1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | #include <linux/export.h> |
3 | #include <linux/bvec.h> |
4 | #include <linux/fault-inject-usercopy.h> |
5 | #include <linux/uio.h> |
6 | #include <linux/pagemap.h> |
7 | #include <linux/highmem.h> |
8 | #include <linux/slab.h> |
9 | #include <linux/vmalloc.h> |
10 | #include <linux/splice.h> |
11 | #include <linux/compat.h> |
12 | #include <linux/scatterlist.h> |
13 | #include <linux/instrumented.h> |
14 | #include <linux/iov_iter.h> |
15 | |
16 | static __always_inline |
17 | size_t copy_to_user_iter(void __user *iter_to, size_t progress, |
18 | size_t len, void *from, void *priv2) |
19 | { |
20 | if (should_fail_usercopy()) |
21 | return len; |
22 | if (access_ok(iter_to, len)) { |
23 | from += progress; |
24 | instrument_copy_to_user(to: iter_to, from, n: len); |
25 | len = raw_copy_to_user(dst: iter_to, src: from, size: len); |
26 | } |
27 | return len; |
28 | } |
29 | |
30 | static __always_inline |
31 | size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, |
32 | size_t len, void *from, void *priv2) |
33 | { |
34 | ssize_t res; |
35 | |
36 | if (should_fail_usercopy()) |
37 | return len; |
38 | |
39 | from += progress; |
40 | res = copy_to_user_nofault(dst: iter_to, src: from, size: len); |
41 | return res < 0 ? len : res; |
42 | } |
43 | |
44 | static __always_inline |
45 | size_t copy_from_user_iter(void __user *iter_from, size_t progress, |
46 | size_t len, void *to, void *priv2) |
47 | { |
48 | size_t res = len; |
49 | |
50 | if (should_fail_usercopy()) |
51 | return len; |
52 | if (access_ok(iter_from, len)) { |
53 | to += progress; |
54 | instrument_copy_from_user_before(to, from: iter_from, n: len); |
55 | res = raw_copy_from_user(dst: to, src: iter_from, size: len); |
56 | instrument_copy_from_user_after(to, from: iter_from, n: len, left: res); |
57 | } |
58 | return res; |
59 | } |
60 | |
61 | static __always_inline |
62 | size_t memcpy_to_iter(void *iter_to, size_t progress, |
63 | size_t len, void *from, void *priv2) |
64 | { |
65 | memcpy(iter_to, from + progress, len); |
66 | return 0; |
67 | } |
68 | |
69 | static __always_inline |
70 | size_t memcpy_from_iter(void *iter_from, size_t progress, |
71 | size_t len, void *to, void *priv2) |
72 | { |
73 | memcpy(to + progress, iter_from, len); |
74 | return 0; |
75 | } |
76 | |
77 | /* |
78 | * fault_in_iov_iter_readable - fault in iov iterator for reading |
79 | * @i: iterator |
80 | * @size: maximum length |
81 | * |
82 | * Fault in one or more iovecs of the given iov_iter, to a maximum length of |
83 | * @size. For each iovec, fault in each page that constitutes the iovec. |
84 | * |
85 | * Returns the number of bytes not faulted in (like copy_to_user() and |
86 | * copy_from_user()). |
87 | * |
88 | * Always returns 0 for non-userspace iterators. |
89 | */ |
90 | size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) |
91 | { |
92 | if (iter_is_ubuf(i)) { |
93 | size_t n = min(size, iov_iter_count(i)); |
94 | n -= fault_in_readable(uaddr: i->ubuf + i->iov_offset, size: n); |
95 | return size - n; |
96 | } else if (iter_is_iovec(i)) { |
97 | size_t count = min(size, iov_iter_count(i)); |
98 | const struct iovec *p; |
99 | size_t skip; |
100 | |
101 | size -= count; |
102 | for (p = iter_iov(iter: i), skip = i->iov_offset; count; p++, skip = 0) { |
103 | size_t len = min(count, p->iov_len - skip); |
104 | size_t ret; |
105 | |
106 | if (unlikely(!len)) |
107 | continue; |
108 | ret = fault_in_readable(uaddr: p->iov_base + skip, size: len); |
109 | count -= len - ret; |
110 | if (ret) |
111 | break; |
112 | } |
113 | return count + size; |
114 | } |
115 | return 0; |
116 | } |
117 | EXPORT_SYMBOL(fault_in_iov_iter_readable); |
118 | |
119 | /* |
120 | * fault_in_iov_iter_writeable - fault in iov iterator for writing |
121 | * @i: iterator |
122 | * @size: maximum length |
123 | * |
124 | * Faults in the iterator using get_user_pages(), i.e., without triggering |
125 | * hardware page faults. This is primarily useful when we already know that |
126 | * some or all of the pages in @i aren't in memory. |
127 | * |
128 | * Returns the number of bytes not faulted in, like copy_to_user() and |
129 | * copy_from_user(). |
130 | * |
131 | * Always returns 0 for non-user-space iterators. |
132 | */ |
133 | size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) |
134 | { |
135 | if (iter_is_ubuf(i)) { |
136 | size_t n = min(size, iov_iter_count(i)); |
137 | n -= fault_in_safe_writeable(uaddr: i->ubuf + i->iov_offset, size: n); |
138 | return size - n; |
139 | } else if (iter_is_iovec(i)) { |
140 | size_t count = min(size, iov_iter_count(i)); |
141 | const struct iovec *p; |
142 | size_t skip; |
143 | |
144 | size -= count; |
145 | for (p = iter_iov(iter: i), skip = i->iov_offset; count; p++, skip = 0) { |
146 | size_t len = min(count, p->iov_len - skip); |
147 | size_t ret; |
148 | |
149 | if (unlikely(!len)) |
150 | continue; |
151 | ret = fault_in_safe_writeable(uaddr: p->iov_base + skip, size: len); |
152 | count -= len - ret; |
153 | if (ret) |
154 | break; |
155 | } |
156 | return count + size; |
157 | } |
158 | return 0; |
159 | } |
160 | EXPORT_SYMBOL(fault_in_iov_iter_writeable); |
161 | |
162 | void iov_iter_init(struct iov_iter *i, unsigned int direction, |
163 | const struct iovec *iov, unsigned long nr_segs, |
164 | size_t count) |
165 | { |
166 | WARN_ON(direction & ~(READ | WRITE)); |
167 | *i = (struct iov_iter) { |
168 | .iter_type = ITER_IOVEC, |
169 | .nofault = false, |
170 | .data_source = direction, |
171 | .__iov = iov, |
172 | .nr_segs = nr_segs, |
173 | .iov_offset = 0, |
174 | .count = count |
175 | }; |
176 | } |
177 | EXPORT_SYMBOL(iov_iter_init); |
178 | |
179 | size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) |
180 | { |
181 | if (WARN_ON_ONCE(i->data_source)) |
182 | return 0; |
183 | if (user_backed_iter(i)) |
184 | might_fault(); |
185 | return iterate_and_advance(iter: i, len: bytes, priv: (void *)addr, |
186 | ustep: copy_to_user_iter, step: memcpy_to_iter); |
187 | } |
188 | EXPORT_SYMBOL(_copy_to_iter); |
189 | |
190 | #ifdef CONFIG_ARCH_HAS_COPY_MC |
191 | static __always_inline |
192 | size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, |
193 | size_t len, void *from, void *priv2) |
194 | { |
195 | if (access_ok(iter_to, len)) { |
196 | from += progress; |
197 | instrument_copy_to_user(to: iter_to, from, n: len); |
198 | len = copy_mc_to_user(to: iter_to, from, len); |
199 | } |
200 | return len; |
201 | } |
202 | |
203 | static __always_inline |
204 | size_t memcpy_to_iter_mc(void *iter_to, size_t progress, |
205 | size_t len, void *from, void *priv2) |
206 | { |
207 | return copy_mc_to_kernel(to: iter_to, from: from + progress, len); |
208 | } |
209 | |
210 | /** |
211 | * _copy_mc_to_iter - copy to iter with source memory error exception handling |
212 | * @addr: source kernel address |
213 | * @bytes: total transfer length |
214 | * @i: destination iterator |
215 | * |
216 | * The pmem driver deploys this for the dax operation |
217 | * (dax_copy_to_iter()) for dax reads (bypass page-cache and the |
218 | * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes |
219 | * successfully copied. |
220 | * |
221 | * The main differences between this and typical _copy_to_iter(). |
222 | * |
223 | * * Typical tail/residue handling after a fault retries the copy |
224 | * byte-by-byte until the fault happens again. Re-triggering machine |
225 | * checks is potentially fatal so the implementation uses source |
226 | * alignment and poison alignment assumptions to avoid re-triggering |
227 | * hardware exceptions. |
228 | * |
229 | * * ITER_KVEC and ITER_BVEC can return short copies. Compare to |
230 | * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. |
231 | * |
232 | * Return: number of bytes copied (may be %0) |
233 | */ |
234 | size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) |
235 | { |
236 | if (WARN_ON_ONCE(i->data_source)) |
237 | return 0; |
238 | if (user_backed_iter(i)) |
239 | might_fault(); |
240 | return iterate_and_advance(iter: i, len: bytes, priv: (void *)addr, |
241 | ustep: copy_to_user_iter_mc, step: memcpy_to_iter_mc); |
242 | } |
243 | EXPORT_SYMBOL_GPL(_copy_mc_to_iter); |
244 | #endif /* CONFIG_ARCH_HAS_COPY_MC */ |
245 | |
246 | static __always_inline |
247 | size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) |
248 | { |
249 | return iterate_and_advance(iter: i, len: bytes, priv: addr, |
250 | ustep: copy_from_user_iter, step: memcpy_from_iter); |
251 | } |
252 | |
253 | size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) |
254 | { |
255 | if (WARN_ON_ONCE(!i->data_source)) |
256 | return 0; |
257 | |
258 | if (user_backed_iter(i)) |
259 | might_fault(); |
260 | return __copy_from_iter(addr, bytes, i); |
261 | } |
262 | EXPORT_SYMBOL(_copy_from_iter); |
263 | |
264 | static __always_inline |
265 | size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, |
266 | size_t len, void *to, void *priv2) |
267 | { |
268 | return __copy_from_user_inatomic_nocache(dst: to + progress, src: iter_from, size: len); |
269 | } |
270 | |
271 | size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) |
272 | { |
273 | if (WARN_ON_ONCE(!i->data_source)) |
274 | return 0; |
275 | |
276 | return iterate_and_advance(iter: i, len: bytes, priv: addr, |
277 | ustep: copy_from_user_iter_nocache, |
278 | step: memcpy_from_iter); |
279 | } |
280 | EXPORT_SYMBOL(_copy_from_iter_nocache); |
281 | |
282 | #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE |
283 | static __always_inline |
284 | size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, |
285 | size_t len, void *to, void *priv2) |
286 | { |
287 | return __copy_from_user_flushcache(dst: to + progress, src: iter_from, size: len); |
288 | } |
289 | |
290 | static __always_inline |
291 | size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, |
292 | size_t len, void *to, void *priv2) |
293 | { |
294 | memcpy_flushcache(dst: to + progress, src: iter_from, cnt: len); |
295 | return 0; |
296 | } |
297 | |
298 | /** |
299 | * _copy_from_iter_flushcache - write destination through cpu cache |
300 | * @addr: destination kernel address |
301 | * @bytes: total transfer length |
302 | * @i: source iterator |
303 | * |
304 | * The pmem driver arranges for filesystem-dax to use this facility via |
305 | * dax_copy_from_iter() for ensuring that writes to persistent memory |
306 | * are flushed through the CPU cache. It is differentiated from |
307 | * _copy_from_iter_nocache() in that guarantees all data is flushed for |
308 | * all iterator types. The _copy_from_iter_nocache() only attempts to |
309 | * bypass the cache for the ITER_IOVEC case, and on some archs may use |
310 | * instructions that strand dirty-data in the cache. |
311 | * |
312 | * Return: number of bytes copied (may be %0) |
313 | */ |
314 | size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) |
315 | { |
316 | if (WARN_ON_ONCE(!i->data_source)) |
317 | return 0; |
318 | |
319 | return iterate_and_advance(iter: i, len: bytes, priv: addr, |
320 | ustep: copy_from_user_iter_flushcache, |
321 | step: memcpy_from_iter_flushcache); |
322 | } |
323 | EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); |
324 | #endif |
325 | |
326 | static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) |
327 | { |
328 | struct page *head; |
329 | size_t v = n + offset; |
330 | |
331 | /* |
332 | * The general case needs to access the page order in order |
333 | * to compute the page size. |
334 | * However, we mostly deal with order-0 pages and thus can |
335 | * avoid a possible cache line miss for requests that fit all |
336 | * page orders. |
337 | */ |
338 | if (n <= v && v <= PAGE_SIZE) |
339 | return true; |
340 | |
341 | head = compound_head(page); |
342 | v += (page - head) << PAGE_SHIFT; |
343 | |
344 | if (WARN_ON(n > v || v > page_size(head))) |
345 | return false; |
346 | return true; |
347 | } |
348 | |
349 | size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, |
350 | struct iov_iter *i) |
351 | { |
352 | size_t res = 0; |
353 | if (!page_copy_sane(page, offset, n: bytes)) |
354 | return 0; |
355 | if (WARN_ON_ONCE(i->data_source)) |
356 | return 0; |
357 | page += offset / PAGE_SIZE; // first subpage |
358 | offset %= PAGE_SIZE; |
359 | while (1) { |
360 | void *kaddr = kmap_local_page(page); |
361 | size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
362 | n = _copy_to_iter(kaddr + offset, n, i); |
363 | kunmap_local(kaddr); |
364 | res += n; |
365 | bytes -= n; |
366 | if (!bytes || !n) |
367 | break; |
368 | offset += n; |
369 | if (offset == PAGE_SIZE) { |
370 | page++; |
371 | offset = 0; |
372 | } |
373 | } |
374 | return res; |
375 | } |
376 | EXPORT_SYMBOL(copy_page_to_iter); |
377 | |
378 | size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, |
379 | struct iov_iter *i) |
380 | { |
381 | size_t res = 0; |
382 | |
383 | if (!page_copy_sane(page, offset, n: bytes)) |
384 | return 0; |
385 | if (WARN_ON_ONCE(i->data_source)) |
386 | return 0; |
387 | page += offset / PAGE_SIZE; // first subpage |
388 | offset %= PAGE_SIZE; |
389 | while (1) { |
390 | void *kaddr = kmap_local_page(page); |
391 | size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
392 | |
393 | n = iterate_and_advance(iter: i, len: n, priv: kaddr + offset, |
394 | ustep: copy_to_user_iter_nofault, |
395 | step: memcpy_to_iter); |
396 | kunmap_local(kaddr); |
397 | res += n; |
398 | bytes -= n; |
399 | if (!bytes || !n) |
400 | break; |
401 | offset += n; |
402 | if (offset == PAGE_SIZE) { |
403 | page++; |
404 | offset = 0; |
405 | } |
406 | } |
407 | return res; |
408 | } |
409 | EXPORT_SYMBOL(copy_page_to_iter_nofault); |
410 | |
411 | size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, |
412 | struct iov_iter *i) |
413 | { |
414 | size_t res = 0; |
415 | if (!page_copy_sane(page, offset, n: bytes)) |
416 | return 0; |
417 | page += offset / PAGE_SIZE; // first subpage |
418 | offset %= PAGE_SIZE; |
419 | while (1) { |
420 | void *kaddr = kmap_local_page(page); |
421 | size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
422 | n = _copy_from_iter(kaddr + offset, n, i); |
423 | kunmap_local(kaddr); |
424 | res += n; |
425 | bytes -= n; |
426 | if (!bytes || !n) |
427 | break; |
428 | offset += n; |
429 | if (offset == PAGE_SIZE) { |
430 | page++; |
431 | offset = 0; |
432 | } |
433 | } |
434 | return res; |
435 | } |
436 | EXPORT_SYMBOL(copy_page_from_iter); |
437 | |
438 | static __always_inline |
439 | size_t zero_to_user_iter(void __user *iter_to, size_t progress, |
440 | size_t len, void *priv, void *priv2) |
441 | { |
442 | return clear_user(to: iter_to, n: len); |
443 | } |
444 | |
445 | static __always_inline |
446 | size_t zero_to_iter(void *iter_to, size_t progress, |
447 | size_t len, void *priv, void *priv2) |
448 | { |
449 | memset(iter_to, 0, len); |
450 | return 0; |
451 | } |
452 | |
453 | size_t iov_iter_zero(size_t bytes, struct iov_iter *i) |
454 | { |
455 | return iterate_and_advance(iter: i, len: bytes, NULL, |
456 | ustep: zero_to_user_iter, step: zero_to_iter); |
457 | } |
458 | EXPORT_SYMBOL(iov_iter_zero); |
459 | |
460 | size_t copy_folio_from_iter_atomic(struct folio *folio, size_t offset, |
461 | size_t bytes, struct iov_iter *i) |
462 | { |
463 | size_t n, copied = 0; |
464 | |
465 | if (!page_copy_sane(page: &folio->page, offset, n: bytes)) |
466 | return 0; |
467 | if (WARN_ON_ONCE(!i->data_source)) |
468 | return 0; |
469 | |
470 | do { |
471 | char *to = kmap_local_folio(folio, offset); |
472 | |
473 | n = bytes - copied; |
474 | if (folio_test_partial_kmap(folio) && |
475 | n > PAGE_SIZE - offset_in_page(offset)) |
476 | n = PAGE_SIZE - offset_in_page(offset); |
477 | |
478 | pagefault_disable(); |
479 | n = __copy_from_iter(addr: to, bytes: n, i); |
480 | pagefault_enable(); |
481 | kunmap_local(to); |
482 | copied += n; |
483 | offset += n; |
484 | } while (copied != bytes && n > 0); |
485 | |
486 | return copied; |
487 | } |
488 | EXPORT_SYMBOL(copy_folio_from_iter_atomic); |
489 | |
490 | static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) |
491 | { |
492 | const struct bio_vec *bvec, *end; |
493 | |
494 | if (!i->count) |
495 | return; |
496 | i->count -= size; |
497 | |
498 | size += i->iov_offset; |
499 | |
500 | for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { |
501 | if (likely(size < bvec->bv_len)) |
502 | break; |
503 | size -= bvec->bv_len; |
504 | } |
505 | i->iov_offset = size; |
506 | i->nr_segs -= bvec - i->bvec; |
507 | i->bvec = bvec; |
508 | } |
509 | |
510 | static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) |
511 | { |
512 | const struct iovec *iov, *end; |
513 | |
514 | if (!i->count) |
515 | return; |
516 | i->count -= size; |
517 | |
518 | size += i->iov_offset; // from beginning of current segment |
519 | for (iov = iter_iov(iter: i), end = iov + i->nr_segs; iov < end; iov++) { |
520 | if (likely(size < iov->iov_len)) |
521 | break; |
522 | size -= iov->iov_len; |
523 | } |
524 | i->iov_offset = size; |
525 | i->nr_segs -= iov - iter_iov(iter: i); |
526 | i->__iov = iov; |
527 | } |
528 | |
529 | static void iov_iter_folioq_advance(struct iov_iter *i, size_t size) |
530 | { |
531 | const struct folio_queue *folioq = i->folioq; |
532 | unsigned int slot = i->folioq_slot; |
533 | |
534 | if (!i->count) |
535 | return; |
536 | i->count -= size; |
537 | |
538 | if (slot >= folioq_nr_slots(folioq)) { |
539 | folioq = folioq->next; |
540 | slot = 0; |
541 | } |
542 | |
543 | size += i->iov_offset; /* From beginning of current segment. */ |
544 | do { |
545 | size_t fsize = folioq_folio_size(folioq, slot); |
546 | |
547 | if (likely(size < fsize)) |
548 | break; |
549 | size -= fsize; |
550 | slot++; |
551 | if (slot >= folioq_nr_slots(folioq) && folioq->next) { |
552 | folioq = folioq->next; |
553 | slot = 0; |
554 | } |
555 | } while (size); |
556 | |
557 | i->iov_offset = size; |
558 | i->folioq_slot = slot; |
559 | i->folioq = folioq; |
560 | } |
561 | |
562 | void iov_iter_advance(struct iov_iter *i, size_t size) |
563 | { |
564 | if (unlikely(i->count < size)) |
565 | size = i->count; |
566 | if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { |
567 | i->iov_offset += size; |
568 | i->count -= size; |
569 | } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { |
570 | /* iovec and kvec have identical layouts */ |
571 | iov_iter_iovec_advance(i, size); |
572 | } else if (iov_iter_is_bvec(i)) { |
573 | iov_iter_bvec_advance(i, size); |
574 | } else if (iov_iter_is_folioq(i)) { |
575 | iov_iter_folioq_advance(i, size); |
576 | } else if (iov_iter_is_discard(i)) { |
577 | i->count -= size; |
578 | } |
579 | } |
580 | EXPORT_SYMBOL(iov_iter_advance); |
581 | |
582 | static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll) |
583 | { |
584 | const struct folio_queue *folioq = i->folioq; |
585 | unsigned int slot = i->folioq_slot; |
586 | |
587 | for (;;) { |
588 | size_t fsize; |
589 | |
590 | if (slot == 0) { |
591 | folioq = folioq->prev; |
592 | slot = folioq_nr_slots(folioq); |
593 | } |
594 | slot--; |
595 | |
596 | fsize = folioq_folio_size(folioq, slot); |
597 | if (unroll <= fsize) { |
598 | i->iov_offset = fsize - unroll; |
599 | break; |
600 | } |
601 | unroll -= fsize; |
602 | } |
603 | |
604 | i->folioq_slot = slot; |
605 | i->folioq = folioq; |
606 | } |
607 | |
608 | void iov_iter_revert(struct iov_iter *i, size_t unroll) |
609 | { |
610 | if (!unroll) |
611 | return; |
612 | if (WARN_ON(unroll > MAX_RW_COUNT)) |
613 | return; |
614 | i->count += unroll; |
615 | if (unlikely(iov_iter_is_discard(i))) |
616 | return; |
617 | if (unroll <= i->iov_offset) { |
618 | i->iov_offset -= unroll; |
619 | return; |
620 | } |
621 | unroll -= i->iov_offset; |
622 | if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { |
623 | BUG(); /* We should never go beyond the start of the specified |
624 | * range since we might then be straying into pages that |
625 | * aren't pinned. |
626 | */ |
627 | } else if (iov_iter_is_bvec(i)) { |
628 | const struct bio_vec *bvec = i->bvec; |
629 | while (1) { |
630 | size_t n = (--bvec)->bv_len; |
631 | i->nr_segs++; |
632 | if (unroll <= n) { |
633 | i->bvec = bvec; |
634 | i->iov_offset = n - unroll; |
635 | return; |
636 | } |
637 | unroll -= n; |
638 | } |
639 | } else if (iov_iter_is_folioq(i)) { |
640 | i->iov_offset = 0; |
641 | iov_iter_folioq_revert(i, unroll); |
642 | } else { /* same logics for iovec and kvec */ |
643 | const struct iovec *iov = iter_iov(iter: i); |
644 | while (1) { |
645 | size_t n = (--iov)->iov_len; |
646 | i->nr_segs++; |
647 | if (unroll <= n) { |
648 | i->__iov = iov; |
649 | i->iov_offset = n - unroll; |
650 | return; |
651 | } |
652 | unroll -= n; |
653 | } |
654 | } |
655 | } |
656 | EXPORT_SYMBOL(iov_iter_revert); |
657 | |
658 | /* |
659 | * Return the count of just the current iov_iter segment. |
660 | */ |
661 | size_t iov_iter_single_seg_count(const struct iov_iter *i) |
662 | { |
663 | if (i->nr_segs > 1) { |
664 | if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
665 | return min(i->count, iter_iov(i)->iov_len - i->iov_offset); |
666 | if (iov_iter_is_bvec(i)) |
667 | return min(i->count, i->bvec->bv_len - i->iov_offset); |
668 | } |
669 | if (unlikely(iov_iter_is_folioq(i))) |
670 | return !i->count ? 0 : |
671 | umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count); |
672 | return i->count; |
673 | } |
674 | EXPORT_SYMBOL(iov_iter_single_seg_count); |
675 | |
676 | void iov_iter_kvec(struct iov_iter *i, unsigned int direction, |
677 | const struct kvec *kvec, unsigned long nr_segs, |
678 | size_t count) |
679 | { |
680 | WARN_ON(direction & ~(READ | WRITE)); |
681 | *i = (struct iov_iter){ |
682 | .iter_type = ITER_KVEC, |
683 | .data_source = direction, |
684 | .kvec = kvec, |
685 | .nr_segs = nr_segs, |
686 | .iov_offset = 0, |
687 | .count = count |
688 | }; |
689 | } |
690 | EXPORT_SYMBOL(iov_iter_kvec); |
691 | |
692 | void iov_iter_bvec(struct iov_iter *i, unsigned int direction, |
693 | const struct bio_vec *bvec, unsigned long nr_segs, |
694 | size_t count) |
695 | { |
696 | WARN_ON(direction & ~(READ | WRITE)); |
697 | *i = (struct iov_iter){ |
698 | .iter_type = ITER_BVEC, |
699 | .data_source = direction, |
700 | .bvec = bvec, |
701 | .nr_segs = nr_segs, |
702 | .iov_offset = 0, |
703 | .count = count |
704 | }; |
705 | } |
706 | EXPORT_SYMBOL(iov_iter_bvec); |
707 | |
708 | /** |
709 | * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue |
710 | * @i: The iterator to initialise. |
711 | * @direction: The direction of the transfer. |
712 | * @folioq: The starting point in the folio queue. |
713 | * @first_slot: The first slot in the folio queue to use |
714 | * @offset: The offset into the folio in the first slot to start at |
715 | * @count: The size of the I/O buffer in bytes. |
716 | * |
717 | * Set up an I/O iterator to either draw data out of the pages attached to an |
718 | * inode or to inject data into those pages. The pages *must* be prevented |
719 | * from evaporation, either by taking a ref on them or locking them by the |
720 | * caller. |
721 | */ |
722 | void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, |
723 | const struct folio_queue *folioq, unsigned int first_slot, |
724 | unsigned int offset, size_t count) |
725 | { |
726 | BUG_ON(direction & ~1); |
727 | *i = (struct iov_iter) { |
728 | .iter_type = ITER_FOLIOQ, |
729 | .data_source = direction, |
730 | .folioq = folioq, |
731 | .folioq_slot = first_slot, |
732 | .count = count, |
733 | .iov_offset = offset, |
734 | }; |
735 | } |
736 | EXPORT_SYMBOL(iov_iter_folio_queue); |
737 | |
738 | /** |
739 | * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray |
740 | * @i: The iterator to initialise. |
741 | * @direction: The direction of the transfer. |
742 | * @xarray: The xarray to access. |
743 | * @start: The start file position. |
744 | * @count: The size of the I/O buffer in bytes. |
745 | * |
746 | * Set up an I/O iterator to either draw data out of the pages attached to an |
747 | * inode or to inject data into those pages. The pages *must* be prevented |
748 | * from evaporation, either by taking a ref on them or locking them by the |
749 | * caller. |
750 | */ |
751 | void iov_iter_xarray(struct iov_iter *i, unsigned int direction, |
752 | struct xarray *xarray, loff_t start, size_t count) |
753 | { |
754 | BUG_ON(direction & ~1); |
755 | *i = (struct iov_iter) { |
756 | .iter_type = ITER_XARRAY, |
757 | .data_source = direction, |
758 | .xarray = xarray, |
759 | .xarray_start = start, |
760 | .count = count, |
761 | .iov_offset = 0 |
762 | }; |
763 | } |
764 | EXPORT_SYMBOL(iov_iter_xarray); |
765 | |
766 | /** |
767 | * iov_iter_discard - Initialise an I/O iterator that discards data |
768 | * @i: The iterator to initialise. |
769 | * @direction: The direction of the transfer. |
770 | * @count: The size of the I/O buffer in bytes. |
771 | * |
772 | * Set up an I/O iterator that just discards everything that's written to it. |
773 | * It's only available as a READ iterator. |
774 | */ |
775 | void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) |
776 | { |
777 | BUG_ON(direction != READ); |
778 | *i = (struct iov_iter){ |
779 | .iter_type = ITER_DISCARD, |
780 | .data_source = false, |
781 | .count = count, |
782 | .iov_offset = 0 |
783 | }; |
784 | } |
785 | EXPORT_SYMBOL(iov_iter_discard); |
786 | |
787 | static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, |
788 | unsigned len_mask) |
789 | { |
790 | const struct iovec *iov = iter_iov(iter: i); |
791 | size_t size = i->count; |
792 | size_t skip = i->iov_offset; |
793 | |
794 | do { |
795 | size_t len = iov->iov_len - skip; |
796 | |
797 | if (len > size) |
798 | len = size; |
799 | if (len & len_mask) |
800 | return false; |
801 | if ((unsigned long)(iov->iov_base + skip) & addr_mask) |
802 | return false; |
803 | |
804 | iov++; |
805 | size -= len; |
806 | skip = 0; |
807 | } while (size); |
808 | |
809 | return true; |
810 | } |
811 | |
812 | static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, |
813 | unsigned len_mask) |
814 | { |
815 | const struct bio_vec *bvec = i->bvec; |
816 | unsigned skip = i->iov_offset; |
817 | size_t size = i->count; |
818 | |
819 | do { |
820 | size_t len = bvec->bv_len - skip; |
821 | |
822 | if (len > size) |
823 | len = size; |
824 | if (len & len_mask) |
825 | return false; |
826 | if ((unsigned long)(bvec->bv_offset + skip) & addr_mask) |
827 | return false; |
828 | |
829 | bvec++; |
830 | size -= len; |
831 | skip = 0; |
832 | } while (size); |
833 | |
834 | return true; |
835 | } |
836 | |
837 | /** |
838 | * iov_iter_is_aligned() - Check if the addresses and lengths of each segments |
839 | * are aligned to the parameters. |
840 | * |
841 | * @i: &struct iov_iter to restore |
842 | * @addr_mask: bit mask to check against the iov element's addresses |
843 | * @len_mask: bit mask to check against the iov element's lengths |
844 | * |
845 | * Return: false if any addresses or lengths intersect with the provided masks |
846 | */ |
847 | bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, |
848 | unsigned len_mask) |
849 | { |
850 | if (likely(iter_is_ubuf(i))) { |
851 | if (i->count & len_mask) |
852 | return false; |
853 | if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) |
854 | return false; |
855 | return true; |
856 | } |
857 | |
858 | if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
859 | return iov_iter_aligned_iovec(i, addr_mask, len_mask); |
860 | |
861 | if (iov_iter_is_bvec(i)) |
862 | return iov_iter_aligned_bvec(i, addr_mask, len_mask); |
863 | |
864 | /* With both xarray and folioq types, we're dealing with whole folios. */ |
865 | if (iov_iter_is_xarray(i)) { |
866 | if (i->count & len_mask) |
867 | return false; |
868 | if ((i->xarray_start + i->iov_offset) & addr_mask) |
869 | return false; |
870 | } |
871 | if (iov_iter_is_folioq(i)) { |
872 | if (i->count & len_mask) |
873 | return false; |
874 | if (i->iov_offset & addr_mask) |
875 | return false; |
876 | } |
877 | |
878 | return true; |
879 | } |
880 | EXPORT_SYMBOL_GPL(iov_iter_is_aligned); |
881 | |
882 | static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) |
883 | { |
884 | const struct iovec *iov = iter_iov(iter: i); |
885 | unsigned long res = 0; |
886 | size_t size = i->count; |
887 | size_t skip = i->iov_offset; |
888 | |
889 | do { |
890 | size_t len = iov->iov_len - skip; |
891 | if (len) { |
892 | res |= (unsigned long)iov->iov_base + skip; |
893 | if (len > size) |
894 | len = size; |
895 | res |= len; |
896 | size -= len; |
897 | } |
898 | iov++; |
899 | skip = 0; |
900 | } while (size); |
901 | return res; |
902 | } |
903 | |
904 | static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) |
905 | { |
906 | const struct bio_vec *bvec = i->bvec; |
907 | unsigned res = 0; |
908 | size_t size = i->count; |
909 | unsigned skip = i->iov_offset; |
910 | |
911 | do { |
912 | size_t len = bvec->bv_len - skip; |
913 | res |= (unsigned long)bvec->bv_offset + skip; |
914 | if (len > size) |
915 | len = size; |
916 | res |= len; |
917 | bvec++; |
918 | size -= len; |
919 | skip = 0; |
920 | } while (size); |
921 | |
922 | return res; |
923 | } |
924 | |
925 | unsigned long iov_iter_alignment(const struct iov_iter *i) |
926 | { |
927 | if (likely(iter_is_ubuf(i))) { |
928 | size_t size = i->count; |
929 | if (size) |
930 | return ((unsigned long)i->ubuf + i->iov_offset) | size; |
931 | return 0; |
932 | } |
933 | |
934 | /* iovec and kvec have identical layouts */ |
935 | if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
936 | return iov_iter_alignment_iovec(i); |
937 | |
938 | if (iov_iter_is_bvec(i)) |
939 | return iov_iter_alignment_bvec(i); |
940 | |
941 | /* With both xarray and folioq types, we're dealing with whole folios. */ |
942 | if (iov_iter_is_folioq(i)) |
943 | return i->iov_offset | i->count; |
944 | if (iov_iter_is_xarray(i)) |
945 | return (i->xarray_start + i->iov_offset) | i->count; |
946 | |
947 | return 0; |
948 | } |
949 | EXPORT_SYMBOL(iov_iter_alignment); |
950 | |
951 | unsigned long iov_iter_gap_alignment(const struct iov_iter *i) |
952 | { |
953 | unsigned long res = 0; |
954 | unsigned long v = 0; |
955 | size_t size = i->count; |
956 | unsigned k; |
957 | |
958 | if (iter_is_ubuf(i)) |
959 | return 0; |
960 | |
961 | if (WARN_ON(!iter_is_iovec(i))) |
962 | return ~0U; |
963 | |
964 | for (k = 0; k < i->nr_segs; k++) { |
965 | const struct iovec *iov = iter_iov(iter: i) + k; |
966 | if (iov->iov_len) { |
967 | unsigned long base = (unsigned long)iov->iov_base; |
968 | if (v) // if not the first one |
969 | res |= base | v; // this start | previous end |
970 | v = base + iov->iov_len; |
971 | if (size <= iov->iov_len) |
972 | break; |
973 | size -= iov->iov_len; |
974 | } |
975 | } |
976 | return res; |
977 | } |
978 | EXPORT_SYMBOL(iov_iter_gap_alignment); |
979 | |
980 | static int want_pages_array(struct page ***res, size_t size, |
981 | size_t start, unsigned int maxpages) |
982 | { |
983 | unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); |
984 | |
985 | if (count > maxpages) |
986 | count = maxpages; |
987 | WARN_ON(!count); // caller should've prevented that |
988 | if (!*res) { |
989 | *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); |
990 | if (!*res) |
991 | return 0; |
992 | } |
993 | return count; |
994 | } |
995 | |
996 | static ssize_t iter_folioq_get_pages(struct iov_iter *iter, |
997 | struct page ***ppages, size_t maxsize, |
998 | unsigned maxpages, size_t *_start_offset) |
999 | { |
1000 | const struct folio_queue *folioq = iter->folioq; |
1001 | struct page **pages; |
1002 | unsigned int slot = iter->folioq_slot; |
1003 | size_t = 0, count = iter->count, iov_offset = iter->iov_offset; |
1004 | |
1005 | if (slot >= folioq_nr_slots(folioq)) { |
1006 | folioq = folioq->next; |
1007 | slot = 0; |
1008 | if (WARN_ON(iov_offset != 0)) |
1009 | return -EIO; |
1010 | } |
1011 | |
1012 | maxpages = want_pages_array(res: ppages, size: maxsize, start: iov_offset & ~PAGE_MASK, maxpages); |
1013 | if (!maxpages) |
1014 | return -ENOMEM; |
1015 | *_start_offset = iov_offset & ~PAGE_MASK; |
1016 | pages = *ppages; |
1017 | |
1018 | for (;;) { |
1019 | struct folio *folio = folioq_folio(folioq, slot); |
1020 | size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot); |
1021 | size_t part = PAGE_SIZE - offset % PAGE_SIZE; |
1022 | |
1023 | if (offset < fsize) { |
1024 | part = umin(part, umin(maxsize - extracted, fsize - offset)); |
1025 | count -= part; |
1026 | iov_offset += part; |
1027 | extracted += part; |
1028 | |
1029 | *pages = folio_page(folio, offset / PAGE_SIZE); |
1030 | get_page(page: *pages); |
1031 | pages++; |
1032 | maxpages--; |
1033 | } |
1034 | |
1035 | if (maxpages == 0 || extracted >= maxsize) |
1036 | break; |
1037 | |
1038 | if (iov_offset >= fsize) { |
1039 | iov_offset = 0; |
1040 | slot++; |
1041 | if (slot == folioq_nr_slots(folioq) && folioq->next) { |
1042 | folioq = folioq->next; |
1043 | slot = 0; |
1044 | } |
1045 | } |
1046 | } |
1047 | |
1048 | iter->count = count; |
1049 | iter->iov_offset = iov_offset; |
1050 | iter->folioq = folioq; |
1051 | iter->folioq_slot = slot; |
1052 | return extracted; |
1053 | } |
1054 | |
1055 | static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, |
1056 | pgoff_t index, unsigned int nr_pages) |
1057 | { |
1058 | XA_STATE(xas, xa, index); |
1059 | struct folio *folio; |
1060 | unsigned int ret = 0; |
1061 | |
1062 | rcu_read_lock(); |
1063 | for (folio = xas_load(&xas); folio; folio = xas_next(xas: &xas)) { |
1064 | if (xas_retry(xas: &xas, entry: folio)) |
1065 | continue; |
1066 | |
1067 | /* Has the folio moved or been split? */ |
1068 | if (unlikely(folio != xas_reload(&xas))) { |
1069 | xas_reset(xas: &xas); |
1070 | continue; |
1071 | } |
1072 | |
1073 | pages[ret] = folio_file_page(folio, index: xas.xa_index); |
1074 | folio_get(folio); |
1075 | if (++ret == nr_pages) |
1076 | break; |
1077 | } |
1078 | rcu_read_unlock(); |
1079 | return ret; |
1080 | } |
1081 | |
1082 | static ssize_t iter_xarray_get_pages(struct iov_iter *i, |
1083 | struct page ***pages, size_t maxsize, |
1084 | unsigned maxpages, size_t *_start_offset) |
1085 | { |
1086 | unsigned nr, offset, count; |
1087 | pgoff_t index; |
1088 | loff_t pos; |
1089 | |
1090 | pos = i->xarray_start + i->iov_offset; |
1091 | index = pos >> PAGE_SHIFT; |
1092 | offset = pos & ~PAGE_MASK; |
1093 | *_start_offset = offset; |
1094 | |
1095 | count = want_pages_array(res: pages, size: maxsize, start: offset, maxpages); |
1096 | if (!count) |
1097 | return -ENOMEM; |
1098 | nr = iter_xarray_populate_pages(pages: *pages, xa: i->xarray, index, nr_pages: count); |
1099 | if (nr == 0) |
1100 | return 0; |
1101 | |
1102 | maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); |
1103 | i->iov_offset += maxsize; |
1104 | i->count -= maxsize; |
1105 | return maxsize; |
1106 | } |
1107 | |
1108 | /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ |
1109 | static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) |
1110 | { |
1111 | size_t skip; |
1112 | long k; |
1113 | |
1114 | if (iter_is_ubuf(i)) |
1115 | return (unsigned long)i->ubuf + i->iov_offset; |
1116 | |
1117 | for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { |
1118 | const struct iovec *iov = iter_iov(iter: i) + k; |
1119 | size_t len = iov->iov_len - skip; |
1120 | |
1121 | if (unlikely(!len)) |
1122 | continue; |
1123 | if (*size > len) |
1124 | *size = len; |
1125 | return (unsigned long)iov->iov_base + skip; |
1126 | } |
1127 | BUG(); // if it had been empty, we wouldn't get called |
1128 | } |
1129 | |
1130 | /* must be done on non-empty ITER_BVEC one */ |
1131 | static struct page *first_bvec_segment(const struct iov_iter *i, |
1132 | size_t *size, size_t *start) |
1133 | { |
1134 | struct page *page; |
1135 | size_t skip = i->iov_offset, len; |
1136 | |
1137 | len = i->bvec->bv_len - skip; |
1138 | if (*size > len) |
1139 | *size = len; |
1140 | skip += i->bvec->bv_offset; |
1141 | page = i->bvec->bv_page + skip / PAGE_SIZE; |
1142 | *start = skip % PAGE_SIZE; |
1143 | return page; |
1144 | } |
1145 | |
1146 | static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, |
1147 | struct page ***pages, size_t maxsize, |
1148 | unsigned int maxpages, size_t *start) |
1149 | { |
1150 | unsigned int n, gup_flags = 0; |
1151 | |
1152 | if (maxsize > i->count) |
1153 | maxsize = i->count; |
1154 | if (!maxsize) |
1155 | return 0; |
1156 | if (maxsize > MAX_RW_COUNT) |
1157 | maxsize = MAX_RW_COUNT; |
1158 | |
1159 | if (likely(user_backed_iter(i))) { |
1160 | unsigned long addr; |
1161 | int res; |
1162 | |
1163 | if (iov_iter_rw(i) != WRITE) |
1164 | gup_flags |= FOLL_WRITE; |
1165 | if (i->nofault) |
1166 | gup_flags |= FOLL_NOFAULT; |
1167 | |
1168 | addr = first_iovec_segment(i, size: &maxsize); |
1169 | *start = addr % PAGE_SIZE; |
1170 | addr &= PAGE_MASK; |
1171 | n = want_pages_array(res: pages, size: maxsize, start: *start, maxpages); |
1172 | if (!n) |
1173 | return -ENOMEM; |
1174 | res = get_user_pages_fast(start: addr, nr_pages: n, gup_flags, pages: *pages); |
1175 | if (unlikely(res <= 0)) |
1176 | return res; |
1177 | maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); |
1178 | iov_iter_advance(i, maxsize); |
1179 | return maxsize; |
1180 | } |
1181 | if (iov_iter_is_bvec(i)) { |
1182 | struct page **p; |
1183 | struct page *page; |
1184 | |
1185 | page = first_bvec_segment(i, size: &maxsize, start); |
1186 | n = want_pages_array(res: pages, size: maxsize, start: *start, maxpages); |
1187 | if (!n) |
1188 | return -ENOMEM; |
1189 | p = *pages; |
1190 | for (int k = 0; k < n; k++) { |
1191 | struct folio *folio = page_folio(page + k); |
1192 | p[k] = page + k; |
1193 | if (!folio_test_slab(folio)) |
1194 | folio_get(folio); |
1195 | } |
1196 | maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); |
1197 | i->count -= maxsize; |
1198 | i->iov_offset += maxsize; |
1199 | if (i->iov_offset == i->bvec->bv_len) { |
1200 | i->iov_offset = 0; |
1201 | i->bvec++; |
1202 | i->nr_segs--; |
1203 | } |
1204 | return maxsize; |
1205 | } |
1206 | if (iov_iter_is_folioq(i)) |
1207 | return iter_folioq_get_pages(iter: i, ppages: pages, maxsize, maxpages, start_offset: start); |
1208 | if (iov_iter_is_xarray(i)) |
1209 | return iter_xarray_get_pages(i, pages, maxsize, maxpages, start_offset: start); |
1210 | return -EFAULT; |
1211 | } |
1212 | |
1213 | ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, |
1214 | size_t maxsize, unsigned maxpages, size_t *start) |
1215 | { |
1216 | if (!maxpages) |
1217 | return 0; |
1218 | BUG_ON(!pages); |
1219 | |
1220 | return __iov_iter_get_pages_alloc(i, pages: &pages, maxsize, maxpages, start); |
1221 | } |
1222 | EXPORT_SYMBOL(iov_iter_get_pages2); |
1223 | |
1224 | ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, |
1225 | struct page ***pages, size_t maxsize, size_t *start) |
1226 | { |
1227 | ssize_t len; |
1228 | |
1229 | *pages = NULL; |
1230 | |
1231 | len = __iov_iter_get_pages_alloc(i, pages, maxsize, maxpages: ~0U, start); |
1232 | if (len <= 0) { |
1233 | kvfree(addr: *pages); |
1234 | *pages = NULL; |
1235 | } |
1236 | return len; |
1237 | } |
1238 | EXPORT_SYMBOL(iov_iter_get_pages_alloc2); |
1239 | |
1240 | static int iov_npages(const struct iov_iter *i, int maxpages) |
1241 | { |
1242 | size_t skip = i->iov_offset, size = i->count; |
1243 | const struct iovec *p; |
1244 | int npages = 0; |
1245 | |
1246 | for (p = iter_iov(iter: i); size; skip = 0, p++) { |
1247 | unsigned offs = offset_in_page(p->iov_base + skip); |
1248 | size_t len = min(p->iov_len - skip, size); |
1249 | |
1250 | if (len) { |
1251 | size -= len; |
1252 | npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); |
1253 | if (unlikely(npages > maxpages)) |
1254 | return maxpages; |
1255 | } |
1256 | } |
1257 | return npages; |
1258 | } |
1259 | |
1260 | static int bvec_npages(const struct iov_iter *i, int maxpages) |
1261 | { |
1262 | size_t skip = i->iov_offset, size = i->count; |
1263 | const struct bio_vec *p; |
1264 | int npages = 0; |
1265 | |
1266 | for (p = i->bvec; size; skip = 0, p++) { |
1267 | unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; |
1268 | size_t len = min(p->bv_len - skip, size); |
1269 | |
1270 | size -= len; |
1271 | npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); |
1272 | if (unlikely(npages > maxpages)) |
1273 | return maxpages; |
1274 | } |
1275 | return npages; |
1276 | } |
1277 | |
1278 | int iov_iter_npages(const struct iov_iter *i, int maxpages) |
1279 | { |
1280 | if (unlikely(!i->count)) |
1281 | return 0; |
1282 | if (likely(iter_is_ubuf(i))) { |
1283 | unsigned offs = offset_in_page(i->ubuf + i->iov_offset); |
1284 | int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); |
1285 | return min(npages, maxpages); |
1286 | } |
1287 | /* iovec and kvec have identical layouts */ |
1288 | if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
1289 | return iov_npages(i, maxpages); |
1290 | if (iov_iter_is_bvec(i)) |
1291 | return bvec_npages(i, maxpages); |
1292 | if (iov_iter_is_folioq(i)) { |
1293 | unsigned offset = i->iov_offset % PAGE_SIZE; |
1294 | int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); |
1295 | return min(npages, maxpages); |
1296 | } |
1297 | if (iov_iter_is_xarray(i)) { |
1298 | unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; |
1299 | int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); |
1300 | return min(npages, maxpages); |
1301 | } |
1302 | return 0; |
1303 | } |
1304 | EXPORT_SYMBOL(iov_iter_npages); |
1305 | |
1306 | const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) |
1307 | { |
1308 | *new = *old; |
1309 | if (iov_iter_is_bvec(i: new)) |
1310 | return new->bvec = kmemdup(new->bvec, |
1311 | new->nr_segs * sizeof(struct bio_vec), |
1312 | flags); |
1313 | else if (iov_iter_is_kvec(i: new) || iter_is_iovec(i: new)) |
1314 | /* iovec and kvec have identical layout */ |
1315 | return new->__iov = kmemdup(new->__iov, |
1316 | new->nr_segs * sizeof(struct iovec), |
1317 | flags); |
1318 | return NULL; |
1319 | } |
1320 | EXPORT_SYMBOL(dup_iter); |
1321 | |
1322 | static __noclone int copy_compat_iovec_from_user(struct iovec *iov, |
1323 | const struct iovec __user *uvec, u32 nr_segs) |
1324 | { |
1325 | const struct compat_iovec __user *uiov = |
1326 | (const struct compat_iovec __user *)uvec; |
1327 | int ret = -EFAULT; |
1328 | u32 i; |
1329 | |
1330 | if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) |
1331 | return -EFAULT; |
1332 | |
1333 | for (i = 0; i < nr_segs; i++) { |
1334 | compat_uptr_t buf; |
1335 | compat_ssize_t len; |
1336 | |
1337 | unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); |
1338 | unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); |
1339 | |
1340 | /* check for compat_size_t not fitting in compat_ssize_t .. */ |
1341 | if (len < 0) { |
1342 | ret = -EINVAL; |
1343 | goto uaccess_end; |
1344 | } |
1345 | iov[i].iov_base = compat_ptr(uptr: buf); |
1346 | iov[i].iov_len = len; |
1347 | } |
1348 | |
1349 | ret = 0; |
1350 | uaccess_end: |
1351 | user_access_end(); |
1352 | return ret; |
1353 | } |
1354 | |
1355 | static __noclone int copy_iovec_from_user(struct iovec *iov, |
1356 | const struct iovec __user *uiov, unsigned long nr_segs) |
1357 | { |
1358 | int ret = -EFAULT; |
1359 | |
1360 | if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) |
1361 | return -EFAULT; |
1362 | |
1363 | do { |
1364 | void __user *buf; |
1365 | ssize_t len; |
1366 | |
1367 | unsafe_get_user(len, &uiov->iov_len, uaccess_end); |
1368 | unsafe_get_user(buf, &uiov->iov_base, uaccess_end); |
1369 | |
1370 | /* check for size_t not fitting in ssize_t .. */ |
1371 | if (unlikely(len < 0)) { |
1372 | ret = -EINVAL; |
1373 | goto uaccess_end; |
1374 | } |
1375 | iov->iov_base = buf; |
1376 | iov->iov_len = len; |
1377 | |
1378 | uiov++; iov++; |
1379 | } while (--nr_segs); |
1380 | |
1381 | ret = 0; |
1382 | uaccess_end: |
1383 | user_access_end(); |
1384 | return ret; |
1385 | } |
1386 | |
1387 | struct iovec *iovec_from_user(const struct iovec __user *uvec, |
1388 | unsigned long nr_segs, unsigned long fast_segs, |
1389 | struct iovec *fast_iov, bool compat) |
1390 | { |
1391 | struct iovec *iov = fast_iov; |
1392 | int ret; |
1393 | |
1394 | /* |
1395 | * SuS says "The readv() function *may* fail if the iovcnt argument was |
1396 | * less than or equal to 0, or greater than {IOV_MAX}. Linux has |
1397 | * traditionally returned zero for zero segments, so... |
1398 | */ |
1399 | if (nr_segs == 0) |
1400 | return iov; |
1401 | if (nr_segs > UIO_MAXIOV) |
1402 | return ERR_PTR(error: -EINVAL); |
1403 | if (nr_segs > fast_segs) { |
1404 | iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); |
1405 | if (!iov) |
1406 | return ERR_PTR(error: -ENOMEM); |
1407 | } |
1408 | |
1409 | if (unlikely(compat)) |
1410 | ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); |
1411 | else |
1412 | ret = copy_iovec_from_user(iov, uiov: uvec, nr_segs); |
1413 | if (ret) { |
1414 | if (iov != fast_iov) |
1415 | kfree(objp: iov); |
1416 | return ERR_PTR(error: ret); |
1417 | } |
1418 | |
1419 | return iov; |
1420 | } |
1421 | |
1422 | /* |
1423 | * Single segment iovec supplied by the user, import it as ITER_UBUF. |
1424 | */ |
1425 | static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, |
1426 | struct iovec **iovp, struct iov_iter *i, |
1427 | bool compat) |
1428 | { |
1429 | struct iovec *iov = *iovp; |
1430 | ssize_t ret; |
1431 | |
1432 | *iovp = NULL; |
1433 | |
1434 | if (compat) |
1435 | ret = copy_compat_iovec_from_user(iov, uvec, nr_segs: 1); |
1436 | else |
1437 | ret = copy_iovec_from_user(iov, uiov: uvec, nr_segs: 1); |
1438 | if (unlikely(ret)) |
1439 | return ret; |
1440 | |
1441 | ret = import_ubuf(type, buf: iov->iov_base, len: iov->iov_len, i); |
1442 | if (unlikely(ret)) |
1443 | return ret; |
1444 | return i->count; |
1445 | } |
1446 | |
1447 | ssize_t __import_iovec(int type, const struct iovec __user *uvec, |
1448 | unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, |
1449 | struct iov_iter *i, bool compat) |
1450 | { |
1451 | ssize_t total_len = 0; |
1452 | unsigned long seg; |
1453 | struct iovec *iov; |
1454 | |
1455 | if (nr_segs == 1) |
1456 | return __import_iovec_ubuf(type, uvec, iovp, i, compat); |
1457 | |
1458 | iov = iovec_from_user(uvec, nr_segs, fast_segs, fast_iov: *iovp, compat); |
1459 | if (IS_ERR(ptr: iov)) { |
1460 | *iovp = NULL; |
1461 | return PTR_ERR(ptr: iov); |
1462 | } |
1463 | |
1464 | /* |
1465 | * According to the Single Unix Specification we should return EINVAL if |
1466 | * an element length is < 0 when cast to ssize_t or if the total length |
1467 | * would overflow the ssize_t return value of the system call. |
1468 | * |
1469 | * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the |
1470 | * overflow case. |
1471 | */ |
1472 | for (seg = 0; seg < nr_segs; seg++) { |
1473 | ssize_t len = (ssize_t)iov[seg].iov_len; |
1474 | |
1475 | if (!access_ok(iov[seg].iov_base, len)) { |
1476 | if (iov != *iovp) |
1477 | kfree(objp: iov); |
1478 | *iovp = NULL; |
1479 | return -EFAULT; |
1480 | } |
1481 | |
1482 | if (len > MAX_RW_COUNT - total_len) { |
1483 | len = MAX_RW_COUNT - total_len; |
1484 | iov[seg].iov_len = len; |
1485 | } |
1486 | total_len += len; |
1487 | } |
1488 | |
1489 | iov_iter_init(i, type, iov, nr_segs, total_len); |
1490 | if (iov == *iovp) |
1491 | *iovp = NULL; |
1492 | else |
1493 | *iovp = iov; |
1494 | return total_len; |
1495 | } |
1496 | |
1497 | /** |
1498 | * import_iovec() - Copy an array of &struct iovec from userspace |
1499 | * into the kernel, check that it is valid, and initialize a new |
1500 | * &struct iov_iter iterator to access it. |
1501 | * |
1502 | * @type: One of %READ or %WRITE. |
1503 | * @uvec: Pointer to the userspace array. |
1504 | * @nr_segs: Number of elements in userspace array. |
1505 | * @fast_segs: Number of elements in @iov. |
1506 | * @iovp: (input and output parameter) Pointer to pointer to (usually small |
1507 | * on-stack) kernel array. |
1508 | * @i: Pointer to iterator that will be initialized on success. |
1509 | * |
1510 | * If the array pointed to by *@iov is large enough to hold all @nr_segs, |
1511 | * then this function places %NULL in *@iov on return. Otherwise, a new |
1512 | * array will be allocated and the result placed in *@iov. This means that |
1513 | * the caller may call kfree() on *@iov regardless of whether the small |
1514 | * on-stack array was used or not (and regardless of whether this function |
1515 | * returns an error or not). |
1516 | * |
1517 | * Return: Negative error code on error, bytes imported on success |
1518 | */ |
1519 | ssize_t import_iovec(int type, const struct iovec __user *uvec, |
1520 | unsigned nr_segs, unsigned fast_segs, |
1521 | struct iovec **iovp, struct iov_iter *i) |
1522 | { |
1523 | return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, |
1524 | in_compat_syscall()); |
1525 | } |
1526 | EXPORT_SYMBOL(import_iovec); |
1527 | |
1528 | int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) |
1529 | { |
1530 | if (len > MAX_RW_COUNT) |
1531 | len = MAX_RW_COUNT; |
1532 | if (unlikely(!access_ok(buf, len))) |
1533 | return -EFAULT; |
1534 | |
1535 | iov_iter_ubuf(i, direction: rw, buf, count: len); |
1536 | return 0; |
1537 | } |
1538 | EXPORT_SYMBOL_GPL(import_ubuf); |
1539 | |
1540 | /** |
1541 | * iov_iter_restore() - Restore a &struct iov_iter to the same state as when |
1542 | * iov_iter_save_state() was called. |
1543 | * |
1544 | * @i: &struct iov_iter to restore |
1545 | * @state: state to restore from |
1546 | * |
1547 | * Used after iov_iter_save_state() to bring restore @i, if operations may |
1548 | * have advanced it. |
1549 | * |
1550 | * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC |
1551 | */ |
1552 | void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) |
1553 | { |
1554 | if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && |
1555 | !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) |
1556 | return; |
1557 | i->iov_offset = state->iov_offset; |
1558 | i->count = state->count; |
1559 | if (iter_is_ubuf(i)) |
1560 | return; |
1561 | /* |
1562 | * For the *vec iters, nr_segs + iov is constant - if we increment |
1563 | * the vec, then we also decrement the nr_segs count. Hence we don't |
1564 | * need to track both of these, just one is enough and we can deduct |
1565 | * the other from that. ITER_KVEC and ITER_IOVEC are the same struct |
1566 | * size, so we can just increment the iov pointer as they are unionzed. |
1567 | * ITER_BVEC _may_ be the same size on some archs, but on others it is |
1568 | * not. Be safe and handle it separately. |
1569 | */ |
1570 | BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); |
1571 | if (iov_iter_is_bvec(i)) |
1572 | i->bvec -= state->nr_segs - i->nr_segs; |
1573 | else |
1574 | i->__iov -= state->nr_segs - i->nr_segs; |
1575 | i->nr_segs = state->nr_segs; |
1576 | } |
1577 | |
1578 | /* |
1579 | * Extract a list of contiguous pages from an ITER_FOLIOQ iterator. This does |
1580 | * not get references on the pages, nor does it get a pin on them. |
1581 | */ |
1582 | static ssize_t (struct iov_iter *i, |
1583 | struct page ***pages, size_t maxsize, |
1584 | unsigned int maxpages, |
1585 | iov_iter_extraction_t , |
1586 | size_t *offset0) |
1587 | { |
1588 | const struct folio_queue *folioq = i->folioq; |
1589 | struct page **p; |
1590 | unsigned int nr = 0; |
1591 | size_t = 0, offset, slot = i->folioq_slot; |
1592 | |
1593 | if (slot >= folioq_nr_slots(folioq)) { |
1594 | folioq = folioq->next; |
1595 | slot = 0; |
1596 | if (WARN_ON(i->iov_offset != 0)) |
1597 | return -EIO; |
1598 | } |
1599 | |
1600 | offset = i->iov_offset & ~PAGE_MASK; |
1601 | *offset0 = offset; |
1602 | |
1603 | maxpages = want_pages_array(res: pages, size: maxsize, start: offset, maxpages); |
1604 | if (!maxpages) |
1605 | return -ENOMEM; |
1606 | p = *pages; |
1607 | |
1608 | for (;;) { |
1609 | struct folio *folio = folioq_folio(folioq, slot); |
1610 | size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot); |
1611 | size_t part = PAGE_SIZE - offset % PAGE_SIZE; |
1612 | |
1613 | if (offset < fsize) { |
1614 | part = umin(part, umin(maxsize - extracted, fsize - offset)); |
1615 | i->count -= part; |
1616 | i->iov_offset += part; |
1617 | extracted += part; |
1618 | |
1619 | p[nr++] = folio_page(folio, offset / PAGE_SIZE); |
1620 | } |
1621 | |
1622 | if (nr >= maxpages || extracted >= maxsize) |
1623 | break; |
1624 | |
1625 | if (i->iov_offset >= fsize) { |
1626 | i->iov_offset = 0; |
1627 | slot++; |
1628 | if (slot == folioq_nr_slots(folioq) && folioq->next) { |
1629 | folioq = folioq->next; |
1630 | slot = 0; |
1631 | } |
1632 | } |
1633 | } |
1634 | |
1635 | i->folioq = folioq; |
1636 | i->folioq_slot = slot; |
1637 | return extracted; |
1638 | } |
1639 | |
1640 | /* |
1641 | * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not |
1642 | * get references on the pages, nor does it get a pin on them. |
1643 | */ |
1644 | static ssize_t (struct iov_iter *i, |
1645 | struct page ***pages, size_t maxsize, |
1646 | unsigned int maxpages, |
1647 | iov_iter_extraction_t , |
1648 | size_t *offset0) |
1649 | { |
1650 | struct page **p; |
1651 | struct folio *folio; |
1652 | unsigned int nr = 0, offset; |
1653 | loff_t pos = i->xarray_start + i->iov_offset; |
1654 | XA_STATE(xas, i->xarray, pos >> PAGE_SHIFT); |
1655 | |
1656 | offset = pos & ~PAGE_MASK; |
1657 | *offset0 = offset; |
1658 | |
1659 | maxpages = want_pages_array(res: pages, size: maxsize, start: offset, maxpages); |
1660 | if (!maxpages) |
1661 | return -ENOMEM; |
1662 | p = *pages; |
1663 | |
1664 | rcu_read_lock(); |
1665 | for (folio = xas_load(&xas); folio; folio = xas_next(xas: &xas)) { |
1666 | if (xas_retry(xas: &xas, entry: folio)) |
1667 | continue; |
1668 | |
1669 | /* Has the folio moved or been split? */ |
1670 | if (unlikely(folio != xas_reload(&xas))) { |
1671 | xas_reset(xas: &xas); |
1672 | continue; |
1673 | } |
1674 | |
1675 | p[nr++] = folio_file_page(folio, index: xas.xa_index); |
1676 | if (nr == maxpages) |
1677 | break; |
1678 | } |
1679 | rcu_read_unlock(); |
1680 | |
1681 | maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); |
1682 | iov_iter_advance(i, maxsize); |
1683 | return maxsize; |
1684 | } |
1685 | |
1686 | /* |
1687 | * Extract a list of virtually contiguous pages from an ITER_BVEC iterator. |
1688 | * This does not get references on the pages, nor does it get a pin on them. |
1689 | */ |
1690 | static ssize_t (struct iov_iter *i, |
1691 | struct page ***pages, size_t maxsize, |
1692 | unsigned int maxpages, |
1693 | iov_iter_extraction_t , |
1694 | size_t *offset0) |
1695 | { |
1696 | size_t skip = i->iov_offset, size = 0; |
1697 | struct bvec_iter bi; |
1698 | int k = 0; |
1699 | |
1700 | if (i->nr_segs == 0) |
1701 | return 0; |
1702 | |
1703 | if (i->iov_offset == i->bvec->bv_len) { |
1704 | i->iov_offset = 0; |
1705 | i->nr_segs--; |
1706 | i->bvec++; |
1707 | skip = 0; |
1708 | } |
1709 | bi.bi_idx = 0; |
1710 | bi.bi_size = maxsize; |
1711 | bi.bi_bvec_done = skip; |
1712 | |
1713 | maxpages = want_pages_array(res: pages, size: maxsize, start: skip, maxpages); |
1714 | |
1715 | while (bi.bi_size && bi.bi_idx < i->nr_segs) { |
1716 | struct bio_vec bv = bvec_iter_bvec(i->bvec, bi); |
1717 | |
1718 | /* |
1719 | * The iov_iter_extract_pages interface only allows an offset |
1720 | * into the first page. Break out of the loop if we see an |
1721 | * offset into subsequent pages, the caller will have to call |
1722 | * iov_iter_extract_pages again for the reminder. |
1723 | */ |
1724 | if (k) { |
1725 | if (bv.bv_offset) |
1726 | break; |
1727 | } else { |
1728 | *offset0 = bv.bv_offset; |
1729 | } |
1730 | |
1731 | (*pages)[k++] = bv.bv_page; |
1732 | size += bv.bv_len; |
1733 | |
1734 | if (k >= maxpages) |
1735 | break; |
1736 | |
1737 | /* |
1738 | * We are done when the end of the bvec doesn't align to a page |
1739 | * boundary as that would create a hole in the returned space. |
1740 | * The caller will handle this with another call to |
1741 | * iov_iter_extract_pages. |
1742 | */ |
1743 | if (bv.bv_offset + bv.bv_len != PAGE_SIZE) |
1744 | break; |
1745 | |
1746 | bvec_iter_advance_single(bv: i->bvec, iter: &bi, bytes: bv.bv_len); |
1747 | } |
1748 | |
1749 | iov_iter_advance(i, size); |
1750 | return size; |
1751 | } |
1752 | |
1753 | /* |
1754 | * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. |
1755 | * This does not get references on the pages, nor does it get a pin on them. |
1756 | */ |
1757 | static ssize_t (struct iov_iter *i, |
1758 | struct page ***pages, size_t maxsize, |
1759 | unsigned int maxpages, |
1760 | iov_iter_extraction_t , |
1761 | size_t *offset0) |
1762 | { |
1763 | struct page **p, *page; |
1764 | const void *kaddr; |
1765 | size_t skip = i->iov_offset, offset, len, size; |
1766 | int k; |
1767 | |
1768 | for (;;) { |
1769 | if (i->nr_segs == 0) |
1770 | return 0; |
1771 | size = min(maxsize, i->kvec->iov_len - skip); |
1772 | if (size) |
1773 | break; |
1774 | i->iov_offset = 0; |
1775 | i->nr_segs--; |
1776 | i->kvec++; |
1777 | skip = 0; |
1778 | } |
1779 | |
1780 | kaddr = i->kvec->iov_base + skip; |
1781 | offset = (unsigned long)kaddr & ~PAGE_MASK; |
1782 | *offset0 = offset; |
1783 | |
1784 | maxpages = want_pages_array(res: pages, size, start: offset, maxpages); |
1785 | if (!maxpages) |
1786 | return -ENOMEM; |
1787 | p = *pages; |
1788 | |
1789 | kaddr -= offset; |
1790 | len = offset + size; |
1791 | for (k = 0; k < maxpages; k++) { |
1792 | size_t seg = min_t(size_t, len, PAGE_SIZE); |
1793 | |
1794 | if (is_vmalloc_or_module_addr(x: kaddr)) |
1795 | page = vmalloc_to_page(addr: kaddr); |
1796 | else |
1797 | page = virt_to_page(kaddr); |
1798 | |
1799 | p[k] = page; |
1800 | len -= seg; |
1801 | kaddr += PAGE_SIZE; |
1802 | } |
1803 | |
1804 | size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); |
1805 | iov_iter_advance(i, size); |
1806 | return size; |
1807 | } |
1808 | |
1809 | /* |
1810 | * Extract a list of contiguous pages from a user iterator and get a pin on |
1811 | * each of them. This should only be used if the iterator is user-backed |
1812 | * (IOBUF/UBUF). |
1813 | * |
1814 | * It does not get refs on the pages, but the pages must be unpinned by the |
1815 | * caller once the transfer is complete. |
1816 | * |
1817 | * This is safe to be used where background IO/DMA *is* going to be modifying |
1818 | * the buffer; using a pin rather than a ref makes forces fork() to give the |
1819 | * child a copy of the page. |
1820 | */ |
1821 | static ssize_t (struct iov_iter *i, |
1822 | struct page ***pages, |
1823 | size_t maxsize, |
1824 | unsigned int maxpages, |
1825 | iov_iter_extraction_t , |
1826 | size_t *offset0) |
1827 | { |
1828 | unsigned long addr; |
1829 | unsigned int gup_flags = 0; |
1830 | size_t offset; |
1831 | int res; |
1832 | |
1833 | if (i->data_source == ITER_DEST) |
1834 | gup_flags |= FOLL_WRITE; |
1835 | if (extraction_flags & ITER_ALLOW_P2PDMA) |
1836 | gup_flags |= FOLL_PCI_P2PDMA; |
1837 | if (i->nofault) |
1838 | gup_flags |= FOLL_NOFAULT; |
1839 | |
1840 | addr = first_iovec_segment(i, size: &maxsize); |
1841 | *offset0 = offset = addr % PAGE_SIZE; |
1842 | addr &= PAGE_MASK; |
1843 | maxpages = want_pages_array(res: pages, size: maxsize, start: offset, maxpages); |
1844 | if (!maxpages) |
1845 | return -ENOMEM; |
1846 | res = pin_user_pages_fast(start: addr, nr_pages: maxpages, gup_flags, pages: *pages); |
1847 | if (unlikely(res <= 0)) |
1848 | return res; |
1849 | maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); |
1850 | iov_iter_advance(i, maxsize); |
1851 | return maxsize; |
1852 | } |
1853 | |
1854 | /** |
1855 | * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator |
1856 | * @i: The iterator to extract from |
1857 | * @pages: Where to return the list of pages |
1858 | * @maxsize: The maximum amount of iterator to extract |
1859 | * @maxpages: The maximum size of the list of pages |
1860 | * @extraction_flags: Flags to qualify request |
1861 | * @offset0: Where to return the starting offset into (*@pages)[0] |
1862 | * |
1863 | * Extract a list of contiguous pages from the current point of the iterator, |
1864 | * advancing the iterator. The maximum number of pages and the maximum amount |
1865 | * of page contents can be set. |
1866 | * |
1867 | * If *@pages is NULL, a page list will be allocated to the required size and |
1868 | * *@pages will be set to its base. If *@pages is not NULL, it will be assumed |
1869 | * that the caller allocated a page list at least @maxpages in size and this |
1870 | * will be filled in. |
1871 | * |
1872 | * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA |
1873 | * be allowed on the pages extracted. |
1874 | * |
1875 | * The iov_iter_extract_will_pin() function can be used to query how cleanup |
1876 | * should be performed. |
1877 | * |
1878 | * Extra refs or pins on the pages may be obtained as follows: |
1879 | * |
1880 | * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be |
1881 | * added to the pages, but refs will not be taken. |
1882 | * iov_iter_extract_will_pin() will return true. |
1883 | * |
1884 | * (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the |
1885 | * pages are merely listed; no extra refs or pins are obtained. |
1886 | * iov_iter_extract_will_pin() will return 0. |
1887 | * |
1888 | * Note also: |
1889 | * |
1890 | * (*) Use with ITER_DISCARD is not supported as that has no content. |
1891 | * |
1892 | * On success, the function sets *@pages to the new pagelist, if allocated, and |
1893 | * sets *offset0 to the offset into the first page. |
1894 | * |
1895 | * It may also return -ENOMEM and -EFAULT. |
1896 | */ |
1897 | ssize_t (struct iov_iter *i, |
1898 | struct page ***pages, |
1899 | size_t maxsize, |
1900 | unsigned int maxpages, |
1901 | iov_iter_extraction_t , |
1902 | size_t *offset0) |
1903 | { |
1904 | maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); |
1905 | if (!maxsize) |
1906 | return 0; |
1907 | |
1908 | if (likely(user_backed_iter(i))) |
1909 | return iov_iter_extract_user_pages(i, pages, maxsize, |
1910 | maxpages, extraction_flags, |
1911 | offset0); |
1912 | if (iov_iter_is_kvec(i)) |
1913 | return iov_iter_extract_kvec_pages(i, pages, maxsize, |
1914 | maxpages, extraction_flags, |
1915 | offset0); |
1916 | if (iov_iter_is_bvec(i)) |
1917 | return iov_iter_extract_bvec_pages(i, pages, maxsize, |
1918 | maxpages, extraction_flags, |
1919 | offset0); |
1920 | if (iov_iter_is_folioq(i)) |
1921 | return iov_iter_extract_folioq_pages(i, pages, maxsize, |
1922 | maxpages, extraction_flags, |
1923 | offset0); |
1924 | if (iov_iter_is_xarray(i)) |
1925 | return iov_iter_extract_xarray_pages(i, pages, maxsize, |
1926 | maxpages, extraction_flags, |
1927 | offset0); |
1928 | return -EFAULT; |
1929 | } |
1930 | EXPORT_SYMBOL_GPL(iov_iter_extract_pages); |
1931 | |