| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_bit.h" |
| 13 | #include "xfs_sb.h" |
| 14 | #include "xfs_mount.h" |
| 15 | #include "xfs_inode.h" |
| 16 | #include "xfs_dir2.h" |
| 17 | #include "xfs_ialloc.h" |
| 18 | #include "xfs_alloc.h" |
| 19 | #include "xfs_rtalloc.h" |
| 20 | #include "xfs_bmap.h" |
| 21 | #include "xfs_trans.h" |
| 22 | #include "xfs_trans_priv.h" |
| 23 | #include "xfs_log.h" |
| 24 | #include "xfs_log_priv.h" |
| 25 | #include "xfs_error.h" |
| 26 | #include "xfs_quota.h" |
| 27 | #include "xfs_fsops.h" |
| 28 | #include "xfs_icache.h" |
| 29 | #include "xfs_sysfs.h" |
| 30 | #include "xfs_rmap_btree.h" |
| 31 | #include "xfs_refcount_btree.h" |
| 32 | #include "xfs_reflink.h" |
| 33 | #include "xfs_extent_busy.h" |
| 34 | #include "xfs_health.h" |
| 35 | #include "xfs_trace.h" |
| 36 | #include "xfs_ag.h" |
| 37 | #include "xfs_rtbitmap.h" |
| 38 | #include "xfs_metafile.h" |
| 39 | #include "xfs_rtgroup.h" |
| 40 | #include "xfs_rtrmap_btree.h" |
| 41 | #include "xfs_rtrefcount_btree.h" |
| 42 | #include "scrub/stats.h" |
| 43 | #include "xfs_zone_alloc.h" |
| 44 | |
| 45 | static DEFINE_MUTEX(xfs_uuid_table_mutex); |
| 46 | static int xfs_uuid_table_size; |
| 47 | static uuid_t *xfs_uuid_table; |
| 48 | |
| 49 | void |
| 50 | xfs_uuid_table_free(void) |
| 51 | { |
| 52 | if (xfs_uuid_table_size == 0) |
| 53 | return; |
| 54 | kfree(objp: xfs_uuid_table); |
| 55 | xfs_uuid_table = NULL; |
| 56 | xfs_uuid_table_size = 0; |
| 57 | } |
| 58 | |
| 59 | /* |
| 60 | * See if the UUID is unique among mounted XFS filesystems. |
| 61 | * Mount fails if UUID is nil or a FS with the same UUID is already mounted. |
| 62 | */ |
| 63 | STATIC int |
| 64 | xfs_uuid_mount( |
| 65 | struct xfs_mount *mp) |
| 66 | { |
| 67 | uuid_t *uuid = &mp->m_sb.sb_uuid; |
| 68 | int hole, i; |
| 69 | |
| 70 | /* Publish UUID in struct super_block */ |
| 71 | super_set_uuid(sb: mp->m_super, uuid: uuid->b, len: sizeof(*uuid)); |
| 72 | |
| 73 | if (xfs_has_nouuid(mp)) |
| 74 | return 0; |
| 75 | |
| 76 | if (uuid_is_null(uuid)) { |
| 77 | xfs_warn(mp, "Filesystem has null UUID - can't mount" ); |
| 78 | return -EINVAL; |
| 79 | } |
| 80 | |
| 81 | mutex_lock(&xfs_uuid_table_mutex); |
| 82 | for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { |
| 83 | if (uuid_is_null(uuid: &xfs_uuid_table[i])) { |
| 84 | hole = i; |
| 85 | continue; |
| 86 | } |
| 87 | if (uuid_equal(u1: uuid, u2: &xfs_uuid_table[i])) |
| 88 | goto out_duplicate; |
| 89 | } |
| 90 | |
| 91 | if (hole < 0) { |
| 92 | xfs_uuid_table = krealloc(xfs_uuid_table, |
| 93 | (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), |
| 94 | GFP_KERNEL | __GFP_NOFAIL); |
| 95 | hole = xfs_uuid_table_size++; |
| 96 | } |
| 97 | xfs_uuid_table[hole] = *uuid; |
| 98 | mutex_unlock(lock: &xfs_uuid_table_mutex); |
| 99 | |
| 100 | return 0; |
| 101 | |
| 102 | out_duplicate: |
| 103 | mutex_unlock(lock: &xfs_uuid_table_mutex); |
| 104 | xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount" , uuid); |
| 105 | return -EINVAL; |
| 106 | } |
| 107 | |
| 108 | STATIC void |
| 109 | xfs_uuid_unmount( |
| 110 | struct xfs_mount *mp) |
| 111 | { |
| 112 | uuid_t *uuid = &mp->m_sb.sb_uuid; |
| 113 | int i; |
| 114 | |
| 115 | if (xfs_has_nouuid(mp)) |
| 116 | return; |
| 117 | |
| 118 | mutex_lock(&xfs_uuid_table_mutex); |
| 119 | for (i = 0; i < xfs_uuid_table_size; i++) { |
| 120 | if (uuid_is_null(uuid: &xfs_uuid_table[i])) |
| 121 | continue; |
| 122 | if (!uuid_equal(u1: uuid, u2: &xfs_uuid_table[i])) |
| 123 | continue; |
| 124 | memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); |
| 125 | break; |
| 126 | } |
| 127 | ASSERT(i < xfs_uuid_table_size); |
| 128 | mutex_unlock(lock: &xfs_uuid_table_mutex); |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * Check size of device based on the (data/realtime) block count. |
| 133 | * Note: this check is used by the growfs code as well as mount. |
| 134 | */ |
| 135 | int |
| 136 | xfs_sb_validate_fsb_count( |
| 137 | xfs_sb_t *sbp, |
| 138 | uint64_t nblocks) |
| 139 | { |
| 140 | uint64_t max_bytes; |
| 141 | |
| 142 | ASSERT(sbp->sb_blocklog >= BBSHIFT); |
| 143 | |
| 144 | if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) |
| 145 | return -EFBIG; |
| 146 | |
| 147 | /* Limited by ULONG_MAX of page cache index */ |
| 148 | if (max_bytes >> PAGE_SHIFT > ULONG_MAX) |
| 149 | return -EFBIG; |
| 150 | return 0; |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * xfs_readsb |
| 155 | * |
| 156 | * Does the initial read of the superblock. |
| 157 | */ |
| 158 | int |
| 159 | xfs_readsb( |
| 160 | struct xfs_mount *mp, |
| 161 | int flags) |
| 162 | { |
| 163 | unsigned int sector_size; |
| 164 | struct xfs_buf *bp; |
| 165 | struct xfs_sb *sbp = &mp->m_sb; |
| 166 | int error; |
| 167 | int loud = !(flags & XFS_MFSI_QUIET); |
| 168 | const struct xfs_buf_ops *buf_ops; |
| 169 | |
| 170 | ASSERT(mp->m_sb_bp == NULL); |
| 171 | ASSERT(mp->m_ddev_targp != NULL); |
| 172 | |
| 173 | /* |
| 174 | * For the initial read, we must guess at the sector |
| 175 | * size based on the block device. It's enough to |
| 176 | * get the sb_sectsize out of the superblock and |
| 177 | * then reread with the proper length. |
| 178 | * We don't verify it yet, because it may not be complete. |
| 179 | */ |
| 180 | sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); |
| 181 | buf_ops = NULL; |
| 182 | |
| 183 | /* |
| 184 | * Allocate a (locked) buffer to hold the superblock. This will be kept |
| 185 | * around at all times to optimize access to the superblock. |
| 186 | */ |
| 187 | reread: |
| 188 | error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, |
| 189 | BTOBB(sector_size), &bp, buf_ops); |
| 190 | if (error) { |
| 191 | if (loud) |
| 192 | xfs_warn(mp, "SB validate failed with error %d." , error); |
| 193 | /* bad CRC means corrupted metadata */ |
| 194 | if (error == -EFSBADCRC) |
| 195 | error = -EFSCORRUPTED; |
| 196 | return error; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Initialize the mount structure from the superblock. |
| 201 | */ |
| 202 | xfs_sb_from_disk(sbp, bp->b_addr); |
| 203 | |
| 204 | /* |
| 205 | * If we haven't validated the superblock, do so now before we try |
| 206 | * to check the sector size and reread the superblock appropriately. |
| 207 | */ |
| 208 | if (sbp->sb_magicnum != XFS_SB_MAGIC) { |
| 209 | if (loud) |
| 210 | xfs_warn(mp, "Invalid superblock magic number" ); |
| 211 | error = -EINVAL; |
| 212 | goto release_buf; |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * We must be able to do sector-sized and sector-aligned IO. |
| 217 | */ |
| 218 | if (sector_size > sbp->sb_sectsize) { |
| 219 | if (loud) |
| 220 | xfs_warn(mp, "device supports %u byte sectors (not %u)" , |
| 221 | sector_size, sbp->sb_sectsize); |
| 222 | error = -ENOSYS; |
| 223 | goto release_buf; |
| 224 | } |
| 225 | |
| 226 | if (buf_ops == NULL) { |
| 227 | /* |
| 228 | * Re-read the superblock so the buffer is correctly sized, |
| 229 | * and properly verified. |
| 230 | */ |
| 231 | xfs_buf_relse(bp); |
| 232 | sector_size = sbp->sb_sectsize; |
| 233 | buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; |
| 234 | goto reread; |
| 235 | } |
| 236 | |
| 237 | mp->m_features |= xfs_sb_version_to_features(sbp); |
| 238 | xfs_reinit_percpu_counters(mp); |
| 239 | |
| 240 | /* |
| 241 | * If logged xattrs are enabled after log recovery finishes, then set |
| 242 | * the opstate so that log recovery will work properly. |
| 243 | */ |
| 244 | if (xfs_sb_version_haslogxattrs(&mp->m_sb)) |
| 245 | xfs_set_using_logged_xattrs(mp); |
| 246 | |
| 247 | /* no need to be quiet anymore, so reset the buf ops */ |
| 248 | bp->b_ops = &xfs_sb_buf_ops; |
| 249 | |
| 250 | mp->m_sb_bp = bp; |
| 251 | xfs_buf_unlock(bp); |
| 252 | return 0; |
| 253 | |
| 254 | release_buf: |
| 255 | xfs_buf_relse(bp); |
| 256 | return error; |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * If the sunit/swidth change would move the precomputed root inode value, we |
| 261 | * must reject the ondisk change because repair will stumble over that. |
| 262 | * However, we allow the mount to proceed because we never rejected this |
| 263 | * combination before. Returns true to update the sb, false otherwise. |
| 264 | */ |
| 265 | static inline int |
| 266 | xfs_check_new_dalign( |
| 267 | struct xfs_mount *mp, |
| 268 | int new_dalign, |
| 269 | bool *update_sb) |
| 270 | { |
| 271 | struct xfs_sb *sbp = &mp->m_sb; |
| 272 | xfs_ino_t calc_ino; |
| 273 | |
| 274 | calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); |
| 275 | trace_xfs_check_new_dalign(mp, new_dalign, calc_rootino: calc_ino); |
| 276 | |
| 277 | if (sbp->sb_rootino == calc_ino) { |
| 278 | *update_sb = true; |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | xfs_warn(mp, |
| 283 | "Cannot change stripe alignment; would require moving root inode." ); |
| 284 | |
| 285 | /* |
| 286 | * XXX: Next time we add a new incompat feature, this should start |
| 287 | * returning -EINVAL to fail the mount. Until then, spit out a warning |
| 288 | * that we're ignoring the administrator's instructions. |
| 289 | */ |
| 290 | xfs_warn(mp, "Skipping superblock stripe alignment update." ); |
| 291 | *update_sb = false; |
| 292 | return 0; |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * If we were provided with new sunit/swidth values as mount options, make sure |
| 297 | * that they pass basic alignment and superblock feature checks, and convert |
| 298 | * them into the same units (FSB) that everything else expects. This step |
| 299 | * /must/ be done before computing the inode geometry. |
| 300 | */ |
| 301 | STATIC int |
| 302 | xfs_validate_new_dalign( |
| 303 | struct xfs_mount *mp) |
| 304 | { |
| 305 | if (mp->m_dalign == 0) |
| 306 | return 0; |
| 307 | |
| 308 | /* |
| 309 | * If stripe unit and stripe width are not multiples |
| 310 | * of the fs blocksize turn off alignment. |
| 311 | */ |
| 312 | if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || |
| 313 | (BBTOB(mp->m_swidth) & mp->m_blockmask)) { |
| 314 | xfs_warn(mp, |
| 315 | "alignment check failed: sunit/swidth vs. blocksize(%d)" , |
| 316 | mp->m_sb.sb_blocksize); |
| 317 | return -EINVAL; |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Convert the stripe unit and width to FSBs. |
| 322 | */ |
| 323 | mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); |
| 324 | if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { |
| 325 | xfs_warn(mp, |
| 326 | "alignment check failed: sunit/swidth vs. agsize(%d)" , |
| 327 | mp->m_sb.sb_agblocks); |
| 328 | return -EINVAL; |
| 329 | } |
| 330 | |
| 331 | if (!mp->m_dalign) { |
| 332 | xfs_warn(mp, |
| 333 | "alignment check failed: sunit(%d) less than bsize(%d)" , |
| 334 | mp->m_dalign, mp->m_sb.sb_blocksize); |
| 335 | return -EINVAL; |
| 336 | } |
| 337 | |
| 338 | mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); |
| 339 | |
| 340 | if (!xfs_has_dalign(mp)) { |
| 341 | xfs_warn(mp, |
| 342 | "cannot change alignment: superblock does not support data alignment" ); |
| 343 | return -EINVAL; |
| 344 | } |
| 345 | |
| 346 | return 0; |
| 347 | } |
| 348 | |
| 349 | /* Update alignment values based on mount options and sb values. */ |
| 350 | STATIC int |
| 351 | xfs_update_alignment( |
| 352 | struct xfs_mount *mp) |
| 353 | { |
| 354 | struct xfs_sb *sbp = &mp->m_sb; |
| 355 | |
| 356 | if (mp->m_dalign) { |
| 357 | bool update_sb; |
| 358 | int error; |
| 359 | |
| 360 | if (sbp->sb_unit == mp->m_dalign && |
| 361 | sbp->sb_width == mp->m_swidth) |
| 362 | return 0; |
| 363 | |
| 364 | error = xfs_check_new_dalign(mp, new_dalign: mp->m_dalign, update_sb: &update_sb); |
| 365 | if (error || !update_sb) |
| 366 | return error; |
| 367 | |
| 368 | sbp->sb_unit = mp->m_dalign; |
| 369 | sbp->sb_width = mp->m_swidth; |
| 370 | mp->m_update_sb = true; |
| 371 | } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { |
| 372 | mp->m_dalign = sbp->sb_unit; |
| 373 | mp->m_swidth = sbp->sb_width; |
| 374 | } |
| 375 | |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * precalculate the low space thresholds for dynamic speculative preallocation. |
| 381 | */ |
| 382 | void |
| 383 | xfs_set_low_space_thresholds( |
| 384 | struct xfs_mount *mp) |
| 385 | { |
| 386 | uint64_t dblocks = mp->m_sb.sb_dblocks; |
| 387 | uint64_t rtexts = mp->m_sb.sb_rextents; |
| 388 | int i; |
| 389 | |
| 390 | do_div(dblocks, 100); |
| 391 | do_div(rtexts, 100); |
| 392 | |
| 393 | for (i = 0; i < XFS_LOWSP_MAX; i++) { |
| 394 | mp->m_low_space[i] = dblocks * (i + 1); |
| 395 | mp->m_low_rtexts[i] = rtexts * (i + 1); |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * Check that the data (and log if separate) is an ok size. |
| 401 | */ |
| 402 | STATIC int |
| 403 | xfs_check_sizes( |
| 404 | struct xfs_mount *mp) |
| 405 | { |
| 406 | struct xfs_buf *bp; |
| 407 | xfs_daddr_t d; |
| 408 | int error; |
| 409 | |
| 410 | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| 411 | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { |
| 412 | xfs_warn(mp, "filesystem size mismatch detected" ); |
| 413 | return -EFBIG; |
| 414 | } |
| 415 | error = xfs_buf_read_uncached(target: mp->m_ddev_targp, |
| 416 | daddr: d - XFS_FSS_TO_BB(mp, 1), |
| 417 | numblks: XFS_FSS_TO_BB(mp, 1), bpp: &bp, NULL); |
| 418 | if (error) { |
| 419 | xfs_warn(mp, "last sector read failed" ); |
| 420 | return error; |
| 421 | } |
| 422 | xfs_buf_relse(bp); |
| 423 | |
| 424 | if (mp->m_logdev_targp == mp->m_ddev_targp) |
| 425 | return 0; |
| 426 | |
| 427 | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); |
| 428 | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { |
| 429 | xfs_warn(mp, "log size mismatch detected" ); |
| 430 | return -EFBIG; |
| 431 | } |
| 432 | error = xfs_buf_read_uncached(target: mp->m_logdev_targp, |
| 433 | daddr: d - XFS_FSB_TO_BB(mp, 1), |
| 434 | numblks: XFS_FSB_TO_BB(mp, 1), bpp: &bp, NULL); |
| 435 | if (error) { |
| 436 | xfs_warn(mp, "log device read failed" ); |
| 437 | return error; |
| 438 | } |
| 439 | xfs_buf_relse(bp); |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * Clear the quotaflags in memory and in the superblock. |
| 445 | */ |
| 446 | int |
| 447 | xfs_mount_reset_sbqflags( |
| 448 | struct xfs_mount *mp) |
| 449 | { |
| 450 | mp->m_qflags = 0; |
| 451 | |
| 452 | /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ |
| 453 | if (mp->m_sb.sb_qflags == 0) |
| 454 | return 0; |
| 455 | spin_lock(lock: &mp->m_sb_lock); |
| 456 | mp->m_sb.sb_qflags = 0; |
| 457 | spin_unlock(lock: &mp->m_sb_lock); |
| 458 | |
| 459 | if (!xfs_fs_writable(mp, level: SB_FREEZE_WRITE)) |
| 460 | return 0; |
| 461 | |
| 462 | return xfs_sync_sb(mp, false); |
| 463 | } |
| 464 | |
| 465 | static const char *const xfs_free_pool_name[] = { |
| 466 | [XC_FREE_BLOCKS] = "free blocks" , |
| 467 | [XC_FREE_RTEXTENTS] = "free rt extents" , |
| 468 | [XC_FREE_RTAVAILABLE] = "available rt extents" , |
| 469 | }; |
| 470 | |
| 471 | uint64_t |
| 472 | xfs_default_resblks( |
| 473 | struct xfs_mount *mp, |
| 474 | enum xfs_free_counter ctr) |
| 475 | { |
| 476 | switch (ctr) { |
| 477 | case XC_FREE_BLOCKS: |
| 478 | /* |
| 479 | * Default to 5% or 8192 FSBs of space reserved, whichever is |
| 480 | * smaller. |
| 481 | * |
| 482 | * This is intended to cover concurrent allocation transactions |
| 483 | * when we initially hit ENOSPC. These each require a 4 block |
| 484 | * reservation. Hence by default we cover roughly 2000 |
| 485 | * concurrent allocation reservations. |
| 486 | */ |
| 487 | return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL); |
| 488 | case XC_FREE_RTEXTENTS: |
| 489 | case XC_FREE_RTAVAILABLE: |
| 490 | if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp)) |
| 491 | return xfs_zoned_default_resblks(mp, ctr: ctr); |
| 492 | return 0; |
| 493 | default: |
| 494 | ASSERT(0); |
| 495 | return 0; |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | /* Ensure the summary counts are correct. */ |
| 500 | STATIC int |
| 501 | xfs_check_summary_counts( |
| 502 | struct xfs_mount *mp) |
| 503 | { |
| 504 | int error = 0; |
| 505 | |
| 506 | /* |
| 507 | * The AG0 superblock verifier rejects in-progress filesystems, |
| 508 | * so we should never see the flag set this far into mounting. |
| 509 | */ |
| 510 | if (mp->m_sb.sb_inprogress) { |
| 511 | xfs_err(mp, "sb_inprogress set after log recovery??" ); |
| 512 | WARN_ON(1); |
| 513 | return -EFSCORRUPTED; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * Now the log is mounted, we know if it was an unclean shutdown or |
| 518 | * not. If it was, with the first phase of recovery has completed, we |
| 519 | * have consistent AG blocks on disk. We have not recovered EFIs yet, |
| 520 | * but they are recovered transactionally in the second recovery phase |
| 521 | * later. |
| 522 | * |
| 523 | * If the log was clean when we mounted, we can check the summary |
| 524 | * counters. If any of them are obviously incorrect, we can recompute |
| 525 | * them from the AGF headers in the next step. |
| 526 | */ |
| 527 | if (xfs_is_clean(mp) && |
| 528 | (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || |
| 529 | !xfs_verify_icount(mp, mp->m_sb.sb_icount) || |
| 530 | mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) |
| 531 | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); |
| 532 | |
| 533 | /* |
| 534 | * We can safely re-initialise incore superblock counters from the |
| 535 | * per-ag data. These may not be correct if the filesystem was not |
| 536 | * cleanly unmounted, so we waited for recovery to finish before doing |
| 537 | * this. |
| 538 | * |
| 539 | * If the filesystem was cleanly unmounted or the previous check did |
| 540 | * not flag anything weird, then we can trust the values in the |
| 541 | * superblock to be correct and we don't need to do anything here. |
| 542 | * Otherwise, recalculate the summary counters. |
| 543 | */ |
| 544 | if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || |
| 545 | xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { |
| 546 | error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); |
| 547 | if (error) |
| 548 | return error; |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * Older kernels misused sb_frextents to reflect both incore |
| 553 | * reservations made by running transactions and the actual count of |
| 554 | * free rt extents in the ondisk metadata. Transactions committed |
| 555 | * during runtime can therefore contain a superblock update that |
| 556 | * undercounts the number of free rt extents tracked in the rt bitmap. |
| 557 | * A clean unmount record will have the correct frextents value since |
| 558 | * there can be no other transactions running at that point. |
| 559 | * |
| 560 | * If we're mounting the rt volume after recovering the log, recompute |
| 561 | * frextents from the rtbitmap file to fix the inconsistency. |
| 562 | */ |
| 563 | if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) { |
| 564 | error = xfs_rtalloc_reinit_frextents(mp); |
| 565 | if (error) |
| 566 | return error; |
| 567 | } |
| 568 | |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | static void |
| 573 | xfs_unmount_check( |
| 574 | struct xfs_mount *mp) |
| 575 | { |
| 576 | if (xfs_is_shutdown(mp)) |
| 577 | return; |
| 578 | |
| 579 | if (percpu_counter_sum(fbc: &mp->m_ifree) > |
| 580 | percpu_counter_sum(fbc: &mp->m_icount)) { |
| 581 | xfs_alert(mp, "ifree/icount mismatch at unmount" ); |
| 582 | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | /* |
| 587 | * Flush and reclaim dirty inodes in preparation for unmount. Inodes and |
| 588 | * internal inode structures can be sitting in the CIL and AIL at this point, |
| 589 | * so we need to unpin them, write them back and/or reclaim them before unmount |
| 590 | * can proceed. In other words, callers are required to have inactivated all |
| 591 | * inodes. |
| 592 | * |
| 593 | * An inode cluster that has been freed can have its buffer still pinned in |
| 594 | * memory because the transaction is still sitting in a iclog. The stale inodes |
| 595 | * on that buffer will be pinned to the buffer until the transaction hits the |
| 596 | * disk and the callbacks run. Pushing the AIL will skip the stale inodes and |
| 597 | * may never see the pinned buffer, so nothing will push out the iclog and |
| 598 | * unpin the buffer. |
| 599 | * |
| 600 | * Hence we need to force the log to unpin everything first. However, log |
| 601 | * forces don't wait for the discards they issue to complete, so we have to |
| 602 | * explicitly wait for them to complete here as well. |
| 603 | * |
| 604 | * Then we can tell the world we are unmounting so that error handling knows |
| 605 | * that the filesystem is going away and we should error out anything that we |
| 606 | * have been retrying in the background. This will prevent never-ending |
| 607 | * retries in AIL pushing from hanging the unmount. |
| 608 | * |
| 609 | * Finally, we can push the AIL to clean all the remaining dirty objects, then |
| 610 | * reclaim the remaining inodes that are still in memory at this point in time. |
| 611 | */ |
| 612 | static void |
| 613 | xfs_unmount_flush_inodes( |
| 614 | struct xfs_mount *mp) |
| 615 | { |
| 616 | xfs_log_force(mp, XFS_LOG_SYNC); |
| 617 | xfs_extent_busy_wait_all(mp); |
| 618 | flush_workqueue(xfs_discard_wq); |
| 619 | |
| 620 | xfs_set_unmounting(mp); |
| 621 | |
| 622 | xfs_ail_push_all_sync(ailp: mp->m_ail); |
| 623 | xfs_inodegc_stop(mp); |
| 624 | cancel_delayed_work_sync(dwork: &mp->m_reclaim_work); |
| 625 | xfs_reclaim_inodes(mp); |
| 626 | xfs_health_unmount(mp); |
| 627 | } |
| 628 | |
| 629 | static void |
| 630 | xfs_mount_setup_inode_geom( |
| 631 | struct xfs_mount *mp) |
| 632 | { |
| 633 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| 634 | |
| 635 | igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); |
| 636 | ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); |
| 637 | |
| 638 | xfs_ialloc_setup_geometry(mp); |
| 639 | } |
| 640 | |
| 641 | /* Mount the metadata directory tree root. */ |
| 642 | STATIC int |
| 643 | xfs_mount_setup_metadir( |
| 644 | struct xfs_mount *mp) |
| 645 | { |
| 646 | int error; |
| 647 | |
| 648 | /* Load the metadata directory root inode into memory. */ |
| 649 | error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR, |
| 650 | &mp->m_metadirip); |
| 651 | if (error) |
| 652 | xfs_warn(mp, "Failed to load metadir root directory, error %d" , |
| 653 | error); |
| 654 | return error; |
| 655 | } |
| 656 | |
| 657 | /* Compute maximum possible height for per-AG btree types for this fs. */ |
| 658 | static inline void |
| 659 | xfs_agbtree_compute_maxlevels( |
| 660 | struct xfs_mount *mp) |
| 661 | { |
| 662 | unsigned int levels; |
| 663 | |
| 664 | levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); |
| 665 | levels = max(levels, mp->m_rmap_maxlevels); |
| 666 | mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); |
| 667 | } |
| 668 | |
| 669 | /* Maximum atomic write IO size that the kernel allows. */ |
| 670 | static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp) |
| 671 | { |
| 672 | return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT)); |
| 673 | } |
| 674 | |
| 675 | static inline unsigned int max_pow_of_two_factor(const unsigned int nr) |
| 676 | { |
| 677 | return 1 << (ffs(nr) - 1); |
| 678 | } |
| 679 | |
| 680 | /* |
| 681 | * If the data device advertises atomic write support, limit the size of data |
| 682 | * device atomic writes to the greatest power-of-two factor of the AG size so |
| 683 | * that every atomic write unit aligns with the start of every AG. This is |
| 684 | * required so that the per-AG allocations for an atomic write will always be |
| 685 | * aligned compatibly with the alignment requirements of the storage. |
| 686 | * |
| 687 | * If the data device doesn't advertise atomic writes, then there are no |
| 688 | * alignment restrictions and the largest out-of-place write we can do |
| 689 | * ourselves is the number of blocks that user files can allocate from any AG. |
| 690 | */ |
| 691 | static inline xfs_extlen_t xfs_calc_perag_awu_max(struct xfs_mount *mp) |
| 692 | { |
| 693 | if (mp->m_ddev_targp->bt_bdev_awu_min > 0) |
| 694 | return max_pow_of_two_factor(nr: mp->m_sb.sb_agblocks); |
| 695 | return rounddown_pow_of_two(mp->m_ag_max_usable); |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * Reflink on the realtime device requires rtgroups, and atomic writes require |
| 700 | * reflink. |
| 701 | * |
| 702 | * If the realtime device advertises atomic write support, limit the size of |
| 703 | * data device atomic writes to the greatest power-of-two factor of the rtgroup |
| 704 | * size so that every atomic write unit aligns with the start of every rtgroup. |
| 705 | * This is required so that the per-rtgroup allocations for an atomic write |
| 706 | * will always be aligned compatibly with the alignment requirements of the |
| 707 | * storage. |
| 708 | * |
| 709 | * If the rt device doesn't advertise atomic writes, then there are no |
| 710 | * alignment restrictions and the largest out-of-place write we can do |
| 711 | * ourselves is the number of blocks that user files can allocate from any |
| 712 | * rtgroup. |
| 713 | */ |
| 714 | static inline xfs_extlen_t xfs_calc_rtgroup_awu_max(struct xfs_mount *mp) |
| 715 | { |
| 716 | struct xfs_groups *rgs = &mp->m_groups[XG_TYPE_RTG]; |
| 717 | |
| 718 | if (rgs->blocks == 0) |
| 719 | return 0; |
| 720 | if (mp->m_rtdev_targp && mp->m_rtdev_targp->bt_bdev_awu_min > 0) |
| 721 | return max_pow_of_two_factor(nr: rgs->blocks); |
| 722 | return rounddown_pow_of_two(rgs->blocks); |
| 723 | } |
| 724 | |
| 725 | /* Compute the maximum atomic write unit size for each section. */ |
| 726 | static inline void |
| 727 | xfs_calc_atomic_write_unit_max( |
| 728 | struct xfs_mount *mp) |
| 729 | { |
| 730 | struct xfs_groups *ags = &mp->m_groups[XG_TYPE_AG]; |
| 731 | struct xfs_groups *rgs = &mp->m_groups[XG_TYPE_RTG]; |
| 732 | |
| 733 | const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); |
| 734 | const xfs_extlen_t max_ioend = xfs_reflink_max_atomic_cow(mp); |
| 735 | const xfs_extlen_t max_agsize = xfs_calc_perag_awu_max(mp); |
| 736 | const xfs_extlen_t max_rgsize = xfs_calc_rtgroup_awu_max(mp); |
| 737 | |
| 738 | ags->awu_max = min3(max_write, max_ioend, max_agsize); |
| 739 | rgs->awu_max = min3(max_write, max_ioend, max_rgsize); |
| 740 | |
| 741 | trace_xfs_calc_atomic_write_unit_max(mp, max_write: max_write, max_ioend: max_ioend, |
| 742 | max_agsize: max_agsize, max_rgsize: max_rgsize); |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Try to set the atomic write maximum to a new value that we got from |
| 747 | * userspace via mount option. |
| 748 | */ |
| 749 | int |
| 750 | xfs_set_max_atomic_write_opt( |
| 751 | struct xfs_mount *mp, |
| 752 | unsigned long long new_max_bytes) |
| 753 | { |
| 754 | const xfs_filblks_t new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes); |
| 755 | const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); |
| 756 | const xfs_extlen_t max_group = |
| 757 | max(mp->m_groups[XG_TYPE_AG].blocks, |
| 758 | mp->m_groups[XG_TYPE_RTG].blocks); |
| 759 | const xfs_extlen_t max_group_write = |
| 760 | max(xfs_calc_perag_awu_max(mp), xfs_calc_rtgroup_awu_max(mp)); |
| 761 | int error; |
| 762 | |
| 763 | if (new_max_bytes == 0) |
| 764 | goto set_limit; |
| 765 | |
| 766 | ASSERT(max_write <= U32_MAX); |
| 767 | |
| 768 | /* generic_atomic_write_valid enforces power of two length */ |
| 769 | if (!is_power_of_2(n: new_max_bytes)) { |
| 770 | xfs_warn(mp, |
| 771 | "max atomic write size of %llu bytes is not a power of 2" , |
| 772 | new_max_bytes); |
| 773 | return -EINVAL; |
| 774 | } |
| 775 | |
| 776 | if (new_max_bytes & mp->m_blockmask) { |
| 777 | xfs_warn(mp, |
| 778 | "max atomic write size of %llu bytes not aligned with fsblock" , |
| 779 | new_max_bytes); |
| 780 | return -EINVAL; |
| 781 | } |
| 782 | |
| 783 | if (new_max_fsbs > max_write) { |
| 784 | xfs_warn(mp, |
| 785 | "max atomic write size of %lluk cannot be larger than max write size %lluk" , |
| 786 | new_max_bytes >> 10, |
| 787 | XFS_FSB_TO_B(mp, max_write) >> 10); |
| 788 | return -EINVAL; |
| 789 | } |
| 790 | |
| 791 | if (new_max_fsbs > max_group) { |
| 792 | xfs_warn(mp, |
| 793 | "max atomic write size of %lluk cannot be larger than allocation group size %lluk" , |
| 794 | new_max_bytes >> 10, |
| 795 | XFS_FSB_TO_B(mp, max_group) >> 10); |
| 796 | return -EINVAL; |
| 797 | } |
| 798 | |
| 799 | if (new_max_fsbs > max_group_write) { |
| 800 | xfs_warn(mp, |
| 801 | "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk" , |
| 802 | new_max_bytes >> 10, |
| 803 | XFS_FSB_TO_B(mp, max_group_write) >> 10); |
| 804 | return -EINVAL; |
| 805 | } |
| 806 | |
| 807 | set_limit: |
| 808 | error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs); |
| 809 | if (error) { |
| 810 | xfs_warn(mp, |
| 811 | "cannot support completing atomic writes of %lluk" , |
| 812 | new_max_bytes >> 10); |
| 813 | return error; |
| 814 | } |
| 815 | |
| 816 | xfs_calc_atomic_write_unit_max(mp); |
| 817 | mp->m_awu_max_bytes = new_max_bytes; |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | /* Compute maximum possible height for realtime btree types for this fs. */ |
| 822 | static inline void |
| 823 | xfs_rtbtree_compute_maxlevels( |
| 824 | struct xfs_mount *mp) |
| 825 | { |
| 826 | mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels, |
| 827 | mp->m_rtrefc_maxlevels); |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | * This function does the following on an initial mount of a file system: |
| 832 | * - reads the superblock from disk and init the mount struct |
| 833 | * - if we're a 32-bit kernel, do a size check on the superblock |
| 834 | * so we don't mount terabyte filesystems |
| 835 | * - init mount struct realtime fields |
| 836 | * - allocate inode hash table for fs |
| 837 | * - init directory manager |
| 838 | * - perform recovery and init the log manager |
| 839 | */ |
| 840 | int |
| 841 | xfs_mountfs( |
| 842 | struct xfs_mount *mp) |
| 843 | { |
| 844 | struct xfs_sb *sbp = &(mp->m_sb); |
| 845 | struct xfs_inode *rip; |
| 846 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| 847 | uint quotamount = 0; |
| 848 | uint quotaflags = 0; |
| 849 | int error = 0; |
| 850 | int i; |
| 851 | |
| 852 | xfs_sb_mount_common(mp, sbp); |
| 853 | |
| 854 | /* |
| 855 | * Check for a mismatched features2 values. Older kernels read & wrote |
| 856 | * into the wrong sb offset for sb_features2 on some platforms due to |
| 857 | * xfs_sb_t not being 64bit size aligned when sb_features2 was added, |
| 858 | * which made older superblock reading/writing routines swap it as a |
| 859 | * 64-bit value. |
| 860 | * |
| 861 | * For backwards compatibility, we make both slots equal. |
| 862 | * |
| 863 | * If we detect a mismatched field, we OR the set bits into the existing |
| 864 | * features2 field in case it has already been modified; we don't want |
| 865 | * to lose any features. We then update the bad location with the ORed |
| 866 | * value so that older kernels will see any features2 flags. The |
| 867 | * superblock writeback code ensures the new sb_features2 is copied to |
| 868 | * sb_bad_features2 before it is logged or written to disk. |
| 869 | */ |
| 870 | if (xfs_sb_has_mismatched_features2(sbp)) { |
| 871 | xfs_warn(mp, "correcting sb_features alignment problem" ); |
| 872 | sbp->sb_features2 |= sbp->sb_bad_features2; |
| 873 | mp->m_update_sb = true; |
| 874 | } |
| 875 | |
| 876 | |
| 877 | /* always use v2 inodes by default now */ |
| 878 | if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { |
| 879 | mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; |
| 880 | mp->m_features |= XFS_FEAT_NLINK; |
| 881 | mp->m_update_sb = true; |
| 882 | } |
| 883 | |
| 884 | /* |
| 885 | * If we were given new sunit/swidth options, do some basic validation |
| 886 | * checks and convert the incore dalign and swidth values to the |
| 887 | * same units (FSB) that everything else uses. This /must/ happen |
| 888 | * before computing the inode geometry. |
| 889 | */ |
| 890 | error = xfs_validate_new_dalign(mp); |
| 891 | if (error) |
| 892 | goto out; |
| 893 | |
| 894 | xfs_alloc_compute_maxlevels(mp); |
| 895 | xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); |
| 896 | xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); |
| 897 | xfs_mount_setup_inode_geom(mp); |
| 898 | xfs_rmapbt_compute_maxlevels(mp); |
| 899 | xfs_rtrmapbt_compute_maxlevels(mp); |
| 900 | xfs_refcountbt_compute_maxlevels(mp); |
| 901 | xfs_rtrefcountbt_compute_maxlevels(mp); |
| 902 | |
| 903 | xfs_agbtree_compute_maxlevels(mp); |
| 904 | xfs_rtbtree_compute_maxlevels(mp); |
| 905 | |
| 906 | /* |
| 907 | * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks |
| 908 | * is NOT aligned turn off m_dalign since allocator alignment is within |
| 909 | * an ag, therefore ag has to be aligned at stripe boundary. Note that |
| 910 | * we must compute the free space and rmap btree geometry before doing |
| 911 | * this. |
| 912 | */ |
| 913 | error = xfs_update_alignment(mp); |
| 914 | if (error) |
| 915 | goto out; |
| 916 | |
| 917 | /* enable fail_at_unmount as default */ |
| 918 | mp->m_fail_unmount = true; |
| 919 | |
| 920 | error = xfs_mount_sysfs_init(mp); |
| 921 | if (error) |
| 922 | goto out_remove_scrub_stats; |
| 923 | |
| 924 | xchk_stats_register(cs: mp->m_scrub_stats, parent: mp->m_debugfs); |
| 925 | |
| 926 | error = xfs_errortag_init(mp); |
| 927 | if (error) |
| 928 | goto out_remove_sysfs; |
| 929 | |
| 930 | error = xfs_uuid_mount(mp); |
| 931 | if (error) |
| 932 | goto out_remove_errortag; |
| 933 | |
| 934 | /* |
| 935 | * Update the preferred write size based on the information from the |
| 936 | * on-disk superblock. |
| 937 | */ |
| 938 | mp->m_allocsize_log = |
| 939 | max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); |
| 940 | mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); |
| 941 | |
| 942 | /* set the low space thresholds for dynamic preallocation */ |
| 943 | xfs_set_low_space_thresholds(mp); |
| 944 | |
| 945 | /* |
| 946 | * If enabled, sparse inode chunk alignment is expected to match the |
| 947 | * cluster size. Full inode chunk alignment must match the chunk size, |
| 948 | * but that is checked on sb read verification... |
| 949 | */ |
| 950 | if (xfs_has_sparseinodes(mp) && |
| 951 | mp->m_sb.sb_spino_align != |
| 952 | XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { |
| 953 | xfs_warn(mp, |
| 954 | "Sparse inode block alignment (%u) must match cluster size (%llu)." , |
| 955 | mp->m_sb.sb_spino_align, |
| 956 | XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); |
| 957 | error = -EINVAL; |
| 958 | goto out_remove_uuid; |
| 959 | } |
| 960 | |
| 961 | /* |
| 962 | * Check that the data (and log if separate) is an ok size. |
| 963 | */ |
| 964 | error = xfs_check_sizes(mp); |
| 965 | if (error) |
| 966 | goto out_remove_uuid; |
| 967 | |
| 968 | /* |
| 969 | * Initialize realtime fields in the mount structure |
| 970 | */ |
| 971 | error = xfs_rtmount_init(mp); |
| 972 | if (error) { |
| 973 | xfs_warn(mp, "RT mount failed" ); |
| 974 | goto out_remove_uuid; |
| 975 | } |
| 976 | |
| 977 | /* |
| 978 | * Copies the low order bits of the timestamp and the randomly |
| 979 | * set "sequence" number out of a UUID. |
| 980 | */ |
| 981 | mp->m_fixedfsid[0] = |
| 982 | (get_unaligned_be16(p: &sbp->sb_uuid.b[8]) << 16) | |
| 983 | get_unaligned_be16(p: &sbp->sb_uuid.b[4]); |
| 984 | mp->m_fixedfsid[1] = get_unaligned_be32(p: &sbp->sb_uuid.b[0]); |
| 985 | |
| 986 | error = xfs_da_mount(mp); |
| 987 | if (error) { |
| 988 | xfs_warn(mp, "Failed dir/attr init: %d" , error); |
| 989 | goto out_remove_uuid; |
| 990 | } |
| 991 | |
| 992 | /* |
| 993 | * Initialize the precomputed transaction reservations values. |
| 994 | */ |
| 995 | xfs_trans_init(mp); |
| 996 | |
| 997 | /* |
| 998 | * Allocate and initialize the per-ag data. |
| 999 | */ |
| 1000 | error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, |
| 1001 | mp->m_sb.sb_dblocks, &mp->m_maxagi); |
| 1002 | if (error) { |
| 1003 | xfs_warn(mp, "Failed per-ag init: %d" , error); |
| 1004 | goto out_free_dir; |
| 1005 | } |
| 1006 | |
| 1007 | error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount, |
| 1008 | mp->m_sb.sb_rextents); |
| 1009 | if (error) { |
| 1010 | xfs_warn(mp, "Failed rtgroup init: %d" , error); |
| 1011 | goto out_free_perag; |
| 1012 | } |
| 1013 | |
| 1014 | if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { |
| 1015 | xfs_warn(mp, "no log defined" ); |
| 1016 | error = -EFSCORRUPTED; |
| 1017 | goto out_free_rtgroup; |
| 1018 | } |
| 1019 | |
| 1020 | error = xfs_inodegc_register_shrinker(mp); |
| 1021 | if (error) |
| 1022 | goto out_fail_wait; |
| 1023 | |
| 1024 | /* |
| 1025 | * If we're resuming quota status, pick up the preliminary qflags from |
| 1026 | * the ondisk superblock so that we know if we should recover dquots. |
| 1027 | */ |
| 1028 | if (xfs_is_resuming_quotaon(mp)) |
| 1029 | xfs_qm_resume_quotaon(mp); |
| 1030 | |
| 1031 | /* |
| 1032 | * Log's mount-time initialization. The first part of recovery can place |
| 1033 | * some items on the AIL, to be handled when recovery is finished or |
| 1034 | * cancelled. |
| 1035 | */ |
| 1036 | error = xfs_log_mount(mp, log_target: mp->m_logdev_targp, |
| 1037 | start_block: XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), |
| 1038 | num_bblocks: XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); |
| 1039 | if (error) { |
| 1040 | xfs_warn(mp, "log mount failed" ); |
| 1041 | goto out_inodegc_shrinker; |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * If we're resuming quota status and recovered the log, re-sample the |
| 1046 | * qflags from the ondisk superblock now that we've recovered it, just |
| 1047 | * in case someone shut down enforcement just before a crash. |
| 1048 | */ |
| 1049 | if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(log: mp->m_log)) |
| 1050 | xfs_qm_resume_quotaon(mp); |
| 1051 | |
| 1052 | /* |
| 1053 | * If logged xattrs are still enabled after log recovery finishes, then |
| 1054 | * they'll be available until unmount. Otherwise, turn them off. |
| 1055 | */ |
| 1056 | if (xfs_sb_version_haslogxattrs(&mp->m_sb)) |
| 1057 | xfs_set_using_logged_xattrs(mp); |
| 1058 | else |
| 1059 | xfs_clear_using_logged_xattrs(mp); |
| 1060 | |
| 1061 | /* Enable background inode inactivation workers. */ |
| 1062 | xfs_inodegc_start(mp); |
| 1063 | xfs_blockgc_start(mp); |
| 1064 | |
| 1065 | /* |
| 1066 | * Now that we've recovered any pending superblock feature bit |
| 1067 | * additions, we can finish setting up the attr2 behaviour for the |
| 1068 | * mount. The noattr2 option overrides the superblock flag, so only |
| 1069 | * check the superblock feature flag if the mount option is not set. |
| 1070 | */ |
| 1071 | if (xfs_has_noattr2(mp)) { |
| 1072 | mp->m_features &= ~XFS_FEAT_ATTR2; |
| 1073 | } else if (!xfs_has_attr2(mp) && |
| 1074 | (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { |
| 1075 | mp->m_features |= XFS_FEAT_ATTR2; |
| 1076 | } |
| 1077 | |
| 1078 | if (xfs_has_metadir(mp)) { |
| 1079 | error = xfs_mount_setup_metadir(mp); |
| 1080 | if (error) |
| 1081 | goto out_free_metadir; |
| 1082 | } |
| 1083 | |
| 1084 | /* |
| 1085 | * Get and sanity-check the root inode. |
| 1086 | * Save the pointer to it in the mount structure. |
| 1087 | */ |
| 1088 | error = xfs_iget(mp, NULL, ino: sbp->sb_rootino, XFS_IGET_UNTRUSTED, |
| 1089 | XFS_ILOCK_EXCL, ipp: &rip); |
| 1090 | if (error) { |
| 1091 | xfs_warn(mp, |
| 1092 | "Failed to read root inode 0x%llx, error %d" , |
| 1093 | sbp->sb_rootino, -error); |
| 1094 | goto out_free_metadir; |
| 1095 | } |
| 1096 | |
| 1097 | ASSERT(rip != NULL); |
| 1098 | |
| 1099 | if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { |
| 1100 | xfs_warn(mp, "corrupted root inode %llu: not a directory" , |
| 1101 | (unsigned long long)rip->i_ino); |
| 1102 | xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| 1103 | error = -EFSCORRUPTED; |
| 1104 | goto out_rele_rip; |
| 1105 | } |
| 1106 | mp->m_rootip = rip; /* save it */ |
| 1107 | |
| 1108 | xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| 1109 | |
| 1110 | /* |
| 1111 | * Initialize realtime inode pointers in the mount structure |
| 1112 | */ |
| 1113 | error = xfs_rtmount_inodes(mp); |
| 1114 | if (error) { |
| 1115 | /* |
| 1116 | * Free up the root inode. |
| 1117 | */ |
| 1118 | xfs_warn(mp, "failed to read RT inodes" ); |
| 1119 | goto out_rele_rip; |
| 1120 | } |
| 1121 | |
| 1122 | /* Make sure the summary counts are ok. */ |
| 1123 | error = xfs_check_summary_counts(mp); |
| 1124 | if (error) |
| 1125 | goto out_rtunmount; |
| 1126 | |
| 1127 | /* |
| 1128 | * If this is a read-only mount defer the superblock updates until |
| 1129 | * the next remount into writeable mode. Otherwise we would never |
| 1130 | * perform the update e.g. for the root filesystem. |
| 1131 | */ |
| 1132 | if (mp->m_update_sb && !xfs_is_readonly(mp)) { |
| 1133 | error = xfs_sync_sb(mp, false); |
| 1134 | if (error) { |
| 1135 | xfs_warn(mp, "failed to write sb changes" ); |
| 1136 | goto out_rtunmount; |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | /* |
| 1141 | * Initialise the XFS quota management subsystem for this mount |
| 1142 | */ |
| 1143 | if (XFS_IS_QUOTA_ON(mp)) { |
| 1144 | error = xfs_qm_newmount(mp, "amount, "aflags); |
| 1145 | if (error) |
| 1146 | goto out_rtunmount; |
| 1147 | } else { |
| 1148 | /* |
| 1149 | * If a file system had quotas running earlier, but decided to |
| 1150 | * mount without -o uquota/pquota/gquota options, revoke the |
| 1151 | * quotachecked license. |
| 1152 | */ |
| 1153 | if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { |
| 1154 | xfs_notice(mp, "resetting quota flags" ); |
| 1155 | error = xfs_mount_reset_sbqflags(mp); |
| 1156 | if (error) |
| 1157 | goto out_rtunmount; |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | /* |
| 1162 | * Finish recovering the file system. This part needed to be delayed |
| 1163 | * until after the root and real-time bitmap inodes were consistently |
| 1164 | * read in. Temporarily create per-AG space reservations for metadata |
| 1165 | * btree shape changes because space freeing transactions (for inode |
| 1166 | * inactivation) require the per-AG reservation in lieu of reserving |
| 1167 | * blocks. |
| 1168 | */ |
| 1169 | error = xfs_fs_reserve_ag_blocks(mp); |
| 1170 | if (error && error == -ENOSPC) |
| 1171 | xfs_warn(mp, |
| 1172 | "ENOSPC reserving per-AG metadata pool, log recovery may fail." ); |
| 1173 | error = xfs_log_mount_finish(mp); |
| 1174 | xfs_fs_unreserve_ag_blocks(mp); |
| 1175 | if (error) { |
| 1176 | xfs_warn(mp, "log mount finish failed" ); |
| 1177 | goto out_rtunmount; |
| 1178 | } |
| 1179 | |
| 1180 | /* |
| 1181 | * Now the log is fully replayed, we can transition to full read-only |
| 1182 | * mode for read-only mounts. This will sync all the metadata and clean |
| 1183 | * the log so that the recovery we just performed does not have to be |
| 1184 | * replayed again on the next mount. |
| 1185 | * |
| 1186 | * We use the same quiesce mechanism as the rw->ro remount, as they are |
| 1187 | * semantically identical operations. |
| 1188 | */ |
| 1189 | if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) |
| 1190 | xfs_log_clean(mp); |
| 1191 | |
| 1192 | if (xfs_has_zoned(mp)) { |
| 1193 | error = xfs_mount_zones(mp); |
| 1194 | if (error) |
| 1195 | goto out_rtunmount; |
| 1196 | } |
| 1197 | |
| 1198 | /* |
| 1199 | * Complete the quota initialisation, post-log-replay component. |
| 1200 | */ |
| 1201 | if (quotamount) { |
| 1202 | ASSERT(mp->m_qflags == 0); |
| 1203 | mp->m_qflags = quotaflags; |
| 1204 | |
| 1205 | xfs_qm_mount_quotas(mp); |
| 1206 | } |
| 1207 | |
| 1208 | /* |
| 1209 | * Now we are mounted, reserve a small amount of unused space for |
| 1210 | * privileged transactions. This is needed so that transaction |
| 1211 | * space required for critical operations can dip into this pool |
| 1212 | * when at ENOSPC. This is needed for operations like create with |
| 1213 | * attr, unwritten extent conversion at ENOSPC, garbage collection |
| 1214 | * etc. Data allocations are not allowed to use this reserved space. |
| 1215 | * |
| 1216 | * This may drive us straight to ENOSPC on mount, but that implies |
| 1217 | * we were already there on the last unmount. Warn if this occurs. |
| 1218 | */ |
| 1219 | if (!xfs_is_readonly(mp)) { |
| 1220 | for (i = 0; i < XC_FREE_NR; i++) { |
| 1221 | error = xfs_reserve_blocks(mp, i, |
| 1222 | xfs_default_resblks(mp, i)); |
| 1223 | if (error) |
| 1224 | xfs_warn(mp, |
| 1225 | "Unable to allocate reserve blocks. Continuing without reserve pool for %s." , |
| 1226 | xfs_free_pool_name[i]); |
| 1227 | } |
| 1228 | |
| 1229 | /* Reserve AG blocks for future btree expansion. */ |
| 1230 | error = xfs_fs_reserve_ag_blocks(mp); |
| 1231 | if (error && error != -ENOSPC) |
| 1232 | goto out_agresv; |
| 1233 | |
| 1234 | xfs_zone_gc_start(mp); |
| 1235 | } |
| 1236 | |
| 1237 | /* |
| 1238 | * Pre-calculate atomic write unit max. This involves computations |
| 1239 | * derived from transaction reservations, so we must do this after the |
| 1240 | * log is fully initialized. |
| 1241 | */ |
| 1242 | error = xfs_set_max_atomic_write_opt(mp, new_max_bytes: mp->m_awu_max_bytes); |
| 1243 | if (error) |
| 1244 | goto out_agresv; |
| 1245 | |
| 1246 | return 0; |
| 1247 | |
| 1248 | out_agresv: |
| 1249 | xfs_fs_unreserve_ag_blocks(mp); |
| 1250 | xfs_qm_unmount_quotas(mp); |
| 1251 | if (xfs_has_zoned(mp)) |
| 1252 | xfs_unmount_zones(mp); |
| 1253 | out_rtunmount: |
| 1254 | xfs_rtunmount_inodes(mp); |
| 1255 | out_rele_rip: |
| 1256 | xfs_irele(ip: rip); |
| 1257 | /* Clean out dquots that might be in memory after quotacheck. */ |
| 1258 | xfs_qm_unmount(mp); |
| 1259 | out_free_metadir: |
| 1260 | if (mp->m_metadirip) |
| 1261 | xfs_irele(ip: mp->m_metadirip); |
| 1262 | |
| 1263 | /* |
| 1264 | * Inactivate all inodes that might still be in memory after a log |
| 1265 | * intent recovery failure so that reclaim can free them. Metadata |
| 1266 | * inodes and the root directory shouldn't need inactivation, but the |
| 1267 | * mount failed for some reason, so pull down all the state and flee. |
| 1268 | */ |
| 1269 | xfs_inodegc_flush(mp); |
| 1270 | |
| 1271 | /* |
| 1272 | * Flush all inode reclamation work and flush the log. |
| 1273 | * We have to do this /after/ rtunmount and qm_unmount because those |
| 1274 | * two will have scheduled delayed reclaim for the rt/quota inodes. |
| 1275 | * |
| 1276 | * This is slightly different from the unmountfs call sequence |
| 1277 | * because we could be tearing down a partially set up mount. In |
| 1278 | * particular, if log_mount_finish fails we bail out without calling |
| 1279 | * qm_unmount_quotas and therefore rely on qm_unmount to release the |
| 1280 | * quota inodes. |
| 1281 | */ |
| 1282 | xfs_unmount_flush_inodes(mp); |
| 1283 | xfs_log_mount_cancel(mp); |
| 1284 | out_inodegc_shrinker: |
| 1285 | shrinker_free(shrinker: mp->m_inodegc_shrinker); |
| 1286 | out_fail_wait: |
| 1287 | if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) |
| 1288 | xfs_buftarg_drain(mp->m_logdev_targp); |
| 1289 | xfs_buftarg_drain(mp->m_ddev_targp); |
| 1290 | out_free_rtgroup: |
| 1291 | xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); |
| 1292 | out_free_perag: |
| 1293 | xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); |
| 1294 | out_free_dir: |
| 1295 | xfs_da_unmount(mp); |
| 1296 | out_remove_uuid: |
| 1297 | xfs_uuid_unmount(mp); |
| 1298 | out_remove_errortag: |
| 1299 | xfs_errortag_del(mp); |
| 1300 | out_remove_sysfs: |
| 1301 | xfs_mount_sysfs_del(mp); |
| 1302 | out_remove_scrub_stats: |
| 1303 | xchk_stats_unregister(cs: mp->m_scrub_stats); |
| 1304 | out: |
| 1305 | return error; |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * This flushes out the inodes,dquots and the superblock, unmounts the |
| 1310 | * log and makes sure that incore structures are freed. |
| 1311 | */ |
| 1312 | void |
| 1313 | xfs_unmountfs( |
| 1314 | struct xfs_mount *mp) |
| 1315 | { |
| 1316 | int error; |
| 1317 | |
| 1318 | /* |
| 1319 | * Perform all on-disk metadata updates required to inactivate inodes |
| 1320 | * that the VFS evicted earlier in the unmount process. Freeing inodes |
| 1321 | * and discarding CoW fork preallocations can cause shape changes to |
| 1322 | * the free inode and refcount btrees, respectively, so we must finish |
| 1323 | * this before we discard the metadata space reservations. Metadata |
| 1324 | * inodes and the root directory do not require inactivation. |
| 1325 | */ |
| 1326 | xfs_inodegc_flush(mp); |
| 1327 | |
| 1328 | xfs_blockgc_stop(mp); |
| 1329 | if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate)) |
| 1330 | xfs_zone_gc_stop(mp); |
| 1331 | xfs_fs_unreserve_ag_blocks(mp); |
| 1332 | xfs_qm_unmount_quotas(mp); |
| 1333 | if (xfs_has_zoned(mp)) |
| 1334 | xfs_unmount_zones(mp); |
| 1335 | xfs_rtunmount_inodes(mp); |
| 1336 | xfs_irele(ip: mp->m_rootip); |
| 1337 | if (mp->m_metadirip) |
| 1338 | xfs_irele(ip: mp->m_metadirip); |
| 1339 | |
| 1340 | xfs_unmount_flush_inodes(mp); |
| 1341 | |
| 1342 | xfs_qm_unmount(mp); |
| 1343 | |
| 1344 | /* |
| 1345 | * Unreserve any blocks we have so that when we unmount we don't account |
| 1346 | * the reserved free space as used. This is really only necessary for |
| 1347 | * lazy superblock counting because it trusts the incore superblock |
| 1348 | * counters to be absolutely correct on clean unmount. |
| 1349 | * |
| 1350 | * We don't bother correcting this elsewhere for lazy superblock |
| 1351 | * counting because on mount of an unclean filesystem we reconstruct the |
| 1352 | * correct counter value and this is irrelevant. |
| 1353 | * |
| 1354 | * For non-lazy counter filesystems, this doesn't matter at all because |
| 1355 | * we only every apply deltas to the superblock and hence the incore |
| 1356 | * value does not matter.... |
| 1357 | */ |
| 1358 | error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0); |
| 1359 | if (error) |
| 1360 | xfs_warn(mp, "Unable to free reserved block pool. " |
| 1361 | "Freespace may not be correct on next mount." ); |
| 1362 | xfs_unmount_check(mp); |
| 1363 | |
| 1364 | /* |
| 1365 | * Indicate that it's ok to clear log incompat bits before cleaning |
| 1366 | * the log and writing the unmount record. |
| 1367 | */ |
| 1368 | xfs_set_done_with_log_incompat(mp); |
| 1369 | xfs_log_unmount(mp); |
| 1370 | xfs_da_unmount(mp); |
| 1371 | xfs_uuid_unmount(mp); |
| 1372 | |
| 1373 | #if defined(DEBUG) |
| 1374 | xfs_errortag_clearall(mp); |
| 1375 | #endif |
| 1376 | shrinker_free(shrinker: mp->m_inodegc_shrinker); |
| 1377 | xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); |
| 1378 | xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); |
| 1379 | xfs_errortag_del(mp); |
| 1380 | xchk_stats_unregister(cs: mp->m_scrub_stats); |
| 1381 | xfs_mount_sysfs_del(mp); |
| 1382 | } |
| 1383 | |
| 1384 | /* |
| 1385 | * Determine whether modifications can proceed. The caller specifies the minimum |
| 1386 | * freeze level for which modifications should not be allowed. This allows |
| 1387 | * certain operations to proceed while the freeze sequence is in progress, if |
| 1388 | * necessary. |
| 1389 | */ |
| 1390 | bool |
| 1391 | xfs_fs_writable( |
| 1392 | struct xfs_mount *mp, |
| 1393 | int level) |
| 1394 | { |
| 1395 | ASSERT(level > SB_UNFROZEN); |
| 1396 | if ((mp->m_super->s_writers.frozen >= level) || |
| 1397 | xfs_is_shutdown(mp) || xfs_is_readonly(mp)) |
| 1398 | return false; |
| 1399 | |
| 1400 | return true; |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * Estimate the amount of free space that is not available to userspace and is |
| 1405 | * not explicitly reserved from the incore fdblocks. This includes: |
| 1406 | * |
| 1407 | * - The minimum number of blocks needed to support splitting a bmap btree |
| 1408 | * - The blocks currently in use by the freespace btrees because they record |
| 1409 | * the actual blocks that will fill per-AG metadata space reservations |
| 1410 | */ |
| 1411 | uint64_t |
| 1412 | xfs_freecounter_unavailable( |
| 1413 | struct xfs_mount *mp, |
| 1414 | enum xfs_free_counter ctr) |
| 1415 | { |
| 1416 | if (ctr != XC_FREE_BLOCKS) |
| 1417 | return 0; |
| 1418 | return mp->m_alloc_set_aside + atomic64_read(v: &mp->m_allocbt_blks); |
| 1419 | } |
| 1420 | |
| 1421 | void |
| 1422 | xfs_add_freecounter( |
| 1423 | struct xfs_mount *mp, |
| 1424 | enum xfs_free_counter ctr, |
| 1425 | uint64_t delta) |
| 1426 | { |
| 1427 | struct xfs_freecounter *counter = &mp->m_free[ctr]; |
| 1428 | uint64_t res_used; |
| 1429 | |
| 1430 | /* |
| 1431 | * If the reserve pool is depleted, put blocks back into it first. |
| 1432 | * Most of the time the pool is full. |
| 1433 | */ |
| 1434 | if (likely(counter->res_avail == counter->res_total)) { |
| 1435 | percpu_counter_add(fbc: &counter->count, amount: delta); |
| 1436 | return; |
| 1437 | } |
| 1438 | |
| 1439 | spin_lock(lock: &mp->m_sb_lock); |
| 1440 | res_used = counter->res_total - counter->res_avail; |
| 1441 | if (res_used > delta) { |
| 1442 | counter->res_avail += delta; |
| 1443 | } else { |
| 1444 | delta -= res_used; |
| 1445 | counter->res_avail = counter->res_total; |
| 1446 | percpu_counter_add(fbc: &counter->count, amount: delta); |
| 1447 | } |
| 1448 | spin_unlock(lock: &mp->m_sb_lock); |
| 1449 | } |
| 1450 | |
| 1451 | |
| 1452 | /* Adjust in-core free blocks or RT extents. */ |
| 1453 | int |
| 1454 | xfs_dec_freecounter( |
| 1455 | struct xfs_mount *mp, |
| 1456 | enum xfs_free_counter ctr, |
| 1457 | uint64_t delta, |
| 1458 | bool rsvd) |
| 1459 | { |
| 1460 | struct xfs_freecounter *counter = &mp->m_free[ctr]; |
| 1461 | s32 batch; |
| 1462 | |
| 1463 | ASSERT(ctr < XC_FREE_NR); |
| 1464 | |
| 1465 | /* |
| 1466 | * Taking blocks away, need to be more accurate the closer we |
| 1467 | * are to zero. |
| 1468 | * |
| 1469 | * If the counter has a value of less than 2 * max batch size, |
| 1470 | * then make everything serialise as we are real close to |
| 1471 | * ENOSPC. |
| 1472 | */ |
| 1473 | if (__percpu_counter_compare(fbc: &counter->count, rhs: 2 * XFS_FDBLOCKS_BATCH, |
| 1474 | XFS_FDBLOCKS_BATCH) < 0) |
| 1475 | batch = 1; |
| 1476 | else |
| 1477 | batch = XFS_FDBLOCKS_BATCH; |
| 1478 | |
| 1479 | /* |
| 1480 | * Set aside allocbt blocks because these blocks are tracked as free |
| 1481 | * space but not available for allocation. Technically this means that a |
| 1482 | * single reservation cannot consume all remaining free space, but the |
| 1483 | * ratio of allocbt blocks to usable free blocks should be rather small. |
| 1484 | * The tradeoff without this is that filesystems that maintain high |
| 1485 | * perag block reservations can over reserve physical block availability |
| 1486 | * and fail physical allocation, which leads to much more serious |
| 1487 | * problems (i.e. transaction abort, pagecache discards, etc.) than |
| 1488 | * slightly premature -ENOSPC. |
| 1489 | */ |
| 1490 | percpu_counter_add_batch(fbc: &counter->count, amount: -((int64_t)delta), batch); |
| 1491 | if (__percpu_counter_compare(fbc: &counter->count, |
| 1492 | rhs: xfs_freecounter_unavailable(mp, ctr: ctr), |
| 1493 | XFS_FDBLOCKS_BATCH) < 0) { |
| 1494 | /* |
| 1495 | * Lock up the sb for dipping into reserves before releasing the |
| 1496 | * space that took us to ENOSPC. |
| 1497 | */ |
| 1498 | spin_lock(lock: &mp->m_sb_lock); |
| 1499 | percpu_counter_add(fbc: &counter->count, amount: delta); |
| 1500 | if (!rsvd) |
| 1501 | goto fdblocks_enospc; |
| 1502 | if (delta > counter->res_avail) { |
| 1503 | if (ctr == XC_FREE_BLOCKS) |
| 1504 | xfs_warn_once(mp, |
| 1505 | "Reserve blocks depleted! Consider increasing reserve pool size." ); |
| 1506 | goto fdblocks_enospc; |
| 1507 | } |
| 1508 | counter->res_avail -= delta; |
| 1509 | trace_xfs_freecounter_reserved(mp, ctr: ctr, delta, _RET_IP_); |
| 1510 | spin_unlock(lock: &mp->m_sb_lock); |
| 1511 | } |
| 1512 | |
| 1513 | /* we had space! */ |
| 1514 | return 0; |
| 1515 | |
| 1516 | fdblocks_enospc: |
| 1517 | trace_xfs_freecounter_enospc(mp, ctr: ctr, delta, _RET_IP_); |
| 1518 | spin_unlock(lock: &mp->m_sb_lock); |
| 1519 | return -ENOSPC; |
| 1520 | } |
| 1521 | |
| 1522 | /* |
| 1523 | * Used to free the superblock along various error paths. |
| 1524 | */ |
| 1525 | void |
| 1526 | xfs_freesb( |
| 1527 | struct xfs_mount *mp) |
| 1528 | { |
| 1529 | struct xfs_buf *bp = mp->m_sb_bp; |
| 1530 | |
| 1531 | xfs_buf_lock(bp); |
| 1532 | mp->m_sb_bp = NULL; |
| 1533 | xfs_buf_relse(bp); |
| 1534 | } |
| 1535 | |
| 1536 | /* |
| 1537 | * If the underlying (data/log/rt) device is readonly, there are some |
| 1538 | * operations that cannot proceed. |
| 1539 | */ |
| 1540 | int |
| 1541 | xfs_dev_is_read_only( |
| 1542 | struct xfs_mount *mp, |
| 1543 | char *message) |
| 1544 | { |
| 1545 | if (xfs_readonly_buftarg(mp->m_ddev_targp) || |
| 1546 | xfs_readonly_buftarg(mp->m_logdev_targp) || |
| 1547 | (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { |
| 1548 | xfs_notice(mp, "%s required on read-only device." , message); |
| 1549 | xfs_notice(mp, "write access unavailable, cannot proceed." ); |
| 1550 | return -EROFS; |
| 1551 | } |
| 1552 | return 0; |
| 1553 | } |
| 1554 | |
| 1555 | /* Force the summary counters to be recalculated at next mount. */ |
| 1556 | void |
| 1557 | xfs_force_summary_recalc( |
| 1558 | struct xfs_mount *mp) |
| 1559 | { |
| 1560 | if (!xfs_has_lazysbcount(mp)) |
| 1561 | return; |
| 1562 | |
| 1563 | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); |
| 1564 | } |
| 1565 | |
| 1566 | /* |
| 1567 | * Enable a log incompat feature flag in the primary superblock. The caller |
| 1568 | * cannot have any other transactions in progress. |
| 1569 | */ |
| 1570 | int |
| 1571 | xfs_add_incompat_log_feature( |
| 1572 | struct xfs_mount *mp, |
| 1573 | uint32_t feature) |
| 1574 | { |
| 1575 | struct xfs_dsb *dsb; |
| 1576 | int error; |
| 1577 | |
| 1578 | ASSERT(hweight32(feature) == 1); |
| 1579 | ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); |
| 1580 | |
| 1581 | /* |
| 1582 | * Force the log to disk and kick the background AIL thread to reduce |
| 1583 | * the chances that the bwrite will stall waiting for the AIL to unpin |
| 1584 | * the primary superblock buffer. This isn't a data integrity |
| 1585 | * operation, so we don't need a synchronous push. |
| 1586 | */ |
| 1587 | error = xfs_log_force(mp, XFS_LOG_SYNC); |
| 1588 | if (error) |
| 1589 | return error; |
| 1590 | xfs_ail_push_all(ailp: mp->m_ail); |
| 1591 | |
| 1592 | /* |
| 1593 | * Lock the primary superblock buffer to serialize all callers that |
| 1594 | * are trying to set feature bits. |
| 1595 | */ |
| 1596 | xfs_buf_lock(mp->m_sb_bp); |
| 1597 | xfs_buf_hold(bp: mp->m_sb_bp); |
| 1598 | |
| 1599 | if (xfs_is_shutdown(mp)) { |
| 1600 | error = -EIO; |
| 1601 | goto rele; |
| 1602 | } |
| 1603 | |
| 1604 | if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) |
| 1605 | goto rele; |
| 1606 | |
| 1607 | /* |
| 1608 | * Write the primary superblock to disk immediately, because we need |
| 1609 | * the log_incompat bit to be set in the primary super now to protect |
| 1610 | * the log items that we're going to commit later. |
| 1611 | */ |
| 1612 | dsb = mp->m_sb_bp->b_addr; |
| 1613 | xfs_sb_to_disk(dsb, &mp->m_sb); |
| 1614 | dsb->sb_features_log_incompat |= cpu_to_be32(feature); |
| 1615 | error = xfs_bwrite(bp: mp->m_sb_bp); |
| 1616 | if (error) |
| 1617 | goto shutdown; |
| 1618 | |
| 1619 | /* |
| 1620 | * Add the feature bits to the incore superblock before we unlock the |
| 1621 | * buffer. |
| 1622 | */ |
| 1623 | xfs_sb_add_incompat_log_features(&mp->m_sb, feature); |
| 1624 | xfs_buf_relse(bp: mp->m_sb_bp); |
| 1625 | |
| 1626 | /* Log the superblock to disk. */ |
| 1627 | return xfs_sync_sb(mp, false); |
| 1628 | shutdown: |
| 1629 | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
| 1630 | rele: |
| 1631 | xfs_buf_relse(bp: mp->m_sb_bp); |
| 1632 | return error; |
| 1633 | } |
| 1634 | |
| 1635 | /* |
| 1636 | * Clear all the log incompat flags from the superblock. |
| 1637 | * |
| 1638 | * The caller cannot be in a transaction, must ensure that the log does not |
| 1639 | * contain any log items protected by any log incompat bit, and must ensure |
| 1640 | * that there are no other threads that depend on the state of the log incompat |
| 1641 | * feature flags in the primary super. |
| 1642 | * |
| 1643 | * Returns true if the superblock is dirty. |
| 1644 | */ |
| 1645 | bool |
| 1646 | xfs_clear_incompat_log_features( |
| 1647 | struct xfs_mount *mp) |
| 1648 | { |
| 1649 | bool ret = false; |
| 1650 | |
| 1651 | if (!xfs_has_crc(mp) || |
| 1652 | !xfs_sb_has_incompat_log_feature(&mp->m_sb, |
| 1653 | XFS_SB_FEAT_INCOMPAT_LOG_ALL) || |
| 1654 | xfs_is_shutdown(mp) || |
| 1655 | !xfs_is_done_with_log_incompat(mp)) |
| 1656 | return false; |
| 1657 | |
| 1658 | /* |
| 1659 | * Update the incore superblock. We synchronize on the primary super |
| 1660 | * buffer lock to be consistent with the add function, though at least |
| 1661 | * in theory this shouldn't be necessary. |
| 1662 | */ |
| 1663 | xfs_buf_lock(mp->m_sb_bp); |
| 1664 | xfs_buf_hold(bp: mp->m_sb_bp); |
| 1665 | |
| 1666 | if (xfs_sb_has_incompat_log_feature(&mp->m_sb, |
| 1667 | XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { |
| 1668 | xfs_sb_remove_incompat_log_features(&mp->m_sb); |
| 1669 | ret = true; |
| 1670 | } |
| 1671 | |
| 1672 | xfs_buf_relse(bp: mp->m_sb_bp); |
| 1673 | return ret; |
| 1674 | } |
| 1675 | |
| 1676 | /* |
| 1677 | * Update the in-core delayed block counter. |
| 1678 | * |
| 1679 | * We prefer to update the counter without having to take a spinlock for every |
| 1680 | * counter update (i.e. batching). Each change to delayed allocation |
| 1681 | * reservations can change can easily exceed the default percpu counter |
| 1682 | * batching, so we use a larger batch factor here. |
| 1683 | * |
| 1684 | * Note that we don't currently have any callers requiring fast summation |
| 1685 | * (e.g. percpu_counter_read) so we can use a big batch value here. |
| 1686 | */ |
| 1687 | #define XFS_DELALLOC_BATCH (4096) |
| 1688 | void |
| 1689 | xfs_mod_delalloc( |
| 1690 | struct xfs_inode *ip, |
| 1691 | int64_t data_delta, |
| 1692 | int64_t ind_delta) |
| 1693 | { |
| 1694 | struct xfs_mount *mp = ip->i_mount; |
| 1695 | |
| 1696 | if (XFS_IS_REALTIME_INODE(ip)) { |
| 1697 | percpu_counter_add_batch(fbc: &mp->m_delalloc_rtextents, |
| 1698 | amount: xfs_blen_to_rtbxlen(mp, data_delta), |
| 1699 | XFS_DELALLOC_BATCH); |
| 1700 | if (!ind_delta) |
| 1701 | return; |
| 1702 | data_delta = 0; |
| 1703 | } |
| 1704 | percpu_counter_add_batch(fbc: &mp->m_delalloc_blks, amount: data_delta + ind_delta, |
| 1705 | XFS_DELALLOC_BATCH); |
| 1706 | } |
| 1707 | |