1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __NET_CFG80211_H
3#define __NET_CFG80211_H
4/*
5 * 802.11 device and configuration interface
6 *
7 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
8 * Copyright 2013-2014 Intel Mobile Communications GmbH
9 * Copyright 2015-2017 Intel Deutschland GmbH
10 * Copyright (C) 2018-2025 Intel Corporation
11 */
12
13#include <linux/ethtool.h>
14#include <uapi/linux/rfkill.h>
15#include <linux/netdevice.h>
16#include <linux/debugfs.h>
17#include <linux/list.h>
18#include <linux/bug.h>
19#include <linux/netlink.h>
20#include <linux/skbuff.h>
21#include <linux/nl80211.h>
22#include <linux/if_ether.h>
23#include <linux/ieee80211.h>
24#include <linux/net.h>
25#include <linux/rfkill.h>
26#include <net/regulatory.h>
27
28/**
29 * DOC: Introduction
30 *
31 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
32 * userspace and drivers, and offers some utility functionality associated
33 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
34 * by all modern wireless drivers in Linux, so that they offer a consistent
35 * API through nl80211. For backward compatibility, cfg80211 also offers
36 * wireless extensions to userspace, but hides them from drivers completely.
37 *
38 * Additionally, cfg80211 contains code to help enforce regulatory spectrum
39 * use restrictions.
40 */
41
42
43/**
44 * DOC: Device registration
45 *
46 * In order for a driver to use cfg80211, it must register the hardware device
47 * with cfg80211. This happens through a number of hardware capability structs
48 * described below.
49 *
50 * The fundamental structure for each device is the 'wiphy', of which each
51 * instance describes a physical wireless device connected to the system. Each
52 * such wiphy can have zero, one, or many virtual interfaces associated with
53 * it, which need to be identified as such by pointing the network interface's
54 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
55 * the wireless part of the interface. Normally this struct is embedded in the
56 * network interface's private data area. Drivers can optionally allow creating
57 * or destroying virtual interfaces on the fly, but without at least one or the
58 * ability to create some the wireless device isn't useful.
59 *
60 * Each wiphy structure contains device capability information, and also has
61 * a pointer to the various operations the driver offers. The definitions and
62 * structures here describe these capabilities in detail.
63 */
64
65struct wiphy;
66
67/*
68 * wireless hardware capability structures
69 */
70
71/**
72 * enum ieee80211_channel_flags - channel flags
73 *
74 * Channel flags set by the regulatory control code.
75 *
76 * @IEEE80211_CHAN_DISABLED: This channel is disabled.
77 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
78 * sending probe requests or beaconing.
79 * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this
80 * channel.
81 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
82 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
83 * is not permitted.
84 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
85 * is not permitted.
86 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
87 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
88 * this flag indicates that an 80 MHz channel cannot use this
89 * channel as the control or any of the secondary channels.
90 * This may be due to the driver or due to regulatory bandwidth
91 * restrictions.
92 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
93 * this flag indicates that an 160 MHz channel cannot use this
94 * channel as the control or any of the secondary channels.
95 * This may be due to the driver or due to regulatory bandwidth
96 * restrictions.
97 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
98 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
99 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
100 * on this channel.
101 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
102 * on this channel.
103 * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel.
104 * @IEEE80211_CHAN_1MHZ: 1 MHz bandwidth is permitted
105 * on this channel.
106 * @IEEE80211_CHAN_2MHZ: 2 MHz bandwidth is permitted
107 * on this channel.
108 * @IEEE80211_CHAN_4MHZ: 4 MHz bandwidth is permitted
109 * on this channel.
110 * @IEEE80211_CHAN_8MHZ: 8 MHz bandwidth is permitted
111 * on this channel.
112 * @IEEE80211_CHAN_16MHZ: 16 MHz bandwidth is permitted
113 * on this channel.
114 * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band,
115 * this flag indicates that a 320 MHz channel cannot use this
116 * channel as the control or any of the secondary channels.
117 * This may be due to the driver or due to regulatory bandwidth
118 * restrictions.
119 * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel.
120 * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT
121 * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP
122 * not permitted using this channel
123 * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP
124 * not permitted using this channel
125 * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor
126 * mode even in the presence of other (regulatory) restrictions,
127 * even if it is otherwise disabled.
128 * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation
129 * with very low power (VLP), even if otherwise set to NO_IR.
130 * @IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY: Allow activity on a 20 MHz channel,
131 * even if otherwise set to NO_IR.
132 */
133enum ieee80211_channel_flags {
134 IEEE80211_CHAN_DISABLED = BIT(0),
135 IEEE80211_CHAN_NO_IR = BIT(1),
136 IEEE80211_CHAN_PSD = BIT(2),
137 IEEE80211_CHAN_RADAR = BIT(3),
138 IEEE80211_CHAN_NO_HT40PLUS = BIT(4),
139 IEEE80211_CHAN_NO_HT40MINUS = BIT(5),
140 IEEE80211_CHAN_NO_OFDM = BIT(6),
141 IEEE80211_CHAN_NO_80MHZ = BIT(7),
142 IEEE80211_CHAN_NO_160MHZ = BIT(8),
143 IEEE80211_CHAN_INDOOR_ONLY = BIT(9),
144 IEEE80211_CHAN_IR_CONCURRENT = BIT(10),
145 IEEE80211_CHAN_NO_20MHZ = BIT(11),
146 IEEE80211_CHAN_NO_10MHZ = BIT(12),
147 IEEE80211_CHAN_NO_HE = BIT(13),
148 IEEE80211_CHAN_1MHZ = BIT(14),
149 IEEE80211_CHAN_2MHZ = BIT(15),
150 IEEE80211_CHAN_4MHZ = BIT(16),
151 IEEE80211_CHAN_8MHZ = BIT(17),
152 IEEE80211_CHAN_16MHZ = BIT(18),
153 IEEE80211_CHAN_NO_320MHZ = BIT(19),
154 IEEE80211_CHAN_NO_EHT = BIT(20),
155 IEEE80211_CHAN_DFS_CONCURRENT = BIT(21),
156 IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT = BIT(22),
157 IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT = BIT(23),
158 IEEE80211_CHAN_CAN_MONITOR = BIT(24),
159 IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP = BIT(25),
160 IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY = BIT(26),
161};
162
163#define IEEE80211_CHAN_NO_HT40 \
164 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
165
166#define IEEE80211_DFS_MIN_CAC_TIME_MS 60000
167#define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000)
168
169/**
170 * struct ieee80211_channel - channel definition
171 *
172 * This structure describes a single channel for use
173 * with cfg80211.
174 *
175 * @center_freq: center frequency in MHz
176 * @freq_offset: offset from @center_freq, in KHz
177 * @hw_value: hardware-specific value for the channel
178 * @flags: channel flags from &enum ieee80211_channel_flags.
179 * @orig_flags: channel flags at registration time, used by regulatory
180 * code to support devices with additional restrictions
181 * @band: band this channel belongs to.
182 * @max_antenna_gain: maximum antenna gain in dBi
183 * @max_power: maximum transmission power (in dBm)
184 * @max_reg_power: maximum regulatory transmission power (in dBm)
185 * @beacon_found: helper to regulatory code to indicate when a beacon
186 * has been found on this channel. Use regulatory_hint_found_beacon()
187 * to enable this, this is useful only on 5 GHz band.
188 * @orig_mag: internal use
189 * @orig_mpwr: internal use
190 * @dfs_state: current state of this channel. Only relevant if radar is required
191 * on this channel.
192 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
193 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
194 * @psd: power spectral density (in dBm)
195 */
196struct ieee80211_channel {
197 enum nl80211_band band;
198 u32 center_freq;
199 u16 freq_offset;
200 u16 hw_value;
201 u32 flags;
202 int max_antenna_gain;
203 int max_power;
204 int max_reg_power;
205 bool beacon_found;
206 u32 orig_flags;
207 int orig_mag, orig_mpwr;
208 enum nl80211_dfs_state dfs_state;
209 unsigned long dfs_state_entered;
210 unsigned int dfs_cac_ms;
211 s8 psd;
212};
213
214/**
215 * enum ieee80211_rate_flags - rate flags
216 *
217 * Hardware/specification flags for rates. These are structured
218 * in a way that allows using the same bitrate structure for
219 * different bands/PHY modes.
220 *
221 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
222 * preamble on this bitrate; only relevant in 2.4GHz band and
223 * with CCK rates.
224 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
225 * when used with 802.11a (on the 5 GHz band); filled by the
226 * core code when registering the wiphy.
227 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
228 * when used with 802.11b (on the 2.4 GHz band); filled by the
229 * core code when registering the wiphy.
230 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
231 * when used with 802.11g (on the 2.4 GHz band); filled by the
232 * core code when registering the wiphy.
233 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
234 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
235 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
236 */
237enum ieee80211_rate_flags {
238 IEEE80211_RATE_SHORT_PREAMBLE = BIT(0),
239 IEEE80211_RATE_MANDATORY_A = BIT(1),
240 IEEE80211_RATE_MANDATORY_B = BIT(2),
241 IEEE80211_RATE_MANDATORY_G = BIT(3),
242 IEEE80211_RATE_ERP_G = BIT(4),
243 IEEE80211_RATE_SUPPORTS_5MHZ = BIT(5),
244 IEEE80211_RATE_SUPPORTS_10MHZ = BIT(6),
245};
246
247/**
248 * enum ieee80211_bss_type - BSS type filter
249 *
250 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
251 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS
252 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS
253 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
254 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
255 */
256enum ieee80211_bss_type {
257 IEEE80211_BSS_TYPE_ESS,
258 IEEE80211_BSS_TYPE_PBSS,
259 IEEE80211_BSS_TYPE_IBSS,
260 IEEE80211_BSS_TYPE_MBSS,
261 IEEE80211_BSS_TYPE_ANY
262};
263
264/**
265 * enum ieee80211_privacy - BSS privacy filter
266 *
267 * @IEEE80211_PRIVACY_ON: privacy bit set
268 * @IEEE80211_PRIVACY_OFF: privacy bit clear
269 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
270 */
271enum ieee80211_privacy {
272 IEEE80211_PRIVACY_ON,
273 IEEE80211_PRIVACY_OFF,
274 IEEE80211_PRIVACY_ANY
275};
276
277#define IEEE80211_PRIVACY(x) \
278 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
279
280/**
281 * struct ieee80211_rate - bitrate definition
282 *
283 * This structure describes a bitrate that an 802.11 PHY can
284 * operate with. The two values @hw_value and @hw_value_short
285 * are only for driver use when pointers to this structure are
286 * passed around.
287 *
288 * @flags: rate-specific flags from &enum ieee80211_rate_flags
289 * @bitrate: bitrate in units of 100 Kbps
290 * @hw_value: driver/hardware value for this rate
291 * @hw_value_short: driver/hardware value for this rate when
292 * short preamble is used
293 */
294struct ieee80211_rate {
295 u32 flags;
296 u16 bitrate;
297 u16 hw_value, hw_value_short;
298};
299
300/**
301 * struct ieee80211_he_obss_pd - AP settings for spatial reuse
302 *
303 * @enable: is the feature enabled.
304 * @sr_ctrl: The SR Control field of SRP element.
305 * @non_srg_max_offset: non-SRG maximum tx power offset
306 * @min_offset: minimal tx power offset an associated station shall use
307 * @max_offset: maximum tx power offset an associated station shall use
308 * @bss_color_bitmap: bitmap that indicates the BSS color values used by
309 * members of the SRG
310 * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values
311 * used by members of the SRG
312 */
313struct ieee80211_he_obss_pd {
314 bool enable;
315 u8 sr_ctrl;
316 u8 non_srg_max_offset;
317 u8 min_offset;
318 u8 max_offset;
319 u8 bss_color_bitmap[8];
320 u8 partial_bssid_bitmap[8];
321};
322
323/**
324 * struct cfg80211_he_bss_color - AP settings for BSS coloring
325 *
326 * @color: the current color.
327 * @enabled: HE BSS color is used
328 * @partial: define the AID equation.
329 */
330struct cfg80211_he_bss_color {
331 u8 color;
332 bool enabled;
333 bool partial;
334};
335
336/**
337 * struct ieee80211_sta_ht_cap - STA's HT capabilities
338 *
339 * This structure describes most essential parameters needed
340 * to describe 802.11n HT capabilities for an STA.
341 *
342 * @ht_supported: is HT supported by the STA
343 * @cap: HT capabilities map as described in 802.11n spec
344 * @ampdu_factor: Maximum A-MPDU length factor
345 * @ampdu_density: Minimum A-MPDU spacing
346 * @mcs: Supported MCS rates
347 */
348struct ieee80211_sta_ht_cap {
349 u16 cap; /* use IEEE80211_HT_CAP_ */
350 bool ht_supported;
351 u8 ampdu_factor;
352 u8 ampdu_density;
353 struct ieee80211_mcs_info mcs;
354};
355
356/**
357 * struct ieee80211_sta_vht_cap - STA's VHT capabilities
358 *
359 * This structure describes most essential parameters needed
360 * to describe 802.11ac VHT capabilities for an STA.
361 *
362 * @vht_supported: is VHT supported by the STA
363 * @cap: VHT capabilities map as described in 802.11ac spec
364 * @vht_mcs: Supported VHT MCS rates
365 */
366struct ieee80211_sta_vht_cap {
367 bool vht_supported;
368 u32 cap; /* use IEEE80211_VHT_CAP_ */
369 struct ieee80211_vht_mcs_info vht_mcs;
370};
371
372#define IEEE80211_HE_PPE_THRES_MAX_LEN 25
373
374/**
375 * struct ieee80211_sta_he_cap - STA's HE capabilities
376 *
377 * This structure describes most essential parameters needed
378 * to describe 802.11ax HE capabilities for a STA.
379 *
380 * @has_he: true iff HE data is valid.
381 * @he_cap_elem: Fixed portion of the HE capabilities element.
382 * @he_mcs_nss_supp: The supported NSS/MCS combinations.
383 * @ppe_thres: Holds the PPE Thresholds data.
384 */
385struct ieee80211_sta_he_cap {
386 bool has_he;
387 struct ieee80211_he_cap_elem he_cap_elem;
388 struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp;
389 u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN];
390};
391
392/**
393 * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS
394 *
395 * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS
396 * and NSS Set field"
397 *
398 * @only_20mhz: MCS/NSS support for 20 MHz-only STA.
399 * @bw: MCS/NSS support for 80, 160 and 320 MHz
400 * @bw._80: MCS/NSS support for BW <= 80 MHz
401 * @bw._160: MCS/NSS support for BW = 160 MHz
402 * @bw._320: MCS/NSS support for BW = 320 MHz
403 */
404struct ieee80211_eht_mcs_nss_supp {
405 union {
406 struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz;
407 struct {
408 struct ieee80211_eht_mcs_nss_supp_bw _80;
409 struct ieee80211_eht_mcs_nss_supp_bw _160;
410 struct ieee80211_eht_mcs_nss_supp_bw _320;
411 } __packed bw;
412 } __packed;
413} __packed;
414
415#define IEEE80211_EHT_PPE_THRES_MAX_LEN 32
416
417/**
418 * struct ieee80211_sta_eht_cap - STA's EHT capabilities
419 *
420 * This structure describes most essential parameters needed
421 * to describe 802.11be EHT capabilities for a STA.
422 *
423 * @has_eht: true iff EHT data is valid.
424 * @eht_cap_elem: Fixed portion of the eht capabilities element.
425 * @eht_mcs_nss_supp: The supported NSS/MCS combinations.
426 * @eht_ppe_thres: Holds the PPE Thresholds data.
427 */
428struct ieee80211_sta_eht_cap {
429 bool has_eht;
430 struct ieee80211_eht_cap_elem_fixed eht_cap_elem;
431 struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp;
432 u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN];
433};
434
435/* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */
436#ifdef __CHECKER__
437/*
438 * This is used to mark the sband->iftype_data pointer which is supposed
439 * to be an array with special access semantics (per iftype), but a lot
440 * of code got it wrong in the past, so with this marking sparse will be
441 * noisy when the pointer is used directly.
442 */
443# define __iftd __attribute__((noderef, address_space(__iftype_data)))
444#else
445# define __iftd
446#endif /* __CHECKER__ */
447
448/**
449 * struct ieee80211_sband_iftype_data - sband data per interface type
450 *
451 * This structure encapsulates sband data that is relevant for the
452 * interface types defined in @types_mask. Each type in the
453 * @types_mask must be unique across all instances of iftype_data.
454 *
455 * @types_mask: interface types mask
456 * @he_cap: holds the HE capabilities
457 * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a
458 * 6 GHz band channel (and 0 may be valid value).
459 * @eht_cap: STA's EHT capabilities
460 * @vendor_elems: vendor element(s) to advertise
461 * @vendor_elems.data: vendor element(s) data
462 * @vendor_elems.len: vendor element(s) length
463 */
464struct ieee80211_sband_iftype_data {
465 u16 types_mask;
466 struct ieee80211_sta_he_cap he_cap;
467 struct ieee80211_he_6ghz_capa he_6ghz_capa;
468 struct ieee80211_sta_eht_cap eht_cap;
469 struct {
470 const u8 *data;
471 unsigned int len;
472 } vendor_elems;
473};
474
475/**
476 * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations
477 *
478 * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz
479 * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz
480 * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz
481 * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz
482 * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz
483 * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz
484 * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz
485 * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and
486 * 2.16GHz+2.16GHz
487 * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and
488 * 4.32GHz + 4.32GHz
489 * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and
490 * 4.32GHz + 4.32GHz
491 * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz
492 * and 4.32GHz + 4.32GHz
493 * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz,
494 * 2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz
495 */
496enum ieee80211_edmg_bw_config {
497 IEEE80211_EDMG_BW_CONFIG_4 = 4,
498 IEEE80211_EDMG_BW_CONFIG_5 = 5,
499 IEEE80211_EDMG_BW_CONFIG_6 = 6,
500 IEEE80211_EDMG_BW_CONFIG_7 = 7,
501 IEEE80211_EDMG_BW_CONFIG_8 = 8,
502 IEEE80211_EDMG_BW_CONFIG_9 = 9,
503 IEEE80211_EDMG_BW_CONFIG_10 = 10,
504 IEEE80211_EDMG_BW_CONFIG_11 = 11,
505 IEEE80211_EDMG_BW_CONFIG_12 = 12,
506 IEEE80211_EDMG_BW_CONFIG_13 = 13,
507 IEEE80211_EDMG_BW_CONFIG_14 = 14,
508 IEEE80211_EDMG_BW_CONFIG_15 = 15,
509};
510
511/**
512 * struct ieee80211_edmg - EDMG configuration
513 *
514 * This structure describes most essential parameters needed
515 * to describe 802.11ay EDMG configuration
516 *
517 * @channels: bitmap that indicates the 2.16 GHz channel(s)
518 * that are allowed to be used for transmissions.
519 * Bit 0 indicates channel 1, bit 1 indicates channel 2, etc.
520 * Set to 0 indicate EDMG not supported.
521 * @bw_config: Channel BW Configuration subfield encodes
522 * the allowed channel bandwidth configurations
523 */
524struct ieee80211_edmg {
525 u8 channels;
526 enum ieee80211_edmg_bw_config bw_config;
527};
528
529/**
530 * struct ieee80211_sta_s1g_cap - STA's S1G capabilities
531 *
532 * This structure describes most essential parameters needed
533 * to describe 802.11ah S1G capabilities for a STA.
534 *
535 * @s1g: is STA an S1G STA
536 * @cap: S1G capabilities information
537 * @nss_mcs: Supported NSS MCS set
538 */
539struct ieee80211_sta_s1g_cap {
540 bool s1g;
541 u8 cap[10]; /* use S1G_CAPAB_ */
542 u8 nss_mcs[5];
543};
544
545/**
546 * struct ieee80211_supported_band - frequency band definition
547 *
548 * This structure describes a frequency band a wiphy
549 * is able to operate in.
550 *
551 * @channels: Array of channels the hardware can operate with
552 * in this band.
553 * @band: the band this structure represents
554 * @n_channels: Number of channels in @channels
555 * @bitrates: Array of bitrates the hardware can operate with
556 * in this band. Must be sorted to give a valid "supported
557 * rates" IE, i.e. CCK rates first, then OFDM.
558 * @n_bitrates: Number of bitrates in @bitrates
559 * @ht_cap: HT capabilities in this band
560 * @vht_cap: VHT capabilities in this band
561 * @s1g_cap: S1G capabilities in this band
562 * @edmg_cap: EDMG capabilities in this band
563 * @s1g_cap: S1G capabilities in this band (S1B band only, of course)
564 * @n_iftype_data: number of iftype data entries
565 * @iftype_data: interface type data entries. Note that the bits in
566 * @types_mask inside this structure cannot overlap (i.e. only
567 * one occurrence of each type is allowed across all instances of
568 * iftype_data).
569 */
570struct ieee80211_supported_band {
571 struct ieee80211_channel *channels;
572 struct ieee80211_rate *bitrates;
573 enum nl80211_band band;
574 int n_channels;
575 int n_bitrates;
576 struct ieee80211_sta_ht_cap ht_cap;
577 struct ieee80211_sta_vht_cap vht_cap;
578 struct ieee80211_sta_s1g_cap s1g_cap;
579 struct ieee80211_edmg edmg_cap;
580 u16 n_iftype_data;
581 const struct ieee80211_sband_iftype_data __iftd *iftype_data;
582};
583
584/**
585 * _ieee80211_set_sband_iftype_data - set sband iftype data array
586 * @sband: the sband to initialize
587 * @iftd: the iftype data array pointer
588 * @n_iftd: the length of the iftype data array
589 *
590 * Set the sband iftype data array; use this where the length cannot
591 * be derived from the ARRAY_SIZE() of the argument, but prefer
592 * ieee80211_set_sband_iftype_data() where it can be used.
593 */
594static inline void
595_ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband,
596 const struct ieee80211_sband_iftype_data *iftd,
597 u16 n_iftd)
598{
599 sband->iftype_data = (const void __iftd __force *)iftd;
600 sband->n_iftype_data = n_iftd;
601}
602
603/**
604 * ieee80211_set_sband_iftype_data - set sband iftype data array
605 * @sband: the sband to initialize
606 * @iftd: the iftype data array
607 */
608#define ieee80211_set_sband_iftype_data(sband, iftd) \
609 _ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd))
610
611/**
612 * for_each_sband_iftype_data - iterate sband iftype data entries
613 * @sband: the sband whose iftype_data array to iterate
614 * @i: iterator counter
615 * @iftd: iftype data pointer to set
616 */
617#define for_each_sband_iftype_data(sband, i, iftd) \
618 for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i]; \
619 i < (sband)->n_iftype_data; \
620 i++, iftd = (const void __force *)&(sband)->iftype_data[i])
621
622/**
623 * ieee80211_get_sband_iftype_data - return sband data for a given iftype
624 * @sband: the sband to search for the STA on
625 * @iftype: enum nl80211_iftype
626 *
627 * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found
628 */
629static inline const struct ieee80211_sband_iftype_data *
630ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband,
631 u8 iftype)
632{
633 const struct ieee80211_sband_iftype_data *data;
634 int i;
635
636 if (WARN_ON(iftype >= NL80211_IFTYPE_MAX))
637 return NULL;
638
639 if (iftype == NL80211_IFTYPE_AP_VLAN)
640 iftype = NL80211_IFTYPE_AP;
641
642 for_each_sband_iftype_data(sband, i, data) {
643 if (data->types_mask & BIT(iftype))
644 return data;
645 }
646
647 return NULL;
648}
649
650/**
651 * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype
652 * @sband: the sband to search for the iftype on
653 * @iftype: enum nl80211_iftype
654 *
655 * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found
656 */
657static inline const struct ieee80211_sta_he_cap *
658ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband,
659 u8 iftype)
660{
661 const struct ieee80211_sband_iftype_data *data =
662 ieee80211_get_sband_iftype_data(sband, iftype);
663
664 if (data && data->he_cap.has_he)
665 return &data->he_cap;
666
667 return NULL;
668}
669
670/**
671 * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities
672 * @sband: the sband to search for the STA on
673 * @iftype: the iftype to search for
674 *
675 * Return: the 6GHz capabilities
676 */
677static inline __le16
678ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband,
679 enum nl80211_iftype iftype)
680{
681 const struct ieee80211_sband_iftype_data *data =
682 ieee80211_get_sband_iftype_data(sband, iftype);
683
684 if (WARN_ON(!data || !data->he_cap.has_he))
685 return 0;
686
687 return data->he_6ghz_capa.capa;
688}
689
690/**
691 * ieee80211_get_eht_iftype_cap - return ETH capabilities for an sband's iftype
692 * @sband: the sband to search for the iftype on
693 * @iftype: enum nl80211_iftype
694 *
695 * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found
696 */
697static inline const struct ieee80211_sta_eht_cap *
698ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband,
699 enum nl80211_iftype iftype)
700{
701 const struct ieee80211_sband_iftype_data *data =
702 ieee80211_get_sband_iftype_data(sband, iftype);
703
704 if (data && data->eht_cap.has_eht)
705 return &data->eht_cap;
706
707 return NULL;
708}
709
710/**
711 * wiphy_read_of_freq_limits - read frequency limits from device tree
712 *
713 * @wiphy: the wireless device to get extra limits for
714 *
715 * Some devices may have extra limitations specified in DT. This may be useful
716 * for chipsets that normally support more bands but are limited due to board
717 * design (e.g. by antennas or external power amplifier).
718 *
719 * This function reads info from DT and uses it to *modify* channels (disable
720 * unavailable ones). It's usually a *bad* idea to use it in drivers with
721 * shared channel data as DT limitations are device specific. You should make
722 * sure to call it only if channels in wiphy are copied and can be modified
723 * without affecting other devices.
724 *
725 * As this function access device node it has to be called after set_wiphy_dev.
726 * It also modifies channels so they have to be set first.
727 * If using this helper, call it before wiphy_register().
728 */
729#ifdef CONFIG_OF
730void wiphy_read_of_freq_limits(struct wiphy *wiphy);
731#else /* CONFIG_OF */
732static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy)
733{
734}
735#endif /* !CONFIG_OF */
736
737
738/*
739 * Wireless hardware/device configuration structures and methods
740 */
741
742/**
743 * DOC: Actions and configuration
744 *
745 * Each wireless device and each virtual interface offer a set of configuration
746 * operations and other actions that are invoked by userspace. Each of these
747 * actions is described in the operations structure, and the parameters these
748 * operations use are described separately.
749 *
750 * Additionally, some operations are asynchronous and expect to get status
751 * information via some functions that drivers need to call.
752 *
753 * Scanning and BSS list handling with its associated functionality is described
754 * in a separate chapter.
755 */
756
757#define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\
758 WLAN_USER_POSITION_LEN)
759
760/**
761 * struct vif_params - describes virtual interface parameters
762 * @flags: monitor interface flags, unchanged if 0, otherwise
763 * %MONITOR_FLAG_CHANGED will be set
764 * @use_4addr: use 4-address frames
765 * @macaddr: address to use for this virtual interface.
766 * If this parameter is set to zero address the driver may
767 * determine the address as needed.
768 * This feature is only fully supported by drivers that enable the
769 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating
770 ** only p2p devices with specified MAC.
771 * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets
772 * belonging to that MU-MIMO groupID; %NULL if not changed
773 * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring
774 * MU-MIMO packets going to the specified station; %NULL if not changed
775 */
776struct vif_params {
777 u32 flags;
778 int use_4addr;
779 u8 macaddr[ETH_ALEN];
780 const u8 *vht_mumimo_groups;
781 const u8 *vht_mumimo_follow_addr;
782};
783
784/**
785 * struct key_params - key information
786 *
787 * Information about a key
788 *
789 * @key: key material
790 * @key_len: length of key material
791 * @cipher: cipher suite selector
792 * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used
793 * with the get_key() callback, must be in little endian,
794 * length given by @seq_len.
795 * @seq_len: length of @seq.
796 * @vlan_id: vlan_id for VLAN group key (if nonzero)
797 * @mode: key install mode (RX_TX, NO_TX or SET_TX)
798 */
799struct key_params {
800 const u8 *key;
801 const u8 *seq;
802 int key_len;
803 int seq_len;
804 u16 vlan_id;
805 u32 cipher;
806 enum nl80211_key_mode mode;
807};
808
809/**
810 * struct cfg80211_chan_def - channel definition
811 * @chan: the (control) channel
812 * @width: channel width
813 * @center_freq1: center frequency of first segment
814 * @center_freq2: center frequency of second segment
815 * (only with 80+80 MHz)
816 * @edmg: define the EDMG channels configuration.
817 * If edmg is requested (i.e. the .channels member is non-zero),
818 * chan will define the primary channel and all other
819 * parameters are ignored.
820 * @freq1_offset: offset from @center_freq1, in KHz
821 * @punctured: mask of the punctured 20 MHz subchannels, with
822 * bits turned on being disabled (punctured); numbered
823 * from lower to higher frequency (like in the spec)
824 */
825struct cfg80211_chan_def {
826 struct ieee80211_channel *chan;
827 enum nl80211_chan_width width;
828 u32 center_freq1;
829 u32 center_freq2;
830 struct ieee80211_edmg edmg;
831 u16 freq1_offset;
832 u16 punctured;
833};
834
835/*
836 * cfg80211_bitrate_mask - masks for bitrate control
837 */
838struct cfg80211_bitrate_mask {
839 struct {
840 u32 legacy;
841 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
842 u16 vht_mcs[NL80211_VHT_NSS_MAX];
843 u16 he_mcs[NL80211_HE_NSS_MAX];
844 enum nl80211_txrate_gi gi;
845 enum nl80211_he_gi he_gi;
846 enum nl80211_he_ltf he_ltf;
847 } control[NUM_NL80211_BANDS];
848};
849
850
851/**
852 * struct cfg80211_tid_cfg - TID specific configuration
853 * @config_override: Flag to notify driver to reset TID configuration
854 * of the peer.
855 * @tids: bitmap of TIDs to modify
856 * @mask: bitmap of attributes indicating which parameter changed,
857 * similar to &nl80211_tid_config_supp.
858 * @noack: noack configuration value for the TID
859 * @retry_long: retry count value
860 * @retry_short: retry count value
861 * @ampdu: Enable/Disable MPDU aggregation
862 * @rtscts: Enable/Disable RTS/CTS
863 * @amsdu: Enable/Disable MSDU aggregation
864 * @txrate_type: Tx bitrate mask type
865 * @txrate_mask: Tx bitrate to be applied for the TID
866 */
867struct cfg80211_tid_cfg {
868 bool config_override;
869 u8 tids;
870 u64 mask;
871 enum nl80211_tid_config noack;
872 u8 retry_long, retry_short;
873 enum nl80211_tid_config ampdu;
874 enum nl80211_tid_config rtscts;
875 enum nl80211_tid_config amsdu;
876 enum nl80211_tx_rate_setting txrate_type;
877 struct cfg80211_bitrate_mask txrate_mask;
878};
879
880/**
881 * struct cfg80211_tid_config - TID configuration
882 * @peer: Station's MAC address
883 * @n_tid_conf: Number of TID specific configurations to be applied
884 * @tid_conf: Configuration change info
885 */
886struct cfg80211_tid_config {
887 const u8 *peer;
888 u32 n_tid_conf;
889 struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf);
890};
891
892/**
893 * struct cfg80211_fils_aad - FILS AAD data
894 * @macaddr: STA MAC address
895 * @kek: FILS KEK
896 * @kek_len: FILS KEK length
897 * @snonce: STA Nonce
898 * @anonce: AP Nonce
899 */
900struct cfg80211_fils_aad {
901 const u8 *macaddr;
902 const u8 *kek;
903 u8 kek_len;
904 const u8 *snonce;
905 const u8 *anonce;
906};
907
908/**
909 * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping
910 * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all
911 * addresses.
912 * @enable: if set, enable HW timestamping for the specified MAC address.
913 * Otherwise disable HW timestamping for the specified MAC address.
914 */
915struct cfg80211_set_hw_timestamp {
916 const u8 *macaddr;
917 bool enable;
918};
919
920/**
921 * cfg80211_get_chandef_type - return old channel type from chandef
922 * @chandef: the channel definition
923 *
924 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
925 * chandef, which must have a bandwidth allowing this conversion.
926 */
927static inline enum nl80211_channel_type
928cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
929{
930 switch (chandef->width) {
931 case NL80211_CHAN_WIDTH_20_NOHT:
932 return NL80211_CHAN_NO_HT;
933 case NL80211_CHAN_WIDTH_20:
934 return NL80211_CHAN_HT20;
935 case NL80211_CHAN_WIDTH_40:
936 if (chandef->center_freq1 > chandef->chan->center_freq)
937 return NL80211_CHAN_HT40PLUS;
938 return NL80211_CHAN_HT40MINUS;
939 default:
940 WARN_ON(1);
941 return NL80211_CHAN_NO_HT;
942 }
943}
944
945/**
946 * cfg80211_chandef_create - create channel definition using channel type
947 * @chandef: the channel definition struct to fill
948 * @channel: the control channel
949 * @chantype: the channel type
950 *
951 * Given a channel type, create a channel definition.
952 */
953void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
954 struct ieee80211_channel *channel,
955 enum nl80211_channel_type chantype);
956
957/**
958 * cfg80211_chandef_identical - check if two channel definitions are identical
959 * @chandef1: first channel definition
960 * @chandef2: second channel definition
961 *
962 * Return: %true if the channels defined by the channel definitions are
963 * identical, %false otherwise.
964 */
965static inline bool
966cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
967 const struct cfg80211_chan_def *chandef2)
968{
969 return (chandef1->chan == chandef2->chan &&
970 chandef1->width == chandef2->width &&
971 chandef1->center_freq1 == chandef2->center_freq1 &&
972 chandef1->freq1_offset == chandef2->freq1_offset &&
973 chandef1->center_freq2 == chandef2->center_freq2 &&
974 chandef1->punctured == chandef2->punctured);
975}
976
977/**
978 * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel
979 *
980 * @chandef: the channel definition
981 *
982 * Return: %true if EDMG defined, %false otherwise.
983 */
984static inline bool
985cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef)
986{
987 return chandef->edmg.channels || chandef->edmg.bw_config;
988}
989
990/**
991 * cfg80211_chandef_compatible - check if two channel definitions are compatible
992 * @chandef1: first channel definition
993 * @chandef2: second channel definition
994 *
995 * Return: %NULL if the given channel definitions are incompatible,
996 * chandef1 or chandef2 otherwise.
997 */
998const struct cfg80211_chan_def *
999cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
1000 const struct cfg80211_chan_def *chandef2);
1001
1002/**
1003 * nl80211_chan_width_to_mhz - get the channel width in MHz
1004 * @chan_width: the channel width from &enum nl80211_chan_width
1005 *
1006 * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width
1007 * is valid. -1 otherwise.
1008 */
1009int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width);
1010
1011/**
1012 * cfg80211_chandef_get_width - return chandef width in MHz
1013 * @c: chandef to return bandwidth for
1014 * Return: channel width in MHz for the given chandef; note that it returns
1015 * 80 for 80+80 configurations
1016 */
1017static inline int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
1018{
1019 return nl80211_chan_width_to_mhz(chan_width: c->width);
1020}
1021
1022/**
1023 * cfg80211_chandef_valid - check if a channel definition is valid
1024 * @chandef: the channel definition to check
1025 * Return: %true if the channel definition is valid. %false otherwise.
1026 */
1027bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
1028
1029/**
1030 * cfg80211_chandef_usable - check if secondary channels can be used
1031 * @wiphy: the wiphy to validate against
1032 * @chandef: the channel definition to check
1033 * @prohibited_flags: the regulatory channel flags that must not be set
1034 * Return: %true if secondary channels are usable. %false otherwise.
1035 */
1036bool cfg80211_chandef_usable(struct wiphy *wiphy,
1037 const struct cfg80211_chan_def *chandef,
1038 u32 prohibited_flags);
1039
1040/**
1041 * cfg80211_chandef_dfs_required - checks if radar detection is required
1042 * @wiphy: the wiphy to validate against
1043 * @chandef: the channel definition to check
1044 * @iftype: the interface type as specified in &enum nl80211_iftype
1045 * Returns:
1046 * 1 if radar detection is required, 0 if it is not, < 0 on error
1047 */
1048int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
1049 const struct cfg80211_chan_def *chandef,
1050 enum nl80211_iftype iftype);
1051
1052/**
1053 * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we
1054 * can/need start CAC on such channel
1055 * @wiphy: the wiphy to validate against
1056 * @chandef: the channel definition to check
1057 *
1058 * Return: true if all channels available and at least
1059 * one channel requires CAC (NL80211_DFS_USABLE)
1060 */
1061bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
1062 const struct cfg80211_chan_def *chandef);
1063
1064/**
1065 * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given
1066 * channel definition
1067 * @wiphy: the wiphy to validate against
1068 * @chandef: the channel definition to check
1069 *
1070 * Returns: DFS CAC time (in ms) which applies for this channel definition
1071 */
1072unsigned int
1073cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1074 const struct cfg80211_chan_def *chandef);
1075
1076/**
1077 * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq
1078 * @chandef: chandef to calculate for
1079 * @primary_chan_width: primary channel width to calculate center for
1080 * @punctured: punctured sub-channel bitmap, will be recalculated
1081 * according to the new bandwidth, can be %NULL
1082 *
1083 * Returns: the primary 40/80/160 MHz channel center frequency, or -1
1084 * for errors, updating the punctured bitmap
1085 */
1086int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef,
1087 enum nl80211_chan_width primary_chan_width,
1088 u16 *punctured);
1089
1090/**
1091 * nl80211_send_chandef - sends the channel definition.
1092 * @msg: the msg to send channel definition
1093 * @chandef: the channel definition to check
1094 *
1095 * Returns: 0 if sent the channel definition to msg, < 0 on error
1096 **/
1097int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef);
1098
1099/**
1100 * ieee80211_chandef_max_power - maximum transmission power for the chandef
1101 *
1102 * In some regulations, the transmit power may depend on the configured channel
1103 * bandwidth which may be defined as dBm/MHz. This function returns the actual
1104 * max_power for non-standard (20 MHz) channels.
1105 *
1106 * @chandef: channel definition for the channel
1107 *
1108 * Returns: maximum allowed transmission power in dBm for the chandef
1109 */
1110static inline int
1111ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
1112{
1113 switch (chandef->width) {
1114 case NL80211_CHAN_WIDTH_5:
1115 return min(chandef->chan->max_reg_power - 6,
1116 chandef->chan->max_power);
1117 case NL80211_CHAN_WIDTH_10:
1118 return min(chandef->chan->max_reg_power - 3,
1119 chandef->chan->max_power);
1120 default:
1121 break;
1122 }
1123 return chandef->chan->max_power;
1124}
1125
1126/**
1127 * cfg80211_any_usable_channels - check for usable channels
1128 * @wiphy: the wiphy to check for
1129 * @band_mask: which bands to check on
1130 * @prohibited_flags: which channels to not consider usable,
1131 * %IEEE80211_CHAN_DISABLED is always taken into account
1132 *
1133 * Return: %true if usable channels found, %false otherwise
1134 */
1135bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1136 unsigned long band_mask,
1137 u32 prohibited_flags);
1138
1139/**
1140 * enum survey_info_flags - survey information flags
1141 *
1142 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
1143 * @SURVEY_INFO_IN_USE: channel is currently being used
1144 * @SURVEY_INFO_TIME: active time (in ms) was filled in
1145 * @SURVEY_INFO_TIME_BUSY: busy time was filled in
1146 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
1147 * @SURVEY_INFO_TIME_RX: receive time was filled in
1148 * @SURVEY_INFO_TIME_TX: transmit time was filled in
1149 * @SURVEY_INFO_TIME_SCAN: scan time was filled in
1150 * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in
1151 *
1152 * Used by the driver to indicate which info in &struct survey_info
1153 * it has filled in during the get_survey().
1154 */
1155enum survey_info_flags {
1156 SURVEY_INFO_NOISE_DBM = BIT(0),
1157 SURVEY_INFO_IN_USE = BIT(1),
1158 SURVEY_INFO_TIME = BIT(2),
1159 SURVEY_INFO_TIME_BUSY = BIT(3),
1160 SURVEY_INFO_TIME_EXT_BUSY = BIT(4),
1161 SURVEY_INFO_TIME_RX = BIT(5),
1162 SURVEY_INFO_TIME_TX = BIT(6),
1163 SURVEY_INFO_TIME_SCAN = BIT(7),
1164 SURVEY_INFO_TIME_BSS_RX = BIT(8),
1165};
1166
1167/**
1168 * struct survey_info - channel survey response
1169 *
1170 * @channel: the channel this survey record reports, may be %NULL for a single
1171 * record to report global statistics
1172 * @filled: bitflag of flags from &enum survey_info_flags
1173 * @noise: channel noise in dBm. This and all following fields are
1174 * optional
1175 * @time: amount of time in ms the radio was turn on (on the channel)
1176 * @time_busy: amount of time the primary channel was sensed busy
1177 * @time_ext_busy: amount of time the extension channel was sensed busy
1178 * @time_rx: amount of time the radio spent receiving data
1179 * @time_tx: amount of time the radio spent transmitting data
1180 * @time_scan: amount of time the radio spent for scanning
1181 * @time_bss_rx: amount of time the radio spent receiving data on a local BSS
1182 *
1183 * Used by dump_survey() to report back per-channel survey information.
1184 *
1185 * This structure can later be expanded with things like
1186 * channel duty cycle etc.
1187 */
1188struct survey_info {
1189 struct ieee80211_channel *channel;
1190 u64 time;
1191 u64 time_busy;
1192 u64 time_ext_busy;
1193 u64 time_rx;
1194 u64 time_tx;
1195 u64 time_scan;
1196 u64 time_bss_rx;
1197 u32 filled;
1198 s8 noise;
1199};
1200
1201#define CFG80211_MAX_NUM_AKM_SUITES 10
1202
1203/**
1204 * struct cfg80211_crypto_settings - Crypto settings
1205 * @wpa_versions: indicates which, if any, WPA versions are enabled
1206 * (from enum nl80211_wpa_versions)
1207 * @cipher_group: group key cipher suite (or 0 if unset)
1208 * @n_ciphers_pairwise: number of AP supported unicast ciphers
1209 * @ciphers_pairwise: unicast key cipher suites
1210 * @n_akm_suites: number of AKM suites
1211 * @akm_suites: AKM suites
1212 * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
1213 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1214 * required to assume that the port is unauthorized until authorized by
1215 * user space. Otherwise, port is marked authorized by default.
1216 * @control_port_ethertype: the control port protocol that should be
1217 * allowed through even on unauthorized ports
1218 * @control_port_no_encrypt: TRUE to prevent encryption of control port
1219 * protocol frames.
1220 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
1221 * port frames over NL80211 instead of the network interface.
1222 * @control_port_no_preauth: disables pre-auth rx over the nl80211 control
1223 * port for mac80211
1224 * @psk: PSK (for devices supporting 4-way-handshake offload)
1225 * @sae_pwd: password for SAE authentication (for devices supporting SAE
1226 * offload)
1227 * @sae_pwd_len: length of SAE password (for devices supporting SAE offload)
1228 * @sae_pwe: The mechanisms allowed for SAE PWE derivation:
1229 *
1230 * NL80211_SAE_PWE_UNSPECIFIED
1231 * Not-specified, used to indicate userspace did not specify any
1232 * preference. The driver should follow its internal policy in
1233 * such a scenario.
1234 *
1235 * NL80211_SAE_PWE_HUNT_AND_PECK
1236 * Allow hunting-and-pecking loop only
1237 *
1238 * NL80211_SAE_PWE_HASH_TO_ELEMENT
1239 * Allow hash-to-element only
1240 *
1241 * NL80211_SAE_PWE_BOTH
1242 * Allow either hunting-and-pecking loop or hash-to-element
1243 */
1244struct cfg80211_crypto_settings {
1245 u32 wpa_versions;
1246 u32 cipher_group;
1247 int n_ciphers_pairwise;
1248 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
1249 int n_akm_suites;
1250 u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES];
1251 bool control_port;
1252 __be16 control_port_ethertype;
1253 bool control_port_no_encrypt;
1254 bool control_port_over_nl80211;
1255 bool control_port_no_preauth;
1256 const u8 *psk;
1257 const u8 *sae_pwd;
1258 u8 sae_pwd_len;
1259 enum nl80211_sae_pwe_mechanism sae_pwe;
1260};
1261
1262/**
1263 * struct cfg80211_mbssid_config - AP settings for multi bssid
1264 *
1265 * @tx_wdev: pointer to the transmitted interface in the MBSSID set
1266 * @tx_link_id: link ID of the transmitted profile in an MLD.
1267 * @index: index of this AP in the multi bssid group.
1268 * @ema: set to true if the beacons should be sent out in EMA mode.
1269 */
1270struct cfg80211_mbssid_config {
1271 struct wireless_dev *tx_wdev;
1272 u8 tx_link_id;
1273 u8 index;
1274 bool ema;
1275};
1276
1277/**
1278 * struct cfg80211_mbssid_elems - Multiple BSSID elements
1279 *
1280 * @cnt: Number of elements in array %elems.
1281 *
1282 * @elem: Array of multiple BSSID element(s) to be added into Beacon frames.
1283 * @elem.data: Data for multiple BSSID elements.
1284 * @elem.len: Length of data.
1285 */
1286struct cfg80211_mbssid_elems {
1287 u8 cnt;
1288 struct {
1289 const u8 *data;
1290 size_t len;
1291 } elem[] __counted_by(cnt);
1292};
1293
1294/**
1295 * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements
1296 *
1297 * @cnt: Number of elements in array %elems.
1298 *
1299 * @elem: Array of RNR element(s) to be added into Beacon frames.
1300 * @elem.data: Data for RNR elements.
1301 * @elem.len: Length of data.
1302 */
1303struct cfg80211_rnr_elems {
1304 u8 cnt;
1305 struct {
1306 const u8 *data;
1307 size_t len;
1308 } elem[] __counted_by(cnt);
1309};
1310
1311/**
1312 * struct cfg80211_beacon_data - beacon data
1313 * @link_id: the link ID for the AP MLD link sending this beacon
1314 * @head: head portion of beacon (before TIM IE)
1315 * or %NULL if not changed
1316 * @tail: tail portion of beacon (after TIM IE)
1317 * or %NULL if not changed
1318 * @head_len: length of @head
1319 * @tail_len: length of @tail
1320 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
1321 * @beacon_ies_len: length of beacon_ies in octets
1322 * @proberesp_ies: extra information element(s) to add into Probe Response
1323 * frames or %NULL
1324 * @proberesp_ies_len: length of proberesp_ies in octets
1325 * @assocresp_ies: extra information element(s) to add into (Re)Association
1326 * Response frames or %NULL
1327 * @assocresp_ies_len: length of assocresp_ies in octets
1328 * @probe_resp_len: length of probe response template (@probe_resp)
1329 * @probe_resp: probe response template (AP mode only)
1330 * @mbssid_ies: multiple BSSID elements
1331 * @rnr_ies: reduced neighbor report elements
1332 * @ftm_responder: enable FTM responder functionality; -1 for no change
1333 * (which also implies no change in LCI/civic location data)
1334 * @lci: Measurement Report element content, starting with Measurement Token
1335 * (measurement type 8)
1336 * @civicloc: Measurement Report element content, starting with Measurement
1337 * Token (measurement type 11)
1338 * @lci_len: LCI data length
1339 * @civicloc_len: Civic location data length
1340 * @he_bss_color: BSS Color settings
1341 * @he_bss_color_valid: indicates whether bss color
1342 * attribute is present in beacon data or not.
1343 */
1344struct cfg80211_beacon_data {
1345 unsigned int link_id;
1346
1347 const u8 *head, *tail;
1348 const u8 *beacon_ies;
1349 const u8 *proberesp_ies;
1350 const u8 *assocresp_ies;
1351 const u8 *probe_resp;
1352 const u8 *lci;
1353 const u8 *civicloc;
1354 struct cfg80211_mbssid_elems *mbssid_ies;
1355 struct cfg80211_rnr_elems *rnr_ies;
1356 s8 ftm_responder;
1357
1358 size_t head_len, tail_len;
1359 size_t beacon_ies_len;
1360 size_t proberesp_ies_len;
1361 size_t assocresp_ies_len;
1362 size_t probe_resp_len;
1363 size_t lci_len;
1364 size_t civicloc_len;
1365 struct cfg80211_he_bss_color he_bss_color;
1366 bool he_bss_color_valid;
1367};
1368
1369struct mac_address {
1370 u8 addr[ETH_ALEN];
1371};
1372
1373/**
1374 * struct cfg80211_acl_data - Access control list data
1375 *
1376 * @acl_policy: ACL policy to be applied on the station's
1377 * entry specified by mac_addr
1378 * @n_acl_entries: Number of MAC address entries passed
1379 * @mac_addrs: List of MAC addresses of stations to be used for ACL
1380 */
1381struct cfg80211_acl_data {
1382 enum nl80211_acl_policy acl_policy;
1383 int n_acl_entries;
1384
1385 /* Keep it last */
1386 struct mac_address mac_addrs[] __counted_by(n_acl_entries);
1387};
1388
1389/**
1390 * struct cfg80211_fils_discovery - FILS discovery parameters from
1391 * IEEE Std 802.11ai-2016, Annex C.3 MIB detail.
1392 *
1393 * @update: Set to true if the feature configuration should be updated.
1394 * @min_interval: Minimum packet interval in TUs (0 - 10000)
1395 * @max_interval: Maximum packet interval in TUs (0 - 10000)
1396 * @tmpl_len: Template length
1397 * @tmpl: Template data for FILS discovery frame including the action
1398 * frame headers.
1399 */
1400struct cfg80211_fils_discovery {
1401 bool update;
1402 u32 min_interval;
1403 u32 max_interval;
1404 size_t tmpl_len;
1405 const u8 *tmpl;
1406};
1407
1408/**
1409 * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe
1410 * response parameters in 6GHz.
1411 *
1412 * @update: Set to true if the feature configuration should be updated.
1413 * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned
1414 * in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive
1415 * scanning
1416 * @tmpl_len: Template length
1417 * @tmpl: Template data for probe response
1418 */
1419struct cfg80211_unsol_bcast_probe_resp {
1420 bool update;
1421 u32 interval;
1422 size_t tmpl_len;
1423 const u8 *tmpl;
1424};
1425
1426/**
1427 * struct cfg80211_ap_settings - AP configuration
1428 *
1429 * Used to configure an AP interface.
1430 *
1431 * @chandef: defines the channel to use
1432 * @beacon: beacon data
1433 * @beacon_interval: beacon interval
1434 * @dtim_period: DTIM period
1435 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
1436 * user space)
1437 * @ssid_len: length of @ssid
1438 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
1439 * @crypto: crypto settings
1440 * @privacy: the BSS uses privacy
1441 * @auth_type: Authentication type (algorithm)
1442 * @inactivity_timeout: time in seconds to determine station's inactivity.
1443 * @p2p_ctwindow: P2P CT Window
1444 * @p2p_opp_ps: P2P opportunistic PS
1445 * @acl: ACL configuration used by the drivers which has support for
1446 * MAC address based access control
1447 * @pbss: If set, start as a PCP instead of AP. Relevant for DMG
1448 * networks.
1449 * @beacon_rate: bitrate to be used for beacons
1450 * @ht_cap: HT capabilities (or %NULL if HT isn't enabled)
1451 * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled)
1452 * @he_cap: HE capabilities (or %NULL if HE isn't enabled)
1453 * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled)
1454 * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled)
1455 * @ht_required: stations must support HT
1456 * @vht_required: stations must support VHT
1457 * @twt_responder: Enable Target Wait Time
1458 * @he_required: stations must support HE
1459 * @sae_h2e_required: stations must support direct H2E technique in SAE
1460 * @flags: flags, as defined in &enum nl80211_ap_settings_flags
1461 * @he_obss_pd: OBSS Packet Detection settings
1462 * @he_oper: HE operation IE (or %NULL if HE isn't enabled)
1463 * @fils_discovery: FILS discovery transmission parameters
1464 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1465 * @mbssid_config: AP settings for multiple bssid
1466 */
1467struct cfg80211_ap_settings {
1468 struct cfg80211_chan_def chandef;
1469
1470 struct cfg80211_beacon_data beacon;
1471
1472 int beacon_interval, dtim_period;
1473 const u8 *ssid;
1474 size_t ssid_len;
1475 enum nl80211_hidden_ssid hidden_ssid;
1476 struct cfg80211_crypto_settings crypto;
1477 bool privacy;
1478 enum nl80211_auth_type auth_type;
1479 int inactivity_timeout;
1480 u8 p2p_ctwindow;
1481 bool p2p_opp_ps;
1482 const struct cfg80211_acl_data *acl;
1483 bool pbss;
1484 struct cfg80211_bitrate_mask beacon_rate;
1485
1486 const struct ieee80211_ht_cap *ht_cap;
1487 const struct ieee80211_vht_cap *vht_cap;
1488 const struct ieee80211_he_cap_elem *he_cap;
1489 const struct ieee80211_he_operation *he_oper;
1490 const struct ieee80211_eht_cap_elem *eht_cap;
1491 const struct ieee80211_eht_operation *eht_oper;
1492 bool ht_required, vht_required, he_required, sae_h2e_required;
1493 bool twt_responder;
1494 u32 flags;
1495 struct ieee80211_he_obss_pd he_obss_pd;
1496 struct cfg80211_fils_discovery fils_discovery;
1497 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1498 struct cfg80211_mbssid_config mbssid_config;
1499};
1500
1501
1502/**
1503 * struct cfg80211_ap_update - AP configuration update
1504 *
1505 * Subset of &struct cfg80211_ap_settings, for updating a running AP.
1506 *
1507 * @beacon: beacon data
1508 * @fils_discovery: FILS discovery transmission parameters
1509 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1510 */
1511struct cfg80211_ap_update {
1512 struct cfg80211_beacon_data beacon;
1513 struct cfg80211_fils_discovery fils_discovery;
1514 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1515};
1516
1517/**
1518 * struct cfg80211_csa_settings - channel switch settings
1519 *
1520 * Used for channel switch
1521 *
1522 * @chandef: defines the channel to use after the switch
1523 * @beacon_csa: beacon data while performing the switch
1524 * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
1525 * @counter_offsets_presp: offsets of the counters within the probe response
1526 * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
1527 * @n_counter_offsets_presp: number of csa counters in the probe response
1528 * @beacon_after: beacon data to be used on the new channel
1529 * @radar_required: whether radar detection is required on the new channel
1530 * @block_tx: whether transmissions should be blocked while changing
1531 * @count: number of beacons until switch
1532 * @link_id: defines the link on which channel switch is expected during
1533 * MLO. 0 in case of non-MLO.
1534 */
1535struct cfg80211_csa_settings {
1536 struct cfg80211_chan_def chandef;
1537 struct cfg80211_beacon_data beacon_csa;
1538 const u16 *counter_offsets_beacon;
1539 const u16 *counter_offsets_presp;
1540 unsigned int n_counter_offsets_beacon;
1541 unsigned int n_counter_offsets_presp;
1542 struct cfg80211_beacon_data beacon_after;
1543 bool radar_required;
1544 bool block_tx;
1545 u8 count;
1546 u8 link_id;
1547};
1548
1549/**
1550 * struct cfg80211_color_change_settings - color change settings
1551 *
1552 * Used for bss color change
1553 *
1554 * @beacon_color_change: beacon data while performing the color countdown
1555 * @counter_offset_beacon: offsets of the counters within the beacon (tail)
1556 * @counter_offset_presp: offsets of the counters within the probe response
1557 * @beacon_next: beacon data to be used after the color change
1558 * @count: number of beacons until the color change
1559 * @color: the color used after the change
1560 * @link_id: defines the link on which color change is expected during MLO.
1561 * 0 in case of non-MLO.
1562 */
1563struct cfg80211_color_change_settings {
1564 struct cfg80211_beacon_data beacon_color_change;
1565 u16 counter_offset_beacon;
1566 u16 counter_offset_presp;
1567 struct cfg80211_beacon_data beacon_next;
1568 u8 count;
1569 u8 color;
1570 u8 link_id;
1571};
1572
1573/**
1574 * struct iface_combination_params - input parameters for interface combinations
1575 *
1576 * Used to pass interface combination parameters
1577 *
1578 * @radio_idx: wiphy radio index or -1 for global
1579 * @num_different_channels: the number of different channels we want
1580 * to use for verification
1581 * @radar_detect: a bitmap where each bit corresponds to a channel
1582 * width where radar detection is needed, as in the definition of
1583 * &struct ieee80211_iface_combination.@radar_detect_widths
1584 * @iftype_num: array with the number of interfaces of each interface
1585 * type. The index is the interface type as specified in &enum
1586 * nl80211_iftype.
1587 * @new_beacon_int: set this to the beacon interval of a new interface
1588 * that's not operating yet, if such is to be checked as part of
1589 * the verification
1590 */
1591struct iface_combination_params {
1592 int radio_idx;
1593 int num_different_channels;
1594 u8 radar_detect;
1595 int iftype_num[NUM_NL80211_IFTYPES];
1596 u32 new_beacon_int;
1597};
1598
1599/**
1600 * enum station_parameters_apply_mask - station parameter values to apply
1601 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
1602 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
1603 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
1604 *
1605 * Not all station parameters have in-band "no change" signalling,
1606 * for those that don't these flags will are used.
1607 */
1608enum station_parameters_apply_mask {
1609 STATION_PARAM_APPLY_UAPSD = BIT(0),
1610 STATION_PARAM_APPLY_CAPABILITY = BIT(1),
1611 STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
1612};
1613
1614/**
1615 * struct sta_txpwr - station txpower configuration
1616 *
1617 * Used to configure txpower for station.
1618 *
1619 * @power: tx power (in dBm) to be used for sending data traffic. If tx power
1620 * is not provided, the default per-interface tx power setting will be
1621 * overriding. Driver should be picking up the lowest tx power, either tx
1622 * power per-interface or per-station.
1623 * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power
1624 * will be less than or equal to specified from userspace, whereas if TPC
1625 * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power.
1626 * NL80211_TX_POWER_FIXED is not a valid configuration option for
1627 * per peer TPC.
1628 */
1629struct sta_txpwr {
1630 s16 power;
1631 enum nl80211_tx_power_setting type;
1632};
1633
1634/**
1635 * struct link_station_parameters - link station parameters
1636 *
1637 * Used to change and create a new link station.
1638 *
1639 * @mld_mac: MAC address of the station
1640 * @link_id: the link id (-1 for non-MLD station)
1641 * @link_mac: MAC address of the link
1642 * @supported_rates: supported rates in IEEE 802.11 format
1643 * (or NULL for no change)
1644 * @supported_rates_len: number of supported rates
1645 * @ht_capa: HT capabilities of station
1646 * @vht_capa: VHT capabilities of station
1647 * @opmode_notif: operating mode field from Operating Mode Notification
1648 * @opmode_notif_used: information if operating mode field is used
1649 * @he_capa: HE capabilities of station
1650 * @he_capa_len: the length of the HE capabilities
1651 * @txpwr: transmit power for an associated station
1652 * @txpwr_set: txpwr field is set
1653 * @he_6ghz_capa: HE 6 GHz Band capabilities of station
1654 * @eht_capa: EHT capabilities of station
1655 * @eht_capa_len: the length of the EHT capabilities
1656 */
1657struct link_station_parameters {
1658 const u8 *mld_mac;
1659 int link_id;
1660 const u8 *link_mac;
1661 const u8 *supported_rates;
1662 u8 supported_rates_len;
1663 const struct ieee80211_ht_cap *ht_capa;
1664 const struct ieee80211_vht_cap *vht_capa;
1665 u8 opmode_notif;
1666 bool opmode_notif_used;
1667 const struct ieee80211_he_cap_elem *he_capa;
1668 u8 he_capa_len;
1669 struct sta_txpwr txpwr;
1670 bool txpwr_set;
1671 const struct ieee80211_he_6ghz_capa *he_6ghz_capa;
1672 const struct ieee80211_eht_cap_elem *eht_capa;
1673 u8 eht_capa_len;
1674};
1675
1676/**
1677 * struct link_station_del_parameters - link station deletion parameters
1678 *
1679 * Used to delete a link station entry (or all stations).
1680 *
1681 * @mld_mac: MAC address of the station
1682 * @link_id: the link id
1683 */
1684struct link_station_del_parameters {
1685 const u8 *mld_mac;
1686 u32 link_id;
1687};
1688
1689/**
1690 * struct cfg80211_ttlm_params: TID to link mapping parameters
1691 *
1692 * Used for setting a TID to link mapping.
1693 *
1694 * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314
1695 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1696 * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314
1697 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1698 */
1699struct cfg80211_ttlm_params {
1700 u16 dlink[8];
1701 u16 ulink[8];
1702};
1703
1704/**
1705 * struct station_parameters - station parameters
1706 *
1707 * Used to change and create a new station.
1708 *
1709 * @vlan: vlan interface station should belong to
1710 * @sta_flags_mask: station flags that changed
1711 * (bitmask of BIT(%NL80211_STA_FLAG_...))
1712 * @sta_flags_set: station flags values
1713 * (bitmask of BIT(%NL80211_STA_FLAG_...))
1714 * @listen_interval: listen interval or -1 for no change
1715 * @aid: AID or zero for no change
1716 * @vlan_id: VLAN ID for station (if nonzero)
1717 * @peer_aid: mesh peer AID or zero for no change
1718 * @plink_action: plink action to take
1719 * @plink_state: set the peer link state for a station
1720 * @uapsd_queues: bitmap of queues configured for uapsd. same format
1721 * as the AC bitmap in the QoS info field
1722 * @max_sp: max Service Period. same format as the MAX_SP in the
1723 * QoS info field (but already shifted down)
1724 * @sta_modify_mask: bitmap indicating which parameters changed
1725 * (for those that don't have a natural "no change" value),
1726 * see &enum station_parameters_apply_mask
1727 * @local_pm: local link-specific mesh power save mode (no change when set
1728 * to unknown)
1729 * @capability: station capability
1730 * @ext_capab: extended capabilities of the station
1731 * @ext_capab_len: number of extended capabilities
1732 * @supported_channels: supported channels in IEEE 802.11 format
1733 * @supported_channels_len: number of supported channels
1734 * @supported_oper_classes: supported oper classes in IEEE 802.11 format
1735 * @supported_oper_classes_len: number of supported operating classes
1736 * @support_p2p_ps: information if station supports P2P PS mechanism
1737 * @airtime_weight: airtime scheduler weight for this station
1738 * @eml_cap_present: Specifies if EML capabilities field (@eml_cap) is
1739 * present/updated
1740 * @eml_cap: EML capabilities of this station
1741 * @link_sta_params: link related params.
1742 */
1743struct station_parameters {
1744 struct net_device *vlan;
1745 u32 sta_flags_mask, sta_flags_set;
1746 u32 sta_modify_mask;
1747 int listen_interval;
1748 u16 aid;
1749 u16 vlan_id;
1750 u16 peer_aid;
1751 u8 plink_action;
1752 u8 plink_state;
1753 u8 uapsd_queues;
1754 u8 max_sp;
1755 enum nl80211_mesh_power_mode local_pm;
1756 u16 capability;
1757 const u8 *ext_capab;
1758 u8 ext_capab_len;
1759 const u8 *supported_channels;
1760 u8 supported_channels_len;
1761 const u8 *supported_oper_classes;
1762 u8 supported_oper_classes_len;
1763 int support_p2p_ps;
1764 u16 airtime_weight;
1765 bool eml_cap_present;
1766 u16 eml_cap;
1767 struct link_station_parameters link_sta_params;
1768};
1769
1770/**
1771 * struct station_del_parameters - station deletion parameters
1772 *
1773 * Used to delete a station entry (or all stations).
1774 *
1775 * @mac: MAC address of the station to remove or NULL to remove all stations
1776 * @subtype: Management frame subtype to use for indicating removal
1777 * (10 = Disassociation, 12 = Deauthentication)
1778 * @reason_code: Reason code for the Disassociation/Deauthentication frame
1779 * @link_id: Link ID indicating a link that stations to be flushed must be
1780 * using; valid only for MLO, but can also be -1 for MLO to really
1781 * remove all stations.
1782 */
1783struct station_del_parameters {
1784 const u8 *mac;
1785 u8 subtype;
1786 u16 reason_code;
1787 int link_id;
1788};
1789
1790/**
1791 * enum cfg80211_station_type - the type of station being modified
1792 * @CFG80211_STA_AP_CLIENT: client of an AP interface
1793 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
1794 * unassociated (update properties for this type of client is permitted)
1795 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
1796 * the AP MLME in the device
1797 * @CFG80211_STA_AP_STA: AP station on managed interface
1798 * @CFG80211_STA_IBSS: IBSS station
1799 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
1800 * while TDLS setup is in progress, it moves out of this state when
1801 * being marked authorized; use this only if TDLS with external setup is
1802 * supported/used)
1803 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
1804 * entry that is operating, has been marked authorized by userspace)
1805 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
1806 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
1807 */
1808enum cfg80211_station_type {
1809 CFG80211_STA_AP_CLIENT,
1810 CFG80211_STA_AP_CLIENT_UNASSOC,
1811 CFG80211_STA_AP_MLME_CLIENT,
1812 CFG80211_STA_AP_STA,
1813 CFG80211_STA_IBSS,
1814 CFG80211_STA_TDLS_PEER_SETUP,
1815 CFG80211_STA_TDLS_PEER_ACTIVE,
1816 CFG80211_STA_MESH_PEER_KERNEL,
1817 CFG80211_STA_MESH_PEER_USER,
1818};
1819
1820/**
1821 * cfg80211_check_station_change - validate parameter changes
1822 * @wiphy: the wiphy this operates on
1823 * @params: the new parameters for a station
1824 * @statype: the type of station being modified
1825 *
1826 * Utility function for the @change_station driver method. Call this function
1827 * with the appropriate station type looking up the station (and checking that
1828 * it exists). It will verify whether the station change is acceptable.
1829 *
1830 * Return: 0 if the change is acceptable, otherwise an error code. Note that
1831 * it may modify the parameters for backward compatibility reasons, so don't
1832 * use them before calling this.
1833 */
1834int cfg80211_check_station_change(struct wiphy *wiphy,
1835 struct station_parameters *params,
1836 enum cfg80211_station_type statype);
1837
1838/**
1839 * enum rate_info_flags - bitrate info flags
1840 *
1841 * Used by the driver to indicate the specific rate transmission
1842 * type for 802.11n transmissions.
1843 *
1844 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
1845 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
1846 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
1847 * @RATE_INFO_FLAGS_DMG: 60GHz MCS
1848 * @RATE_INFO_FLAGS_HE_MCS: HE MCS information
1849 * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode
1850 * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS
1851 * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information
1852 * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS
1853 */
1854enum rate_info_flags {
1855 RATE_INFO_FLAGS_MCS = BIT(0),
1856 RATE_INFO_FLAGS_VHT_MCS = BIT(1),
1857 RATE_INFO_FLAGS_SHORT_GI = BIT(2),
1858 RATE_INFO_FLAGS_DMG = BIT(3),
1859 RATE_INFO_FLAGS_HE_MCS = BIT(4),
1860 RATE_INFO_FLAGS_EDMG = BIT(5),
1861 RATE_INFO_FLAGS_EXTENDED_SC_DMG = BIT(6),
1862 RATE_INFO_FLAGS_EHT_MCS = BIT(7),
1863 RATE_INFO_FLAGS_S1G_MCS = BIT(8),
1864};
1865
1866/**
1867 * enum rate_info_bw - rate bandwidth information
1868 *
1869 * Used by the driver to indicate the rate bandwidth.
1870 *
1871 * @RATE_INFO_BW_5: 5 MHz bandwidth
1872 * @RATE_INFO_BW_10: 10 MHz bandwidth
1873 * @RATE_INFO_BW_20: 20 MHz bandwidth
1874 * @RATE_INFO_BW_40: 40 MHz bandwidth
1875 * @RATE_INFO_BW_80: 80 MHz bandwidth
1876 * @RATE_INFO_BW_160: 160 MHz bandwidth
1877 * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation
1878 * @RATE_INFO_BW_320: 320 MHz bandwidth
1879 * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation
1880 * @RATE_INFO_BW_1: 1 MHz bandwidth
1881 * @RATE_INFO_BW_2: 2 MHz bandwidth
1882 * @RATE_INFO_BW_4: 4 MHz bandwidth
1883 * @RATE_INFO_BW_8: 8 MHz bandwidth
1884 * @RATE_INFO_BW_16: 16 MHz bandwidth
1885 */
1886enum rate_info_bw {
1887 RATE_INFO_BW_20 = 0,
1888 RATE_INFO_BW_5,
1889 RATE_INFO_BW_10,
1890 RATE_INFO_BW_40,
1891 RATE_INFO_BW_80,
1892 RATE_INFO_BW_160,
1893 RATE_INFO_BW_HE_RU,
1894 RATE_INFO_BW_320,
1895 RATE_INFO_BW_EHT_RU,
1896 RATE_INFO_BW_1,
1897 RATE_INFO_BW_2,
1898 RATE_INFO_BW_4,
1899 RATE_INFO_BW_8,
1900 RATE_INFO_BW_16,
1901};
1902
1903/**
1904 * struct rate_info - bitrate information
1905 *
1906 * Information about a receiving or transmitting bitrate
1907 *
1908 * @flags: bitflag of flags from &enum rate_info_flags
1909 * @legacy: bitrate in 100kbit/s for 802.11abg
1910 * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate
1911 * @nss: number of streams (VHT & HE only)
1912 * @bw: bandwidth (from &enum rate_info_bw)
1913 * @he_gi: HE guard interval (from &enum nl80211_he_gi)
1914 * @he_dcm: HE DCM value
1915 * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc,
1916 * only valid if bw is %RATE_INFO_BW_HE_RU)
1917 * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4)
1918 * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi)
1919 * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc,
1920 * only valid if bw is %RATE_INFO_BW_EHT_RU)
1921 */
1922struct rate_info {
1923 u16 flags;
1924 u16 legacy;
1925 u8 mcs;
1926 u8 nss;
1927 u8 bw;
1928 u8 he_gi;
1929 u8 he_dcm;
1930 u8 he_ru_alloc;
1931 u8 n_bonded_ch;
1932 u8 eht_gi;
1933 u8 eht_ru_alloc;
1934};
1935
1936/**
1937 * enum bss_param_flags - bitrate info flags
1938 *
1939 * Used by the driver to indicate the specific rate transmission
1940 * type for 802.11n transmissions.
1941 *
1942 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
1943 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
1944 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
1945 */
1946enum bss_param_flags {
1947 BSS_PARAM_FLAGS_CTS_PROT = BIT(0),
1948 BSS_PARAM_FLAGS_SHORT_PREAMBLE = BIT(1),
1949 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = BIT(2),
1950};
1951
1952/**
1953 * struct sta_bss_parameters - BSS parameters for the attached station
1954 *
1955 * Information about the currently associated BSS
1956 *
1957 * @flags: bitflag of flags from &enum bss_param_flags
1958 * @dtim_period: DTIM period for the BSS
1959 * @beacon_interval: beacon interval
1960 */
1961struct sta_bss_parameters {
1962 u8 flags;
1963 u8 dtim_period;
1964 u16 beacon_interval;
1965};
1966
1967/**
1968 * struct cfg80211_txq_stats - TXQ statistics for this TID
1969 * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to
1970 * indicate the relevant values in this struct are filled
1971 * @backlog_bytes: total number of bytes currently backlogged
1972 * @backlog_packets: total number of packets currently backlogged
1973 * @flows: number of new flows seen
1974 * @drops: total number of packets dropped
1975 * @ecn_marks: total number of packets marked with ECN CE
1976 * @overlimit: number of drops due to queue space overflow
1977 * @overmemory: number of drops due to memory limit overflow
1978 * @collisions: number of hash collisions
1979 * @tx_bytes: total number of bytes dequeued
1980 * @tx_packets: total number of packets dequeued
1981 * @max_flows: maximum number of flows supported
1982 */
1983struct cfg80211_txq_stats {
1984 u32 filled;
1985 u32 backlog_bytes;
1986 u32 backlog_packets;
1987 u32 flows;
1988 u32 drops;
1989 u32 ecn_marks;
1990 u32 overlimit;
1991 u32 overmemory;
1992 u32 collisions;
1993 u32 tx_bytes;
1994 u32 tx_packets;
1995 u32 max_flows;
1996};
1997
1998/**
1999 * struct cfg80211_tid_stats - per-TID statistics
2000 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
2001 * indicate the relevant values in this struct are filled
2002 * @rx_msdu: number of received MSDUs
2003 * @tx_msdu: number of (attempted) transmitted MSDUs
2004 * @tx_msdu_retries: number of retries (not counting the first) for
2005 * transmitted MSDUs
2006 * @tx_msdu_failed: number of failed transmitted MSDUs
2007 * @txq_stats: TXQ statistics
2008 */
2009struct cfg80211_tid_stats {
2010 u32 filled;
2011 u64 rx_msdu;
2012 u64 tx_msdu;
2013 u64 tx_msdu_retries;
2014 u64 tx_msdu_failed;
2015 struct cfg80211_txq_stats txq_stats;
2016};
2017
2018#define IEEE80211_MAX_CHAINS 4
2019
2020/**
2021 * struct station_info - station information
2022 *
2023 * Station information filled by driver for get_station() and dump_station.
2024 *
2025 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
2026 * indicate the relevant values in this struct for them
2027 * @connected_time: time(in secs) since a station is last connected
2028 * @inactive_time: time since last station activity (tx/rx) in milliseconds
2029 * @assoc_at: bootime (ns) of the last association
2030 * @rx_bytes: bytes (size of MPDUs) received from this station
2031 * @tx_bytes: bytes (size of MPDUs) transmitted to this station
2032 * @signal: The signal strength, type depends on the wiphy's signal_type.
2033 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2034 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
2035 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2036 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2037 * @chain_signal: per-chain signal strength of last received packet in dBm
2038 * @chain_signal_avg: per-chain signal strength average in dBm
2039 * @txrate: current unicast bitrate from this station
2040 * @rxrate: current unicast bitrate to this station
2041 * @rx_packets: packets (MSDUs & MMPDUs) received from this station
2042 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
2043 * @tx_retries: cumulative retry counts (MPDUs)
2044 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2045 * @rx_dropped_misc: Dropped for un-specified reason.
2046 * @bss_param: current BSS parameters
2047 * @generation: generation number for nl80211 dumps.
2048 * This number should increase every time the list of stations
2049 * changes, i.e. when a station is added or removed, so that
2050 * userspace can tell whether it got a consistent snapshot.
2051 * @beacon_loss_count: Number of times beacon loss event has triggered.
2052 * @assoc_req_ies: IEs from (Re)Association Request.
2053 * This is used only when in AP mode with drivers that do not use
2054 * user space MLME/SME implementation. The information is provided for
2055 * the cfg80211_new_sta() calls to notify user space of the IEs.
2056 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
2057 * @sta_flags: station flags mask & values
2058 * @t_offset: Time offset of the station relative to this host.
2059 * @llid: mesh local link id
2060 * @plid: mesh peer link id
2061 * @plink_state: mesh peer link state
2062 * @connected_to_gate: true if mesh STA has a path to mesh gate
2063 * @connected_to_as: true if mesh STA has a path to authentication server
2064 * @airtime_link_metric: mesh airtime link metric.
2065 * @local_pm: local mesh STA power save mode
2066 * @peer_pm: peer mesh STA power save mode
2067 * @nonpeer_pm: non-peer mesh STA power save mode
2068 * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2069 * towards this station.
2070 * @rx_beacon: number of beacons received from this peer
2071 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2072 * from this peer
2073 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2074 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2075 * @airtime_weight: current airtime scheduling weight
2076 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2077 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2078 * Note that this doesn't use the @filled bit, but is used if non-NULL.
2079 * @ack_signal: signal strength (in dBm) of the last ACK frame.
2080 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2081 * been sent.
2082 * @rx_mpdu_count: number of MPDUs received from this station
2083 * @fcs_err_count: number of packets (MPDUs) received from this station with
2084 * an FCS error. This counter should be incremented only when TA of the
2085 * received packet with an FCS error matches the peer MAC address.
2086 * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled
2087 * by driver. Drivers use this only in cfg80211_new_sta() calls when AP
2088 * MLD's MLME/SME is offload to driver. Drivers won't fill this
2089 * information in cfg80211_del_sta_sinfo(), get_station() and
2090 * dump_station() callbacks.
2091 * @assoc_link_id: Indicates MLO link ID of the AP, with which the station
2092 * completed (re)association. This information filled for both MLO
2093 * and non-MLO STA connections when the AP affiliated with an MLD.
2094 * @mld_addr: For MLO STA connection, filled with MLD address of the station.
2095 * For non-MLO STA connection, filled with all zeros.
2096 * @assoc_resp_ies: IEs from (Re)Association Response.
2097 * This is used only when in AP mode with drivers that do not use user
2098 * space MLME/SME implementation. The information is provided only for the
2099 * cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't
2100 * fill this information in cfg80211_del_sta_sinfo(), get_station() and
2101 * dump_station() callbacks. User space needs this information to determine
2102 * the accepted and rejected affiliated links of the connected station.
2103 * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets.
2104 */
2105struct station_info {
2106 u64 filled;
2107 u32 connected_time;
2108 u32 inactive_time;
2109 u64 assoc_at;
2110 u64 rx_bytes;
2111 u64 tx_bytes;
2112 s8 signal;
2113 s8 signal_avg;
2114
2115 u8 chains;
2116 s8 chain_signal[IEEE80211_MAX_CHAINS];
2117 s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2118
2119 struct rate_info txrate;
2120 struct rate_info rxrate;
2121 u32 rx_packets;
2122 u32 tx_packets;
2123 u32 tx_retries;
2124 u32 tx_failed;
2125 u32 rx_dropped_misc;
2126 struct sta_bss_parameters bss_param;
2127 struct nl80211_sta_flag_update sta_flags;
2128
2129 int generation;
2130
2131 u32 beacon_loss_count;
2132
2133 const u8 *assoc_req_ies;
2134 size_t assoc_req_ies_len;
2135
2136 s64 t_offset;
2137 u16 llid;
2138 u16 plid;
2139 u8 plink_state;
2140 u8 connected_to_gate;
2141 u8 connected_to_as;
2142 u32 airtime_link_metric;
2143 enum nl80211_mesh_power_mode local_pm;
2144 enum nl80211_mesh_power_mode peer_pm;
2145 enum nl80211_mesh_power_mode nonpeer_pm;
2146
2147 u32 expected_throughput;
2148
2149 u16 airtime_weight;
2150
2151 s8 ack_signal;
2152 s8 avg_ack_signal;
2153 struct cfg80211_tid_stats *pertid;
2154
2155 u64 tx_duration;
2156 u64 rx_duration;
2157 u64 rx_beacon;
2158 u8 rx_beacon_signal_avg;
2159
2160 u32 rx_mpdu_count;
2161 u32 fcs_err_count;
2162
2163 bool mlo_params_valid;
2164 u8 assoc_link_id;
2165 u8 mld_addr[ETH_ALEN] __aligned(2);
2166 const u8 *assoc_resp_ies;
2167 size_t assoc_resp_ies_len;
2168};
2169
2170/**
2171 * struct cfg80211_sar_sub_specs - sub specs limit
2172 * @power: power limitation in 0.25dbm
2173 * @freq_range_index: index the power limitation applies to
2174 */
2175struct cfg80211_sar_sub_specs {
2176 s32 power;
2177 u32 freq_range_index;
2178};
2179
2180/**
2181 * struct cfg80211_sar_specs - sar limit specs
2182 * @type: it's set with power in 0.25dbm or other types
2183 * @num_sub_specs: number of sar sub specs
2184 * @sub_specs: memory to hold the sar sub specs
2185 */
2186struct cfg80211_sar_specs {
2187 enum nl80211_sar_type type;
2188 u32 num_sub_specs;
2189 struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs);
2190};
2191
2192
2193/**
2194 * struct cfg80211_sar_freq_ranges - sar frequency ranges
2195 * @start_freq: start range edge frequency
2196 * @end_freq: end range edge frequency
2197 */
2198struct cfg80211_sar_freq_ranges {
2199 u32 start_freq;
2200 u32 end_freq;
2201};
2202
2203/**
2204 * struct cfg80211_sar_capa - sar limit capability
2205 * @type: it's set via power in 0.25dbm or other types
2206 * @num_freq_ranges: number of frequency ranges
2207 * @freq_ranges: memory to hold the freq ranges.
2208 *
2209 * Note: WLAN driver may append new ranges or split an existing
2210 * range to small ones and then append them.
2211 */
2212struct cfg80211_sar_capa {
2213 enum nl80211_sar_type type;
2214 u32 num_freq_ranges;
2215 const struct cfg80211_sar_freq_ranges *freq_ranges;
2216};
2217
2218#if IS_ENABLED(CONFIG_CFG80211)
2219/**
2220 * cfg80211_get_station - retrieve information about a given station
2221 * @dev: the device where the station is supposed to be connected to
2222 * @mac_addr: the mac address of the station of interest
2223 * @sinfo: pointer to the structure to fill with the information
2224 *
2225 * Return: 0 on success and sinfo is filled with the available information
2226 * otherwise returns a negative error code and the content of sinfo has to be
2227 * considered undefined.
2228 */
2229int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2230 struct station_info *sinfo);
2231#else
2232static inline int cfg80211_get_station(struct net_device *dev,
2233 const u8 *mac_addr,
2234 struct station_info *sinfo)
2235{
2236 return -ENOENT;
2237}
2238#endif
2239
2240/**
2241 * enum monitor_flags - monitor flags
2242 *
2243 * Monitor interface configuration flags. Note that these must be the bits
2244 * according to the nl80211 flags.
2245 *
2246 * @MONITOR_FLAG_CHANGED: set if the flags were changed
2247 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
2248 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
2249 * @MONITOR_FLAG_CONTROL: pass control frames
2250 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
2251 * @MONITOR_FLAG_COOK_FRAMES: deprecated, will unconditionally be refused
2252 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
2253 * @MONITOR_FLAG_SKIP_TX: do not pass locally transmitted frames
2254 */
2255enum monitor_flags {
2256 MONITOR_FLAG_CHANGED = BIT(__NL80211_MNTR_FLAG_INVALID),
2257 MONITOR_FLAG_FCSFAIL = BIT(NL80211_MNTR_FLAG_FCSFAIL),
2258 MONITOR_FLAG_PLCPFAIL = BIT(NL80211_MNTR_FLAG_PLCPFAIL),
2259 MONITOR_FLAG_CONTROL = BIT(NL80211_MNTR_FLAG_CONTROL),
2260 MONITOR_FLAG_OTHER_BSS = BIT(NL80211_MNTR_FLAG_OTHER_BSS),
2261 MONITOR_FLAG_COOK_FRAMES = BIT(NL80211_MNTR_FLAG_COOK_FRAMES),
2262 MONITOR_FLAG_ACTIVE = BIT(NL80211_MNTR_FLAG_ACTIVE),
2263 MONITOR_FLAG_SKIP_TX = BIT(NL80211_MNTR_FLAG_SKIP_TX),
2264};
2265
2266/**
2267 * enum mpath_info_flags - mesh path information flags
2268 *
2269 * Used by the driver to indicate which info in &struct mpath_info it has filled
2270 * in during get_station() or dump_station().
2271 *
2272 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
2273 * @MPATH_INFO_SN: @sn filled
2274 * @MPATH_INFO_METRIC: @metric filled
2275 * @MPATH_INFO_EXPTIME: @exptime filled
2276 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
2277 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
2278 * @MPATH_INFO_FLAGS: @flags filled
2279 * @MPATH_INFO_HOP_COUNT: @hop_count filled
2280 * @MPATH_INFO_PATH_CHANGE: @path_change_count filled
2281 */
2282enum mpath_info_flags {
2283 MPATH_INFO_FRAME_QLEN = BIT(0),
2284 MPATH_INFO_SN = BIT(1),
2285 MPATH_INFO_METRIC = BIT(2),
2286 MPATH_INFO_EXPTIME = BIT(3),
2287 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4),
2288 MPATH_INFO_DISCOVERY_RETRIES = BIT(5),
2289 MPATH_INFO_FLAGS = BIT(6),
2290 MPATH_INFO_HOP_COUNT = BIT(7),
2291 MPATH_INFO_PATH_CHANGE = BIT(8),
2292};
2293
2294/**
2295 * struct mpath_info - mesh path information
2296 *
2297 * Mesh path information filled by driver for get_mpath() and dump_mpath().
2298 *
2299 * @filled: bitfield of flags from &enum mpath_info_flags
2300 * @frame_qlen: number of queued frames for this destination
2301 * @sn: target sequence number
2302 * @metric: metric (cost) of this mesh path
2303 * @exptime: expiration time for the mesh path from now, in msecs
2304 * @flags: mesh path flags from &enum mesh_path_flags
2305 * @discovery_timeout: total mesh path discovery timeout, in msecs
2306 * @discovery_retries: mesh path discovery retries
2307 * @generation: generation number for nl80211 dumps.
2308 * This number should increase every time the list of mesh paths
2309 * changes, i.e. when a station is added or removed, so that
2310 * userspace can tell whether it got a consistent snapshot.
2311 * @hop_count: hops to destination
2312 * @path_change_count: total number of path changes to destination
2313 */
2314struct mpath_info {
2315 u32 filled;
2316 u32 frame_qlen;
2317 u32 sn;
2318 u32 metric;
2319 u32 exptime;
2320 u32 discovery_timeout;
2321 u8 discovery_retries;
2322 u8 flags;
2323 u8 hop_count;
2324 u32 path_change_count;
2325
2326 int generation;
2327};
2328
2329/**
2330 * struct bss_parameters - BSS parameters
2331 *
2332 * Used to change BSS parameters (mainly for AP mode).
2333 *
2334 * @link_id: link_id or -1 for non-MLD
2335 * @use_cts_prot: Whether to use CTS protection
2336 * (0 = no, 1 = yes, -1 = do not change)
2337 * @use_short_preamble: Whether the use of short preambles is allowed
2338 * (0 = no, 1 = yes, -1 = do not change)
2339 * @use_short_slot_time: Whether the use of short slot time is allowed
2340 * (0 = no, 1 = yes, -1 = do not change)
2341 * @basic_rates: basic rates in IEEE 802.11 format
2342 * (or NULL for no change)
2343 * @basic_rates_len: number of basic rates
2344 * @ap_isolate: do not forward packets between connected stations
2345 * (0 = no, 1 = yes, -1 = do not change)
2346 * @ht_opmode: HT Operation mode
2347 * (u16 = opmode, -1 = do not change)
2348 * @p2p_ctwindow: P2P CT Window (-1 = no change)
2349 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
2350 */
2351struct bss_parameters {
2352 int link_id;
2353 int use_cts_prot;
2354 int use_short_preamble;
2355 int use_short_slot_time;
2356 const u8 *basic_rates;
2357 u8 basic_rates_len;
2358 int ap_isolate;
2359 int ht_opmode;
2360 s8 p2p_ctwindow, p2p_opp_ps;
2361};
2362
2363/**
2364 * struct mesh_config - 802.11s mesh configuration
2365 *
2366 * These parameters can be changed while the mesh is active.
2367 *
2368 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
2369 * by the Mesh Peering Open message
2370 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
2371 * used by the Mesh Peering Open message
2372 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
2373 * the mesh peering management to close a mesh peering
2374 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
2375 * mesh interface
2376 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
2377 * be sent to establish a new peer link instance in a mesh
2378 * @dot11MeshTTL: the value of TTL field set at a source mesh STA
2379 * @element_ttl: the value of TTL field set at a mesh STA for path selection
2380 * elements
2381 * @auto_open_plinks: whether we should automatically open peer links when we
2382 * detect compatible mesh peers
2383 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
2384 * synchronize to for 11s default synchronization method
2385 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
2386 * that an originator mesh STA can send to a particular path target
2387 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
2388 * @min_discovery_timeout: the minimum length of time to wait until giving up on
2389 * a path discovery in milliseconds
2390 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
2391 * receiving a PREQ shall consider the forwarding information from the
2392 * root to be valid. (TU = time unit)
2393 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
2394 * which a mesh STA can send only one action frame containing a PREQ
2395 * element
2396 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
2397 * which a mesh STA can send only one Action frame containing a PERR
2398 * element
2399 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
2400 * it takes for an HWMP information element to propagate across the mesh
2401 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
2402 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
2403 * announcements are transmitted
2404 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
2405 * station has access to a broader network beyond the MBSS. (This is
2406 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
2407 * only means that the station will announce others it's a mesh gate, but
2408 * not necessarily using the gate announcement protocol. Still keeping the
2409 * same nomenclature to be in sync with the spec)
2410 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
2411 * entity (default is TRUE - forwarding entity)
2412 * @rssi_threshold: the threshold for average signal strength of candidate
2413 * station to establish a peer link
2414 * @ht_opmode: mesh HT protection mode
2415 *
2416 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
2417 * receiving a proactive PREQ shall consider the forwarding information to
2418 * the root mesh STA to be valid.
2419 *
2420 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
2421 * PREQs are transmitted.
2422 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
2423 * during which a mesh STA can send only one Action frame containing
2424 * a PREQ element for root path confirmation.
2425 * @power_mode: The default mesh power save mode which will be the initial
2426 * setting for new peer links.
2427 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
2428 * after transmitting its beacon.
2429 * @plink_timeout: If no tx activity is seen from a STA we've established
2430 * peering with for longer than this time (in seconds), then remove it
2431 * from the STA's list of peers. Default is 30 minutes.
2432 * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA
2433 * will advertise that it is connected to a authentication server
2434 * in the mesh formation field.
2435 * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is
2436 * connected to a mesh gate in mesh formation info. If false, the
2437 * value in mesh formation is determined by the presence of root paths
2438 * in the mesh path table
2439 * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP
2440 * for HWMP) if the destination is a direct neighbor. Note that this might
2441 * not be the optimal decision as a multi-hop route might be better. So
2442 * if using this setting you will likely also want to disable
2443 * dot11MeshForwarding and use another mesh routing protocol on top.
2444 */
2445struct mesh_config {
2446 u16 dot11MeshRetryTimeout;
2447 u16 dot11MeshConfirmTimeout;
2448 u16 dot11MeshHoldingTimeout;
2449 u16 dot11MeshMaxPeerLinks;
2450 u8 dot11MeshMaxRetries;
2451 u8 dot11MeshTTL;
2452 u8 element_ttl;
2453 bool auto_open_plinks;
2454 u32 dot11MeshNbrOffsetMaxNeighbor;
2455 u8 dot11MeshHWMPmaxPREQretries;
2456 u32 path_refresh_time;
2457 u16 min_discovery_timeout;
2458 u32 dot11MeshHWMPactivePathTimeout;
2459 u16 dot11MeshHWMPpreqMinInterval;
2460 u16 dot11MeshHWMPperrMinInterval;
2461 u16 dot11MeshHWMPnetDiameterTraversalTime;
2462 u8 dot11MeshHWMPRootMode;
2463 bool dot11MeshConnectedToMeshGate;
2464 bool dot11MeshConnectedToAuthServer;
2465 u16 dot11MeshHWMPRannInterval;
2466 bool dot11MeshGateAnnouncementProtocol;
2467 bool dot11MeshForwarding;
2468 s32 rssi_threshold;
2469 u16 ht_opmode;
2470 u32 dot11MeshHWMPactivePathToRootTimeout;
2471 u16 dot11MeshHWMProotInterval;
2472 u16 dot11MeshHWMPconfirmationInterval;
2473 enum nl80211_mesh_power_mode power_mode;
2474 u16 dot11MeshAwakeWindowDuration;
2475 u32 plink_timeout;
2476 bool dot11MeshNolearn;
2477};
2478
2479/**
2480 * struct mesh_setup - 802.11s mesh setup configuration
2481 * @chandef: defines the channel to use
2482 * @mesh_id: the mesh ID
2483 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
2484 * @sync_method: which synchronization method to use
2485 * @path_sel_proto: which path selection protocol to use
2486 * @path_metric: which metric to use
2487 * @auth_id: which authentication method this mesh is using
2488 * @ie: vendor information elements (optional)
2489 * @ie_len: length of vendor information elements
2490 * @is_authenticated: this mesh requires authentication
2491 * @is_secure: this mesh uses security
2492 * @user_mpm: userspace handles all MPM functions
2493 * @dtim_period: DTIM period to use
2494 * @beacon_interval: beacon interval to use
2495 * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a]
2496 * @basic_rates: basic rates to use when creating the mesh
2497 * @beacon_rate: bitrate to be used for beacons
2498 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
2499 * changes the channel when a radar is detected. This is required
2500 * to operate on DFS channels.
2501 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
2502 * port frames over NL80211 instead of the network interface.
2503 *
2504 * These parameters are fixed when the mesh is created.
2505 */
2506struct mesh_setup {
2507 struct cfg80211_chan_def chandef;
2508 const u8 *mesh_id;
2509 u8 mesh_id_len;
2510 u8 sync_method;
2511 u8 path_sel_proto;
2512 u8 path_metric;
2513 u8 auth_id;
2514 const u8 *ie;
2515 u8 ie_len;
2516 bool is_authenticated;
2517 bool is_secure;
2518 bool user_mpm;
2519 u8 dtim_period;
2520 u16 beacon_interval;
2521 int mcast_rate[NUM_NL80211_BANDS];
2522 u32 basic_rates;
2523 struct cfg80211_bitrate_mask beacon_rate;
2524 bool userspace_handles_dfs;
2525 bool control_port_over_nl80211;
2526};
2527
2528/**
2529 * struct ocb_setup - 802.11p OCB mode setup configuration
2530 * @chandef: defines the channel to use
2531 *
2532 * These parameters are fixed when connecting to the network
2533 */
2534struct ocb_setup {
2535 struct cfg80211_chan_def chandef;
2536};
2537
2538/**
2539 * struct ieee80211_txq_params - TX queue parameters
2540 * @ac: AC identifier
2541 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
2542 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
2543 * 1..32767]
2544 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
2545 * 1..32767]
2546 * @aifs: Arbitration interframe space [0..255]
2547 * @link_id: link_id or -1 for non-MLD
2548 */
2549struct ieee80211_txq_params {
2550 enum nl80211_ac ac;
2551 u16 txop;
2552 u16 cwmin;
2553 u16 cwmax;
2554 u8 aifs;
2555 int link_id;
2556};
2557
2558/**
2559 * DOC: Scanning and BSS list handling
2560 *
2561 * The scanning process itself is fairly simple, but cfg80211 offers quite
2562 * a bit of helper functionality. To start a scan, the scan operation will
2563 * be invoked with a scan definition. This scan definition contains the
2564 * channels to scan, and the SSIDs to send probe requests for (including the
2565 * wildcard, if desired). A passive scan is indicated by having no SSIDs to
2566 * probe. Additionally, a scan request may contain extra information elements
2567 * that should be added to the probe request. The IEs are guaranteed to be
2568 * well-formed, and will not exceed the maximum length the driver advertised
2569 * in the wiphy structure.
2570 *
2571 * When scanning finds a BSS, cfg80211 needs to be notified of that, because
2572 * it is responsible for maintaining the BSS list; the driver should not
2573 * maintain a list itself. For this notification, various functions exist.
2574 *
2575 * Since drivers do not maintain a BSS list, there are also a number of
2576 * functions to search for a BSS and obtain information about it from the
2577 * BSS structure cfg80211 maintains. The BSS list is also made available
2578 * to userspace.
2579 */
2580
2581/**
2582 * struct cfg80211_ssid - SSID description
2583 * @ssid: the SSID
2584 * @ssid_len: length of the ssid
2585 */
2586struct cfg80211_ssid {
2587 u8 ssid[IEEE80211_MAX_SSID_LEN];
2588 u8 ssid_len;
2589};
2590
2591/**
2592 * struct cfg80211_scan_info - information about completed scan
2593 * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the
2594 * wireless device that requested the scan is connected to. If this
2595 * information is not available, this field is left zero.
2596 * @tsf_bssid: the BSSID according to which %scan_start_tsf is set.
2597 * @aborted: set to true if the scan was aborted for any reason,
2598 * userspace will be notified of that
2599 */
2600struct cfg80211_scan_info {
2601 u64 scan_start_tsf;
2602 u8 tsf_bssid[ETH_ALEN] __aligned(2);
2603 bool aborted;
2604};
2605
2606/**
2607 * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only
2608 *
2609 * @short_ssid: short ssid to scan for
2610 * @bssid: bssid to scan for
2611 * @channel_idx: idx of the channel in the channel array in the scan request
2612 * which the above info is relevant to
2613 * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU
2614 * @short_ssid_valid: @short_ssid is valid and can be used
2615 * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait
2616 * 20 TUs before starting to send probe requests.
2617 * @psd_20: The AP's 20 MHz PSD value.
2618 */
2619struct cfg80211_scan_6ghz_params {
2620 u32 short_ssid;
2621 u32 channel_idx;
2622 u8 bssid[ETH_ALEN];
2623 bool unsolicited_probe;
2624 bool short_ssid_valid;
2625 bool psc_no_listen;
2626 s8 psd_20;
2627};
2628
2629/**
2630 * struct cfg80211_scan_request - scan request description
2631 *
2632 * @ssids: SSIDs to scan for (active scan only)
2633 * @n_ssids: number of SSIDs
2634 * @channels: channels to scan on.
2635 * @n_channels: total number of channels to scan
2636 * @ie: optional information element(s) to add into Probe Request or %NULL
2637 * @ie_len: length of ie in octets
2638 * @duration: how long to listen on each channel, in TUs. If
2639 * %duration_mandatory is not set, this is the maximum dwell time and
2640 * the actual dwell time may be shorter.
2641 * @duration_mandatory: if set, the scan duration must be as specified by the
2642 * %duration field.
2643 * @flags: control flags from &enum nl80211_scan_flags
2644 * @rates: bitmap of rates to advertise for each band
2645 * @wiphy: the wiphy this was for
2646 * @scan_start: time (in jiffies) when the scan started
2647 * @wdev: the wireless device to scan for
2648 * @info: (internal) information about completed scan
2649 * @notified: (internal) scan request was notified as done or aborted
2650 * @no_cck: used to send probe requests at non CCK rate in 2GHz band
2651 * @mac_addr: MAC address used with randomisation
2652 * @mac_addr_mask: MAC address mask used with randomisation, bits that
2653 * are 0 in the mask should be randomised, bits that are 1 should
2654 * be taken from the @mac_addr
2655 * @scan_6ghz: relevant for split scan request only,
2656 * true if this is the second scan request
2657 * @n_6ghz_params: number of 6 GHz params
2658 * @scan_6ghz_params: 6 GHz params
2659 * @bssid: BSSID to scan for (most commonly, the wildcard BSSID)
2660 * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be
2661 * used for TSF reporting. Can be set to -1 to indicate no preference.
2662 */
2663struct cfg80211_scan_request {
2664 struct cfg80211_ssid *ssids;
2665 int n_ssids;
2666 u32 n_channels;
2667 const u8 *ie;
2668 size_t ie_len;
2669 u16 duration;
2670 bool duration_mandatory;
2671 u32 flags;
2672
2673 u32 rates[NUM_NL80211_BANDS];
2674
2675 struct wireless_dev *wdev;
2676
2677 u8 mac_addr[ETH_ALEN] __aligned(2);
2678 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2679 u8 bssid[ETH_ALEN] __aligned(2);
2680
2681 /* internal */
2682 struct wiphy *wiphy;
2683 unsigned long scan_start;
2684 struct cfg80211_scan_info info;
2685 bool notified;
2686 bool no_cck;
2687 bool scan_6ghz;
2688 u32 n_6ghz_params;
2689 struct cfg80211_scan_6ghz_params *scan_6ghz_params;
2690 s8 tsf_report_link_id;
2691
2692 /* keep last */
2693 struct ieee80211_channel *channels[] __counted_by(n_channels);
2694};
2695
2696static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
2697{
2698 int i;
2699
2700 get_random_bytes(buf, ETH_ALEN);
2701 for (i = 0; i < ETH_ALEN; i++) {
2702 buf[i] &= ~mask[i];
2703 buf[i] |= addr[i] & mask[i];
2704 }
2705}
2706
2707/**
2708 * struct cfg80211_match_set - sets of attributes to match
2709 *
2710 * @ssid: SSID to be matched; may be zero-length in case of BSSID match
2711 * or no match (RSSI only)
2712 * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match
2713 * or no match (RSSI only)
2714 * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
2715 */
2716struct cfg80211_match_set {
2717 struct cfg80211_ssid ssid;
2718 u8 bssid[ETH_ALEN];
2719 s32 rssi_thold;
2720};
2721
2722/**
2723 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan
2724 *
2725 * @interval: interval between scheduled scan iterations. In seconds.
2726 * @iterations: number of scan iterations in this scan plan. Zero means
2727 * infinite loop.
2728 * The last scan plan will always have this parameter set to zero,
2729 * all other scan plans will have a finite number of iterations.
2730 */
2731struct cfg80211_sched_scan_plan {
2732 u32 interval;
2733 u32 iterations;
2734};
2735
2736/**
2737 * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment.
2738 *
2739 * @band: band of BSS which should match for RSSI level adjustment.
2740 * @delta: value of RSSI level adjustment.
2741 */
2742struct cfg80211_bss_select_adjust {
2743 enum nl80211_band band;
2744 s8 delta;
2745};
2746
2747/**
2748 * struct cfg80211_sched_scan_request - scheduled scan request description
2749 *
2750 * @reqid: identifies this request.
2751 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
2752 * @n_ssids: number of SSIDs
2753 * @n_channels: total number of channels to scan
2754 * @ie: optional information element(s) to add into Probe Request or %NULL
2755 * @ie_len: length of ie in octets
2756 * @flags: control flags from &enum nl80211_scan_flags
2757 * @match_sets: sets of parameters to be matched for a scan result
2758 * entry to be considered valid and to be passed to the host
2759 * (others are filtered out).
2760 * If omitted, all results are passed.
2761 * @n_match_sets: number of match sets
2762 * @report_results: indicates that results were reported for this request
2763 * @wiphy: the wiphy this was for
2764 * @dev: the interface
2765 * @scan_start: start time of the scheduled scan
2766 * @channels: channels to scan
2767 * @min_rssi_thold: for drivers only supporting a single threshold, this
2768 * contains the minimum over all matchsets
2769 * @mac_addr: MAC address used with randomisation
2770 * @mac_addr_mask: MAC address mask used with randomisation, bits that
2771 * are 0 in the mask should be randomised, bits that are 1 should
2772 * be taken from the @mac_addr
2773 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest
2774 * index must be executed first.
2775 * @n_scan_plans: number of scan plans, at least 1.
2776 * @rcu_head: RCU callback used to free the struct
2777 * @owner_nlportid: netlink portid of owner (if this should is a request
2778 * owned by a particular socket)
2779 * @nl_owner_dead: netlink owner socket was closed - this request be freed
2780 * @list: for keeping list of requests.
2781 * @delay: delay in seconds to use before starting the first scan
2782 * cycle. The driver may ignore this parameter and start
2783 * immediately (or at any other time), if this feature is not
2784 * supported.
2785 * @relative_rssi_set: Indicates whether @relative_rssi is set or not.
2786 * @relative_rssi: Relative RSSI threshold in dB to restrict scan result
2787 * reporting in connected state to cases where a matching BSS is determined
2788 * to have better or slightly worse RSSI than the current connected BSS.
2789 * The relative RSSI threshold values are ignored in disconnected state.
2790 * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong
2791 * to the specified band while deciding whether a better BSS is reported
2792 * using @relative_rssi. If delta is a negative number, the BSSs that
2793 * belong to the specified band will be penalized by delta dB in relative
2794 * comparisons.
2795 */
2796struct cfg80211_sched_scan_request {
2797 u64 reqid;
2798 struct cfg80211_ssid *ssids;
2799 int n_ssids;
2800 u32 n_channels;
2801 const u8 *ie;
2802 size_t ie_len;
2803 u32 flags;
2804 struct cfg80211_match_set *match_sets;
2805 int n_match_sets;
2806 s32 min_rssi_thold;
2807 u32 delay;
2808 struct cfg80211_sched_scan_plan *scan_plans;
2809 int n_scan_plans;
2810
2811 u8 mac_addr[ETH_ALEN] __aligned(2);
2812 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2813
2814 bool relative_rssi_set;
2815 s8 relative_rssi;
2816 struct cfg80211_bss_select_adjust rssi_adjust;
2817
2818 /* internal */
2819 struct wiphy *wiphy;
2820 struct net_device *dev;
2821 unsigned long scan_start;
2822 bool report_results;
2823 struct rcu_head rcu_head;
2824 u32 owner_nlportid;
2825 bool nl_owner_dead;
2826 struct list_head list;
2827
2828 /* keep last */
2829 struct ieee80211_channel *channels[] __counted_by(n_channels);
2830};
2831
2832/**
2833 * enum cfg80211_signal_type - signal type
2834 *
2835 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
2836 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
2837 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
2838 */
2839enum cfg80211_signal_type {
2840 CFG80211_SIGNAL_TYPE_NONE,
2841 CFG80211_SIGNAL_TYPE_MBM,
2842 CFG80211_SIGNAL_TYPE_UNSPEC,
2843};
2844
2845/**
2846 * struct cfg80211_inform_bss - BSS inform data
2847 * @chan: channel the frame was received on
2848 * @signal: signal strength value, according to the wiphy's
2849 * signal type
2850 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
2851 * received; should match the time when the frame was actually
2852 * received by the device (not just by the host, in case it was
2853 * buffered on the device) and be accurate to about 10ms.
2854 * If the frame isn't buffered, just passing the return value of
2855 * ktime_get_boottime_ns() is likely appropriate.
2856 * @parent_tsf: the time at the start of reception of the first octet of the
2857 * timestamp field of the frame. The time is the TSF of the BSS specified
2858 * by %parent_bssid.
2859 * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to
2860 * the BSS that requested the scan in which the beacon/probe was received.
2861 * @chains: bitmask for filled values in @chain_signal.
2862 * @chain_signal: per-chain signal strength of last received BSS in dBm.
2863 * @restrict_use: restrict usage, if not set, assume @use_for is
2864 * %NL80211_BSS_USE_FOR_NORMAL.
2865 * @use_for: bitmap of possible usage for this BSS, see
2866 * &enum nl80211_bss_use_for
2867 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
2868 * if @restrict_use is set and @use_for is zero (empty); may be 0 for
2869 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
2870 * @drv_data: Data to be passed through to @inform_bss
2871 */
2872struct cfg80211_inform_bss {
2873 struct ieee80211_channel *chan;
2874 s32 signal;
2875 u64 boottime_ns;
2876 u64 parent_tsf;
2877 u8 parent_bssid[ETH_ALEN] __aligned(2);
2878 u8 chains;
2879 s8 chain_signal[IEEE80211_MAX_CHAINS];
2880
2881 u8 restrict_use:1, use_for:7;
2882 u8 cannot_use_reasons;
2883
2884 void *drv_data;
2885};
2886
2887/**
2888 * struct cfg80211_bss_ies - BSS entry IE data
2889 * @tsf: TSF contained in the frame that carried these IEs
2890 * @rcu_head: internal use, for freeing
2891 * @len: length of the IEs
2892 * @from_beacon: these IEs are known to come from a beacon
2893 * @data: IE data
2894 */
2895struct cfg80211_bss_ies {
2896 u64 tsf;
2897 struct rcu_head rcu_head;
2898 int len;
2899 bool from_beacon;
2900 u8 data[];
2901};
2902
2903/**
2904 * struct cfg80211_bss - BSS description
2905 *
2906 * This structure describes a BSS (which may also be a mesh network)
2907 * for use in scan results and similar.
2908 *
2909 * @channel: channel this BSS is on
2910 * @bssid: BSSID of the BSS
2911 * @beacon_interval: the beacon interval as from the frame
2912 * @capability: the capability field in host byte order
2913 * @ies: the information elements (Note that there is no guarantee that these
2914 * are well-formed!); this is a pointer to either the beacon_ies or
2915 * proberesp_ies depending on whether Probe Response frame has been
2916 * received. It is always non-%NULL.
2917 * @beacon_ies: the information elements from the last Beacon frame
2918 * (implementation note: if @hidden_beacon_bss is set this struct doesn't
2919 * own the beacon_ies, but they're just pointers to the ones from the
2920 * @hidden_beacon_bss struct)
2921 * @proberesp_ies: the information elements from the last Probe Response frame
2922 * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame,
2923 * cannot rely on it having valid data
2924 * @hidden_beacon_bss: in case this BSS struct represents a probe response from
2925 * a BSS that hides the SSID in its beacon, this points to the BSS struct
2926 * that holds the beacon data. @beacon_ies is still valid, of course, and
2927 * points to the same data as hidden_beacon_bss->beacon_ies in that case.
2928 * @transmitted_bss: pointer to the transmitted BSS, if this is a
2929 * non-transmitted one (multi-BSSID support)
2930 * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one
2931 * (multi-BSSID support)
2932 * @signal: signal strength value (type depends on the wiphy's signal_type)
2933 * @ts_boottime: timestamp of the last BSS update in nanoseconds since boot
2934 * @chains: bitmask for filled values in @chain_signal.
2935 * @chain_signal: per-chain signal strength of last received BSS in dBm.
2936 * @bssid_index: index in the multiple BSS set
2937 * @max_bssid_indicator: max number of members in the BSS set
2938 * @use_for: bitmap of possible usage for this BSS, see
2939 * &enum nl80211_bss_use_for
2940 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
2941 * if @restrict_use is set and @use_for is zero (empty); may be 0 for
2942 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
2943 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
2944 */
2945struct cfg80211_bss {
2946 struct ieee80211_channel *channel;
2947
2948 const struct cfg80211_bss_ies __rcu *ies;
2949 const struct cfg80211_bss_ies __rcu *beacon_ies;
2950 const struct cfg80211_bss_ies __rcu *proberesp_ies;
2951
2952 struct cfg80211_bss *hidden_beacon_bss;
2953 struct cfg80211_bss *transmitted_bss;
2954 struct list_head nontrans_list;
2955
2956 s32 signal;
2957
2958 u64 ts_boottime;
2959
2960 u16 beacon_interval;
2961 u16 capability;
2962
2963 u8 bssid[ETH_ALEN];
2964 u8 chains;
2965 s8 chain_signal[IEEE80211_MAX_CHAINS];
2966
2967 u8 proberesp_ecsa_stuck:1;
2968
2969 u8 bssid_index;
2970 u8 max_bssid_indicator;
2971
2972 u8 use_for;
2973 u8 cannot_use_reasons;
2974
2975 u8 priv[] __aligned(sizeof(void *));
2976};
2977
2978/**
2979 * ieee80211_bss_get_elem - find element with given ID
2980 * @bss: the bss to search
2981 * @id: the element ID
2982 *
2983 * Note that the return value is an RCU-protected pointer, so
2984 * rcu_read_lock() must be held when calling this function.
2985 * Return: %NULL if not found.
2986 */
2987const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id);
2988
2989/**
2990 * ieee80211_bss_get_ie - find IE with given ID
2991 * @bss: the bss to search
2992 * @id: the element ID
2993 *
2994 * Note that the return value is an RCU-protected pointer, so
2995 * rcu_read_lock() must be held when calling this function.
2996 * Return: %NULL if not found.
2997 */
2998static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id)
2999{
3000 return (const void *)ieee80211_bss_get_elem(bss, id);
3001}
3002
3003
3004/**
3005 * struct cfg80211_auth_request - Authentication request data
3006 *
3007 * This structure provides information needed to complete IEEE 802.11
3008 * authentication.
3009 *
3010 * @bss: The BSS to authenticate with, the callee must obtain a reference
3011 * to it if it needs to keep it.
3012 * @supported_selectors: List of selectors that should be assumed to be
3013 * supported by the station.
3014 * SAE_H2E must be assumed supported if set to %NULL.
3015 * @supported_selectors_len: Length of supported_selectors in octets.
3016 * @auth_type: Authentication type (algorithm)
3017 * @ie: Extra IEs to add to Authentication frame or %NULL
3018 * @ie_len: Length of ie buffer in octets
3019 * @key_len: length of WEP key for shared key authentication
3020 * @key_idx: index of WEP key for shared key authentication
3021 * @key: WEP key for shared key authentication
3022 * @auth_data: Fields and elements in Authentication frames. This contains
3023 * the authentication frame body (non-IE and IE data), excluding the
3024 * Authentication algorithm number, i.e., starting at the Authentication
3025 * transaction sequence number field.
3026 * @auth_data_len: Length of auth_data buffer in octets
3027 * @link_id: if >= 0, indicates authentication should be done as an MLD,
3028 * the interface address is included as the MLD address and the
3029 * necessary link (with the given link_id) will be created (and
3030 * given an MLD address) by the driver
3031 * @ap_mld_addr: AP MLD address in case of authentication request with
3032 * an AP MLD, valid iff @link_id >= 0
3033 */
3034struct cfg80211_auth_request {
3035 struct cfg80211_bss *bss;
3036 const u8 *ie;
3037 size_t ie_len;
3038 const u8 *supported_selectors;
3039 u8 supported_selectors_len;
3040 enum nl80211_auth_type auth_type;
3041 const u8 *key;
3042 u8 key_len;
3043 s8 key_idx;
3044 const u8 *auth_data;
3045 size_t auth_data_len;
3046 s8 link_id;
3047 const u8 *ap_mld_addr;
3048};
3049
3050/**
3051 * struct cfg80211_assoc_link - per-link information for MLO association
3052 * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss;
3053 * if this is %NULL for a link, that link is not requested
3054 * @elems: extra elements for the per-STA profile for this link
3055 * @elems_len: length of the elements
3056 * @disabled: If set this link should be included during association etc. but it
3057 * should not be used until enabled by the AP MLD.
3058 * @error: per-link error code, must be <= 0. If there is an error, then the
3059 * operation as a whole must fail.
3060 */
3061struct cfg80211_assoc_link {
3062 struct cfg80211_bss *bss;
3063 const u8 *elems;
3064 size_t elems_len;
3065 bool disabled;
3066 int error;
3067};
3068
3069/**
3070 * struct cfg80211_ml_reconf_req - MLO link reconfiguration request
3071 * @add_links: data for links to add, see &struct cfg80211_assoc_link
3072 * @rem_links: bitmap of links to remove
3073 * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3074 * userspace for the ML reconfiguration action frame
3075 */
3076struct cfg80211_ml_reconf_req {
3077 struct cfg80211_assoc_link add_links[IEEE80211_MLD_MAX_NUM_LINKS];
3078 u16 rem_links;
3079 u16 ext_mld_capa_ops;
3080};
3081
3082/**
3083 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
3084 *
3085 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n)
3086 * @ASSOC_REQ_DISABLE_VHT: Disable VHT
3087 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
3088 * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external
3089 * authentication capability. Drivers can offload authentication to
3090 * userspace if this flag is set. Only applicable for cfg80211_connect()
3091 * request (connect callback).
3092 * @ASSOC_REQ_DISABLE_HE: Disable HE
3093 * @ASSOC_REQ_DISABLE_EHT: Disable EHT
3094 * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links.
3095 * Drivers shall disable MLO features for the current association if this
3096 * flag is not set.
3097 * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any)
3098 */
3099enum cfg80211_assoc_req_flags {
3100 ASSOC_REQ_DISABLE_HT = BIT(0),
3101 ASSOC_REQ_DISABLE_VHT = BIT(1),
3102 ASSOC_REQ_USE_RRM = BIT(2),
3103 CONNECT_REQ_EXTERNAL_AUTH_SUPPORT = BIT(3),
3104 ASSOC_REQ_DISABLE_HE = BIT(4),
3105 ASSOC_REQ_DISABLE_EHT = BIT(5),
3106 CONNECT_REQ_MLO_SUPPORT = BIT(6),
3107 ASSOC_REQ_SPP_AMSDU = BIT(7),
3108};
3109
3110/**
3111 * struct cfg80211_assoc_request - (Re)Association request data
3112 *
3113 * This structure provides information needed to complete IEEE 802.11
3114 * (re)association.
3115 * @bss: The BSS to associate with. If the call is successful the driver is
3116 * given a reference that it must give back to cfg80211_send_rx_assoc()
3117 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
3118 * association requests while already associating must be rejected.
3119 * This also applies to the @links.bss parameter, which is used instead
3120 * of this one (it is %NULL) for MLO associations.
3121 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
3122 * @ie_len: Length of ie buffer in octets
3123 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
3124 * @crypto: crypto settings
3125 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3126 * to indicate a request to reassociate within the ESS instead of a request
3127 * do the initial association with the ESS. When included, this is set to
3128 * the BSSID of the current association, i.e., to the value that is
3129 * included in the Current AP address field of the Reassociation Request
3130 * frame.
3131 * @flags: See &enum cfg80211_assoc_req_flags
3132 * @supported_selectors: supported BSS selectors in IEEE 802.11 format
3133 * (or %NULL for no change).
3134 * If %NULL, then support for SAE_H2E should be assumed.
3135 * @supported_selectors_len: number of supported BSS selectors
3136 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3137 * will be used in ht_capa. Un-supported values will be ignored.
3138 * @ht_capa_mask: The bits of ht_capa which are to be used.
3139 * @vht_capa: VHT capability override
3140 * @vht_capa_mask: VHT capability mask indicating which fields to use
3141 * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or
3142 * %NULL if FILS is not used.
3143 * @fils_kek_len: Length of fils_kek in octets
3144 * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association
3145 * Request/Response frame or %NULL if FILS is not used. This field starts
3146 * with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
3147 * @s1g_capa: S1G capability override
3148 * @s1g_capa_mask: S1G capability override mask
3149 * @links: per-link information for MLO connections
3150 * @link_id: >= 0 for MLO connections, where links are given, and indicates
3151 * the link on which the association request should be sent
3152 * @ap_mld_addr: AP MLD address in case of MLO association request,
3153 * valid iff @link_id >= 0
3154 * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3155 * userspace for the association
3156 */
3157struct cfg80211_assoc_request {
3158 struct cfg80211_bss *bss;
3159 const u8 *ie, *prev_bssid;
3160 size_t ie_len;
3161 struct cfg80211_crypto_settings crypto;
3162 bool use_mfp;
3163 u32 flags;
3164 const u8 *supported_selectors;
3165 u8 supported_selectors_len;
3166 struct ieee80211_ht_cap ht_capa;
3167 struct ieee80211_ht_cap ht_capa_mask;
3168 struct ieee80211_vht_cap vht_capa, vht_capa_mask;
3169 const u8 *fils_kek;
3170 size_t fils_kek_len;
3171 const u8 *fils_nonces;
3172 struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask;
3173 struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS];
3174 const u8 *ap_mld_addr;
3175 s8 link_id;
3176 u16 ext_mld_capa_ops;
3177};
3178
3179/**
3180 * struct cfg80211_deauth_request - Deauthentication request data
3181 *
3182 * This structure provides information needed to complete IEEE 802.11
3183 * deauthentication.
3184 *
3185 * @bssid: the BSSID or AP MLD address to deauthenticate from
3186 * @ie: Extra IEs to add to Deauthentication frame or %NULL
3187 * @ie_len: Length of ie buffer in octets
3188 * @reason_code: The reason code for the deauthentication
3189 * @local_state_change: if set, change local state only and
3190 * do not set a deauth frame
3191 */
3192struct cfg80211_deauth_request {
3193 const u8 *bssid;
3194 const u8 *ie;
3195 size_t ie_len;
3196 u16 reason_code;
3197 bool local_state_change;
3198};
3199
3200/**
3201 * struct cfg80211_disassoc_request - Disassociation request data
3202 *
3203 * This structure provides information needed to complete IEEE 802.11
3204 * disassociation.
3205 *
3206 * @ap_addr: the BSSID or AP MLD address to disassociate from
3207 * @ie: Extra IEs to add to Disassociation frame or %NULL
3208 * @ie_len: Length of ie buffer in octets
3209 * @reason_code: The reason code for the disassociation
3210 * @local_state_change: This is a request for a local state only, i.e., no
3211 * Disassociation frame is to be transmitted.
3212 */
3213struct cfg80211_disassoc_request {
3214 const u8 *ap_addr;
3215 const u8 *ie;
3216 size_t ie_len;
3217 u16 reason_code;
3218 bool local_state_change;
3219};
3220
3221/**
3222 * struct cfg80211_ibss_params - IBSS parameters
3223 *
3224 * This structure defines the IBSS parameters for the join_ibss()
3225 * method.
3226 *
3227 * @ssid: The SSID, will always be non-null.
3228 * @ssid_len: The length of the SSID, will always be non-zero.
3229 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
3230 * search for IBSSs with a different BSSID.
3231 * @chandef: defines the channel to use if no other IBSS to join can be found
3232 * @channel_fixed: The channel should be fixed -- do not search for
3233 * IBSSs to join on other channels.
3234 * @ie: information element(s) to include in the beacon
3235 * @ie_len: length of that
3236 * @beacon_interval: beacon interval to use
3237 * @privacy: this is a protected network, keys will be configured
3238 * after joining
3239 * @control_port: whether user space controls IEEE 802.1X port, i.e.,
3240 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
3241 * required to assume that the port is unauthorized until authorized by
3242 * user space. Otherwise, port is marked authorized by default.
3243 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
3244 * port frames over NL80211 instead of the network interface.
3245 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
3246 * changes the channel when a radar is detected. This is required
3247 * to operate on DFS channels.
3248 * @basic_rates: bitmap of basic rates to use when creating the IBSS
3249 * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
3250 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3251 * will be used in ht_capa. Un-supported values will be ignored.
3252 * @ht_capa_mask: The bits of ht_capa which are to be used.
3253 * @wep_keys: static WEP keys, if not NULL points to an array of
3254 * CFG80211_MAX_WEP_KEYS WEP keys
3255 * @wep_tx_key: key index (0..3) of the default TX static WEP key
3256 */
3257struct cfg80211_ibss_params {
3258 const u8 *ssid;
3259 const u8 *bssid;
3260 struct cfg80211_chan_def chandef;
3261 const u8 *ie;
3262 u8 ssid_len, ie_len;
3263 u16 beacon_interval;
3264 u32 basic_rates;
3265 bool channel_fixed;
3266 bool privacy;
3267 bool control_port;
3268 bool control_port_over_nl80211;
3269 bool userspace_handles_dfs;
3270 int mcast_rate[NUM_NL80211_BANDS];
3271 struct ieee80211_ht_cap ht_capa;
3272 struct ieee80211_ht_cap ht_capa_mask;
3273 struct key_params *wep_keys;
3274 int wep_tx_key;
3275};
3276
3277/**
3278 * struct cfg80211_bss_selection - connection parameters for BSS selection.
3279 *
3280 * @behaviour: requested BSS selection behaviour.
3281 * @param: parameters for requestion behaviour.
3282 * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF.
3283 * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST.
3284 */
3285struct cfg80211_bss_selection {
3286 enum nl80211_bss_select_attr behaviour;
3287 union {
3288 enum nl80211_band band_pref;
3289 struct cfg80211_bss_select_adjust adjust;
3290 } param;
3291};
3292
3293/**
3294 * struct cfg80211_connect_params - Connection parameters
3295 *
3296 * This structure provides information needed to complete IEEE 802.11
3297 * authentication and association.
3298 *
3299 * @channel: The channel to use or %NULL if not specified (auto-select based
3300 * on scan results)
3301 * @channel_hint: The channel of the recommended BSS for initial connection or
3302 * %NULL if not specified
3303 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
3304 * results)
3305 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
3306 * %NULL if not specified. Unlike the @bssid parameter, the driver is
3307 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS
3308 * to use.
3309 * @ssid: SSID
3310 * @ssid_len: Length of ssid in octets
3311 * @auth_type: Authentication type (algorithm)
3312 * @ie: IEs for association request
3313 * @ie_len: Length of assoc_ie in octets
3314 * @privacy: indicates whether privacy-enabled APs should be used
3315 * @mfp: indicate whether management frame protection is used
3316 * @crypto: crypto settings
3317 * @key_len: length of WEP key for shared key authentication
3318 * @key_idx: index of WEP key for shared key authentication
3319 * @key: WEP key for shared key authentication
3320 * @flags: See &enum cfg80211_assoc_req_flags
3321 * @bg_scan_period: Background scan period in seconds
3322 * or -1 to indicate that default value is to be used.
3323 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3324 * will be used in ht_capa. Un-supported values will be ignored.
3325 * @ht_capa_mask: The bits of ht_capa which are to be used.
3326 * @vht_capa: VHT Capability overrides
3327 * @vht_capa_mask: The bits of vht_capa which are to be used.
3328 * @pbss: if set, connect to a PCP instead of AP. Valid for DMG
3329 * networks.
3330 * @bss_select: criteria to be used for BSS selection.
3331 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3332 * to indicate a request to reassociate within the ESS instead of a request
3333 * do the initial association with the ESS. When included, this is set to
3334 * the BSSID of the current association, i.e., to the value that is
3335 * included in the Current AP address field of the Reassociation Request
3336 * frame.
3337 * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the
3338 * NAI or %NULL if not specified. This is used to construct FILS wrapped
3339 * data IE.
3340 * @fils_erp_username_len: Length of @fils_erp_username in octets.
3341 * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or
3342 * %NULL if not specified. This specifies the domain name of ER server and
3343 * is used to construct FILS wrapped data IE.
3344 * @fils_erp_realm_len: Length of @fils_erp_realm in octets.
3345 * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP
3346 * messages. This is also used to construct FILS wrapped data IE.
3347 * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional
3348 * keys in FILS or %NULL if not specified.
3349 * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets.
3350 * @want_1x: indicates user-space supports and wants to use 802.1X driver
3351 * offload of 4-way handshake.
3352 * @edmg: define the EDMG channels.
3353 * This may specify multiple channels and bonding options for the driver
3354 * to choose from, based on BSS configuration.
3355 */
3356struct cfg80211_connect_params {
3357 struct ieee80211_channel *channel;
3358 struct ieee80211_channel *channel_hint;
3359 const u8 *bssid;
3360 const u8 *bssid_hint;
3361 const u8 *ssid;
3362 size_t ssid_len;
3363 enum nl80211_auth_type auth_type;
3364 const u8 *ie;
3365 size_t ie_len;
3366 bool privacy;
3367 enum nl80211_mfp mfp;
3368 struct cfg80211_crypto_settings crypto;
3369 const u8 *key;
3370 u8 key_len, key_idx;
3371 u32 flags;
3372 int bg_scan_period;
3373 struct ieee80211_ht_cap ht_capa;
3374 struct ieee80211_ht_cap ht_capa_mask;
3375 struct ieee80211_vht_cap vht_capa;
3376 struct ieee80211_vht_cap vht_capa_mask;
3377 bool pbss;
3378 struct cfg80211_bss_selection bss_select;
3379 const u8 *prev_bssid;
3380 const u8 *fils_erp_username;
3381 size_t fils_erp_username_len;
3382 const u8 *fils_erp_realm;
3383 size_t fils_erp_realm_len;
3384 u16 fils_erp_next_seq_num;
3385 const u8 *fils_erp_rrk;
3386 size_t fils_erp_rrk_len;
3387 bool want_1x;
3388 struct ieee80211_edmg edmg;
3389};
3390
3391/**
3392 * enum cfg80211_connect_params_changed - Connection parameters being updated
3393 *
3394 * This enum provides information of all connect parameters that
3395 * have to be updated as part of update_connect_params() call.
3396 *
3397 * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated
3398 * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm,
3399 * username, erp sequence number and rrk) are updated
3400 * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated
3401 */
3402enum cfg80211_connect_params_changed {
3403 UPDATE_ASSOC_IES = BIT(0),
3404 UPDATE_FILS_ERP_INFO = BIT(1),
3405 UPDATE_AUTH_TYPE = BIT(2),
3406};
3407
3408/**
3409 * enum wiphy_params_flags - set_wiphy_params bitfield values
3410 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
3411 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
3412 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
3413 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
3414 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
3415 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
3416 * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed
3417 * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed
3418 * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum
3419 */
3420enum wiphy_params_flags {
3421 WIPHY_PARAM_RETRY_SHORT = BIT(0),
3422 WIPHY_PARAM_RETRY_LONG = BIT(1),
3423 WIPHY_PARAM_FRAG_THRESHOLD = BIT(2),
3424 WIPHY_PARAM_RTS_THRESHOLD = BIT(3),
3425 WIPHY_PARAM_COVERAGE_CLASS = BIT(4),
3426 WIPHY_PARAM_DYN_ACK = BIT(5),
3427 WIPHY_PARAM_TXQ_LIMIT = BIT(6),
3428 WIPHY_PARAM_TXQ_MEMORY_LIMIT = BIT(7),
3429 WIPHY_PARAM_TXQ_QUANTUM = BIT(8),
3430};
3431
3432#define IEEE80211_DEFAULT_AIRTIME_WEIGHT 256
3433
3434/* The per TXQ device queue limit in airtime */
3435#define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L 5000
3436#define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H 12000
3437
3438/* The per interface airtime threshold to switch to lower queue limit */
3439#define IEEE80211_AQL_THRESHOLD 24000
3440
3441/**
3442 * struct cfg80211_pmksa - PMK Security Association
3443 *
3444 * This structure is passed to the set/del_pmksa() method for PMKSA
3445 * caching.
3446 *
3447 * @bssid: The AP's BSSID (may be %NULL).
3448 * @pmkid: The identifier to refer a PMKSA.
3449 * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key
3450 * derivation by a FILS STA. Otherwise, %NULL.
3451 * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on
3452 * the hash algorithm used to generate this.
3453 * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS
3454 * cache identifier (may be %NULL).
3455 * @ssid_len: Length of the @ssid in octets.
3456 * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the
3457 * scope of PMKSA. This is valid only if @ssid_len is non-zero (may be
3458 * %NULL).
3459 * @pmk_lifetime: Maximum lifetime for PMKSA in seconds
3460 * (dot11RSNAConfigPMKLifetime) or 0 if not specified.
3461 * The configured PMKSA must not be used for PMKSA caching after
3462 * expiration and any keys derived from this PMK become invalid on
3463 * expiration, i.e., the current association must be dropped if the PMK
3464 * used for it expires.
3465 * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of
3466 * PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
3467 * Drivers are expected to trigger a full authentication instead of using
3468 * this PMKSA for caching when reassociating to a new BSS after this
3469 * threshold to generate a new PMK before the current one expires.
3470 */
3471struct cfg80211_pmksa {
3472 const u8 *bssid;
3473 const u8 *pmkid;
3474 const u8 *pmk;
3475 size_t pmk_len;
3476 const u8 *ssid;
3477 size_t ssid_len;
3478 const u8 *cache_id;
3479 u32 pmk_lifetime;
3480 u8 pmk_reauth_threshold;
3481};
3482
3483/**
3484 * struct cfg80211_pkt_pattern - packet pattern
3485 * @mask: bitmask where to match pattern and where to ignore bytes,
3486 * one bit per byte, in same format as nl80211
3487 * @pattern: bytes to match where bitmask is 1
3488 * @pattern_len: length of pattern (in bytes)
3489 * @pkt_offset: packet offset (in bytes)
3490 *
3491 * Internal note: @mask and @pattern are allocated in one chunk of
3492 * memory, free @mask only!
3493 */
3494struct cfg80211_pkt_pattern {
3495 const u8 *mask, *pattern;
3496 int pattern_len;
3497 int pkt_offset;
3498};
3499
3500/**
3501 * struct cfg80211_wowlan_tcp - TCP connection parameters
3502 *
3503 * @sock: (internal) socket for source port allocation
3504 * @src: source IP address
3505 * @dst: destination IP address
3506 * @dst_mac: destination MAC address
3507 * @src_port: source port
3508 * @dst_port: destination port
3509 * @payload_len: data payload length
3510 * @payload: data payload buffer
3511 * @payload_seq: payload sequence stamping configuration
3512 * @data_interval: interval at which to send data packets
3513 * @wake_len: wakeup payload match length
3514 * @wake_data: wakeup payload match data
3515 * @wake_mask: wakeup payload match mask
3516 * @tokens_size: length of the tokens buffer
3517 * @payload_tok: payload token usage configuration
3518 */
3519struct cfg80211_wowlan_tcp {
3520 struct socket *sock;
3521 __be32 src, dst;
3522 u16 src_port, dst_port;
3523 u8 dst_mac[ETH_ALEN];
3524 int payload_len;
3525 const u8 *payload;
3526 struct nl80211_wowlan_tcp_data_seq payload_seq;
3527 u32 data_interval;
3528 u32 wake_len;
3529 const u8 *wake_data, *wake_mask;
3530 u32 tokens_size;
3531 /* must be last, variable member */
3532 struct nl80211_wowlan_tcp_data_token payload_tok;
3533};
3534
3535/**
3536 * struct cfg80211_wowlan - Wake on Wireless-LAN support info
3537 *
3538 * This structure defines the enabled WoWLAN triggers for the device.
3539 * @any: wake up on any activity -- special trigger if device continues
3540 * operating as normal during suspend
3541 * @disconnect: wake up if getting disconnected
3542 * @magic_pkt: wake up on receiving magic packet
3543 * @patterns: wake up on receiving packet matching a pattern
3544 * @n_patterns: number of patterns
3545 * @gtk_rekey_failure: wake up on GTK rekey failure
3546 * @eap_identity_req: wake up on EAP identity request packet
3547 * @four_way_handshake: wake up on 4-way handshake
3548 * @rfkill_release: wake up when rfkill is released
3549 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
3550 * NULL if not configured.
3551 * @nd_config: configuration for the scan to be used for net detect wake.
3552 */
3553struct cfg80211_wowlan {
3554 bool any, disconnect, magic_pkt, gtk_rekey_failure,
3555 eap_identity_req, four_way_handshake,
3556 rfkill_release;
3557 struct cfg80211_pkt_pattern *patterns;
3558 struct cfg80211_wowlan_tcp *tcp;
3559 int n_patterns;
3560 struct cfg80211_sched_scan_request *nd_config;
3561};
3562
3563/**
3564 * struct cfg80211_coalesce_rules - Coalesce rule parameters
3565 *
3566 * This structure defines coalesce rule for the device.
3567 * @delay: maximum coalescing delay in msecs.
3568 * @condition: condition for packet coalescence.
3569 * see &enum nl80211_coalesce_condition.
3570 * @patterns: array of packet patterns
3571 * @n_patterns: number of patterns
3572 */
3573struct cfg80211_coalesce_rules {
3574 int delay;
3575 enum nl80211_coalesce_condition condition;
3576 struct cfg80211_pkt_pattern *patterns;
3577 int n_patterns;
3578};
3579
3580/**
3581 * struct cfg80211_coalesce - Packet coalescing settings
3582 *
3583 * This structure defines coalescing settings.
3584 * @rules: array of coalesce rules
3585 * @n_rules: number of rules
3586 */
3587struct cfg80211_coalesce {
3588 int n_rules;
3589 struct cfg80211_coalesce_rules rules[] __counted_by(n_rules);
3590};
3591
3592/**
3593 * struct cfg80211_wowlan_nd_match - information about the match
3594 *
3595 * @ssid: SSID of the match that triggered the wake up
3596 * @n_channels: Number of channels where the match occurred. This
3597 * value may be zero if the driver can't report the channels.
3598 * @channels: center frequencies of the channels where a match
3599 * occurred (in MHz)
3600 */
3601struct cfg80211_wowlan_nd_match {
3602 struct cfg80211_ssid ssid;
3603 int n_channels;
3604 u32 channels[] __counted_by(n_channels);
3605};
3606
3607/**
3608 * struct cfg80211_wowlan_nd_info - net detect wake up information
3609 *
3610 * @n_matches: Number of match information instances provided in
3611 * @matches. This value may be zero if the driver can't provide
3612 * match information.
3613 * @matches: Array of pointers to matches containing information about
3614 * the matches that triggered the wake up.
3615 */
3616struct cfg80211_wowlan_nd_info {
3617 int n_matches;
3618 struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches);
3619};
3620
3621/**
3622 * struct cfg80211_wowlan_wakeup - wakeup report
3623 * @disconnect: woke up by getting disconnected
3624 * @magic_pkt: woke up by receiving magic packet
3625 * @gtk_rekey_failure: woke up by GTK rekey failure
3626 * @eap_identity_req: woke up by EAP identity request packet
3627 * @four_way_handshake: woke up by 4-way handshake
3628 * @rfkill_release: woke up by rfkill being released
3629 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
3630 * @packet_present_len: copied wakeup packet data
3631 * @packet_len: original wakeup packet length
3632 * @packet: The packet causing the wakeup, if any.
3633 * @packet_80211: For pattern match, magic packet and other data
3634 * frame triggers an 802.3 frame should be reported, for
3635 * disconnect due to deauth 802.11 frame. This indicates which
3636 * it is.
3637 * @tcp_match: TCP wakeup packet received
3638 * @tcp_connlost: TCP connection lost or failed to establish
3639 * @tcp_nomoretokens: TCP data ran out of tokens
3640 * @net_detect: if not %NULL, woke up because of net detect
3641 * @unprot_deauth_disassoc: woke up due to unprotected deauth or
3642 * disassoc frame (in MFP).
3643 */
3644struct cfg80211_wowlan_wakeup {
3645 bool disconnect, magic_pkt, gtk_rekey_failure,
3646 eap_identity_req, four_way_handshake,
3647 rfkill_release, packet_80211,
3648 tcp_match, tcp_connlost, tcp_nomoretokens,
3649 unprot_deauth_disassoc;
3650 s32 pattern_idx;
3651 u32 packet_present_len, packet_len;
3652 const void *packet;
3653 struct cfg80211_wowlan_nd_info *net_detect;
3654};
3655
3656/**
3657 * struct cfg80211_gtk_rekey_data - rekey data
3658 * @kek: key encryption key (@kek_len bytes)
3659 * @kck: key confirmation key (@kck_len bytes)
3660 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
3661 * @kek_len: length of kek
3662 * @kck_len: length of kck
3663 * @akm: akm (oui, id)
3664 */
3665struct cfg80211_gtk_rekey_data {
3666 const u8 *kek, *kck, *replay_ctr;
3667 u32 akm;
3668 u8 kek_len, kck_len;
3669};
3670
3671/**
3672 * struct cfg80211_update_ft_ies_params - FT IE Information
3673 *
3674 * This structure provides information needed to update the fast transition IE
3675 *
3676 * @md: The Mobility Domain ID, 2 Octet value
3677 * @ie: Fast Transition IEs
3678 * @ie_len: Length of ft_ie in octets
3679 */
3680struct cfg80211_update_ft_ies_params {
3681 u16 md;
3682 const u8 *ie;
3683 size_t ie_len;
3684};
3685
3686/**
3687 * struct cfg80211_mgmt_tx_params - mgmt tx parameters
3688 *
3689 * This structure provides information needed to transmit a mgmt frame
3690 *
3691 * @chan: channel to use
3692 * @offchan: indicates whether off channel operation is required
3693 * @wait: duration for ROC
3694 * @buf: buffer to transmit
3695 * @len: buffer length
3696 * @no_cck: don't use cck rates for this frame
3697 * @dont_wait_for_ack: tells the low level not to wait for an ack
3698 * @n_csa_offsets: length of csa_offsets array
3699 * @csa_offsets: array of all the csa offsets in the frame
3700 * @link_id: for MLO, the link ID to transmit on, -1 if not given; note
3701 * that the link ID isn't validated (much), it's in range but the
3702 * link might not exist (or be used by the receiver STA)
3703 */
3704struct cfg80211_mgmt_tx_params {
3705 struct ieee80211_channel *chan;
3706 bool offchan;
3707 unsigned int wait;
3708 const u8 *buf;
3709 size_t len;
3710 bool no_cck;
3711 bool dont_wait_for_ack;
3712 int n_csa_offsets;
3713 const u16 *csa_offsets;
3714 int link_id;
3715};
3716
3717/**
3718 * struct cfg80211_dscp_exception - DSCP exception
3719 *
3720 * @dscp: DSCP value that does not adhere to the user priority range definition
3721 * @up: user priority value to which the corresponding DSCP value belongs
3722 */
3723struct cfg80211_dscp_exception {
3724 u8 dscp;
3725 u8 up;
3726};
3727
3728/**
3729 * struct cfg80211_dscp_range - DSCP range definition for user priority
3730 *
3731 * @low: lowest DSCP value of this user priority range, inclusive
3732 * @high: highest DSCP value of this user priority range, inclusive
3733 */
3734struct cfg80211_dscp_range {
3735 u8 low;
3736 u8 high;
3737};
3738
3739/* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
3740#define IEEE80211_QOS_MAP_MAX_EX 21
3741#define IEEE80211_QOS_MAP_LEN_MIN 16
3742#define IEEE80211_QOS_MAP_LEN_MAX \
3743 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
3744
3745/**
3746 * struct cfg80211_qos_map - QoS Map Information
3747 *
3748 * This struct defines the Interworking QoS map setting for DSCP values
3749 *
3750 * @num_des: number of DSCP exceptions (0..21)
3751 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
3752 * the user priority DSCP range definition
3753 * @up: DSCP range definition for a particular user priority
3754 */
3755struct cfg80211_qos_map {
3756 u8 num_des;
3757 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
3758 struct cfg80211_dscp_range up[8];
3759};
3760
3761/**
3762 * struct cfg80211_nan_conf - NAN configuration
3763 *
3764 * This struct defines NAN configuration parameters
3765 *
3766 * @master_pref: master preference (1 - 255)
3767 * @bands: operating bands, a bitmap of &enum nl80211_band values.
3768 * For instance, for NL80211_BAND_2GHZ, bit 0 would be set
3769 * (i.e. BIT(NL80211_BAND_2GHZ)).
3770 */
3771struct cfg80211_nan_conf {
3772 u8 master_pref;
3773 u8 bands;
3774};
3775
3776/**
3777 * enum cfg80211_nan_conf_changes - indicates changed fields in NAN
3778 * configuration
3779 *
3780 * @CFG80211_NAN_CONF_CHANGED_PREF: master preference
3781 * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands
3782 */
3783enum cfg80211_nan_conf_changes {
3784 CFG80211_NAN_CONF_CHANGED_PREF = BIT(0),
3785 CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1),
3786};
3787
3788/**
3789 * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter
3790 *
3791 * @filter: the content of the filter
3792 * @len: the length of the filter
3793 */
3794struct cfg80211_nan_func_filter {
3795 const u8 *filter;
3796 u8 len;
3797};
3798
3799/**
3800 * struct cfg80211_nan_func - a NAN function
3801 *
3802 * @type: &enum nl80211_nan_function_type
3803 * @service_id: the service ID of the function
3804 * @publish_type: &nl80211_nan_publish_type
3805 * @close_range: if true, the range should be limited. Threshold is
3806 * implementation specific.
3807 * @publish_bcast: if true, the solicited publish should be broadcasted
3808 * @subscribe_active: if true, the subscribe is active
3809 * @followup_id: the instance ID for follow up
3810 * @followup_reqid: the requester instance ID for follow up
3811 * @followup_dest: MAC address of the recipient of the follow up
3812 * @ttl: time to live counter in DW.
3813 * @serv_spec_info: Service Specific Info
3814 * @serv_spec_info_len: Service Specific Info length
3815 * @srf_include: if true, SRF is inclusive
3816 * @srf_bf: Bloom Filter
3817 * @srf_bf_len: Bloom Filter length
3818 * @srf_bf_idx: Bloom Filter index
3819 * @srf_macs: SRF MAC addresses
3820 * @srf_num_macs: number of MAC addresses in SRF
3821 * @rx_filters: rx filters that are matched with corresponding peer's tx_filter
3822 * @tx_filters: filters that should be transmitted in the SDF.
3823 * @num_rx_filters: length of &rx_filters.
3824 * @num_tx_filters: length of &tx_filters.
3825 * @instance_id: driver allocated id of the function.
3826 * @cookie: unique NAN function identifier.
3827 */
3828struct cfg80211_nan_func {
3829 enum nl80211_nan_function_type type;
3830 u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN];
3831 u8 publish_type;
3832 bool close_range;
3833 bool publish_bcast;
3834 bool subscribe_active;
3835 u8 followup_id;
3836 u8 followup_reqid;
3837 struct mac_address followup_dest;
3838 u32 ttl;
3839 const u8 *serv_spec_info;
3840 u8 serv_spec_info_len;
3841 bool srf_include;
3842 const u8 *srf_bf;
3843 u8 srf_bf_len;
3844 u8 srf_bf_idx;
3845 struct mac_address *srf_macs;
3846 int srf_num_macs;
3847 struct cfg80211_nan_func_filter *rx_filters;
3848 struct cfg80211_nan_func_filter *tx_filters;
3849 u8 num_tx_filters;
3850 u8 num_rx_filters;
3851 u8 instance_id;
3852 u64 cookie;
3853};
3854
3855/**
3856 * struct cfg80211_pmk_conf - PMK configuration
3857 *
3858 * @aa: authenticator address
3859 * @pmk_len: PMK length in bytes.
3860 * @pmk: the PMK material
3861 * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK
3862 * is not PMK-R0). When pmk_r0_name is not NULL, the pmk field
3863 * holds PMK-R0.
3864 */
3865struct cfg80211_pmk_conf {
3866 const u8 *aa;
3867 u8 pmk_len;
3868 const u8 *pmk;
3869 const u8 *pmk_r0_name;
3870};
3871
3872/**
3873 * struct cfg80211_external_auth_params - Trigger External authentication.
3874 *
3875 * Commonly used across the external auth request and event interfaces.
3876 *
3877 * @action: action type / trigger for external authentication. Only significant
3878 * for the authentication request event interface (driver to user space).
3879 * @bssid: BSSID of the peer with which the authentication has
3880 * to happen. Used by both the authentication request event and
3881 * authentication response command interface.
3882 * @ssid: SSID of the AP. Used by both the authentication request event and
3883 * authentication response command interface.
3884 * @key_mgmt_suite: AKM suite of the respective authentication. Used by the
3885 * authentication request event interface.
3886 * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication,
3887 * use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you
3888 * the real status code for failures. Used only for the authentication
3889 * response command interface (user space to driver).
3890 * @pmkid: The identifier to refer a PMKSA.
3891 * @mld_addr: MLD address of the peer. Used by the authentication request event
3892 * interface. Driver indicates this to enable MLO during the authentication
3893 * offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT
3894 * flag capability in NL80211_CMD_CONNECT to know whether the user space
3895 * supports enabling MLO during the authentication offload.
3896 * User space should use the address of the interface (on which the
3897 * authentication request event reported) as self MLD address. User space
3898 * and driver should use MLD addresses in RA, TA and BSSID fields of
3899 * authentication frames sent or received via cfg80211. The driver
3900 * translates the MLD addresses to/from link addresses based on the link
3901 * chosen for the authentication.
3902 */
3903struct cfg80211_external_auth_params {
3904 enum nl80211_external_auth_action action;
3905 u8 bssid[ETH_ALEN] __aligned(2);
3906 struct cfg80211_ssid ssid;
3907 unsigned int key_mgmt_suite;
3908 u16 status;
3909 const u8 *pmkid;
3910 u8 mld_addr[ETH_ALEN] __aligned(2);
3911};
3912
3913/**
3914 * struct cfg80211_ftm_responder_stats - FTM responder statistics
3915 *
3916 * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to
3917 * indicate the relevant values in this struct for them
3918 * @success_num: number of FTM sessions in which all frames were successfully
3919 * answered
3920 * @partial_num: number of FTM sessions in which part of frames were
3921 * successfully answered
3922 * @failed_num: number of failed FTM sessions
3923 * @asap_num: number of ASAP FTM sessions
3924 * @non_asap_num: number of non-ASAP FTM sessions
3925 * @total_duration_ms: total sessions durations - gives an indication
3926 * of how much time the responder was busy
3927 * @unknown_triggers_num: number of unknown FTM triggers - triggers from
3928 * initiators that didn't finish successfully the negotiation phase with
3929 * the responder
3930 * @reschedule_requests_num: number of FTM reschedule requests - initiator asks
3931 * for a new scheduling although it already has scheduled FTM slot
3932 * @out_of_window_triggers_num: total FTM triggers out of scheduled window
3933 */
3934struct cfg80211_ftm_responder_stats {
3935 u32 filled;
3936 u32 success_num;
3937 u32 partial_num;
3938 u32 failed_num;
3939 u32 asap_num;
3940 u32 non_asap_num;
3941 u64 total_duration_ms;
3942 u32 unknown_triggers_num;
3943 u32 reschedule_requests_num;
3944 u32 out_of_window_triggers_num;
3945};
3946
3947/**
3948 * struct cfg80211_pmsr_ftm_result - FTM result
3949 * @failure_reason: if this measurement failed (PMSR status is
3950 * %NL80211_PMSR_STATUS_FAILURE), this gives a more precise
3951 * reason than just "failure"
3952 * @burst_index: if reporting partial results, this is the index
3953 * in [0 .. num_bursts-1] of the burst that's being reported
3954 * @num_ftmr_attempts: number of FTM request frames transmitted
3955 * @num_ftmr_successes: number of FTM request frames acked
3956 * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY,
3957 * fill this to indicate in how many seconds a retry is deemed possible
3958 * by the responder
3959 * @num_bursts_exp: actual number of bursts exponent negotiated
3960 * @burst_duration: actual burst duration negotiated
3961 * @ftms_per_burst: actual FTMs per burst negotiated
3962 * @lci_len: length of LCI information (if present)
3963 * @civicloc_len: length of civic location information (if present)
3964 * @lci: LCI data (may be %NULL)
3965 * @civicloc: civic location data (may be %NULL)
3966 * @rssi_avg: average RSSI over FTM action frames reported
3967 * @rssi_spread: spread of the RSSI over FTM action frames reported
3968 * @tx_rate: bitrate for transmitted FTM action frame response
3969 * @rx_rate: bitrate of received FTM action frame
3970 * @rtt_avg: average of RTTs measured (must have either this or @dist_avg)
3971 * @rtt_variance: variance of RTTs measured (note that standard deviation is
3972 * the square root of the variance)
3973 * @rtt_spread: spread of the RTTs measured
3974 * @dist_avg: average of distances (mm) measured
3975 * (must have either this or @rtt_avg)
3976 * @dist_variance: variance of distances measured (see also @rtt_variance)
3977 * @dist_spread: spread of distances measured (see also @rtt_spread)
3978 * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid
3979 * @num_ftmr_successes_valid: @num_ftmr_successes is valid
3980 * @rssi_avg_valid: @rssi_avg is valid
3981 * @rssi_spread_valid: @rssi_spread is valid
3982 * @tx_rate_valid: @tx_rate is valid
3983 * @rx_rate_valid: @rx_rate is valid
3984 * @rtt_avg_valid: @rtt_avg is valid
3985 * @rtt_variance_valid: @rtt_variance is valid
3986 * @rtt_spread_valid: @rtt_spread is valid
3987 * @dist_avg_valid: @dist_avg is valid
3988 * @dist_variance_valid: @dist_variance is valid
3989 * @dist_spread_valid: @dist_spread is valid
3990 */
3991struct cfg80211_pmsr_ftm_result {
3992 const u8 *lci;
3993 const u8 *civicloc;
3994 unsigned int lci_len;
3995 unsigned int civicloc_len;
3996 enum nl80211_peer_measurement_ftm_failure_reasons failure_reason;
3997 u32 num_ftmr_attempts, num_ftmr_successes;
3998 s16 burst_index;
3999 u8 busy_retry_time;
4000 u8 num_bursts_exp;
4001 u8 burst_duration;
4002 u8 ftms_per_burst;
4003 s32 rssi_avg;
4004 s32 rssi_spread;
4005 struct rate_info tx_rate, rx_rate;
4006 s64 rtt_avg;
4007 s64 rtt_variance;
4008 s64 rtt_spread;
4009 s64 dist_avg;
4010 s64 dist_variance;
4011 s64 dist_spread;
4012
4013 u16 num_ftmr_attempts_valid:1,
4014 num_ftmr_successes_valid:1,
4015 rssi_avg_valid:1,
4016 rssi_spread_valid:1,
4017 tx_rate_valid:1,
4018 rx_rate_valid:1,
4019 rtt_avg_valid:1,
4020 rtt_variance_valid:1,
4021 rtt_spread_valid:1,
4022 dist_avg_valid:1,
4023 dist_variance_valid:1,
4024 dist_spread_valid:1;
4025};
4026
4027/**
4028 * struct cfg80211_pmsr_result - peer measurement result
4029 * @addr: address of the peer
4030 * @host_time: host time (use ktime_get_boottime() adjust to the time when the
4031 * measurement was made)
4032 * @ap_tsf: AP's TSF at measurement time
4033 * @status: status of the measurement
4034 * @final: if reporting partial results, mark this as the last one; if not
4035 * reporting partial results always set this flag
4036 * @ap_tsf_valid: indicates the @ap_tsf value is valid
4037 * @type: type of the measurement reported, note that we only support reporting
4038 * one type at a time, but you can report multiple results separately and
4039 * they're all aggregated for userspace.
4040 * @ftm: FTM result
4041 */
4042struct cfg80211_pmsr_result {
4043 u64 host_time, ap_tsf;
4044 enum nl80211_peer_measurement_status status;
4045
4046 u8 addr[ETH_ALEN];
4047
4048 u8 final:1,
4049 ap_tsf_valid:1;
4050
4051 enum nl80211_peer_measurement_type type;
4052
4053 union {
4054 struct cfg80211_pmsr_ftm_result ftm;
4055 };
4056};
4057
4058/**
4059 * struct cfg80211_pmsr_ftm_request_peer - FTM request data
4060 * @requested: indicates FTM is requested
4061 * @preamble: frame preamble to use
4062 * @burst_period: burst period to use
4063 * @asap: indicates to use ASAP mode
4064 * @num_bursts_exp: number of bursts exponent
4065 * @burst_duration: burst duration
4066 * @ftms_per_burst: number of FTMs per burst
4067 * @ftmr_retries: number of retries for FTM request
4068 * @request_lci: request LCI information
4069 * @request_civicloc: request civic location information
4070 * @trigger_based: use trigger based ranging for the measurement
4071 * If neither @trigger_based nor @non_trigger_based is set,
4072 * EDCA based ranging will be used.
4073 * @non_trigger_based: use non trigger based ranging for the measurement
4074 * If neither @trigger_based nor @non_trigger_based is set,
4075 * EDCA based ranging will be used.
4076 * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either
4077 * @trigger_based or @non_trigger_based is set.
4078 * @bss_color: the bss color of the responder. Optional. Set to zero to
4079 * indicate the driver should set the BSS color. Only valid if
4080 * @non_trigger_based or @trigger_based is set.
4081 *
4082 * See also nl80211 for the respective attribute documentation.
4083 */
4084struct cfg80211_pmsr_ftm_request_peer {
4085 enum nl80211_preamble preamble;
4086 u16 burst_period;
4087 u8 requested:1,
4088 asap:1,
4089 request_lci:1,
4090 request_civicloc:1,
4091 trigger_based:1,
4092 non_trigger_based:1,
4093 lmr_feedback:1;
4094 u8 num_bursts_exp;
4095 u8 burst_duration;
4096 u8 ftms_per_burst;
4097 u8 ftmr_retries;
4098 u8 bss_color;
4099};
4100
4101/**
4102 * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request
4103 * @addr: MAC address
4104 * @chandef: channel to use
4105 * @report_ap_tsf: report the associated AP's TSF
4106 * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer
4107 */
4108struct cfg80211_pmsr_request_peer {
4109 u8 addr[ETH_ALEN];
4110 struct cfg80211_chan_def chandef;
4111 u8 report_ap_tsf:1;
4112 struct cfg80211_pmsr_ftm_request_peer ftm;
4113};
4114
4115/**
4116 * struct cfg80211_pmsr_request - peer measurement request
4117 * @cookie: cookie, set by cfg80211
4118 * @nl_portid: netlink portid - used by cfg80211
4119 * @drv_data: driver data for this request, if required for aborting,
4120 * not otherwise freed or anything by cfg80211
4121 * @mac_addr: MAC address used for (randomised) request
4122 * @mac_addr_mask: MAC address mask used for randomisation, bits that
4123 * are 0 in the mask should be randomised, bits that are 1 should
4124 * be taken from the @mac_addr
4125 * @list: used by cfg80211 to hold on to the request
4126 * @timeout: timeout (in milliseconds) for the whole operation, if
4127 * zero it means there's no timeout
4128 * @n_peers: number of peers to do measurements with
4129 * @peers: per-peer measurement request data
4130 */
4131struct cfg80211_pmsr_request {
4132 u64 cookie;
4133 void *drv_data;
4134 u32 n_peers;
4135 u32 nl_portid;
4136
4137 u32 timeout;
4138
4139 u8 mac_addr[ETH_ALEN] __aligned(2);
4140 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
4141
4142 struct list_head list;
4143
4144 struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers);
4145};
4146
4147/**
4148 * struct cfg80211_update_owe_info - OWE Information
4149 *
4150 * This structure provides information needed for the drivers to offload OWE
4151 * (Opportunistic Wireless Encryption) processing to the user space.
4152 *
4153 * Commonly used across update_owe_info request and event interfaces.
4154 *
4155 * @peer: MAC address of the peer device for which the OWE processing
4156 * has to be done.
4157 * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info
4158 * processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space
4159 * cannot give you the real status code for failures. Used only for
4160 * OWE update request command interface (user space to driver).
4161 * @ie: IEs obtained from the peer or constructed by the user space. These are
4162 * the IEs of the remote peer in the event from the host driver and
4163 * the constructed IEs by the user space in the request interface.
4164 * @ie_len: Length of IEs in octets.
4165 * @assoc_link_id: MLO link ID of the AP, with which (re)association requested
4166 * by peer. This will be filled by driver for both MLO and non-MLO station
4167 * connections when the AP affiliated with an MLD. For non-MLD AP mode, it
4168 * will be -1. Used only with OWE update event (driver to user space).
4169 * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO
4170 * connection, it will be all zeros. This is applicable only when
4171 * @assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only
4172 * with OWE update event (driver to user space).
4173 */
4174struct cfg80211_update_owe_info {
4175 u8 peer[ETH_ALEN] __aligned(2);
4176 u16 status;
4177 const u8 *ie;
4178 size_t ie_len;
4179 int assoc_link_id;
4180 u8 peer_mld_addr[ETH_ALEN] __aligned(2);
4181};
4182
4183/**
4184 * struct mgmt_frame_regs - management frame registrations data
4185 * @global_stypes: bitmap of management frame subtypes registered
4186 * for the entire device
4187 * @interface_stypes: bitmap of management frame subtypes registered
4188 * for the given interface
4189 * @global_mcast_stypes: mcast RX is needed globally for these subtypes
4190 * @interface_mcast_stypes: mcast RX is needed on this interface
4191 * for these subtypes
4192 */
4193struct mgmt_frame_regs {
4194 u32 global_stypes, interface_stypes;
4195 u32 global_mcast_stypes, interface_mcast_stypes;
4196};
4197
4198/**
4199 * struct cfg80211_ops - backend description for wireless configuration
4200 *
4201 * This struct is registered by fullmac card drivers and/or wireless stacks
4202 * in order to handle configuration requests on their interfaces.
4203 *
4204 * All callbacks except where otherwise noted should return 0
4205 * on success or a negative error code.
4206 *
4207 * All operations are invoked with the wiphy mutex held. The RTNL may be
4208 * held in addition (due to wireless extensions) but this cannot be relied
4209 * upon except in cases where documented below. Note that due to ordering,
4210 * the RTNL also cannot be acquired in any handlers.
4211 *
4212 * @suspend: wiphy device needs to be suspended. The variable @wow will
4213 * be %NULL or contain the enabled Wake-on-Wireless triggers that are
4214 * configured for the device.
4215 * @resume: wiphy device needs to be resumed
4216 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
4217 * to call device_set_wakeup_enable() to enable/disable wakeup from
4218 * the device.
4219 *
4220 * @add_virtual_intf: create a new virtual interface with the given name,
4221 * must set the struct wireless_dev's iftype. Beware: You must create
4222 * the new netdev in the wiphy's network namespace! Returns the struct
4223 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
4224 * also set the address member in the wdev.
4225 * This additionally holds the RTNL to be able to do netdev changes.
4226 *
4227 * @del_virtual_intf: remove the virtual interface
4228 * This additionally holds the RTNL to be able to do netdev changes.
4229 *
4230 * @change_virtual_intf: change type/configuration of virtual interface,
4231 * keep the struct wireless_dev's iftype updated.
4232 * This additionally holds the RTNL to be able to do netdev changes.
4233 *
4234 * @add_intf_link: Add a new MLO link to the given interface. Note that
4235 * the wdev->link[] data structure has been updated, so the new link
4236 * address is available.
4237 * @del_intf_link: Remove an MLO link from the given interface.
4238 *
4239 * @add_key: add a key with the given parameters. @mac_addr will be %NULL
4240 * when adding a group key. @link_id will be -1 for non-MLO connection.
4241 * For MLO connection, @link_id will be >= 0 for group key and -1 for
4242 * pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key.
4243 *
4244 * @get_key: get information about the key with the given parameters.
4245 * @mac_addr will be %NULL when requesting information for a group
4246 * key. All pointers given to the @callback function need not be valid
4247 * after it returns. This function should return an error if it is
4248 * not possible to retrieve the key, -ENOENT if it doesn't exist.
4249 * @link_id will be -1 for non-MLO connection. For MLO connection,
4250 * @link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr
4251 * will be peer's MLD address for MLO pairwise key.
4252 *
4253 * @del_key: remove a key given the @mac_addr (%NULL for a group key)
4254 * and @key_index, return -ENOENT if the key doesn't exist. @link_id will
4255 * be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0
4256 * for group key and -1 for pairwise key, @mac_addr will be peer's MLD
4257 * address for MLO pairwise key.
4258 *
4259 * @set_default_key: set the default key on an interface. @link_id will be >= 0
4260 * for MLO connection and -1 for non-MLO connection.
4261 *
4262 * @set_default_mgmt_key: set the default management frame key on an interface.
4263 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4264 *
4265 * @set_default_beacon_key: set the default Beacon frame key on an interface.
4266 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4267 *
4268 * @set_rekey_data: give the data necessary for GTK rekeying to the driver
4269 *
4270 * @start_ap: Start acting in AP mode defined by the parameters.
4271 * @change_beacon: Change the beacon parameters for an access point mode
4272 * interface. This should reject the call when AP mode wasn't started.
4273 * @stop_ap: Stop being an AP, including stopping beaconing.
4274 *
4275 * @add_station: Add a new station.
4276 * @del_station: Remove a station
4277 * @change_station: Modify a given station. Note that flags changes are not much
4278 * validated in cfg80211, in particular the auth/assoc/authorized flags
4279 * might come to the driver in invalid combinations -- make sure to check
4280 * them, also against the existing state! Drivers must call
4281 * cfg80211_check_station_change() to validate the information.
4282 * @get_station: get station information for the station identified by @mac
4283 * @dump_station: dump station callback -- resume dump at index @idx
4284 *
4285 * @add_mpath: add a fixed mesh path
4286 * @del_mpath: delete a given mesh path
4287 * @change_mpath: change a given mesh path
4288 * @get_mpath: get a mesh path for the given parameters
4289 * @dump_mpath: dump mesh path callback -- resume dump at index @idx
4290 * @get_mpp: get a mesh proxy path for the given parameters
4291 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
4292 * @join_mesh: join the mesh network with the specified parameters
4293 * (invoked with the wireless_dev mutex held)
4294 * @leave_mesh: leave the current mesh network
4295 * (invoked with the wireless_dev mutex held)
4296 *
4297 * @get_mesh_config: Get the current mesh configuration
4298 *
4299 * @update_mesh_config: Update mesh parameters on a running mesh.
4300 * The mask is a bitfield which tells us which parameters to
4301 * set, and which to leave alone.
4302 *
4303 * @change_bss: Modify parameters for a given BSS.
4304 *
4305 * @inform_bss: Called by cfg80211 while being informed about new BSS data
4306 * for every BSS found within the reported data or frame. This is called
4307 * from within the cfg8011 inform_bss handlers while holding the bss_lock.
4308 * The data parameter is passed through from drv_data inside
4309 * struct cfg80211_inform_bss.
4310 * The new IE data for the BSS is explicitly passed.
4311 *
4312 * @set_txq_params: Set TX queue parameters
4313 *
4314 * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
4315 * as it doesn't implement join_mesh and needs to set the channel to
4316 * join the mesh instead.
4317 *
4318 * @set_monitor_channel: Set the monitor mode channel for the device. If other
4319 * interfaces are active this callback should reject the configuration.
4320 * If no interfaces are active or the device is down, the channel should
4321 * be stored for when a monitor interface becomes active.
4322 *
4323 * @scan: Request to do a scan. If returning zero, the scan request is given
4324 * the driver, and will be valid until passed to cfg80211_scan_done().
4325 * For scan results, call cfg80211_inform_bss(); you can call this outside
4326 * the scan/scan_done bracket too.
4327 * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall
4328 * indicate the status of the scan through cfg80211_scan_done().
4329 *
4330 * @auth: Request to authenticate with the specified peer
4331 * (invoked with the wireless_dev mutex held)
4332 * @assoc: Request to (re)associate with the specified peer
4333 * (invoked with the wireless_dev mutex held)
4334 * @deauth: Request to deauthenticate from the specified peer
4335 * (invoked with the wireless_dev mutex held)
4336 * @disassoc: Request to disassociate from the specified peer
4337 * (invoked with the wireless_dev mutex held)
4338 *
4339 * @connect: Connect to the ESS with the specified parameters. When connected,
4340 * call cfg80211_connect_result()/cfg80211_connect_bss() with status code
4341 * %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call
4342 * cfg80211_connect_result()/cfg80211_connect_bss() with the status code
4343 * from the AP or cfg80211_connect_timeout() if no frame with status code
4344 * was received.
4345 * The driver is allowed to roam to other BSSes within the ESS when the
4346 * other BSS matches the connect parameters. When such roaming is initiated
4347 * by the driver, the driver is expected to verify that the target matches
4348 * the configured security parameters and to use Reassociation Request
4349 * frame instead of Association Request frame.
4350 * The connect function can also be used to request the driver to perform a
4351 * specific roam when connected to an ESS. In that case, the prev_bssid
4352 * parameter is set to the BSSID of the currently associated BSS as an
4353 * indication of requesting reassociation.
4354 * In both the driver-initiated and new connect() call initiated roaming
4355 * cases, the result of roaming is indicated with a call to
4356 * cfg80211_roamed(). (invoked with the wireless_dev mutex held)
4357 * @update_connect_params: Update the connect parameters while connected to a
4358 * BSS. The updated parameters can be used by driver/firmware for
4359 * subsequent BSS selection (roaming) decisions and to form the
4360 * Authentication/(Re)Association Request frames. This call does not
4361 * request an immediate disassociation or reassociation with the current
4362 * BSS, i.e., this impacts only subsequent (re)associations. The bits in
4363 * changed are defined in &enum cfg80211_connect_params_changed.
4364 * (invoked with the wireless_dev mutex held)
4365 * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if
4366 * connection is in progress. Once done, call cfg80211_disconnected() in
4367 * case connection was already established (invoked with the
4368 * wireless_dev mutex held), otherwise call cfg80211_connect_timeout().
4369 *
4370 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
4371 * cfg80211_ibss_joined(), also call that function when changing BSSID due
4372 * to a merge.
4373 * (invoked with the wireless_dev mutex held)
4374 * @leave_ibss: Leave the IBSS.
4375 * (invoked with the wireless_dev mutex held)
4376 *
4377 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
4378 * MESH mode)
4379 *
4380 * @set_wiphy_params: Notify that wiphy parameters have changed;
4381 * @changed bitfield (see &enum wiphy_params_flags) describes which values
4382 * have changed. The actual parameter values are available in
4383 * struct wiphy. If returning an error, no value should be changed.
4384 *
4385 * @set_tx_power: set the transmit power according to the parameters,
4386 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
4387 * wdev may be %NULL if power was set for the wiphy, and will
4388 * always be %NULL unless the driver supports per-vif TX power
4389 * (as advertised by the nl80211 feature flag.)
4390 * @get_tx_power: store the current TX power into the dbm variable;
4391 * return 0 if successful
4392 *
4393 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
4394 * functions to adjust rfkill hw state
4395 *
4396 * @dump_survey: get site survey information.
4397 *
4398 * @remain_on_channel: Request the driver to remain awake on the specified
4399 * channel for the specified duration to complete an off-channel
4400 * operation (e.g., public action frame exchange). When the driver is
4401 * ready on the requested channel, it must indicate this with an event
4402 * notification by calling cfg80211_ready_on_channel().
4403 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
4404 * This allows the operation to be terminated prior to timeout based on
4405 * the duration value.
4406 * @mgmt_tx: Transmit a management frame.
4407 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
4408 * frame on another channel
4409 *
4410 * @testmode_cmd: run a test mode command; @wdev may be %NULL
4411 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
4412 * used by the function, but 0 and 1 must not be touched. Additionally,
4413 * return error codes other than -ENOBUFS and -ENOENT will terminate the
4414 * dump and return to userspace with an error, so be careful. If any data
4415 * was passed in from userspace then the data/len arguments will be present
4416 * and point to the data contained in %NL80211_ATTR_TESTDATA.
4417 *
4418 * @set_bitrate_mask: set the bitrate mask configuration
4419 *
4420 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
4421 * devices running firmwares capable of generating the (re) association
4422 * RSN IE. It allows for faster roaming between WPA2 BSSIDs.
4423 * @del_pmksa: Delete a cached PMKID.
4424 * @flush_pmksa: Flush all cached PMKIDs.
4425 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
4426 * allows the driver to adjust the dynamic ps timeout value.
4427 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
4428 * After configuration, the driver should (soon) send an event indicating
4429 * the current level is above/below the configured threshold; this may
4430 * need some care when the configuration is changed (without first being
4431 * disabled.)
4432 * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the
4433 * connection quality monitor. An event is to be sent only when the
4434 * signal level is found to be outside the two values. The driver should
4435 * set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented.
4436 * If it is provided then there's no point providing @set_cqm_rssi_config.
4437 * @set_cqm_txe_config: Configure connection quality monitor TX error
4438 * thresholds.
4439 * @sched_scan_start: Tell the driver to start a scheduled scan.
4440 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with
4441 * given request id. This call must stop the scheduled scan and be ready
4442 * for starting a new one before it returns, i.e. @sched_scan_start may be
4443 * called immediately after that again and should not fail in that case.
4444 * The driver should not call cfg80211_sched_scan_stopped() for a requested
4445 * stop (when this method returns 0).
4446 *
4447 * @update_mgmt_frame_registrations: Notify the driver that management frame
4448 * registrations were updated. The callback is allowed to sleep.
4449 *
4450 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
4451 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
4452 * reject TX/RX mask combinations they cannot support by returning -EINVAL
4453 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
4454 *
4455 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
4456 *
4457 * @tdls_mgmt: Transmit a TDLS management frame.
4458 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
4459 *
4460 * @probe_client: probe an associated client, must return a cookie that it
4461 * later passes to cfg80211_probe_status().
4462 *
4463 * @set_noack_map: Set the NoAck Map for the TIDs.
4464 *
4465 * @get_channel: Get the current operating channel for the virtual interface.
4466 * For monitor interfaces, it should return %NULL unless there's a single
4467 * current monitoring channel.
4468 *
4469 * @start_p2p_device: Start the given P2P device.
4470 * @stop_p2p_device: Stop the given P2P device.
4471 *
4472 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
4473 * Parameters include ACL policy, an array of MAC address of stations
4474 * and the number of MAC addresses. If there is already a list in driver
4475 * this new list replaces the existing one. Driver has to clear its ACL
4476 * when number of MAC addresses entries is passed as 0. Drivers which
4477 * advertise the support for MAC based ACL have to implement this callback.
4478 *
4479 * @start_radar_detection: Start radar detection in the driver.
4480 *
4481 * @end_cac: End running CAC, probably because a related CAC
4482 * was finished on another phy.
4483 *
4484 * @update_ft_ies: Provide updated Fast BSS Transition information to the
4485 * driver. If the SME is in the driver/firmware, this information can be
4486 * used in building Authentication and Reassociation Request frames.
4487 *
4488 * @crit_proto_start: Indicates a critical protocol needs more link reliability
4489 * for a given duration (milliseconds). The protocol is provided so the
4490 * driver can take the most appropriate actions.
4491 * @crit_proto_stop: Indicates critical protocol no longer needs increased link
4492 * reliability. This operation can not fail.
4493 * @set_coalesce: Set coalesce parameters.
4494 *
4495 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
4496 * responsible for veryfing if the switch is possible. Since this is
4497 * inherently tricky driver may decide to disconnect an interface later
4498 * with cfg80211_stop_iface(). This doesn't mean driver can accept
4499 * everything. It should do it's best to verify requests and reject them
4500 * as soon as possible.
4501 *
4502 * @set_qos_map: Set QoS mapping information to the driver
4503 *
4504 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
4505 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width
4506 * changes during the lifetime of the BSS.
4507 *
4508 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
4509 * with the given parameters; action frame exchange has been handled by
4510 * userspace so this just has to modify the TX path to take the TS into
4511 * account.
4512 * If the admitted time is 0 just validate the parameters to make sure
4513 * the session can be created at all; it is valid to just always return
4514 * success for that but that may result in inefficient behaviour (handshake
4515 * with the peer followed by immediate teardown when the addition is later
4516 * rejected)
4517 * @del_tx_ts: remove an existing TX TS
4518 *
4519 * @join_ocb: join the OCB network with the specified parameters
4520 * (invoked with the wireless_dev mutex held)
4521 * @leave_ocb: leave the current OCB network
4522 * (invoked with the wireless_dev mutex held)
4523 *
4524 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
4525 * is responsible for continually initiating channel-switching operations
4526 * and returning to the base channel for communication with the AP.
4527 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
4528 * peers must be on the base channel when the call completes.
4529 * @start_nan: Start the NAN interface.
4530 * @stop_nan: Stop the NAN interface.
4531 * @add_nan_func: Add a NAN function. Returns negative value on failure.
4532 * On success @nan_func ownership is transferred to the driver and
4533 * it may access it outside of the scope of this function. The driver
4534 * should free the @nan_func when no longer needed by calling
4535 * cfg80211_free_nan_func().
4536 * On success the driver should assign an instance_id in the
4537 * provided @nan_func.
4538 * @del_nan_func: Delete a NAN function.
4539 * @nan_change_conf: changes NAN configuration. The changed parameters must
4540 * be specified in @changes (using &enum cfg80211_nan_conf_changes);
4541 * All other parameters must be ignored.
4542 *
4543 * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS
4544 *
4545 * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this
4546 * function should return phy stats, and interface stats otherwise.
4547 *
4548 * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake.
4549 * If not deleted through @del_pmk the PMK remains valid until disconnect
4550 * upon which the driver should clear it.
4551 * (invoked with the wireless_dev mutex held)
4552 * @del_pmk: delete the previously configured PMK for the given authenticator.
4553 * (invoked with the wireless_dev mutex held)
4554 *
4555 * @external_auth: indicates result of offloaded authentication processing from
4556 * user space
4557 *
4558 * @tx_control_port: TX a control port frame (EAPoL). The noencrypt parameter
4559 * tells the driver that the frame should not be encrypted.
4560 *
4561 * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available.
4562 * Statistics should be cumulative, currently no way to reset is provided.
4563 * @start_pmsr: start peer measurement (e.g. FTM)
4564 * @abort_pmsr: abort peer measurement
4565 *
4566 * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME
4567 * but offloading OWE processing to the user space will get the updated
4568 * DH IE through this interface.
4569 *
4570 * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame
4571 * and overrule HWMP path selection algorithm.
4572 * @set_tid_config: TID specific configuration, this can be peer or BSS specific
4573 * This callback may sleep.
4574 * @reset_tid_config: Reset TID specific configuration for the peer, for the
4575 * given TIDs. This callback may sleep.
4576 *
4577 * @set_sar_specs: Update the SAR (TX power) settings.
4578 *
4579 * @color_change: Initiate a color change.
4580 *
4581 * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use
4582 * those to decrypt (Re)Association Request and encrypt (Re)Association
4583 * Response frame.
4584 *
4585 * @set_radar_background: Configure dedicated offchannel chain available for
4586 * radar/CAC detection on some hw. This chain can't be used to transmit
4587 * or receive frames and it is bounded to a running wdev.
4588 * Background radar/CAC detection allows to avoid the CAC downtime
4589 * switching to a different channel during CAC detection on the selected
4590 * radar channel.
4591 * The caller is expected to set chandef pointer to NULL in order to
4592 * disable background CAC/radar detection.
4593 * @add_link_station: Add a link to a station.
4594 * @mod_link_station: Modify a link of a station.
4595 * @del_link_station: Remove a link of a station.
4596 *
4597 * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames.
4598 * @set_ttlm: set the TID to link mapping.
4599 * @set_epcs: Enable/Disable EPCS for station mode.
4600 * @get_radio_mask: get bitmask of radios in use.
4601 * (invoked with the wiphy mutex held)
4602 * @assoc_ml_reconf: Request a non-AP MLO connection to perform ML
4603 * reconfiguration, i.e., add and/or remove links to/from the
4604 * association using ML reconfiguration action frames. Successfully added
4605 * links will be added to the set of valid links. Successfully removed
4606 * links will be removed from the set of valid links. The driver must
4607 * indicate removed links by calling cfg80211_links_removed() and added
4608 * links by calling cfg80211_mlo_reconf_add_done(). When calling
4609 * cfg80211_mlo_reconf_add_done() the bss pointer must be given for each
4610 * link for which MLO reconfiguration 'add' operation was requested.
4611 */
4612struct cfg80211_ops {
4613 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
4614 int (*resume)(struct wiphy *wiphy);
4615 void (*set_wakeup)(struct wiphy *wiphy, bool enabled);
4616
4617 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
4618 const char *name,
4619 unsigned char name_assign_type,
4620 enum nl80211_iftype type,
4621 struct vif_params *params);
4622 int (*del_virtual_intf)(struct wiphy *wiphy,
4623 struct wireless_dev *wdev);
4624 int (*change_virtual_intf)(struct wiphy *wiphy,
4625 struct net_device *dev,
4626 enum nl80211_iftype type,
4627 struct vif_params *params);
4628
4629 int (*add_intf_link)(struct wiphy *wiphy,
4630 struct wireless_dev *wdev,
4631 unsigned int link_id);
4632 void (*del_intf_link)(struct wiphy *wiphy,
4633 struct wireless_dev *wdev,
4634 unsigned int link_id);
4635
4636 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev,
4637 int link_id, u8 key_index, bool pairwise,
4638 const u8 *mac_addr, struct key_params *params);
4639 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev,
4640 int link_id, u8 key_index, bool pairwise,
4641 const u8 *mac_addr, void *cookie,
4642 void (*callback)(void *cookie, struct key_params*));
4643 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev,
4644 int link_id, u8 key_index, bool pairwise,
4645 const u8 *mac_addr);
4646 int (*set_default_key)(struct wiphy *wiphy,
4647 struct net_device *netdev, int link_id,
4648 u8 key_index, bool unicast, bool multicast);
4649 int (*set_default_mgmt_key)(struct wiphy *wiphy,
4650 struct net_device *netdev, int link_id,
4651 u8 key_index);
4652 int (*set_default_beacon_key)(struct wiphy *wiphy,
4653 struct net_device *netdev,
4654 int link_id,
4655 u8 key_index);
4656
4657 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev,
4658 struct cfg80211_ap_settings *settings);
4659 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
4660 struct cfg80211_ap_update *info);
4661 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev,
4662 unsigned int link_id);
4663
4664
4665 int (*add_station)(struct wiphy *wiphy, struct net_device *dev,
4666 const u8 *mac,
4667 struct station_parameters *params);
4668 int (*del_station)(struct wiphy *wiphy, struct net_device *dev,
4669 struct station_del_parameters *params);
4670 int (*change_station)(struct wiphy *wiphy, struct net_device *dev,
4671 const u8 *mac,
4672 struct station_parameters *params);
4673 int (*get_station)(struct wiphy *wiphy, struct net_device *dev,
4674 const u8 *mac, struct station_info *sinfo);
4675 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev,
4676 int idx, u8 *mac, struct station_info *sinfo);
4677
4678 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
4679 const u8 *dst, const u8 *next_hop);
4680 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
4681 const u8 *dst);
4682 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
4683 const u8 *dst, const u8 *next_hop);
4684 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
4685 u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
4686 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
4687 int idx, u8 *dst, u8 *next_hop,
4688 struct mpath_info *pinfo);
4689 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
4690 u8 *dst, u8 *mpp, struct mpath_info *pinfo);
4691 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
4692 int idx, u8 *dst, u8 *mpp,
4693 struct mpath_info *pinfo);
4694 int (*get_mesh_config)(struct wiphy *wiphy,
4695 struct net_device *dev,
4696 struct mesh_config *conf);
4697 int (*update_mesh_config)(struct wiphy *wiphy,
4698 struct net_device *dev, u32 mask,
4699 const struct mesh_config *nconf);
4700 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
4701 const struct mesh_config *conf,
4702 const struct mesh_setup *setup);
4703 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
4704
4705 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
4706 struct ocb_setup *setup);
4707 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
4708
4709 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev,
4710 struct bss_parameters *params);
4711
4712 void (*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss,
4713 const struct cfg80211_bss_ies *ies, void *data);
4714
4715 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
4716 struct ieee80211_txq_params *params);
4717
4718 int (*libertas_set_mesh_channel)(struct wiphy *wiphy,
4719 struct net_device *dev,
4720 struct ieee80211_channel *chan);
4721
4722 int (*set_monitor_channel)(struct wiphy *wiphy,
4723 struct net_device *dev,
4724 struct cfg80211_chan_def *chandef);
4725
4726 int (*scan)(struct wiphy *wiphy,
4727 struct cfg80211_scan_request *request);
4728 void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4729
4730 int (*auth)(struct wiphy *wiphy, struct net_device *dev,
4731 struct cfg80211_auth_request *req);
4732 int (*assoc)(struct wiphy *wiphy, struct net_device *dev,
4733 struct cfg80211_assoc_request *req);
4734 int (*deauth)(struct wiphy *wiphy, struct net_device *dev,
4735 struct cfg80211_deauth_request *req);
4736 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev,
4737 struct cfg80211_disassoc_request *req);
4738
4739 int (*connect)(struct wiphy *wiphy, struct net_device *dev,
4740 struct cfg80211_connect_params *sme);
4741 int (*update_connect_params)(struct wiphy *wiphy,
4742 struct net_device *dev,
4743 struct cfg80211_connect_params *sme,
4744 u32 changed);
4745 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev,
4746 u16 reason_code);
4747
4748 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
4749 struct cfg80211_ibss_params *params);
4750 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
4751
4752 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
4753 int rate[NUM_NL80211_BANDS]);
4754
4755 int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed);
4756
4757 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4758 enum nl80211_tx_power_setting type, int mbm);
4759 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4760 unsigned int link_id, int *dbm);
4761
4762 void (*rfkill_poll)(struct wiphy *wiphy);
4763
4764#ifdef CONFIG_NL80211_TESTMODE
4765 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
4766 void *data, int len);
4767 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
4768 struct netlink_callback *cb,
4769 void *data, int len);
4770#endif
4771
4772 int (*set_bitrate_mask)(struct wiphy *wiphy,
4773 struct net_device *dev,
4774 unsigned int link_id,
4775 const u8 *peer,
4776 const struct cfg80211_bitrate_mask *mask);
4777
4778 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
4779 int idx, struct survey_info *info);
4780
4781 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
4782 struct cfg80211_pmksa *pmksa);
4783 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
4784 struct cfg80211_pmksa *pmksa);
4785 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
4786
4787 int (*remain_on_channel)(struct wiphy *wiphy,
4788 struct wireless_dev *wdev,
4789 struct ieee80211_channel *chan,
4790 unsigned int duration,
4791 u64 *cookie);
4792 int (*cancel_remain_on_channel)(struct wiphy *wiphy,
4793 struct wireless_dev *wdev,
4794 u64 cookie);
4795
4796 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
4797 struct cfg80211_mgmt_tx_params *params,
4798 u64 *cookie);
4799 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
4800 struct wireless_dev *wdev,
4801 u64 cookie);
4802
4803 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
4804 bool enabled, int timeout);
4805
4806 int (*set_cqm_rssi_config)(struct wiphy *wiphy,
4807 struct net_device *dev,
4808 s32 rssi_thold, u32 rssi_hyst);
4809
4810 int (*set_cqm_rssi_range_config)(struct wiphy *wiphy,
4811 struct net_device *dev,
4812 s32 rssi_low, s32 rssi_high);
4813
4814 int (*set_cqm_txe_config)(struct wiphy *wiphy,
4815 struct net_device *dev,
4816 u32 rate, u32 pkts, u32 intvl);
4817
4818 void (*update_mgmt_frame_registrations)(struct wiphy *wiphy,
4819 struct wireless_dev *wdev,
4820 struct mgmt_frame_regs *upd);
4821
4822 int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
4823 int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
4824
4825 int (*sched_scan_start)(struct wiphy *wiphy,
4826 struct net_device *dev,
4827 struct cfg80211_sched_scan_request *request);
4828 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev,
4829 u64 reqid);
4830
4831 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
4832 struct cfg80211_gtk_rekey_data *data);
4833
4834 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
4835 const u8 *peer, int link_id,
4836 u8 action_code, u8 dialog_token, u16 status_code,
4837 u32 peer_capability, bool initiator,
4838 const u8 *buf, size_t len);
4839 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
4840 const u8 *peer, enum nl80211_tdls_operation oper);
4841
4842 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev,
4843 const u8 *peer, u64 *cookie);
4844
4845 int (*set_noack_map)(struct wiphy *wiphy,
4846 struct net_device *dev,
4847 u16 noack_map);
4848
4849 int (*get_channel)(struct wiphy *wiphy,
4850 struct wireless_dev *wdev,
4851 unsigned int link_id,
4852 struct cfg80211_chan_def *chandef);
4853
4854 int (*start_p2p_device)(struct wiphy *wiphy,
4855 struct wireless_dev *wdev);
4856 void (*stop_p2p_device)(struct wiphy *wiphy,
4857 struct wireless_dev *wdev);
4858
4859 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
4860 const struct cfg80211_acl_data *params);
4861
4862 int (*start_radar_detection)(struct wiphy *wiphy,
4863 struct net_device *dev,
4864 struct cfg80211_chan_def *chandef,
4865 u32 cac_time_ms, int link_id);
4866 void (*end_cac)(struct wiphy *wiphy,
4867 struct net_device *dev, unsigned int link_id);
4868 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
4869 struct cfg80211_update_ft_ies_params *ftie);
4870 int (*crit_proto_start)(struct wiphy *wiphy,
4871 struct wireless_dev *wdev,
4872 enum nl80211_crit_proto_id protocol,
4873 u16 duration);
4874 void (*crit_proto_stop)(struct wiphy *wiphy,
4875 struct wireless_dev *wdev);
4876 int (*set_coalesce)(struct wiphy *wiphy,
4877 struct cfg80211_coalesce *coalesce);
4878
4879 int (*channel_switch)(struct wiphy *wiphy,
4880 struct net_device *dev,
4881 struct cfg80211_csa_settings *params);
4882
4883 int (*set_qos_map)(struct wiphy *wiphy,
4884 struct net_device *dev,
4885 struct cfg80211_qos_map *qos_map);
4886
4887 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
4888 unsigned int link_id,
4889 struct cfg80211_chan_def *chandef);
4890
4891 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
4892 u8 tsid, const u8 *peer, u8 user_prio,
4893 u16 admitted_time);
4894 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
4895 u8 tsid, const u8 *peer);
4896
4897 int (*tdls_channel_switch)(struct wiphy *wiphy,
4898 struct net_device *dev,
4899 const u8 *addr, u8 oper_class,
4900 struct cfg80211_chan_def *chandef);
4901 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy,
4902 struct net_device *dev,
4903 const u8 *addr);
4904 int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev,
4905 struct cfg80211_nan_conf *conf);
4906 void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4907 int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
4908 struct cfg80211_nan_func *nan_func);
4909 void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
4910 u64 cookie);
4911 int (*nan_change_conf)(struct wiphy *wiphy,
4912 struct wireless_dev *wdev,
4913 struct cfg80211_nan_conf *conf,
4914 u32 changes);
4915
4916 int (*set_multicast_to_unicast)(struct wiphy *wiphy,
4917 struct net_device *dev,
4918 const bool enabled);
4919
4920 int (*get_txq_stats)(struct wiphy *wiphy,
4921 struct wireless_dev *wdev,
4922 struct cfg80211_txq_stats *txqstats);
4923
4924 int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev,
4925 const struct cfg80211_pmk_conf *conf);
4926 int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev,
4927 const u8 *aa);
4928 int (*external_auth)(struct wiphy *wiphy, struct net_device *dev,
4929 struct cfg80211_external_auth_params *params);
4930
4931 int (*tx_control_port)(struct wiphy *wiphy,
4932 struct net_device *dev,
4933 const u8 *buf, size_t len,
4934 const u8 *dest, const __be16 proto,
4935 const bool noencrypt, int link_id,
4936 u64 *cookie);
4937
4938 int (*get_ftm_responder_stats)(struct wiphy *wiphy,
4939 struct net_device *dev,
4940 struct cfg80211_ftm_responder_stats *ftm_stats);
4941
4942 int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
4943 struct cfg80211_pmsr_request *request);
4944 void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
4945 struct cfg80211_pmsr_request *request);
4946 int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,
4947 struct cfg80211_update_owe_info *owe_info);
4948 int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,
4949 const u8 *buf, size_t len);
4950 int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,
4951 struct cfg80211_tid_config *tid_conf);
4952 int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,
4953 const u8 *peer, u8 tids);
4954 int (*set_sar_specs)(struct wiphy *wiphy,
4955 struct cfg80211_sar_specs *sar);
4956 int (*color_change)(struct wiphy *wiphy,
4957 struct net_device *dev,
4958 struct cfg80211_color_change_settings *params);
4959 int (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev,
4960 struct cfg80211_fils_aad *fils_aad);
4961 int (*set_radar_background)(struct wiphy *wiphy,
4962 struct cfg80211_chan_def *chandef);
4963 int (*add_link_station)(struct wiphy *wiphy, struct net_device *dev,
4964 struct link_station_parameters *params);
4965 int (*mod_link_station)(struct wiphy *wiphy, struct net_device *dev,
4966 struct link_station_parameters *params);
4967 int (*del_link_station)(struct wiphy *wiphy, struct net_device *dev,
4968 struct link_station_del_parameters *params);
4969 int (*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev,
4970 struct cfg80211_set_hw_timestamp *hwts);
4971 int (*set_ttlm)(struct wiphy *wiphy, struct net_device *dev,
4972 struct cfg80211_ttlm_params *params);
4973 u32 (*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev);
4974 int (*assoc_ml_reconf)(struct wiphy *wiphy, struct net_device *dev,
4975 struct cfg80211_ml_reconf_req *req);
4976 int (*set_epcs)(struct wiphy *wiphy, struct net_device *dev,
4977 bool val);
4978};
4979
4980/*
4981 * wireless hardware and networking interfaces structures
4982 * and registration/helper functions
4983 */
4984
4985/**
4986 * enum wiphy_flags - wiphy capability flags
4987 *
4988 * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split
4989 * into two, first for legacy bands and second for 6 GHz.
4990 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
4991 * wiphy at all
4992 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
4993 * by default -- this flag will be set depending on the kernel's default
4994 * on wiphy_new(), but can be changed by the driver if it has a good
4995 * reason to override the default
4996 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
4997 * on a VLAN interface). This flag also serves an extra purpose of
4998 * supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype.
4999 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
5000 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
5001 * control port protocol ethertype. The device also honours the
5002 * control_port_no_encrypt flag.
5003 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
5004 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
5005 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
5006 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
5007 * firmware.
5008 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
5009 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
5010 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
5011 * link setup/discovery operations internally. Setup, discovery and
5012 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
5013 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
5014 * used for asking the driver/firmware to perform a TDLS operation.
5015 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
5016 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
5017 * when there are virtual interfaces in AP mode by calling
5018 * cfg80211_report_obss_beacon().
5019 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
5020 * responds to probe-requests in hardware.
5021 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
5022 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
5023 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
5024 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
5025 * beaconing mode (AP, IBSS, Mesh, ...).
5026 * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys
5027 * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs,
5028 * in order to not have them reachable in normal drivers, until we have
5029 * complete feature/interface combinations/etc. advertisement. No driver
5030 * should set this flag for now.
5031 * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys.
5032 * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for
5033 * NL80211_REGDOM_SET_BY_DRIVER.
5034 * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver
5035 * set this flag to update channels on beacon hints.
5036 * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link
5037 * of an NSTR mobile AP MLD.
5038 * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device
5039 */
5040enum wiphy_flags {
5041 WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK = BIT(0),
5042 WIPHY_FLAG_SUPPORTS_MLO = BIT(1),
5043 WIPHY_FLAG_SPLIT_SCAN_6GHZ = BIT(2),
5044 WIPHY_FLAG_NETNS_OK = BIT(3),
5045 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4),
5046 WIPHY_FLAG_4ADDR_AP = BIT(5),
5047 WIPHY_FLAG_4ADDR_STATION = BIT(6),
5048 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7),
5049 WIPHY_FLAG_IBSS_RSN = BIT(8),
5050 WIPHY_FLAG_DISABLE_WEXT = BIT(9),
5051 WIPHY_FLAG_MESH_AUTH = BIT(10),
5052 WIPHY_FLAG_SUPPORTS_EXT_KCK_32 = BIT(11),
5053 WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY = BIT(12),
5054 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13),
5055 WIPHY_FLAG_AP_UAPSD = BIT(14),
5056 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15),
5057 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16),
5058 WIPHY_FLAG_HAVE_AP_SME = BIT(17),
5059 WIPHY_FLAG_REPORTS_OBSS = BIT(18),
5060 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19),
5061 WIPHY_FLAG_OFFCHAN_TX = BIT(20),
5062 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21),
5063 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22),
5064 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23),
5065 WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER = BIT(24),
5066 WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON = BIT(25),
5067};
5068
5069/**
5070 * struct ieee80211_iface_limit - limit on certain interface types
5071 * @max: maximum number of interfaces of these types
5072 * @types: interface types (bits)
5073 */
5074struct ieee80211_iface_limit {
5075 u16 max;
5076 u16 types;
5077};
5078
5079/**
5080 * struct ieee80211_iface_combination - possible interface combination
5081 *
5082 * With this structure the driver can describe which interface
5083 * combinations it supports concurrently. When set in a struct wiphy_radio,
5084 * the combinations refer to combinations of interfaces currently active on
5085 * that radio.
5086 *
5087 * Examples:
5088 *
5089 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
5090 *
5091 * .. code-block:: c
5092 *
5093 * struct ieee80211_iface_limit limits1[] = {
5094 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5095 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
5096 * };
5097 * struct ieee80211_iface_combination combination1 = {
5098 * .limits = limits1,
5099 * .n_limits = ARRAY_SIZE(limits1),
5100 * .max_interfaces = 2,
5101 * .beacon_int_infra_match = true,
5102 * };
5103 *
5104 *
5105 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
5106 *
5107 * .. code-block:: c
5108 *
5109 * struct ieee80211_iface_limit limits2[] = {
5110 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
5111 * BIT(NL80211_IFTYPE_P2P_GO), },
5112 * };
5113 * struct ieee80211_iface_combination combination2 = {
5114 * .limits = limits2,
5115 * .n_limits = ARRAY_SIZE(limits2),
5116 * .max_interfaces = 8,
5117 * .num_different_channels = 1,
5118 * };
5119 *
5120 *
5121 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
5122 *
5123 * This allows for an infrastructure connection and three P2P connections.
5124 *
5125 * .. code-block:: c
5126 *
5127 * struct ieee80211_iface_limit limits3[] = {
5128 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5129 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
5130 * BIT(NL80211_IFTYPE_P2P_CLIENT), },
5131 * };
5132 * struct ieee80211_iface_combination combination3 = {
5133 * .limits = limits3,
5134 * .n_limits = ARRAY_SIZE(limits3),
5135 * .max_interfaces = 4,
5136 * .num_different_channels = 2,
5137 * };
5138 *
5139 */
5140struct ieee80211_iface_combination {
5141 /**
5142 * @limits:
5143 * limits for the given interface types
5144 */
5145 const struct ieee80211_iface_limit *limits;
5146
5147 /**
5148 * @num_different_channels:
5149 * can use up to this many different channels
5150 */
5151 u32 num_different_channels;
5152
5153 /**
5154 * @max_interfaces:
5155 * maximum number of interfaces in total allowed in this group
5156 */
5157 u16 max_interfaces;
5158
5159 /**
5160 * @n_limits:
5161 * number of limitations
5162 */
5163 u8 n_limits;
5164
5165 /**
5166 * @beacon_int_infra_match:
5167 * In this combination, the beacon intervals between infrastructure
5168 * and AP types must match. This is required only in special cases.
5169 */
5170 bool beacon_int_infra_match;
5171
5172 /**
5173 * @radar_detect_widths:
5174 * bitmap of channel widths supported for radar detection
5175 */
5176 u8 radar_detect_widths;
5177
5178 /**
5179 * @radar_detect_regions:
5180 * bitmap of regions supported for radar detection
5181 */
5182 u8 radar_detect_regions;
5183
5184 /**
5185 * @beacon_int_min_gcd:
5186 * This interface combination supports different beacon intervals.
5187 *
5188 * = 0
5189 * all beacon intervals for different interface must be same.
5190 * > 0
5191 * any beacon interval for the interface part of this combination AND
5192 * GCD of all beacon intervals from beaconing interfaces of this
5193 * combination must be greater or equal to this value.
5194 */
5195 u32 beacon_int_min_gcd;
5196};
5197
5198struct ieee80211_txrx_stypes {
5199 u16 tx, rx;
5200};
5201
5202/**
5203 * enum wiphy_wowlan_support_flags - WoWLAN support flags
5204 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
5205 * trigger that keeps the device operating as-is and
5206 * wakes up the host on any activity, for example a
5207 * received packet that passed filtering; note that the
5208 * packet should be preserved in that case
5209 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
5210 * (see nl80211.h)
5211 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
5212 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
5213 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
5214 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
5215 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
5216 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
5217 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
5218 */
5219enum wiphy_wowlan_support_flags {
5220 WIPHY_WOWLAN_ANY = BIT(0),
5221 WIPHY_WOWLAN_MAGIC_PKT = BIT(1),
5222 WIPHY_WOWLAN_DISCONNECT = BIT(2),
5223 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3),
5224 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4),
5225 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5),
5226 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6),
5227 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7),
5228 WIPHY_WOWLAN_NET_DETECT = BIT(8),
5229};
5230
5231struct wiphy_wowlan_tcp_support {
5232 const struct nl80211_wowlan_tcp_data_token_feature *tok;
5233 u32 data_payload_max;
5234 u32 data_interval_max;
5235 u32 wake_payload_max;
5236 bool seq;
5237};
5238
5239/**
5240 * struct wiphy_wowlan_support - WoWLAN support data
5241 * @flags: see &enum wiphy_wowlan_support_flags
5242 * @n_patterns: number of supported wakeup patterns
5243 * (see nl80211.h for the pattern definition)
5244 * @pattern_max_len: maximum length of each pattern
5245 * @pattern_min_len: minimum length of each pattern
5246 * @max_pkt_offset: maximum Rx packet offset
5247 * @max_nd_match_sets: maximum number of matchsets for net-detect,
5248 * similar, but not necessarily identical, to max_match_sets for
5249 * scheduled scans.
5250 * See &struct cfg80211_sched_scan_request.@match_sets for more
5251 * details.
5252 * @tcp: TCP wakeup support information
5253 */
5254struct wiphy_wowlan_support {
5255 u32 flags;
5256 int n_patterns;
5257 int pattern_max_len;
5258 int pattern_min_len;
5259 int max_pkt_offset;
5260 int max_nd_match_sets;
5261 const struct wiphy_wowlan_tcp_support *tcp;
5262};
5263
5264/**
5265 * struct wiphy_coalesce_support - coalesce support data
5266 * @n_rules: maximum number of coalesce rules
5267 * @max_delay: maximum supported coalescing delay in msecs
5268 * @n_patterns: number of supported patterns in a rule
5269 * (see nl80211.h for the pattern definition)
5270 * @pattern_max_len: maximum length of each pattern
5271 * @pattern_min_len: minimum length of each pattern
5272 * @max_pkt_offset: maximum Rx packet offset
5273 */
5274struct wiphy_coalesce_support {
5275 int n_rules;
5276 int max_delay;
5277 int n_patterns;
5278 int pattern_max_len;
5279 int pattern_min_len;
5280 int max_pkt_offset;
5281};
5282
5283/**
5284 * enum wiphy_vendor_command_flags - validation flags for vendor commands
5285 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
5286 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
5287 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
5288 * (must be combined with %_WDEV or %_NETDEV)
5289 */
5290enum wiphy_vendor_command_flags {
5291 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
5292 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
5293 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
5294};
5295
5296/**
5297 * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags
5298 *
5299 * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed
5300 * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed
5301 * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed
5302 *
5303 */
5304enum wiphy_opmode_flag {
5305 STA_OPMODE_MAX_BW_CHANGED = BIT(0),
5306 STA_OPMODE_SMPS_MODE_CHANGED = BIT(1),
5307 STA_OPMODE_N_SS_CHANGED = BIT(2),
5308};
5309
5310/**
5311 * struct sta_opmode_info - Station's ht/vht operation mode information
5312 * @changed: contains value from &enum wiphy_opmode_flag
5313 * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station
5314 * @bw: new max bandwidth value from &enum nl80211_chan_width of a station
5315 * @rx_nss: new rx_nss value of a station
5316 */
5317
5318struct sta_opmode_info {
5319 u32 changed;
5320 enum nl80211_smps_mode smps_mode;
5321 enum nl80211_chan_width bw;
5322 u8 rx_nss;
5323};
5324
5325#define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA))
5326
5327/**
5328 * struct wiphy_vendor_command - vendor command definition
5329 * @info: vendor command identifying information, as used in nl80211
5330 * @flags: flags, see &enum wiphy_vendor_command_flags
5331 * @doit: callback for the operation, note that wdev is %NULL if the
5332 * flags didn't ask for a wdev and non-%NULL otherwise; the data
5333 * pointer may be %NULL if userspace provided no data at all
5334 * @dumpit: dump callback, for transferring bigger/multiple items. The
5335 * @storage points to cb->args[5], ie. is preserved over the multiple
5336 * dumpit calls.
5337 * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA.
5338 * Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the
5339 * attribute is just raw data (e.g. a firmware command).
5340 * @maxattr: highest attribute number in policy
5341 * It's recommended to not have the same sub command with both @doit and
5342 * @dumpit, so that userspace can assume certain ones are get and others
5343 * are used with dump requests.
5344 */
5345struct wiphy_vendor_command {
5346 struct nl80211_vendor_cmd_info info;
5347 u32 flags;
5348 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5349 const void *data, int data_len);
5350 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5351 struct sk_buff *skb, const void *data, int data_len,
5352 unsigned long *storage);
5353 const struct nla_policy *policy;
5354 unsigned int maxattr;
5355};
5356
5357/**
5358 * struct wiphy_iftype_ext_capab - extended capabilities per interface type
5359 * @iftype: interface type
5360 * @extended_capabilities: extended capabilities supported by the driver,
5361 * additional capabilities might be supported by userspace; these are the
5362 * 802.11 extended capabilities ("Extended Capabilities element") and are
5363 * in the same format as in the information element. See IEEE Std
5364 * 802.11-2012 8.4.2.29 for the defined fields.
5365 * @extended_capabilities_mask: mask of the valid values
5366 * @extended_capabilities_len: length of the extended capabilities
5367 * @eml_capabilities: EML capabilities (for MLO)
5368 * @mld_capa_and_ops: MLD capabilities and operations (for MLO)
5369 */
5370struct wiphy_iftype_ext_capab {
5371 enum nl80211_iftype iftype;
5372 const u8 *extended_capabilities;
5373 const u8 *extended_capabilities_mask;
5374 u8 extended_capabilities_len;
5375 u16 eml_capabilities;
5376 u16 mld_capa_and_ops;
5377};
5378
5379/**
5380 * cfg80211_get_iftype_ext_capa - lookup interface type extended capability
5381 * @wiphy: the wiphy to look up from
5382 * @type: the interface type to look up
5383 *
5384 * Return: The extended capability for the given interface @type, may be %NULL
5385 */
5386const struct wiphy_iftype_ext_capab *
5387cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type);
5388
5389/**
5390 * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities
5391 * @max_peers: maximum number of peers in a single measurement
5392 * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement
5393 * @randomize_mac_addr: can randomize MAC address for measurement
5394 * @ftm: FTM measurement data
5395 * @ftm.supported: FTM measurement is supported
5396 * @ftm.asap: ASAP-mode is supported
5397 * @ftm.non_asap: non-ASAP-mode is supported
5398 * @ftm.request_lci: can request LCI data
5399 * @ftm.request_civicloc: can request civic location data
5400 * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble)
5401 * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width)
5402 * @ftm.max_bursts_exponent: maximum burst exponent supported
5403 * (set to -1 if not limited; note that setting this will necessarily
5404 * forbid using the value 15 to let the responder pick)
5405 * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if
5406 * not limited)
5407 * @ftm.trigger_based: trigger based ranging measurement is supported
5408 * @ftm.non_trigger_based: non trigger based ranging measurement is supported
5409 */
5410struct cfg80211_pmsr_capabilities {
5411 unsigned int max_peers;
5412 u8 report_ap_tsf:1,
5413 randomize_mac_addr:1;
5414
5415 struct {
5416 u32 preambles;
5417 u32 bandwidths;
5418 s8 max_bursts_exponent;
5419 u8 max_ftms_per_burst;
5420 u8 supported:1,
5421 asap:1,
5422 non_asap:1,
5423 request_lci:1,
5424 request_civicloc:1,
5425 trigger_based:1,
5426 non_trigger_based:1;
5427 } ftm;
5428};
5429
5430/**
5431 * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm
5432 * suites for interface types defined in @iftypes_mask. Each type in the
5433 * @iftypes_mask must be unique across all instances of iftype_akm_suites.
5434 *
5435 * @iftypes_mask: bitmask of interfaces types
5436 * @akm_suites: points to an array of supported akm suites
5437 * @n_akm_suites: number of supported AKM suites
5438 */
5439struct wiphy_iftype_akm_suites {
5440 u16 iftypes_mask;
5441 const u32 *akm_suites;
5442 int n_akm_suites;
5443};
5444
5445/**
5446 * struct wiphy_radio_freq_range - wiphy frequency range
5447 * @start_freq: start range edge frequency (kHz)
5448 * @end_freq: end range edge frequency (kHz)
5449 */
5450struct wiphy_radio_freq_range {
5451 u32 start_freq;
5452 u32 end_freq;
5453};
5454
5455
5456/**
5457 * struct wiphy_radio - physical radio of a wiphy
5458 * This structure describes a physical radio belonging to a wiphy.
5459 * It is used to describe concurrent-channel capabilities. Only one channel
5460 * can be active on the radio described by struct wiphy_radio.
5461 *
5462 * @freq_range: frequency range that the radio can operate on.
5463 * @n_freq_range: number of elements in @freq_range
5464 *
5465 * @iface_combinations: Valid interface combinations array, should not
5466 * list single interface types.
5467 * @n_iface_combinations: number of entries in @iface_combinations array.
5468 *
5469 * @antenna_mask: bitmask of antennas connected to this radio.
5470 */
5471struct wiphy_radio {
5472 const struct wiphy_radio_freq_range *freq_range;
5473 int n_freq_range;
5474
5475 const struct ieee80211_iface_combination *iface_combinations;
5476 int n_iface_combinations;
5477
5478 u32 antenna_mask;
5479};
5480
5481#define CFG80211_HW_TIMESTAMP_ALL_PEERS 0xffff
5482
5483/**
5484 * struct wiphy - wireless hardware description
5485 * @mtx: mutex for the data (structures) of this device
5486 * @reg_notifier: the driver's regulatory notification callback,
5487 * note that if your driver uses wiphy_apply_custom_regulatory()
5488 * the reg_notifier's request can be passed as NULL
5489 * @regd: the driver's regulatory domain, if one was requested via
5490 * the regulatory_hint() API. This can be used by the driver
5491 * on the reg_notifier() if it chooses to ignore future
5492 * regulatory domain changes caused by other drivers.
5493 * @signal_type: signal type reported in &struct cfg80211_bss.
5494 * @cipher_suites: supported cipher suites
5495 * @n_cipher_suites: number of supported cipher suites
5496 * @akm_suites: supported AKM suites. These are the default AKMs supported if
5497 * the supported AKMs not advertized for a specific interface type in
5498 * iftype_akm_suites.
5499 * @n_akm_suites: number of supported AKM suites
5500 * @iftype_akm_suites: array of supported akm suites info per interface type.
5501 * Note that the bits in @iftypes_mask inside this structure cannot
5502 * overlap (i.e. only one occurrence of each type is allowed across all
5503 * instances of iftype_akm_suites).
5504 * @num_iftype_akm_suites: number of interface types for which supported akm
5505 * suites are specified separately.
5506 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
5507 * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
5508 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
5509 * -1 = fragmentation disabled, only odd values >= 256 used
5510 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
5511 * @_net: the network namespace this wiphy currently lives in
5512 * @perm_addr: permanent MAC address of this device
5513 * @addr_mask: If the device supports multiple MAC addresses by masking,
5514 * set this to a mask with variable bits set to 1, e.g. if the last
5515 * four bits are variable then set it to 00-00-00-00-00-0f. The actual
5516 * variable bits shall be determined by the interfaces added, with
5517 * interfaces not matching the mask being rejected to be brought up.
5518 * @n_addresses: number of addresses in @addresses.
5519 * @addresses: If the device has more than one address, set this pointer
5520 * to a list of addresses (6 bytes each). The first one will be used
5521 * by default for perm_addr. In this case, the mask should be set to
5522 * all-zeroes. In this case it is assumed that the device can handle
5523 * the same number of arbitrary MAC addresses.
5524 * @registered: protects ->resume and ->suspend sysfs callbacks against
5525 * unregister hardware
5526 * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>).
5527 * It will be renamed automatically on wiphy renames
5528 * @dev: (virtual) struct device for this wiphy. The item in
5529 * /sys/class/ieee80211/ points to this. You need use set_wiphy_dev()
5530 * (see below).
5531 * @wext: wireless extension handlers
5532 * @priv: driver private data (sized according to wiphy_new() parameter)
5533 * @interface_modes: bitmask of interfaces types valid for this wiphy,
5534 * must be set by driver
5535 * @iface_combinations: Valid interface combinations array, should not
5536 * list single interface types.
5537 * @n_iface_combinations: number of entries in @iface_combinations array.
5538 * @software_iftypes: bitmask of software interface types, these are not
5539 * subject to any restrictions since they are purely managed in SW.
5540 * @flags: wiphy flags, see &enum wiphy_flags
5541 * @regulatory_flags: wiphy regulatory flags, see
5542 * &enum ieee80211_regulatory_flags
5543 * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
5544 * @ext_features: extended features advertised to nl80211, see
5545 * &enum nl80211_ext_feature_index.
5546 * @bss_priv_size: each BSS struct has private data allocated with it,
5547 * this variable determines its size
5548 * @max_scan_ssids: maximum number of SSIDs the device can scan for in
5549 * any given scan
5550 * @max_sched_scan_reqs: maximum number of scheduled scan requests that
5551 * the device can run concurrently.
5552 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
5553 * for in any given scheduled scan
5554 * @max_match_sets: maximum number of match sets the device can handle
5555 * when performing a scheduled scan, 0 if filtering is not
5556 * supported.
5557 * @max_scan_ie_len: maximum length of user-controlled IEs device can
5558 * add to probe request frames transmitted during a scan, must not
5559 * include fixed IEs like supported rates
5560 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
5561 * scans
5562 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number
5563 * of iterations) for scheduled scan supported by the device.
5564 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a
5565 * single scan plan supported by the device.
5566 * @max_sched_scan_plan_iterations: maximum number of iterations for a single
5567 * scan plan supported by the device.
5568 * @coverage_class: current coverage class
5569 * @fw_version: firmware version for ethtool reporting
5570 * @hw_version: hardware version for ethtool reporting
5571 * @max_num_pmkids: maximum number of PMKIDs supported by device
5572 * @privid: a pointer that drivers can use to identify if an arbitrary
5573 * wiphy is theirs, e.g. in global notifiers
5574 * @bands: information about bands/channels supported by this device
5575 *
5576 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
5577 * transmitted through nl80211, points to an array indexed by interface
5578 * type
5579 *
5580 * @available_antennas_tx: bitmap of antennas which are available to be
5581 * configured as TX antennas. Antenna configuration commands will be
5582 * rejected unless this or @available_antennas_rx is set.
5583 *
5584 * @available_antennas_rx: bitmap of antennas which are available to be
5585 * configured as RX antennas. Antenna configuration commands will be
5586 * rejected unless this or @available_antennas_tx is set.
5587 *
5588 * @probe_resp_offload:
5589 * Bitmap of supported protocols for probe response offloading.
5590 * See &enum nl80211_probe_resp_offload_support_attr. Only valid
5591 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
5592 *
5593 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
5594 * may request, if implemented.
5595 *
5596 * @wowlan: WoWLAN support information
5597 * @wowlan_config: current WoWLAN configuration; this should usually not be
5598 * used since access to it is necessarily racy, use the parameter passed
5599 * to the suspend() operation instead.
5600 *
5601 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
5602 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden.
5603 * If null, then none can be over-ridden.
5604 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden.
5605 * If null, then none can be over-ridden.
5606 *
5607 * @wdev_list: the list of associated (virtual) interfaces; this list must
5608 * not be modified by the driver, but can be read with RTNL/RCU protection.
5609 *
5610 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
5611 * supports for ACL.
5612 *
5613 * @extended_capabilities: extended capabilities supported by the driver,
5614 * additional capabilities might be supported by userspace; these are
5615 * the 802.11 extended capabilities ("Extended Capabilities element")
5616 * and are in the same format as in the information element. See
5617 * 802.11-2012 8.4.2.29 for the defined fields. These are the default
5618 * extended capabilities to be used if the capabilities are not specified
5619 * for a specific interface type in iftype_ext_capab.
5620 * @extended_capabilities_mask: mask of the valid values
5621 * @extended_capabilities_len: length of the extended capabilities
5622 * @iftype_ext_capab: array of extended capabilities per interface type
5623 * @num_iftype_ext_capab: number of interface types for which extended
5624 * capabilities are specified separately.
5625 * @coalesce: packet coalescing support information
5626 *
5627 * @vendor_commands: array of vendor commands supported by the hardware
5628 * @n_vendor_commands: number of vendor commands
5629 * @vendor_events: array of vendor events supported by the hardware
5630 * @n_vendor_events: number of vendor events
5631 *
5632 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
5633 * (including P2P GO) or 0 to indicate no such limit is advertised. The
5634 * driver is allowed to advertise a theoretical limit that it can reach in
5635 * some cases, but may not always reach.
5636 *
5637 * @max_num_csa_counters: Number of supported csa_counters in beacons
5638 * and probe responses. This value should be set if the driver
5639 * wishes to limit the number of csa counters. Default (0) means
5640 * infinite.
5641 * @bss_select_support: bitmask indicating the BSS selection criteria supported
5642 * by the driver in the .connect() callback. The bit position maps to the
5643 * attribute indices defined in &enum nl80211_bss_select_attr.
5644 *
5645 * @nan_supported_bands: bands supported by the device in NAN mode, a
5646 * bitmap of &enum nl80211_band values. For instance, for
5647 * NL80211_BAND_2GHZ, bit 0 would be set
5648 * (i.e. BIT(NL80211_BAND_2GHZ)).
5649 *
5650 * @txq_limit: configuration of internal TX queue frame limit
5651 * @txq_memory_limit: configuration internal TX queue memory limit
5652 * @txq_quantum: configuration of internal TX queue scheduler quantum
5653 *
5654 * @tx_queue_len: allow setting transmit queue len for drivers not using
5655 * wake_tx_queue
5656 *
5657 * @support_mbssid: can HW support association with nontransmitted AP
5658 * @support_only_he_mbssid: don't parse MBSSID elements if it is not
5659 * HE AP, in order to avoid compatibility issues.
5660 * @support_mbssid must be set for this to have any effect.
5661 *
5662 * @pmsr_capa: peer measurement capabilities
5663 *
5664 * @tid_config_support: describes the per-TID config support that the
5665 * device has
5666 * @tid_config_support.vif: bitmap of attributes (configurations)
5667 * supported by the driver for each vif
5668 * @tid_config_support.peer: bitmap of attributes (configurations)
5669 * supported by the driver for each peer
5670 * @tid_config_support.max_retry: maximum supported retry count for
5671 * long/short retry configuration
5672 *
5673 * @max_data_retry_count: maximum supported per TID retry count for
5674 * configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
5675 * %NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes
5676 * @sar_capa: SAR control capabilities
5677 * @rfkill: a pointer to the rfkill structure
5678 *
5679 * @mbssid_max_interfaces: maximum number of interfaces supported by the driver
5680 * in a multiple BSSID set. This field must be set to a non-zero value
5681 * by the driver to advertise MBSSID support.
5682 * @ema_max_profile_periodicity: maximum profile periodicity supported by
5683 * the driver. Setting this field to a non-zero value indicates that the
5684 * driver supports enhanced multi-BSSID advertisements (EMA AP).
5685 * @max_num_akm_suites: maximum number of AKM suites allowed for
5686 * configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and
5687 * %NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by
5688 * driver. If set by driver minimum allowed value is
5689 * NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with
5690 * legacy userspace and maximum allowed value is
5691 * CFG80211_MAX_NUM_AKM_SUITES.
5692 *
5693 * @hw_timestamp_max_peers: maximum number of peers that the driver supports
5694 * enabling HW timestamping for concurrently. Setting this field to a
5695 * non-zero value indicates that the driver supports HW timestamping.
5696 * A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver
5697 * supports enabling HW timestamping for all peers (i.e. no need to
5698 * specify a mac address).
5699 *
5700 * @radio: radios belonging to this wiphy
5701 * @n_radio: number of radios
5702 */
5703struct wiphy {
5704 struct mutex mtx;
5705
5706 /* assign these fields before you register the wiphy */
5707
5708 u8 perm_addr[ETH_ALEN];
5709 u8 addr_mask[ETH_ALEN];
5710
5711 struct mac_address *addresses;
5712
5713 const struct ieee80211_txrx_stypes *mgmt_stypes;
5714
5715 const struct ieee80211_iface_combination *iface_combinations;
5716 int n_iface_combinations;
5717 u16 software_iftypes;
5718
5719 u16 n_addresses;
5720
5721 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
5722 u16 interface_modes;
5723
5724 u16 max_acl_mac_addrs;
5725
5726 u32 flags, regulatory_flags, features;
5727 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
5728
5729 u32 ap_sme_capa;
5730
5731 enum cfg80211_signal_type signal_type;
5732
5733 int bss_priv_size;
5734 u8 max_scan_ssids;
5735 u8 max_sched_scan_reqs;
5736 u8 max_sched_scan_ssids;
5737 u8 max_match_sets;
5738 u16 max_scan_ie_len;
5739 u16 max_sched_scan_ie_len;
5740 u32 max_sched_scan_plans;
5741 u32 max_sched_scan_plan_interval;
5742 u32 max_sched_scan_plan_iterations;
5743
5744 int n_cipher_suites;
5745 const u32 *cipher_suites;
5746
5747 int n_akm_suites;
5748 const u32 *akm_suites;
5749
5750 const struct wiphy_iftype_akm_suites *iftype_akm_suites;
5751 unsigned int num_iftype_akm_suites;
5752
5753 u8 retry_short;
5754 u8 retry_long;
5755 u32 frag_threshold;
5756 u32 rts_threshold;
5757 u8 coverage_class;
5758
5759 char fw_version[ETHTOOL_FWVERS_LEN];
5760 u32 hw_version;
5761
5762#ifdef CONFIG_PM
5763 const struct wiphy_wowlan_support *wowlan;
5764 struct cfg80211_wowlan *wowlan_config;
5765#endif
5766
5767 u16 max_remain_on_channel_duration;
5768
5769 u8 max_num_pmkids;
5770
5771 u32 available_antennas_tx;
5772 u32 available_antennas_rx;
5773
5774 u32 probe_resp_offload;
5775
5776 const u8 *extended_capabilities, *extended_capabilities_mask;
5777 u8 extended_capabilities_len;
5778
5779 const struct wiphy_iftype_ext_capab *iftype_ext_capab;
5780 unsigned int num_iftype_ext_capab;
5781
5782 const void *privid;
5783
5784 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
5785
5786 void (*reg_notifier)(struct wiphy *wiphy,
5787 struct regulatory_request *request);
5788
5789 /* fields below are read-only, assigned by cfg80211 */
5790
5791 const struct ieee80211_regdomain __rcu *regd;
5792
5793 struct device dev;
5794
5795 bool registered;
5796
5797 struct dentry *debugfsdir;
5798
5799 const struct ieee80211_ht_cap *ht_capa_mod_mask;
5800 const struct ieee80211_vht_cap *vht_capa_mod_mask;
5801
5802 struct list_head wdev_list;
5803
5804 possible_net_t _net;
5805
5806#ifdef CONFIG_CFG80211_WEXT
5807 const struct iw_handler_def *wext;
5808#endif
5809
5810 const struct wiphy_coalesce_support *coalesce;
5811
5812 const struct wiphy_vendor_command *vendor_commands;
5813 const struct nl80211_vendor_cmd_info *vendor_events;
5814 int n_vendor_commands, n_vendor_events;
5815
5816 u16 max_ap_assoc_sta;
5817
5818 u8 max_num_csa_counters;
5819
5820 u32 bss_select_support;
5821
5822 u8 nan_supported_bands;
5823
5824 u32 txq_limit;
5825 u32 txq_memory_limit;
5826 u32 txq_quantum;
5827
5828 unsigned long tx_queue_len;
5829
5830 u8 support_mbssid:1,
5831 support_only_he_mbssid:1;
5832
5833 const struct cfg80211_pmsr_capabilities *pmsr_capa;
5834
5835 struct {
5836 u64 peer, vif;
5837 u8 max_retry;
5838 } tid_config_support;
5839
5840 u8 max_data_retry_count;
5841
5842 const struct cfg80211_sar_capa *sar_capa;
5843
5844 struct rfkill *rfkill;
5845
5846 u8 mbssid_max_interfaces;
5847 u8 ema_max_profile_periodicity;
5848 u16 max_num_akm_suites;
5849
5850 u16 hw_timestamp_max_peers;
5851
5852 int n_radio;
5853 const struct wiphy_radio *radio;
5854
5855 char priv[] __aligned(NETDEV_ALIGN);
5856};
5857
5858static inline struct net *wiphy_net(struct wiphy *wiphy)
5859{
5860 return read_pnet(pnet: &wiphy->_net);
5861}
5862
5863static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
5864{
5865 write_pnet(pnet: &wiphy->_net, net);
5866}
5867
5868/**
5869 * wiphy_priv - return priv from wiphy
5870 *
5871 * @wiphy: the wiphy whose priv pointer to return
5872 * Return: The priv of @wiphy.
5873 */
5874static inline void *wiphy_priv(struct wiphy *wiphy)
5875{
5876 BUG_ON(!wiphy);
5877 return &wiphy->priv;
5878}
5879
5880/**
5881 * priv_to_wiphy - return the wiphy containing the priv
5882 *
5883 * @priv: a pointer previously returned by wiphy_priv
5884 * Return: The wiphy of @priv.
5885 */
5886static inline struct wiphy *priv_to_wiphy(void *priv)
5887{
5888 BUG_ON(!priv);
5889 return container_of(priv, struct wiphy, priv);
5890}
5891
5892/**
5893 * set_wiphy_dev - set device pointer for wiphy
5894 *
5895 * @wiphy: The wiphy whose device to bind
5896 * @dev: The device to parent it to
5897 */
5898static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
5899{
5900 wiphy->dev.parent = dev;
5901}
5902
5903/**
5904 * wiphy_dev - get wiphy dev pointer
5905 *
5906 * @wiphy: The wiphy whose device struct to look up
5907 * Return: The dev of @wiphy.
5908 */
5909static inline struct device *wiphy_dev(struct wiphy *wiphy)
5910{
5911 return wiphy->dev.parent;
5912}
5913
5914/**
5915 * wiphy_name - get wiphy name
5916 *
5917 * @wiphy: The wiphy whose name to return
5918 * Return: The name of @wiphy.
5919 */
5920static inline const char *wiphy_name(const struct wiphy *wiphy)
5921{
5922 return dev_name(dev: &wiphy->dev);
5923}
5924
5925/**
5926 * wiphy_new_nm - create a new wiphy for use with cfg80211
5927 *
5928 * @ops: The configuration operations for this device
5929 * @sizeof_priv: The size of the private area to allocate
5930 * @requested_name: Request a particular name.
5931 * NULL is valid value, and means use the default phy%d naming.
5932 *
5933 * Create a new wiphy and associate the given operations with it.
5934 * @sizeof_priv bytes are allocated for private use.
5935 *
5936 * Return: A pointer to the new wiphy. This pointer must be
5937 * assigned to each netdev's ieee80211_ptr for proper operation.
5938 */
5939struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
5940 const char *requested_name);
5941
5942/**
5943 * wiphy_new - create a new wiphy for use with cfg80211
5944 *
5945 * @ops: The configuration operations for this device
5946 * @sizeof_priv: The size of the private area to allocate
5947 *
5948 * Create a new wiphy and associate the given operations with it.
5949 * @sizeof_priv bytes are allocated for private use.
5950 *
5951 * Return: A pointer to the new wiphy. This pointer must be
5952 * assigned to each netdev's ieee80211_ptr for proper operation.
5953 */
5954static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
5955 int sizeof_priv)
5956{
5957 return wiphy_new_nm(ops, sizeof_priv, NULL);
5958}
5959
5960/**
5961 * wiphy_register - register a wiphy with cfg80211
5962 *
5963 * @wiphy: The wiphy to register.
5964 *
5965 * Return: A non-negative wiphy index or a negative error code.
5966 */
5967int wiphy_register(struct wiphy *wiphy);
5968
5969/* this is a define for better error reporting (file/line) */
5970#define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx)
5971
5972/**
5973 * rcu_dereference_wiphy - rcu_dereference with debug checking
5974 * @wiphy: the wiphy to check the locking on
5975 * @p: The pointer to read, prior to dereferencing
5976 *
5977 * Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
5978 * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference().
5979 */
5980#define rcu_dereference_wiphy(wiphy, p) \
5981 rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx))
5982
5983/**
5984 * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx
5985 * @wiphy: the wiphy to check the locking on
5986 * @p: The pointer to read, prior to dereferencing
5987 *
5988 * Return: the value of the specified RCU-protected pointer, but omit the
5989 * READ_ONCE(), because caller holds the wiphy mutex used for updates.
5990 */
5991#define wiphy_dereference(wiphy, p) \
5992 rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx))
5993
5994/**
5995 * get_wiphy_regdom - get custom regdomain for the given wiphy
5996 * @wiphy: the wiphy to get the regdomain from
5997 *
5998 * Context: Requires any of RTNL, wiphy mutex or RCU protection.
5999 *
6000 * Return: pointer to the regulatory domain associated with the wiphy
6001 */
6002const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy);
6003
6004/**
6005 * wiphy_unregister - deregister a wiphy from cfg80211
6006 *
6007 * @wiphy: The wiphy to unregister.
6008 *
6009 * After this call, no more requests can be made with this priv
6010 * pointer, but the call may sleep to wait for an outstanding
6011 * request that is being handled.
6012 */
6013void wiphy_unregister(struct wiphy *wiphy);
6014
6015/**
6016 * wiphy_free - free wiphy
6017 *
6018 * @wiphy: The wiphy to free
6019 */
6020void wiphy_free(struct wiphy *wiphy);
6021
6022/* internal structs */
6023struct cfg80211_conn;
6024struct cfg80211_internal_bss;
6025struct cfg80211_cached_keys;
6026struct cfg80211_cqm_config;
6027
6028/**
6029 * wiphy_lock - lock the wiphy
6030 * @wiphy: the wiphy to lock
6031 *
6032 * This is needed around registering and unregistering netdevs that
6033 * aren't created through cfg80211 calls, since that requires locking
6034 * in cfg80211 when the notifiers is called, but that cannot
6035 * differentiate which way it's called.
6036 *
6037 * It can also be used by drivers for their own purposes.
6038 *
6039 * When cfg80211 ops are called, the wiphy is already locked.
6040 *
6041 * Note that this makes sure that no workers that have been queued
6042 * with wiphy_queue_work() are running.
6043 */
6044static inline void wiphy_lock(struct wiphy *wiphy)
6045 __acquires(&wiphy->mtx)
6046{
6047 mutex_lock(&wiphy->mtx);
6048 __acquire(&wiphy->mtx);
6049}
6050
6051/**
6052 * wiphy_unlock - unlock the wiphy again
6053 * @wiphy: the wiphy to unlock
6054 */
6055static inline void wiphy_unlock(struct wiphy *wiphy)
6056 __releases(&wiphy->mtx)
6057{
6058 __release(&wiphy->mtx);
6059 mutex_unlock(lock: &wiphy->mtx);
6060}
6061
6062DEFINE_GUARD(wiphy, struct wiphy *,
6063 mutex_lock(&_T->mtx),
6064 mutex_unlock(&_T->mtx))
6065
6066struct wiphy_work;
6067typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *);
6068
6069struct wiphy_work {
6070 struct list_head entry;
6071 wiphy_work_func_t func;
6072};
6073
6074static inline void wiphy_work_init(struct wiphy_work *work,
6075 wiphy_work_func_t func)
6076{
6077 INIT_LIST_HEAD(list: &work->entry);
6078 work->func = func;
6079}
6080
6081/**
6082 * wiphy_work_queue - queue work for the wiphy
6083 * @wiphy: the wiphy to queue for
6084 * @work: the work item
6085 *
6086 * This is useful for work that must be done asynchronously, and work
6087 * queued here has the special property that the wiphy mutex will be
6088 * held as if wiphy_lock() was called, and that it cannot be running
6089 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6090 * use just cancel_work() instead of cancel_work_sync(), it requires
6091 * being in a section protected by wiphy_lock().
6092 */
6093void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work);
6094
6095/**
6096 * wiphy_work_cancel - cancel previously queued work
6097 * @wiphy: the wiphy, for debug purposes
6098 * @work: the work to cancel
6099 *
6100 * Cancel the work *without* waiting for it, this assumes being
6101 * called under the wiphy mutex acquired by wiphy_lock().
6102 */
6103void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work);
6104
6105/**
6106 * wiphy_work_flush - flush previously queued work
6107 * @wiphy: the wiphy, for debug purposes
6108 * @work: the work to flush, this can be %NULL to flush all work
6109 *
6110 * Flush the work (i.e. run it if pending). This must be called
6111 * under the wiphy mutex acquired by wiphy_lock().
6112 */
6113void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work);
6114
6115struct wiphy_delayed_work {
6116 struct wiphy_work work;
6117 struct wiphy *wiphy;
6118 struct timer_list timer;
6119};
6120
6121void wiphy_delayed_work_timer(struct timer_list *t);
6122
6123static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork,
6124 wiphy_work_func_t func)
6125{
6126 timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0);
6127 wiphy_work_init(work: &dwork->work, func);
6128}
6129
6130/**
6131 * wiphy_delayed_work_queue - queue delayed work for the wiphy
6132 * @wiphy: the wiphy to queue for
6133 * @dwork: the delayable worker
6134 * @delay: number of jiffies to wait before queueing
6135 *
6136 * This is useful for work that must be done asynchronously, and work
6137 * queued here has the special property that the wiphy mutex will be
6138 * held as if wiphy_lock() was called, and that it cannot be running
6139 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6140 * use just cancel_work() instead of cancel_work_sync(), it requires
6141 * being in a section protected by wiphy_lock().
6142 */
6143void wiphy_delayed_work_queue(struct wiphy *wiphy,
6144 struct wiphy_delayed_work *dwork,
6145 unsigned long delay);
6146
6147/**
6148 * wiphy_delayed_work_cancel - cancel previously queued delayed work
6149 * @wiphy: the wiphy, for debug purposes
6150 * @dwork: the delayed work to cancel
6151 *
6152 * Cancel the work *without* waiting for it, this assumes being
6153 * called under the wiphy mutex acquired by wiphy_lock().
6154 */
6155void wiphy_delayed_work_cancel(struct wiphy *wiphy,
6156 struct wiphy_delayed_work *dwork);
6157
6158/**
6159 * wiphy_delayed_work_flush - flush previously queued delayed work
6160 * @wiphy: the wiphy, for debug purposes
6161 * @dwork: the delayed work to flush
6162 *
6163 * Flush the work (i.e. run it if pending). This must be called
6164 * under the wiphy mutex acquired by wiphy_lock().
6165 */
6166void wiphy_delayed_work_flush(struct wiphy *wiphy,
6167 struct wiphy_delayed_work *dwork);
6168
6169/**
6170 * wiphy_delayed_work_pending - Find out whether a wiphy delayable
6171 * work item is currently pending.
6172 *
6173 * @wiphy: the wiphy, for debug purposes
6174 * @dwork: the delayed work in question
6175 *
6176 * Return: true if timer is pending, false otherwise
6177 *
6178 * How wiphy_delayed_work_queue() works is by setting a timer which
6179 * when it expires calls wiphy_work_queue() to queue the wiphy work.
6180 * Because wiphy_delayed_work_queue() uses mod_timer(), if it is
6181 * called twice and the second call happens before the first call
6182 * deadline, the work will rescheduled for the second deadline and
6183 * won't run before that.
6184 *
6185 * wiphy_delayed_work_pending() can be used to detect if calling
6186 * wiphy_work_delayed_work_queue() would start a new work schedule
6187 * or delayed a previous one. As seen below it cannot be used to
6188 * detect precisely if the work has finished to execute nor if it
6189 * is currently executing.
6190 *
6191 * CPU0 CPU1
6192 * wiphy_delayed_work_queue(wk)
6193 * mod_timer(wk->timer)
6194 * wiphy_delayed_work_pending(wk) -> true
6195 *
6196 * [...]
6197 * expire_timers(wk->timer)
6198 * detach_timer(wk->timer)
6199 * wiphy_delayed_work_pending(wk) -> false
6200 * wk->timer->function() |
6201 * wiphy_work_queue(wk) | delayed work pending
6202 * list_add_tail() | returns false but
6203 * queue_work(cfg80211_wiphy_work) | wk->func() has not
6204 * | been run yet
6205 * [...] |
6206 * cfg80211_wiphy_work() |
6207 * wk->func() V
6208 *
6209 */
6210bool wiphy_delayed_work_pending(struct wiphy *wiphy,
6211 struct wiphy_delayed_work *dwork);
6212
6213/**
6214 * enum ieee80211_ap_reg_power - regulatory power for an Access Point
6215 *
6216 * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode
6217 * @IEEE80211_REG_LPI_AP: Indoor Access Point
6218 * @IEEE80211_REG_SP_AP: Standard power Access Point
6219 * @IEEE80211_REG_VLP_AP: Very low power Access Point
6220 */
6221enum ieee80211_ap_reg_power {
6222 IEEE80211_REG_UNSET_AP,
6223 IEEE80211_REG_LPI_AP,
6224 IEEE80211_REG_SP_AP,
6225 IEEE80211_REG_VLP_AP,
6226};
6227
6228/**
6229 * struct wireless_dev - wireless device state
6230 *
6231 * For netdevs, this structure must be allocated by the driver
6232 * that uses the ieee80211_ptr field in struct net_device (this
6233 * is intentional so it can be allocated along with the netdev.)
6234 * It need not be registered then as netdev registration will
6235 * be intercepted by cfg80211 to see the new wireless device,
6236 * however, drivers must lock the wiphy before registering or
6237 * unregistering netdevs if they pre-create any netdevs (in ops
6238 * called from cfg80211, the wiphy is already locked.)
6239 *
6240 * For non-netdev uses, it must also be allocated by the driver
6241 * in response to the cfg80211 callbacks that require it, as
6242 * there's no netdev registration in that case it may not be
6243 * allocated outside of callback operations that return it.
6244 *
6245 * @wiphy: pointer to hardware description
6246 * @iftype: interface type
6247 * @registered: is this wdev already registered with cfg80211
6248 * @registering: indicates we're doing registration under wiphy lock
6249 * for the notifier
6250 * @list: (private) Used to collect the interfaces
6251 * @netdev: (private) Used to reference back to the netdev, may be %NULL
6252 * @identifier: (private) Identifier used in nl80211 to identify this
6253 * wireless device if it has no netdev
6254 * @u: union containing data specific to @iftype
6255 * @connected: indicates if connected or not (STA mode)
6256 * @wext: (private) Used by the internal wireless extensions compat code
6257 * @wext.ibss: (private) IBSS data part of wext handling
6258 * @wext.connect: (private) connection handling data
6259 * @wext.keys: (private) (WEP) key data
6260 * @wext.ie: (private) extra elements for association
6261 * @wext.ie_len: (private) length of extra elements
6262 * @wext.bssid: (private) selected network BSSID
6263 * @wext.ssid: (private) selected network SSID
6264 * @wext.default_key: (private) selected default key index
6265 * @wext.default_mgmt_key: (private) selected default management key index
6266 * @wext.prev_bssid: (private) previous BSSID for reassociation
6267 * @wext.prev_bssid_valid: (private) previous BSSID validity
6268 * @use_4addr: indicates 4addr mode is used on this interface, must be
6269 * set by driver (if supported) on add_interface BEFORE registering the
6270 * netdev and may otherwise be used by driver read-only, will be update
6271 * by cfg80211 on change_interface
6272 * @mgmt_registrations: list of registrations for management frames
6273 * @mgmt_registrations_need_update: mgmt registrations were updated,
6274 * need to propagate the update to the driver
6275 * @address: The address for this device, valid only if @netdev is %NULL
6276 * @is_running: true if this is a non-netdev device that has been started, e.g.
6277 * the P2P Device.
6278 * @ps: powersave mode is enabled
6279 * @ps_timeout: dynamic powersave timeout
6280 * @ap_unexpected_nlportid: (private) netlink port ID of application
6281 * registered for unexpected class 3 frames (AP mode)
6282 * @conn: (private) cfg80211 software SME connection state machine data
6283 * @connect_keys: (private) keys to set after connection is established
6284 * @conn_bss_type: connecting/connected BSS type
6285 * @conn_owner_nlportid: (private) connection owner socket port ID
6286 * @disconnect_wk: (private) auto-disconnect work
6287 * @disconnect_bssid: (private) the BSSID to use for auto-disconnect
6288 * @event_list: (private) list for internal event processing
6289 * @event_lock: (private) lock for event list
6290 * @owner_nlportid: (private) owner socket port ID
6291 * @nl_owner_dead: (private) owner socket went away
6292 * @cqm_rssi_work: (private) CQM RSSI reporting work
6293 * @cqm_config: (private) nl80211 RSSI monitor state
6294 * @pmsr_list: (private) peer measurement requests
6295 * @pmsr_lock: (private) peer measurements requests/results lock
6296 * @pmsr_free_wk: (private) peer measurements cleanup work
6297 * @unprot_beacon_reported: (private) timestamp of last
6298 * unprotected beacon report
6299 * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr
6300 * @ap and @client for each link
6301 * @links.cac_started: true if DFS channel availability check has been
6302 * started
6303 * @links.cac_start_time: timestamp (jiffies) when the dfs state was
6304 * entered.
6305 * @links.cac_time_ms: CAC time in ms
6306 * @valid_links: bitmap describing what elements of @links are valid
6307 * @radio_mask: Bitmask of radios that this interface is allowed to operate on.
6308 */
6309struct wireless_dev {
6310 struct wiphy *wiphy;
6311 enum nl80211_iftype iftype;
6312
6313 /* the remainder of this struct should be private to cfg80211 */
6314 struct list_head list;
6315 struct net_device *netdev;
6316
6317 u32 identifier;
6318
6319 struct list_head mgmt_registrations;
6320 u8 mgmt_registrations_need_update:1;
6321
6322 bool use_4addr, is_running, registered, registering;
6323
6324 u8 address[ETH_ALEN] __aligned(sizeof(u16));
6325
6326 /* currently used for IBSS and SME - might be rearranged later */
6327 struct cfg80211_conn *conn;
6328 struct cfg80211_cached_keys *connect_keys;
6329 enum ieee80211_bss_type conn_bss_type;
6330 u32 conn_owner_nlportid;
6331
6332 struct work_struct disconnect_wk;
6333 u8 disconnect_bssid[ETH_ALEN];
6334
6335 struct list_head event_list;
6336 spinlock_t event_lock;
6337
6338 u8 connected:1;
6339
6340 bool ps;
6341 int ps_timeout;
6342
6343 u32 ap_unexpected_nlportid;
6344
6345 u32 owner_nlportid;
6346 bool nl_owner_dead;
6347
6348#ifdef CONFIG_CFG80211_WEXT
6349 /* wext data */
6350 struct {
6351 struct cfg80211_ibss_params ibss;
6352 struct cfg80211_connect_params connect;
6353 struct cfg80211_cached_keys *keys;
6354 const u8 *ie;
6355 size_t ie_len;
6356 u8 bssid[ETH_ALEN];
6357 u8 prev_bssid[ETH_ALEN];
6358 u8 ssid[IEEE80211_MAX_SSID_LEN];
6359 s8 default_key, default_mgmt_key;
6360 bool prev_bssid_valid;
6361 } wext;
6362#endif
6363
6364 struct wiphy_work cqm_rssi_work;
6365 struct cfg80211_cqm_config __rcu *cqm_config;
6366
6367 struct list_head pmsr_list;
6368 spinlock_t pmsr_lock;
6369 struct work_struct pmsr_free_wk;
6370
6371 unsigned long unprot_beacon_reported;
6372
6373 union {
6374 struct {
6375 u8 connected_addr[ETH_ALEN] __aligned(2);
6376 u8 ssid[IEEE80211_MAX_SSID_LEN];
6377 u8 ssid_len;
6378 } client;
6379 struct {
6380 int beacon_interval;
6381 struct cfg80211_chan_def preset_chandef;
6382 struct cfg80211_chan_def chandef;
6383 u8 id[IEEE80211_MAX_MESH_ID_LEN];
6384 u8 id_len, id_up_len;
6385 } mesh;
6386 struct {
6387 struct cfg80211_chan_def preset_chandef;
6388 u8 ssid[IEEE80211_MAX_SSID_LEN];
6389 u8 ssid_len;
6390 } ap;
6391 struct {
6392 struct cfg80211_internal_bss *current_bss;
6393 struct cfg80211_chan_def chandef;
6394 int beacon_interval;
6395 u8 ssid[IEEE80211_MAX_SSID_LEN];
6396 u8 ssid_len;
6397 } ibss;
6398 struct {
6399 struct cfg80211_chan_def chandef;
6400 } ocb;
6401 } u;
6402
6403 struct {
6404 u8 addr[ETH_ALEN] __aligned(2);
6405 union {
6406 struct {
6407 unsigned int beacon_interval;
6408 struct cfg80211_chan_def chandef;
6409 } ap;
6410 struct {
6411 struct cfg80211_internal_bss *current_bss;
6412 } client;
6413 };
6414
6415 bool cac_started;
6416 unsigned long cac_start_time;
6417 unsigned int cac_time_ms;
6418 } links[IEEE80211_MLD_MAX_NUM_LINKS];
6419 u16 valid_links;
6420
6421 u32 radio_mask;
6422};
6423
6424static inline const u8 *wdev_address(struct wireless_dev *wdev)
6425{
6426 if (wdev->netdev)
6427 return wdev->netdev->dev_addr;
6428 return wdev->address;
6429}
6430
6431static inline bool wdev_running(struct wireless_dev *wdev)
6432{
6433 if (wdev->netdev)
6434 return netif_running(dev: wdev->netdev);
6435 return wdev->is_running;
6436}
6437
6438/**
6439 * wdev_priv - return wiphy priv from wireless_dev
6440 *
6441 * @wdev: The wireless device whose wiphy's priv pointer to return
6442 * Return: The wiphy priv of @wdev.
6443 */
6444static inline void *wdev_priv(struct wireless_dev *wdev)
6445{
6446 BUG_ON(!wdev);
6447 return wiphy_priv(wiphy: wdev->wiphy);
6448}
6449
6450/**
6451 * wdev_chandef - return chandef pointer from wireless_dev
6452 * @wdev: the wdev
6453 * @link_id: the link ID for MLO
6454 *
6455 * Return: The chandef depending on the mode, or %NULL.
6456 */
6457struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
6458 unsigned int link_id);
6459
6460static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev,
6461 unsigned int link_id)
6462{
6463 WARN_ON(link_id && !wdev->valid_links);
6464 WARN_ON(wdev->valid_links &&
6465 !(wdev->valid_links & BIT(link_id)));
6466}
6467
6468#define for_each_valid_link(link_info, link_id) \
6469 for (link_id = 0; \
6470 link_id < ((link_info)->valid_links ? \
6471 ARRAY_SIZE((link_info)->links) : 1); \
6472 link_id++) \
6473 if (!(link_info)->valid_links || \
6474 ((link_info)->valid_links & BIT(link_id)))
6475
6476/**
6477 * DOC: Utility functions
6478 *
6479 * cfg80211 offers a number of utility functions that can be useful.
6480 */
6481
6482/**
6483 * ieee80211_channel_equal - compare two struct ieee80211_channel
6484 *
6485 * @a: 1st struct ieee80211_channel
6486 * @b: 2nd struct ieee80211_channel
6487 * Return: true if center frequency of @a == @b
6488 */
6489static inline bool
6490ieee80211_channel_equal(struct ieee80211_channel *a,
6491 struct ieee80211_channel *b)
6492{
6493 return (a->center_freq == b->center_freq &&
6494 a->freq_offset == b->freq_offset);
6495}
6496
6497/**
6498 * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz
6499 * @chan: struct ieee80211_channel to convert
6500 * Return: The corresponding frequency (in KHz)
6501 */
6502static inline u32
6503ieee80211_channel_to_khz(const struct ieee80211_channel *chan)
6504{
6505 return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset;
6506}
6507
6508/**
6509 * ieee80211_s1g_channel_width - get allowed channel width from @chan
6510 *
6511 * Only allowed for band NL80211_BAND_S1GHZ
6512 * @chan: channel
6513 * Return: The allowed channel width for this center_freq
6514 */
6515enum nl80211_chan_width
6516ieee80211_s1g_channel_width(const struct ieee80211_channel *chan);
6517
6518/**
6519 * ieee80211_channel_to_freq_khz - convert channel number to frequency
6520 * @chan: channel number
6521 * @band: band, necessary due to channel number overlap
6522 * Return: The corresponding frequency (in KHz), or 0 if the conversion failed.
6523 */
6524u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band);
6525
6526/**
6527 * ieee80211_channel_to_frequency - convert channel number to frequency
6528 * @chan: channel number
6529 * @band: band, necessary due to channel number overlap
6530 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
6531 */
6532static inline int
6533ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
6534{
6535 return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band));
6536}
6537
6538/**
6539 * ieee80211_freq_khz_to_channel - convert frequency to channel number
6540 * @freq: center frequency in KHz
6541 * Return: The corresponding channel, or 0 if the conversion failed.
6542 */
6543int ieee80211_freq_khz_to_channel(u32 freq);
6544
6545/**
6546 * ieee80211_frequency_to_channel - convert frequency to channel number
6547 * @freq: center frequency in MHz
6548 * Return: The corresponding channel, or 0 if the conversion failed.
6549 */
6550static inline int
6551ieee80211_frequency_to_channel(int freq)
6552{
6553 return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq));
6554}
6555
6556/**
6557 * ieee80211_get_channel_khz - get channel struct from wiphy for specified
6558 * frequency
6559 * @wiphy: the struct wiphy to get the channel for
6560 * @freq: the center frequency (in KHz) of the channel
6561 * Return: The channel struct from @wiphy at @freq.
6562 */
6563struct ieee80211_channel *
6564ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq);
6565
6566/**
6567 * ieee80211_get_channel - get channel struct from wiphy for specified frequency
6568 *
6569 * @wiphy: the struct wiphy to get the channel for
6570 * @freq: the center frequency (in MHz) of the channel
6571 * Return: The channel struct from @wiphy at @freq.
6572 */
6573static inline struct ieee80211_channel *
6574ieee80211_get_channel(struct wiphy *wiphy, int freq)
6575{
6576 return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq));
6577}
6578
6579/**
6580 * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC
6581 * @chan: control channel to check
6582 *
6583 * The Preferred Scanning Channels (PSC) are defined in
6584 * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3
6585 *
6586 * Return: %true if channel is a PSC, %false otherwise
6587 */
6588static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan)
6589{
6590 if (chan->band != NL80211_BAND_6GHZ)
6591 return false;
6592
6593 return ieee80211_frequency_to_channel(freq: chan->center_freq) % 16 == 5;
6594}
6595
6596/**
6597 * cfg80211_radio_chandef_valid - Check if the radio supports the chandef
6598 *
6599 * @radio: wiphy radio
6600 * @chandef: chandef for current channel
6601 *
6602 * Return: whether or not the given chandef is valid for the given radio
6603 */
6604bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
6605 const struct cfg80211_chan_def *chandef);
6606
6607/**
6608 * cfg80211_wdev_channel_allowed - Check if the wdev may use the channel
6609 *
6610 * @wdev: the wireless device
6611 * @chan: channel to check
6612 *
6613 * Return: whether or not the wdev may use the channel
6614 */
6615bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
6616 struct ieee80211_channel *chan);
6617
6618/**
6619 * ieee80211_get_response_rate - get basic rate for a given rate
6620 *
6621 * @sband: the band to look for rates in
6622 * @basic_rates: bitmap of basic rates
6623 * @bitrate: the bitrate for which to find the basic rate
6624 *
6625 * Return: The basic rate corresponding to a given bitrate, that
6626 * is the next lower bitrate contained in the basic rate map,
6627 * which is, for this function, given as a bitmap of indices of
6628 * rates in the band's bitrate table.
6629 */
6630const struct ieee80211_rate *
6631ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
6632 u32 basic_rates, int bitrate);
6633
6634/**
6635 * ieee80211_mandatory_rates - get mandatory rates for a given band
6636 * @sband: the band to look for rates in
6637 *
6638 * Return: a bitmap of the mandatory rates for the given band, bits
6639 * are set according to the rate position in the bitrates array.
6640 */
6641u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband);
6642
6643/*
6644 * Radiotap parsing functions -- for controlled injection support
6645 *
6646 * Implemented in net/wireless/radiotap.c
6647 * Documentation in Documentation/networking/radiotap-headers.rst
6648 */
6649
6650struct radiotap_align_size {
6651 uint8_t align:4, size:4;
6652};
6653
6654struct ieee80211_radiotap_namespace {
6655 const struct radiotap_align_size *align_size;
6656 int n_bits;
6657 uint32_t oui;
6658 uint8_t subns;
6659};
6660
6661struct ieee80211_radiotap_vendor_namespaces {
6662 const struct ieee80211_radiotap_namespace *ns;
6663 int n_ns;
6664};
6665
6666/**
6667 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
6668 * @this_arg_index: index of current arg, valid after each successful call
6669 * to ieee80211_radiotap_iterator_next()
6670 * @this_arg: pointer to current radiotap arg; it is valid after each
6671 * call to ieee80211_radiotap_iterator_next() but also after
6672 * ieee80211_radiotap_iterator_init() where it will point to
6673 * the beginning of the actual data portion
6674 * @this_arg_size: length of the current arg, for convenience
6675 * @current_namespace: pointer to the current namespace definition
6676 * (or internally %NULL if the current namespace is unknown)
6677 * @is_radiotap_ns: indicates whether the current namespace is the default
6678 * radiotap namespace or not
6679 *
6680 * @_rtheader: pointer to the radiotap header we are walking through
6681 * @_max_length: length of radiotap header in cpu byte ordering
6682 * @_arg_index: next argument index
6683 * @_arg: next argument pointer
6684 * @_next_bitmap: internal pointer to next present u32
6685 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
6686 * @_vns: vendor namespace definitions
6687 * @_next_ns_data: beginning of the next namespace's data
6688 * @_reset_on_ext: internal; reset the arg index to 0 when going to the
6689 * next bitmap word
6690 *
6691 * Describes the radiotap parser state. Fields prefixed with an underscore
6692 * must not be used by users of the parser, only by the parser internally.
6693 */
6694
6695struct ieee80211_radiotap_iterator {
6696 struct ieee80211_radiotap_header *_rtheader;
6697 const struct ieee80211_radiotap_vendor_namespaces *_vns;
6698 const struct ieee80211_radiotap_namespace *current_namespace;
6699
6700 unsigned char *_arg, *_next_ns_data;
6701 __le32 *_next_bitmap;
6702
6703 unsigned char *this_arg;
6704 int this_arg_index;
6705 int this_arg_size;
6706
6707 int is_radiotap_ns;
6708
6709 int _max_length;
6710 int _arg_index;
6711 uint32_t _bitmap_shifter;
6712 int _reset_on_ext;
6713};
6714
6715int
6716ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
6717 struct ieee80211_radiotap_header *radiotap_header,
6718 int max_length,
6719 const struct ieee80211_radiotap_vendor_namespaces *vns);
6720
6721int
6722ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
6723
6724
6725extern const unsigned char rfc1042_header[6];
6726extern const unsigned char bridge_tunnel_header[6];
6727
6728/**
6729 * ieee80211_get_hdrlen_from_skb - get header length from data
6730 *
6731 * @skb: the frame
6732 *
6733 * Given an skb with a raw 802.11 header at the data pointer this function
6734 * returns the 802.11 header length.
6735 *
6736 * Return: The 802.11 header length in bytes (not including encryption
6737 * headers). Or 0 if the data in the sk_buff is too short to contain a valid
6738 * 802.11 header.
6739 */
6740unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
6741
6742/**
6743 * ieee80211_hdrlen - get header length in bytes from frame control
6744 * @fc: frame control field in little-endian format
6745 * Return: The header length in bytes.
6746 */
6747unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
6748
6749/**
6750 * ieee80211_get_mesh_hdrlen - get mesh extension header length
6751 * @meshhdr: the mesh extension header, only the flags field
6752 * (first byte) will be accessed
6753 * Return: The length of the extension header, which is always at
6754 * least 6 bytes and at most 18 if address 5 and 6 are present.
6755 */
6756unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
6757
6758/**
6759 * DOC: Data path helpers
6760 *
6761 * In addition to generic utilities, cfg80211 also offers
6762 * functions that help implement the data path for devices
6763 * that do not do the 802.11/802.3 conversion on the device.
6764 */
6765
6766/**
6767 * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3
6768 * @skb: the 802.11 data frame
6769 * @ehdr: pointer to a &struct ethhdr that will get the header, instead
6770 * of it being pushed into the SKB
6771 * @addr: the device MAC address
6772 * @iftype: the virtual interface type
6773 * @data_offset: offset of payload after the 802.11 header
6774 * @is_amsdu: true if the 802.11 header is A-MSDU
6775 * Return: 0 on success. Non-zero on error.
6776 */
6777int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
6778 const u8 *addr, enum nl80211_iftype iftype,
6779 u8 data_offset, bool is_amsdu);
6780
6781/**
6782 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
6783 * @skb: the 802.11 data frame
6784 * @addr: the device MAC address
6785 * @iftype: the virtual interface type
6786 * Return: 0 on success. Non-zero on error.
6787 */
6788static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
6789 enum nl80211_iftype iftype)
6790{
6791 return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, data_offset: 0, is_amsdu: false);
6792}
6793
6794/**
6795 * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid
6796 *
6797 * This is used to detect non-standard A-MSDU frames, e.g. the ones generated
6798 * by ath10k and ath11k, where the subframe length includes the length of the
6799 * mesh control field.
6800 *
6801 * @skb: The input A-MSDU frame without any headers.
6802 * @mesh_hdr: the type of mesh header to test
6803 * 0: non-mesh A-MSDU length field
6804 * 1: big-endian mesh A-MSDU length field
6805 * 2: little-endian mesh A-MSDU length field
6806 * Returns: true if subframe header lengths are valid for the @mesh_hdr mode
6807 */
6808bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr);
6809
6810/**
6811 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
6812 *
6813 * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames.
6814 * The @list will be empty if the decode fails. The @skb must be fully
6815 * header-less before being passed in here; it is freed in this function.
6816 *
6817 * @skb: The input A-MSDU frame without any headers.
6818 * @list: The output list of 802.3 frames. It must be allocated and
6819 * initialized by the caller.
6820 * @addr: The device MAC address.
6821 * @iftype: The device interface type.
6822 * @extra_headroom: The hardware extra headroom for SKBs in the @list.
6823 * @check_da: DA to check in the inner ethernet header, or NULL
6824 * @check_sa: SA to check in the inner ethernet header, or NULL
6825 * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu
6826 */
6827void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
6828 const u8 *addr, enum nl80211_iftype iftype,
6829 const unsigned int extra_headroom,
6830 const u8 *check_da, const u8 *check_sa,
6831 u8 mesh_control);
6832
6833/**
6834 * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol
6835 *
6836 * Check for RFC1042 or bridge tunnel header and fetch the encapsulated
6837 * protocol.
6838 *
6839 * @hdr: pointer to the MSDU payload
6840 * @proto: destination pointer to store the protocol
6841 * Return: true if encapsulation was found
6842 */
6843bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto);
6844
6845/**
6846 * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames
6847 *
6848 * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part
6849 * of the MSDU data. Also move any source/destination addresses from the mesh
6850 * header to the ethernet header (if present).
6851 *
6852 * @skb: The 802.3 frame with embedded mesh header
6853 *
6854 * Return: 0 on success. Non-zero on error.
6855 */
6856int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb);
6857
6858/**
6859 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
6860 * @skb: the data frame
6861 * @qos_map: Interworking QoS mapping or %NULL if not in use
6862 * Return: The 802.1p/1d tag.
6863 */
6864unsigned int cfg80211_classify8021d(struct sk_buff *skb,
6865 struct cfg80211_qos_map *qos_map);
6866
6867/**
6868 * cfg80211_find_elem_match - match information element and byte array in data
6869 *
6870 * @eid: element ID
6871 * @ies: data consisting of IEs
6872 * @len: length of data
6873 * @match: byte array to match
6874 * @match_len: number of bytes in the match array
6875 * @match_offset: offset in the IE data where the byte array should match.
6876 * Note the difference to cfg80211_find_ie_match() which considers
6877 * the offset to start from the element ID byte, but here we take
6878 * the data portion instead.
6879 *
6880 * Return: %NULL if the element ID could not be found or if
6881 * the element is invalid (claims to be longer than the given
6882 * data) or if the byte array doesn't match; otherwise return the
6883 * requested element struct.
6884 *
6885 * Note: There are no checks on the element length other than
6886 * having to fit into the given data and being large enough for the
6887 * byte array to match.
6888 */
6889const struct element *
6890cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
6891 const u8 *match, unsigned int match_len,
6892 unsigned int match_offset);
6893
6894/**
6895 * cfg80211_find_ie_match - match information element and byte array in data
6896 *
6897 * @eid: element ID
6898 * @ies: data consisting of IEs
6899 * @len: length of data
6900 * @match: byte array to match
6901 * @match_len: number of bytes in the match array
6902 * @match_offset: offset in the IE where the byte array should match.
6903 * If match_len is zero, this must also be set to zero.
6904 * Otherwise this must be set to 2 or more, because the first
6905 * byte is the element id, which is already compared to eid, and
6906 * the second byte is the IE length.
6907 *
6908 * Return: %NULL if the element ID could not be found or if
6909 * the element is invalid (claims to be longer than the given
6910 * data) or if the byte array doesn't match, or a pointer to the first
6911 * byte of the requested element, that is the byte containing the
6912 * element ID.
6913 *
6914 * Note: There are no checks on the element length other than
6915 * having to fit into the given data and being large enough for the
6916 * byte array to match.
6917 */
6918static inline const u8 *
6919cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len,
6920 const u8 *match, unsigned int match_len,
6921 unsigned int match_offset)
6922{
6923 /* match_offset can't be smaller than 2, unless match_len is
6924 * zero, in which case match_offset must be zero as well.
6925 */
6926 if (WARN_ON((match_len && match_offset < 2) ||
6927 (!match_len && match_offset)))
6928 return NULL;
6929
6930 return (const void *)cfg80211_find_elem_match(eid, ies, len,
6931 match, match_len,
6932 match_offset: match_offset ?
6933 match_offset - 2 : 0);
6934}
6935
6936/**
6937 * cfg80211_find_elem - find information element in data
6938 *
6939 * @eid: element ID
6940 * @ies: data consisting of IEs
6941 * @len: length of data
6942 *
6943 * Return: %NULL if the element ID could not be found or if
6944 * the element is invalid (claims to be longer than the given
6945 * data) or if the byte array doesn't match; otherwise return the
6946 * requested element struct.
6947 *
6948 * Note: There are no checks on the element length other than
6949 * having to fit into the given data.
6950 */
6951static inline const struct element *
6952cfg80211_find_elem(u8 eid, const u8 *ies, int len)
6953{
6954 return cfg80211_find_elem_match(eid, ies, len, NULL, match_len: 0, match_offset: 0);
6955}
6956
6957/**
6958 * cfg80211_find_ie - find information element in data
6959 *
6960 * @eid: element ID
6961 * @ies: data consisting of IEs
6962 * @len: length of data
6963 *
6964 * Return: %NULL if the element ID could not be found or if
6965 * the element is invalid (claims to be longer than the given
6966 * data), or a pointer to the first byte of the requested
6967 * element, that is the byte containing the element ID.
6968 *
6969 * Note: There are no checks on the element length other than
6970 * having to fit into the given data.
6971 */
6972static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
6973{
6974 return cfg80211_find_ie_match(eid, ies, len, NULL, match_len: 0, match_offset: 0);
6975}
6976
6977/**
6978 * cfg80211_find_ext_elem - find information element with EID Extension in data
6979 *
6980 * @ext_eid: element ID Extension
6981 * @ies: data consisting of IEs
6982 * @len: length of data
6983 *
6984 * Return: %NULL if the extended element could not be found or if
6985 * the element is invalid (claims to be longer than the given
6986 * data) or if the byte array doesn't match; otherwise return the
6987 * requested element struct.
6988 *
6989 * Note: There are no checks on the element length other than
6990 * having to fit into the given data.
6991 */
6992static inline const struct element *
6993cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len)
6994{
6995 return cfg80211_find_elem_match(eid: WLAN_EID_EXTENSION, ies, len,
6996 match: &ext_eid, match_len: 1, match_offset: 0);
6997}
6998
6999/**
7000 * cfg80211_find_ext_ie - find information element with EID Extension in data
7001 *
7002 * @ext_eid: element ID Extension
7003 * @ies: data consisting of IEs
7004 * @len: length of data
7005 *
7006 * Return: %NULL if the extended element ID could not be found or if
7007 * the element is invalid (claims to be longer than the given
7008 * data), or a pointer to the first byte of the requested
7009 * element, that is the byte containing the element ID.
7010 *
7011 * Note: There are no checks on the element length other than
7012 * having to fit into the given data.
7013 */
7014static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len)
7015{
7016 return cfg80211_find_ie_match(eid: WLAN_EID_EXTENSION, ies, len,
7017 match: &ext_eid, match_len: 1, match_offset: 2);
7018}
7019
7020/**
7021 * cfg80211_find_vendor_elem - find vendor specific information element in data
7022 *
7023 * @oui: vendor OUI
7024 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7025 * @ies: data consisting of IEs
7026 * @len: length of data
7027 *
7028 * Return: %NULL if the vendor specific element ID could not be found or if the
7029 * element is invalid (claims to be longer than the given data); otherwise
7030 * return the element structure for the requested element.
7031 *
7032 * Note: There are no checks on the element length other than having to fit into
7033 * the given data.
7034 */
7035const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
7036 const u8 *ies,
7037 unsigned int len);
7038
7039/**
7040 * cfg80211_find_vendor_ie - find vendor specific information element in data
7041 *
7042 * @oui: vendor OUI
7043 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7044 * @ies: data consisting of IEs
7045 * @len: length of data
7046 *
7047 * Return: %NULL if the vendor specific element ID could not be found or if the
7048 * element is invalid (claims to be longer than the given data), or a pointer to
7049 * the first byte of the requested element, that is the byte containing the
7050 * element ID.
7051 *
7052 * Note: There are no checks on the element length other than having to fit into
7053 * the given data.
7054 */
7055static inline const u8 *
7056cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
7057 const u8 *ies, unsigned int len)
7058{
7059 return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len);
7060}
7061
7062/**
7063 * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state
7064 * @RNR_ITER_CONTINUE: continue iterating with the next entry
7065 * @RNR_ITER_BREAK: break iteration and return success
7066 * @RNR_ITER_ERROR: break iteration and return error
7067 */
7068enum cfg80211_rnr_iter_ret {
7069 RNR_ITER_CONTINUE,
7070 RNR_ITER_BREAK,
7071 RNR_ITER_ERROR,
7072};
7073
7074/**
7075 * cfg80211_iter_rnr - iterate reduced neighbor report entries
7076 * @elems: the frame elements to iterate RNR elements and then
7077 * their entries in
7078 * @elems_len: length of the elements
7079 * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret
7080 * for the return value
7081 * @iter_data: additional data passed to the iteration function
7082 * Return: %true on success (after successfully iterating all entries
7083 * or if the iteration function returned %RNR_ITER_BREAK),
7084 * %false on error (iteration function returned %RNR_ITER_ERROR
7085 * or elements were malformed.)
7086 */
7087bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
7088 enum cfg80211_rnr_iter_ret
7089 (*iter)(void *data, u8 type,
7090 const struct ieee80211_neighbor_ap_info *info,
7091 const u8 *tbtt_info, u8 tbtt_info_len),
7092 void *iter_data);
7093
7094/**
7095 * cfg80211_defragment_element - Defrag the given element data into a buffer
7096 *
7097 * @elem: the element to defragment
7098 * @ies: elements where @elem is contained
7099 * @ieslen: length of @ies
7100 * @data: buffer to store element data, or %NULL to just determine size
7101 * @data_len: length of @data, or 0
7102 * @frag_id: the element ID of fragments
7103 *
7104 * Return: length of @data, or -EINVAL on error
7105 *
7106 * Copy out all data from an element that may be fragmented into @data, while
7107 * skipping all headers.
7108 *
7109 * The function uses memmove() internally. It is acceptable to defragment an
7110 * element in-place.
7111 */
7112ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
7113 size_t ieslen, u8 *data, size_t data_len,
7114 u8 frag_id);
7115
7116/**
7117 * cfg80211_send_layer2_update - send layer 2 update frame
7118 *
7119 * @dev: network device
7120 * @addr: STA MAC address
7121 *
7122 * Wireless drivers can use this function to update forwarding tables in bridge
7123 * devices upon STA association.
7124 */
7125void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr);
7126
7127/**
7128 * DOC: Regulatory enforcement infrastructure
7129 *
7130 * TODO
7131 */
7132
7133/**
7134 * regulatory_hint - driver hint to the wireless core a regulatory domain
7135 * @wiphy: the wireless device giving the hint (used only for reporting
7136 * conflicts)
7137 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
7138 * should be in. If @rd is set this should be NULL. Note that if you
7139 * set this to NULL you should still set rd->alpha2 to some accepted
7140 * alpha2.
7141 *
7142 * Wireless drivers can use this function to hint to the wireless core
7143 * what it believes should be the current regulatory domain by
7144 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
7145 * domain should be in or by providing a completely build regulatory domain.
7146 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
7147 * for a regulatory domain structure for the respective country.
7148 *
7149 * The wiphy must have been registered to cfg80211 prior to this call.
7150 * For cfg80211 drivers this means you must first use wiphy_register(),
7151 * for mac80211 drivers you must first use ieee80211_register_hw().
7152 *
7153 * Drivers should check the return value, its possible you can get
7154 * an -ENOMEM.
7155 *
7156 * Return: 0 on success. -ENOMEM.
7157 */
7158int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
7159
7160/**
7161 * regulatory_set_wiphy_regd - set regdom info for self managed drivers
7162 * @wiphy: the wireless device we want to process the regulatory domain on
7163 * @rd: the regulatory domain information to use for this wiphy
7164 *
7165 * Set the regulatory domain information for self-managed wiphys, only they
7166 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
7167 * information.
7168 *
7169 * Return: 0 on success. -EINVAL, -EPERM
7170 */
7171int regulatory_set_wiphy_regd(struct wiphy *wiphy,
7172 struct ieee80211_regdomain *rd);
7173
7174/**
7175 * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers
7176 * @wiphy: the wireless device we want to process the regulatory domain on
7177 * @rd: the regulatory domain information to use for this wiphy
7178 *
7179 * This functions requires the RTNL and the wiphy mutex to be held and
7180 * applies the new regdomain synchronously to this wiphy. For more details
7181 * see regulatory_set_wiphy_regd().
7182 *
7183 * Return: 0 on success. -EINVAL, -EPERM
7184 */
7185int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
7186 struct ieee80211_regdomain *rd);
7187
7188/**
7189 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
7190 * @wiphy: the wireless device we want to process the regulatory domain on
7191 * @regd: the custom regulatory domain to use for this wiphy
7192 *
7193 * Drivers can sometimes have custom regulatory domains which do not apply
7194 * to a specific country. Drivers can use this to apply such custom regulatory
7195 * domains. This routine must be called prior to wiphy registration. The
7196 * custom regulatory domain will be trusted completely and as such previous
7197 * default channel settings will be disregarded. If no rule is found for a
7198 * channel on the regulatory domain the channel will be disabled.
7199 * Drivers using this for a wiphy should also set the wiphy flag
7200 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
7201 * that called this helper.
7202 */
7203void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
7204 const struct ieee80211_regdomain *regd);
7205
7206/**
7207 * freq_reg_info - get regulatory information for the given frequency
7208 * @wiphy: the wiphy for which we want to process this rule for
7209 * @center_freq: Frequency in KHz for which we want regulatory information for
7210 *
7211 * Use this function to get the regulatory rule for a specific frequency on
7212 * a given wireless device. If the device has a specific regulatory domain
7213 * it wants to follow we respect that unless a country IE has been received
7214 * and processed already.
7215 *
7216 * Return: A valid pointer, or, when an error occurs, for example if no rule
7217 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
7218 * check and PTR_ERR() to obtain the numeric return value. The numeric return
7219 * value will be -ERANGE if we determine the given center_freq does not even
7220 * have a regulatory rule for a frequency range in the center_freq's band.
7221 * See freq_in_rule_band() for our current definition of a band -- this is
7222 * purely subjective and right now it's 802.11 specific.
7223 */
7224const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
7225 u32 center_freq);
7226
7227/**
7228 * reg_initiator_name - map regulatory request initiator enum to name
7229 * @initiator: the regulatory request initiator
7230 *
7231 * You can use this to map the regulatory request initiator enum to a
7232 * proper string representation.
7233 *
7234 * Return: pointer to string representation of the initiator
7235 */
7236const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
7237
7238/**
7239 * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom
7240 * @wiphy: wiphy for which pre-CAC capability is checked.
7241 *
7242 * Pre-CAC is allowed only in some regdomains (notable ETSI).
7243 *
7244 * Return: %true if allowed, %false otherwise
7245 */
7246bool regulatory_pre_cac_allowed(struct wiphy *wiphy);
7247
7248/**
7249 * DOC: Internal regulatory db functions
7250 *
7251 */
7252
7253/**
7254 * reg_query_regdb_wmm - Query internal regulatory db for wmm rule
7255 * Regulatory self-managed driver can use it to proactively
7256 *
7257 * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried.
7258 * @freq: the frequency (in MHz) to be queried.
7259 * @rule: pointer to store the wmm rule from the regulatory db.
7260 *
7261 * Self-managed wireless drivers can use this function to query
7262 * the internal regulatory database to check whether the given
7263 * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations.
7264 *
7265 * Drivers should check the return value, its possible you can get
7266 * an -ENODATA.
7267 *
7268 * Return: 0 on success. -ENODATA.
7269 */
7270int reg_query_regdb_wmm(char *alpha2, int freq,
7271 struct ieee80211_reg_rule *rule);
7272
7273/*
7274 * callbacks for asynchronous cfg80211 methods, notification
7275 * functions and BSS handling helpers
7276 */
7277
7278/**
7279 * cfg80211_scan_done - notify that scan finished
7280 *
7281 * @request: the corresponding scan request
7282 * @info: information about the completed scan
7283 */
7284void cfg80211_scan_done(struct cfg80211_scan_request *request,
7285 struct cfg80211_scan_info *info);
7286
7287/**
7288 * cfg80211_sched_scan_results - notify that new scan results are available
7289 *
7290 * @wiphy: the wiphy which got scheduled scan results
7291 * @reqid: identifier for the related scheduled scan request
7292 */
7293void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid);
7294
7295/**
7296 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
7297 *
7298 * @wiphy: the wiphy on which the scheduled scan stopped
7299 * @reqid: identifier for the related scheduled scan request
7300 *
7301 * The driver can call this function to inform cfg80211 that the
7302 * scheduled scan had to be stopped, for whatever reason. The driver
7303 * is then called back via the sched_scan_stop operation when done.
7304 */
7305void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid);
7306
7307/**
7308 * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped
7309 *
7310 * @wiphy: the wiphy on which the scheduled scan stopped
7311 * @reqid: identifier for the related scheduled scan request
7312 *
7313 * The driver can call this function to inform cfg80211 that the
7314 * scheduled scan had to be stopped, for whatever reason. The driver
7315 * is then called back via the sched_scan_stop operation when done.
7316 * This function should be called with the wiphy mutex held.
7317 */
7318void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid);
7319
7320/**
7321 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
7322 * @wiphy: the wiphy reporting the BSS
7323 * @data: the BSS metadata
7324 * @mgmt: the management frame (probe response or beacon)
7325 * @len: length of the management frame
7326 * @gfp: context flags
7327 *
7328 * This informs cfg80211 that BSS information was found and
7329 * the BSS should be updated/added.
7330 *
7331 * Return: A referenced struct, must be released with cfg80211_put_bss()!
7332 * Or %NULL on error.
7333 */
7334struct cfg80211_bss * __must_check
7335cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
7336 struct cfg80211_inform_bss *data,
7337 struct ieee80211_mgmt *mgmt, size_t len,
7338 gfp_t gfp);
7339
7340static inline struct cfg80211_bss * __must_check
7341cfg80211_inform_bss_frame(struct wiphy *wiphy,
7342 struct ieee80211_channel *rx_channel,
7343 struct ieee80211_mgmt *mgmt, size_t len,
7344 s32 signal, gfp_t gfp)
7345{
7346 struct cfg80211_inform_bss data = {
7347 .chan = rx_channel,
7348 .signal = signal,
7349 };
7350
7351 return cfg80211_inform_bss_frame_data(wiphy, data: &data, mgmt, len, gfp);
7352}
7353
7354/**
7355 * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID
7356 * @bssid: transmitter BSSID
7357 * @max_bssid: max BSSID indicator, taken from Multiple BSSID element
7358 * @mbssid_index: BSSID index, taken from Multiple BSSID index element
7359 * @new_bssid: calculated nontransmitted BSSID
7360 */
7361static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid,
7362 u8 mbssid_index, u8 *new_bssid)
7363{
7364 u64 bssid_u64 = ether_addr_to_u64(addr: bssid);
7365 u64 mask = GENMASK_ULL(max_bssid - 1, 0);
7366 u64 new_bssid_u64;
7367
7368 new_bssid_u64 = bssid_u64 & ~mask;
7369
7370 new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask;
7371
7372 u64_to_ether_addr(u: new_bssid_u64, addr: new_bssid);
7373}
7374
7375/**
7376 * cfg80211_is_element_inherited - returns if element ID should be inherited
7377 * @element: element to check
7378 * @non_inherit_element: non inheritance element
7379 *
7380 * Return: %true if should be inherited, %false otherwise
7381 */
7382bool cfg80211_is_element_inherited(const struct element *element,
7383 const struct element *non_inherit_element);
7384
7385/**
7386 * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs
7387 * @ie: ies
7388 * @ielen: length of IEs
7389 * @mbssid_elem: current MBSSID element
7390 * @sub_elem: current MBSSID subelement (profile)
7391 * @merged_ie: location of the merged profile
7392 * @max_copy_len: max merged profile length
7393 *
7394 * Return: the number of bytes merged
7395 */
7396size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
7397 const struct element *mbssid_elem,
7398 const struct element *sub_elem,
7399 u8 *merged_ie, size_t max_copy_len);
7400
7401/**
7402 * enum cfg80211_bss_frame_type - frame type that the BSS data came from
7403 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
7404 * from a beacon or probe response
7405 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
7406 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
7407 * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon
7408 */
7409enum cfg80211_bss_frame_type {
7410 CFG80211_BSS_FTYPE_UNKNOWN,
7411 CFG80211_BSS_FTYPE_BEACON,
7412 CFG80211_BSS_FTYPE_PRESP,
7413 CFG80211_BSS_FTYPE_S1G_BEACON,
7414};
7415
7416/**
7417 * cfg80211_get_ies_channel_number - returns the channel number from ies
7418 * @ie: IEs
7419 * @ielen: length of IEs
7420 * @band: enum nl80211_band of the channel
7421 *
7422 * Return: the channel number, or -1 if none could be determined.
7423 */
7424int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
7425 enum nl80211_band band);
7426
7427/**
7428 * cfg80211_ssid_eq - compare two SSIDs
7429 * @a: first SSID
7430 * @b: second SSID
7431 *
7432 * Return: %true if SSIDs are equal, %false otherwise.
7433 */
7434static inline bool
7435cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b)
7436{
7437 if (WARN_ON(!a || !b))
7438 return false;
7439 if (a->ssid_len != b->ssid_len)
7440 return false;
7441 return memcmp(p: a->ssid, q: b->ssid, size: a->ssid_len) ? false : true;
7442}
7443
7444/**
7445 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS
7446 *
7447 * @wiphy: the wiphy reporting the BSS
7448 * @data: the BSS metadata
7449 * @ftype: frame type (if known)
7450 * @bssid: the BSSID of the BSS
7451 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
7452 * @capability: the capability field sent by the peer
7453 * @beacon_interval: the beacon interval announced by the peer
7454 * @ie: additional IEs sent by the peer
7455 * @ielen: length of the additional IEs
7456 * @gfp: context flags
7457 *
7458 * This informs cfg80211 that BSS information was found and
7459 * the BSS should be updated/added.
7460 *
7461 * Return: A referenced struct, must be released with cfg80211_put_bss()!
7462 * Or %NULL on error.
7463 */
7464struct cfg80211_bss * __must_check
7465cfg80211_inform_bss_data(struct wiphy *wiphy,
7466 struct cfg80211_inform_bss *data,
7467 enum cfg80211_bss_frame_type ftype,
7468 const u8 *bssid, u64 tsf, u16 capability,
7469 u16 beacon_interval, const u8 *ie, size_t ielen,
7470 gfp_t gfp);
7471
7472static inline struct cfg80211_bss * __must_check
7473cfg80211_inform_bss(struct wiphy *wiphy,
7474 struct ieee80211_channel *rx_channel,
7475 enum cfg80211_bss_frame_type ftype,
7476 const u8 *bssid, u64 tsf, u16 capability,
7477 u16 beacon_interval, const u8 *ie, size_t ielen,
7478 s32 signal, gfp_t gfp)
7479{
7480 struct cfg80211_inform_bss data = {
7481 .chan = rx_channel,
7482 .signal = signal,
7483 };
7484
7485 return cfg80211_inform_bss_data(wiphy, data: &data, ftype, bssid, tsf,
7486 capability, beacon_interval, ie, ielen,
7487 gfp);
7488}
7489
7490/**
7491 * __cfg80211_get_bss - get a BSS reference
7492 * @wiphy: the wiphy this BSS struct belongs to
7493 * @channel: the channel to search on (or %NULL)
7494 * @bssid: the desired BSSID (or %NULL)
7495 * @ssid: the desired SSID (or %NULL)
7496 * @ssid_len: length of the SSID (or 0)
7497 * @bss_type: type of BSS, see &enum ieee80211_bss_type
7498 * @privacy: privacy filter, see &enum ieee80211_privacy
7499 * @use_for: indicates which use is intended
7500 *
7501 * Return: Reference-counted BSS on success. %NULL on error.
7502 */
7503struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
7504 struct ieee80211_channel *channel,
7505 const u8 *bssid,
7506 const u8 *ssid, size_t ssid_len,
7507 enum ieee80211_bss_type bss_type,
7508 enum ieee80211_privacy privacy,
7509 u32 use_for);
7510
7511/**
7512 * cfg80211_get_bss - get a BSS reference
7513 * @wiphy: the wiphy this BSS struct belongs to
7514 * @channel: the channel to search on (or %NULL)
7515 * @bssid: the desired BSSID (or %NULL)
7516 * @ssid: the desired SSID (or %NULL)
7517 * @ssid_len: length of the SSID (or 0)
7518 * @bss_type: type of BSS, see &enum ieee80211_bss_type
7519 * @privacy: privacy filter, see &enum ieee80211_privacy
7520 *
7521 * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL.
7522 *
7523 * Return: Reference-counted BSS on success. %NULL on error.
7524 */
7525static inline struct cfg80211_bss *
7526cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel,
7527 const u8 *bssid, const u8 *ssid, size_t ssid_len,
7528 enum ieee80211_bss_type bss_type,
7529 enum ieee80211_privacy privacy)
7530{
7531 return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len,
7532 bss_type, privacy,
7533 use_for: NL80211_BSS_USE_FOR_NORMAL);
7534}
7535
7536static inline struct cfg80211_bss *
7537cfg80211_get_ibss(struct wiphy *wiphy,
7538 struct ieee80211_channel *channel,
7539 const u8 *ssid, size_t ssid_len)
7540{
7541 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
7542 bss_type: IEEE80211_BSS_TYPE_IBSS,
7543 privacy: IEEE80211_PRIVACY_ANY);
7544}
7545
7546/**
7547 * cfg80211_ref_bss - reference BSS struct
7548 * @wiphy: the wiphy this BSS struct belongs to
7549 * @bss: the BSS struct to reference
7550 *
7551 * Increments the refcount of the given BSS struct.
7552 */
7553void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7554
7555/**
7556 * cfg80211_put_bss - unref BSS struct
7557 * @wiphy: the wiphy this BSS struct belongs to
7558 * @bss: the BSS struct
7559 *
7560 * Decrements the refcount of the given BSS struct.
7561 */
7562void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7563
7564/**
7565 * cfg80211_unlink_bss - unlink BSS from internal data structures
7566 * @wiphy: the wiphy
7567 * @bss: the bss to remove
7568 *
7569 * This function removes the given BSS from the internal data structures
7570 * thereby making it no longer show up in scan results etc. Use this
7571 * function when you detect a BSS is gone. Normally BSSes will also time
7572 * out, so it is not necessary to use this function at all.
7573 */
7574void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7575
7576/**
7577 * cfg80211_bss_iter - iterate all BSS entries
7578 *
7579 * This function iterates over the BSS entries associated with the given wiphy
7580 * and calls the callback for the iterated BSS. The iterator function is not
7581 * allowed to call functions that might modify the internal state of the BSS DB.
7582 *
7583 * @wiphy: the wiphy
7584 * @chandef: if given, the iterator function will be called only if the channel
7585 * of the currently iterated BSS is a subset of the given channel.
7586 * @iter: the iterator function to call
7587 * @iter_data: an argument to the iterator function
7588 */
7589void cfg80211_bss_iter(struct wiphy *wiphy,
7590 struct cfg80211_chan_def *chandef,
7591 void (*iter)(struct wiphy *wiphy,
7592 struct cfg80211_bss *bss,
7593 void *data),
7594 void *iter_data);
7595
7596/**
7597 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
7598 * @dev: network device
7599 * @buf: authentication frame (header + body)
7600 * @len: length of the frame data
7601 *
7602 * This function is called whenever an authentication, disassociation or
7603 * deauthentication frame has been received and processed in station mode.
7604 * After being asked to authenticate via cfg80211_ops::auth() the driver must
7605 * call either this function or cfg80211_auth_timeout().
7606 * After being asked to associate via cfg80211_ops::assoc() the driver must
7607 * call either this function or cfg80211_auth_timeout().
7608 * While connected, the driver must calls this for received and processed
7609 * disassociation and deauthentication frames. If the frame couldn't be used
7610 * because it was unprotected, the driver must call the function
7611 * cfg80211_rx_unprot_mlme_mgmt() instead.
7612 *
7613 * This function may sleep. The caller must hold the corresponding wdev's mutex.
7614 */
7615void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
7616
7617/**
7618 * cfg80211_auth_timeout - notification of timed out authentication
7619 * @dev: network device
7620 * @addr: The MAC address of the device with which the authentication timed out
7621 *
7622 * This function may sleep. The caller must hold the corresponding wdev's
7623 * mutex.
7624 */
7625void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
7626
7627/**
7628 * struct cfg80211_rx_assoc_resp_data - association response data
7629 * @buf: (Re)Association Response frame (header + body)
7630 * @len: length of the frame data
7631 * @uapsd_queues: bitmap of queues configured for uapsd. Same format
7632 * as the AC bitmap in the QoS info field
7633 * @req_ies: information elements from the (Re)Association Request frame
7634 * @req_ies_len: length of req_ies data
7635 * @ap_mld_addr: AP MLD address (in case of MLO)
7636 * @links: per-link information indexed by link ID, use links[0] for
7637 * non-MLO connections
7638 * @links.bss: the BSS that association was requested with, ownership of the
7639 * pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp()
7640 * @links.status: Set this (along with a BSS pointer) for links that
7641 * were rejected by the AP.
7642 */
7643struct cfg80211_rx_assoc_resp_data {
7644 const u8 *buf;
7645 size_t len;
7646 const u8 *req_ies;
7647 size_t req_ies_len;
7648 int uapsd_queues;
7649 const u8 *ap_mld_addr;
7650 struct {
7651 u8 addr[ETH_ALEN] __aligned(2);
7652 struct cfg80211_bss *bss;
7653 u16 status;
7654 } links[IEEE80211_MLD_MAX_NUM_LINKS];
7655};
7656
7657/**
7658 * cfg80211_rx_assoc_resp - notification of processed association response
7659 * @dev: network device
7660 * @data: association response data, &struct cfg80211_rx_assoc_resp_data
7661 *
7662 * After being asked to associate via cfg80211_ops::assoc() the driver must
7663 * call either this function or cfg80211_auth_timeout().
7664 *
7665 * This function may sleep. The caller must hold the corresponding wdev's mutex.
7666 */
7667void cfg80211_rx_assoc_resp(struct net_device *dev,
7668 const struct cfg80211_rx_assoc_resp_data *data);
7669
7670/**
7671 * struct cfg80211_assoc_failure - association failure data
7672 * @ap_mld_addr: AP MLD address, or %NULL
7673 * @bss: list of BSSes, must use entry 0 for non-MLO connections
7674 * (@ap_mld_addr is %NULL)
7675 * @timeout: indicates the association failed due to timeout, otherwise
7676 * the association was abandoned for a reason reported through some
7677 * other API (e.g. deauth RX)
7678 */
7679struct cfg80211_assoc_failure {
7680 const u8 *ap_mld_addr;
7681 struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS];
7682 bool timeout;
7683};
7684
7685/**
7686 * cfg80211_assoc_failure - notification of association failure
7687 * @dev: network device
7688 * @data: data describing the association failure
7689 *
7690 * This function may sleep. The caller must hold the corresponding wdev's mutex.
7691 */
7692void cfg80211_assoc_failure(struct net_device *dev,
7693 struct cfg80211_assoc_failure *data);
7694
7695/**
7696 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
7697 * @dev: network device
7698 * @buf: 802.11 frame (header + body)
7699 * @len: length of the frame data
7700 * @reconnect: immediate reconnect is desired (include the nl80211 attribute)
7701 *
7702 * This function is called whenever deauthentication has been processed in
7703 * station mode. This includes both received deauthentication frames and
7704 * locally generated ones. This function may sleep. The caller must hold the
7705 * corresponding wdev's mutex.
7706 */
7707void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
7708 bool reconnect);
7709
7710/**
7711 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
7712 * @dev: network device
7713 * @buf: received management frame (header + body)
7714 * @len: length of the frame data
7715 *
7716 * This function is called whenever a received deauthentication or dissassoc
7717 * frame has been dropped in station mode because of MFP being used but the
7718 * frame was not protected. This is also used to notify reception of a Beacon
7719 * frame that was dropped because it did not include a valid MME MIC while
7720 * beacon protection was enabled (BIGTK configured in station mode).
7721 *
7722 * This function may sleep.
7723 */
7724void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
7725 const u8 *buf, size_t len);
7726
7727/**
7728 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
7729 * @dev: network device
7730 * @addr: The source MAC address of the frame
7731 * @key_type: The key type that the received frame used
7732 * @key_id: Key identifier (0..3). Can be -1 if missing.
7733 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
7734 * @gfp: allocation flags
7735 *
7736 * This function is called whenever the local MAC detects a MIC failure in a
7737 * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
7738 * primitive.
7739 */
7740void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
7741 enum nl80211_key_type key_type, int key_id,
7742 const u8 *tsc, gfp_t gfp);
7743
7744/**
7745 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
7746 *
7747 * @dev: network device
7748 * @bssid: the BSSID of the IBSS joined
7749 * @channel: the channel of the IBSS joined
7750 * @gfp: allocation flags
7751 *
7752 * This function notifies cfg80211 that the device joined an IBSS or
7753 * switched to a different BSSID. Before this function can be called,
7754 * either a beacon has to have been received from the IBSS, or one of
7755 * the cfg80211_inform_bss{,_frame} functions must have been called
7756 * with the locally generated beacon -- this guarantees that there is
7757 * always a scan result for this IBSS. cfg80211 will handle the rest.
7758 */
7759void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
7760 struct ieee80211_channel *channel, gfp_t gfp);
7761
7762/**
7763 * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer
7764 * candidate
7765 *
7766 * @dev: network device
7767 * @macaddr: the MAC address of the new candidate
7768 * @ie: information elements advertised by the peer candidate
7769 * @ie_len: length of the information elements buffer
7770 * @sig_dbm: signal level in dBm
7771 * @gfp: allocation flags
7772 *
7773 * This function notifies cfg80211 that the mesh peer candidate has been
7774 * detected, most likely via a beacon or, less likely, via a probe response.
7775 * cfg80211 then sends a notification to userspace.
7776 */
7777void cfg80211_notify_new_peer_candidate(struct net_device *dev,
7778 const u8 *macaddr, const u8 *ie, u8 ie_len,
7779 int sig_dbm, gfp_t gfp);
7780
7781/**
7782 * DOC: RFkill integration
7783 *
7784 * RFkill integration in cfg80211 is almost invisible to drivers,
7785 * as cfg80211 automatically registers an rfkill instance for each
7786 * wireless device it knows about. Soft kill is also translated
7787 * into disconnecting and turning all interfaces off. Drivers are
7788 * expected to turn off the device when all interfaces are down.
7789 *
7790 * However, devices may have a hard RFkill line, in which case they
7791 * also need to interact with the rfkill subsystem, via cfg80211.
7792 * They can do this with a few helper functions documented here.
7793 */
7794
7795/**
7796 * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state
7797 * @wiphy: the wiphy
7798 * @blocked: block status
7799 * @reason: one of reasons in &enum rfkill_hard_block_reasons
7800 */
7801void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked,
7802 enum rfkill_hard_block_reasons reason);
7803
7804static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked)
7805{
7806 wiphy_rfkill_set_hw_state_reason(wiphy, blocked,
7807 reason: RFKILL_HARD_BLOCK_SIGNAL);
7808}
7809
7810/**
7811 * wiphy_rfkill_start_polling - start polling rfkill
7812 * @wiphy: the wiphy
7813 */
7814void wiphy_rfkill_start_polling(struct wiphy *wiphy);
7815
7816/**
7817 * wiphy_rfkill_stop_polling - stop polling rfkill
7818 * @wiphy: the wiphy
7819 */
7820static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy)
7821{
7822 rfkill_pause_polling(rfkill: wiphy->rfkill);
7823}
7824
7825/**
7826 * DOC: Vendor commands
7827 *
7828 * Occasionally, there are special protocol or firmware features that
7829 * can't be implemented very openly. For this and similar cases, the
7830 * vendor command functionality allows implementing the features with
7831 * (typically closed-source) userspace and firmware, using nl80211 as
7832 * the configuration mechanism.
7833 *
7834 * A driver supporting vendor commands must register them as an array
7835 * in struct wiphy, with handlers for each one. Each command has an
7836 * OUI and sub command ID to identify it.
7837 *
7838 * Note that this feature should not be (ab)used to implement protocol
7839 * features that could openly be shared across drivers. In particular,
7840 * it must never be required to use vendor commands to implement any
7841 * "normal" functionality that higher-level userspace like connection
7842 * managers etc. need.
7843 */
7844
7845struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
7846 enum nl80211_commands cmd,
7847 enum nl80211_attrs attr,
7848 int approxlen);
7849
7850struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
7851 struct wireless_dev *wdev,
7852 enum nl80211_commands cmd,
7853 enum nl80211_attrs attr,
7854 unsigned int portid,
7855 int vendor_event_idx,
7856 int approxlen, gfp_t gfp);
7857
7858void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
7859
7860/**
7861 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
7862 * @wiphy: the wiphy
7863 * @approxlen: an upper bound of the length of the data that will
7864 * be put into the skb
7865 *
7866 * This function allocates and pre-fills an skb for a reply to
7867 * a vendor command. Since it is intended for a reply, calling
7868 * it outside of a vendor command's doit() operation is invalid.
7869 *
7870 * The returned skb is pre-filled with some identifying data in
7871 * a way that any data that is put into the skb (with skb_put(),
7872 * nla_put() or similar) will end up being within the
7873 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
7874 * with the skb is adding data for the corresponding userspace tool
7875 * which can then read that data out of the vendor data attribute.
7876 * You must not modify the skb in any other way.
7877 *
7878 * When done, call cfg80211_vendor_cmd_reply() with the skb and return
7879 * its error code as the result of the doit() operation.
7880 *
7881 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7882 */
7883static inline struct sk_buff *
7884cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
7885{
7886 return __cfg80211_alloc_reply_skb(wiphy, cmd: NL80211_CMD_VENDOR,
7887 attr: NL80211_ATTR_VENDOR_DATA, approxlen);
7888}
7889
7890/**
7891 * cfg80211_vendor_cmd_reply - send the reply skb
7892 * @skb: The skb, must have been allocated with
7893 * cfg80211_vendor_cmd_alloc_reply_skb()
7894 *
7895 * Since calling this function will usually be the last thing
7896 * before returning from the vendor command doit() you should
7897 * return the error code. Note that this function consumes the
7898 * skb regardless of the return value.
7899 *
7900 * Return: An error code or 0 on success.
7901 */
7902int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
7903
7904/**
7905 * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID
7906 * @wiphy: the wiphy
7907 *
7908 * Return: the current netlink port ID in a vendor command handler.
7909 *
7910 * Context: May only be called from a vendor command handler
7911 */
7912unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy);
7913
7914/**
7915 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
7916 * @wiphy: the wiphy
7917 * @wdev: the wireless device
7918 * @event_idx: index of the vendor event in the wiphy's vendor_events
7919 * @approxlen: an upper bound of the length of the data that will
7920 * be put into the skb
7921 * @gfp: allocation flags
7922 *
7923 * This function allocates and pre-fills an skb for an event on the
7924 * vendor-specific multicast group.
7925 *
7926 * If wdev != NULL, both the ifindex and identifier of the specified
7927 * wireless device are added to the event message before the vendor data
7928 * attribute.
7929 *
7930 * When done filling the skb, call cfg80211_vendor_event() with the
7931 * skb to send the event.
7932 *
7933 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7934 */
7935static inline struct sk_buff *
7936cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
7937 int approxlen, int event_idx, gfp_t gfp)
7938{
7939 return __cfg80211_alloc_event_skb(wiphy, wdev, cmd: NL80211_CMD_VENDOR,
7940 attr: NL80211_ATTR_VENDOR_DATA,
7941 portid: 0, vendor_event_idx: event_idx, approxlen, gfp);
7942}
7943
7944/**
7945 * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb
7946 * @wiphy: the wiphy
7947 * @wdev: the wireless device
7948 * @event_idx: index of the vendor event in the wiphy's vendor_events
7949 * @portid: port ID of the receiver
7950 * @approxlen: an upper bound of the length of the data that will
7951 * be put into the skb
7952 * @gfp: allocation flags
7953 *
7954 * This function allocates and pre-fills an skb for an event to send to
7955 * a specific (userland) socket. This socket would previously have been
7956 * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take
7957 * care to register a netlink notifier to see when the socket closes.
7958 *
7959 * If wdev != NULL, both the ifindex and identifier of the specified
7960 * wireless device are added to the event message before the vendor data
7961 * attribute.
7962 *
7963 * When done filling the skb, call cfg80211_vendor_event() with the
7964 * skb to send the event.
7965 *
7966 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7967 */
7968static inline struct sk_buff *
7969cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy,
7970 struct wireless_dev *wdev,
7971 unsigned int portid, int approxlen,
7972 int event_idx, gfp_t gfp)
7973{
7974 return __cfg80211_alloc_event_skb(wiphy, wdev, cmd: NL80211_CMD_VENDOR,
7975 attr: NL80211_ATTR_VENDOR_DATA,
7976 portid, vendor_event_idx: event_idx, approxlen, gfp);
7977}
7978
7979/**
7980 * cfg80211_vendor_event - send the event
7981 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
7982 * @gfp: allocation flags
7983 *
7984 * This function sends the given @skb, which must have been allocated
7985 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
7986 */
7987static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
7988{
7989 __cfg80211_send_event_skb(skb, gfp);
7990}
7991
7992#ifdef CONFIG_NL80211_TESTMODE
7993/**
7994 * DOC: Test mode
7995 *
7996 * Test mode is a set of utility functions to allow drivers to
7997 * interact with driver-specific tools to aid, for instance,
7998 * factory programming.
7999 *
8000 * This chapter describes how drivers interact with it. For more
8001 * information see the nl80211 book's chapter on it.
8002 */
8003
8004/**
8005 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
8006 * @wiphy: the wiphy
8007 * @approxlen: an upper bound of the length of the data that will
8008 * be put into the skb
8009 *
8010 * This function allocates and pre-fills an skb for a reply to
8011 * the testmode command. Since it is intended for a reply, calling
8012 * it outside of the @testmode_cmd operation is invalid.
8013 *
8014 * The returned skb is pre-filled with the wiphy index and set up in
8015 * a way that any data that is put into the skb (with skb_put(),
8016 * nla_put() or similar) will end up being within the
8017 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
8018 * with the skb is adding data for the corresponding userspace tool
8019 * which can then read that data out of the testdata attribute. You
8020 * must not modify the skb in any other way.
8021 *
8022 * When done, call cfg80211_testmode_reply() with the skb and return
8023 * its error code as the result of the @testmode_cmd operation.
8024 *
8025 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8026 */
8027static inline struct sk_buff *
8028cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8029{
8030 return __cfg80211_alloc_reply_skb(wiphy, cmd: NL80211_CMD_TESTMODE,
8031 attr: NL80211_ATTR_TESTDATA, approxlen);
8032}
8033
8034/**
8035 * cfg80211_testmode_reply - send the reply skb
8036 * @skb: The skb, must have been allocated with
8037 * cfg80211_testmode_alloc_reply_skb()
8038 *
8039 * Since calling this function will usually be the last thing
8040 * before returning from the @testmode_cmd you should return
8041 * the error code. Note that this function consumes the skb
8042 * regardless of the return value.
8043 *
8044 * Return: An error code or 0 on success.
8045 */
8046static inline int cfg80211_testmode_reply(struct sk_buff *skb)
8047{
8048 return cfg80211_vendor_cmd_reply(skb);
8049}
8050
8051/**
8052 * cfg80211_testmode_alloc_event_skb - allocate testmode event
8053 * @wiphy: the wiphy
8054 * @approxlen: an upper bound of the length of the data that will
8055 * be put into the skb
8056 * @gfp: allocation flags
8057 *
8058 * This function allocates and pre-fills an skb for an event on the
8059 * testmode multicast group.
8060 *
8061 * The returned skb is set up in the same way as with
8062 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
8063 * there, you should simply add data to it that will then end up in the
8064 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
8065 * in any other way.
8066 *
8067 * When done filling the skb, call cfg80211_testmode_event() with the
8068 * skb to send the event.
8069 *
8070 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8071 */
8072static inline struct sk_buff *
8073cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
8074{
8075 return __cfg80211_alloc_event_skb(wiphy, NULL, cmd: NL80211_CMD_TESTMODE,
8076 attr: NL80211_ATTR_TESTDATA, portid: 0, vendor_event_idx: -1,
8077 approxlen, gfp);
8078}
8079
8080/**
8081 * cfg80211_testmode_event - send the event
8082 * @skb: The skb, must have been allocated with
8083 * cfg80211_testmode_alloc_event_skb()
8084 * @gfp: allocation flags
8085 *
8086 * This function sends the given @skb, which must have been allocated
8087 * by cfg80211_testmode_alloc_event_skb(), as an event. It always
8088 * consumes it.
8089 */
8090static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
8091{
8092 __cfg80211_send_event_skb(skb, gfp);
8093}
8094
8095#define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd),
8096#define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd),
8097#else
8098#define CFG80211_TESTMODE_CMD(cmd)
8099#define CFG80211_TESTMODE_DUMP(cmd)
8100#endif
8101
8102/**
8103 * struct cfg80211_fils_resp_params - FILS connection response params
8104 * @kek: KEK derived from a successful FILS connection (may be %NULL)
8105 * @kek_len: Length of @fils_kek in octets
8106 * @update_erp_next_seq_num: Boolean value to specify whether the value in
8107 * @erp_next_seq_num is valid.
8108 * @erp_next_seq_num: The next sequence number to use in ERP message in
8109 * FILS Authentication. This value should be specified irrespective of the
8110 * status for a FILS connection.
8111 * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL).
8112 * @pmk_len: Length of @pmk in octets
8113 * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID
8114 * used for this FILS connection (may be %NULL).
8115 */
8116struct cfg80211_fils_resp_params {
8117 const u8 *kek;
8118 size_t kek_len;
8119 bool update_erp_next_seq_num;
8120 u16 erp_next_seq_num;
8121 const u8 *pmk;
8122 size_t pmk_len;
8123 const u8 *pmkid;
8124};
8125
8126/**
8127 * struct cfg80211_connect_resp_params - Connection response params
8128 * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use
8129 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8130 * the real status code for failures. If this call is used to report a
8131 * failure due to a timeout (e.g., not receiving an Authentication frame
8132 * from the AP) instead of an explicit rejection by the AP, -1 is used to
8133 * indicate that this is a failure, but without a status code.
8134 * @timeout_reason is used to report the reason for the timeout in that
8135 * case.
8136 * @req_ie: Association request IEs (may be %NULL)
8137 * @req_ie_len: Association request IEs length
8138 * @resp_ie: Association response IEs (may be %NULL)
8139 * @resp_ie_len: Association response IEs length
8140 * @fils: FILS connection response parameters.
8141 * @timeout_reason: Reason for connection timeout. This is used when the
8142 * connection fails due to a timeout instead of an explicit rejection from
8143 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8144 * not known. This value is used only if @status < 0 to indicate that the
8145 * failure is due to a timeout and not due to explicit rejection by the AP.
8146 * This value is ignored in other cases (@status >= 0).
8147 * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise
8148 * zero.
8149 * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL.
8150 * @links : For MLO connection, contains link info for the valid links indicated
8151 * using @valid_links. For non-MLO connection, links[0] contains the
8152 * connected AP info.
8153 * @links.addr: For MLO connection, MAC address of the STA link. Otherwise
8154 * %NULL.
8155 * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO
8156 * connection, links[0].bssid points to the BSSID of the AP (may be %NULL).
8157 * @links.bss: For MLO connection, entry of bss to which STA link is connected.
8158 * For non-MLO connection, links[0].bss points to entry of bss to which STA
8159 * is connected. It can be obtained through cfg80211_get_bss() (may be
8160 * %NULL). It is recommended to store the bss from the connect_request and
8161 * hold a reference to it and return through this param to avoid a warning
8162 * if the bss is expired during the connection, esp. for those drivers
8163 * implementing connect op. Only one parameter among @bssid and @bss needs
8164 * to be specified.
8165 * @links.status: per-link status code, to report a status code that's not
8166 * %WLAN_STATUS_SUCCESS for a given link, it must also be in the
8167 * @valid_links bitmap and may have a BSS pointer (which is then released)
8168 */
8169struct cfg80211_connect_resp_params {
8170 int status;
8171 const u8 *req_ie;
8172 size_t req_ie_len;
8173 const u8 *resp_ie;
8174 size_t resp_ie_len;
8175 struct cfg80211_fils_resp_params fils;
8176 enum nl80211_timeout_reason timeout_reason;
8177
8178 const u8 *ap_mld_addr;
8179 u16 valid_links;
8180 struct {
8181 const u8 *addr;
8182 const u8 *bssid;
8183 struct cfg80211_bss *bss;
8184 u16 status;
8185 } links[IEEE80211_MLD_MAX_NUM_LINKS];
8186};
8187
8188/**
8189 * cfg80211_connect_done - notify cfg80211 of connection result
8190 *
8191 * @dev: network device
8192 * @params: connection response parameters
8193 * @gfp: allocation flags
8194 *
8195 * It should be called by the underlying driver once execution of the connection
8196 * request from connect() has been completed. This is similar to
8197 * cfg80211_connect_bss(), but takes a structure pointer for connection response
8198 * parameters. Only one of the functions among cfg80211_connect_bss(),
8199 * cfg80211_connect_result(), cfg80211_connect_timeout(),
8200 * and cfg80211_connect_done() should be called.
8201 */
8202void cfg80211_connect_done(struct net_device *dev,
8203 struct cfg80211_connect_resp_params *params,
8204 gfp_t gfp);
8205
8206/**
8207 * cfg80211_connect_bss - notify cfg80211 of connection result
8208 *
8209 * @dev: network device
8210 * @bssid: the BSSID of the AP
8211 * @bss: Entry of bss to which STA got connected to, can be obtained through
8212 * cfg80211_get_bss() (may be %NULL). But it is recommended to store the
8213 * bss from the connect_request and hold a reference to it and return
8214 * through this param to avoid a warning if the bss is expired during the
8215 * connection, esp. for those drivers implementing connect op.
8216 * Only one parameter among @bssid and @bss needs to be specified.
8217 * @req_ie: association request IEs (maybe be %NULL)
8218 * @req_ie_len: association request IEs length
8219 * @resp_ie: association response IEs (may be %NULL)
8220 * @resp_ie_len: assoc response IEs length
8221 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8222 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8223 * the real status code for failures. If this call is used to report a
8224 * failure due to a timeout (e.g., not receiving an Authentication frame
8225 * from the AP) instead of an explicit rejection by the AP, -1 is used to
8226 * indicate that this is a failure, but without a status code.
8227 * @timeout_reason is used to report the reason for the timeout in that
8228 * case.
8229 * @gfp: allocation flags
8230 * @timeout_reason: reason for connection timeout. This is used when the
8231 * connection fails due to a timeout instead of an explicit rejection from
8232 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8233 * not known. This value is used only if @status < 0 to indicate that the
8234 * failure is due to a timeout and not due to explicit rejection by the AP.
8235 * This value is ignored in other cases (@status >= 0).
8236 *
8237 * It should be called by the underlying driver once execution of the connection
8238 * request from connect() has been completed. This is similar to
8239 * cfg80211_connect_result(), but with the option of identifying the exact bss
8240 * entry for the connection. Only one of the functions among
8241 * cfg80211_connect_bss(), cfg80211_connect_result(),
8242 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8243 */
8244static inline void
8245cfg80211_connect_bss(struct net_device *dev, const u8 *bssid,
8246 struct cfg80211_bss *bss, const u8 *req_ie,
8247 size_t req_ie_len, const u8 *resp_ie,
8248 size_t resp_ie_len, int status, gfp_t gfp,
8249 enum nl80211_timeout_reason timeout_reason)
8250{
8251 struct cfg80211_connect_resp_params params;
8252
8253 memset(&params, 0, sizeof(params));
8254 params.status = status;
8255 params.links[0].bssid = bssid;
8256 params.links[0].bss = bss;
8257 params.req_ie = req_ie;
8258 params.req_ie_len = req_ie_len;
8259 params.resp_ie = resp_ie;
8260 params.resp_ie_len = resp_ie_len;
8261 params.timeout_reason = timeout_reason;
8262
8263 cfg80211_connect_done(dev, params: &params, gfp);
8264}
8265
8266/**
8267 * cfg80211_connect_result - notify cfg80211 of connection result
8268 *
8269 * @dev: network device
8270 * @bssid: the BSSID of the AP
8271 * @req_ie: association request IEs (maybe be %NULL)
8272 * @req_ie_len: association request IEs length
8273 * @resp_ie: association response IEs (may be %NULL)
8274 * @resp_ie_len: assoc response IEs length
8275 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8276 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8277 * the real status code for failures.
8278 * @gfp: allocation flags
8279 *
8280 * It should be called by the underlying driver once execution of the connection
8281 * request from connect() has been completed. This is similar to
8282 * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only
8283 * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
8284 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8285 */
8286static inline void
8287cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
8288 const u8 *req_ie, size_t req_ie_len,
8289 const u8 *resp_ie, size_t resp_ie_len,
8290 u16 status, gfp_t gfp)
8291{
8292 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie,
8293 resp_ie_len, status, gfp,
8294 timeout_reason: NL80211_TIMEOUT_UNSPECIFIED);
8295}
8296
8297/**
8298 * cfg80211_connect_timeout - notify cfg80211 of connection timeout
8299 *
8300 * @dev: network device
8301 * @bssid: the BSSID of the AP
8302 * @req_ie: association request IEs (maybe be %NULL)
8303 * @req_ie_len: association request IEs length
8304 * @gfp: allocation flags
8305 * @timeout_reason: reason for connection timeout.
8306 *
8307 * It should be called by the underlying driver whenever connect() has failed
8308 * in a sequence where no explicit authentication/association rejection was
8309 * received from the AP. This could happen, e.g., due to not being able to send
8310 * out the Authentication or Association Request frame or timing out while
8311 * waiting for the response. Only one of the functions among
8312 * cfg80211_connect_bss(), cfg80211_connect_result(),
8313 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8314 */
8315static inline void
8316cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid,
8317 const u8 *req_ie, size_t req_ie_len, gfp_t gfp,
8318 enum nl80211_timeout_reason timeout_reason)
8319{
8320 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, resp_ie_len: 0, status: -1,
8321 gfp, timeout_reason);
8322}
8323
8324/**
8325 * struct cfg80211_roam_info - driver initiated roaming information
8326 *
8327 * @req_ie: association request IEs (maybe be %NULL)
8328 * @req_ie_len: association request IEs length
8329 * @resp_ie: association response IEs (may be %NULL)
8330 * @resp_ie_len: assoc response IEs length
8331 * @fils: FILS related roaming information.
8332 * @valid_links: For MLO roaming, BIT mask of the new valid links is set.
8333 * Otherwise zero.
8334 * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL.
8335 * @links : For MLO roaming, contains new link info for the valid links set in
8336 * @valid_links. For non-MLO roaming, links[0] contains the new AP info.
8337 * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL.
8338 * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO
8339 * roaming, links[0].bssid points to the BSSID of the new AP. May be
8340 * %NULL if %links.bss is set.
8341 * @links.channel: the channel of the new AP.
8342 * @links.bss: For MLO roaming, entry of new bss to which STA link got
8343 * roamed. For non-MLO roaming, links[0].bss points to entry of bss to
8344 * which STA got roamed (may be %NULL if %links.bssid is set)
8345 */
8346struct cfg80211_roam_info {
8347 const u8 *req_ie;
8348 size_t req_ie_len;
8349 const u8 *resp_ie;
8350 size_t resp_ie_len;
8351 struct cfg80211_fils_resp_params fils;
8352
8353 const u8 *ap_mld_addr;
8354 u16 valid_links;
8355 struct {
8356 const u8 *addr;
8357 const u8 *bssid;
8358 struct ieee80211_channel *channel;
8359 struct cfg80211_bss *bss;
8360 } links[IEEE80211_MLD_MAX_NUM_LINKS];
8361};
8362
8363/**
8364 * cfg80211_roamed - notify cfg80211 of roaming
8365 *
8366 * @dev: network device
8367 * @info: information about the new BSS. struct &cfg80211_roam_info.
8368 * @gfp: allocation flags
8369 *
8370 * This function may be called with the driver passing either the BSSID of the
8371 * new AP or passing the bss entry to avoid a race in timeout of the bss entry.
8372 * It should be called by the underlying driver whenever it roamed from one AP
8373 * to another while connected. Drivers which have roaming implemented in
8374 * firmware should pass the bss entry to avoid a race in bss entry timeout where
8375 * the bss entry of the new AP is seen in the driver, but gets timed out by the
8376 * time it is accessed in __cfg80211_roamed() due to delay in scheduling
8377 * rdev->event_work. In case of any failures, the reference is released
8378 * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be
8379 * released while disconnecting from the current bss.
8380 */
8381void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info,
8382 gfp_t gfp);
8383
8384/**
8385 * cfg80211_port_authorized - notify cfg80211 of successful security association
8386 *
8387 * @dev: network device
8388 * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address
8389 * in case of AP/P2P GO
8390 * @td_bitmap: transition disable policy
8391 * @td_bitmap_len: Length of transition disable policy
8392 * @gfp: allocation flags
8393 *
8394 * This function should be called by a driver that supports 4 way handshake
8395 * offload after a security association was successfully established (i.e.,
8396 * the 4 way handshake was completed successfully). The call to this function
8397 * should be preceded with a call to cfg80211_connect_result(),
8398 * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to
8399 * indicate the 802.11 association.
8400 * This function can also be called by AP/P2P GO driver that supports
8401 * authentication offload. In this case the peer_mac passed is that of
8402 * associated STA/GC.
8403 */
8404void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr,
8405 const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp);
8406
8407/**
8408 * cfg80211_disconnected - notify cfg80211 that connection was dropped
8409 *
8410 * @dev: network device
8411 * @ie: information elements of the deauth/disassoc frame (may be %NULL)
8412 * @ie_len: length of IEs
8413 * @reason: reason code for the disconnection, set it to 0 if unknown
8414 * @locally_generated: disconnection was requested locally
8415 * @gfp: allocation flags
8416 *
8417 * After it calls this function, the driver should enter an idle state
8418 * and not try to connect to any AP any more.
8419 */
8420void cfg80211_disconnected(struct net_device *dev, u16 reason,
8421 const u8 *ie, size_t ie_len,
8422 bool locally_generated, gfp_t gfp);
8423
8424/**
8425 * cfg80211_ready_on_channel - notification of remain_on_channel start
8426 * @wdev: wireless device
8427 * @cookie: the request cookie
8428 * @chan: The current channel (from remain_on_channel request)
8429 * @duration: Duration in milliseconds that the driver intents to remain on the
8430 * channel
8431 * @gfp: allocation flags
8432 */
8433void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
8434 struct ieee80211_channel *chan,
8435 unsigned int duration, gfp_t gfp);
8436
8437/**
8438 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
8439 * @wdev: wireless device
8440 * @cookie: the request cookie
8441 * @chan: The current channel (from remain_on_channel request)
8442 * @gfp: allocation flags
8443 */
8444void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
8445 struct ieee80211_channel *chan,
8446 gfp_t gfp);
8447
8448/**
8449 * cfg80211_tx_mgmt_expired - tx_mgmt duration expired
8450 * @wdev: wireless device
8451 * @cookie: the requested cookie
8452 * @chan: The current channel (from tx_mgmt request)
8453 * @gfp: allocation flags
8454 */
8455void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie,
8456 struct ieee80211_channel *chan, gfp_t gfp);
8457
8458/**
8459 * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics.
8460 *
8461 * @sinfo: the station information
8462 * @gfp: allocation flags
8463 *
8464 * Return: 0 on success. Non-zero on error.
8465 */
8466int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp);
8467
8468/**
8469 * cfg80211_sinfo_release_content - release contents of station info
8470 * @sinfo: the station information
8471 *
8472 * Releases any potentially allocated sub-information of the station
8473 * information, but not the struct itself (since it's typically on
8474 * the stack.)
8475 */
8476static inline void cfg80211_sinfo_release_content(struct station_info *sinfo)
8477{
8478 kfree(objp: sinfo->pertid);
8479}
8480
8481/**
8482 * cfg80211_new_sta - notify userspace about station
8483 *
8484 * @dev: the netdev
8485 * @mac_addr: the station's address
8486 * @sinfo: the station information
8487 * @gfp: allocation flags
8488 */
8489void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
8490 struct station_info *sinfo, gfp_t gfp);
8491
8492/**
8493 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station
8494 * @dev: the netdev
8495 * @mac_addr: the station's address. For MLD station, MLD address is used.
8496 * @sinfo: the station information/statistics
8497 * @gfp: allocation flags
8498 */
8499void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
8500 struct station_info *sinfo, gfp_t gfp);
8501
8502/**
8503 * cfg80211_del_sta - notify userspace about deletion of a station
8504 *
8505 * @dev: the netdev
8506 * @mac_addr: the station's address. For MLD station, MLD address is used.
8507 * @gfp: allocation flags
8508 */
8509static inline void cfg80211_del_sta(struct net_device *dev,
8510 const u8 *mac_addr, gfp_t gfp)
8511{
8512 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
8513}
8514
8515/**
8516 * cfg80211_conn_failed - connection request failed notification
8517 *
8518 * @dev: the netdev
8519 * @mac_addr: the station's address
8520 * @reason: the reason for connection failure
8521 * @gfp: allocation flags
8522 *
8523 * Whenever a station tries to connect to an AP and if the station
8524 * could not connect to the AP as the AP has rejected the connection
8525 * for some reasons, this function is called.
8526 *
8527 * The reason for connection failure can be any of the value from
8528 * nl80211_connect_failed_reason enum
8529 */
8530void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
8531 enum nl80211_connect_failed_reason reason,
8532 gfp_t gfp);
8533
8534/**
8535 * struct cfg80211_rx_info - received management frame info
8536 *
8537 * @freq: Frequency on which the frame was received in kHz
8538 * @sig_dbm: signal strength in dBm, or 0 if unknown
8539 * @have_link_id: indicates the frame was received on a link of
8540 * an MLD, i.e. the @link_id field is valid
8541 * @link_id: the ID of the link the frame was received on
8542 * @buf: Management frame (header + body)
8543 * @len: length of the frame data
8544 * @flags: flags, as defined in &enum nl80211_rxmgmt_flags
8545 * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds
8546 * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds
8547 */
8548struct cfg80211_rx_info {
8549 int freq;
8550 int sig_dbm;
8551 bool have_link_id;
8552 u8 link_id;
8553 const u8 *buf;
8554 size_t len;
8555 u32 flags;
8556 u64 rx_tstamp;
8557 u64 ack_tstamp;
8558};
8559
8560/**
8561 * cfg80211_rx_mgmt_ext - management frame notification with extended info
8562 * @wdev: wireless device receiving the frame
8563 * @info: RX info as defined in struct cfg80211_rx_info
8564 *
8565 * This function is called whenever an Action frame is received for a station
8566 * mode interface, but is not processed in kernel.
8567 *
8568 * Return: %true if a user space application has registered for this frame.
8569 * For action frames, that makes it responsible for rejecting unrecognized
8570 * action frames; %false otherwise, in which case for action frames the
8571 * driver is responsible for rejecting the frame.
8572 */
8573bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
8574 struct cfg80211_rx_info *info);
8575
8576/**
8577 * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame
8578 * @wdev: wireless device receiving the frame
8579 * @freq: Frequency on which the frame was received in KHz
8580 * @sig_dbm: signal strength in dBm, or 0 if unknown
8581 * @buf: Management frame (header + body)
8582 * @len: length of the frame data
8583 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8584 *
8585 * This function is called whenever an Action frame is received for a station
8586 * mode interface, but is not processed in kernel.
8587 *
8588 * Return: %true if a user space application has registered for this frame.
8589 * For action frames, that makes it responsible for rejecting unrecognized
8590 * action frames; %false otherwise, in which case for action frames the
8591 * driver is responsible for rejecting the frame.
8592 */
8593static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq,
8594 int sig_dbm, const u8 *buf, size_t len,
8595 u32 flags)
8596{
8597 struct cfg80211_rx_info info = {
8598 .freq = freq,
8599 .sig_dbm = sig_dbm,
8600 .buf = buf,
8601 .len = len,
8602 .flags = flags
8603 };
8604
8605 return cfg80211_rx_mgmt_ext(wdev, info: &info);
8606}
8607
8608/**
8609 * cfg80211_rx_mgmt - notification of received, unprocessed management frame
8610 * @wdev: wireless device receiving the frame
8611 * @freq: Frequency on which the frame was received in MHz
8612 * @sig_dbm: signal strength in dBm, or 0 if unknown
8613 * @buf: Management frame (header + body)
8614 * @len: length of the frame data
8615 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8616 *
8617 * This function is called whenever an Action frame is received for a station
8618 * mode interface, but is not processed in kernel.
8619 *
8620 * Return: %true if a user space application has registered for this frame.
8621 * For action frames, that makes it responsible for rejecting unrecognized
8622 * action frames; %false otherwise, in which case for action frames the
8623 * driver is responsible for rejecting the frame.
8624 */
8625static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq,
8626 int sig_dbm, const u8 *buf, size_t len,
8627 u32 flags)
8628{
8629 struct cfg80211_rx_info info = {
8630 .freq = MHZ_TO_KHZ(freq),
8631 .sig_dbm = sig_dbm,
8632 .buf = buf,
8633 .len = len,
8634 .flags = flags
8635 };
8636
8637 return cfg80211_rx_mgmt_ext(wdev, info: &info);
8638}
8639
8640/**
8641 * struct cfg80211_tx_status - TX status for management frame information
8642 *
8643 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
8644 * @tx_tstamp: hardware TX timestamp in nanoseconds
8645 * @ack_tstamp: hardware ack RX timestamp in nanoseconds
8646 * @buf: Management frame (header + body)
8647 * @len: length of the frame data
8648 * @ack: Whether frame was acknowledged
8649 */
8650struct cfg80211_tx_status {
8651 u64 cookie;
8652 u64 tx_tstamp;
8653 u64 ack_tstamp;
8654 const u8 *buf;
8655 size_t len;
8656 bool ack;
8657};
8658
8659/**
8660 * cfg80211_mgmt_tx_status_ext - TX status notification with extended info
8661 * @wdev: wireless device receiving the frame
8662 * @status: TX status data
8663 * @gfp: context flags
8664 *
8665 * This function is called whenever a management frame was requested to be
8666 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
8667 * transmission attempt with extended info.
8668 */
8669void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev,
8670 struct cfg80211_tx_status *status, gfp_t gfp);
8671
8672/**
8673 * cfg80211_mgmt_tx_status - notification of TX status for management frame
8674 * @wdev: wireless device receiving the frame
8675 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
8676 * @buf: Management frame (header + body)
8677 * @len: length of the frame data
8678 * @ack: Whether frame was acknowledged
8679 * @gfp: context flags
8680 *
8681 * This function is called whenever a management frame was requested to be
8682 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
8683 * transmission attempt.
8684 */
8685static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev,
8686 u64 cookie, const u8 *buf,
8687 size_t len, bool ack, gfp_t gfp)
8688{
8689 struct cfg80211_tx_status status = {
8690 .cookie = cookie,
8691 .buf = buf,
8692 .len = len,
8693 .ack = ack
8694 };
8695
8696 cfg80211_mgmt_tx_status_ext(wdev, status: &status, gfp);
8697}
8698
8699/**
8700 * cfg80211_control_port_tx_status - notification of TX status for control
8701 * port frames
8702 * @wdev: wireless device receiving the frame
8703 * @cookie: Cookie returned by cfg80211_ops::tx_control_port()
8704 * @buf: Data frame (header + body)
8705 * @len: length of the frame data
8706 * @ack: Whether frame was acknowledged
8707 * @gfp: context flags
8708 *
8709 * This function is called whenever a control port frame was requested to be
8710 * transmitted with cfg80211_ops::tx_control_port() to report the TX status of
8711 * the transmission attempt.
8712 */
8713void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie,
8714 const u8 *buf, size_t len, bool ack,
8715 gfp_t gfp);
8716
8717/**
8718 * cfg80211_rx_control_port - notification about a received control port frame
8719 * @dev: The device the frame matched to
8720 * @skb: The skbuf with the control port frame. It is assumed that the skbuf
8721 * is 802.3 formatted (with 802.3 header). The skb can be non-linear.
8722 * This function does not take ownership of the skb, so the caller is
8723 * responsible for any cleanup. The caller must also ensure that
8724 * skb->protocol is set appropriately.
8725 * @unencrypted: Whether the frame was received unencrypted
8726 * @link_id: the link the frame was received on, -1 if not applicable or unknown
8727 *
8728 * This function is used to inform userspace about a received control port
8729 * frame. It should only be used if userspace indicated it wants to receive
8730 * control port frames over nl80211.
8731 *
8732 * The frame is the data portion of the 802.3 or 802.11 data frame with all
8733 * network layer headers removed (e.g. the raw EAPoL frame).
8734 *
8735 * Return: %true if the frame was passed to userspace
8736 */
8737bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb,
8738 bool unencrypted, int link_id);
8739
8740/**
8741 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
8742 * @dev: network device
8743 * @rssi_event: the triggered RSSI event
8744 * @rssi_level: new RSSI level value or 0 if not available
8745 * @gfp: context flags
8746 *
8747 * This function is called when a configured connection quality monitoring
8748 * rssi threshold reached event occurs.
8749 */
8750void cfg80211_cqm_rssi_notify(struct net_device *dev,
8751 enum nl80211_cqm_rssi_threshold_event rssi_event,
8752 s32 rssi_level, gfp_t gfp);
8753
8754/**
8755 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
8756 * @dev: network device
8757 * @peer: peer's MAC address
8758 * @num_packets: how many packets were lost -- should be a fixed threshold
8759 * but probably no less than maybe 50, or maybe a throughput dependent
8760 * threshold (to account for temporary interference)
8761 * @gfp: context flags
8762 */
8763void cfg80211_cqm_pktloss_notify(struct net_device *dev,
8764 const u8 *peer, u32 num_packets, gfp_t gfp);
8765
8766/**
8767 * cfg80211_cqm_txe_notify - TX error rate event
8768 * @dev: network device
8769 * @peer: peer's MAC address
8770 * @num_packets: how many packets were lost
8771 * @rate: % of packets which failed transmission
8772 * @intvl: interval (in s) over which the TX failure threshold was breached.
8773 * @gfp: context flags
8774 *
8775 * Notify userspace when configured % TX failures over number of packets in a
8776 * given interval is exceeded.
8777 */
8778void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
8779 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
8780
8781/**
8782 * cfg80211_cqm_beacon_loss_notify - beacon loss event
8783 * @dev: network device
8784 * @gfp: context flags
8785 *
8786 * Notify userspace about beacon loss from the connected AP.
8787 */
8788void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
8789
8790/**
8791 * __cfg80211_radar_event - radar detection event
8792 * @wiphy: the wiphy
8793 * @chandef: chandef for the current channel
8794 * @offchan: the radar has been detected on the offchannel chain
8795 * @gfp: context flags
8796 *
8797 * This function is called when a radar is detected on the current chanenl.
8798 */
8799void __cfg80211_radar_event(struct wiphy *wiphy,
8800 struct cfg80211_chan_def *chandef,
8801 bool offchan, gfp_t gfp);
8802
8803static inline void
8804cfg80211_radar_event(struct wiphy *wiphy,
8805 struct cfg80211_chan_def *chandef,
8806 gfp_t gfp)
8807{
8808 __cfg80211_radar_event(wiphy, chandef, offchan: false, gfp);
8809}
8810
8811static inline void
8812cfg80211_background_radar_event(struct wiphy *wiphy,
8813 struct cfg80211_chan_def *chandef,
8814 gfp_t gfp)
8815{
8816 __cfg80211_radar_event(wiphy, chandef, offchan: true, gfp);
8817}
8818
8819/**
8820 * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event
8821 * @dev: network device
8822 * @mac: MAC address of a station which opmode got modified
8823 * @sta_opmode: station's current opmode value
8824 * @gfp: context flags
8825 *
8826 * Driver should call this function when station's opmode modified via action
8827 * frame.
8828 */
8829void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac,
8830 struct sta_opmode_info *sta_opmode,
8831 gfp_t gfp);
8832
8833/**
8834 * cfg80211_cac_event - Channel availability check (CAC) event
8835 * @netdev: network device
8836 * @chandef: chandef for the current channel
8837 * @event: type of event
8838 * @gfp: context flags
8839 * @link_id: valid link_id for MLO operation or 0 otherwise.
8840 *
8841 * This function is called when a Channel availability check (CAC) is finished
8842 * or aborted. This must be called to notify the completion of a CAC process,
8843 * also by full-MAC drivers.
8844 */
8845void cfg80211_cac_event(struct net_device *netdev,
8846 const struct cfg80211_chan_def *chandef,
8847 enum nl80211_radar_event event, gfp_t gfp,
8848 unsigned int link_id);
8849
8850/**
8851 * cfg80211_background_cac_abort - Channel Availability Check offchan abort event
8852 * @wiphy: the wiphy
8853 *
8854 * This function is called by the driver when a Channel Availability Check
8855 * (CAC) is aborted by a offchannel dedicated chain.
8856 */
8857void cfg80211_background_cac_abort(struct wiphy *wiphy);
8858
8859/**
8860 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
8861 * @dev: network device
8862 * @bssid: BSSID of AP (to avoid races)
8863 * @replay_ctr: new replay counter
8864 * @gfp: allocation flags
8865 */
8866void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
8867 const u8 *replay_ctr, gfp_t gfp);
8868
8869/**
8870 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
8871 * @dev: network device
8872 * @index: candidate index (the smaller the index, the higher the priority)
8873 * @bssid: BSSID of AP
8874 * @preauth: Whether AP advertises support for RSN pre-authentication
8875 * @gfp: allocation flags
8876 */
8877void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
8878 const u8 *bssid, bool preauth, gfp_t gfp);
8879
8880/**
8881 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
8882 * @dev: The device the frame matched to
8883 * @addr: the transmitter address
8884 * @gfp: context flags
8885 *
8886 * This function is used in AP mode (only!) to inform userspace that
8887 * a spurious class 3 frame was received, to be able to deauth the
8888 * sender.
8889 * Return: %true if the frame was passed to userspace (or this failed
8890 * for a reason other than not having a subscription.)
8891 */
8892bool cfg80211_rx_spurious_frame(struct net_device *dev,
8893 const u8 *addr, gfp_t gfp);
8894
8895/**
8896 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
8897 * @dev: The device the frame matched to
8898 * @addr: the transmitter address
8899 * @gfp: context flags
8900 *
8901 * This function is used in AP mode (only!) to inform userspace that
8902 * an associated station sent a 4addr frame but that wasn't expected.
8903 * It is allowed and desirable to send this event only once for each
8904 * station to avoid event flooding.
8905 * Return: %true if the frame was passed to userspace (or this failed
8906 * for a reason other than not having a subscription.)
8907 */
8908bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev,
8909 const u8 *addr, gfp_t gfp);
8910
8911/**
8912 * cfg80211_probe_status - notify userspace about probe status
8913 * @dev: the device the probe was sent on
8914 * @addr: the address of the peer
8915 * @cookie: the cookie filled in @probe_client previously
8916 * @acked: indicates whether probe was acked or not
8917 * @ack_signal: signal strength (in dBm) of the ACK frame.
8918 * @is_valid_ack_signal: indicates the ack_signal is valid or not.
8919 * @gfp: allocation flags
8920 */
8921void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
8922 u64 cookie, bool acked, s32 ack_signal,
8923 bool is_valid_ack_signal, gfp_t gfp);
8924
8925/**
8926 * cfg80211_report_obss_beacon_khz - report beacon from other APs
8927 * @wiphy: The wiphy that received the beacon
8928 * @frame: the frame
8929 * @len: length of the frame
8930 * @freq: frequency the frame was received on in KHz
8931 * @sig_dbm: signal strength in dBm, or 0 if unknown
8932 *
8933 * Use this function to report to userspace when a beacon was
8934 * received. It is not useful to call this when there is no
8935 * netdev that is in AP/GO mode.
8936 */
8937void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame,
8938 size_t len, int freq, int sig_dbm);
8939
8940/**
8941 * cfg80211_report_obss_beacon - report beacon from other APs
8942 * @wiphy: The wiphy that received the beacon
8943 * @frame: the frame
8944 * @len: length of the frame
8945 * @freq: frequency the frame was received on
8946 * @sig_dbm: signal strength in dBm, or 0 if unknown
8947 *
8948 * Use this function to report to userspace when a beacon was
8949 * received. It is not useful to call this when there is no
8950 * netdev that is in AP/GO mode.
8951 */
8952static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy,
8953 const u8 *frame, size_t len,
8954 int freq, int sig_dbm)
8955{
8956 cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq),
8957 sig_dbm);
8958}
8959
8960/**
8961 * struct cfg80211_beaconing_check_config - beacon check configuration
8962 * @iftype: the interface type to check for
8963 * @relax: allow IR-relaxation conditions to apply (e.g. another
8964 * interface connected already on the same channel)
8965 * NOTE: If this is set, wiphy mutex must be held.
8966 * @reg_power: &enum ieee80211_ap_reg_power value indicating the
8967 * advertised/used 6 GHz regulatory power setting
8968 */
8969struct cfg80211_beaconing_check_config {
8970 enum nl80211_iftype iftype;
8971 enum ieee80211_ap_reg_power reg_power;
8972 bool relax;
8973};
8974
8975/**
8976 * cfg80211_reg_check_beaconing - check if beaconing is allowed
8977 * @wiphy: the wiphy
8978 * @chandef: the channel definition
8979 * @cfg: additional parameters for the checking
8980 *
8981 * Return: %true if there is no secondary channel or the secondary channel(s)
8982 * can be used for beaconing (i.e. is not a radar channel etc.)
8983 */
8984bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
8985 struct cfg80211_chan_def *chandef,
8986 struct cfg80211_beaconing_check_config *cfg);
8987
8988/**
8989 * cfg80211_reg_can_beacon - check if beaconing is allowed
8990 * @wiphy: the wiphy
8991 * @chandef: the channel definition
8992 * @iftype: interface type
8993 *
8994 * Return: %true if there is no secondary channel or the secondary channel(s)
8995 * can be used for beaconing (i.e. is not a radar channel etc.)
8996 */
8997static inline bool
8998cfg80211_reg_can_beacon(struct wiphy *wiphy,
8999 struct cfg80211_chan_def *chandef,
9000 enum nl80211_iftype iftype)
9001{
9002 struct cfg80211_beaconing_check_config config = {
9003 .iftype = iftype,
9004 };
9005
9006 return cfg80211_reg_check_beaconing(wiphy, chandef, cfg: &config);
9007}
9008
9009/**
9010 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
9011 * @wiphy: the wiphy
9012 * @chandef: the channel definition
9013 * @iftype: interface type
9014 *
9015 * Return: %true if there is no secondary channel or the secondary channel(s)
9016 * can be used for beaconing (i.e. is not a radar channel etc.). This version
9017 * also checks if IR-relaxation conditions apply, to allow beaconing under
9018 * more permissive conditions.
9019 *
9020 * Context: Requires the wiphy mutex to be held.
9021 */
9022static inline bool
9023cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
9024 struct cfg80211_chan_def *chandef,
9025 enum nl80211_iftype iftype)
9026{
9027 struct cfg80211_beaconing_check_config config = {
9028 .iftype = iftype,
9029 .relax = true,
9030 };
9031
9032 return cfg80211_reg_check_beaconing(wiphy, chandef, cfg: &config);
9033}
9034
9035/**
9036 * cfg80211_ch_switch_notify - update wdev channel and notify userspace
9037 * @dev: the device which switched channels
9038 * @chandef: the new channel definition
9039 * @link_id: the link ID for MLO, must be 0 for non-MLO
9040 *
9041 * Caller must hold wiphy mutex, therefore must only be called from sleepable
9042 * driver context!
9043 */
9044void cfg80211_ch_switch_notify(struct net_device *dev,
9045 struct cfg80211_chan_def *chandef,
9046 unsigned int link_id);
9047
9048/**
9049 * cfg80211_ch_switch_started_notify - notify channel switch start
9050 * @dev: the device on which the channel switch started
9051 * @chandef: the future channel definition
9052 * @link_id: the link ID for MLO, must be 0 for non-MLO
9053 * @count: the number of TBTTs until the channel switch happens
9054 * @quiet: whether or not immediate quiet was requested by the AP
9055 *
9056 * Inform the userspace about the channel switch that has just
9057 * started, so that it can take appropriate actions (eg. starting
9058 * channel switch on other vifs), if necessary.
9059 */
9060void cfg80211_ch_switch_started_notify(struct net_device *dev,
9061 struct cfg80211_chan_def *chandef,
9062 unsigned int link_id, u8 count,
9063 bool quiet);
9064
9065/**
9066 * ieee80211_operating_class_to_band - convert operating class to band
9067 *
9068 * @operating_class: the operating class to convert
9069 * @band: band pointer to fill
9070 *
9071 * Return: %true if the conversion was successful, %false otherwise.
9072 */
9073bool ieee80211_operating_class_to_band(u8 operating_class,
9074 enum nl80211_band *band);
9075
9076/**
9077 * ieee80211_operating_class_to_chandef - convert operating class to chandef
9078 *
9079 * @operating_class: the operating class to convert
9080 * @chan: the ieee80211_channel to convert
9081 * @chandef: a pointer to the resulting chandef
9082 *
9083 * Return: %true if the conversion was successful, %false otherwise.
9084 */
9085bool ieee80211_operating_class_to_chandef(u8 operating_class,
9086 struct ieee80211_channel *chan,
9087 struct cfg80211_chan_def *chandef);
9088
9089/**
9090 * ieee80211_chandef_to_operating_class - convert chandef to operation class
9091 *
9092 * @chandef: the chandef to convert
9093 * @op_class: a pointer to the resulting operating class
9094 *
9095 * Return: %true if the conversion was successful, %false otherwise.
9096 */
9097bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
9098 u8 *op_class);
9099
9100/**
9101 * ieee80211_chandef_to_khz - convert chandef to frequency in KHz
9102 *
9103 * @chandef: the chandef to convert
9104 *
9105 * Return: the center frequency of chandef (1st segment) in KHz.
9106 */
9107static inline u32
9108ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef)
9109{
9110 return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
9111}
9112
9113/**
9114 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
9115 * @dev: the device on which the operation is requested
9116 * @peer: the MAC address of the peer device
9117 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
9118 * NL80211_TDLS_TEARDOWN)
9119 * @reason_code: the reason code for teardown request
9120 * @gfp: allocation flags
9121 *
9122 * This function is used to request userspace to perform TDLS operation that
9123 * requires knowledge of keys, i.e., link setup or teardown when the AP
9124 * connection uses encryption. This is optional mechanism for the driver to use
9125 * if it can automatically determine when a TDLS link could be useful (e.g.,
9126 * based on traffic and signal strength for a peer).
9127 */
9128void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
9129 enum nl80211_tdls_operation oper,
9130 u16 reason_code, gfp_t gfp);
9131
9132/**
9133 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
9134 * @rate: given rate_info to calculate bitrate from
9135 *
9136 * Return: calculated bitrate
9137 */
9138u32 cfg80211_calculate_bitrate(struct rate_info *rate);
9139
9140/**
9141 * cfg80211_unregister_wdev - remove the given wdev
9142 * @wdev: struct wireless_dev to remove
9143 *
9144 * This function removes the device so it can no longer be used. It is necessary
9145 * to call this function even when cfg80211 requests the removal of the device
9146 * by calling the del_virtual_intf() callback. The function must also be called
9147 * when the driver wishes to unregister the wdev, e.g. when the hardware device
9148 * is unbound from the driver.
9149 *
9150 * Context: Requires the RTNL and wiphy mutex to be held.
9151 */
9152void cfg80211_unregister_wdev(struct wireless_dev *wdev);
9153
9154/**
9155 * cfg80211_register_netdevice - register the given netdev
9156 * @dev: the netdev to register
9157 *
9158 * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9159 * than register_netdevice(), unregister_netdev() is impossible as the RTNL is
9160 * held. Otherwise, both register_netdevice() and register_netdev() are usable
9161 * instead as well.
9162 *
9163 * Context: Requires the RTNL and wiphy mutex to be held.
9164 *
9165 * Return: 0 on success. Non-zero on error.
9166 */
9167int cfg80211_register_netdevice(struct net_device *dev);
9168
9169/**
9170 * cfg80211_unregister_netdevice - unregister the given netdev
9171 * @dev: the netdev to register
9172 *
9173 * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9174 * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL
9175 * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are
9176 * usable instead as well.
9177 *
9178 * Context: Requires the RTNL and wiphy mutex to be held.
9179 */
9180static inline void cfg80211_unregister_netdevice(struct net_device *dev)
9181{
9182#if IS_ENABLED(CONFIG_CFG80211)
9183 cfg80211_unregister_wdev(wdev: dev->ieee80211_ptr);
9184#endif
9185}
9186
9187/**
9188 * struct cfg80211_ft_event_params - FT Information Elements
9189 * @ies: FT IEs
9190 * @ies_len: length of the FT IE in bytes
9191 * @target_ap: target AP's MAC address
9192 * @ric_ies: RIC IE
9193 * @ric_ies_len: length of the RIC IE in bytes
9194 */
9195struct cfg80211_ft_event_params {
9196 const u8 *ies;
9197 size_t ies_len;
9198 const u8 *target_ap;
9199 const u8 *ric_ies;
9200 size_t ric_ies_len;
9201};
9202
9203/**
9204 * cfg80211_ft_event - notify userspace about FT IE and RIC IE
9205 * @netdev: network device
9206 * @ft_event: IE information
9207 */
9208void cfg80211_ft_event(struct net_device *netdev,
9209 struct cfg80211_ft_event_params *ft_event);
9210
9211/**
9212 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
9213 * @ies: the input IE buffer
9214 * @len: the input length
9215 * @attr: the attribute ID to find
9216 * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
9217 * if the function is only called to get the needed buffer size
9218 * @bufsize: size of the output buffer
9219 *
9220 * The function finds a given P2P attribute in the (vendor) IEs and
9221 * copies its contents to the given buffer.
9222 *
9223 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
9224 * malformed or the attribute can't be found (respectively), or the
9225 * length of the found attribute (which can be zero).
9226 */
9227int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
9228 enum ieee80211_p2p_attr_id attr,
9229 u8 *buf, unsigned int bufsize);
9230
9231/**
9232 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
9233 * @ies: the IE buffer
9234 * @ielen: the length of the IE buffer
9235 * @ids: an array with element IDs that are allowed before
9236 * the split. A WLAN_EID_EXTENSION value means that the next
9237 * EID in the list is a sub-element of the EXTENSION IE.
9238 * @n_ids: the size of the element ID array
9239 * @after_ric: array IE types that come after the RIC element
9240 * @n_after_ric: size of the @after_ric array
9241 * @offset: offset where to start splitting in the buffer
9242 *
9243 * This function splits an IE buffer by updating the @offset
9244 * variable to point to the location where the buffer should be
9245 * split.
9246 *
9247 * It assumes that the given IE buffer is well-formed, this
9248 * has to be guaranteed by the caller!
9249 *
9250 * It also assumes that the IEs in the buffer are ordered
9251 * correctly, if not the result of using this function will not
9252 * be ordered correctly either, i.e. it does no reordering.
9253 *
9254 * Return: The offset where the next part of the buffer starts, which
9255 * may be @ielen if the entire (remainder) of the buffer should be
9256 * used.
9257 */
9258size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
9259 const u8 *ids, int n_ids,
9260 const u8 *after_ric, int n_after_ric,
9261 size_t offset);
9262
9263/**
9264 * ieee80211_ie_split - split an IE buffer according to ordering
9265 * @ies: the IE buffer
9266 * @ielen: the length of the IE buffer
9267 * @ids: an array with element IDs that are allowed before
9268 * the split. A WLAN_EID_EXTENSION value means that the next
9269 * EID in the list is a sub-element of the EXTENSION IE.
9270 * @n_ids: the size of the element ID array
9271 * @offset: offset where to start splitting in the buffer
9272 *
9273 * This function splits an IE buffer by updating the @offset
9274 * variable to point to the location where the buffer should be
9275 * split.
9276 *
9277 * It assumes that the given IE buffer is well-formed, this
9278 * has to be guaranteed by the caller!
9279 *
9280 * It also assumes that the IEs in the buffer are ordered
9281 * correctly, if not the result of using this function will not
9282 * be ordered correctly either, i.e. it does no reordering.
9283 *
9284 * Return: The offset where the next part of the buffer starts, which
9285 * may be @ielen if the entire (remainder) of the buffer should be
9286 * used.
9287 */
9288static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
9289 const u8 *ids, int n_ids, size_t offset)
9290{
9291 return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, n_after_ric: 0, offset);
9292}
9293
9294/**
9295 * ieee80211_fragment_element - fragment the last element in skb
9296 * @skb: The skbuf that the element was added to
9297 * @len_pos: Pointer to length of the element to fragment
9298 * @frag_id: The element ID to use for fragments
9299 *
9300 * This function fragments all data after @len_pos, adding fragmentation
9301 * elements with the given ID as appropriate. The SKB will grow in size
9302 * accordingly.
9303 */
9304void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id);
9305
9306/**
9307 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
9308 * @wdev: the wireless device reporting the wakeup
9309 * @wakeup: the wakeup report
9310 * @gfp: allocation flags
9311 *
9312 * This function reports that the given device woke up. If it
9313 * caused the wakeup, report the reason(s), otherwise you may
9314 * pass %NULL as the @wakeup parameter to advertise that something
9315 * else caused the wakeup.
9316 */
9317void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
9318 struct cfg80211_wowlan_wakeup *wakeup,
9319 gfp_t gfp);
9320
9321/**
9322 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
9323 *
9324 * @wdev: the wireless device for which critical protocol is stopped.
9325 * @gfp: allocation flags
9326 *
9327 * This function can be called by the driver to indicate it has reverted
9328 * operation back to normal. One reason could be that the duration given
9329 * by .crit_proto_start() has expired.
9330 */
9331void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
9332
9333/**
9334 * ieee80211_get_num_supported_channels - get number of channels device has
9335 * @wiphy: the wiphy
9336 *
9337 * Return: the number of channels supported by the device.
9338 */
9339unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
9340
9341/**
9342 * cfg80211_check_combinations - check interface combinations
9343 *
9344 * @wiphy: the wiphy
9345 * @params: the interface combinations parameter
9346 *
9347 * This function can be called by the driver to check whether a
9348 * combination of interfaces and their types are allowed according to
9349 * the interface combinations.
9350 *
9351 * Return: 0 if combinations are allowed. Non-zero on error.
9352 */
9353int cfg80211_check_combinations(struct wiphy *wiphy,
9354 struct iface_combination_params *params);
9355
9356/**
9357 * cfg80211_iter_combinations - iterate over matching combinations
9358 *
9359 * @wiphy: the wiphy
9360 * @params: the interface combinations parameter
9361 * @iter: function to call for each matching combination
9362 * @data: pointer to pass to iter function
9363 *
9364 * This function can be called by the driver to check what possible
9365 * combinations it fits in at a given moment, e.g. for channel switching
9366 * purposes.
9367 *
9368 * Return: 0 on success. Non-zero on error.
9369 */
9370int cfg80211_iter_combinations(struct wiphy *wiphy,
9371 struct iface_combination_params *params,
9372 void (*iter)(const struct ieee80211_iface_combination *c,
9373 void *data),
9374 void *data);
9375
9376/**
9377 * cfg80211_stop_iface - trigger interface disconnection
9378 *
9379 * @wiphy: the wiphy
9380 * @wdev: wireless device
9381 * @gfp: context flags
9382 *
9383 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
9384 * disconnected.
9385 *
9386 * Note: This doesn't need any locks and is asynchronous.
9387 */
9388void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
9389 gfp_t gfp);
9390
9391/**
9392 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
9393 * @wiphy: the wiphy to shut down
9394 *
9395 * This function shuts down all interfaces belonging to this wiphy by
9396 * calling dev_close() (and treating non-netdev interfaces as needed).
9397 * It shouldn't really be used unless there are some fatal device errors
9398 * that really can't be recovered in any other way.
9399 *
9400 * Callers must hold the RTNL and be able to deal with callbacks into
9401 * the driver while the function is running.
9402 */
9403void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
9404
9405/**
9406 * wiphy_ext_feature_set - set the extended feature flag
9407 *
9408 * @wiphy: the wiphy to modify.
9409 * @ftidx: extended feature bit index.
9410 *
9411 * The extended features are flagged in multiple bytes (see
9412 * &struct wiphy.@ext_features)
9413 */
9414static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
9415 enum nl80211_ext_feature_index ftidx)
9416{
9417 u8 *ft_byte;
9418
9419 ft_byte = &wiphy->ext_features[ftidx / 8];
9420 *ft_byte |= BIT(ftidx % 8);
9421}
9422
9423/**
9424 * wiphy_ext_feature_isset - check the extended feature flag
9425 *
9426 * @wiphy: the wiphy to modify.
9427 * @ftidx: extended feature bit index.
9428 *
9429 * The extended features are flagged in multiple bytes (see
9430 * &struct wiphy.@ext_features)
9431 *
9432 * Return: %true if extended feature flag is set, %false otherwise
9433 */
9434static inline bool
9435wiphy_ext_feature_isset(struct wiphy *wiphy,
9436 enum nl80211_ext_feature_index ftidx)
9437{
9438 u8 ft_byte;
9439
9440 ft_byte = wiphy->ext_features[ftidx / 8];
9441 return (ft_byte & BIT(ftidx % 8)) != 0;
9442}
9443
9444/**
9445 * cfg80211_free_nan_func - free NAN function
9446 * @f: NAN function that should be freed
9447 *
9448 * Frees all the NAN function and all it's allocated members.
9449 */
9450void cfg80211_free_nan_func(struct cfg80211_nan_func *f);
9451
9452/**
9453 * struct cfg80211_nan_match_params - NAN match parameters
9454 * @type: the type of the function that triggered a match. If it is
9455 * %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber.
9456 * If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery
9457 * result.
9458 * If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up.
9459 * @inst_id: the local instance id
9460 * @peer_inst_id: the instance id of the peer's function
9461 * @addr: the MAC address of the peer
9462 * @info_len: the length of the &info
9463 * @info: the Service Specific Info from the peer (if any)
9464 * @cookie: unique identifier of the corresponding function
9465 */
9466struct cfg80211_nan_match_params {
9467 enum nl80211_nan_function_type type;
9468 u8 inst_id;
9469 u8 peer_inst_id;
9470 const u8 *addr;
9471 u8 info_len;
9472 const u8 *info;
9473 u64 cookie;
9474};
9475
9476/**
9477 * cfg80211_nan_match - report a match for a NAN function.
9478 * @wdev: the wireless device reporting the match
9479 * @match: match notification parameters
9480 * @gfp: allocation flags
9481 *
9482 * This function reports that the a NAN function had a match. This
9483 * can be a subscribe that had a match or a solicited publish that
9484 * was sent. It can also be a follow up that was received.
9485 */
9486void cfg80211_nan_match(struct wireless_dev *wdev,
9487 struct cfg80211_nan_match_params *match, gfp_t gfp);
9488
9489/**
9490 * cfg80211_nan_func_terminated - notify about NAN function termination.
9491 *
9492 * @wdev: the wireless device reporting the match
9493 * @inst_id: the local instance id
9494 * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*)
9495 * @cookie: unique NAN function identifier
9496 * @gfp: allocation flags
9497 *
9498 * This function reports that the a NAN function is terminated.
9499 */
9500void cfg80211_nan_func_terminated(struct wireless_dev *wdev,
9501 u8 inst_id,
9502 enum nl80211_nan_func_term_reason reason,
9503 u64 cookie, gfp_t gfp);
9504
9505/* ethtool helper */
9506void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
9507
9508/**
9509 * cfg80211_external_auth_request - userspace request for authentication
9510 * @netdev: network device
9511 * @params: External authentication parameters
9512 * @gfp: allocation flags
9513 * Returns: 0 on success, < 0 on error
9514 */
9515int cfg80211_external_auth_request(struct net_device *netdev,
9516 struct cfg80211_external_auth_params *params,
9517 gfp_t gfp);
9518
9519/**
9520 * cfg80211_pmsr_report - report peer measurement result data
9521 * @wdev: the wireless device reporting the measurement
9522 * @req: the original measurement request
9523 * @result: the result data
9524 * @gfp: allocation flags
9525 */
9526void cfg80211_pmsr_report(struct wireless_dev *wdev,
9527 struct cfg80211_pmsr_request *req,
9528 struct cfg80211_pmsr_result *result,
9529 gfp_t gfp);
9530
9531/**
9532 * cfg80211_pmsr_complete - report peer measurement completed
9533 * @wdev: the wireless device reporting the measurement
9534 * @req: the original measurement request
9535 * @gfp: allocation flags
9536 *
9537 * Report that the entire measurement completed, after this
9538 * the request pointer will no longer be valid.
9539 */
9540void cfg80211_pmsr_complete(struct wireless_dev *wdev,
9541 struct cfg80211_pmsr_request *req,
9542 gfp_t gfp);
9543
9544/**
9545 * cfg80211_iftype_allowed - check whether the interface can be allowed
9546 * @wiphy: the wiphy
9547 * @iftype: interface type
9548 * @is_4addr: use_4addr flag, must be '0' when check_swif is '1'
9549 * @check_swif: check iftype against software interfaces
9550 *
9551 * Check whether the interface is allowed to operate; additionally, this API
9552 * can be used to check iftype against the software interfaces when
9553 * check_swif is '1'.
9554 *
9555 * Return: %true if allowed, %false otherwise
9556 */
9557bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
9558 bool is_4addr, u8 check_swif);
9559
9560
9561/**
9562 * cfg80211_assoc_comeback - notification of association that was
9563 * temporarily rejected with a comeback
9564 * @netdev: network device
9565 * @ap_addr: AP (MLD) address that rejected the association
9566 * @timeout: timeout interval value TUs.
9567 *
9568 * this function may sleep. the caller must hold the corresponding wdev's mutex.
9569 */
9570void cfg80211_assoc_comeback(struct net_device *netdev,
9571 const u8 *ap_addr, u32 timeout);
9572
9573/* Logging, debugging and troubleshooting/diagnostic helpers. */
9574
9575/* wiphy_printk helpers, similar to dev_printk */
9576
9577#define wiphy_printk(level, wiphy, format, args...) \
9578 dev_printk(level, &(wiphy)->dev, format, ##args)
9579#define wiphy_emerg(wiphy, format, args...) \
9580 dev_emerg(&(wiphy)->dev, format, ##args)
9581#define wiphy_alert(wiphy, format, args...) \
9582 dev_alert(&(wiphy)->dev, format, ##args)
9583#define wiphy_crit(wiphy, format, args...) \
9584 dev_crit(&(wiphy)->dev, format, ##args)
9585#define wiphy_err(wiphy, format, args...) \
9586 dev_err(&(wiphy)->dev, format, ##args)
9587#define wiphy_warn(wiphy, format, args...) \
9588 dev_warn(&(wiphy)->dev, format, ##args)
9589#define wiphy_notice(wiphy, format, args...) \
9590 dev_notice(&(wiphy)->dev, format, ##args)
9591#define wiphy_info(wiphy, format, args...) \
9592 dev_info(&(wiphy)->dev, format, ##args)
9593#define wiphy_info_once(wiphy, format, args...) \
9594 dev_info_once(&(wiphy)->dev, format, ##args)
9595
9596#define wiphy_err_ratelimited(wiphy, format, args...) \
9597 dev_err_ratelimited(&(wiphy)->dev, format, ##args)
9598#define wiphy_warn_ratelimited(wiphy, format, args...) \
9599 dev_warn_ratelimited(&(wiphy)->dev, format, ##args)
9600
9601#define wiphy_debug(wiphy, format, args...) \
9602 wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
9603
9604#define wiphy_dbg(wiphy, format, args...) \
9605 dev_dbg(&(wiphy)->dev, format, ##args)
9606
9607#if defined(VERBOSE_DEBUG)
9608#define wiphy_vdbg wiphy_dbg
9609#else
9610#define wiphy_vdbg(wiphy, format, args...) \
9611({ \
9612 if (0) \
9613 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \
9614 0; \
9615})
9616#endif
9617
9618/*
9619 * wiphy_WARN() acts like wiphy_printk(), but with the key difference
9620 * of using a WARN/WARN_ON to get the message out, including the
9621 * file/line information and a backtrace.
9622 */
9623#define wiphy_WARN(wiphy, format, args...) \
9624 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
9625
9626/**
9627 * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space
9628 * @netdev: network device
9629 * @owe_info: peer's owe info
9630 * @gfp: allocation flags
9631 */
9632void cfg80211_update_owe_info_event(struct net_device *netdev,
9633 struct cfg80211_update_owe_info *owe_info,
9634 gfp_t gfp);
9635
9636/**
9637 * cfg80211_bss_flush - resets all the scan entries
9638 * @wiphy: the wiphy
9639 */
9640void cfg80211_bss_flush(struct wiphy *wiphy);
9641
9642/**
9643 * cfg80211_bss_color_notify - notify about bss color event
9644 * @dev: network device
9645 * @cmd: the actual event we want to notify
9646 * @count: the number of TBTTs until the color change happens
9647 * @color_bitmap: representations of the colors that the local BSS is aware of
9648 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9649 *
9650 * Return: 0 on success. Non-zero on error.
9651 */
9652int cfg80211_bss_color_notify(struct net_device *dev,
9653 enum nl80211_commands cmd, u8 count,
9654 u64 color_bitmap, u8 link_id);
9655
9656/**
9657 * cfg80211_obss_color_collision_notify - notify about bss color collision
9658 * @dev: network device
9659 * @color_bitmap: representations of the colors that the local BSS is aware of
9660 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9661 *
9662 * Return: 0 on success. Non-zero on error.
9663 */
9664static inline int cfg80211_obss_color_collision_notify(struct net_device *dev,
9665 u64 color_bitmap,
9666 u8 link_id)
9667{
9668 return cfg80211_bss_color_notify(dev, cmd: NL80211_CMD_OBSS_COLOR_COLLISION,
9669 count: 0, color_bitmap, link_id);
9670}
9671
9672/**
9673 * cfg80211_color_change_started_notify - notify color change start
9674 * @dev: the device on which the color is switched
9675 * @count: the number of TBTTs until the color change happens
9676 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9677 *
9678 * Inform the userspace about the color change that has started.
9679 *
9680 * Return: 0 on success. Non-zero on error.
9681 */
9682static inline int cfg80211_color_change_started_notify(struct net_device *dev,
9683 u8 count, u8 link_id)
9684{
9685 return cfg80211_bss_color_notify(dev, cmd: NL80211_CMD_COLOR_CHANGE_STARTED,
9686 count, color_bitmap: 0, link_id);
9687}
9688
9689/**
9690 * cfg80211_color_change_aborted_notify - notify color change abort
9691 * @dev: the device on which the color is switched
9692 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9693 *
9694 * Inform the userspace about the color change that has aborted.
9695 *
9696 * Return: 0 on success. Non-zero on error.
9697 */
9698static inline int cfg80211_color_change_aborted_notify(struct net_device *dev,
9699 u8 link_id)
9700{
9701 return cfg80211_bss_color_notify(dev, cmd: NL80211_CMD_COLOR_CHANGE_ABORTED,
9702 count: 0, color_bitmap: 0, link_id);
9703}
9704
9705/**
9706 * cfg80211_color_change_notify - notify color change completion
9707 * @dev: the device on which the color was switched
9708 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9709 *
9710 * Inform the userspace about the color change that has completed.
9711 *
9712 * Return: 0 on success. Non-zero on error.
9713 */
9714static inline int cfg80211_color_change_notify(struct net_device *dev,
9715 u8 link_id)
9716{
9717 return cfg80211_bss_color_notify(dev,
9718 cmd: NL80211_CMD_COLOR_CHANGE_COMPLETED,
9719 count: 0, color_bitmap: 0, link_id);
9720}
9721
9722/**
9723 * cfg80211_links_removed - Notify about removed STA MLD setup links.
9724 * @dev: network device.
9725 * @link_mask: BIT mask of removed STA MLD setup link IDs.
9726 *
9727 * Inform cfg80211 and the userspace about removed STA MLD setup links due to
9728 * AP MLD removing the corresponding affiliated APs with Multi-Link
9729 * reconfiguration. Note that it's not valid to remove all links, in this
9730 * case disconnect instead.
9731 * Also note that the wdev mutex must be held.
9732 */
9733void cfg80211_links_removed(struct net_device *dev, u16 link_mask);
9734
9735/**
9736 * struct cfg80211_mlo_reconf_done_data - MLO reconfiguration data
9737 * @buf: MLO Reconfiguration Response frame (header + body)
9738 * @len: length of the frame data
9739 * @added_links: BIT mask of links successfully added to the association
9740 * @links: per-link information indexed by link ID
9741 * @links.bss: the BSS that MLO reconfiguration was requested for, ownership of
9742 * the pointer moves to cfg80211 in the call to
9743 * cfg80211_mlo_reconf_add_done().
9744 *
9745 * The BSS pointer must be set for each link for which 'add' operation was
9746 * requested in the assoc_ml_reconf callback.
9747 */
9748struct cfg80211_mlo_reconf_done_data {
9749 const u8 *buf;
9750 size_t len;
9751 u16 added_links;
9752 struct {
9753 struct cfg80211_bss *bss;
9754 u8 *addr;
9755 } links[IEEE80211_MLD_MAX_NUM_LINKS];
9756};
9757
9758/**
9759 * cfg80211_mlo_reconf_add_done - Notify about MLO reconfiguration result
9760 * @dev: network device.
9761 * @data: MLO reconfiguration done data, &struct cfg80211_mlo_reconf_done_data
9762 *
9763 * Inform cfg80211 and the userspace that processing of ML reconfiguration
9764 * request to add links to the association is done.
9765 */
9766void cfg80211_mlo_reconf_add_done(struct net_device *dev,
9767 struct cfg80211_mlo_reconf_done_data *data);
9768
9769/**
9770 * cfg80211_schedule_channels_check - schedule regulatory check if needed
9771 * @wdev: the wireless device to check
9772 *
9773 * In case the device supports NO_IR or DFS relaxations, schedule regulatory
9774 * channels check, as previous concurrent operation conditions may not
9775 * hold anymore.
9776 */
9777void cfg80211_schedule_channels_check(struct wireless_dev *wdev);
9778
9779/**
9780 * cfg80211_epcs_changed - Notify about a change in EPCS state
9781 * @netdev: the wireless device whose EPCS state changed
9782 * @enabled: set to true if EPCS was enabled, otherwise set to false.
9783 */
9784void cfg80211_epcs_changed(struct net_device *netdev, bool enabled);
9785
9786#ifdef CONFIG_CFG80211_DEBUGFS
9787/**
9788 * wiphy_locked_debugfs_read - do a locked read in debugfs
9789 * @wiphy: the wiphy to use
9790 * @file: the file being read
9791 * @buf: the buffer to fill and then read from
9792 * @bufsize: size of the buffer
9793 * @userbuf: the user buffer to copy to
9794 * @count: read count
9795 * @ppos: read position
9796 * @handler: the read handler to call (under wiphy lock)
9797 * @data: additional data to pass to the read handler
9798 *
9799 * Return: the number of characters read, or a negative errno
9800 */
9801ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file,
9802 char *buf, size_t bufsize,
9803 char __user *userbuf, size_t count,
9804 loff_t *ppos,
9805 ssize_t (*handler)(struct wiphy *wiphy,
9806 struct file *file,
9807 char *buf,
9808 size_t bufsize,
9809 void *data),
9810 void *data);
9811
9812/**
9813 * wiphy_locked_debugfs_write - do a locked write in debugfs
9814 * @wiphy: the wiphy to use
9815 * @file: the file being written to
9816 * @buf: the buffer to copy the user data to
9817 * @bufsize: size of the buffer
9818 * @userbuf: the user buffer to copy from
9819 * @count: read count
9820 * @handler: the write handler to call (under wiphy lock)
9821 * @data: additional data to pass to the write handler
9822 *
9823 * Return: the number of characters written, or a negative errno
9824 */
9825ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file,
9826 char *buf, size_t bufsize,
9827 const char __user *userbuf, size_t count,
9828 ssize_t (*handler)(struct wiphy *wiphy,
9829 struct file *file,
9830 char *buf,
9831 size_t count,
9832 void *data),
9833 void *data);
9834#endif
9835
9836#endif /* __NET_CFG80211_H */
9837

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/include/net/cfg80211.h