1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
4 | * All Rights Reserved. |
5 | */ |
6 | #include "xfs.h" |
7 | #include "xfs_fs.h" |
8 | #include "xfs_shared.h" |
9 | #include "xfs_format.h" |
10 | #include "xfs_log_format.h" |
11 | #include "xfs_trans_resv.h" |
12 | #include "xfs_bit.h" |
13 | #include "xfs_sb.h" |
14 | #include "xfs_mount.h" |
15 | #include "xfs_inode.h" |
16 | #include "xfs_dir2.h" |
17 | #include "xfs_ialloc.h" |
18 | #include "xfs_alloc.h" |
19 | #include "xfs_rtalloc.h" |
20 | #include "xfs_bmap.h" |
21 | #include "xfs_trans.h" |
22 | #include "xfs_trans_priv.h" |
23 | #include "xfs_log.h" |
24 | #include "xfs_log_priv.h" |
25 | #include "xfs_error.h" |
26 | #include "xfs_quota.h" |
27 | #include "xfs_fsops.h" |
28 | #include "xfs_icache.h" |
29 | #include "xfs_sysfs.h" |
30 | #include "xfs_rmap_btree.h" |
31 | #include "xfs_refcount_btree.h" |
32 | #include "xfs_reflink.h" |
33 | #include "xfs_extent_busy.h" |
34 | #include "xfs_health.h" |
35 | #include "xfs_trace.h" |
36 | #include "xfs_ag.h" |
37 | #include "xfs_rtbitmap.h" |
38 | #include "xfs_metafile.h" |
39 | #include "xfs_rtgroup.h" |
40 | #include "xfs_rtrmap_btree.h" |
41 | #include "xfs_rtrefcount_btree.h" |
42 | #include "scrub/stats.h" |
43 | #include "xfs_zone_alloc.h" |
44 | |
45 | static DEFINE_MUTEX(xfs_uuid_table_mutex); |
46 | static int xfs_uuid_table_size; |
47 | static uuid_t *xfs_uuid_table; |
48 | |
49 | void |
50 | xfs_uuid_table_free(void) |
51 | { |
52 | if (xfs_uuid_table_size == 0) |
53 | return; |
54 | kfree(objp: xfs_uuid_table); |
55 | xfs_uuid_table = NULL; |
56 | xfs_uuid_table_size = 0; |
57 | } |
58 | |
59 | /* |
60 | * See if the UUID is unique among mounted XFS filesystems. |
61 | * Mount fails if UUID is nil or a FS with the same UUID is already mounted. |
62 | */ |
63 | STATIC int |
64 | xfs_uuid_mount( |
65 | struct xfs_mount *mp) |
66 | { |
67 | uuid_t *uuid = &mp->m_sb.sb_uuid; |
68 | int hole, i; |
69 | |
70 | /* Publish UUID in struct super_block */ |
71 | super_set_uuid(sb: mp->m_super, uuid: uuid->b, len: sizeof(*uuid)); |
72 | |
73 | if (xfs_has_nouuid(mp)) |
74 | return 0; |
75 | |
76 | if (uuid_is_null(uuid)) { |
77 | xfs_warn(mp, "Filesystem has null UUID - can't mount"); |
78 | return -EINVAL; |
79 | } |
80 | |
81 | mutex_lock(&xfs_uuid_table_mutex); |
82 | for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { |
83 | if (uuid_is_null(uuid: &xfs_uuid_table[i])) { |
84 | hole = i; |
85 | continue; |
86 | } |
87 | if (uuid_equal(u1: uuid, u2: &xfs_uuid_table[i])) |
88 | goto out_duplicate; |
89 | } |
90 | |
91 | if (hole < 0) { |
92 | xfs_uuid_table = krealloc(xfs_uuid_table, |
93 | (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), |
94 | GFP_KERNEL | __GFP_NOFAIL); |
95 | hole = xfs_uuid_table_size++; |
96 | } |
97 | xfs_uuid_table[hole] = *uuid; |
98 | mutex_unlock(lock: &xfs_uuid_table_mutex); |
99 | |
100 | return 0; |
101 | |
102 | out_duplicate: |
103 | mutex_unlock(lock: &xfs_uuid_table_mutex); |
104 | xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); |
105 | return -EINVAL; |
106 | } |
107 | |
108 | STATIC void |
109 | xfs_uuid_unmount( |
110 | struct xfs_mount *mp) |
111 | { |
112 | uuid_t *uuid = &mp->m_sb.sb_uuid; |
113 | int i; |
114 | |
115 | if (xfs_has_nouuid(mp)) |
116 | return; |
117 | |
118 | mutex_lock(&xfs_uuid_table_mutex); |
119 | for (i = 0; i < xfs_uuid_table_size; i++) { |
120 | if (uuid_is_null(uuid: &xfs_uuid_table[i])) |
121 | continue; |
122 | if (!uuid_equal(u1: uuid, u2: &xfs_uuid_table[i])) |
123 | continue; |
124 | memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); |
125 | break; |
126 | } |
127 | ASSERT(i < xfs_uuid_table_size); |
128 | mutex_unlock(lock: &xfs_uuid_table_mutex); |
129 | } |
130 | |
131 | /* |
132 | * Check size of device based on the (data/realtime) block count. |
133 | * Note: this check is used by the growfs code as well as mount. |
134 | */ |
135 | int |
136 | xfs_sb_validate_fsb_count( |
137 | xfs_sb_t *sbp, |
138 | uint64_t nblocks) |
139 | { |
140 | uint64_t max_bytes; |
141 | |
142 | ASSERT(sbp->sb_blocklog >= BBSHIFT); |
143 | |
144 | if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) |
145 | return -EFBIG; |
146 | |
147 | /* Limited by ULONG_MAX of page cache index */ |
148 | if (max_bytes >> PAGE_SHIFT > ULONG_MAX) |
149 | return -EFBIG; |
150 | return 0; |
151 | } |
152 | |
153 | /* |
154 | * xfs_readsb |
155 | * |
156 | * Does the initial read of the superblock. |
157 | */ |
158 | int |
159 | xfs_readsb( |
160 | struct xfs_mount *mp, |
161 | int flags) |
162 | { |
163 | unsigned int sector_size; |
164 | struct xfs_buf *bp; |
165 | struct xfs_sb *sbp = &mp->m_sb; |
166 | int error; |
167 | int loud = !(flags & XFS_MFSI_QUIET); |
168 | const struct xfs_buf_ops *buf_ops; |
169 | |
170 | ASSERT(mp->m_sb_bp == NULL); |
171 | ASSERT(mp->m_ddev_targp != NULL); |
172 | |
173 | /* |
174 | * For the initial read, we must guess at the sector |
175 | * size based on the block device. It's enough to |
176 | * get the sb_sectsize out of the superblock and |
177 | * then reread with the proper length. |
178 | * We don't verify it yet, because it may not be complete. |
179 | */ |
180 | sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); |
181 | buf_ops = NULL; |
182 | |
183 | /* |
184 | * Allocate a (locked) buffer to hold the superblock. This will be kept |
185 | * around at all times to optimize access to the superblock. |
186 | */ |
187 | reread: |
188 | error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, |
189 | BTOBB(sector_size), &bp, buf_ops); |
190 | if (error) { |
191 | if (loud) |
192 | xfs_warn(mp, "SB validate failed with error %d.", error); |
193 | /* bad CRC means corrupted metadata */ |
194 | if (error == -EFSBADCRC) |
195 | error = -EFSCORRUPTED; |
196 | return error; |
197 | } |
198 | |
199 | /* |
200 | * Initialize the mount structure from the superblock. |
201 | */ |
202 | xfs_sb_from_disk(sbp, bp->b_addr); |
203 | |
204 | /* |
205 | * If we haven't validated the superblock, do so now before we try |
206 | * to check the sector size and reread the superblock appropriately. |
207 | */ |
208 | if (sbp->sb_magicnum != XFS_SB_MAGIC) { |
209 | if (loud) |
210 | xfs_warn(mp, "Invalid superblock magic number"); |
211 | error = -EINVAL; |
212 | goto release_buf; |
213 | } |
214 | |
215 | /* |
216 | * We must be able to do sector-sized and sector-aligned IO. |
217 | */ |
218 | if (sector_size > sbp->sb_sectsize) { |
219 | if (loud) |
220 | xfs_warn(mp, "device supports %u byte sectors (not %u)", |
221 | sector_size, sbp->sb_sectsize); |
222 | error = -ENOSYS; |
223 | goto release_buf; |
224 | } |
225 | |
226 | if (buf_ops == NULL) { |
227 | /* |
228 | * Re-read the superblock so the buffer is correctly sized, |
229 | * and properly verified. |
230 | */ |
231 | xfs_buf_relse(bp); |
232 | sector_size = sbp->sb_sectsize; |
233 | buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; |
234 | goto reread; |
235 | } |
236 | |
237 | mp->m_features |= xfs_sb_version_to_features(sbp); |
238 | xfs_reinit_percpu_counters(mp); |
239 | |
240 | /* |
241 | * If logged xattrs are enabled after log recovery finishes, then set |
242 | * the opstate so that log recovery will work properly. |
243 | */ |
244 | if (xfs_sb_version_haslogxattrs(&mp->m_sb)) |
245 | xfs_set_using_logged_xattrs(mp); |
246 | |
247 | /* no need to be quiet anymore, so reset the buf ops */ |
248 | bp->b_ops = &xfs_sb_buf_ops; |
249 | |
250 | mp->m_sb_bp = bp; |
251 | xfs_buf_unlock(bp); |
252 | return 0; |
253 | |
254 | release_buf: |
255 | xfs_buf_relse(bp); |
256 | return error; |
257 | } |
258 | |
259 | /* |
260 | * If the sunit/swidth change would move the precomputed root inode value, we |
261 | * must reject the ondisk change because repair will stumble over that. |
262 | * However, we allow the mount to proceed because we never rejected this |
263 | * combination before. Returns true to update the sb, false otherwise. |
264 | */ |
265 | static inline int |
266 | xfs_check_new_dalign( |
267 | struct xfs_mount *mp, |
268 | int new_dalign, |
269 | bool *update_sb) |
270 | { |
271 | struct xfs_sb *sbp = &mp->m_sb; |
272 | xfs_ino_t calc_ino; |
273 | |
274 | calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); |
275 | trace_xfs_check_new_dalign(mp, new_dalign, calc_rootino: calc_ino); |
276 | |
277 | if (sbp->sb_rootino == calc_ino) { |
278 | *update_sb = true; |
279 | return 0; |
280 | } |
281 | |
282 | xfs_warn(mp, |
283 | "Cannot change stripe alignment; would require moving root inode."); |
284 | |
285 | /* |
286 | * XXX: Next time we add a new incompat feature, this should start |
287 | * returning -EINVAL to fail the mount. Until then, spit out a warning |
288 | * that we're ignoring the administrator's instructions. |
289 | */ |
290 | xfs_warn(mp, "Skipping superblock stripe alignment update."); |
291 | *update_sb = false; |
292 | return 0; |
293 | } |
294 | |
295 | /* |
296 | * If we were provided with new sunit/swidth values as mount options, make sure |
297 | * that they pass basic alignment and superblock feature checks, and convert |
298 | * them into the same units (FSB) that everything else expects. This step |
299 | * /must/ be done before computing the inode geometry. |
300 | */ |
301 | STATIC int |
302 | xfs_validate_new_dalign( |
303 | struct xfs_mount *mp) |
304 | { |
305 | if (mp->m_dalign == 0) |
306 | return 0; |
307 | |
308 | /* |
309 | * If stripe unit and stripe width are not multiples |
310 | * of the fs blocksize turn off alignment. |
311 | */ |
312 | if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || |
313 | (BBTOB(mp->m_swidth) & mp->m_blockmask)) { |
314 | xfs_warn(mp, |
315 | "alignment check failed: sunit/swidth vs. blocksize(%d)", |
316 | mp->m_sb.sb_blocksize); |
317 | return -EINVAL; |
318 | } |
319 | |
320 | /* |
321 | * Convert the stripe unit and width to FSBs. |
322 | */ |
323 | mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); |
324 | if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { |
325 | xfs_warn(mp, |
326 | "alignment check failed: sunit/swidth vs. agsize(%d)", |
327 | mp->m_sb.sb_agblocks); |
328 | return -EINVAL; |
329 | } |
330 | |
331 | if (!mp->m_dalign) { |
332 | xfs_warn(mp, |
333 | "alignment check failed: sunit(%d) less than bsize(%d)", |
334 | mp->m_dalign, mp->m_sb.sb_blocksize); |
335 | return -EINVAL; |
336 | } |
337 | |
338 | mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); |
339 | |
340 | if (!xfs_has_dalign(mp)) { |
341 | xfs_warn(mp, |
342 | "cannot change alignment: superblock does not support data alignment"); |
343 | return -EINVAL; |
344 | } |
345 | |
346 | return 0; |
347 | } |
348 | |
349 | /* Update alignment values based on mount options and sb values. */ |
350 | STATIC int |
351 | xfs_update_alignment( |
352 | struct xfs_mount *mp) |
353 | { |
354 | struct xfs_sb *sbp = &mp->m_sb; |
355 | |
356 | if (mp->m_dalign) { |
357 | bool update_sb; |
358 | int error; |
359 | |
360 | if (sbp->sb_unit == mp->m_dalign && |
361 | sbp->sb_width == mp->m_swidth) |
362 | return 0; |
363 | |
364 | error = xfs_check_new_dalign(mp, new_dalign: mp->m_dalign, update_sb: &update_sb); |
365 | if (error || !update_sb) |
366 | return error; |
367 | |
368 | sbp->sb_unit = mp->m_dalign; |
369 | sbp->sb_width = mp->m_swidth; |
370 | mp->m_update_sb = true; |
371 | } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { |
372 | mp->m_dalign = sbp->sb_unit; |
373 | mp->m_swidth = sbp->sb_width; |
374 | } |
375 | |
376 | return 0; |
377 | } |
378 | |
379 | /* |
380 | * precalculate the low space thresholds for dynamic speculative preallocation. |
381 | */ |
382 | void |
383 | xfs_set_low_space_thresholds( |
384 | struct xfs_mount *mp) |
385 | { |
386 | uint64_t dblocks = mp->m_sb.sb_dblocks; |
387 | uint64_t rtexts = mp->m_sb.sb_rextents; |
388 | int i; |
389 | |
390 | do_div(dblocks, 100); |
391 | do_div(rtexts, 100); |
392 | |
393 | for (i = 0; i < XFS_LOWSP_MAX; i++) { |
394 | mp->m_low_space[i] = dblocks * (i + 1); |
395 | mp->m_low_rtexts[i] = rtexts * (i + 1); |
396 | } |
397 | } |
398 | |
399 | /* |
400 | * Check that the data (and log if separate) is an ok size. |
401 | */ |
402 | STATIC int |
403 | xfs_check_sizes( |
404 | struct xfs_mount *mp) |
405 | { |
406 | struct xfs_buf *bp; |
407 | xfs_daddr_t d; |
408 | int error; |
409 | |
410 | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
411 | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { |
412 | xfs_warn(mp, "filesystem size mismatch detected"); |
413 | return -EFBIG; |
414 | } |
415 | error = xfs_buf_read_uncached(target: mp->m_ddev_targp, |
416 | daddr: d - XFS_FSS_TO_BB(mp, 1), |
417 | numblks: XFS_FSS_TO_BB(mp, 1), bpp: &bp, NULL); |
418 | if (error) { |
419 | xfs_warn(mp, "last sector read failed"); |
420 | return error; |
421 | } |
422 | xfs_buf_relse(bp); |
423 | |
424 | if (mp->m_logdev_targp == mp->m_ddev_targp) |
425 | return 0; |
426 | |
427 | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); |
428 | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { |
429 | xfs_warn(mp, "log size mismatch detected"); |
430 | return -EFBIG; |
431 | } |
432 | error = xfs_buf_read_uncached(target: mp->m_logdev_targp, |
433 | daddr: d - XFS_FSB_TO_BB(mp, 1), |
434 | numblks: XFS_FSB_TO_BB(mp, 1), bpp: &bp, NULL); |
435 | if (error) { |
436 | xfs_warn(mp, "log device read failed"); |
437 | return error; |
438 | } |
439 | xfs_buf_relse(bp); |
440 | return 0; |
441 | } |
442 | |
443 | /* |
444 | * Clear the quotaflags in memory and in the superblock. |
445 | */ |
446 | int |
447 | xfs_mount_reset_sbqflags( |
448 | struct xfs_mount *mp) |
449 | { |
450 | mp->m_qflags = 0; |
451 | |
452 | /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ |
453 | if (mp->m_sb.sb_qflags == 0) |
454 | return 0; |
455 | spin_lock(lock: &mp->m_sb_lock); |
456 | mp->m_sb.sb_qflags = 0; |
457 | spin_unlock(lock: &mp->m_sb_lock); |
458 | |
459 | if (!xfs_fs_writable(mp, level: SB_FREEZE_WRITE)) |
460 | return 0; |
461 | |
462 | return xfs_sync_sb(mp, false); |
463 | } |
464 | |
465 | static const char *const xfs_free_pool_name[] = { |
466 | [XC_FREE_BLOCKS] = "free blocks", |
467 | [XC_FREE_RTEXTENTS] = "free rt extents", |
468 | [XC_FREE_RTAVAILABLE] = "available rt extents", |
469 | }; |
470 | |
471 | uint64_t |
472 | xfs_default_resblks( |
473 | struct xfs_mount *mp, |
474 | enum xfs_free_counter ctr) |
475 | { |
476 | switch (ctr) { |
477 | case XC_FREE_BLOCKS: |
478 | /* |
479 | * Default to 5% or 8192 FSBs of space reserved, whichever is |
480 | * smaller. |
481 | * |
482 | * This is intended to cover concurrent allocation transactions |
483 | * when we initially hit ENOSPC. These each require a 4 block |
484 | * reservation. Hence by default we cover roughly 2000 |
485 | * concurrent allocation reservations. |
486 | */ |
487 | return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL); |
488 | case XC_FREE_RTEXTENTS: |
489 | case XC_FREE_RTAVAILABLE: |
490 | if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp)) |
491 | return xfs_zoned_default_resblks(mp, ctr: ctr); |
492 | return 0; |
493 | default: |
494 | ASSERT(0); |
495 | return 0; |
496 | } |
497 | } |
498 | |
499 | /* Ensure the summary counts are correct. */ |
500 | STATIC int |
501 | xfs_check_summary_counts( |
502 | struct xfs_mount *mp) |
503 | { |
504 | int error = 0; |
505 | |
506 | /* |
507 | * The AG0 superblock verifier rejects in-progress filesystems, |
508 | * so we should never see the flag set this far into mounting. |
509 | */ |
510 | if (mp->m_sb.sb_inprogress) { |
511 | xfs_err(mp, "sb_inprogress set after log recovery??"); |
512 | WARN_ON(1); |
513 | return -EFSCORRUPTED; |
514 | } |
515 | |
516 | /* |
517 | * Now the log is mounted, we know if it was an unclean shutdown or |
518 | * not. If it was, with the first phase of recovery has completed, we |
519 | * have consistent AG blocks on disk. We have not recovered EFIs yet, |
520 | * but they are recovered transactionally in the second recovery phase |
521 | * later. |
522 | * |
523 | * If the log was clean when we mounted, we can check the summary |
524 | * counters. If any of them are obviously incorrect, we can recompute |
525 | * them from the AGF headers in the next step. |
526 | */ |
527 | if (xfs_is_clean(mp) && |
528 | (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || |
529 | !xfs_verify_icount(mp, mp->m_sb.sb_icount) || |
530 | mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) |
531 | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); |
532 | |
533 | /* |
534 | * We can safely re-initialise incore superblock counters from the |
535 | * per-ag data. These may not be correct if the filesystem was not |
536 | * cleanly unmounted, so we waited for recovery to finish before doing |
537 | * this. |
538 | * |
539 | * If the filesystem was cleanly unmounted or the previous check did |
540 | * not flag anything weird, then we can trust the values in the |
541 | * superblock to be correct and we don't need to do anything here. |
542 | * Otherwise, recalculate the summary counters. |
543 | */ |
544 | if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || |
545 | xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { |
546 | error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); |
547 | if (error) |
548 | return error; |
549 | } |
550 | |
551 | /* |
552 | * Older kernels misused sb_frextents to reflect both incore |
553 | * reservations made by running transactions and the actual count of |
554 | * free rt extents in the ondisk metadata. Transactions committed |
555 | * during runtime can therefore contain a superblock update that |
556 | * undercounts the number of free rt extents tracked in the rt bitmap. |
557 | * A clean unmount record will have the correct frextents value since |
558 | * there can be no other transactions running at that point. |
559 | * |
560 | * If we're mounting the rt volume after recovering the log, recompute |
561 | * frextents from the rtbitmap file to fix the inconsistency. |
562 | */ |
563 | if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) { |
564 | error = xfs_rtalloc_reinit_frextents(mp); |
565 | if (error) |
566 | return error; |
567 | } |
568 | |
569 | return 0; |
570 | } |
571 | |
572 | static void |
573 | xfs_unmount_check( |
574 | struct xfs_mount *mp) |
575 | { |
576 | if (xfs_is_shutdown(mp)) |
577 | return; |
578 | |
579 | if (percpu_counter_sum(fbc: &mp->m_ifree) > |
580 | percpu_counter_sum(fbc: &mp->m_icount)) { |
581 | xfs_alert(mp, "ifree/icount mismatch at unmount"); |
582 | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); |
583 | } |
584 | } |
585 | |
586 | /* |
587 | * Flush and reclaim dirty inodes in preparation for unmount. Inodes and |
588 | * internal inode structures can be sitting in the CIL and AIL at this point, |
589 | * so we need to unpin them, write them back and/or reclaim them before unmount |
590 | * can proceed. In other words, callers are required to have inactivated all |
591 | * inodes. |
592 | * |
593 | * An inode cluster that has been freed can have its buffer still pinned in |
594 | * memory because the transaction is still sitting in a iclog. The stale inodes |
595 | * on that buffer will be pinned to the buffer until the transaction hits the |
596 | * disk and the callbacks run. Pushing the AIL will skip the stale inodes and |
597 | * may never see the pinned buffer, so nothing will push out the iclog and |
598 | * unpin the buffer. |
599 | * |
600 | * Hence we need to force the log to unpin everything first. However, log |
601 | * forces don't wait for the discards they issue to complete, so we have to |
602 | * explicitly wait for them to complete here as well. |
603 | * |
604 | * Then we can tell the world we are unmounting so that error handling knows |
605 | * that the filesystem is going away and we should error out anything that we |
606 | * have been retrying in the background. This will prevent never-ending |
607 | * retries in AIL pushing from hanging the unmount. |
608 | * |
609 | * Finally, we can push the AIL to clean all the remaining dirty objects, then |
610 | * reclaim the remaining inodes that are still in memory at this point in time. |
611 | */ |
612 | static void |
613 | xfs_unmount_flush_inodes( |
614 | struct xfs_mount *mp) |
615 | { |
616 | xfs_log_force(mp, XFS_LOG_SYNC); |
617 | xfs_extent_busy_wait_all(mp); |
618 | flush_workqueue(xfs_discard_wq); |
619 | |
620 | xfs_set_unmounting(mp); |
621 | |
622 | xfs_ail_push_all_sync(ailp: mp->m_ail); |
623 | xfs_inodegc_stop(mp); |
624 | cancel_delayed_work_sync(dwork: &mp->m_reclaim_work); |
625 | xfs_reclaim_inodes(mp); |
626 | xfs_health_unmount(mp); |
627 | } |
628 | |
629 | static void |
630 | xfs_mount_setup_inode_geom( |
631 | struct xfs_mount *mp) |
632 | { |
633 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
634 | |
635 | igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); |
636 | ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); |
637 | |
638 | xfs_ialloc_setup_geometry(mp); |
639 | } |
640 | |
641 | /* Mount the metadata directory tree root. */ |
642 | STATIC int |
643 | xfs_mount_setup_metadir( |
644 | struct xfs_mount *mp) |
645 | { |
646 | int error; |
647 | |
648 | /* Load the metadata directory root inode into memory. */ |
649 | error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR, |
650 | &mp->m_metadirip); |
651 | if (error) |
652 | xfs_warn(mp, "Failed to load metadir root directory, error %d", |
653 | error); |
654 | return error; |
655 | } |
656 | |
657 | /* Compute maximum possible height for per-AG btree types for this fs. */ |
658 | static inline void |
659 | xfs_agbtree_compute_maxlevels( |
660 | struct xfs_mount *mp) |
661 | { |
662 | unsigned int levels; |
663 | |
664 | levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); |
665 | levels = max(levels, mp->m_rmap_maxlevels); |
666 | mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); |
667 | } |
668 | |
669 | /* Maximum atomic write IO size that the kernel allows. */ |
670 | static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp) |
671 | { |
672 | return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT)); |
673 | } |
674 | |
675 | static inline unsigned int max_pow_of_two_factor(const unsigned int nr) |
676 | { |
677 | return 1 << (ffs(nr) - 1); |
678 | } |
679 | |
680 | /* |
681 | * If the data device advertises atomic write support, limit the size of data |
682 | * device atomic writes to the greatest power-of-two factor of the AG size so |
683 | * that every atomic write unit aligns with the start of every AG. This is |
684 | * required so that the per-AG allocations for an atomic write will always be |
685 | * aligned compatibly with the alignment requirements of the storage. |
686 | * |
687 | * If the data device doesn't advertise atomic writes, then there are no |
688 | * alignment restrictions and the largest out-of-place write we can do |
689 | * ourselves is the number of blocks that user files can allocate from any AG. |
690 | */ |
691 | static inline xfs_extlen_t xfs_calc_perag_awu_max(struct xfs_mount *mp) |
692 | { |
693 | if (mp->m_ddev_targp->bt_bdev_awu_min > 0) |
694 | return max_pow_of_two_factor(nr: mp->m_sb.sb_agblocks); |
695 | return rounddown_pow_of_two(mp->m_ag_max_usable); |
696 | } |
697 | |
698 | /* |
699 | * Reflink on the realtime device requires rtgroups, and atomic writes require |
700 | * reflink. |
701 | * |
702 | * If the realtime device advertises atomic write support, limit the size of |
703 | * data device atomic writes to the greatest power-of-two factor of the rtgroup |
704 | * size so that every atomic write unit aligns with the start of every rtgroup. |
705 | * This is required so that the per-rtgroup allocations for an atomic write |
706 | * will always be aligned compatibly with the alignment requirements of the |
707 | * storage. |
708 | * |
709 | * If the rt device doesn't advertise atomic writes, then there are no |
710 | * alignment restrictions and the largest out-of-place write we can do |
711 | * ourselves is the number of blocks that user files can allocate from any |
712 | * rtgroup. |
713 | */ |
714 | static inline xfs_extlen_t xfs_calc_rtgroup_awu_max(struct xfs_mount *mp) |
715 | { |
716 | struct xfs_groups *rgs = &mp->m_groups[XG_TYPE_RTG]; |
717 | |
718 | if (rgs->blocks == 0) |
719 | return 0; |
720 | if (mp->m_rtdev_targp && mp->m_rtdev_targp->bt_bdev_awu_min > 0) |
721 | return max_pow_of_two_factor(nr: rgs->blocks); |
722 | return rounddown_pow_of_two(rgs->blocks); |
723 | } |
724 | |
725 | /* Compute the maximum atomic write unit size for each section. */ |
726 | static inline void |
727 | xfs_calc_atomic_write_unit_max( |
728 | struct xfs_mount *mp) |
729 | { |
730 | struct xfs_groups *ags = &mp->m_groups[XG_TYPE_AG]; |
731 | struct xfs_groups *rgs = &mp->m_groups[XG_TYPE_RTG]; |
732 | |
733 | const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); |
734 | const xfs_extlen_t max_ioend = xfs_reflink_max_atomic_cow(mp); |
735 | const xfs_extlen_t max_agsize = xfs_calc_perag_awu_max(mp); |
736 | const xfs_extlen_t max_rgsize = xfs_calc_rtgroup_awu_max(mp); |
737 | |
738 | ags->awu_max = min3(max_write, max_ioend, max_agsize); |
739 | rgs->awu_max = min3(max_write, max_ioend, max_rgsize); |
740 | |
741 | trace_xfs_calc_atomic_write_unit_max(mp, max_write: max_write, max_ioend: max_ioend, |
742 | max_agsize: max_agsize, max_rgsize: max_rgsize); |
743 | } |
744 | |
745 | /* |
746 | * Try to set the atomic write maximum to a new value that we got from |
747 | * userspace via mount option. |
748 | */ |
749 | int |
750 | xfs_set_max_atomic_write_opt( |
751 | struct xfs_mount *mp, |
752 | unsigned long long new_max_bytes) |
753 | { |
754 | const xfs_filblks_t new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes); |
755 | const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); |
756 | const xfs_extlen_t max_group = |
757 | max(mp->m_groups[XG_TYPE_AG].blocks, |
758 | mp->m_groups[XG_TYPE_RTG].blocks); |
759 | const xfs_extlen_t max_group_write = |
760 | max(xfs_calc_perag_awu_max(mp), xfs_calc_rtgroup_awu_max(mp)); |
761 | int error; |
762 | |
763 | if (new_max_bytes == 0) |
764 | goto set_limit; |
765 | |
766 | ASSERT(max_write <= U32_MAX); |
767 | |
768 | /* generic_atomic_write_valid enforces power of two length */ |
769 | if (!is_power_of_2(n: new_max_bytes)) { |
770 | xfs_warn(mp, |
771 | "max atomic write size of %llu bytes is not a power of 2", |
772 | new_max_bytes); |
773 | return -EINVAL; |
774 | } |
775 | |
776 | if (new_max_bytes & mp->m_blockmask) { |
777 | xfs_warn(mp, |
778 | "max atomic write size of %llu bytes not aligned with fsblock", |
779 | new_max_bytes); |
780 | return -EINVAL; |
781 | } |
782 | |
783 | if (new_max_fsbs > max_write) { |
784 | xfs_warn(mp, |
785 | "max atomic write size of %lluk cannot be larger than max write size %lluk", |
786 | new_max_bytes >> 10, |
787 | XFS_FSB_TO_B(mp, max_write) >> 10); |
788 | return -EINVAL; |
789 | } |
790 | |
791 | if (new_max_fsbs > max_group) { |
792 | xfs_warn(mp, |
793 | "max atomic write size of %lluk cannot be larger than allocation group size %lluk", |
794 | new_max_bytes >> 10, |
795 | XFS_FSB_TO_B(mp, max_group) >> 10); |
796 | return -EINVAL; |
797 | } |
798 | |
799 | if (new_max_fsbs > max_group_write) { |
800 | xfs_warn(mp, |
801 | "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk", |
802 | new_max_bytes >> 10, |
803 | XFS_FSB_TO_B(mp, max_group_write) >> 10); |
804 | return -EINVAL; |
805 | } |
806 | |
807 | set_limit: |
808 | error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs); |
809 | if (error) { |
810 | xfs_warn(mp, |
811 | "cannot support completing atomic writes of %lluk", |
812 | new_max_bytes >> 10); |
813 | return error; |
814 | } |
815 | |
816 | xfs_calc_atomic_write_unit_max(mp); |
817 | mp->m_awu_max_bytes = new_max_bytes; |
818 | return 0; |
819 | } |
820 | |
821 | /* Compute maximum possible height for realtime btree types for this fs. */ |
822 | static inline void |
823 | xfs_rtbtree_compute_maxlevels( |
824 | struct xfs_mount *mp) |
825 | { |
826 | mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels, |
827 | mp->m_rtrefc_maxlevels); |
828 | } |
829 | |
830 | /* |
831 | * This function does the following on an initial mount of a file system: |
832 | * - reads the superblock from disk and init the mount struct |
833 | * - if we're a 32-bit kernel, do a size check on the superblock |
834 | * so we don't mount terabyte filesystems |
835 | * - init mount struct realtime fields |
836 | * - allocate inode hash table for fs |
837 | * - init directory manager |
838 | * - perform recovery and init the log manager |
839 | */ |
840 | int |
841 | xfs_mountfs( |
842 | struct xfs_mount *mp) |
843 | { |
844 | struct xfs_sb *sbp = &(mp->m_sb); |
845 | struct xfs_inode *rip; |
846 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
847 | uint quotamount = 0; |
848 | uint quotaflags = 0; |
849 | int error = 0; |
850 | int i; |
851 | |
852 | xfs_sb_mount_common(mp, sbp); |
853 | |
854 | /* |
855 | * Check for a mismatched features2 values. Older kernels read & wrote |
856 | * into the wrong sb offset for sb_features2 on some platforms due to |
857 | * xfs_sb_t not being 64bit size aligned when sb_features2 was added, |
858 | * which made older superblock reading/writing routines swap it as a |
859 | * 64-bit value. |
860 | * |
861 | * For backwards compatibility, we make both slots equal. |
862 | * |
863 | * If we detect a mismatched field, we OR the set bits into the existing |
864 | * features2 field in case it has already been modified; we don't want |
865 | * to lose any features. We then update the bad location with the ORed |
866 | * value so that older kernels will see any features2 flags. The |
867 | * superblock writeback code ensures the new sb_features2 is copied to |
868 | * sb_bad_features2 before it is logged or written to disk. |
869 | */ |
870 | if (xfs_sb_has_mismatched_features2(sbp)) { |
871 | xfs_warn(mp, "correcting sb_features alignment problem"); |
872 | sbp->sb_features2 |= sbp->sb_bad_features2; |
873 | mp->m_update_sb = true; |
874 | } |
875 | |
876 | |
877 | /* always use v2 inodes by default now */ |
878 | if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { |
879 | mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; |
880 | mp->m_features |= XFS_FEAT_NLINK; |
881 | mp->m_update_sb = true; |
882 | } |
883 | |
884 | /* |
885 | * If we were given new sunit/swidth options, do some basic validation |
886 | * checks and convert the incore dalign and swidth values to the |
887 | * same units (FSB) that everything else uses. This /must/ happen |
888 | * before computing the inode geometry. |
889 | */ |
890 | error = xfs_validate_new_dalign(mp); |
891 | if (error) |
892 | goto out; |
893 | |
894 | xfs_alloc_compute_maxlevels(mp); |
895 | xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); |
896 | xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); |
897 | xfs_mount_setup_inode_geom(mp); |
898 | xfs_rmapbt_compute_maxlevels(mp); |
899 | xfs_rtrmapbt_compute_maxlevels(mp); |
900 | xfs_refcountbt_compute_maxlevels(mp); |
901 | xfs_rtrefcountbt_compute_maxlevels(mp); |
902 | |
903 | xfs_agbtree_compute_maxlevels(mp); |
904 | xfs_rtbtree_compute_maxlevels(mp); |
905 | |
906 | /* |
907 | * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks |
908 | * is NOT aligned turn off m_dalign since allocator alignment is within |
909 | * an ag, therefore ag has to be aligned at stripe boundary. Note that |
910 | * we must compute the free space and rmap btree geometry before doing |
911 | * this. |
912 | */ |
913 | error = xfs_update_alignment(mp); |
914 | if (error) |
915 | goto out; |
916 | |
917 | /* enable fail_at_unmount as default */ |
918 | mp->m_fail_unmount = true; |
919 | |
920 | error = xfs_mount_sysfs_init(mp); |
921 | if (error) |
922 | goto out_remove_scrub_stats; |
923 | |
924 | xchk_stats_register(cs: mp->m_scrub_stats, parent: mp->m_debugfs); |
925 | |
926 | error = xfs_errortag_init(mp); |
927 | if (error) |
928 | goto out_remove_sysfs; |
929 | |
930 | error = xfs_uuid_mount(mp); |
931 | if (error) |
932 | goto out_remove_errortag; |
933 | |
934 | /* |
935 | * Update the preferred write size based on the information from the |
936 | * on-disk superblock. |
937 | */ |
938 | mp->m_allocsize_log = |
939 | max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); |
940 | mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); |
941 | |
942 | /* set the low space thresholds for dynamic preallocation */ |
943 | xfs_set_low_space_thresholds(mp); |
944 | |
945 | /* |
946 | * If enabled, sparse inode chunk alignment is expected to match the |
947 | * cluster size. Full inode chunk alignment must match the chunk size, |
948 | * but that is checked on sb read verification... |
949 | */ |
950 | if (xfs_has_sparseinodes(mp) && |
951 | mp->m_sb.sb_spino_align != |
952 | XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { |
953 | xfs_warn(mp, |
954 | "Sparse inode block alignment (%u) must match cluster size (%llu).", |
955 | mp->m_sb.sb_spino_align, |
956 | XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); |
957 | error = -EINVAL; |
958 | goto out_remove_uuid; |
959 | } |
960 | |
961 | /* |
962 | * Check that the data (and log if separate) is an ok size. |
963 | */ |
964 | error = xfs_check_sizes(mp); |
965 | if (error) |
966 | goto out_remove_uuid; |
967 | |
968 | /* |
969 | * Initialize realtime fields in the mount structure |
970 | */ |
971 | error = xfs_rtmount_init(mp); |
972 | if (error) { |
973 | xfs_warn(mp, "RT mount failed"); |
974 | goto out_remove_uuid; |
975 | } |
976 | |
977 | /* |
978 | * Copies the low order bits of the timestamp and the randomly |
979 | * set "sequence" number out of a UUID. |
980 | */ |
981 | mp->m_fixedfsid[0] = |
982 | (get_unaligned_be16(p: &sbp->sb_uuid.b[8]) << 16) | |
983 | get_unaligned_be16(p: &sbp->sb_uuid.b[4]); |
984 | mp->m_fixedfsid[1] = get_unaligned_be32(p: &sbp->sb_uuid.b[0]); |
985 | |
986 | error = xfs_da_mount(mp); |
987 | if (error) { |
988 | xfs_warn(mp, "Failed dir/attr init: %d", error); |
989 | goto out_remove_uuid; |
990 | } |
991 | |
992 | /* |
993 | * Initialize the precomputed transaction reservations values. |
994 | */ |
995 | xfs_trans_init(mp); |
996 | |
997 | /* |
998 | * Allocate and initialize the per-ag data. |
999 | */ |
1000 | error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, |
1001 | mp->m_sb.sb_dblocks, &mp->m_maxagi); |
1002 | if (error) { |
1003 | xfs_warn(mp, "Failed per-ag init: %d", error); |
1004 | goto out_free_dir; |
1005 | } |
1006 | |
1007 | error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount, |
1008 | mp->m_sb.sb_rextents); |
1009 | if (error) { |
1010 | xfs_warn(mp, "Failed rtgroup init: %d", error); |
1011 | goto out_free_perag; |
1012 | } |
1013 | |
1014 | if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { |
1015 | xfs_warn(mp, "no log defined"); |
1016 | error = -EFSCORRUPTED; |
1017 | goto out_free_rtgroup; |
1018 | } |
1019 | |
1020 | error = xfs_inodegc_register_shrinker(mp); |
1021 | if (error) |
1022 | goto out_fail_wait; |
1023 | |
1024 | /* |
1025 | * If we're resuming quota status, pick up the preliminary qflags from |
1026 | * the ondisk superblock so that we know if we should recover dquots. |
1027 | */ |
1028 | if (xfs_is_resuming_quotaon(mp)) |
1029 | xfs_qm_resume_quotaon(mp); |
1030 | |
1031 | /* |
1032 | * Log's mount-time initialization. The first part of recovery can place |
1033 | * some items on the AIL, to be handled when recovery is finished or |
1034 | * cancelled. |
1035 | */ |
1036 | error = xfs_log_mount(mp, log_target: mp->m_logdev_targp, |
1037 | start_block: XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), |
1038 | num_bblocks: XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); |
1039 | if (error) { |
1040 | xfs_warn(mp, "log mount failed"); |
1041 | goto out_inodegc_shrinker; |
1042 | } |
1043 | |
1044 | /* |
1045 | * If we're resuming quota status and recovered the log, re-sample the |
1046 | * qflags from the ondisk superblock now that we've recovered it, just |
1047 | * in case someone shut down enforcement just before a crash. |
1048 | */ |
1049 | if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(log: mp->m_log)) |
1050 | xfs_qm_resume_quotaon(mp); |
1051 | |
1052 | /* |
1053 | * If logged xattrs are still enabled after log recovery finishes, then |
1054 | * they'll be available until unmount. Otherwise, turn them off. |
1055 | */ |
1056 | if (xfs_sb_version_haslogxattrs(&mp->m_sb)) |
1057 | xfs_set_using_logged_xattrs(mp); |
1058 | else |
1059 | xfs_clear_using_logged_xattrs(mp); |
1060 | |
1061 | /* Enable background inode inactivation workers. */ |
1062 | xfs_inodegc_start(mp); |
1063 | xfs_blockgc_start(mp); |
1064 | |
1065 | /* |
1066 | * Now that we've recovered any pending superblock feature bit |
1067 | * additions, we can finish setting up the attr2 behaviour for the |
1068 | * mount. The noattr2 option overrides the superblock flag, so only |
1069 | * check the superblock feature flag if the mount option is not set. |
1070 | */ |
1071 | if (xfs_has_noattr2(mp)) { |
1072 | mp->m_features &= ~XFS_FEAT_ATTR2; |
1073 | } else if (!xfs_has_attr2(mp) && |
1074 | (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { |
1075 | mp->m_features |= XFS_FEAT_ATTR2; |
1076 | } |
1077 | |
1078 | if (xfs_has_metadir(mp)) { |
1079 | error = xfs_mount_setup_metadir(mp); |
1080 | if (error) |
1081 | goto out_free_metadir; |
1082 | } |
1083 | |
1084 | /* |
1085 | * Get and sanity-check the root inode. |
1086 | * Save the pointer to it in the mount structure. |
1087 | */ |
1088 | error = xfs_iget(mp, NULL, ino: sbp->sb_rootino, XFS_IGET_UNTRUSTED, |
1089 | XFS_ILOCK_EXCL, ipp: &rip); |
1090 | if (error) { |
1091 | xfs_warn(mp, |
1092 | "Failed to read root inode 0x%llx, error %d", |
1093 | sbp->sb_rootino, -error); |
1094 | goto out_free_metadir; |
1095 | } |
1096 | |
1097 | ASSERT(rip != NULL); |
1098 | |
1099 | if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { |
1100 | xfs_warn(mp, "corrupted root inode %llu: not a directory", |
1101 | (unsigned long long)rip->i_ino); |
1102 | xfs_iunlock(rip, XFS_ILOCK_EXCL); |
1103 | error = -EFSCORRUPTED; |
1104 | goto out_rele_rip; |
1105 | } |
1106 | mp->m_rootip = rip; /* save it */ |
1107 | |
1108 | xfs_iunlock(rip, XFS_ILOCK_EXCL); |
1109 | |
1110 | /* |
1111 | * Initialize realtime inode pointers in the mount structure |
1112 | */ |
1113 | error = xfs_rtmount_inodes(mp); |
1114 | if (error) { |
1115 | /* |
1116 | * Free up the root inode. |
1117 | */ |
1118 | xfs_warn(mp, "failed to read RT inodes"); |
1119 | goto out_rele_rip; |
1120 | } |
1121 | |
1122 | /* Make sure the summary counts are ok. */ |
1123 | error = xfs_check_summary_counts(mp); |
1124 | if (error) |
1125 | goto out_rtunmount; |
1126 | |
1127 | /* |
1128 | * If this is a read-only mount defer the superblock updates until |
1129 | * the next remount into writeable mode. Otherwise we would never |
1130 | * perform the update e.g. for the root filesystem. |
1131 | */ |
1132 | if (mp->m_update_sb && !xfs_is_readonly(mp)) { |
1133 | error = xfs_sync_sb(mp, false); |
1134 | if (error) { |
1135 | xfs_warn(mp, "failed to write sb changes"); |
1136 | goto out_rtunmount; |
1137 | } |
1138 | } |
1139 | |
1140 | /* |
1141 | * Initialise the XFS quota management subsystem for this mount |
1142 | */ |
1143 | if (XFS_IS_QUOTA_ON(mp)) { |
1144 | error = xfs_qm_newmount(mp, "amount, "aflags); |
1145 | if (error) |
1146 | goto out_rtunmount; |
1147 | } else { |
1148 | /* |
1149 | * If a file system had quotas running earlier, but decided to |
1150 | * mount without -o uquota/pquota/gquota options, revoke the |
1151 | * quotachecked license. |
1152 | */ |
1153 | if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { |
1154 | xfs_notice(mp, "resetting quota flags"); |
1155 | error = xfs_mount_reset_sbqflags(mp); |
1156 | if (error) |
1157 | goto out_rtunmount; |
1158 | } |
1159 | } |
1160 | |
1161 | /* |
1162 | * Finish recovering the file system. This part needed to be delayed |
1163 | * until after the root and real-time bitmap inodes were consistently |
1164 | * read in. Temporarily create per-AG space reservations for metadata |
1165 | * btree shape changes because space freeing transactions (for inode |
1166 | * inactivation) require the per-AG reservation in lieu of reserving |
1167 | * blocks. |
1168 | */ |
1169 | error = xfs_fs_reserve_ag_blocks(mp); |
1170 | if (error && error == -ENOSPC) |
1171 | xfs_warn(mp, |
1172 | "ENOSPC reserving per-AG metadata pool, log recovery may fail."); |
1173 | error = xfs_log_mount_finish(mp); |
1174 | xfs_fs_unreserve_ag_blocks(mp); |
1175 | if (error) { |
1176 | xfs_warn(mp, "log mount finish failed"); |
1177 | goto out_rtunmount; |
1178 | } |
1179 | |
1180 | /* |
1181 | * Now the log is fully replayed, we can transition to full read-only |
1182 | * mode for read-only mounts. This will sync all the metadata and clean |
1183 | * the log so that the recovery we just performed does not have to be |
1184 | * replayed again on the next mount. |
1185 | * |
1186 | * We use the same quiesce mechanism as the rw->ro remount, as they are |
1187 | * semantically identical operations. |
1188 | */ |
1189 | if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) |
1190 | xfs_log_clean(mp); |
1191 | |
1192 | if (xfs_has_zoned(mp)) { |
1193 | error = xfs_mount_zones(mp); |
1194 | if (error) |
1195 | goto out_rtunmount; |
1196 | } |
1197 | |
1198 | /* |
1199 | * Complete the quota initialisation, post-log-replay component. |
1200 | */ |
1201 | if (quotamount) { |
1202 | ASSERT(mp->m_qflags == 0); |
1203 | mp->m_qflags = quotaflags; |
1204 | |
1205 | xfs_qm_mount_quotas(mp); |
1206 | } |
1207 | |
1208 | /* |
1209 | * Now we are mounted, reserve a small amount of unused space for |
1210 | * privileged transactions. This is needed so that transaction |
1211 | * space required for critical operations can dip into this pool |
1212 | * when at ENOSPC. This is needed for operations like create with |
1213 | * attr, unwritten extent conversion at ENOSPC, garbage collection |
1214 | * etc. Data allocations are not allowed to use this reserved space. |
1215 | * |
1216 | * This may drive us straight to ENOSPC on mount, but that implies |
1217 | * we were already there on the last unmount. Warn if this occurs. |
1218 | */ |
1219 | if (!xfs_is_readonly(mp)) { |
1220 | for (i = 0; i < XC_FREE_NR; i++) { |
1221 | error = xfs_reserve_blocks(mp, i, |
1222 | xfs_default_resblks(mp, i)); |
1223 | if (error) |
1224 | xfs_warn(mp, |
1225 | "Unable to allocate reserve blocks. Continuing without reserve pool for %s.", |
1226 | xfs_free_pool_name[i]); |
1227 | } |
1228 | |
1229 | /* Reserve AG blocks for future btree expansion. */ |
1230 | error = xfs_fs_reserve_ag_blocks(mp); |
1231 | if (error && error != -ENOSPC) |
1232 | goto out_agresv; |
1233 | |
1234 | xfs_zone_gc_start(mp); |
1235 | } |
1236 | |
1237 | /* |
1238 | * Pre-calculate atomic write unit max. This involves computations |
1239 | * derived from transaction reservations, so we must do this after the |
1240 | * log is fully initialized. |
1241 | */ |
1242 | error = xfs_set_max_atomic_write_opt(mp, new_max_bytes: mp->m_awu_max_bytes); |
1243 | if (error) |
1244 | goto out_agresv; |
1245 | |
1246 | return 0; |
1247 | |
1248 | out_agresv: |
1249 | xfs_fs_unreserve_ag_blocks(mp); |
1250 | xfs_qm_unmount_quotas(mp); |
1251 | if (xfs_has_zoned(mp)) |
1252 | xfs_unmount_zones(mp); |
1253 | out_rtunmount: |
1254 | xfs_rtunmount_inodes(mp); |
1255 | out_rele_rip: |
1256 | xfs_irele(ip: rip); |
1257 | /* Clean out dquots that might be in memory after quotacheck. */ |
1258 | xfs_qm_unmount(mp); |
1259 | out_free_metadir: |
1260 | if (mp->m_metadirip) |
1261 | xfs_irele(ip: mp->m_metadirip); |
1262 | |
1263 | /* |
1264 | * Inactivate all inodes that might still be in memory after a log |
1265 | * intent recovery failure so that reclaim can free them. Metadata |
1266 | * inodes and the root directory shouldn't need inactivation, but the |
1267 | * mount failed for some reason, so pull down all the state and flee. |
1268 | */ |
1269 | xfs_inodegc_flush(mp); |
1270 | |
1271 | /* |
1272 | * Flush all inode reclamation work and flush the log. |
1273 | * We have to do this /after/ rtunmount and qm_unmount because those |
1274 | * two will have scheduled delayed reclaim for the rt/quota inodes. |
1275 | * |
1276 | * This is slightly different from the unmountfs call sequence |
1277 | * because we could be tearing down a partially set up mount. In |
1278 | * particular, if log_mount_finish fails we bail out without calling |
1279 | * qm_unmount_quotas and therefore rely on qm_unmount to release the |
1280 | * quota inodes. |
1281 | */ |
1282 | xfs_unmount_flush_inodes(mp); |
1283 | xfs_log_mount_cancel(mp); |
1284 | out_inodegc_shrinker: |
1285 | shrinker_free(shrinker: mp->m_inodegc_shrinker); |
1286 | out_fail_wait: |
1287 | if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) |
1288 | xfs_buftarg_drain(mp->m_logdev_targp); |
1289 | xfs_buftarg_drain(mp->m_ddev_targp); |
1290 | out_free_rtgroup: |
1291 | xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); |
1292 | out_free_perag: |
1293 | xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); |
1294 | out_free_dir: |
1295 | xfs_da_unmount(mp); |
1296 | out_remove_uuid: |
1297 | xfs_uuid_unmount(mp); |
1298 | out_remove_errortag: |
1299 | xfs_errortag_del(mp); |
1300 | out_remove_sysfs: |
1301 | xfs_mount_sysfs_del(mp); |
1302 | out_remove_scrub_stats: |
1303 | xchk_stats_unregister(cs: mp->m_scrub_stats); |
1304 | out: |
1305 | return error; |
1306 | } |
1307 | |
1308 | /* |
1309 | * This flushes out the inodes,dquots and the superblock, unmounts the |
1310 | * log and makes sure that incore structures are freed. |
1311 | */ |
1312 | void |
1313 | xfs_unmountfs( |
1314 | struct xfs_mount *mp) |
1315 | { |
1316 | int error; |
1317 | |
1318 | /* |
1319 | * Perform all on-disk metadata updates required to inactivate inodes |
1320 | * that the VFS evicted earlier in the unmount process. Freeing inodes |
1321 | * and discarding CoW fork preallocations can cause shape changes to |
1322 | * the free inode and refcount btrees, respectively, so we must finish |
1323 | * this before we discard the metadata space reservations. Metadata |
1324 | * inodes and the root directory do not require inactivation. |
1325 | */ |
1326 | xfs_inodegc_flush(mp); |
1327 | |
1328 | xfs_blockgc_stop(mp); |
1329 | if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate)) |
1330 | xfs_zone_gc_stop(mp); |
1331 | xfs_fs_unreserve_ag_blocks(mp); |
1332 | xfs_qm_unmount_quotas(mp); |
1333 | if (xfs_has_zoned(mp)) |
1334 | xfs_unmount_zones(mp); |
1335 | xfs_rtunmount_inodes(mp); |
1336 | xfs_irele(ip: mp->m_rootip); |
1337 | if (mp->m_metadirip) |
1338 | xfs_irele(ip: mp->m_metadirip); |
1339 | |
1340 | xfs_unmount_flush_inodes(mp); |
1341 | |
1342 | xfs_qm_unmount(mp); |
1343 | |
1344 | /* |
1345 | * Unreserve any blocks we have so that when we unmount we don't account |
1346 | * the reserved free space as used. This is really only necessary for |
1347 | * lazy superblock counting because it trusts the incore superblock |
1348 | * counters to be absolutely correct on clean unmount. |
1349 | * |
1350 | * We don't bother correcting this elsewhere for lazy superblock |
1351 | * counting because on mount of an unclean filesystem we reconstruct the |
1352 | * correct counter value and this is irrelevant. |
1353 | * |
1354 | * For non-lazy counter filesystems, this doesn't matter at all because |
1355 | * we only every apply deltas to the superblock and hence the incore |
1356 | * value does not matter.... |
1357 | */ |
1358 | error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0); |
1359 | if (error) |
1360 | xfs_warn(mp, "Unable to free reserved block pool. " |
1361 | "Freespace may not be correct on next mount."); |
1362 | xfs_unmount_check(mp); |
1363 | |
1364 | /* |
1365 | * Indicate that it's ok to clear log incompat bits before cleaning |
1366 | * the log and writing the unmount record. |
1367 | */ |
1368 | xfs_set_done_with_log_incompat(mp); |
1369 | xfs_log_unmount(mp); |
1370 | xfs_da_unmount(mp); |
1371 | xfs_uuid_unmount(mp); |
1372 | |
1373 | #if defined(DEBUG) |
1374 | xfs_errortag_clearall(mp); |
1375 | #endif |
1376 | shrinker_free(shrinker: mp->m_inodegc_shrinker); |
1377 | xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); |
1378 | xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); |
1379 | xfs_errortag_del(mp); |
1380 | xchk_stats_unregister(cs: mp->m_scrub_stats); |
1381 | xfs_mount_sysfs_del(mp); |
1382 | } |
1383 | |
1384 | /* |
1385 | * Determine whether modifications can proceed. The caller specifies the minimum |
1386 | * freeze level for which modifications should not be allowed. This allows |
1387 | * certain operations to proceed while the freeze sequence is in progress, if |
1388 | * necessary. |
1389 | */ |
1390 | bool |
1391 | xfs_fs_writable( |
1392 | struct xfs_mount *mp, |
1393 | int level) |
1394 | { |
1395 | ASSERT(level > SB_UNFROZEN); |
1396 | if ((mp->m_super->s_writers.frozen >= level) || |
1397 | xfs_is_shutdown(mp) || xfs_is_readonly(mp)) |
1398 | return false; |
1399 | |
1400 | return true; |
1401 | } |
1402 | |
1403 | /* |
1404 | * Estimate the amount of free space that is not available to userspace and is |
1405 | * not explicitly reserved from the incore fdblocks. This includes: |
1406 | * |
1407 | * - The minimum number of blocks needed to support splitting a bmap btree |
1408 | * - The blocks currently in use by the freespace btrees because they record |
1409 | * the actual blocks that will fill per-AG metadata space reservations |
1410 | */ |
1411 | uint64_t |
1412 | xfs_freecounter_unavailable( |
1413 | struct xfs_mount *mp, |
1414 | enum xfs_free_counter ctr) |
1415 | { |
1416 | if (ctr != XC_FREE_BLOCKS) |
1417 | return 0; |
1418 | return mp->m_alloc_set_aside + atomic64_read(v: &mp->m_allocbt_blks); |
1419 | } |
1420 | |
1421 | void |
1422 | xfs_add_freecounter( |
1423 | struct xfs_mount *mp, |
1424 | enum xfs_free_counter ctr, |
1425 | uint64_t delta) |
1426 | { |
1427 | struct xfs_freecounter *counter = &mp->m_free[ctr]; |
1428 | uint64_t res_used; |
1429 | |
1430 | /* |
1431 | * If the reserve pool is depleted, put blocks back into it first. |
1432 | * Most of the time the pool is full. |
1433 | */ |
1434 | if (likely(counter->res_avail == counter->res_total)) { |
1435 | percpu_counter_add(fbc: &counter->count, amount: delta); |
1436 | return; |
1437 | } |
1438 | |
1439 | spin_lock(lock: &mp->m_sb_lock); |
1440 | res_used = counter->res_total - counter->res_avail; |
1441 | if (res_used > delta) { |
1442 | counter->res_avail += delta; |
1443 | } else { |
1444 | delta -= res_used; |
1445 | counter->res_avail = counter->res_total; |
1446 | percpu_counter_add(fbc: &counter->count, amount: delta); |
1447 | } |
1448 | spin_unlock(lock: &mp->m_sb_lock); |
1449 | } |
1450 | |
1451 | |
1452 | /* Adjust in-core free blocks or RT extents. */ |
1453 | int |
1454 | xfs_dec_freecounter( |
1455 | struct xfs_mount *mp, |
1456 | enum xfs_free_counter ctr, |
1457 | uint64_t delta, |
1458 | bool rsvd) |
1459 | { |
1460 | struct xfs_freecounter *counter = &mp->m_free[ctr]; |
1461 | s32 batch; |
1462 | |
1463 | ASSERT(ctr < XC_FREE_NR); |
1464 | |
1465 | /* |
1466 | * Taking blocks away, need to be more accurate the closer we |
1467 | * are to zero. |
1468 | * |
1469 | * If the counter has a value of less than 2 * max batch size, |
1470 | * then make everything serialise as we are real close to |
1471 | * ENOSPC. |
1472 | */ |
1473 | if (__percpu_counter_compare(fbc: &counter->count, rhs: 2 * XFS_FDBLOCKS_BATCH, |
1474 | XFS_FDBLOCKS_BATCH) < 0) |
1475 | batch = 1; |
1476 | else |
1477 | batch = XFS_FDBLOCKS_BATCH; |
1478 | |
1479 | /* |
1480 | * Set aside allocbt blocks because these blocks are tracked as free |
1481 | * space but not available for allocation. Technically this means that a |
1482 | * single reservation cannot consume all remaining free space, but the |
1483 | * ratio of allocbt blocks to usable free blocks should be rather small. |
1484 | * The tradeoff without this is that filesystems that maintain high |
1485 | * perag block reservations can over reserve physical block availability |
1486 | * and fail physical allocation, which leads to much more serious |
1487 | * problems (i.e. transaction abort, pagecache discards, etc.) than |
1488 | * slightly premature -ENOSPC. |
1489 | */ |
1490 | percpu_counter_add_batch(fbc: &counter->count, amount: -((int64_t)delta), batch); |
1491 | if (__percpu_counter_compare(fbc: &counter->count, |
1492 | rhs: xfs_freecounter_unavailable(mp, ctr: ctr), |
1493 | XFS_FDBLOCKS_BATCH) < 0) { |
1494 | /* |
1495 | * Lock up the sb for dipping into reserves before releasing the |
1496 | * space that took us to ENOSPC. |
1497 | */ |
1498 | spin_lock(lock: &mp->m_sb_lock); |
1499 | percpu_counter_add(fbc: &counter->count, amount: delta); |
1500 | if (!rsvd) |
1501 | goto fdblocks_enospc; |
1502 | if (delta > counter->res_avail) { |
1503 | if (ctr == XC_FREE_BLOCKS) |
1504 | xfs_warn_once(mp, |
1505 | "Reserve blocks depleted! Consider increasing reserve pool size."); |
1506 | goto fdblocks_enospc; |
1507 | } |
1508 | counter->res_avail -= delta; |
1509 | trace_xfs_freecounter_reserved(mp, ctr: ctr, delta, _RET_IP_); |
1510 | spin_unlock(lock: &mp->m_sb_lock); |
1511 | } |
1512 | |
1513 | /* we had space! */ |
1514 | return 0; |
1515 | |
1516 | fdblocks_enospc: |
1517 | trace_xfs_freecounter_enospc(mp, ctr: ctr, delta, _RET_IP_); |
1518 | spin_unlock(lock: &mp->m_sb_lock); |
1519 | return -ENOSPC; |
1520 | } |
1521 | |
1522 | /* |
1523 | * Used to free the superblock along various error paths. |
1524 | */ |
1525 | void |
1526 | xfs_freesb( |
1527 | struct xfs_mount *mp) |
1528 | { |
1529 | struct xfs_buf *bp = mp->m_sb_bp; |
1530 | |
1531 | xfs_buf_lock(bp); |
1532 | mp->m_sb_bp = NULL; |
1533 | xfs_buf_relse(bp); |
1534 | } |
1535 | |
1536 | /* |
1537 | * If the underlying (data/log/rt) device is readonly, there are some |
1538 | * operations that cannot proceed. |
1539 | */ |
1540 | int |
1541 | xfs_dev_is_read_only( |
1542 | struct xfs_mount *mp, |
1543 | char *message) |
1544 | { |
1545 | if (xfs_readonly_buftarg(mp->m_ddev_targp) || |
1546 | xfs_readonly_buftarg(mp->m_logdev_targp) || |
1547 | (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { |
1548 | xfs_notice(mp, "%s required on read-only device.", message); |
1549 | xfs_notice(mp, "write access unavailable, cannot proceed."); |
1550 | return -EROFS; |
1551 | } |
1552 | return 0; |
1553 | } |
1554 | |
1555 | /* Force the summary counters to be recalculated at next mount. */ |
1556 | void |
1557 | xfs_force_summary_recalc( |
1558 | struct xfs_mount *mp) |
1559 | { |
1560 | if (!xfs_has_lazysbcount(mp)) |
1561 | return; |
1562 | |
1563 | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); |
1564 | } |
1565 | |
1566 | /* |
1567 | * Enable a log incompat feature flag in the primary superblock. The caller |
1568 | * cannot have any other transactions in progress. |
1569 | */ |
1570 | int |
1571 | xfs_add_incompat_log_feature( |
1572 | struct xfs_mount *mp, |
1573 | uint32_t feature) |
1574 | { |
1575 | struct xfs_dsb *dsb; |
1576 | int error; |
1577 | |
1578 | ASSERT(hweight32(feature) == 1); |
1579 | ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); |
1580 | |
1581 | /* |
1582 | * Force the log to disk and kick the background AIL thread to reduce |
1583 | * the chances that the bwrite will stall waiting for the AIL to unpin |
1584 | * the primary superblock buffer. This isn't a data integrity |
1585 | * operation, so we don't need a synchronous push. |
1586 | */ |
1587 | error = xfs_log_force(mp, XFS_LOG_SYNC); |
1588 | if (error) |
1589 | return error; |
1590 | xfs_ail_push_all(ailp: mp->m_ail); |
1591 | |
1592 | /* |
1593 | * Lock the primary superblock buffer to serialize all callers that |
1594 | * are trying to set feature bits. |
1595 | */ |
1596 | xfs_buf_lock(mp->m_sb_bp); |
1597 | xfs_buf_hold(bp: mp->m_sb_bp); |
1598 | |
1599 | if (xfs_is_shutdown(mp)) { |
1600 | error = -EIO; |
1601 | goto rele; |
1602 | } |
1603 | |
1604 | if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) |
1605 | goto rele; |
1606 | |
1607 | /* |
1608 | * Write the primary superblock to disk immediately, because we need |
1609 | * the log_incompat bit to be set in the primary super now to protect |
1610 | * the log items that we're going to commit later. |
1611 | */ |
1612 | dsb = mp->m_sb_bp->b_addr; |
1613 | xfs_sb_to_disk(dsb, &mp->m_sb); |
1614 | dsb->sb_features_log_incompat |= cpu_to_be32(feature); |
1615 | error = xfs_bwrite(bp: mp->m_sb_bp); |
1616 | if (error) |
1617 | goto shutdown; |
1618 | |
1619 | /* |
1620 | * Add the feature bits to the incore superblock before we unlock the |
1621 | * buffer. |
1622 | */ |
1623 | xfs_sb_add_incompat_log_features(&mp->m_sb, feature); |
1624 | xfs_buf_relse(bp: mp->m_sb_bp); |
1625 | |
1626 | /* Log the superblock to disk. */ |
1627 | return xfs_sync_sb(mp, false); |
1628 | shutdown: |
1629 | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
1630 | rele: |
1631 | xfs_buf_relse(bp: mp->m_sb_bp); |
1632 | return error; |
1633 | } |
1634 | |
1635 | /* |
1636 | * Clear all the log incompat flags from the superblock. |
1637 | * |
1638 | * The caller cannot be in a transaction, must ensure that the log does not |
1639 | * contain any log items protected by any log incompat bit, and must ensure |
1640 | * that there are no other threads that depend on the state of the log incompat |
1641 | * feature flags in the primary super. |
1642 | * |
1643 | * Returns true if the superblock is dirty. |
1644 | */ |
1645 | bool |
1646 | xfs_clear_incompat_log_features( |
1647 | struct xfs_mount *mp) |
1648 | { |
1649 | bool ret = false; |
1650 | |
1651 | if (!xfs_has_crc(mp) || |
1652 | !xfs_sb_has_incompat_log_feature(&mp->m_sb, |
1653 | XFS_SB_FEAT_INCOMPAT_LOG_ALL) || |
1654 | xfs_is_shutdown(mp) || |
1655 | !xfs_is_done_with_log_incompat(mp)) |
1656 | return false; |
1657 | |
1658 | /* |
1659 | * Update the incore superblock. We synchronize on the primary super |
1660 | * buffer lock to be consistent with the add function, though at least |
1661 | * in theory this shouldn't be necessary. |
1662 | */ |
1663 | xfs_buf_lock(mp->m_sb_bp); |
1664 | xfs_buf_hold(bp: mp->m_sb_bp); |
1665 | |
1666 | if (xfs_sb_has_incompat_log_feature(&mp->m_sb, |
1667 | XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { |
1668 | xfs_sb_remove_incompat_log_features(&mp->m_sb); |
1669 | ret = true; |
1670 | } |
1671 | |
1672 | xfs_buf_relse(bp: mp->m_sb_bp); |
1673 | return ret; |
1674 | } |
1675 | |
1676 | /* |
1677 | * Update the in-core delayed block counter. |
1678 | * |
1679 | * We prefer to update the counter without having to take a spinlock for every |
1680 | * counter update (i.e. batching). Each change to delayed allocation |
1681 | * reservations can change can easily exceed the default percpu counter |
1682 | * batching, so we use a larger batch factor here. |
1683 | * |
1684 | * Note that we don't currently have any callers requiring fast summation |
1685 | * (e.g. percpu_counter_read) so we can use a big batch value here. |
1686 | */ |
1687 | #define XFS_DELALLOC_BATCH (4096) |
1688 | void |
1689 | xfs_mod_delalloc( |
1690 | struct xfs_inode *ip, |
1691 | int64_t data_delta, |
1692 | int64_t ind_delta) |
1693 | { |
1694 | struct xfs_mount *mp = ip->i_mount; |
1695 | |
1696 | if (XFS_IS_REALTIME_INODE(ip)) { |
1697 | percpu_counter_add_batch(fbc: &mp->m_delalloc_rtextents, |
1698 | amount: xfs_blen_to_rtbxlen(mp, data_delta), |
1699 | XFS_DELALLOC_BATCH); |
1700 | if (!ind_delta) |
1701 | return; |
1702 | data_delta = 0; |
1703 | } |
1704 | percpu_counter_add_batch(fbc: &mp->m_delalloc_blks, amount: data_delta + ind_delta, |
1705 | XFS_DELALLOC_BATCH); |
1706 | } |
1707 |
Definitions
- xfs_uuid_table_mutex
- xfs_uuid_table_size
- xfs_uuid_table
- xfs_uuid_table_free
- xfs_uuid_mount
- xfs_uuid_unmount
- xfs_sb_validate_fsb_count
- xfs_readsb
- xfs_check_new_dalign
- xfs_validate_new_dalign
- xfs_update_alignment
- xfs_set_low_space_thresholds
- xfs_check_sizes
- xfs_mount_reset_sbqflags
- xfs_free_pool_name
- xfs_default_resblks
- xfs_check_summary_counts
- xfs_unmount_check
- xfs_unmount_flush_inodes
- xfs_mount_setup_inode_geom
- xfs_mount_setup_metadir
- xfs_agbtree_compute_maxlevels
- xfs_calc_atomic_write_max
- max_pow_of_two_factor
- xfs_calc_perag_awu_max
- xfs_calc_rtgroup_awu_max
- xfs_calc_atomic_write_unit_max
- xfs_set_max_atomic_write_opt
- xfs_rtbtree_compute_maxlevels
- xfs_mountfs
- xfs_unmountfs
- xfs_fs_writable
- xfs_freecounter_unavailable
- xfs_add_freecounter
- xfs_dec_freecounter
- xfs_freesb
- xfs_dev_is_read_only
- xfs_force_summary_recalc
- xfs_add_incompat_log_feature
- xfs_clear_incompat_log_features
Improve your Profiling and Debugging skills
Find out more