umount_blk);
1182 *tail_blk = after_umount_blk;
1183
1184 *clean = true;
1185 }
1186 }
1187
1188 return 0;
1189}
1190
1191static void
1192xlog_set_state(
1193 struct xlog *log,
1194 xfs_daddr_t head_blk,
1195 struct xlog_rec_header *rhead,
1196 xfs_daddr_t rhead_blk,
1197 bool bump_cycle)
1198{
1199 /*
1200 * Reset log values according to the state of the log when we
1201 * crashed. In the case where head_blk == 0, we bump curr_cycle
1202 * one because the next write starts a new cycle rather than
1203 * continuing the cycle of the last good log record. At this
1204 * point we have guaranteed that all partial log records have been
1205 * accounted for. Therefore, we know that the last good log record
1206 * written was complete and ended exactly on the end boundary
1207 * of the physical log.
1208 */
1209 log->l_prev_block = rhead_blk;
1210 log->l_curr_block = (int)head_blk;
1211 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1212 if (bump_cycle)
1213 log->l_curr_cycle++;
1214 atomic64_set(v: &log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1215 atomic64_set(v: &log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1216 xlog_assign_grant_head(head: &log->l_reserve_head.grant, cycle: log->l_curr_cycle,
1217 space: BBTOB(log->l_curr_block));
1218 xlog_assign_grant_head(head: &log->l_write_head.grant, cycle: log->l_curr_cycle,
1219 space: BBTOB(log->l_curr_block));
1220}
1221
1222/*
1223 * Find the sync block number or the tail of the log.
1224 *
1225 * This will be the block number of the last record to have its
1226 * associated buffers synced to disk. Every log record header has
1227 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1228 * to get a sync block number. The only concern is to figure out which
1229 * log record header to believe.
1230 *
1231 * The following algorithm uses the log record header with the largest
1232 * lsn. The entire log record does not need to be valid. We only care
1233 * that the header is valid.
1234 *
1235 * We could speed up search by using current head_blk buffer, but it is not
1236 * available.
1237 */
1238STATIC int
1239xlog_find_tail(
1240 struct xlog *log,
1241 xfs_daddr_t *head_blk,
1242 xfs_daddr_t *tail_blk)
1243{
1244 xlog_rec_header_t *rhead;
1245 char *offset = NULL;
1246 char *buffer;
1247 int error;
1248 xfs_daddr_t rhead_blk;
1249 xfs_lsn_t tail_lsn;
1250 bool wrapped = false;
1251 bool clean = false;
1252
1253 /*
1254 * Find previous log record
1255 */
1256 if ((error = xlog_find_head(log, return_head_blk: head_blk)))
1257 return error;
1258 ASSERT(*head_blk < INT_MAX);
1259
1260 buffer = xlog_alloc_buffer(log, nbblks: 1);
1261 if (!buffer)
1262 return -ENOMEM;
1263 if (*head_blk == 0) { /* special case */
1264 error = xlog_bread(log, blk_no: 0, nbblks: 1, data: buffer, offset: &offset);
1265 if (error)
1266 goto done;
1267
1268 if (xlog_get_cycle(offset) == 0) {
1269 *tail_blk = 0;
1270 /* leave all other log inited values alone */
1271 goto done;
1272 }
1273 }
1274
1275 /*
1276 * Search backwards through the log looking for the log record header
1277 * block. This wraps all the way back around to the head so something is
1278 * seriously wrong if we can't find it.
1279 */
1280 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1281 &rhead_blk, &rhead, &wrapped);
1282 if (error < 0)
1283 goto done;
1284 if (!error) {
1285 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1286 error = -EFSCORRUPTED;
1287 goto done;
1288 }
1289 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1290
1291 /*
1292 * Set the log state based on the current head record.
1293 */
1294 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1295 tail_lsn = atomic64_read(&log->l_tail_lsn);
1296
1297 /*
1298 * Look for an unmount record at the head of the log. This sets the log
1299 * state to determine whether recovery is necessary.
1300 */
1301 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1302 rhead_blk, buffer, &clean);
1303 if (error)
1304 goto done;
1305
1306 /*
1307 * Verify the log head if the log is not clean (e.g., we have anything
1308 * but an unmount record at the head). This uses CRC verification to
1309 * detect and trim torn writes. If discovered, CRC failures are
1310 * considered torn writes and the log head is trimmed accordingly.
1311 *
1312 * Note that we can only run CRC verification when the log is dirty
1313 * because there's no guarantee that the log data behind an unmount
1314 * record is compatible with the current architecture.
1315 */
1316 if (!clean) {
1317 xfs_daddr_t orig_head = *head_blk;
1318
1319 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1320 &rhead_blk, &rhead, &wrapped);
1321 if (error)
1322 goto done;
1323
1324 /* update in-core state again if the head changed */
1325 if (*head_blk != orig_head) {
1326 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1327 wrapped);
1328 tail_lsn = atomic64_read(&log->l_tail_lsn);
1329 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1330 rhead, rhead_blk, buffer,
1331 &clean);
1332 if (error)
1333 goto done;
1334 }
1335 }
1336
1337 /*
1338 * Note that the unmount was clean. If the unmount was not clean, we
1339 * need to know this to rebuild the superblock counters from the perag
1340 * headers if we have a filesystem using non-persistent counters.
1341 */
1342 if (clean)
1343 set_bit(XFS_OPSTATE_CLEAN, addr: &log->l_mp->m_opstate);
1344
1345 /*
1346 * Make sure that there are no blocks in front of the head
1347 * with the same cycle number as the head. This can happen
1348 * because we allow multiple outstanding log writes concurrently,
1349 * and the later writes might make it out before earlier ones.
1350 *
1351 * We use the lsn from before modifying it so that we'll never
1352 * overwrite the unmount record after a clean unmount.
1353 *
1354 * Do this only if we are going to recover the filesystem
1355 *
1356 * NOTE: This used to say "if (!readonly)"
1357 * However on Linux, we can & do recover a read-only filesystem.
1358 * We only skip recovery if NORECOVERY is specified on mount,
1359 * in which case we would not be here.
1360 *
1361 * But... if the -device- itself is readonly, just skip this.
1362 * We can't recover this device anyway, so it won't matter.
1363 */
1364 if (!xfs_readonly_buftarg(log->l_targ))
1365 error = xlog_clear_stale_blocks(log, tail_lsn);
1366
1367done:
1368 kvfree(addr: buffer);
1369
1370 if (error)
1371 xfs_warn(log->l_mp, "failed to locate log tail");
1372 return error;
1373}
1374
1375/*
1376 * Is the log zeroed at all?
1377 *
1378 * The last binary search should be changed to perform an X block read
1379 * once X becomes small enough. You can then search linearly through
1380 * the X blocks. This will cut down on the number of reads we need to do.
1381 *
1382 * If the log is partially zeroed, this routine will pass back the blkno
1383 * of the first block with cycle number 0. It won't have a complete LR
1384 * preceding it.
1385 *
1386 * Return:
1387 * 0 => the log is completely written to
1388 * 1 => use *blk_no as the first block of the log
1389 * <0 => error has occurred
1390 */
1391STATIC int
1392xlog_find_zeroed(
1393 struct xlog *log,
1394 xfs_daddr_t *blk_no)
1395{
1396 char *buffer;
1397 char *offset;
1398 uint first_cycle, last_cycle;
1399 xfs_daddr_t new_blk, last_blk, start_blk;
1400 xfs_daddr_t num_scan_bblks;
1401 int error, log_bbnum = log->l_logBBsize;
1402 int ret = 1;
1403
1404 *blk_no = 0;
1405
1406 /* check totally zeroed log */
1407 buffer = xlog_alloc_buffer(log, nbblks: 1);
1408 if (!buffer)
1409 return -ENOMEM;
1410 error = xlog_bread(log, blk_no: 0, nbblks: 1, data: buffer, offset: &offset);
1411 if (error)
1412 goto out_free_buffer;
1413
1414 first_cycle = xlog_get_cycle(offset);
1415 if (first_cycle == 0) { /* completely zeroed log */
1416 *blk_no = 0;
1417 goto out_free_buffer;
1418 }
1419
1420 /* check partially zeroed log */
1421 error = xlog_bread(log, blk_no: log_bbnum-1, nbblks: 1, data: buffer, offset: &offset);
1422 if (error)
1423 goto out_free_buffer;
1424
1425 last_cycle = xlog_get_cycle(offset);
1426 if (last_cycle != 0) { /* log completely written to */
1427 ret = 0;
1428 goto out_free_buffer;
1429 }
1430
1431 /* we have a partially zeroed log */
1432 last_blk = log_bbnum-1;
1433 error = xlog_find_cycle_start(log, buffer, first_blk: 0, last_blk: &last_blk, cycle: 0);
1434 if (error)
1435 goto out_free_buffer;
1436
1437 /*
1438 * Validate the answer. Because there is no way to guarantee that
1439 * the entire log is made up of log records which are the same size,
1440 * we scan over the defined maximum blocks. At this point, the maximum
1441 * is not chosen to mean anything special. XXXmiken
1442 */
1443 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1444 ASSERT(num_scan_bblks <= INT_MAX);
1445
1446 if (last_blk < num_scan_bblks)
1447 num_scan_bblks = last_blk;
1448 start_blk = last_blk - num_scan_bblks;
1449
1450 /*
1451 * We search for any instances of cycle number 0 that occur before
1452 * our current estimate of the head. What we're trying to detect is
1453 * 1 ... | 0 | 1 | 0...
1454 * ^ binary search ends here
1455 */
1456 if ((error = xlog_find_verify_cycle(log, start_blk,
1457 nbblks: (int)num_scan_bblks, stop_on_cycle_no: 0, new_blk: &new_blk)))
1458 goto out_free_buffer;
1459 if (new_blk != -1)
1460 last_blk = new_blk;
1461
1462 /*
1463 * Potentially backup over partial log record write. We don't need
1464 * to search the end of the log because we know it is zero.
1465 */
1466 error = xlog_find_verify_log_record(log, start_blk, last_blk: &last_blk, extra_bblks: 0);
1467 if (error == 1)
1468 error = -EIO;
1469 if (error)
1470 goto out_free_buffer;
1471
1472 *blk_no = last_blk;
1473out_free_buffer:
1474 kvfree(addr: buffer);
1475 if (error)
1476 return error;
1477 return ret;
1478}
1479
1480/*
1481 * These are simple subroutines used by xlog_clear_stale_blocks() below
1482 * to initialize a buffer full of empty log record headers and write
1483 * them into the log.
1484 */
1485STATIC void
1486xlog_add_record(
1487 struct xlog *log,
1488 char *buf,
1489 int cycle,
1490 int block,
1491 int tail_cycle,
1492 int tail_block)
1493{
1494 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1495
1496 memset(buf, 0, BBSIZE);
1497 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1498 recp->h_cycle = cpu_to_be32(cycle);
1499 recp->h_version = cpu_to_be32(
1500 xfs_has_logv2(log->l_mp) ? 2 : 1);
1501 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1502 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1503 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1504 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1505}
1506
1507STATIC int
1508xlog_write_log_records(
1509 struct xlog *log,
1510 int cycle,
1511 int start_block,
1512 int blocks,
1513 int tail_cycle,
1514 int tail_block)
1515{
1516 char *offset;
1517 char *buffer;
1518 int balign, ealign;
1519 int sectbb = log->l_sectBBsize;
1520 int end_block = start_block + blocks;
1521 int bufblks;
1522 int error = 0;
1523 int i, j = 0;
1524
1525 /*
1526 * Greedily allocate a buffer big enough to handle the full
1527 * range of basic blocks to be written. If that fails, try
1528 * a smaller size. We need to be able to write at least a
1529 * log sector, or we're out of luck.
1530 */
1531 bufblks = roundup_pow_of_two(blocks);
1532 while (bufblks > log->l_logBBsize)
1533 bufblks >>= 1;
1534 while (!(buffer = xlog_alloc_buffer(log, nbblks: bufblks))) {
1535 bufblks >>= 1;
1536 if (bufblks < sectbb)
1537 return -ENOMEM;
1538 }
1539
1540 /* We may need to do a read at the start to fill in part of
1541 * the buffer in the starting sector not covered by the first
1542 * write below.
1543 */
1544 balign = round_down(start_block, sectbb);
1545 if (balign != start_block) {
1546 error = xlog_bread_noalign(log, blk_no: start_block, nbblks: 1, data: buffer);
1547 if (error)
1548 goto out_free_buffer;
1549
1550 j = start_block - balign;
1551 }
1552
1553 for (i = start_block; i < end_block; i += bufblks) {
1554 int bcount, endcount;
1555
1556 bcount = min(bufblks, end_block - start_block);
1557 endcount = bcount - j;
1558
1559 /* We may need to do a read at the end to fill in part of
1560 * the buffer in the final sector not covered by the write.
1561 * If this is the same sector as the above read, skip it.
1562 */
1563 ealign = round_down(end_block, sectbb);
1564 if (j == 0 && (start_block + endcount > ealign)) {
1565 error = xlog_bread_noalign(log, blk_no: ealign, nbblks: sectbb,
1566 data: buffer + BBTOB(ealign - start_block));
1567 if (error)
1568 break;
1569
1570 }
1571
1572 offset = buffer + xlog_align(log, blk_no: start_block);
1573 for (; j < endcount; j++) {
1574 xlog_add_record(log, buf: offset, cycle, block: i+j,
1575 tail_cycle, tail_block);
1576 offset += BBSIZE;
1577 }
1578 error = xlog_bwrite(log, blk_no: start_block, nbblks: endcount, data: buffer);
1579 if (error)
1580 break;
1581 start_block += endcount;
1582 j = 0;
1583 }
1584
1585out_free_buffer:
1586 kvfree(addr: buffer);
1587 return error;
1588}
1589
1590/*
1591 * This routine is called to blow away any incomplete log writes out
1592 * in front of the log head. We do this so that we won't become confused
1593 * if we come up, write only a little bit more, and then crash again.
1594 * If we leave the partial log records out there, this situation could
1595 * cause us to think those partial writes are valid blocks since they
1596 * have the current cycle number. We get rid of them by overwriting them
1597 * with empty log records with the old cycle number rather than the
1598 * current one.
1599 *
1600 * The tail lsn is passed in rather than taken from
1601 * the log so that we will not write over the unmount record after a
1602 * clean unmount in a 512 block log. Doing so would leave the log without
1603 * any valid log records in it until a new one was written. If we crashed
1604 * during that time we would not be able to recover.
1605 */
1606STATIC int
1607xlog_clear_stale_blocks(
1608 struct xlog *log,
1609 xfs_lsn_t tail_lsn)
1610{
1611 int tail_cycle, head_cycle;
1612 int tail_block, head_block;
1613 int tail_distance, max_distance;
1614 int distance;
1615 int error;
1616
1617 tail_cycle = CYCLE_LSN(tail_lsn);
1618 tail_block = BLOCK_LSN(tail_lsn);
1619 head_cycle = log->l_curr_cycle;
1620 head_block = log->l_curr_block;
1621
1622 /*
1623 * Figure out the distance between the new head of the log
1624 * and the tail. We want to write over any blocks beyond the
1625 * head that we may have written just before the crash, but
1626 * we don't want to overwrite the tail of the log.
1627 */
1628 if (head_cycle == tail_cycle) {
1629 /*
1630 * The tail is behind the head in the physical log,
1631 * so the distance from the head to the tail is the
1632 * distance from the head to the end of the log plus
1633 * the distance from the beginning of the log to the
1634 * tail.
1635 */
1636 if (XFS_IS_CORRUPT(log->l_mp,
1637 head_block < tail_block ||
1638 head_block >= log->l_logBBsize))
1639 return -EFSCORRUPTED;
1640 tail_distance = tail_block + (log->l_logBBsize - head_block);
1641 } else {
1642 /*
1643 * The head is behind the tail in the physical log,
1644 * so the distance from the head to the tail is just
1645 * the tail block minus the head block.
1646 */
1647 if (XFS_IS_CORRUPT(log->l_mp,
1648 head_block >= tail_block ||
1649 head_cycle != tail_cycle + 1))
1650 return -EFSCORRUPTED;
1651 tail_distance = tail_block - head_block;
1652 }
1653
1654 /*
1655 * If the head is right up against the tail, we can't clear
1656 * anything.
1657 */
1658 if (tail_distance <= 0) {
1659 ASSERT(tail_distance == 0);
1660 return 0;
1661 }
1662
1663 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1664 /*
1665 * Take the smaller of the maximum amount of outstanding I/O
1666 * we could have and the distance to the tail to clear out.
1667 * We take the smaller so that we don't overwrite the tail and
1668 * we don't waste all day writing from the head to the tail
1669 * for no reason.
1670 */
1671 max_distance = min(max_distance, tail_distance);
1672
1673 if ((head_block + max_distance) <= log->l_logBBsize) {
1674 /*
1675 * We can stomp all the blocks we need to without
1676 * wrapping around the end of the log. Just do it
1677 * in a single write. Use the cycle number of the
1678 * current cycle minus one so that the log will look like:
1679 * n ... | n - 1 ...
1680 */
1681 error = xlog_write_log_records(log, cycle: (head_cycle - 1),
1682 start_block: head_block, blocks: max_distance, tail_cycle,
1683 tail_block);
1684 if (error)
1685 return error;
1686 } else {
1687 /*
1688 * We need to wrap around the end of the physical log in
1689 * order to clear all the blocks. Do it in two separate
1690 * I/Os. The first write should be from the head to the
1691 * end of the physical log, and it should use the current
1692 * cycle number minus one just like above.
1693 */
1694 distance = log->l_logBBsize - head_block;
1695 error = xlog_write_log_records(log, cycle: (head_cycle - 1),
1696 start_block: head_block, blocks: distance, tail_cycle,
1697 tail_block);
1698
1699 if (error)
1700 return error;
1701
1702 /*
1703 * Now write the blocks at the start of the physical log.
1704 * This writes the remainder of the blocks we want to clear.
1705 * It uses the current cycle number since we're now on the
1706 * same cycle as the head so that we get:
1707 * n ... n ... | n - 1 ...
1708 * ^^^^^ blocks we're writing
1709 */
1710 distance = max_distance - (log->l_logBBsize - head_block);
1711 error = xlog_write_log_records(log, cycle: head_cycle, start_block: 0, blocks: distance,
1712 tail_cycle, tail_block);
1713 if (error)
1714 return error;
1715 }
1716
1717 return 0;
1718}
1719
1720/*
1721 * Release the recovered intent item in the AIL that matches the given intent
1722 * type and intent id.
1723 */
1724void
1725xlog_recover_release_intent(
1726 struct xlog *log,
1727 unsigned short intent_type,
1728 uint64_t intent_id)
1729{
1730 struct xfs_defer_pending *dfp, *n;
1731
1732 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
1733 struct xfs_log_item *lip = dfp->dfp_intent;
1734
1735 if (lip->li_type != intent_type)
1736 continue;
1737 if (!lip->li_ops->iop_match(lip, intent_id))
1738 continue;
1739
1740 ASSERT(xlog_item_is_intent(lip));
1741
1742 xfs_defer_cancel_recovery(log->l_mp, dfp);
1743 }
1744}
1745
1746int
1747xlog_recover_iget(
1748 struct xfs_mount *mp,
1749 xfs_ino_t ino,
1750 struct xfs_inode **ipp)
1751{
1752 int error;
1753
1754 error = xfs_iget(mp, NULL, ino, flags: 0, lock_flags: 0, ipp);
1755 if (error)
1756 return error;
1757
1758 error = xfs_qm_dqattach(*ipp);
1759 if (error) {
1760 xfs_irele(ip: *ipp);
1761 return error;
1762 }
1763
1764 if (VFS_I(ip: *ipp)->i_nlink == 0)
1765 xfs_iflags_set(ip: *ipp, XFS_IRECOVERY);
1766
1767 return 0;
1768}
1769
1770/******************************************************************************
1771 *
1772 * Log recover routines
1773 *
1774 ******************************************************************************
1775 */
1776static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1777 &xlog_buf_item_ops,
1778 &xlog_inode_item_ops,
1779 &xlog_dquot_item_ops,
1780 &xlog_quotaoff_item_ops,
1781 &xlog_icreate_item_ops,
1782 &xlog_efi_item_ops,
1783 &xlog_efd_item_ops,
1784 &xlog_rui_item_ops,
1785 &xlog_rud_item_ops,
1786 &xlog_cui_item_ops,
1787 &xlog_cud_item_ops,
1788 &xlog_bui_item_ops,
1789 &xlog_bud_item_ops,
1790 &xlog_attri_item_ops,
1791 &xlog_attrd_item_ops,
1792};
1793
1794static const struct xlog_recover_item_ops *
1795xlog_find_item_ops(
1796 struct xlog_recover_item *item)
1797{
1798 unsigned int i;
1799
1800 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1801 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1802 return xlog_recover_item_ops[i];
1803
1804 return NULL;
1805}
1806
1807/*
1808 * Sort the log items in the transaction.
1809 *
1810 * The ordering constraints are defined by the inode allocation and unlink
1811 * behaviour. The rules are:
1812 *
1813 * 1. Every item is only logged once in a given transaction. Hence it
1814 * represents the last logged state of the item. Hence ordering is
1815 * dependent on the order in which operations need to be performed so
1816 * required initial conditions are always met.
1817 *
1818 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1819 * there's nothing to replay from them so we can simply cull them
1820 * from the transaction. However, we can't do that until after we've
1821 * replayed all the other items because they may be dependent on the
1822 * cancelled buffer and replaying the cancelled buffer can remove it
1823 * form the cancelled buffer table. Hence they have tobe done last.
1824 *
1825 * 3. Inode allocation buffers must be replayed before inode items that
1826 * read the buffer and replay changes into it. For filesystems using the
1827 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1828 * treated the same as inode allocation buffers as they create and
1829 * initialise the buffers directly.
1830 *
1831 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1832 * This ensures that inodes are completely flushed to the inode buffer
1833 * in a "free" state before we remove the unlinked inode list pointer.
1834 *
1835 * Hence the ordering needs to be inode allocation buffers first, inode items
1836 * second, inode unlink buffers third and cancelled buffers last.
1837 *
1838 * But there's a problem with that - we can't tell an inode allocation buffer
1839 * apart from a regular buffer, so we can't separate them. We can, however,
1840 * tell an inode unlink buffer from the others, and so we can separate them out
1841 * from all the other buffers and move them to last.
1842 *
1843 * Hence, 4 lists, in order from head to tail:
1844 * - buffer_list for all buffers except cancelled/inode unlink buffers
1845 * - item_list for all non-buffer items
1846 * - inode_buffer_list for inode unlink buffers
1847 * - cancel_list for the cancelled buffers
1848 *
1849 * Note that we add objects to the tail of the lists so that first-to-last
1850 * ordering is preserved within the lists. Adding objects to the head of the
1851 * list means when we traverse from the head we walk them in last-to-first
1852 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1853 * but for all other items there may be specific ordering that we need to
1854 * preserve.
1855 */
1856STATIC int
1857xlog_recover_reorder_trans(
1858 struct xlog *log,
1859 struct xlog_recover *trans,
1860 int pass)
1861{
1862 struct xlog_recover_item *item, *n;
1863 int error = 0;
1864 LIST_HEAD(sort_list);
1865 LIST_HEAD(cancel_list);
1866 LIST_HEAD(buffer_list);
1867 LIST_HEAD(inode_buffer_list);
1868 LIST_HEAD(item_list);
1869
1870 list_splice_init(list: &trans->r_itemq, head: &sort_list);
1871 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1872 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST;
1873
1874 item->ri_ops = xlog_find_item_ops(item);
1875 if (!item->ri_ops) {
1876 xfs_warn(log->l_mp,
1877 "%s: unrecognized type of log operation (%d)",
1878 __func__, ITEM_TYPE(item));
1879 ASSERT(0);
1880 /*
1881 * return the remaining items back to the transaction
1882 * item list so they can be freed in caller.
1883 */
1884 if (!list_empty(head: &sort_list))
1885 list_splice_init(list: &sort_list, head: &trans->r_itemq);
1886 error = -EFSCORRUPTED;
1887 break;
1888 }
1889
1890 if (item->ri_ops->reorder)
1891 fate = item->ri_ops->reorder(item);
1892
1893 switch (fate) {
1894 case XLOG_REORDER_BUFFER_LIST:
1895 list_move_tail(list: &item->ri_list, head: &buffer_list);
1896 break;
1897 case XLOG_REORDER_CANCEL_LIST:
1898 trace_xfs_log_recover_item_reorder_head(log,
1899 trans, item, pass);
1900 list_move(list: &item->ri_list, head: &cancel_list);
1901 break;
1902 case XLOG_REORDER_INODE_BUFFER_LIST:
1903 list_move(list: &item->ri_list, head: &inode_buffer_list);
1904 break;
1905 case XLOG_REORDER_ITEM_LIST:
1906 trace_xfs_log_recover_item_reorder_tail(log,
1907 trans, item, pass);
1908 list_move_tail(list: &item->ri_list, head: &item_list);
1909 break;
1910 }
1911 }
1912
1913 ASSERT(list_empty(&sort_list));
1914 if (!list_empty(head: &buffer_list))
1915 list_splice(list: &buffer_list, head: &trans->r_itemq);
1916 if (!list_empty(head: &item_list))
1917 list_splice_tail(list: &item_list, head: &trans->r_itemq);
1918 if (!list_empty(head: &inode_buffer_list))
1919 list_splice_tail(list: &inode_buffer_list, head: &trans->r_itemq);
1920 if (!list_empty(head: &cancel_list))
1921 list_splice_tail(list: &cancel_list, head: &trans->r_itemq);
1922 return error;
1923}
1924
1925void
1926xlog_buf_readahead(
1927 struct xlog *log,
1928 xfs_daddr_t blkno,
1929 uint len,
1930 const struct xfs_buf_ops *ops)
1931{
1932 if (!xlog_is_buffer_cancelled(log, blkno, len))
1933 xfs_buf_readahead(target: log->l_mp->m_ddev_targp, blkno, numblks: len, ops);
1934}
1935
1936/*
1937 * Create a deferred work structure for resuming and tracking the progress of a
1938 * log intent item that was found during recovery.
1939 */
1940void
1941xlog_recover_intent_item(
1942 struct xlog *log,
1943 struct xfs_log_item *lip,
1944 xfs_lsn_t lsn,
1945 const struct xfs_defer_op_type *ops)
1946{
1947 ASSERT(xlog_item_is_intent(lip));
1948
1949 xfs_defer_start_recovery(lip, &log->r_dfops, ops);
1950
1951 /*
1952 * Insert the intent into the AIL directly and drop one reference so
1953 * that finishing or canceling the work will drop the other.
1954 */
1955 xfs_trans_ail_insert(log->l_ailp, lip, lsn);
1956 lip->li_ops->iop_unpin(lip, 0);
1957}
1958
1959STATIC int
1960xlog_recover_items_pass2(
1961 struct xlog *log,
1962 struct xlog_recover *trans,
1963 struct list_head *buffer_list,
1964 struct list_head *item_list)
1965{
1966 struct xlog_recover_item *item;
1967 int error = 0;
1968
1969 list_for_each_entry(item, item_list, ri_list) {
1970 trace_xfs_log_recover_item_recover(log, trans, item,
1971 XLOG_RECOVER_PASS2);
1972
1973 if (item->ri_ops->commit_pass2)
1974 error = item->ri_ops->commit_pass2(log, buffer_list,
1975 item, trans->r_lsn);
1976 if (error)
1977 return error;
1978 }
1979
1980 return error;
1981}
1982
1983/*
1984 * Perform the transaction.
1985 *
1986 * If the transaction modifies a buffer or inode, do it now. Otherwise,
1987 * EFIs and EFDs get queued up by adding entries into the AIL for them.
1988 */
1989STATIC int
1990xlog_recover_commit_trans(
1991 struct xlog *log,
1992 struct xlog_recover *trans,
1993 int pass,
1994 struct list_head *buffer_list)
1995{
1996 int error = 0;
1997 int items_queued = 0;
1998 struct xlog_recover_item *item;
1999 struct xlog_recover_item *next;
2000 LIST_HEAD (ra_list);
2001 LIST_HEAD (done_list);
2002
2003 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
2004
2005 hlist_del_init(n: &trans->r_list);
2006
2007 error = xlog_recover_reorder_trans(log, trans, pass);
2008 if (error)
2009 return error;
2010
2011 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
2012 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2013
2014 switch (pass) {
2015 case XLOG_RECOVER_PASS1:
2016 if (item->ri_ops->commit_pass1)
2017 error = item->ri_ops->commit_pass1(log, item);
2018 break;
2019 case XLOG_RECOVER_PASS2:
2020 if (item->ri_ops->ra_pass2)
2021 item->ri_ops->ra_pass2(log, item);
2022 list_move_tail(list: &item->ri_list, head: &ra_list);
2023 items_queued++;
2024 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
2025 error = xlog_recover_items_pass2(log, trans,
2026 buffer_list, item_list: &ra_list);
2027 list_splice_tail_init(list: &ra_list, head: &done_list);
2028 items_queued = 0;
2029 }
2030
2031 break;
2032 default:
2033 ASSERT(0);
2034 }
2035
2036 if (error)
2037 goto out;
2038 }
2039
2040out:
2041 if (!list_empty(head: &ra_list)) {
2042 if (!error)
2043 error = xlog_recover_items_pass2(log, trans,
2044 buffer_list, item_list: &ra_list);
2045 list_splice_tail_init(list: &ra_list, head: &done_list);
2046 }
2047
2048 if (!list_empty(head: &done_list))
2049 list_splice_init(list: &done_list, head: &trans->r_itemq);
2050
2051 return error;
2052}
2053
2054STATIC void
2055xlog_recover_add_item(
2056 struct list_head *head)
2057{
2058 struct xlog_recover_item *item;
2059
2060 item = kzalloc(sizeof(struct xlog_recover_item),
2061 GFP_KERNEL | __GFP_NOFAIL);
2062 INIT_LIST_HEAD(list: &item->ri_list);
2063 list_add_tail(new: &item->ri_list, head);
2064}
2065
2066STATIC int
2067xlog_recover_add_to_cont_trans(
2068 struct xlog *log,
2069 struct xlog_recover *trans,
2070 char *dp,
2071 int len)
2072{
2073 struct xlog_recover_item *item;
2074 char *ptr, *old_ptr;
2075 int old_len;
2076
2077 /*
2078 * If the transaction is empty, the header was split across this and the
2079 * previous record. Copy the rest of the header.
2080 */
2081 if (list_empty(head: &trans->r_itemq)) {
2082 ASSERT(len <= sizeof(struct xfs_trans_header));
2083 if (len > sizeof(struct xfs_trans_header)) {
2084 xfs_warn(log->l_mp, "%s: bad header length", __func__);
2085 return -EFSCORRUPTED;
2086 }
2087
2088 xlog_recover_add_item(head: &trans->r_itemq);
2089 ptr = (char *)&trans->r_theader +
2090 sizeof(struct xfs_trans_header) - len;
2091 memcpy(ptr, dp, len);
2092 return 0;
2093 }
2094
2095 /* take the tail entry */
2096 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2097 ri_list);
2098
2099 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2100 old_len = item->ri_buf[item->ri_cnt-1].i_len;
2101
2102 ptr = kvrealloc(p: old_ptr, oldsize: old_len, newsize: len + old_len, GFP_KERNEL);
2103 if (!ptr)
2104 return -ENOMEM;
2105 memcpy(&ptr[old_len], dp, len);
2106 item->ri_buf[item->ri_cnt-1].i_len += len;
2107 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2108 trace_xfs_log_recover_item_add_cont(log, trans, item, pass: 0);
2109 return 0;
2110}
2111
2112/*
2113 * The next region to add is the start of a new region. It could be
2114 * a whole region or it could be the first part of a new region. Because
2115 * of this, the assumption here is that the type and size fields of all
2116 * format structures fit into the first 32 bits of the structure.
2117 *
2118 * This works because all regions must be 32 bit aligned. Therefore, we
2119 * either have both fields or we have neither field. In the case we have
2120 * neither field, the data part of the region is zero length. We only have
2121 * a log_op_header and can throw away the header since a new one will appear
2122 * later. If we have at least 4 bytes, then we can determine how many regions
2123 * will appear in the current log item.
2124 */
2125STATIC int
2126xlog_recover_add_to_trans(
2127 struct xlog *log,
2128 struct xlog_recover *trans,
2129 char *dp,
2130 int len)
2131{
2132 struct xfs_inode_log_format *in_f; /* any will do */
2133 struct xlog_recover_item *item;
2134 char *ptr;
2135
2136 if (!len)
2137 return 0;
2138 if (list_empty(head: &trans->r_itemq)) {
2139 /* we need to catch log corruptions here */
2140 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2141 xfs_warn(log->l_mp, "%s: bad header magic number",
2142 __func__);
2143 ASSERT(0);
2144 return -EFSCORRUPTED;
2145 }
2146
2147 if (len > sizeof(struct xfs_trans_header)) {
2148 xfs_warn(log->l_mp, "%s: bad header length", __func__);
2149 ASSERT(0);
2150 return -EFSCORRUPTED;
2151 }
2152
2153 /*
2154 * The transaction header can be arbitrarily split across op
2155 * records. If we don't have the whole thing here, copy what we
2156 * do have and handle the rest in the next record.
2157 */
2158 if (len == sizeof(struct xfs_trans_header))
2159 xlog_recover_add_item(head: &trans->r_itemq);
2160 memcpy(&trans->r_theader, dp, len);
2161 return 0;
2162 }
2163
2164 ptr = xlog_kvmalloc(buf_size: len);
2165 memcpy(ptr, dp, len);
2166 in_f = (struct xfs_inode_log_format *)ptr;
2167
2168 /* take the tail entry */
2169 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2170 ri_list);
2171 if (item->ri_total != 0 &&
2172 item->ri_total == item->ri_cnt) {
2173 /* tail item is in use, get a new one */
2174 xlog_recover_add_item(head: &trans->r_itemq);
2175 item = list_entry(trans->r_itemq.prev,
2176 struct xlog_recover_item, ri_list);
2177 }
2178
2179 if (item->ri_total == 0) { /* first region to be added */
2180 if (in_f->ilf_size == 0 ||
2181 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2182 xfs_warn(log->l_mp,
2183 "bad number of regions (%d) in inode log format",
2184 in_f->ilf_size);
2185 ASSERT(0);
2186 kvfree(addr: ptr);
2187 return -EFSCORRUPTED;
2188 }
2189
2190 item->ri_total = in_f->ilf_size;
2191 item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2192 GFP_KERNEL | __GFP_NOFAIL);
2193 }
2194
2195 if (item->ri_total <= item->ri_cnt) {
2196 xfs_warn(log->l_mp,
2197 "log item region count (%d) overflowed size (%d)",
2198 item->ri_cnt, item->ri_total);
2199 ASSERT(0);
2200 kvfree(addr: ptr);
2201 return -EFSCORRUPTED;
2202 }
2203
2204 /* Description region is ri_buf[0] */
2205 item->ri_buf[item->ri_cnt].i_addr = ptr;
2206 item->ri_buf[item->ri_cnt].i_len = len;
2207 item->ri_cnt++;
2208 trace_xfs_log_recover_item_add(log, trans, item, pass: 0);
2209 return 0;
2210}
2211
2212/*
2213 * Free up any resources allocated by the transaction
2214 *
2215 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2216 */
2217STATIC void
2218xlog_recover_free_trans(
2219 struct xlog_recover *trans)
2220{
2221 struct xlog_recover_item *item, *n;
2222 int i;
2223
2224 hlist_del_init(n: &trans->r_list);
2225
2226 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2227 /* Free the regions in the item. */
2228 list_del(entry: &item->ri_list);
2229 for (i = 0; i < item->ri_cnt; i++)
2230 kvfree(addr: item->ri_buf[i].i_addr);
2231 /* Free the item itself */
2232 kfree(objp: item->ri_buf);
2233 kfree(objp: item);
2234 }
2235 /* Free the transaction recover structure */
2236 kfree(objp: trans);
2237}
2238
2239/*
2240 * On error or completion, trans is freed.
2241 */
2242STATIC int
2243xlog_recovery_process_trans(
2244 struct xlog *log,
2245 struct xlog_recover *trans,
2246 char *dp,
2247 unsigned int len,
2248 unsigned int flags,
2249 int pass,
2250 struct list_head *buffer_list)
2251{
2252 int error = 0;
2253 bool freeit = false;
2254
2255 /* mask off ophdr transaction container flags */
2256 flags &= ~XLOG_END_TRANS;
2257 if (flags & XLOG_WAS_CONT_TRANS)
2258 flags &= ~XLOG_CONTINUE_TRANS;
2259
2260 /*
2261 * Callees must not free the trans structure. We'll decide if we need to
2262 * free it or not based on the operation being done and it's result.
2263 */
2264 switch (flags) {
2265 /* expected flag values */
2266 case 0:
2267 case XLOG_CONTINUE_TRANS:
2268 error = xlog_recover_add_to_trans(log, trans, dp, len);
2269 break;
2270 case XLOG_WAS_CONT_TRANS:
2271 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2272 break;
2273 case XLOG_COMMIT_TRANS:
2274 error = xlog_recover_commit_trans(log, trans, pass,
2275 buffer_list);
2276 /* success or fail, we are now done with this transaction. */
2277 freeit = true;
2278 break;
2279
2280 /* unexpected flag values */
2281 case XLOG_UNMOUNT_TRANS:
2282 /* just skip trans */
2283 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2284 freeit = true;
2285 break;
2286 case XLOG_START_TRANS:
2287 default:
2288 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2289 ASSERT(0);
2290 error = -EFSCORRUPTED;
2291 break;
2292 }
2293 if (error || freeit)
2294 xlog_recover_free_trans(trans);
2295 return error;
2296}
2297
2298/*
2299 * Lookup the transaction recovery structure associated with the ID in the
2300 * current ophdr. If the transaction doesn't exist and the start flag is set in
2301 * the ophdr, then allocate a new transaction for future ID matches to find.
2302 * Either way, return what we found during the lookup - an existing transaction
2303 * or nothing.
2304 */
2305STATIC struct xlog_recover *
2306xlog_recover_ophdr_to_trans(
2307 struct hlist_head rhash[],
2308 struct xlog_rec_header *rhead,
2309 struct xlog_op_header *ohead)
2310{
2311 struct xlog_recover *trans;
2312 xlog_tid_t tid;
2313 struct hlist_head *rhp;
2314
2315 tid = be32_to_cpu(ohead->oh_tid);
2316 rhp = &rhash[XLOG_RHASH(tid)];
2317 hlist_for_each_entry(trans, rhp, r_list) {
2318 if (trans->r_log_tid == tid)
2319 return trans;
2320 }
2321
2322 /*
2323 * skip over non-start transaction headers - we could be
2324 * processing slack space before the next transaction starts
2325 */
2326 if (!(ohead->oh_flags & XLOG_START_TRANS))
2327 return NULL;
2328
2329 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2330
2331 /*
2332 * This is a new transaction so allocate a new recovery container to
2333 * hold the recovery ops that will follow.
2334 */
2335 trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL);
2336 trans->r_log_tid = tid;
2337 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2338 INIT_LIST_HEAD(list: &trans->r_itemq);
2339 INIT_HLIST_NODE(h: &trans->r_list);
2340 hlist_add_head(n: &trans->r_list, h: rhp);
2341
2342 /*
2343 * Nothing more to do for this ophdr. Items to be added to this new
2344 * transaction will be in subsequent ophdr containers.
2345 */
2346 return NULL;
2347}
2348
2349STATIC int
2350xlog_recover_process_ophdr(
2351 struct xlog *log,
2352 struct hlist_head rhash[],
2353 struct xlog_rec_header *rhead,
2354 struct xlog_op_header *ohead,
2355 char *dp,
2356 char *end,
2357 int pass,
2358 struct list_head *buffer_list)
2359{
2360 struct xlog_recover *trans;
2361 unsigned int len;
2362 int error;
2363
2364 /* Do we understand who wrote this op? */
2365 if (ohead->oh_clientid != XFS_TRANSACTION &&
2366 ohead->oh_clientid != XFS_LOG) {
2367 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2368 __func__, ohead->oh_clientid);
2369 ASSERT(0);
2370 return -EFSCORRUPTED;
2371 }
2372
2373 /*
2374 * Check the ophdr contains all the data it is supposed to contain.
2375 */
2376 len = be32_to_cpu(ohead->oh_len);
2377 if (dp + len > end) {
2378 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2379 WARN_ON(1);
2380 return -EFSCORRUPTED;
2381 }
2382
2383 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2384 if (!trans) {
2385 /* nothing to do, so skip over this ophdr */
2386 return 0;
2387 }
2388
2389 /*
2390 * The recovered buffer queue is drained only once we know that all
2391 * recovery items for the current LSN have been processed. This is
2392 * required because:
2393 *
2394 * - Buffer write submission updates the metadata LSN of the buffer.
2395 * - Log recovery skips items with a metadata LSN >= the current LSN of
2396 * the recovery item.
2397 * - Separate recovery items against the same metadata buffer can share
2398 * a current LSN. I.e., consider that the LSN of a recovery item is
2399 * defined as the starting LSN of the first record in which its
2400 * transaction appears, that a record can hold multiple transactions,
2401 * and/or that a transaction can span multiple records.
2402 *
2403 * In other words, we are allowed to submit a buffer from log recovery
2404 * once per current LSN. Otherwise, we may incorrectly skip recovery
2405 * items and cause corruption.
2406 *
2407 * We don't know up front whether buffers are updated multiple times per
2408 * LSN. Therefore, track the current LSN of each commit log record as it
2409 * is processed and drain the queue when it changes. Use commit records
2410 * because they are ordered correctly by the logging code.
2411 */
2412 if (log->l_recovery_lsn != trans->r_lsn &&
2413 ohead->oh_flags & XLOG_COMMIT_TRANS) {
2414 error = xfs_buf_delwri_submit(buffer_list);
2415 if (error)
2416 return error;
2417 log->l_recovery_lsn = trans->r_lsn;
2418 }
2419
2420 return xlog_recovery_process_trans(log, trans, dp, len,
2421 flags: ohead->oh_flags, pass, buffer_list);
2422}
2423
2424/*
2425 * There are two valid states of the r_state field. 0 indicates that the
2426 * transaction structure is in a normal state. We have either seen the
2427 * start of the transaction or the last operation we added was not a partial
2428 * operation. If the last operation we added to the transaction was a
2429 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2430 *
2431 * NOTE: skip LRs with 0 data length.
2432 */
2433STATIC int
2434xlog_recover_process_data(
2435 struct xlog *log,
2436 struct hlist_head rhash[],
2437 struct xlog_rec_header *rhead,
2438 char *dp,
2439 int pass,
2440 struct list_head *buffer_list)
2441{
2442 struct xlog_op_header *ohead;
2443 char *end;
2444 int num_logops;
2445 int error;
2446
2447 end = dp + be32_to_cpu(rhead->h_len);
2448 num_logops = be32_to_cpu(rhead->h_num_logops);
2449
2450 /* check the log format matches our own - else we can't recover */
2451 if (xlog_header_check_recover(log->l_mp, rhead))
2452 return -EIO;
2453
2454 trace_xfs_log_recover_record(log, rhead, pass);
2455 while ((dp < end) && num_logops) {
2456
2457 ohead = (struct xlog_op_header *)dp;
2458 dp += sizeof(*ohead);
2459 ASSERT(dp <= end);
2460
2461 /* errors will abort recovery */
2462 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2463 dp, end, pass, buffer_list);
2464 if (error)
2465 return error;
2466
2467 dp += be32_to_cpu(ohead->oh_len);
2468 num_logops--;
2469 }
2470 return 0;
2471}
2472
2473/* Take all the collected deferred ops and finish them in order. */
2474static int
2475xlog_finish_defer_ops(
2476 struct xfs_mount *mp,
2477 struct list_head *capture_list)
2478{
2479 struct xfs_defer_capture *dfc, *next;
2480 struct xfs_trans *tp;
2481 int error = 0;
2482
2483 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2484 struct xfs_trans_res resv;
2485 struct xfs_defer_resources dres;
2486
2487 /*
2488 * Create a new transaction reservation from the captured
2489 * information. Set logcount to 1 to force the new transaction
2490 * to regrant every roll so that we can make forward progress
2491 * in recovery no matter how full the log might be.
2492 */
2493 resv.tr_logres = dfc->dfc_logres;
2494 resv.tr_logcount = 1;
2495 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2496
2497 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2498 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2499 if (error) {
2500 xlog_force_shutdown(log: mp->m_log, SHUTDOWN_LOG_IO_ERROR);
2501 return error;
2502 }
2503
2504 /*
2505 * Transfer to this new transaction all the dfops we captured
2506 * from recovering a single intent item.
2507 */
2508 list_del_init(entry: &dfc->dfc_list);
2509 xfs_defer_ops_continue(dfc, tp, &dres);
2510 error = xfs_trans_commit(tp);
2511 xfs_defer_resources_rele(&dres);
2512 if (error)
2513 return error;
2514 }
2515
2516 ASSERT(list_empty(capture_list));
2517 return 0;
2518}
2519
2520/* Release all the captured defer ops and capture structures in this list. */
2521static void
2522xlog_abort_defer_ops(
2523 struct xfs_mount *mp,
2524 struct list_head *capture_list)
2525{
2526 struct xfs_defer_capture *dfc;
2527 struct xfs_defer_capture *next;
2528
2529 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2530 list_del_init(entry: &dfc->dfc_list);
2531 xfs_defer_ops_capture_abort(mp, dfc);
2532 }
2533}
2534
2535/*
2536 * When this is called, all of the log intent items which did not have
2537 * corresponding log done items should be in the AIL. What we do now is update
2538 * the data structures associated with each one.
2539 *
2540 * Since we process the log intent items in normal transactions, they will be
2541 * removed at some point after the commit. This prevents us from just walking
2542 * down the list processing each one. We'll use a flag in the intent item to
2543 * skip those that we've already processed and use the AIL iteration mechanism's
2544 * generation count to try to speed this up at least a bit.
2545 *
2546 * When we start, we know that the intents are the only things in the AIL. As we
2547 * process them, however, other items are added to the AIL. Hence we know we
2548 * have started recovery on all the pending intents when we find an non-intent
2549 * item in the AIL.
2550 */
2551STATIC int
2552xlog_recover_process_intents(
2553 struct xlog *log)
2554{
2555 LIST_HEAD(capture_list);
2556 struct xfs_defer_pending *dfp, *n;
2557 int error = 0;
2558#if defined(DEBUG) || defined(XFS_WARN)
2559 xfs_lsn_t last_lsn;
2560
2561 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2562#endif
2563
2564 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2565 ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2566
2567 /*
2568 * We should never see a redo item with a LSN higher than
2569 * the last transaction we found in the log at the start
2570 * of recovery.
2571 */
2572 ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0);
2573
2574 /*
2575 * NOTE: If your intent processing routine can create more
2576 * deferred ops, you /must/ attach them to the capture list in
2577 * the recover routine or else those subsequent intents will be
2578 * replayed in the wrong order!
2579 *
2580 * The recovery function can free the log item, so we must not
2581 * access dfp->dfp_intent after it returns. It must dispose of
2582 * @dfp if it returns 0.
2583 */
2584 error = xfs_defer_finish_recovery(log->l_mp, dfp,
2585 &capture_list);
2586 if (error)
2587 break;
2588 }
2589 if (error)
2590 goto err;
2591
2592 error = xlog_finish_defer_ops(mp: log->l_mp, capture_list: &capture_list);
2593 if (error)
2594 goto err;
2595
2596 return 0;
2597err:
2598 xlog_abort_defer_ops(mp: log->l_mp, capture_list: &capture_list);
2599 return error;
2600}
2601
2602/*
2603 * A cancel occurs when the mount has failed and we're bailing out. Release all
2604 * pending log intent items that we haven't started recovery on so they don't
2605 * pin the AIL.
2606 */
2607STATIC void
2608xlog_recover_cancel_intents(
2609 struct xlog *log)
2610{
2611 struct xfs_defer_pending *dfp, *n;
2612
2613 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2614 ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2615
2616 xfs_defer_cancel_recovery(log->l_mp, dfp);
2617 }
2618}
2619
2620/*
2621 * Transfer ownership of the recovered pending work to the recovery transaction
2622 * and try to finish the work. If there is more work to be done, the dfp will
2623 * remain attached to the transaction. If not, the dfp is freed.
2624 */
2625int
2626xlog_recover_finish_intent(
2627 struct xfs_trans *tp,
2628 struct xfs_defer_pending *dfp)
2629{
2630 int error;
2631
2632 list_move(list: &dfp->dfp_list, head: &tp->t_dfops);
2633 error = xfs_defer_finish_one(tp, dfp);
2634 if (error == -EAGAIN)
2635 return 0;
2636 return error;
2637}
2638
2639/*
2640 * This routine performs a transaction to null out a bad inode pointer
2641 * in an agi unlinked inode hash bucket.
2642 */
2643STATIC void
2644xlog_recover_clear_agi_bucket(
2645 struct xfs_perag *pag,
2646 int bucket)
2647{
2648 struct xfs_mount *mp = pag->pag_mount;
2649 struct xfs_trans *tp;
2650 struct xfs_agi *agi;
2651 struct xfs_buf *agibp;
2652 int offset;
2653 int error;
2654
2655 error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_clearagi, blocks: 0, rtextents: 0, flags: 0, tpp: &tp);
2656 if (error)
2657 goto out_error;
2658
2659 error = xfs_read_agi(pag, tp, &agibp);
2660 if (error)
2661 goto out_abort;
2662
2663 agi = agibp->b_addr;
2664 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2665 offset = offsetof(xfs_agi_t, agi_unlinked) +
2666 (sizeof(xfs_agino_t) * bucket);
2667 xfs_trans_log_buf(tp, agibp, offset,
2668 (offset + sizeof(xfs_agino_t) - 1));
2669
2670 error = xfs_trans_commit(tp);
2671 if (error)
2672 goto out_error;
2673 return;
2674
2675out_abort:
2676 xfs_trans_cancel(tp);
2677out_error:
2678 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__,
2679 pag->pag_agno);
2680 return;
2681}
2682
2683static int
2684xlog_recover_iunlink_bucket(
2685 struct xfs_perag *pag,
2686 struct xfs_agi *agi,
2687 int bucket)
2688{
2689 struct xfs_mount *mp = pag->pag_mount;
2690 struct xfs_inode *prev_ip = NULL;
2691 struct xfs_inode *ip;
2692 xfs_agino_t prev_agino, agino;
2693 int error = 0;
2694
2695 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2696 while (agino != NULLAGINO) {
2697 error = xfs_iget(mp, NULL,
2698 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino),
2699 0, 0, &ip);
2700 if (error)
2701 break;
2702
2703 ASSERT(VFS_I(ip)->i_nlink == 0);
2704 ASSERT(VFS_I(ip)->i_mode != 0);
2705 xfs_iflags_clear(ip, XFS_IRECOVERY);
2706 agino = ip->i_next_unlinked;
2707
2708 if (prev_ip) {
2709 ip->i_prev_unlinked = prev_agino;
2710 xfs_irele(ip: prev_ip);
2711
2712 /*
2713 * Ensure the inode is removed from the unlinked list
2714 * before we continue so that it won't race with
2715 * building the in-memory list here. This could be
2716 * serialised with the agibp lock, but that just
2717 * serialises via lockstepping and it's much simpler
2718 * just to flush the inodegc queue and wait for it to
2719 * complete.
2720 */
2721 error = xfs_inodegc_flush(mp);
2722 if (error)
2723 break;
2724 }
2725
2726 prev_agino = agino;
2727 prev_ip = ip;
2728 }
2729
2730 if (prev_ip) {
2731 int error2;
2732
2733 ip->i_prev_unlinked = prev_agino;
2734 xfs_irele(ip: prev_ip);
2735
2736 error2 = xfs_inodegc_flush(mp);
2737 if (error2 && !error)
2738 return error2;
2739 }
2740 return error;
2741}
2742
2743/*
2744 * Recover AGI unlinked lists
2745 *
2746 * This is called during recovery to process any inodes which we unlinked but
2747 * not freed when the system crashed. These inodes will be on the lists in the
2748 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2749 * any inodes found on the lists. Each inode is removed from the lists when it
2750 * has been fully truncated and is freed. The freeing of the inode and its
2751 * removal from the list must be atomic.
2752 *
2753 * If everything we touch in the agi processing loop is already in memory, this
2754 * loop can hold the cpu for a long time. It runs without lock contention,
2755 * memory allocation contention, the need wait for IO, etc, and so will run
2756 * until we either run out of inodes to process, run low on memory or we run out
2757 * of log space.
2758 *
2759 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2760 * and can prevent other filesystem work (such as CIL pushes) from running. This
2761 * can lead to deadlocks if the recovery process runs out of log reservation
2762 * space. Hence we need to yield the CPU when there is other kernel work
2763 * scheduled on this CPU to ensure other scheduled work can run without undue
2764 * latency.
2765 */
2766static void
2767xlog_recover_iunlink_ag(
2768 struct xfs_perag *pag)
2769{
2770 struct xfs_agi *agi;
2771 struct xfs_buf *agibp;
2772 int bucket;
2773 int error;
2774
2775 error = xfs_read_agi(pag, NULL, &agibp);
2776 if (error) {
2777 /*
2778 * AGI is b0rked. Don't process it.
2779 *
2780 * We should probably mark the filesystem as corrupt after we've
2781 * recovered all the ag's we can....
2782 */
2783 return;
2784 }
2785
2786 /*
2787 * Unlock the buffer so that it can be acquired in the normal course of
2788 * the transaction to truncate and free each inode. Because we are not
2789 * racing with anyone else here for the AGI buffer, we don't even need
2790 * to hold it locked to read the initial unlinked bucket entries out of
2791 * the buffer. We keep buffer reference though, so that it stays pinned
2792 * in memory while we need the buffer.
2793 */
2794 agi = agibp->b_addr;
2795 xfs_buf_unlock(agibp);
2796
2797 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2798 error = xlog_recover_iunlink_bucket(pag, agi, bucket);
2799 if (error) {
2800 /*
2801 * Bucket is unrecoverable, so only a repair scan can
2802 * free the remaining unlinked inodes. Just empty the
2803 * bucket and remaining inodes on it unreferenced and
2804 * unfreeable.
2805 */
2806 xlog_recover_clear_agi_bucket(pag, bucket);
2807 }
2808 }
2809
2810 xfs_buf_rele(agibp);
2811}
2812
2813static void
2814xlog_recover_process_iunlinks(
2815 struct xlog *log)
2816{
2817 struct xfs_perag *pag;
2818 xfs_agnumber_t agno;
2819
2820 for_each_perag(log->l_mp, agno, pag)
2821 xlog_recover_iunlink_ag(pag);
2822}
2823
2824STATIC void
2825xlog_unpack_data(
2826 struct xlog_rec_header *rhead,
2827 char *dp,
2828 struct xlog *log)
2829{
2830 int i, j, k;
2831
2832 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2833 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2834 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2835 dp += BBSIZE;
2836 }
2837
2838 if (xfs_has_logv2(mp: log->l_mp)) {
2839 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2840 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2841 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2842 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2843 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2844 dp += BBSIZE;
2845 }
2846 }
2847}
2848
2849/*
2850 * CRC check, unpack and process a log record.
2851 */
2852STATIC int
2853xlog_recover_process(
2854 struct xlog *log,
2855 struct hlist_head rhash[],
2856 struct xlog_rec_header *rhead,
2857 char *dp,
2858 int pass,
2859 struct list_head *buffer_list)
2860{
2861 __le32 old_crc = rhead->h_crc;
2862 __le32 crc;
2863
2864 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2865
2866 /*
2867 * Nothing else to do if this is a CRC verification pass. Just return
2868 * if this a record with a non-zero crc. Unfortunately, mkfs always
2869 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2870 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2871 * know precisely what failed.
2872 */
2873 if (pass == XLOG_RECOVER_CRCPASS) {
2874 if (old_crc && crc != old_crc)
2875 return -EFSBADCRC;
2876 return 0;
2877 }
2878
2879 /*
2880 * We're in the normal recovery path. Issue a warning if and only if the
2881 * CRC in the header is non-zero. This is an advisory warning and the
2882 * zero CRC check prevents warnings from being emitted when upgrading
2883 * the kernel from one that does not add CRCs by default.
2884 */
2885 if (crc != old_crc) {
2886 if (old_crc || xfs_has_crc(mp: log->l_mp)) {
2887 xfs_alert(log->l_mp,
2888 "log record CRC mismatch: found 0x%x, expected 0x%x.",
2889 le32_to_cpu(old_crc),
2890 le32_to_cpu(crc));
2891 xfs_hex_dump(p: dp, length: 32);
2892 }
2893
2894 /*
2895 * If the filesystem is CRC enabled, this mismatch becomes a
2896 * fatal log corruption failure.
2897 */
2898 if (xfs_has_crc(mp: log->l_mp)) {
2899 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2900 return -EFSCORRUPTED;
2901 }
2902 }
2903
2904 xlog_unpack_data(rhead, dp, log);
2905
2906 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2907 buffer_list);
2908}
2909
2910STATIC int
2911xlog_valid_rec_header(
2912 struct xlog *log,
2913 struct xlog_rec_header *rhead,
2914 xfs_daddr_t blkno,
2915 int bufsize)
2916{
2917 int hlen;
2918
2919 if (XFS_IS_CORRUPT(log->l_mp,
2920 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2921 return -EFSCORRUPTED;
2922 if (XFS_IS_CORRUPT(log->l_mp,
2923 (!rhead->h_version ||
2924 (be32_to_cpu(rhead->h_version) &
2925 (~XLOG_VERSION_OKBITS))))) {
2926 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2927 __func__, be32_to_cpu(rhead->h_version));
2928 return -EFSCORRUPTED;
2929 }
2930
2931 /*
2932 * LR body must have data (or it wouldn't have been written)
2933 * and h_len must not be greater than LR buffer size.
2934 */
2935 hlen = be32_to_cpu(rhead->h_len);
2936 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2937 return -EFSCORRUPTED;
2938
2939 if (XFS_IS_CORRUPT(log->l_mp,
2940 blkno > log->l_logBBsize || blkno > INT_MAX))
2941 return -EFSCORRUPTED;
2942 return 0;
2943}
2944
2945/*
2946 * Read the log from tail to head and process the log records found.
2947 * Handle the two cases where the tail and head are in the same cycle
2948 * and where the active portion of the log wraps around the end of
2949 * the physical log separately. The pass parameter is passed through
2950 * to the routines called to process the data and is not looked at
2951 * here.
2952 */
2953STATIC int
2954xlog_do_recovery_pass(
2955 struct xlog *log,
2956 xfs_daddr_t head_blk,
2957 xfs_daddr_t tail_blk,
2958 int pass,
2959 xfs_daddr_t *first_bad) /* out: first bad log rec */
2960{
2961 xlog_rec_header_t *rhead;
2962 xfs_daddr_t blk_no, rblk_no;
2963 xfs_daddr_t rhead_blk;
2964 char *offset;
2965 char *hbp, *dbp;
2966 int error = 0, h_size, h_len;
2967 int error2 = 0;
2968 int bblks, split_bblks;
2969 int hblks, split_hblks, wrapped_hblks;
2970 int i;
2971 struct hlist_head rhash[XLOG_RHASH_SIZE];
2972 LIST_HEAD (buffer_list);
2973
2974 ASSERT(head_blk != tail_blk);
2975 blk_no = rhead_blk = tail_blk;
2976
2977 for (i = 0; i < XLOG_RHASH_SIZE; i++)
2978 INIT_HLIST_HEAD(&rhash[i]);
2979
2980 /*
2981 * Read the header of the tail block and get the iclog buffer size from
2982 * h_size. Use this to tell how many sectors make up the log header.
2983 */
2984 if (xfs_has_logv2(mp: log->l_mp)) {
2985 /*
2986 * When using variable length iclogs, read first sector of
2987 * iclog header and extract the header size from it. Get a
2988 * new hbp that is the correct size.
2989 */
2990 hbp = xlog_alloc_buffer(log, nbblks: 1);
2991 if (!hbp)
2992 return -ENOMEM;
2993
2994 error = xlog_bread(log, blk_no: tail_blk, nbblks: 1, data: hbp, offset: &offset);
2995 if (error)
2996 goto bread_err1;
2997
2998 rhead = (xlog_rec_header_t *)offset;
2999
3000 /*
3001 * xfsprogs has a bug where record length is based on lsunit but
3002 * h_size (iclog size) is hardcoded to 32k. Now that we
3003 * unconditionally CRC verify the unmount record, this means the
3004 * log buffer can be too small for the record and cause an
3005 * overrun.
3006 *
3007 * Detect this condition here. Use lsunit for the buffer size as
3008 * long as this looks like the mkfs case. Otherwise, return an
3009 * error to avoid a buffer overrun.
3010 */
3011 h_size = be32_to_cpu(rhead->h_size);
3012 h_len = be32_to_cpu(rhead->h_len);
3013 if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
3014 rhead->h_num_logops == cpu_to_be32(1)) {
3015 xfs_warn(log->l_mp,
3016 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
3017 h_size, log->l_mp->m_logbsize);
3018 h_size = log->l_mp->m_logbsize;
3019 }
3020
3021 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
3022 if (error)
3023 goto bread_err1;
3024
3025 hblks = xlog_logrec_hblks(log, rhead);
3026 if (hblks != 1) {
3027 kvfree(addr: hbp);
3028 hbp = xlog_alloc_buffer(log, nbblks: hblks);
3029 }
3030 } else {
3031 ASSERT(log->l_sectBBsize == 1);
3032 hblks = 1;
3033 hbp = xlog_alloc_buffer(log, nbblks: 1);
3034 h_size = XLOG_BIG_RECORD_BSIZE;
3035 }
3036
3037 if (!hbp)
3038 return -ENOMEM;
3039 dbp = xlog_alloc_buffer(log, nbblks: BTOBB(h_size));
3040 if (!dbp) {
3041 kvfree(addr: hbp);
3042 return -ENOMEM;
3043 }
3044
3045 memset(rhash, 0, sizeof(rhash));
3046 if (tail_blk > head_blk) {
3047 /*
3048 * Perform recovery around the end of the physical log.
3049 * When the head is not on the same cycle number as the tail,
3050 * we can't do a sequential recovery.
3051 */
3052 while (blk_no < log->l_logBBsize) {
3053 /*
3054 * Check for header wrapping around physical end-of-log
3055 */
3056 offset = hbp;
3057 split_hblks = 0;
3058 wrapped_hblks = 0;
3059 if (blk_no + hblks <= log->l_logBBsize) {
3060 /* Read header in one read */
3061 error = xlog_bread(log, blk_no, nbblks: hblks, data: hbp,
3062 offset: &offset);
3063 if (error)
3064 goto bread_err2;
3065 } else {
3066 /* This LR is split across physical log end */
3067 if (blk_no != log->l_logBBsize) {
3068 /* some data before physical log end */
3069 ASSERT(blk_no <= INT_MAX);
3070 split_hblks = log->l_logBBsize - (int)blk_no;
3071 ASSERT(split_hblks > 0);
3072 error = xlog_bread(log, blk_no,
3073 nbblks: split_hblks, data: hbp,
3074 offset: &offset);
3075 if (error)
3076 goto bread_err2;
3077 }
3078
3079 /*
3080 * Note: this black magic still works with
3081 * large sector sizes (non-512) only because:
3082 * - we increased the buffer size originally
3083 * by 1 sector giving us enough extra space
3084 * for the second read;
3085 * - the log start is guaranteed to be sector
3086 * aligned;
3087 * - we read the log end (LR header start)
3088 * _first_, then the log start (LR header end)
3089 * - order is important.
3090 */
3091 wrapped_hblks = hblks - split_hblks;
3092 error = xlog_bread_noalign(log, blk_no: 0,
3093 nbblks: wrapped_hblks,
3094 data: offset + BBTOB(split_hblks));
3095 if (error)
3096 goto bread_err2;
3097 }
3098 rhead = (xlog_rec_header_t *)offset;
3099 error = xlog_valid_rec_header(log, rhead,
3100 split_hblks ? blk_no : 0, h_size);
3101 if (error)
3102 goto bread_err2;
3103
3104 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3105 blk_no += hblks;
3106
3107 /*
3108 * Read the log record data in multiple reads if it
3109 * wraps around the end of the log. Note that if the
3110 * header already wrapped, blk_no could point past the
3111 * end of the log. The record data is contiguous in
3112 * that case.
3113 */
3114 if (blk_no + bblks <= log->l_logBBsize ||
3115 blk_no >= log->l_logBBsize) {
3116 rblk_no = xlog_wrap_logbno(log, bno: blk_no);
3117 error = xlog_bread(log, blk_no: rblk_no, nbblks: bblks, data: dbp,
3118 offset: &offset);
3119 if (error)
3120 goto bread_err2;
3121 } else {
3122 /* This log record is split across the
3123 * physical end of log */
3124 offset = dbp;
3125 split_bblks = 0;
3126 if (blk_no != log->l_logBBsize) {
3127 /* some data is before the physical
3128 * end of log */
3129 ASSERT(!wrapped_hblks);
3130 ASSERT(blk_no <= INT_MAX);
3131 split_bblks =
3132 log->l_logBBsize - (int)blk_no;
3133 ASSERT(split_bblks > 0);
3134 error = xlog_bread(log, blk_no,
3135 nbblks: split_bblks, data: dbp,
3136 offset: &offset);
3137 if (error)
3138 goto bread_err2;
3139 }
3140
3141 /*
3142 * Note: this black magic still works with
3143 * large sector sizes (non-512) only because:
3144 * - we increased the buffer size originally
3145 * by 1 sector giving us enough extra space
3146 * for the second read;
3147 * - the log start is guaranteed to be sector
3148 * aligned;
3149 * - we read the log end (LR header start)
3150 * _first_, then the log start (LR header end)
3151 * - order is important.
3152 */
3153 error = xlog_bread_noalign(log, blk_no: 0,
3154 nbblks: bblks - split_bblks,
3155 data: offset + BBTOB(split_bblks));
3156 if (error)
3157 goto bread_err2;
3158 }
3159
3160 error = xlog_recover_process(log, rhash, rhead, offset,
3161 pass, &buffer_list);
3162 if (error)
3163 goto bread_err2;
3164
3165 blk_no += bblks;
3166 rhead_blk = blk_no;
3167 }
3168
3169 ASSERT(blk_no >= log->l_logBBsize);
3170 blk_no -= log->l_logBBsize;
3171 rhead_blk = blk_no;
3172 }
3173
3174 /* read first part of physical log */
3175 while (blk_no < head_blk) {
3176 error = xlog_bread(log, blk_no, nbblks: hblks, data: hbp, offset: &offset);
3177 if (error)
3178 goto bread_err2;
3179
3180 rhead = (xlog_rec_header_t *)offset;
3181 error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3182 if (error)
3183 goto bread_err2;
3184
3185 /* blocks in data section */
3186 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3187 error = xlog_bread(log, blk_no: blk_no+hblks, nbblks: bblks, data: dbp,
3188 offset: &offset);
3189 if (error)
3190 goto bread_err2;
3191
3192 error = xlog_recover_process(log, rhash, rhead, offset, pass,
3193 &buffer_list);
3194 if (error)
3195 goto bread_err2;
3196
3197 blk_no += bblks + hblks;
3198 rhead_blk = blk_no;
3199 }
3200
3201 bread_err2:
3202 kvfree(addr: dbp);
3203 bread_err1:
3204 kvfree(addr: hbp);
3205
3206 /*
3207 * Submit buffers that have been dirtied by the last record recovered.
3208 */
3209 if (!list_empty(head: &buffer_list)) {
3210 if (error) {
3211 /*
3212 * If there has been an item recovery error then we
3213 * cannot allow partial checkpoint writeback to
3214 * occur. We might have multiple checkpoints with the
3215 * same start LSN in this buffer list, and partial
3216 * writeback of a checkpoint in this situation can
3217 * prevent future recovery of all the changes in the
3218 * checkpoints at this start LSN.
3219 *
3220 * Note: Shutting down the filesystem will result in the
3221 * delwri submission marking all the buffers stale,
3222 * completing them and cleaning up _XBF_LOGRECOVERY
3223 * state without doing any IO.
3224 */
3225 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3226 }
3227 error2 = xfs_buf_delwri_submit(&buffer_list);
3228 }
3229
3230 if (error && first_bad)
3231 *first_bad = rhead_blk;
3232
3233 /*
3234 * Transactions are freed at commit time but transactions without commit
3235 * records on disk are never committed. Free any that may be left in the
3236 * hash table.
3237 */
3238 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3239 struct hlist_node *tmp;
3240 struct xlog_recover *trans;
3241
3242 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3243 xlog_recover_free_trans(trans);
3244 }
3245
3246 return error ? error : error2;
3247}
3248
3249/*
3250 * Do the recovery of the log. We actually do this in two phases.
3251 * The two passes are necessary in order to implement the function
3252 * of cancelling a record written into the log. The first pass
3253 * determines those things which have been cancelled, and the
3254 * second pass replays log items normally except for those which
3255 * have been cancelled. The handling of the replay and cancellations
3256 * takes place in the log item type specific routines.
3257 *
3258 * The table of items which have cancel records in the log is allocated
3259 * and freed at this level, since only here do we know when all of
3260 * the log recovery has been completed.
3261 */
3262STATIC int
3263xlog_do_log_recovery(
3264 struct xlog *log,
3265 xfs_daddr_t head_blk,
3266 xfs_daddr_t tail_blk)
3267{
3268 int error;
3269
3270 ASSERT(head_blk != tail_blk);
3271
3272 /*
3273 * First do a pass to find all of the cancelled buf log items.
3274 * Store them in the buf_cancel_table for use in the second pass.
3275 */
3276 error = xlog_alloc_buf_cancel_table(log);
3277 if (error)
3278 return error;
3279
3280 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3281 XLOG_RECOVER_PASS1, NULL);
3282 if (error != 0)
3283 goto out_cancel;
3284
3285 /*
3286 * Then do a second pass to actually recover the items in the log.
3287 * When it is complete free the table of buf cancel items.
3288 */
3289 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3290 XLOG_RECOVER_PASS2, NULL);
3291 if (!error)
3292 xlog_check_buf_cancel_table(log);
3293out_cancel:
3294 xlog_free_buf_cancel_table(log);
3295 return error;
3296}
3297
3298/*
3299 * Do the actual recovery
3300 */
3301STATIC int
3302xlog_do_recover(
3303 struct xlog *log,
3304 xfs_daddr_t head_blk,
3305 xfs_daddr_t tail_blk)
3306{
3307 struct xfs_mount *mp = log->l_mp;
3308 struct xfs_buf *bp = mp->m_sb_bp;
3309 struct xfs_sb *sbp = &mp->m_sb;
3310 int error;
3311
3312 trace_xfs_log_recover(log, headblk: head_blk, tailblk: tail_blk);
3313
3314 /*
3315 * First replay the images in the log.
3316 */
3317 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3318 if (error)
3319 return error;
3320
3321 if (xlog_is_shutdown(log))
3322 return -EIO;
3323
3324 /*
3325 * We now update the tail_lsn since much of the recovery has completed
3326 * and there may be space available to use. If there were no extent
3327 * or iunlinks, we can free up the entire log and set the tail_lsn to
3328 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3329 * lsn of the last known good LR on disk. If there are extent frees
3330 * or iunlinks they will have some entries in the AIL; so we look at
3331 * the AIL to determine how to set the tail_lsn.
3332 */
3333 xlog_assign_tail_lsn(mp);
3334
3335 /*
3336 * Now that we've finished replaying all buffer and inode updates,
3337 * re-read the superblock and reverify it.
3338 */
3339 xfs_buf_lock(bp);
3340 xfs_buf_hold(bp);
3341 error = _xfs_buf_read(bp, XBF_READ);
3342 if (error) {
3343 if (!xlog_is_shutdown(log)) {
3344 xfs_buf_ioerror_alert(bp, __this_address);
3345 ASSERT(0);
3346 }
3347 xfs_buf_relse(bp);
3348 return error;
3349 }
3350
3351 /* Convert superblock from on-disk format */
3352 xfs_sb_from_disk(sbp, bp->b_addr);
3353 xfs_buf_relse(bp);
3354
3355 /* re-initialise in-core superblock and geometry structures */
3356 mp->m_features |= xfs_sb_version_to_features(sbp);
3357 xfs_reinit_percpu_counters(mp);
3358 error = xfs_initialize_perag(mp, sbp->sb_agcount, sbp->sb_dblocks,
3359 &mp->m_maxagi);
3360 if (error) {
3361 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3362 return error;
3363 }
3364 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3365
3366 /* Normal transactions can now occur */
3367 clear_bit(XLOG_ACTIVE_RECOVERY, addr: &log->l_opstate);
3368 return 0;
3369}
3370
3371/*
3372 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3373 *
3374 * Return error or zero.
3375 */
3376int
3377xlog_recover(
3378 struct xlog *log)
3379{
3380 xfs_daddr_t head_blk, tail_blk;
3381 int error;
3382
3383 /* find the tail of the log */
3384 error = xlog_find_tail(log, head_blk: &head_blk, tail_blk: &tail_blk);
3385 if (error)
3386 return error;
3387
3388 /*
3389 * The superblock was read before the log was available and thus the LSN
3390 * could not be verified. Check the superblock LSN against the current
3391 * LSN now that it's known.
3392 */
3393 if (xfs_has_crc(mp: log->l_mp) &&
3394 !xfs_log_check_lsn(log->l_mp, xfs_lsn_t: log->l_mp->m_sb.sb_lsn))
3395 return -EINVAL;
3396
3397 if (tail_blk != head_blk) {
3398 /* There used to be a comment here:
3399 *
3400 * disallow recovery on read-only mounts. note -- mount
3401 * checks for ENOSPC and turns it into an intelligent
3402 * error message.
3403 * ...but this is no longer true. Now, unless you specify
3404 * NORECOVERY (in which case this function would never be
3405 * called), we just go ahead and recover. We do this all
3406 * under the vfs layer, so we can get away with it unless
3407 * the device itself is read-only, in which case we fail.
3408 */
3409 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3410 return error;
3411 }
3412
3413 /*
3414 * Version 5 superblock log feature mask validation. We know the
3415 * log is dirty so check if there are any unknown log features
3416 * in what we need to recover. If there are unknown features
3417 * (e.g. unsupported transactions, then simply reject the
3418 * attempt at recovery before touching anything.
3419 */
3420 if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
3421 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3422 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3423 xfs_warn(log->l_mp,
3424"Superblock has unknown incompatible log features (0x%x) enabled.",
3425 (log->l_mp->m_sb.sb_features_log_incompat &
3426 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3427 xfs_warn(log->l_mp,
3428"The log can not be fully and/or safely recovered by this kernel.");
3429 xfs_warn(log->l_mp,
3430"Please recover the log on a kernel that supports the unknown features.");
3431 return -EINVAL;
3432 }
3433
3434 /*
3435 * Delay log recovery if the debug hook is set. This is debug
3436 * instrumentation to coordinate simulation of I/O failures with
3437 * log recovery.
3438 */
3439 if (xfs_globals.log_recovery_delay) {
3440 xfs_notice(log->l_mp,
3441 "Delaying log recovery for %d seconds.",
3442 xfs_globals.log_recovery_delay);
3443 msleep(msecs: xfs_globals.log_recovery_delay * 1000);
3444 }
3445
3446 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3447 log->l_mp->m_logname ? log->l_mp->m_logname
3448 : "internal");
3449
3450 error = xlog_do_recover(log, head_blk, tail_blk);
3451 set_bit(XLOG_RECOVERY_NEEDED, addr: &log->l_opstate);
3452 }
3453 return error;
3454}
3455
3456/*
3457 * In the first part of recovery we replay inodes and buffers and build up the
3458 * list of intents which need to be processed. Here we process the intents and
3459 * clean up the on disk unlinked inode lists. This is separated from the first
3460 * part of recovery so that the root and real-time bitmap inodes can be read in
3461 * from disk in between the two stages. This is necessary so that we can free
3462 * space in the real-time portion of the file system.
3463 *
3464 * We run this whole process under GFP_NOFS allocation context. We do a
3465 * combination of non-transactional and transactional work, yet we really don't
3466 * want to recurse into the filesystem from direct reclaim during any of this
3467 * processing. This allows all the recovery code run here not to care about the
3468 * memory allocation context it is running in.
3469 */
3470int
3471xlog_recover_finish(
3472 struct xlog *log)
3473{
3474 unsigned int nofs_flags = memalloc_nofs_save();
3475 int error;
3476
3477 error = xlog_recover_process_intents(log);
3478 if (error) {
3479 /*
3480 * Cancel all the unprocessed intent items now so that we don't
3481 * leave them pinned in the AIL. This can cause the AIL to
3482 * livelock on the pinned item if anyone tries to push the AIL
3483 * (inode reclaim does this) before we get around to
3484 * xfs_log_mount_cancel.
3485 */
3486 xlog_recover_cancel_intents(log);
3487 xfs_alert(log->l_mp, "Failed to recover intents");
3488 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3489 goto out_error;
3490 }
3491
3492 /*
3493 * Sync the log to get all the intents out of the AIL. This isn't
3494 * absolutely necessary, but it helps in case the unlink transactions
3495 * would have problems pushing the intents out of the way.
3496 */
3497 xfs_log_force(mp: log->l_mp, XFS_LOG_SYNC);
3498
3499 /*
3500 * Now that we've recovered the log and all the intents, we can clear
3501 * the log incompat feature bits in the superblock because there's no
3502 * longer anything to protect. We rely on the AIL push to write out the
3503 * updated superblock after everything else.
3504 */
3505 if (xfs_clear_incompat_log_features(mp: log->l_mp)) {
3506 error = xfs_sync_sb(log->l_mp, false);
3507 if (error < 0) {
3508 xfs_alert(log->l_mp,
3509 "Failed to clear log incompat features on recovery");
3510 goto out_error;
3511 }
3512 }
3513
3514 xlog_recover_process_iunlinks(log);
3515
3516 /*
3517 * Recover any CoW staging blocks that are still referenced by the
3518 * ondisk refcount metadata. During mount there cannot be any live
3519 * staging extents as we have not permitted any user modifications.
3520 * Therefore, it is safe to free them all right now, even on a
3521 * read-only mount.
3522 */
3523 error = xfs_reflink_recover_cow(mp: log->l_mp);
3524 if (error) {
3525 xfs_alert(log->l_mp,
3526 "Failed to recover leftover CoW staging extents, err %d.",
3527 error);
3528 /*
3529 * If we get an error here, make sure the log is shut down
3530 * but return zero so that any log items committed since the
3531 * end of intents processing can be pushed through the CIL
3532 * and AIL.
3533 */
3534 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3535 error = 0;
3536 goto out_error;
3537 }
3538
3539out_error:
3540 memalloc_nofs_restore(flags: nofs_flags);
3541 return error;
3542}
3543
3544void
3545xlog_recover_cancel(
3546 struct xlog *log)
3547{
3548 if (xlog_recovery_needed(log))
3549 xlog_recover_cancel_intents(log);
3550}
3551
3552

source code of linux/fs/xfs/xfs_log_recover.c