1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37#include "xfs_rtbitmap.h"
38#include "xfs_metafile.h"
39#include "xfs_rtgroup.h"
40#include "xfs_rtrmap_btree.h"
41#include "xfs_rtrefcount_btree.h"
42#include "scrub/stats.h"
43#include "xfs_zone_alloc.h"
44
45static DEFINE_MUTEX(xfs_uuid_table_mutex);
46static int xfs_uuid_table_size;
47static uuid_t *xfs_uuid_table;
48
49void
50xfs_uuid_table_free(void)
51{
52 if (xfs_uuid_table_size == 0)
53 return;
54 kfree(objp: xfs_uuid_table);
55 xfs_uuid_table = NULL;
56 xfs_uuid_table_size = 0;
57}
58
59/*
60 * See if the UUID is unique among mounted XFS filesystems.
61 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62 */
63STATIC int
64xfs_uuid_mount(
65 struct xfs_mount *mp)
66{
67 uuid_t *uuid = &mp->m_sb.sb_uuid;
68 int hole, i;
69
70 /* Publish UUID in struct super_block */
71 super_set_uuid(sb: mp->m_super, uuid: uuid->b, len: sizeof(*uuid));
72
73 if (xfs_has_nouuid(mp))
74 return 0;
75
76 if (uuid_is_null(uuid)) {
77 xfs_warn(mp, "Filesystem has null UUID - can't mount");
78 return -EINVAL;
79 }
80
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_null(uuid: &xfs_uuid_table[i])) {
84 hole = i;
85 continue;
86 }
87 if (uuid_equal(u1: uuid, u2: &xfs_uuid_table[i]))
88 goto out_duplicate;
89 }
90
91 if (hole < 0) {
92 xfs_uuid_table = krealloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 GFP_KERNEL | __GFP_NOFAIL);
95 hole = xfs_uuid_table_size++;
96 }
97 xfs_uuid_table[hole] = *uuid;
98 mutex_unlock(lock: &xfs_uuid_table_mutex);
99
100 return 0;
101
102 out_duplicate:
103 mutex_unlock(lock: &xfs_uuid_table_mutex);
104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 return -EINVAL;
106}
107
108STATIC void
109xfs_uuid_unmount(
110 struct xfs_mount *mp)
111{
112 uuid_t *uuid = &mp->m_sb.sb_uuid;
113 int i;
114
115 if (xfs_has_nouuid(mp))
116 return;
117
118 mutex_lock(&xfs_uuid_table_mutex);
119 for (i = 0; i < xfs_uuid_table_size; i++) {
120 if (uuid_is_null(uuid: &xfs_uuid_table[i]))
121 continue;
122 if (!uuid_equal(u1: uuid, u2: &xfs_uuid_table[i]))
123 continue;
124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 break;
126 }
127 ASSERT(i < xfs_uuid_table_size);
128 mutex_unlock(lock: &xfs_uuid_table_mutex);
129}
130
131/*
132 * Check size of device based on the (data/realtime) block count.
133 * Note: this check is used by the growfs code as well as mount.
134 */
135int
136xfs_sb_validate_fsb_count(
137 xfs_sb_t *sbp,
138 uint64_t nblocks)
139{
140 uint64_t max_bytes;
141
142 ASSERT(sbp->sb_blocklog >= BBSHIFT);
143
144 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
145 return -EFBIG;
146
147 /* Limited by ULONG_MAX of page cache index */
148 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
149 return -EFBIG;
150 return 0;
151}
152
153/*
154 * xfs_readsb
155 *
156 * Does the initial read of the superblock.
157 */
158int
159xfs_readsb(
160 struct xfs_mount *mp,
161 int flags)
162{
163 unsigned int sector_size;
164 struct xfs_buf *bp;
165 struct xfs_sb *sbp = &mp->m_sb;
166 int error;
167 int loud = !(flags & XFS_MFSI_QUIET);
168 const struct xfs_buf_ops *buf_ops;
169
170 ASSERT(mp->m_sb_bp == NULL);
171 ASSERT(mp->m_ddev_targp != NULL);
172
173 /*
174 * For the initial read, we must guess at the sector
175 * size based on the block device. It's enough to
176 * get the sb_sectsize out of the superblock and
177 * then reread with the proper length.
178 * We don't verify it yet, because it may not be complete.
179 */
180 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
181 buf_ops = NULL;
182
183 /*
184 * Allocate a (locked) buffer to hold the superblock. This will be kept
185 * around at all times to optimize access to the superblock.
186 */
187reread:
188 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
189 BTOBB(sector_size), &bp, buf_ops);
190 if (error) {
191 if (loud)
192 xfs_warn(mp, "SB validate failed with error %d.", error);
193 /* bad CRC means corrupted metadata */
194 if (error == -EFSBADCRC)
195 error = -EFSCORRUPTED;
196 return error;
197 }
198
199 /*
200 * Initialize the mount structure from the superblock.
201 */
202 xfs_sb_from_disk(sbp, bp->b_addr);
203
204 /*
205 * If we haven't validated the superblock, do so now before we try
206 * to check the sector size and reread the superblock appropriately.
207 */
208 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
209 if (loud)
210 xfs_warn(mp, "Invalid superblock magic number");
211 error = -EINVAL;
212 goto release_buf;
213 }
214
215 /*
216 * We must be able to do sector-sized and sector-aligned IO.
217 */
218 if (sector_size > sbp->sb_sectsize) {
219 if (loud)
220 xfs_warn(mp, "device supports %u byte sectors (not %u)",
221 sector_size, sbp->sb_sectsize);
222 error = -ENOSYS;
223 goto release_buf;
224 }
225
226 if (buf_ops == NULL) {
227 /*
228 * Re-read the superblock so the buffer is correctly sized,
229 * and properly verified.
230 */
231 xfs_buf_relse(bp);
232 sector_size = sbp->sb_sectsize;
233 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
234 goto reread;
235 }
236
237 mp->m_features |= xfs_sb_version_to_features(sbp);
238 xfs_reinit_percpu_counters(mp);
239
240 /*
241 * If logged xattrs are enabled after log recovery finishes, then set
242 * the opstate so that log recovery will work properly.
243 */
244 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
245 xfs_set_using_logged_xattrs(mp);
246
247 /* no need to be quiet anymore, so reset the buf ops */
248 bp->b_ops = &xfs_sb_buf_ops;
249
250 mp->m_sb_bp = bp;
251 xfs_buf_unlock(bp);
252 return 0;
253
254release_buf:
255 xfs_buf_relse(bp);
256 return error;
257}
258
259/*
260 * If the sunit/swidth change would move the precomputed root inode value, we
261 * must reject the ondisk change because repair will stumble over that.
262 * However, we allow the mount to proceed because we never rejected this
263 * combination before. Returns true to update the sb, false otherwise.
264 */
265static inline int
266xfs_check_new_dalign(
267 struct xfs_mount *mp,
268 int new_dalign,
269 bool *update_sb)
270{
271 struct xfs_sb *sbp = &mp->m_sb;
272 xfs_ino_t calc_ino;
273
274 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
275 trace_xfs_check_new_dalign(mp, new_dalign, calc_rootino: calc_ino);
276
277 if (sbp->sb_rootino == calc_ino) {
278 *update_sb = true;
279 return 0;
280 }
281
282 xfs_warn(mp,
283"Cannot change stripe alignment; would require moving root inode.");
284
285 /*
286 * XXX: Next time we add a new incompat feature, this should start
287 * returning -EINVAL to fail the mount. Until then, spit out a warning
288 * that we're ignoring the administrator's instructions.
289 */
290 xfs_warn(mp, "Skipping superblock stripe alignment update.");
291 *update_sb = false;
292 return 0;
293}
294
295/*
296 * If we were provided with new sunit/swidth values as mount options, make sure
297 * that they pass basic alignment and superblock feature checks, and convert
298 * them into the same units (FSB) that everything else expects. This step
299 * /must/ be done before computing the inode geometry.
300 */
301STATIC int
302xfs_validate_new_dalign(
303 struct xfs_mount *mp)
304{
305 if (mp->m_dalign == 0)
306 return 0;
307
308 /*
309 * If stripe unit and stripe width are not multiples
310 * of the fs blocksize turn off alignment.
311 */
312 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
313 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
314 xfs_warn(mp,
315 "alignment check failed: sunit/swidth vs. blocksize(%d)",
316 mp->m_sb.sb_blocksize);
317 return -EINVAL;
318 }
319
320 /*
321 * Convert the stripe unit and width to FSBs.
322 */
323 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
324 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
325 xfs_warn(mp,
326 "alignment check failed: sunit/swidth vs. agsize(%d)",
327 mp->m_sb.sb_agblocks);
328 return -EINVAL;
329 }
330
331 if (!mp->m_dalign) {
332 xfs_warn(mp,
333 "alignment check failed: sunit(%d) less than bsize(%d)",
334 mp->m_dalign, mp->m_sb.sb_blocksize);
335 return -EINVAL;
336 }
337
338 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
339
340 if (!xfs_has_dalign(mp)) {
341 xfs_warn(mp,
342"cannot change alignment: superblock does not support data alignment");
343 return -EINVAL;
344 }
345
346 return 0;
347}
348
349/* Update alignment values based on mount options and sb values. */
350STATIC int
351xfs_update_alignment(
352 struct xfs_mount *mp)
353{
354 struct xfs_sb *sbp = &mp->m_sb;
355
356 if (mp->m_dalign) {
357 bool update_sb;
358 int error;
359
360 if (sbp->sb_unit == mp->m_dalign &&
361 sbp->sb_width == mp->m_swidth)
362 return 0;
363
364 error = xfs_check_new_dalign(mp, new_dalign: mp->m_dalign, update_sb: &update_sb);
365 if (error || !update_sb)
366 return error;
367
368 sbp->sb_unit = mp->m_dalign;
369 sbp->sb_width = mp->m_swidth;
370 mp->m_update_sb = true;
371 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
372 mp->m_dalign = sbp->sb_unit;
373 mp->m_swidth = sbp->sb_width;
374 }
375
376 return 0;
377}
378
379/*
380 * precalculate the low space thresholds for dynamic speculative preallocation.
381 */
382void
383xfs_set_low_space_thresholds(
384 struct xfs_mount *mp)
385{
386 uint64_t dblocks = mp->m_sb.sb_dblocks;
387 uint64_t rtexts = mp->m_sb.sb_rextents;
388 int i;
389
390 do_div(dblocks, 100);
391 do_div(rtexts, 100);
392
393 for (i = 0; i < XFS_LOWSP_MAX; i++) {
394 mp->m_low_space[i] = dblocks * (i + 1);
395 mp->m_low_rtexts[i] = rtexts * (i + 1);
396 }
397}
398
399/*
400 * Check that the data (and log if separate) is an ok size.
401 */
402STATIC int
403xfs_check_sizes(
404 struct xfs_mount *mp)
405{
406 struct xfs_buf *bp;
407 xfs_daddr_t d;
408 int error;
409
410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
412 xfs_warn(mp, "filesystem size mismatch detected");
413 return -EFBIG;
414 }
415 error = xfs_buf_read_uncached(target: mp->m_ddev_targp,
416 daddr: d - XFS_FSS_TO_BB(mp, 1),
417 numblks: XFS_FSS_TO_BB(mp, 1), bpp: &bp, NULL);
418 if (error) {
419 xfs_warn(mp, "last sector read failed");
420 return error;
421 }
422 xfs_buf_relse(bp);
423
424 if (mp->m_logdev_targp == mp->m_ddev_targp)
425 return 0;
426
427 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
428 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
429 xfs_warn(mp, "log size mismatch detected");
430 return -EFBIG;
431 }
432 error = xfs_buf_read_uncached(target: mp->m_logdev_targp,
433 daddr: d - XFS_FSB_TO_BB(mp, 1),
434 numblks: XFS_FSB_TO_BB(mp, 1), bpp: &bp, NULL);
435 if (error) {
436 xfs_warn(mp, "log device read failed");
437 return error;
438 }
439 xfs_buf_relse(bp);
440 return 0;
441}
442
443/*
444 * Clear the quotaflags in memory and in the superblock.
445 */
446int
447xfs_mount_reset_sbqflags(
448 struct xfs_mount *mp)
449{
450 mp->m_qflags = 0;
451
452 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
453 if (mp->m_sb.sb_qflags == 0)
454 return 0;
455 spin_lock(lock: &mp->m_sb_lock);
456 mp->m_sb.sb_qflags = 0;
457 spin_unlock(lock: &mp->m_sb_lock);
458
459 if (!xfs_fs_writable(mp, level: SB_FREEZE_WRITE))
460 return 0;
461
462 return xfs_sync_sb(mp, false);
463}
464
465static const char *const xfs_free_pool_name[] = {
466 [XC_FREE_BLOCKS] = "free blocks",
467 [XC_FREE_RTEXTENTS] = "free rt extents",
468 [XC_FREE_RTAVAILABLE] = "available rt extents",
469};
470
471uint64_t
472xfs_default_resblks(
473 struct xfs_mount *mp,
474 enum xfs_free_counter ctr)
475{
476 switch (ctr) {
477 case XC_FREE_BLOCKS:
478 /*
479 * Default to 5% or 8192 FSBs of space reserved, whichever is
480 * smaller.
481 *
482 * This is intended to cover concurrent allocation transactions
483 * when we initially hit ENOSPC. These each require a 4 block
484 * reservation. Hence by default we cover roughly 2000
485 * concurrent allocation reservations.
486 */
487 return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL);
488 case XC_FREE_RTEXTENTS:
489 case XC_FREE_RTAVAILABLE:
490 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp))
491 return xfs_zoned_default_resblks(mp, ctr: ctr);
492 return 0;
493 default:
494 ASSERT(0);
495 return 0;
496 }
497}
498
499/* Ensure the summary counts are correct. */
500STATIC int
501xfs_check_summary_counts(
502 struct xfs_mount *mp)
503{
504 int error = 0;
505
506 /*
507 * The AG0 superblock verifier rejects in-progress filesystems,
508 * so we should never see the flag set this far into mounting.
509 */
510 if (mp->m_sb.sb_inprogress) {
511 xfs_err(mp, "sb_inprogress set after log recovery??");
512 WARN_ON(1);
513 return -EFSCORRUPTED;
514 }
515
516 /*
517 * Now the log is mounted, we know if it was an unclean shutdown or
518 * not. If it was, with the first phase of recovery has completed, we
519 * have consistent AG blocks on disk. We have not recovered EFIs yet,
520 * but they are recovered transactionally in the second recovery phase
521 * later.
522 *
523 * If the log was clean when we mounted, we can check the summary
524 * counters. If any of them are obviously incorrect, we can recompute
525 * them from the AGF headers in the next step.
526 */
527 if (xfs_is_clean(mp) &&
528 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
529 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
530 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
531 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
532
533 /*
534 * We can safely re-initialise incore superblock counters from the
535 * per-ag data. These may not be correct if the filesystem was not
536 * cleanly unmounted, so we waited for recovery to finish before doing
537 * this.
538 *
539 * If the filesystem was cleanly unmounted or the previous check did
540 * not flag anything weird, then we can trust the values in the
541 * superblock to be correct and we don't need to do anything here.
542 * Otherwise, recalculate the summary counters.
543 */
544 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
545 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
546 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
547 if (error)
548 return error;
549 }
550
551 /*
552 * Older kernels misused sb_frextents to reflect both incore
553 * reservations made by running transactions and the actual count of
554 * free rt extents in the ondisk metadata. Transactions committed
555 * during runtime can therefore contain a superblock update that
556 * undercounts the number of free rt extents tracked in the rt bitmap.
557 * A clean unmount record will have the correct frextents value since
558 * there can be no other transactions running at that point.
559 *
560 * If we're mounting the rt volume after recovering the log, recompute
561 * frextents from the rtbitmap file to fix the inconsistency.
562 */
563 if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) {
564 error = xfs_rtalloc_reinit_frextents(mp);
565 if (error)
566 return error;
567 }
568
569 return 0;
570}
571
572static void
573xfs_unmount_check(
574 struct xfs_mount *mp)
575{
576 if (xfs_is_shutdown(mp))
577 return;
578
579 if (percpu_counter_sum(fbc: &mp->m_ifree) >
580 percpu_counter_sum(fbc: &mp->m_icount)) {
581 xfs_alert(mp, "ifree/icount mismatch at unmount");
582 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
583 }
584}
585
586/*
587 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
588 * internal inode structures can be sitting in the CIL and AIL at this point,
589 * so we need to unpin them, write them back and/or reclaim them before unmount
590 * can proceed. In other words, callers are required to have inactivated all
591 * inodes.
592 *
593 * An inode cluster that has been freed can have its buffer still pinned in
594 * memory because the transaction is still sitting in a iclog. The stale inodes
595 * on that buffer will be pinned to the buffer until the transaction hits the
596 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
597 * may never see the pinned buffer, so nothing will push out the iclog and
598 * unpin the buffer.
599 *
600 * Hence we need to force the log to unpin everything first. However, log
601 * forces don't wait for the discards they issue to complete, so we have to
602 * explicitly wait for them to complete here as well.
603 *
604 * Then we can tell the world we are unmounting so that error handling knows
605 * that the filesystem is going away and we should error out anything that we
606 * have been retrying in the background. This will prevent never-ending
607 * retries in AIL pushing from hanging the unmount.
608 *
609 * Finally, we can push the AIL to clean all the remaining dirty objects, then
610 * reclaim the remaining inodes that are still in memory at this point in time.
611 */
612static void
613xfs_unmount_flush_inodes(
614 struct xfs_mount *mp)
615{
616 xfs_log_force(mp, XFS_LOG_SYNC);
617 xfs_extent_busy_wait_all(mp);
618 flush_workqueue(xfs_discard_wq);
619
620 xfs_set_unmounting(mp);
621
622 xfs_ail_push_all_sync(ailp: mp->m_ail);
623 xfs_inodegc_stop(mp);
624 cancel_delayed_work_sync(dwork: &mp->m_reclaim_work);
625 xfs_reclaim_inodes(mp);
626 xfs_health_unmount(mp);
627}
628
629static void
630xfs_mount_setup_inode_geom(
631 struct xfs_mount *mp)
632{
633 struct xfs_ino_geometry *igeo = M_IGEO(mp);
634
635 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
636 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
637
638 xfs_ialloc_setup_geometry(mp);
639}
640
641/* Mount the metadata directory tree root. */
642STATIC int
643xfs_mount_setup_metadir(
644 struct xfs_mount *mp)
645{
646 int error;
647
648 /* Load the metadata directory root inode into memory. */
649 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
650 &mp->m_metadirip);
651 if (error)
652 xfs_warn(mp, "Failed to load metadir root directory, error %d",
653 error);
654 return error;
655}
656
657/* Compute maximum possible height for per-AG btree types for this fs. */
658static inline void
659xfs_agbtree_compute_maxlevels(
660 struct xfs_mount *mp)
661{
662 unsigned int levels;
663
664 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
665 levels = max(levels, mp->m_rmap_maxlevels);
666 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
667}
668
669/* Maximum atomic write IO size that the kernel allows. */
670static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp)
671{
672 return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT));
673}
674
675static inline unsigned int max_pow_of_two_factor(const unsigned int nr)
676{
677 return 1 << (ffs(nr) - 1);
678}
679
680/*
681 * If the data device advertises atomic write support, limit the size of data
682 * device atomic writes to the greatest power-of-two factor of the AG size so
683 * that every atomic write unit aligns with the start of every AG. This is
684 * required so that the per-AG allocations for an atomic write will always be
685 * aligned compatibly with the alignment requirements of the storage.
686 *
687 * If the data device doesn't advertise atomic writes, then there are no
688 * alignment restrictions and the largest out-of-place write we can do
689 * ourselves is the number of blocks that user files can allocate from any AG.
690 */
691static inline xfs_extlen_t xfs_calc_perag_awu_max(struct xfs_mount *mp)
692{
693 if (mp->m_ddev_targp->bt_bdev_awu_min > 0)
694 return max_pow_of_two_factor(nr: mp->m_sb.sb_agblocks);
695 return rounddown_pow_of_two(mp->m_ag_max_usable);
696}
697
698/*
699 * Reflink on the realtime device requires rtgroups, and atomic writes require
700 * reflink.
701 *
702 * If the realtime device advertises atomic write support, limit the size of
703 * data device atomic writes to the greatest power-of-two factor of the rtgroup
704 * size so that every atomic write unit aligns with the start of every rtgroup.
705 * This is required so that the per-rtgroup allocations for an atomic write
706 * will always be aligned compatibly with the alignment requirements of the
707 * storage.
708 *
709 * If the rt device doesn't advertise atomic writes, then there are no
710 * alignment restrictions and the largest out-of-place write we can do
711 * ourselves is the number of blocks that user files can allocate from any
712 * rtgroup.
713 */
714static inline xfs_extlen_t xfs_calc_rtgroup_awu_max(struct xfs_mount *mp)
715{
716 struct xfs_groups *rgs = &mp->m_groups[XG_TYPE_RTG];
717
718 if (rgs->blocks == 0)
719 return 0;
720 if (mp->m_rtdev_targp && mp->m_rtdev_targp->bt_bdev_awu_min > 0)
721 return max_pow_of_two_factor(nr: rgs->blocks);
722 return rounddown_pow_of_two(rgs->blocks);
723}
724
725/* Compute the maximum atomic write unit size for each section. */
726static inline void
727xfs_calc_atomic_write_unit_max(
728 struct xfs_mount *mp)
729{
730 struct xfs_groups *ags = &mp->m_groups[XG_TYPE_AG];
731 struct xfs_groups *rgs = &mp->m_groups[XG_TYPE_RTG];
732
733 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp);
734 const xfs_extlen_t max_ioend = xfs_reflink_max_atomic_cow(mp);
735 const xfs_extlen_t max_agsize = xfs_calc_perag_awu_max(mp);
736 const xfs_extlen_t max_rgsize = xfs_calc_rtgroup_awu_max(mp);
737
738 ags->awu_max = min3(max_write, max_ioend, max_agsize);
739 rgs->awu_max = min3(max_write, max_ioend, max_rgsize);
740
741 trace_xfs_calc_atomic_write_unit_max(mp, max_write: max_write, max_ioend: max_ioend,
742 max_agsize: max_agsize, max_rgsize: max_rgsize);
743}
744
745/*
746 * Try to set the atomic write maximum to a new value that we got from
747 * userspace via mount option.
748 */
749int
750xfs_set_max_atomic_write_opt(
751 struct xfs_mount *mp,
752 unsigned long long new_max_bytes)
753{
754 const xfs_filblks_t new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes);
755 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp);
756 const xfs_extlen_t max_group =
757 max(mp->m_groups[XG_TYPE_AG].blocks,
758 mp->m_groups[XG_TYPE_RTG].blocks);
759 const xfs_extlen_t max_group_write =
760 max(xfs_calc_perag_awu_max(mp), xfs_calc_rtgroup_awu_max(mp));
761 int error;
762
763 if (new_max_bytes == 0)
764 goto set_limit;
765
766 ASSERT(max_write <= U32_MAX);
767
768 /* generic_atomic_write_valid enforces power of two length */
769 if (!is_power_of_2(n: new_max_bytes)) {
770 xfs_warn(mp,
771 "max atomic write size of %llu bytes is not a power of 2",
772 new_max_bytes);
773 return -EINVAL;
774 }
775
776 if (new_max_bytes & mp->m_blockmask) {
777 xfs_warn(mp,
778 "max atomic write size of %llu bytes not aligned with fsblock",
779 new_max_bytes);
780 return -EINVAL;
781 }
782
783 if (new_max_fsbs > max_write) {
784 xfs_warn(mp,
785 "max atomic write size of %lluk cannot be larger than max write size %lluk",
786 new_max_bytes >> 10,
787 XFS_FSB_TO_B(mp, max_write) >> 10);
788 return -EINVAL;
789 }
790
791 if (new_max_fsbs > max_group) {
792 xfs_warn(mp,
793 "max atomic write size of %lluk cannot be larger than allocation group size %lluk",
794 new_max_bytes >> 10,
795 XFS_FSB_TO_B(mp, max_group) >> 10);
796 return -EINVAL;
797 }
798
799 if (new_max_fsbs > max_group_write) {
800 xfs_warn(mp,
801 "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk",
802 new_max_bytes >> 10,
803 XFS_FSB_TO_B(mp, max_group_write) >> 10);
804 return -EINVAL;
805 }
806
807set_limit:
808 error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs);
809 if (error) {
810 xfs_warn(mp,
811 "cannot support completing atomic writes of %lluk",
812 new_max_bytes >> 10);
813 return error;
814 }
815
816 xfs_calc_atomic_write_unit_max(mp);
817 mp->m_awu_max_bytes = new_max_bytes;
818 return 0;
819}
820
821/* Compute maximum possible height for realtime btree types for this fs. */
822static inline void
823xfs_rtbtree_compute_maxlevels(
824 struct xfs_mount *mp)
825{
826 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
827 mp->m_rtrefc_maxlevels);
828}
829
830/*
831 * This function does the following on an initial mount of a file system:
832 * - reads the superblock from disk and init the mount struct
833 * - if we're a 32-bit kernel, do a size check on the superblock
834 * so we don't mount terabyte filesystems
835 * - init mount struct realtime fields
836 * - allocate inode hash table for fs
837 * - init directory manager
838 * - perform recovery and init the log manager
839 */
840int
841xfs_mountfs(
842 struct xfs_mount *mp)
843{
844 struct xfs_sb *sbp = &(mp->m_sb);
845 struct xfs_inode *rip;
846 struct xfs_ino_geometry *igeo = M_IGEO(mp);
847 uint quotamount = 0;
848 uint quotaflags = 0;
849 int error = 0;
850 int i;
851
852 xfs_sb_mount_common(mp, sbp);
853
854 /*
855 * Check for a mismatched features2 values. Older kernels read & wrote
856 * into the wrong sb offset for sb_features2 on some platforms due to
857 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
858 * which made older superblock reading/writing routines swap it as a
859 * 64-bit value.
860 *
861 * For backwards compatibility, we make both slots equal.
862 *
863 * If we detect a mismatched field, we OR the set bits into the existing
864 * features2 field in case it has already been modified; we don't want
865 * to lose any features. We then update the bad location with the ORed
866 * value so that older kernels will see any features2 flags. The
867 * superblock writeback code ensures the new sb_features2 is copied to
868 * sb_bad_features2 before it is logged or written to disk.
869 */
870 if (xfs_sb_has_mismatched_features2(sbp)) {
871 xfs_warn(mp, "correcting sb_features alignment problem");
872 sbp->sb_features2 |= sbp->sb_bad_features2;
873 mp->m_update_sb = true;
874 }
875
876
877 /* always use v2 inodes by default now */
878 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
879 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
880 mp->m_features |= XFS_FEAT_NLINK;
881 mp->m_update_sb = true;
882 }
883
884 /*
885 * If we were given new sunit/swidth options, do some basic validation
886 * checks and convert the incore dalign and swidth values to the
887 * same units (FSB) that everything else uses. This /must/ happen
888 * before computing the inode geometry.
889 */
890 error = xfs_validate_new_dalign(mp);
891 if (error)
892 goto out;
893
894 xfs_alloc_compute_maxlevels(mp);
895 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
896 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
897 xfs_mount_setup_inode_geom(mp);
898 xfs_rmapbt_compute_maxlevels(mp);
899 xfs_rtrmapbt_compute_maxlevels(mp);
900 xfs_refcountbt_compute_maxlevels(mp);
901 xfs_rtrefcountbt_compute_maxlevels(mp);
902
903 xfs_agbtree_compute_maxlevels(mp);
904 xfs_rtbtree_compute_maxlevels(mp);
905
906 /*
907 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
908 * is NOT aligned turn off m_dalign since allocator alignment is within
909 * an ag, therefore ag has to be aligned at stripe boundary. Note that
910 * we must compute the free space and rmap btree geometry before doing
911 * this.
912 */
913 error = xfs_update_alignment(mp);
914 if (error)
915 goto out;
916
917 /* enable fail_at_unmount as default */
918 mp->m_fail_unmount = true;
919
920 error = xfs_mount_sysfs_init(mp);
921 if (error)
922 goto out_remove_scrub_stats;
923
924 xchk_stats_register(cs: mp->m_scrub_stats, parent: mp->m_debugfs);
925
926 error = xfs_errortag_init(mp);
927 if (error)
928 goto out_remove_sysfs;
929
930 error = xfs_uuid_mount(mp);
931 if (error)
932 goto out_remove_errortag;
933
934 /*
935 * Update the preferred write size based on the information from the
936 * on-disk superblock.
937 */
938 mp->m_allocsize_log =
939 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
940 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
941
942 /* set the low space thresholds for dynamic preallocation */
943 xfs_set_low_space_thresholds(mp);
944
945 /*
946 * If enabled, sparse inode chunk alignment is expected to match the
947 * cluster size. Full inode chunk alignment must match the chunk size,
948 * but that is checked on sb read verification...
949 */
950 if (xfs_has_sparseinodes(mp) &&
951 mp->m_sb.sb_spino_align !=
952 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
953 xfs_warn(mp,
954 "Sparse inode block alignment (%u) must match cluster size (%llu).",
955 mp->m_sb.sb_spino_align,
956 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
957 error = -EINVAL;
958 goto out_remove_uuid;
959 }
960
961 /*
962 * Check that the data (and log if separate) is an ok size.
963 */
964 error = xfs_check_sizes(mp);
965 if (error)
966 goto out_remove_uuid;
967
968 /*
969 * Initialize realtime fields in the mount structure
970 */
971 error = xfs_rtmount_init(mp);
972 if (error) {
973 xfs_warn(mp, "RT mount failed");
974 goto out_remove_uuid;
975 }
976
977 /*
978 * Copies the low order bits of the timestamp and the randomly
979 * set "sequence" number out of a UUID.
980 */
981 mp->m_fixedfsid[0] =
982 (get_unaligned_be16(p: &sbp->sb_uuid.b[8]) << 16) |
983 get_unaligned_be16(p: &sbp->sb_uuid.b[4]);
984 mp->m_fixedfsid[1] = get_unaligned_be32(p: &sbp->sb_uuid.b[0]);
985
986 error = xfs_da_mount(mp);
987 if (error) {
988 xfs_warn(mp, "Failed dir/attr init: %d", error);
989 goto out_remove_uuid;
990 }
991
992 /*
993 * Initialize the precomputed transaction reservations values.
994 */
995 xfs_trans_init(mp);
996
997 /*
998 * Allocate and initialize the per-ag data.
999 */
1000 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
1001 mp->m_sb.sb_dblocks, &mp->m_maxagi);
1002 if (error) {
1003 xfs_warn(mp, "Failed per-ag init: %d", error);
1004 goto out_free_dir;
1005 }
1006
1007 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
1008 mp->m_sb.sb_rextents);
1009 if (error) {
1010 xfs_warn(mp, "Failed rtgroup init: %d", error);
1011 goto out_free_perag;
1012 }
1013
1014 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
1015 xfs_warn(mp, "no log defined");
1016 error = -EFSCORRUPTED;
1017 goto out_free_rtgroup;
1018 }
1019
1020 error = xfs_inodegc_register_shrinker(mp);
1021 if (error)
1022 goto out_fail_wait;
1023
1024 /*
1025 * If we're resuming quota status, pick up the preliminary qflags from
1026 * the ondisk superblock so that we know if we should recover dquots.
1027 */
1028 if (xfs_is_resuming_quotaon(mp))
1029 xfs_qm_resume_quotaon(mp);
1030
1031 /*
1032 * Log's mount-time initialization. The first part of recovery can place
1033 * some items on the AIL, to be handled when recovery is finished or
1034 * cancelled.
1035 */
1036 error = xfs_log_mount(mp, log_target: mp->m_logdev_targp,
1037 start_block: XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1038 num_bblocks: XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1039 if (error) {
1040 xfs_warn(mp, "log mount failed");
1041 goto out_inodegc_shrinker;
1042 }
1043
1044 /*
1045 * If we're resuming quota status and recovered the log, re-sample the
1046 * qflags from the ondisk superblock now that we've recovered it, just
1047 * in case someone shut down enforcement just before a crash.
1048 */
1049 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(log: mp->m_log))
1050 xfs_qm_resume_quotaon(mp);
1051
1052 /*
1053 * If logged xattrs are still enabled after log recovery finishes, then
1054 * they'll be available until unmount. Otherwise, turn them off.
1055 */
1056 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
1057 xfs_set_using_logged_xattrs(mp);
1058 else
1059 xfs_clear_using_logged_xattrs(mp);
1060
1061 /* Enable background inode inactivation workers. */
1062 xfs_inodegc_start(mp);
1063 xfs_blockgc_start(mp);
1064
1065 /*
1066 * Now that we've recovered any pending superblock feature bit
1067 * additions, we can finish setting up the attr2 behaviour for the
1068 * mount. The noattr2 option overrides the superblock flag, so only
1069 * check the superblock feature flag if the mount option is not set.
1070 */
1071 if (xfs_has_noattr2(mp)) {
1072 mp->m_features &= ~XFS_FEAT_ATTR2;
1073 } else if (!xfs_has_attr2(mp) &&
1074 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
1075 mp->m_features |= XFS_FEAT_ATTR2;
1076 }
1077
1078 if (xfs_has_metadir(mp)) {
1079 error = xfs_mount_setup_metadir(mp);
1080 if (error)
1081 goto out_free_metadir;
1082 }
1083
1084 /*
1085 * Get and sanity-check the root inode.
1086 * Save the pointer to it in the mount structure.
1087 */
1088 error = xfs_iget(mp, NULL, ino: sbp->sb_rootino, XFS_IGET_UNTRUSTED,
1089 XFS_ILOCK_EXCL, ipp: &rip);
1090 if (error) {
1091 xfs_warn(mp,
1092 "Failed to read root inode 0x%llx, error %d",
1093 sbp->sb_rootino, -error);
1094 goto out_free_metadir;
1095 }
1096
1097 ASSERT(rip != NULL);
1098
1099 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
1100 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1101 (unsigned long long)rip->i_ino);
1102 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1103 error = -EFSCORRUPTED;
1104 goto out_rele_rip;
1105 }
1106 mp->m_rootip = rip; /* save it */
1107
1108 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1109
1110 /*
1111 * Initialize realtime inode pointers in the mount structure
1112 */
1113 error = xfs_rtmount_inodes(mp);
1114 if (error) {
1115 /*
1116 * Free up the root inode.
1117 */
1118 xfs_warn(mp, "failed to read RT inodes");
1119 goto out_rele_rip;
1120 }
1121
1122 /* Make sure the summary counts are ok. */
1123 error = xfs_check_summary_counts(mp);
1124 if (error)
1125 goto out_rtunmount;
1126
1127 /*
1128 * If this is a read-only mount defer the superblock updates until
1129 * the next remount into writeable mode. Otherwise we would never
1130 * perform the update e.g. for the root filesystem.
1131 */
1132 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
1133 error = xfs_sync_sb(mp, false);
1134 if (error) {
1135 xfs_warn(mp, "failed to write sb changes");
1136 goto out_rtunmount;
1137 }
1138 }
1139
1140 /*
1141 * Initialise the XFS quota management subsystem for this mount
1142 */
1143 if (XFS_IS_QUOTA_ON(mp)) {
1144 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1145 if (error)
1146 goto out_rtunmount;
1147 } else {
1148 /*
1149 * If a file system had quotas running earlier, but decided to
1150 * mount without -o uquota/pquota/gquota options, revoke the
1151 * quotachecked license.
1152 */
1153 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1154 xfs_notice(mp, "resetting quota flags");
1155 error = xfs_mount_reset_sbqflags(mp);
1156 if (error)
1157 goto out_rtunmount;
1158 }
1159 }
1160
1161 /*
1162 * Finish recovering the file system. This part needed to be delayed
1163 * until after the root and real-time bitmap inodes were consistently
1164 * read in. Temporarily create per-AG space reservations for metadata
1165 * btree shape changes because space freeing transactions (for inode
1166 * inactivation) require the per-AG reservation in lieu of reserving
1167 * blocks.
1168 */
1169 error = xfs_fs_reserve_ag_blocks(mp);
1170 if (error && error == -ENOSPC)
1171 xfs_warn(mp,
1172 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1173 error = xfs_log_mount_finish(mp);
1174 xfs_fs_unreserve_ag_blocks(mp);
1175 if (error) {
1176 xfs_warn(mp, "log mount finish failed");
1177 goto out_rtunmount;
1178 }
1179
1180 /*
1181 * Now the log is fully replayed, we can transition to full read-only
1182 * mode for read-only mounts. This will sync all the metadata and clean
1183 * the log so that the recovery we just performed does not have to be
1184 * replayed again on the next mount.
1185 *
1186 * We use the same quiesce mechanism as the rw->ro remount, as they are
1187 * semantically identical operations.
1188 */
1189 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1190 xfs_log_clean(mp);
1191
1192 if (xfs_has_zoned(mp)) {
1193 error = xfs_mount_zones(mp);
1194 if (error)
1195 goto out_rtunmount;
1196 }
1197
1198 /*
1199 * Complete the quota initialisation, post-log-replay component.
1200 */
1201 if (quotamount) {
1202 ASSERT(mp->m_qflags == 0);
1203 mp->m_qflags = quotaflags;
1204
1205 xfs_qm_mount_quotas(mp);
1206 }
1207
1208 /*
1209 * Now we are mounted, reserve a small amount of unused space for
1210 * privileged transactions. This is needed so that transaction
1211 * space required for critical operations can dip into this pool
1212 * when at ENOSPC. This is needed for operations like create with
1213 * attr, unwritten extent conversion at ENOSPC, garbage collection
1214 * etc. Data allocations are not allowed to use this reserved space.
1215 *
1216 * This may drive us straight to ENOSPC on mount, but that implies
1217 * we were already there on the last unmount. Warn if this occurs.
1218 */
1219 if (!xfs_is_readonly(mp)) {
1220 for (i = 0; i < XC_FREE_NR; i++) {
1221 error = xfs_reserve_blocks(mp, i,
1222 xfs_default_resblks(mp, i));
1223 if (error)
1224 xfs_warn(mp,
1225"Unable to allocate reserve blocks. Continuing without reserve pool for %s.",
1226 xfs_free_pool_name[i]);
1227 }
1228
1229 /* Reserve AG blocks for future btree expansion. */
1230 error = xfs_fs_reserve_ag_blocks(mp);
1231 if (error && error != -ENOSPC)
1232 goto out_agresv;
1233
1234 xfs_zone_gc_start(mp);
1235 }
1236
1237 /*
1238 * Pre-calculate atomic write unit max. This involves computations
1239 * derived from transaction reservations, so we must do this after the
1240 * log is fully initialized.
1241 */
1242 error = xfs_set_max_atomic_write_opt(mp, new_max_bytes: mp->m_awu_max_bytes);
1243 if (error)
1244 goto out_agresv;
1245
1246 return 0;
1247
1248 out_agresv:
1249 xfs_fs_unreserve_ag_blocks(mp);
1250 xfs_qm_unmount_quotas(mp);
1251 if (xfs_has_zoned(mp))
1252 xfs_unmount_zones(mp);
1253 out_rtunmount:
1254 xfs_rtunmount_inodes(mp);
1255 out_rele_rip:
1256 xfs_irele(ip: rip);
1257 /* Clean out dquots that might be in memory after quotacheck. */
1258 xfs_qm_unmount(mp);
1259 out_free_metadir:
1260 if (mp->m_metadirip)
1261 xfs_irele(ip: mp->m_metadirip);
1262
1263 /*
1264 * Inactivate all inodes that might still be in memory after a log
1265 * intent recovery failure so that reclaim can free them. Metadata
1266 * inodes and the root directory shouldn't need inactivation, but the
1267 * mount failed for some reason, so pull down all the state and flee.
1268 */
1269 xfs_inodegc_flush(mp);
1270
1271 /*
1272 * Flush all inode reclamation work and flush the log.
1273 * We have to do this /after/ rtunmount and qm_unmount because those
1274 * two will have scheduled delayed reclaim for the rt/quota inodes.
1275 *
1276 * This is slightly different from the unmountfs call sequence
1277 * because we could be tearing down a partially set up mount. In
1278 * particular, if log_mount_finish fails we bail out without calling
1279 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1280 * quota inodes.
1281 */
1282 xfs_unmount_flush_inodes(mp);
1283 xfs_log_mount_cancel(mp);
1284 out_inodegc_shrinker:
1285 shrinker_free(shrinker: mp->m_inodegc_shrinker);
1286 out_fail_wait:
1287 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1288 xfs_buftarg_drain(mp->m_logdev_targp);
1289 xfs_buftarg_drain(mp->m_ddev_targp);
1290 out_free_rtgroup:
1291 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1292 out_free_perag:
1293 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1294 out_free_dir:
1295 xfs_da_unmount(mp);
1296 out_remove_uuid:
1297 xfs_uuid_unmount(mp);
1298 out_remove_errortag:
1299 xfs_errortag_del(mp);
1300 out_remove_sysfs:
1301 xfs_mount_sysfs_del(mp);
1302 out_remove_scrub_stats:
1303 xchk_stats_unregister(cs: mp->m_scrub_stats);
1304 out:
1305 return error;
1306}
1307
1308/*
1309 * This flushes out the inodes,dquots and the superblock, unmounts the
1310 * log and makes sure that incore structures are freed.
1311 */
1312void
1313xfs_unmountfs(
1314 struct xfs_mount *mp)
1315{
1316 int error;
1317
1318 /*
1319 * Perform all on-disk metadata updates required to inactivate inodes
1320 * that the VFS evicted earlier in the unmount process. Freeing inodes
1321 * and discarding CoW fork preallocations can cause shape changes to
1322 * the free inode and refcount btrees, respectively, so we must finish
1323 * this before we discard the metadata space reservations. Metadata
1324 * inodes and the root directory do not require inactivation.
1325 */
1326 xfs_inodegc_flush(mp);
1327
1328 xfs_blockgc_stop(mp);
1329 if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate))
1330 xfs_zone_gc_stop(mp);
1331 xfs_fs_unreserve_ag_blocks(mp);
1332 xfs_qm_unmount_quotas(mp);
1333 if (xfs_has_zoned(mp))
1334 xfs_unmount_zones(mp);
1335 xfs_rtunmount_inodes(mp);
1336 xfs_irele(ip: mp->m_rootip);
1337 if (mp->m_metadirip)
1338 xfs_irele(ip: mp->m_metadirip);
1339
1340 xfs_unmount_flush_inodes(mp);
1341
1342 xfs_qm_unmount(mp);
1343
1344 /*
1345 * Unreserve any blocks we have so that when we unmount we don't account
1346 * the reserved free space as used. This is really only necessary for
1347 * lazy superblock counting because it trusts the incore superblock
1348 * counters to be absolutely correct on clean unmount.
1349 *
1350 * We don't bother correcting this elsewhere for lazy superblock
1351 * counting because on mount of an unclean filesystem we reconstruct the
1352 * correct counter value and this is irrelevant.
1353 *
1354 * For non-lazy counter filesystems, this doesn't matter at all because
1355 * we only every apply deltas to the superblock and hence the incore
1356 * value does not matter....
1357 */
1358 error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0);
1359 if (error)
1360 xfs_warn(mp, "Unable to free reserved block pool. "
1361 "Freespace may not be correct on next mount.");
1362 xfs_unmount_check(mp);
1363
1364 /*
1365 * Indicate that it's ok to clear log incompat bits before cleaning
1366 * the log and writing the unmount record.
1367 */
1368 xfs_set_done_with_log_incompat(mp);
1369 xfs_log_unmount(mp);
1370 xfs_da_unmount(mp);
1371 xfs_uuid_unmount(mp);
1372
1373#if defined(DEBUG)
1374 xfs_errortag_clearall(mp);
1375#endif
1376 shrinker_free(shrinker: mp->m_inodegc_shrinker);
1377 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1378 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1379 xfs_errortag_del(mp);
1380 xchk_stats_unregister(cs: mp->m_scrub_stats);
1381 xfs_mount_sysfs_del(mp);
1382}
1383
1384/*
1385 * Determine whether modifications can proceed. The caller specifies the minimum
1386 * freeze level for which modifications should not be allowed. This allows
1387 * certain operations to proceed while the freeze sequence is in progress, if
1388 * necessary.
1389 */
1390bool
1391xfs_fs_writable(
1392 struct xfs_mount *mp,
1393 int level)
1394{
1395 ASSERT(level > SB_UNFROZEN);
1396 if ((mp->m_super->s_writers.frozen >= level) ||
1397 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1398 return false;
1399
1400 return true;
1401}
1402
1403/*
1404 * Estimate the amount of free space that is not available to userspace and is
1405 * not explicitly reserved from the incore fdblocks. This includes:
1406 *
1407 * - The minimum number of blocks needed to support splitting a bmap btree
1408 * - The blocks currently in use by the freespace btrees because they record
1409 * the actual blocks that will fill per-AG metadata space reservations
1410 */
1411uint64_t
1412xfs_freecounter_unavailable(
1413 struct xfs_mount *mp,
1414 enum xfs_free_counter ctr)
1415{
1416 if (ctr != XC_FREE_BLOCKS)
1417 return 0;
1418 return mp->m_alloc_set_aside + atomic64_read(v: &mp->m_allocbt_blks);
1419}
1420
1421void
1422xfs_add_freecounter(
1423 struct xfs_mount *mp,
1424 enum xfs_free_counter ctr,
1425 uint64_t delta)
1426{
1427 struct xfs_freecounter *counter = &mp->m_free[ctr];
1428 uint64_t res_used;
1429
1430 /*
1431 * If the reserve pool is depleted, put blocks back into it first.
1432 * Most of the time the pool is full.
1433 */
1434 if (likely(counter->res_avail == counter->res_total)) {
1435 percpu_counter_add(fbc: &counter->count, amount: delta);
1436 return;
1437 }
1438
1439 spin_lock(lock: &mp->m_sb_lock);
1440 res_used = counter->res_total - counter->res_avail;
1441 if (res_used > delta) {
1442 counter->res_avail += delta;
1443 } else {
1444 delta -= res_used;
1445 counter->res_avail = counter->res_total;
1446 percpu_counter_add(fbc: &counter->count, amount: delta);
1447 }
1448 spin_unlock(lock: &mp->m_sb_lock);
1449}
1450
1451
1452/* Adjust in-core free blocks or RT extents. */
1453int
1454xfs_dec_freecounter(
1455 struct xfs_mount *mp,
1456 enum xfs_free_counter ctr,
1457 uint64_t delta,
1458 bool rsvd)
1459{
1460 struct xfs_freecounter *counter = &mp->m_free[ctr];
1461 s32 batch;
1462
1463 ASSERT(ctr < XC_FREE_NR);
1464
1465 /*
1466 * Taking blocks away, need to be more accurate the closer we
1467 * are to zero.
1468 *
1469 * If the counter has a value of less than 2 * max batch size,
1470 * then make everything serialise as we are real close to
1471 * ENOSPC.
1472 */
1473 if (__percpu_counter_compare(fbc: &counter->count, rhs: 2 * XFS_FDBLOCKS_BATCH,
1474 XFS_FDBLOCKS_BATCH) < 0)
1475 batch = 1;
1476 else
1477 batch = XFS_FDBLOCKS_BATCH;
1478
1479 /*
1480 * Set aside allocbt blocks because these blocks are tracked as free
1481 * space but not available for allocation. Technically this means that a
1482 * single reservation cannot consume all remaining free space, but the
1483 * ratio of allocbt blocks to usable free blocks should be rather small.
1484 * The tradeoff without this is that filesystems that maintain high
1485 * perag block reservations can over reserve physical block availability
1486 * and fail physical allocation, which leads to much more serious
1487 * problems (i.e. transaction abort, pagecache discards, etc.) than
1488 * slightly premature -ENOSPC.
1489 */
1490 percpu_counter_add_batch(fbc: &counter->count, amount: -((int64_t)delta), batch);
1491 if (__percpu_counter_compare(fbc: &counter->count,
1492 rhs: xfs_freecounter_unavailable(mp, ctr: ctr),
1493 XFS_FDBLOCKS_BATCH) < 0) {
1494 /*
1495 * Lock up the sb for dipping into reserves before releasing the
1496 * space that took us to ENOSPC.
1497 */
1498 spin_lock(lock: &mp->m_sb_lock);
1499 percpu_counter_add(fbc: &counter->count, amount: delta);
1500 if (!rsvd)
1501 goto fdblocks_enospc;
1502 if (delta > counter->res_avail) {
1503 if (ctr == XC_FREE_BLOCKS)
1504 xfs_warn_once(mp,
1505"Reserve blocks depleted! Consider increasing reserve pool size.");
1506 goto fdblocks_enospc;
1507 }
1508 counter->res_avail -= delta;
1509 trace_xfs_freecounter_reserved(mp, ctr: ctr, delta, _RET_IP_);
1510 spin_unlock(lock: &mp->m_sb_lock);
1511 }
1512
1513 /* we had space! */
1514 return 0;
1515
1516fdblocks_enospc:
1517 trace_xfs_freecounter_enospc(mp, ctr: ctr, delta, _RET_IP_);
1518 spin_unlock(lock: &mp->m_sb_lock);
1519 return -ENOSPC;
1520}
1521
1522/*
1523 * Used to free the superblock along various error paths.
1524 */
1525void
1526xfs_freesb(
1527 struct xfs_mount *mp)
1528{
1529 struct xfs_buf *bp = mp->m_sb_bp;
1530
1531 xfs_buf_lock(bp);
1532 mp->m_sb_bp = NULL;
1533 xfs_buf_relse(bp);
1534}
1535
1536/*
1537 * If the underlying (data/log/rt) device is readonly, there are some
1538 * operations that cannot proceed.
1539 */
1540int
1541xfs_dev_is_read_only(
1542 struct xfs_mount *mp,
1543 char *message)
1544{
1545 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1546 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1547 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1548 xfs_notice(mp, "%s required on read-only device.", message);
1549 xfs_notice(mp, "write access unavailable, cannot proceed.");
1550 return -EROFS;
1551 }
1552 return 0;
1553}
1554
1555/* Force the summary counters to be recalculated at next mount. */
1556void
1557xfs_force_summary_recalc(
1558 struct xfs_mount *mp)
1559{
1560 if (!xfs_has_lazysbcount(mp))
1561 return;
1562
1563 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1564}
1565
1566/*
1567 * Enable a log incompat feature flag in the primary superblock. The caller
1568 * cannot have any other transactions in progress.
1569 */
1570int
1571xfs_add_incompat_log_feature(
1572 struct xfs_mount *mp,
1573 uint32_t feature)
1574{
1575 struct xfs_dsb *dsb;
1576 int error;
1577
1578 ASSERT(hweight32(feature) == 1);
1579 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1580
1581 /*
1582 * Force the log to disk and kick the background AIL thread to reduce
1583 * the chances that the bwrite will stall waiting for the AIL to unpin
1584 * the primary superblock buffer. This isn't a data integrity
1585 * operation, so we don't need a synchronous push.
1586 */
1587 error = xfs_log_force(mp, XFS_LOG_SYNC);
1588 if (error)
1589 return error;
1590 xfs_ail_push_all(ailp: mp->m_ail);
1591
1592 /*
1593 * Lock the primary superblock buffer to serialize all callers that
1594 * are trying to set feature bits.
1595 */
1596 xfs_buf_lock(mp->m_sb_bp);
1597 xfs_buf_hold(bp: mp->m_sb_bp);
1598
1599 if (xfs_is_shutdown(mp)) {
1600 error = -EIO;
1601 goto rele;
1602 }
1603
1604 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1605 goto rele;
1606
1607 /*
1608 * Write the primary superblock to disk immediately, because we need
1609 * the log_incompat bit to be set in the primary super now to protect
1610 * the log items that we're going to commit later.
1611 */
1612 dsb = mp->m_sb_bp->b_addr;
1613 xfs_sb_to_disk(dsb, &mp->m_sb);
1614 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1615 error = xfs_bwrite(bp: mp->m_sb_bp);
1616 if (error)
1617 goto shutdown;
1618
1619 /*
1620 * Add the feature bits to the incore superblock before we unlock the
1621 * buffer.
1622 */
1623 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1624 xfs_buf_relse(bp: mp->m_sb_bp);
1625
1626 /* Log the superblock to disk. */
1627 return xfs_sync_sb(mp, false);
1628shutdown:
1629 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1630rele:
1631 xfs_buf_relse(bp: mp->m_sb_bp);
1632 return error;
1633}
1634
1635/*
1636 * Clear all the log incompat flags from the superblock.
1637 *
1638 * The caller cannot be in a transaction, must ensure that the log does not
1639 * contain any log items protected by any log incompat bit, and must ensure
1640 * that there are no other threads that depend on the state of the log incompat
1641 * feature flags in the primary super.
1642 *
1643 * Returns true if the superblock is dirty.
1644 */
1645bool
1646xfs_clear_incompat_log_features(
1647 struct xfs_mount *mp)
1648{
1649 bool ret = false;
1650
1651 if (!xfs_has_crc(mp) ||
1652 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1653 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1654 xfs_is_shutdown(mp) ||
1655 !xfs_is_done_with_log_incompat(mp))
1656 return false;
1657
1658 /*
1659 * Update the incore superblock. We synchronize on the primary super
1660 * buffer lock to be consistent with the add function, though at least
1661 * in theory this shouldn't be necessary.
1662 */
1663 xfs_buf_lock(mp->m_sb_bp);
1664 xfs_buf_hold(bp: mp->m_sb_bp);
1665
1666 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1667 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1668 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1669 ret = true;
1670 }
1671
1672 xfs_buf_relse(bp: mp->m_sb_bp);
1673 return ret;
1674}
1675
1676/*
1677 * Update the in-core delayed block counter.
1678 *
1679 * We prefer to update the counter without having to take a spinlock for every
1680 * counter update (i.e. batching). Each change to delayed allocation
1681 * reservations can change can easily exceed the default percpu counter
1682 * batching, so we use a larger batch factor here.
1683 *
1684 * Note that we don't currently have any callers requiring fast summation
1685 * (e.g. percpu_counter_read) so we can use a big batch value here.
1686 */
1687#define XFS_DELALLOC_BATCH (4096)
1688void
1689xfs_mod_delalloc(
1690 struct xfs_inode *ip,
1691 int64_t data_delta,
1692 int64_t ind_delta)
1693{
1694 struct xfs_mount *mp = ip->i_mount;
1695
1696 if (XFS_IS_REALTIME_INODE(ip)) {
1697 percpu_counter_add_batch(fbc: &mp->m_delalloc_rtextents,
1698 amount: xfs_blen_to_rtbxlen(mp, data_delta),
1699 XFS_DELALLOC_BATCH);
1700 if (!ind_delta)
1701 return;
1702 data_delta = 0;
1703 }
1704 percpu_counter_add_batch(fbc: &mp->m_delalloc_blks, amount: data_delta + ind_delta,
1705 XFS_DELALLOC_BATCH);
1706}
1707

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/fs/xfs/xfs_mount.c