1 | //===- bolt/Core/BinaryContext.h - Low-level context ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Context for processing binary executable/library files. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef BOLT_CORE_BINARY_CONTEXT_H |
14 | #define BOLT_CORE_BINARY_CONTEXT_H |
15 | |
16 | #include "bolt/Core/AddressMap.h" |
17 | #include "bolt/Core/BinaryData.h" |
18 | #include "bolt/Core/BinarySection.h" |
19 | #include "bolt/Core/DebugData.h" |
20 | #include "bolt/Core/JumpTable.h" |
21 | #include "bolt/Core/MCPlusBuilder.h" |
22 | #include "bolt/RuntimeLibs/RuntimeLibrary.h" |
23 | #include "llvm/ADT/ArrayRef.h" |
24 | #include "llvm/ADT/StringMap.h" |
25 | #include "llvm/ADT/iterator.h" |
26 | #include "llvm/BinaryFormat/Dwarf.h" |
27 | #include "llvm/BinaryFormat/MachO.h" |
28 | #include "llvm/MC/MCAsmInfo.h" |
29 | #include "llvm/MC/MCCodeEmitter.h" |
30 | #include "llvm/MC/MCContext.h" |
31 | #include "llvm/MC/MCObjectFileInfo.h" |
32 | #include "llvm/MC/MCObjectWriter.h" |
33 | #include "llvm/MC/MCSectionELF.h" |
34 | #include "llvm/MC/MCSectionMachO.h" |
35 | #include "llvm/MC/MCStreamer.h" |
36 | #include "llvm/MC/MCSymbol.h" |
37 | #include "llvm/MC/TargetRegistry.h" |
38 | #include "llvm/Support/ErrorOr.h" |
39 | #include "llvm/Support/RWMutex.h" |
40 | #include "llvm/Support/raw_ostream.h" |
41 | #include "llvm/TargetParser/Triple.h" |
42 | #include <functional> |
43 | #include <list> |
44 | #include <map> |
45 | #include <optional> |
46 | #include <set> |
47 | #include <string> |
48 | #include <system_error> |
49 | #include <type_traits> |
50 | #include <unordered_map> |
51 | #include <vector> |
52 | |
53 | namespace llvm { |
54 | class MCDisassembler; |
55 | class MCInstPrinter; |
56 | |
57 | using namespace object; |
58 | |
59 | namespace bolt { |
60 | |
61 | class BinaryFunction; |
62 | |
63 | /// Information on loadable part of the file. |
64 | struct SegmentInfo { |
65 | uint64_t Address; /// Address of the segment in memory. |
66 | uint64_t Size; /// Size of the segment in memory. |
67 | uint64_t FileOffset; /// Offset in the file. |
68 | uint64_t FileSize; /// Size in file. |
69 | uint64_t Alignment; /// Alignment of the segment. |
70 | |
71 | void print(raw_ostream &OS) const { |
72 | OS << "SegmentInfo { Address: 0x" |
73 | << Twine::utohexstr(Val: Address) << ", Size: 0x" |
74 | << Twine::utohexstr(Val: Size) << ", FileOffset: 0x" |
75 | << Twine::utohexstr(Val: FileOffset) << ", FileSize: 0x" |
76 | << Twine::utohexstr(Val: FileSize) << ", Alignment: 0x" |
77 | << Twine::utohexstr(Val: Alignment) << "}" ; |
78 | }; |
79 | }; |
80 | |
81 | inline raw_ostream &operator<<(raw_ostream &OS, const SegmentInfo &SegInfo) { |
82 | SegInfo.print(OS); |
83 | return OS; |
84 | } |
85 | |
86 | // AArch64-specific symbol markers used to delimit code/data in .text. |
87 | enum class MarkerSymType : char { |
88 | NONE = 0, |
89 | CODE, |
90 | DATA, |
91 | }; |
92 | |
93 | enum class MemoryContentsType : char { |
94 | UNKNOWN = 0, /// Unknown contents. |
95 | POSSIBLE_JUMP_TABLE, /// Possibly a non-PIC jump table. |
96 | POSSIBLE_PIC_JUMP_TABLE, /// Possibly a PIC jump table. |
97 | }; |
98 | |
99 | /// Helper function to truncate a \p Value to given size in \p Bytes. |
100 | inline int64_t truncateToSize(int64_t Value, unsigned Bytes) { |
101 | return Value & ((uint64_t)(int64_t)-1 >> (64 - Bytes * 8)); |
102 | } |
103 | |
104 | /// Filter iterator. |
105 | template <typename ItrType, |
106 | typename PredType = std::function<bool(const ItrType &)>> |
107 | class FilterIterator { |
108 | using inner_traits = std::iterator_traits<ItrType>; |
109 | using Iterator = FilterIterator; |
110 | |
111 | PredType Pred; |
112 | ItrType Itr, End; |
113 | |
114 | void prev() { |
115 | while (!Pred(--Itr)) |
116 | ; |
117 | } |
118 | void next() { |
119 | ++Itr; |
120 | nextMatching(); |
121 | } |
122 | void nextMatching() { |
123 | while (Itr != End && !Pred(Itr)) |
124 | ++Itr; |
125 | } |
126 | |
127 | public: |
128 | using iterator_category = std::bidirectional_iterator_tag; |
129 | using value_type = typename inner_traits::value_type; |
130 | using difference_type = typename inner_traits::difference_type; |
131 | using pointer = typename inner_traits::pointer; |
132 | using reference = typename inner_traits::reference; |
133 | |
134 | Iterator &operator++() { next(); return *this; } |
135 | Iterator &operator--() { prev(); return *this; } |
136 | Iterator operator++(int) { auto Tmp(Itr); next(); return Tmp; } |
137 | Iterator operator--(int) { auto Tmp(Itr); prev(); return Tmp; } |
138 | bool operator==(const Iterator &Other) const { return Itr == Other.Itr; } |
139 | bool operator!=(const Iterator &Other) const { return !operator==(Other); } |
140 | reference operator*() { return *Itr; } |
141 | pointer operator->() { return &operator*(); } |
142 | FilterIterator(PredType Pred, ItrType Itr, ItrType End) |
143 | : Pred(Pred), Itr(Itr), End(End) { |
144 | nextMatching(); |
145 | } |
146 | }; |
147 | |
148 | /// BOLT-exclusive errors generated in core BOLT libraries, optionally holding a |
149 | /// string message and whether it is fatal or not. In case it is fatal and if |
150 | /// BOLT is running as a standalone process, the process might be killed as soon |
151 | /// as the error is checked. |
152 | class BOLTError : public ErrorInfo<BOLTError> { |
153 | public: |
154 | static char ID; |
155 | |
156 | BOLTError(bool IsFatal, const Twine &S = Twine()); |
157 | void log(raw_ostream &OS) const override; |
158 | bool isFatal() const { return IsFatal; } |
159 | |
160 | const std::string &getMessage() const { return Msg; } |
161 | std::error_code convertToErrorCode() const override; |
162 | |
163 | private: |
164 | bool IsFatal; |
165 | std::string Msg; |
166 | }; |
167 | |
168 | /// Streams used by BOLT to log regular or error events |
169 | struct JournalingStreams { |
170 | raw_ostream &Out; |
171 | raw_ostream &Err; |
172 | }; |
173 | |
174 | Error createNonFatalBOLTError(const Twine &S); |
175 | Error createFatalBOLTError(const Twine &S); |
176 | |
177 | class BinaryContext { |
178 | BinaryContext() = delete; |
179 | |
180 | /// Name of the binary file the context originated from. |
181 | std::string Filename; |
182 | |
183 | /// Unique build ID if available for the binary. |
184 | std::optional<std::string> FileBuildID; |
185 | |
186 | /// Set of all sections. |
187 | struct CompareSections { |
188 | bool operator()(const BinarySection *A, const BinarySection *B) const { |
189 | return *A < *B; |
190 | } |
191 | }; |
192 | using SectionSetType = std::set<BinarySection *, CompareSections>; |
193 | SectionSetType Sections; |
194 | |
195 | using SectionIterator = pointee_iterator<SectionSetType::iterator>; |
196 | using SectionConstIterator = pointee_iterator<SectionSetType::const_iterator>; |
197 | |
198 | using FilteredSectionIterator = FilterIterator<SectionIterator>; |
199 | using FilteredSectionConstIterator = FilterIterator<SectionConstIterator>; |
200 | |
201 | /// Map virtual address to a section. It is possible to have more than one |
202 | /// section mapped to the same address, e.g. non-allocatable sections. |
203 | using AddressToSectionMapType = std::multimap<uint64_t, BinarySection *>; |
204 | AddressToSectionMapType AddressToSection; |
205 | |
206 | /// multimap of section name to BinarySection object. Some binaries |
207 | /// have multiple sections with the same name. |
208 | using NameToSectionMapType = std::multimap<std::string, BinarySection *>; |
209 | NameToSectionMapType NameToSection; |
210 | |
211 | /// Map section references to BinarySection for matching sections in the |
212 | /// input file to internal section representation. |
213 | DenseMap<SectionRef, BinarySection *> SectionRefToBinarySection; |
214 | |
215 | /// Low level section registration. |
216 | BinarySection ®isterSection(BinarySection *Section); |
217 | |
218 | /// Store all functions in the binary, sorted by original address. |
219 | std::map<uint64_t, BinaryFunction> BinaryFunctions; |
220 | |
221 | /// A mutex that is used to control parallel accesses to BinaryFunctions |
222 | mutable llvm::sys::RWMutex BinaryFunctionsMutex; |
223 | |
224 | /// Functions injected by BOLT |
225 | std::vector<BinaryFunction *> InjectedBinaryFunctions; |
226 | |
227 | /// Jump tables for all functions mapped by address. |
228 | std::map<uint64_t, JumpTable *> JumpTables; |
229 | |
230 | /// Locations of PC-relative relocations in data objects. |
231 | std::unordered_set<uint64_t> DataPCRelocations; |
232 | |
233 | /// Used in duplicateJumpTable() to uniquely identify a JT clone |
234 | /// Start our IDs with a high number so getJumpTableContainingAddress checks |
235 | /// with size won't overflow |
236 | uint32_t DuplicatedJumpTables{0x10000000}; |
237 | |
238 | /// Function fragments to skip. |
239 | std::unordered_set<BinaryFunction *> FragmentsToSkip; |
240 | |
241 | /// The runtime library. |
242 | std::unique_ptr<RuntimeLibrary> RtLibrary; |
243 | |
244 | /// DWP Context. |
245 | std::shared_ptr<DWARFContext> DWPContext; |
246 | |
247 | /// A map of DWO Ids to CUs. |
248 | using DWOIdToCUMapType = std::unordered_map<uint64_t, DWARFUnit *>; |
249 | DWOIdToCUMapType DWOCUs; |
250 | |
251 | bool ContainsDwarf5{false}; |
252 | bool ContainsDwarfLegacy{false}; |
253 | |
254 | /// Mapping from input to output addresses. |
255 | std::optional<AddressMap> IOAddressMap; |
256 | |
257 | /// Preprocess DWO debug information. |
258 | void preprocessDWODebugInfo(); |
259 | |
260 | /// DWARF line info for CUs. |
261 | std::map<unsigned, DwarfLineTable> DwarfLineTablesCUMap; |
262 | |
263 | /// Internal helper for removing section name from a lookup table. |
264 | void deregisterSectionName(const BinarySection &Section); |
265 | |
266 | public: |
267 | static Expected<std::unique_ptr<BinaryContext>> |
268 | createBinaryContext(Triple TheTriple, StringRef InputFileName, |
269 | SubtargetFeatures *Features, bool IsPIC, |
270 | std::unique_ptr<DWARFContext> DwCtx, |
271 | JournalingStreams Logger); |
272 | |
273 | /// Superset of compiler units that will contain overwritten code that needs |
274 | /// new debug info. In a few cases, functions may end up not being |
275 | /// overwritten, but it is okay to re-generate debug info for them. |
276 | std::set<const DWARFUnit *> ProcessedCUs; |
277 | |
278 | // Setup MCPlus target builder |
279 | void initializeTarget(std::unique_ptr<MCPlusBuilder> TargetBuilder) { |
280 | MIB = std::move(TargetBuilder); |
281 | } |
282 | |
283 | /// Return function fragments to skip. |
284 | const std::unordered_set<BinaryFunction *> &getFragmentsToSkip() { |
285 | return FragmentsToSkip; |
286 | } |
287 | |
288 | /// Add function fragment to skip |
289 | void addFragmentsToSkip(BinaryFunction *Function) { |
290 | FragmentsToSkip.insert(x: Function); |
291 | } |
292 | |
293 | void clearFragmentsToSkip() { FragmentsToSkip.clear(); } |
294 | |
295 | /// Given DWOId returns CU if it exists in DWOCUs. |
296 | std::optional<DWARFUnit *> getDWOCU(uint64_t DWOId); |
297 | |
298 | /// Returns DWOContext if it exists. |
299 | DWARFContext *getDWOContext() const; |
300 | |
301 | /// Get Number of DWOCUs in a map. |
302 | uint32_t getNumDWOCUs() { return DWOCUs.size(); } |
303 | |
304 | /// Returns true if DWARF5 is used. |
305 | bool isDWARF5Used() const { return ContainsDwarf5; } |
306 | |
307 | /// Returns true if DWARF4 or lower is used. |
308 | bool isDWARFLegacyUsed() const { return ContainsDwarfLegacy; } |
309 | |
310 | std::map<unsigned, DwarfLineTable> &getDwarfLineTables() { |
311 | return DwarfLineTablesCUMap; |
312 | } |
313 | |
314 | DwarfLineTable &getDwarfLineTable(unsigned CUID) { |
315 | return DwarfLineTablesCUMap[CUID]; |
316 | } |
317 | |
318 | Expected<unsigned> getDwarfFile(StringRef Directory, StringRef FileName, |
319 | unsigned FileNumber, |
320 | std::optional<MD5::MD5Result> Checksum, |
321 | std::optional<StringRef> Source, |
322 | unsigned CUID, unsigned DWARFVersion); |
323 | |
324 | /// [start memory address] -> [segment info] mapping. |
325 | std::map<uint64_t, SegmentInfo> SegmentMapInfo; |
326 | |
327 | /// Symbols that are expected to be undefined in MCContext during emission. |
328 | std::unordered_set<MCSymbol *> UndefinedSymbols; |
329 | |
330 | /// [name] -> [BinaryData*] map used for global symbol resolution. |
331 | using SymbolMapType = StringMap<BinaryData *>; |
332 | SymbolMapType GlobalSymbols; |
333 | |
334 | /// [address] -> [BinaryData], ... |
335 | /// Addresses never change. |
336 | /// Note: it is important that clients do not hold on to instances of |
337 | /// BinaryData* while the map is still being modified during BinaryFunction |
338 | /// disassembly. This is because of the possibility that a regular |
339 | /// BinaryData is later discovered to be a JumpTable. |
340 | using BinaryDataMapType = std::map<uint64_t, BinaryData *>; |
341 | using binary_data_iterator = BinaryDataMapType::iterator; |
342 | using binary_data_const_iterator = BinaryDataMapType::const_iterator; |
343 | BinaryDataMapType BinaryDataMap; |
344 | |
345 | using FilteredBinaryDataConstIterator = |
346 | FilterIterator<binary_data_const_iterator>; |
347 | using FilteredBinaryDataIterator = FilterIterator<binary_data_iterator>; |
348 | |
349 | StringRef getFilename() const { return Filename; } |
350 | void setFilename(StringRef Name) { Filename = std::string(Name); } |
351 | |
352 | std::optional<StringRef> getFileBuildID() const { |
353 | if (FileBuildID) |
354 | return StringRef(*FileBuildID); |
355 | |
356 | return std::nullopt; |
357 | } |
358 | void setFileBuildID(StringRef ID) { FileBuildID = std::string(ID); } |
359 | |
360 | bool hasSymbolsWithFileName() const { return HasSymbolsWithFileName; } |
361 | void setHasSymbolsWithFileName(bool Value) { HasSymbolsWithFileName = true; } |
362 | |
363 | /// Return true if relocations against symbol with a given name |
364 | /// must be created. |
365 | bool forceSymbolRelocations(StringRef SymbolName) const; |
366 | |
367 | uint64_t getNumUnusedProfiledObjects() const { |
368 | return NumUnusedProfiledObjects; |
369 | } |
370 | void setNumUnusedProfiledObjects(uint64_t N) { NumUnusedProfiledObjects = N; } |
371 | |
372 | RuntimeLibrary *getRuntimeLibrary() { return RtLibrary.get(); } |
373 | void setRuntimeLibrary(std::unique_ptr<RuntimeLibrary> Lib) { |
374 | assert(!RtLibrary && "Cannot set runtime library twice." ); |
375 | RtLibrary = std::move(Lib); |
376 | } |
377 | |
378 | /// Return BinaryFunction containing a given \p Address or nullptr if |
379 | /// no registered function contains the \p Address. |
380 | /// |
381 | /// In a binary a function has somewhat vague boundaries. E.g. a function can |
382 | /// refer to the first byte past the end of the function, and it will still be |
383 | /// referring to this function, not the function following it in the address |
384 | /// space. Thus we have the following flags that allow to lookup for |
385 | /// a function where a caller has more context for the search. |
386 | /// |
387 | /// If \p CheckPastEnd is true and the \p Address falls on a byte |
388 | /// immediately following the last byte of some function and there's no other |
389 | /// function that starts there, then return the function as the one containing |
390 | /// the \p Address. This is useful when we need to locate functions for |
391 | /// references pointing immediately past a function body. |
392 | /// |
393 | /// If \p UseMaxSize is true, then include the space between this function |
394 | /// body and the next object in address ranges that we check. |
395 | BinaryFunction *getBinaryFunctionContainingAddress(uint64_t Address, |
396 | bool CheckPastEnd = false, |
397 | bool UseMaxSize = false); |
398 | const BinaryFunction * |
399 | getBinaryFunctionContainingAddress(uint64_t Address, |
400 | bool CheckPastEnd = false, |
401 | bool UseMaxSize = false) const { |
402 | return const_cast<BinaryContext *>(this) |
403 | ->getBinaryFunctionContainingAddress(Address, CheckPastEnd, UseMaxSize); |
404 | } |
405 | |
406 | /// Return a BinaryFunction that starts at a given \p Address. |
407 | BinaryFunction *getBinaryFunctionAtAddress(uint64_t Address); |
408 | |
409 | const BinaryFunction *getBinaryFunctionAtAddress(uint64_t Address) const { |
410 | return const_cast<BinaryContext *>(this)->getBinaryFunctionAtAddress( |
411 | Address); |
412 | } |
413 | |
414 | /// Return size of an entry for the given jump table \p Type. |
415 | uint64_t getJumpTableEntrySize(JumpTable::JumpTableType Type) const { |
416 | return Type == JumpTable::JTT_PIC ? 4 : AsmInfo->getCodePointerSize(); |
417 | } |
418 | |
419 | /// Return JumpTable containing a given \p Address. |
420 | JumpTable *getJumpTableContainingAddress(uint64_t Address) { |
421 | auto JTI = JumpTables.upper_bound(x: Address); |
422 | if (JTI == JumpTables.begin()) |
423 | return nullptr; |
424 | --JTI; |
425 | if (JTI->first + JTI->second->getSize() > Address) |
426 | return JTI->second; |
427 | if (JTI->second->getSize() == 0 && JTI->first == Address) |
428 | return JTI->second; |
429 | return nullptr; |
430 | } |
431 | |
432 | unsigned getDWARFEncodingSize(unsigned Encoding) { |
433 | if (Encoding == dwarf::DW_EH_PE_omit) |
434 | return 0; |
435 | switch (Encoding & 0x0f) { |
436 | default: |
437 | llvm_unreachable("unknown encoding" ); |
438 | case dwarf::DW_EH_PE_absptr: |
439 | case dwarf::DW_EH_PE_signed: |
440 | return AsmInfo->getCodePointerSize(); |
441 | case dwarf::DW_EH_PE_udata2: |
442 | case dwarf::DW_EH_PE_sdata2: |
443 | return 2; |
444 | case dwarf::DW_EH_PE_udata4: |
445 | case dwarf::DW_EH_PE_sdata4: |
446 | return 4; |
447 | case dwarf::DW_EH_PE_udata8: |
448 | case dwarf::DW_EH_PE_sdata8: |
449 | return 8; |
450 | } |
451 | } |
452 | |
453 | /// [MCSymbol] -> [BinaryFunction] |
454 | /// |
455 | /// As we fold identical functions, multiple symbols can point |
456 | /// to the same BinaryFunction. |
457 | std::unordered_map<const MCSymbol *, BinaryFunction *> SymbolToFunctionMap; |
458 | |
459 | /// A mutex that is used to control parallel accesses to SymbolToFunctionMap |
460 | mutable llvm::sys::RWMutex SymbolToFunctionMapMutex; |
461 | |
462 | /// Look up the symbol entry that contains the given \p Address (based on |
463 | /// the start address and size for each symbol). Returns a pointer to |
464 | /// the BinaryData for that symbol. If no data is found, nullptr is returned. |
465 | const BinaryData *getBinaryDataContainingAddressImpl(uint64_t Address) const; |
466 | |
467 | /// Update the Parent fields in BinaryDatas after adding a new entry into |
468 | /// \p BinaryDataMap. |
469 | void updateObjectNesting(BinaryDataMapType::iterator GAI); |
470 | |
471 | /// Validate that if object address ranges overlap that the object with |
472 | /// the larger range is a parent of the object with the smaller range. |
473 | bool validateObjectNesting() const; |
474 | |
475 | /// Validate that there are no top level "holes" in each section |
476 | /// and that all relocations with a section are mapped to a valid |
477 | /// top level BinaryData. |
478 | bool validateHoles() const; |
479 | |
480 | /// Produce output address ranges based on input ranges for some module. |
481 | DebugAddressRangesVector translateModuleAddressRanges( |
482 | const DWARFAddressRangesVector &InputRanges) const; |
483 | |
484 | /// Get a bogus "absolute" section that will be associated with all |
485 | /// absolute BinaryDatas. |
486 | BinarySection &absoluteSection(); |
487 | |
488 | /// Process "holes" in between known BinaryData objects. For now, |
489 | /// symbols are padded with the space before the next BinaryData object. |
490 | void fixBinaryDataHoles(); |
491 | |
492 | /// Generate names based on data hashes for unknown symbols. |
493 | void generateSymbolHashes(); |
494 | |
495 | /// Construct BinaryFunction object and add it to internal maps. |
496 | BinaryFunction *createBinaryFunction(const std::string &Name, |
497 | BinarySection &Section, uint64_t Address, |
498 | uint64_t Size, uint64_t SymbolSize = 0, |
499 | uint16_t Alignment = 0); |
500 | |
501 | /// Return all functions for this rewrite instance. |
502 | std::map<uint64_t, BinaryFunction> &getBinaryFunctions() { |
503 | return BinaryFunctions; |
504 | } |
505 | |
506 | /// Return all functions for this rewrite instance. |
507 | const std::map<uint64_t, BinaryFunction> &getBinaryFunctions() const { |
508 | return BinaryFunctions; |
509 | } |
510 | |
511 | /// Create BOLT-injected function |
512 | BinaryFunction *createInjectedBinaryFunction(const std::string &Name, |
513 | bool IsSimple = true); |
514 | |
515 | std::vector<BinaryFunction *> &getInjectedBinaryFunctions() { |
516 | return InjectedBinaryFunctions; |
517 | } |
518 | |
519 | /// Return vector with all functions, i.e. include functions from the input |
520 | /// binary and functions created by BOLT. |
521 | std::vector<BinaryFunction *> getAllBinaryFunctions(); |
522 | |
523 | /// Construct a jump table for \p Function at \p Address or return an existing |
524 | /// one at that location. |
525 | /// |
526 | /// May create an embedded jump table and return its label as the second |
527 | /// element of the pair. |
528 | const MCSymbol *getOrCreateJumpTable(BinaryFunction &Function, |
529 | uint64_t Address, |
530 | JumpTable::JumpTableType Type); |
531 | |
532 | /// Analyze a possible jump table of type \p Type at a given \p Address. |
533 | /// \p BF is a function referencing the jump table. |
534 | /// Return true if the jump table was detected at \p Address, and false |
535 | /// otherwise. |
536 | /// |
537 | /// If \p NextJTAddress is different from zero, it is used as an upper |
538 | /// bound for jump table memory layout. |
539 | /// |
540 | /// Optionally, populate \p Address from jump table entries. The entries |
541 | /// could be partially populated if the jump table detection fails. |
542 | bool analyzeJumpTable(const uint64_t Address, |
543 | const JumpTable::JumpTableType Type, |
544 | const BinaryFunction &BF, |
545 | const uint64_t NextJTAddress = 0, |
546 | JumpTable::AddressesType *EntriesAsAddress = nullptr, |
547 | bool *HasEntryInFragment = nullptr) const; |
548 | |
549 | /// After jump table locations are established, this function will populate |
550 | /// their EntriesAsAddress based on memory contents. |
551 | void populateJumpTables(); |
552 | |
553 | /// Returns a jump table ID and label pointing to the duplicated jump table. |
554 | /// Ordinarily, jump tables are identified by their address in the input |
555 | /// binary. We return an ID with the high bit set to differentiate it from |
556 | /// regular addresses, avoiding conflicts with standard jump tables. |
557 | std::pair<uint64_t, const MCSymbol *> |
558 | duplicateJumpTable(BinaryFunction &Function, JumpTable *JT, |
559 | const MCSymbol *OldLabel); |
560 | |
561 | /// Generate a unique name for jump table at a given \p Address belonging |
562 | /// to function \p BF. |
563 | std::string generateJumpTableName(const BinaryFunction &BF, uint64_t Address); |
564 | |
565 | /// Free memory used by JumpTable's EntriesAsAddress |
566 | void clearJumpTableTempData() { |
567 | for (auto &JTI : JumpTables) { |
568 | JumpTable &JT = *JTI.second; |
569 | JumpTable::AddressesType Temp; |
570 | Temp.swap(x&: JT.EntriesAsAddress); |
571 | } |
572 | } |
573 | /// Return true if the array of bytes represents a valid code padding. |
574 | bool hasValidCodePadding(const BinaryFunction &BF); |
575 | |
576 | /// Verify padding area between functions, and adjust max function size |
577 | /// accordingly. |
578 | void adjustCodePadding(); |
579 | |
580 | /// Regular page size. |
581 | unsigned RegularPageSize{0x1000}; |
582 | static constexpr unsigned RegularPageSizeX86 = 0x1000; |
583 | static constexpr unsigned RegularPageSizeAArch64 = 0x10000; |
584 | |
585 | /// Huge page size to use. |
586 | static constexpr unsigned HugePageSize = 0x200000; |
587 | |
588 | /// Addresses reserved for kernel on x86_64 start at this location. |
589 | static constexpr uint64_t KernelStartX86_64 = 0xFFFF'FFFF'8000'0000; |
590 | |
591 | /// Map address to a constant island owner (constant data in code section) |
592 | std::map<uint64_t, BinaryFunction *> AddressToConstantIslandMap; |
593 | |
594 | /// A map from jump table address to insertion order. Used for generating |
595 | /// jump table names. |
596 | std::map<uint64_t, size_t> JumpTableIds; |
597 | |
598 | std::unique_ptr<MCContext> Ctx; |
599 | |
600 | /// A mutex that is used to control parallel accesses to Ctx |
601 | mutable llvm::sys::RWMutex CtxMutex; |
602 | std::unique_lock<llvm::sys::RWMutex> scopeLock() const { |
603 | return std::unique_lock<llvm::sys::RWMutex>(CtxMutex); |
604 | } |
605 | |
606 | std::unique_ptr<DWARFContext> DwCtx; |
607 | |
608 | std::unique_ptr<Triple> TheTriple; |
609 | |
610 | const Target *TheTarget; |
611 | |
612 | std::string TripleName; |
613 | |
614 | std::unique_ptr<MCCodeEmitter> MCE; |
615 | |
616 | std::unique_ptr<MCObjectFileInfo> MOFI; |
617 | |
618 | std::unique_ptr<const MCAsmInfo> AsmInfo; |
619 | |
620 | std::unique_ptr<const MCInstrInfo> MII; |
621 | |
622 | std::unique_ptr<const MCSubtargetInfo> STI; |
623 | |
624 | std::unique_ptr<MCInstPrinter> InstPrinter; |
625 | |
626 | std::unique_ptr<const MCInstrAnalysis> MIA; |
627 | |
628 | std::unique_ptr<MCPlusBuilder> MIB; |
629 | |
630 | std::unique_ptr<const MCRegisterInfo> MRI; |
631 | |
632 | std::unique_ptr<MCDisassembler> DisAsm; |
633 | |
634 | /// Symbolic disassembler. |
635 | std::unique_ptr<MCDisassembler> SymbolicDisAsm; |
636 | |
637 | std::unique_ptr<MCAsmBackend> MAB; |
638 | |
639 | /// Allows BOLT to print to log whenever it is necessary (with or without |
640 | /// const references) |
641 | mutable JournalingStreams Logger; |
642 | |
643 | /// Indicates if the binary is Linux kernel. |
644 | bool IsLinuxKernel{false}; |
645 | |
646 | /// Indicates if relocations are available for usage. |
647 | bool HasRelocations{false}; |
648 | |
649 | /// Indicates if the binary is stripped |
650 | bool IsStripped{false}; |
651 | |
652 | /// Indicates if the binary contains split functions. |
653 | bool HasSplitFunctions{false}; |
654 | |
655 | /// Indicates if the function ordering of the binary is finalized. |
656 | bool HasFinalizedFunctionOrder{false}; |
657 | |
658 | /// Indicates if a separate .text.warm section is needed that contains |
659 | /// function fragments with |
660 | /// FunctionFragment::getFragmentNum() == FragmentNum::warm() |
661 | bool HasWarmSection{false}; |
662 | |
663 | /// Is the binary always loaded at a fixed address. Shared objects and |
664 | /// position-independent executables (PIEs) are examples of binaries that |
665 | /// will have HasFixedLoadAddress set to false. |
666 | bool HasFixedLoadAddress{true}; |
667 | |
668 | /// True if the binary has no dynamic dependencies, i.e., if it was statically |
669 | /// linked. |
670 | bool IsStaticExecutable{false}; |
671 | |
672 | /// Set to true if the binary contains PT_INTERP header. |
673 | bool {false}; |
674 | |
675 | /// Indicates if any of local symbols used for functions or data objects |
676 | /// have an origin file name available. |
677 | bool HasSymbolsWithFileName{false}; |
678 | |
679 | /// Sum of execution count of all functions |
680 | uint64_t SumExecutionCount{0}; |
681 | |
682 | /// Number of functions with profile information |
683 | uint64_t NumProfiledFuncs{0}; |
684 | |
685 | /// Number of functions with stale profile information |
686 | uint64_t NumStaleProfileFuncs{0}; |
687 | |
688 | /// Number of objects in profile whose profile was ignored. |
689 | uint64_t NumUnusedProfiledObjects{0}; |
690 | |
691 | /// Total hotness score according to profiling data for this binary. |
692 | uint64_t TotalScore{0}; |
693 | |
694 | /// Binary-wide aggregated stats. |
695 | struct BinaryStats { |
696 | /// Stats for macro-fusion. |
697 | uint64_t MissedMacroFusionPairs{0}; |
698 | uint64_t MissedMacroFusionExecCount{0}; |
699 | |
700 | /// Stats for stale profile matching: |
701 | /// the total number of basic blocks in the profile |
702 | uint32_t NumStaleBlocks{0}; |
703 | /// the number of matched basic blocks |
704 | uint32_t NumMatchedBlocks{0}; |
705 | /// the total count of samples in the profile |
706 | uint64_t StaleSampleCount{0}; |
707 | /// the count of matched samples |
708 | uint64_t MatchedSampleCount{0}; |
709 | /// the number of stale functions that have matching number of blocks in |
710 | /// the profile |
711 | uint64_t NumStaleFuncsWithEqualBlockCount{0}; |
712 | /// the number of blocks that have matching size but a differing hash |
713 | uint64_t NumStaleBlocksWithEqualIcount{0}; |
714 | } Stats; |
715 | |
716 | // Address of the first allocated segment. |
717 | uint64_t FirstAllocAddress{std::numeric_limits<uint64_t>::max()}; |
718 | |
719 | /// Track next available address for new allocatable sections. RewriteInstance |
720 | /// sets this prior to running BOLT passes, so layout passes are aware of the |
721 | /// final addresses functions will have. |
722 | uint64_t LayoutStartAddress{0}; |
723 | |
724 | /// Old .text info. |
725 | uint64_t OldTextSectionAddress{0}; |
726 | uint64_t OldTextSectionOffset{0}; |
727 | uint64_t OldTextSectionSize{0}; |
728 | |
729 | /// Address of the code/function that is executed before any other code in |
730 | /// the binary. |
731 | std::optional<uint64_t> StartFunctionAddress; |
732 | |
733 | /// Address of the code/function that is going to be executed right before |
734 | /// the execution of the binary is completed. |
735 | std::optional<uint64_t> FiniFunctionAddress; |
736 | |
737 | /// DT_FINI. |
738 | std::optional<uint64_t> FiniAddress; |
739 | |
740 | /// DT_FINI_ARRAY. Only used when DT_FINI is not set. |
741 | std::optional<uint64_t> FiniArrayAddress; |
742 | |
743 | /// DT_FINI_ARRAYSZ. Only used when DT_FINI is not set. |
744 | std::optional<uint64_t> FiniArraySize; |
745 | |
746 | /// Page alignment used for code layout. |
747 | uint64_t PageAlign{HugePageSize}; |
748 | |
749 | /// True if the binary requires immediate relocation processing. |
750 | bool RequiresZNow{false}; |
751 | |
752 | /// List of functions that always trap. |
753 | std::vector<const BinaryFunction *> TrappedFunctions; |
754 | |
755 | /// List of external addresses in the code that are not a function start |
756 | /// and are referenced from BinaryFunction. |
757 | std::list<std::pair<BinaryFunction *, uint64_t>> InterproceduralReferences; |
758 | |
759 | /// DWARF encoding. Available encoding types defined in BinaryFormat/Dwarf.h |
760 | /// enum Constants, e.g. DW_EH_PE_omit. |
761 | unsigned LSDAEncoding = dwarf::DW_EH_PE_omit; |
762 | |
763 | BinaryContext(std::unique_ptr<MCContext> Ctx, |
764 | std::unique_ptr<DWARFContext> DwCtx, |
765 | std::unique_ptr<Triple> TheTriple, const Target *TheTarget, |
766 | std::string TripleName, std::unique_ptr<MCCodeEmitter> MCE, |
767 | std::unique_ptr<MCObjectFileInfo> MOFI, |
768 | std::unique_ptr<const MCAsmInfo> AsmInfo, |
769 | std::unique_ptr<const MCInstrInfo> MII, |
770 | std::unique_ptr<const MCSubtargetInfo> STI, |
771 | std::unique_ptr<MCInstPrinter> InstPrinter, |
772 | std::unique_ptr<const MCInstrAnalysis> MIA, |
773 | std::unique_ptr<MCPlusBuilder> MIB, |
774 | std::unique_ptr<const MCRegisterInfo> MRI, |
775 | std::unique_ptr<MCDisassembler> DisAsm, |
776 | JournalingStreams Logger); |
777 | |
778 | ~BinaryContext(); |
779 | |
780 | std::unique_ptr<MCObjectWriter> createObjectWriter(raw_pwrite_stream &OS); |
781 | |
782 | bool isELF() const { return TheTriple->isOSBinFormatELF(); } |
783 | |
784 | bool isMachO() const { return TheTriple->isOSBinFormatMachO(); } |
785 | |
786 | bool isAArch64() const { |
787 | return TheTriple->getArch() == llvm::Triple::aarch64; |
788 | } |
789 | |
790 | bool isX86() const { |
791 | return TheTriple->getArch() == llvm::Triple::x86 || |
792 | TheTriple->getArch() == llvm::Triple::x86_64; |
793 | } |
794 | |
795 | bool isRISCV() const { return TheTriple->getArch() == llvm::Triple::riscv64; } |
796 | |
797 | // AArch64-specific functions to check if symbol is used to delimit |
798 | // code/data in .text. Code is marked by $x, data by $d. |
799 | MarkerSymType getMarkerType(const SymbolRef &Symbol) const; |
800 | bool isMarker(const SymbolRef &Symbol) const; |
801 | |
802 | /// Iterate over all BinaryData. |
803 | iterator_range<binary_data_const_iterator> getBinaryData() const { |
804 | return make_range(x: BinaryDataMap.begin(), y: BinaryDataMap.end()); |
805 | } |
806 | |
807 | /// Iterate over all BinaryData. |
808 | iterator_range<binary_data_iterator> getBinaryData() { |
809 | return make_range(x: BinaryDataMap.begin(), y: BinaryDataMap.end()); |
810 | } |
811 | |
812 | /// Iterate over all BinaryData associated with the given \p Section. |
813 | iterator_range<FilteredBinaryDataConstIterator> |
814 | getBinaryDataForSection(const BinarySection &Section) const { |
815 | auto Begin = BinaryDataMap.lower_bound(x: Section.getAddress()); |
816 | if (Begin != BinaryDataMap.begin()) |
817 | --Begin; |
818 | auto End = BinaryDataMap.upper_bound(x: Section.getEndAddress()); |
819 | auto pred = [&Section](const binary_data_const_iterator &Itr) -> bool { |
820 | return Itr->second->getSection() == Section; |
821 | }; |
822 | return make_range(x: FilteredBinaryDataConstIterator(pred, Begin, End), |
823 | y: FilteredBinaryDataConstIterator(pred, End, End)); |
824 | } |
825 | |
826 | /// Iterate over all BinaryData associated with the given \p Section. |
827 | iterator_range<FilteredBinaryDataIterator> |
828 | getBinaryDataForSection(BinarySection &Section) { |
829 | auto Begin = BinaryDataMap.lower_bound(x: Section.getAddress()); |
830 | if (Begin != BinaryDataMap.begin()) |
831 | --Begin; |
832 | auto End = BinaryDataMap.upper_bound(x: Section.getEndAddress()); |
833 | auto pred = [&Section](const binary_data_iterator &Itr) -> bool { |
834 | return Itr->second->getSection() == Section; |
835 | }; |
836 | return make_range(x: FilteredBinaryDataIterator(pred, Begin, End), |
837 | y: FilteredBinaryDataIterator(pred, End, End)); |
838 | } |
839 | |
840 | /// Iterate over all the sub-symbols of /p BD (if any). |
841 | iterator_range<binary_data_iterator> getSubBinaryData(BinaryData *BD); |
842 | |
843 | /// Clear the global symbol address -> name(s) map. |
844 | void clearBinaryData() { |
845 | GlobalSymbols.clear(); |
846 | for (auto &Entry : BinaryDataMap) |
847 | delete Entry.second; |
848 | BinaryDataMap.clear(); |
849 | } |
850 | |
851 | /// Process \p Address reference from code in function \BF. |
852 | /// \p IsPCRel indicates if the reference is PC-relative. |
853 | /// Return <Symbol, Addend> pair corresponding to the \p Address. |
854 | std::pair<const MCSymbol *, uint64_t> |
855 | handleAddressRef(uint64_t Address, BinaryFunction &BF, bool IsPCRel); |
856 | |
857 | /// Analyze memory contents at the given \p Address and return the type of |
858 | /// memory contents (such as a possible jump table). |
859 | MemoryContentsType analyzeMemoryAt(uint64_t Address, BinaryFunction &BF); |
860 | |
861 | /// Return a value of the global \p Symbol or an error if the value |
862 | /// was not set. |
863 | ErrorOr<uint64_t> getSymbolValue(const MCSymbol &Symbol) const { |
864 | const BinaryData *BD = getBinaryDataByName(Name: Symbol.getName()); |
865 | if (!BD) |
866 | return std::make_error_code(e: std::errc::bad_address); |
867 | return BD->getAddress(); |
868 | } |
869 | |
870 | /// Return a global symbol registered at a given \p Address and \p Size. |
871 | /// If no symbol exists, create one with unique name using \p Prefix. |
872 | /// If there are multiple symbols registered at the \p Address, then |
873 | /// return the first one. |
874 | MCSymbol *getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix, |
875 | uint64_t Size = 0, uint16_t Alignment = 0, |
876 | unsigned Flags = 0); |
877 | |
878 | /// Create a global symbol without registering an address. |
879 | MCSymbol *getOrCreateUndefinedGlobalSymbol(StringRef Name); |
880 | |
881 | /// Register a symbol with \p Name at a given \p Address using \p Size, |
882 | /// \p Alignment, and \p Flags. See llvm::SymbolRef::Flags for the definition |
883 | /// of \p Flags. |
884 | MCSymbol *registerNameAtAddress(StringRef Name, uint64_t Address, |
885 | uint64_t Size, uint16_t Alignment, |
886 | unsigned Flags = 0); |
887 | |
888 | /// Return BinaryData registered at a given \p Address or nullptr if no |
889 | /// global symbol was registered at the location. |
890 | const BinaryData *getBinaryDataAtAddress(uint64_t Address) const { |
891 | auto NI = BinaryDataMap.find(x: Address); |
892 | return NI != BinaryDataMap.end() ? NI->second : nullptr; |
893 | } |
894 | |
895 | BinaryData *getBinaryDataAtAddress(uint64_t Address) { |
896 | auto NI = BinaryDataMap.find(x: Address); |
897 | return NI != BinaryDataMap.end() ? NI->second : nullptr; |
898 | } |
899 | |
900 | /// Look up the symbol entry that contains the given \p Address (based on |
901 | /// the start address and size for each symbol). Returns a pointer to |
902 | /// the BinaryData for that symbol. If no data is found, nullptr is returned. |
903 | const BinaryData *getBinaryDataContainingAddress(uint64_t Address) const { |
904 | return getBinaryDataContainingAddressImpl(Address); |
905 | } |
906 | |
907 | BinaryData *getBinaryDataContainingAddress(uint64_t Address) { |
908 | return const_cast<BinaryData *>( |
909 | getBinaryDataContainingAddressImpl(Address)); |
910 | } |
911 | |
912 | /// Return BinaryData for the given \p Name or nullptr if no |
913 | /// global symbol with that name exists. |
914 | const BinaryData *getBinaryDataByName(StringRef Name) const { |
915 | return GlobalSymbols.lookup(Key: Name); |
916 | } |
917 | |
918 | BinaryData *getBinaryDataByName(StringRef Name) { |
919 | return GlobalSymbols.lookup(Key: Name); |
920 | } |
921 | |
922 | /// Return registered PLT entry BinaryData with the given \p Name |
923 | /// or nullptr if no global PLT symbol with that name exists. |
924 | const BinaryData *getPLTBinaryDataByName(StringRef Name) const { |
925 | if (const BinaryData *Data = getBinaryDataByName(Name: Name.str() + "@PLT" )) |
926 | return Data; |
927 | |
928 | // The symbol name might contain versioning information e.g |
929 | // memcpy@@GLIBC_2.17. Remove it and try to locate binary data |
930 | // without it. |
931 | size_t At = Name.find(Str: "@" ); |
932 | if (At != std::string::npos) |
933 | return getBinaryDataByName(Name: Name.str().substr(pos: 0, n: At) + "@PLT" ); |
934 | |
935 | return nullptr; |
936 | } |
937 | |
938 | /// Retrieves a reference to ELF's _GLOBAL_OFFSET_TABLE_ symbol, which points |
939 | /// at GOT, or null if it is not present in the input binary symtab. |
940 | BinaryData *getGOTSymbol(); |
941 | |
942 | /// Checks if symbol name refers to ELF's _GLOBAL_OFFSET_TABLE_ symbol |
943 | bool isGOTSymbol(StringRef SymName) const { |
944 | return SymName == "_GLOBAL_OFFSET_TABLE_" ; |
945 | } |
946 | |
947 | /// Return true if \p SymbolName was generated internally and was not present |
948 | /// in the input binary. |
949 | bool isInternalSymbolName(const StringRef Name) { |
950 | return Name.starts_with(Prefix: "SYMBOLat" ) || Name.starts_with(Prefix: "DATAat" ) || |
951 | Name.starts_with(Prefix: "HOLEat" ); |
952 | } |
953 | |
954 | MCSymbol *getHotTextStartSymbol() const { |
955 | return Ctx->getOrCreateSymbol(Name: "__hot_start" ); |
956 | } |
957 | |
958 | MCSymbol *getHotTextEndSymbol() const { |
959 | return Ctx->getOrCreateSymbol(Name: "__hot_end" ); |
960 | } |
961 | |
962 | MCSection *getTextSection() const { return MOFI->getTextSection(); } |
963 | |
964 | /// Return code section with a given name. |
965 | MCSection *getCodeSection(StringRef SectionName) const { |
966 | if (isELF()) |
967 | return Ctx->getELFSection(Section: SectionName, Type: ELF::SHT_PROGBITS, |
968 | Flags: ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); |
969 | else |
970 | return Ctx->getMachOSection(Segment: "__TEXT" , Section: SectionName, |
971 | TypeAndAttributes: MachO::S_ATTR_PURE_INSTRUCTIONS, |
972 | K: SectionKind::getText()); |
973 | } |
974 | |
975 | /// Return data section with a given name. |
976 | MCSection *getDataSection(StringRef SectionName) const { |
977 | return Ctx->getELFSection(Section: SectionName, Type: ELF::SHT_PROGBITS, Flags: ELF::SHF_ALLOC); |
978 | } |
979 | |
980 | /// \name Pre-assigned Section Names |
981 | /// @{ |
982 | |
983 | const char *getMainCodeSectionName() const { return ".text" ; } |
984 | |
985 | const char *getWarmCodeSectionName() const { return ".text.warm" ; } |
986 | |
987 | const char *getColdCodeSectionName() const { return ".text.cold" ; } |
988 | |
989 | const char *getHotTextMoverSectionName() const { return ".text.mover" ; } |
990 | |
991 | const char *getInjectedCodeSectionName() const { return ".text.injected" ; } |
992 | |
993 | const char *getInjectedColdCodeSectionName() const { |
994 | return ".text.injected.cold" ; |
995 | } |
996 | |
997 | ErrorOr<BinarySection &> getGdbIndexSection() const { |
998 | return getUniqueSectionByName(SectionName: ".gdb_index" ); |
999 | } |
1000 | |
1001 | ErrorOr<BinarySection &> getDebugNamesSection() const { |
1002 | return getUniqueSectionByName(SectionName: ".debug_names" ); |
1003 | } |
1004 | |
1005 | /// @} |
1006 | |
1007 | /// Register \p TargetFunction as a fragment of \p Function if checks pass: |
1008 | /// - if \p TargetFunction name matches \p Function name with a suffix: |
1009 | /// fragment_name == parent_name.cold(.\d+)? |
1010 | /// True if the Function is registered, false if the check failed. |
1011 | bool registerFragment(BinaryFunction &TargetFunction, |
1012 | BinaryFunction &Function) const; |
1013 | |
1014 | /// Add interprocedural reference for \p Function to \p Address |
1015 | void addInterproceduralReference(BinaryFunction *Function, uint64_t Address) { |
1016 | InterproceduralReferences.push_back(x: {Function, Address}); |
1017 | } |
1018 | |
1019 | /// Used to fix the target of linker-generated AArch64 adrp + add |
1020 | /// sequence with no relocation info. |
1021 | void addAdrpAddRelocAArch64(BinaryFunction &BF, MCInst &LoadLowBits, |
1022 | MCInst &LoadHiBits, uint64_t Target); |
1023 | |
1024 | /// Return true if AARch64 veneer was successfully matched at a given |
1025 | /// \p Address and register veneer binary function if \p MatchOnly |
1026 | /// argument is false. |
1027 | bool handleAArch64Veneer(uint64_t Address, bool MatchOnly = false); |
1028 | |
1029 | /// Resolve inter-procedural dependencies from |
1030 | void processInterproceduralReferences(); |
1031 | |
1032 | /// Skip functions with all parent and child fragments transitively. |
1033 | void skipMarkedFragments(); |
1034 | |
1035 | /// Perform any necessary post processing on the symbol table after |
1036 | /// function disassembly is complete. This processing fixes top |
1037 | /// level data holes and makes sure the symbol table is valid. |
1038 | /// It also assigns all memory profiling info to the appropriate |
1039 | /// BinaryData objects. |
1040 | void postProcessSymbolTable(); |
1041 | |
1042 | /// Set the size of the global symbol located at \p Address. Return |
1043 | /// false if no symbol exists, true otherwise. |
1044 | bool setBinaryDataSize(uint64_t Address, uint64_t Size); |
1045 | |
1046 | /// Print the global symbol table. |
1047 | void printGlobalSymbols(raw_ostream &OS) const; |
1048 | |
1049 | /// Register information about the given \p Section so we can look up |
1050 | /// sections by address. |
1051 | BinarySection ®isterSection(SectionRef Section); |
1052 | |
1053 | /// Register a copy of /p OriginalSection under a different name. |
1054 | BinarySection ®isterSection(const Twine &SectionName, |
1055 | const BinarySection &OriginalSection); |
1056 | |
1057 | /// Register or update the information for the section with the given |
1058 | /// /p Name. If the section already exists, the information in the |
1059 | /// section will be updated with the new data. |
1060 | BinarySection ®isterOrUpdateSection(const Twine &Name, unsigned ELFType, |
1061 | unsigned ELFFlags, |
1062 | uint8_t *Data = nullptr, |
1063 | uint64_t Size = 0, |
1064 | unsigned Alignment = 1); |
1065 | |
1066 | /// Register the information for the note (non-allocatable) section |
1067 | /// with the given /p Name. If the section already exists, the |
1068 | /// information in the section will be updated with the new data. |
1069 | BinarySection & |
1070 | registerOrUpdateNoteSection(const Twine &Name, uint8_t *Data = nullptr, |
1071 | uint64_t Size = 0, unsigned Alignment = 1, |
1072 | bool IsReadOnly = true, |
1073 | unsigned ELFType = ELF::SHT_PROGBITS) { |
1074 | return registerOrUpdateSection(Name, ELFType, |
1075 | ELFFlags: BinarySection::getFlags(IsReadOnly), Data, |
1076 | Size, Alignment); |
1077 | } |
1078 | |
1079 | /// Remove sections that were preregistered but never used. |
1080 | void deregisterUnusedSections(); |
1081 | |
1082 | /// Remove the given /p Section from the set of all sections. Return |
1083 | /// true if the section was removed (and deleted), otherwise false. |
1084 | bool deregisterSection(BinarySection &Section); |
1085 | |
1086 | /// Re-register \p Section under the \p NewName. |
1087 | void renameSection(BinarySection &Section, const Twine &NewName); |
1088 | |
1089 | /// Iterate over all registered sections. |
1090 | iterator_range<FilteredSectionIterator> sections() { |
1091 | auto notNull = [](const SectionIterator &Itr) { return (bool)*Itr; }; |
1092 | return make_range( |
1093 | x: FilteredSectionIterator(notNull, Sections.begin(), Sections.end()), |
1094 | y: FilteredSectionIterator(notNull, Sections.end(), Sections.end())); |
1095 | } |
1096 | |
1097 | /// Iterate over all registered sections. |
1098 | iterator_range<FilteredSectionConstIterator> sections() const { |
1099 | return const_cast<BinaryContext *>(this)->sections(); |
1100 | } |
1101 | |
1102 | /// Iterate over all registered allocatable sections. |
1103 | iterator_range<FilteredSectionIterator> allocatableSections() { |
1104 | auto isAllocatable = [](const SectionIterator &Itr) { |
1105 | return *Itr && Itr->isAllocatable(); |
1106 | }; |
1107 | return make_range( |
1108 | x: FilteredSectionIterator(isAllocatable, Sections.begin(), |
1109 | Sections.end()), |
1110 | y: FilteredSectionIterator(isAllocatable, Sections.end(), Sections.end())); |
1111 | } |
1112 | |
1113 | /// Iterate over all registered code sections. |
1114 | iterator_range<FilteredSectionIterator> textSections() { |
1115 | auto isText = [](const SectionIterator &Itr) { |
1116 | return *Itr && Itr->isAllocatable() && Itr->isText(); |
1117 | }; |
1118 | return make_range( |
1119 | x: FilteredSectionIterator(isText, Sections.begin(), Sections.end()), |
1120 | y: FilteredSectionIterator(isText, Sections.end(), Sections.end())); |
1121 | } |
1122 | |
1123 | /// Iterate over all registered allocatable sections. |
1124 | iterator_range<FilteredSectionConstIterator> allocatableSections() const { |
1125 | return const_cast<BinaryContext *>(this)->allocatableSections(); |
1126 | } |
1127 | |
1128 | /// Iterate over all registered non-allocatable sections. |
1129 | iterator_range<FilteredSectionIterator> nonAllocatableSections() { |
1130 | auto notAllocated = [](const SectionIterator &Itr) { |
1131 | return *Itr && !Itr->isAllocatable(); |
1132 | }; |
1133 | return make_range( |
1134 | x: FilteredSectionIterator(notAllocated, Sections.begin(), Sections.end()), |
1135 | y: FilteredSectionIterator(notAllocated, Sections.end(), Sections.end())); |
1136 | } |
1137 | |
1138 | /// Iterate over all registered non-allocatable sections. |
1139 | iterator_range<FilteredSectionConstIterator> nonAllocatableSections() const { |
1140 | return const_cast<BinaryContext *>(this)->nonAllocatableSections(); |
1141 | } |
1142 | |
1143 | /// Iterate over all allocatable relocation sections. |
1144 | iterator_range<FilteredSectionIterator> allocatableRelaSections() { |
1145 | auto isAllocatableRela = [](const SectionIterator &Itr) { |
1146 | return *Itr && Itr->isAllocatable() && Itr->isRela(); |
1147 | }; |
1148 | return make_range(x: FilteredSectionIterator(isAllocatableRela, |
1149 | Sections.begin(), Sections.end()), |
1150 | y: FilteredSectionIterator(isAllocatableRela, Sections.end(), |
1151 | Sections.end())); |
1152 | } |
1153 | |
1154 | /// Return base address for the shared object or PIE based on the segment |
1155 | /// mapping information. \p MMapAddress is an address where one of the |
1156 | /// segments was mapped. \p FileOffset is the offset in the file of the |
1157 | /// mapping. Note that \p FileOffset should be page-aligned and could be |
1158 | /// different from the file offset of the segment which could be unaligned. |
1159 | /// If no segment is found that matches \p FileOffset, return std::nullopt. |
1160 | std::optional<uint64_t> getBaseAddressForMapping(uint64_t MMapAddress, |
1161 | uint64_t FileOffset) const; |
1162 | |
1163 | /// Check if the address belongs to this binary's static allocation space. |
1164 | bool containsAddress(uint64_t Address) const { |
1165 | return Address >= FirstAllocAddress && Address < LayoutStartAddress; |
1166 | } |
1167 | |
1168 | /// Return section name containing the given \p Address. |
1169 | ErrorOr<StringRef> getSectionNameForAddress(uint64_t Address) const; |
1170 | |
1171 | /// Print all sections. |
1172 | void printSections(raw_ostream &OS) const; |
1173 | |
1174 | /// Return largest section containing the given \p Address. These |
1175 | /// functions only work for allocatable sections, i.e. ones with non-zero |
1176 | /// addresses. |
1177 | ErrorOr<BinarySection &> getSectionForAddress(uint64_t Address); |
1178 | ErrorOr<const BinarySection &> getSectionForAddress(uint64_t Address) const { |
1179 | return const_cast<BinaryContext *>(this)->getSectionForAddress(Address); |
1180 | } |
1181 | |
1182 | /// Return internal section representation for a section in a file. |
1183 | BinarySection *getSectionForSectionRef(SectionRef Section) const { |
1184 | return SectionRefToBinarySection.lookup(Val: Section); |
1185 | } |
1186 | |
1187 | /// Return section(s) associated with given \p Name. |
1188 | iterator_range<NameToSectionMapType::iterator> |
1189 | getSectionByName(const Twine &Name) { |
1190 | return make_range(p: NameToSection.equal_range(x: Name.str())); |
1191 | } |
1192 | iterator_range<NameToSectionMapType::const_iterator> |
1193 | getSectionByName(const Twine &Name) const { |
1194 | return make_range(p: NameToSection.equal_range(x: Name.str())); |
1195 | } |
1196 | |
1197 | /// Return the unique section associated with given \p Name. |
1198 | /// If there is more than one section with the same name, return an error |
1199 | /// object. |
1200 | ErrorOr<BinarySection &> |
1201 | getUniqueSectionByName(const Twine &SectionName) const { |
1202 | auto Sections = getSectionByName(Name: SectionName); |
1203 | if (Sections.begin() != Sections.end() && |
1204 | std::next(x: Sections.begin()) == Sections.end()) |
1205 | return *Sections.begin()->second; |
1206 | return std::make_error_code(e: std::errc::bad_address); |
1207 | } |
1208 | |
1209 | /// Return an unsigned value of \p Size stored at \p Address. The address has |
1210 | /// to be a valid statically allocated address for the binary. |
1211 | ErrorOr<uint64_t> getUnsignedValueAtAddress(uint64_t Address, |
1212 | size_t Size) const; |
1213 | |
1214 | /// Return a signed value of \p Size stored at \p Address. The address has |
1215 | /// to be a valid statically allocated address for the binary. |
1216 | ErrorOr<uint64_t> getSignedValueAtAddress(uint64_t Address, |
1217 | size_t Size) const; |
1218 | |
1219 | /// Special case of getUnsignedValueAtAddress() that uses a pointer size. |
1220 | ErrorOr<uint64_t> getPointerAtAddress(uint64_t Address) const { |
1221 | return getUnsignedValueAtAddress(Address, Size: AsmInfo->getCodePointerSize()); |
1222 | } |
1223 | |
1224 | /// Replaces all references to \p ChildBF with \p ParentBF. \p ChildBF is then |
1225 | /// removed from the list of functions \p BFs. The profile data of \p ChildBF |
1226 | /// is merged into that of \p ParentBF. This function is thread safe. |
1227 | void foldFunction(BinaryFunction &ChildBF, BinaryFunction &ParentBF); |
1228 | |
1229 | /// Add a Section relocation at a given \p Address. |
1230 | void addRelocation(uint64_t Address, MCSymbol *Symbol, uint64_t Type, |
1231 | uint64_t Addend = 0, uint64_t Value = 0); |
1232 | |
1233 | /// Return a relocation registered at a given \p Address, or nullptr if there |
1234 | /// is no relocation at such address. |
1235 | const Relocation *getRelocationAt(uint64_t Address) const; |
1236 | |
1237 | /// Register a presence of PC-relative relocation at the given \p Address. |
1238 | void addPCRelativeDataRelocation(uint64_t Address) { |
1239 | DataPCRelocations.emplace(args&: Address); |
1240 | } |
1241 | |
1242 | /// Register dynamic relocation at \p Address. |
1243 | void addDynamicRelocation(uint64_t Address, MCSymbol *Symbol, uint64_t Type, |
1244 | uint64_t Addend, uint64_t Value = 0); |
1245 | |
1246 | /// Return a dynamic relocation registered at a given \p Address, or nullptr |
1247 | /// if there is no dynamic relocation at such address. |
1248 | const Relocation *getDynamicRelocationAt(uint64_t Address) const; |
1249 | |
1250 | /// Remove registered relocation at a given \p Address. |
1251 | bool removeRelocationAt(uint64_t Address); |
1252 | |
1253 | /// This function makes sure that symbols referenced by ambiguous relocations |
1254 | /// are marked as immovable. For now, if a section relocation points at the |
1255 | /// boundary between two symbols then those symbols are marked as immovable. |
1256 | void markAmbiguousRelocations(BinaryData &BD, const uint64_t Address); |
1257 | |
1258 | /// Return BinaryFunction corresponding to \p Symbol. If \p EntryDesc is not |
1259 | /// nullptr, set it to entry descriminator corresponding to \p Symbol |
1260 | /// (0 for single-entry functions). This function is thread safe. |
1261 | BinaryFunction *getFunctionForSymbol(const MCSymbol *Symbol, |
1262 | uint64_t *EntryDesc = nullptr); |
1263 | |
1264 | const BinaryFunction * |
1265 | getFunctionForSymbol(const MCSymbol *Symbol, |
1266 | uint64_t *EntryDesc = nullptr) const { |
1267 | return const_cast<BinaryContext *>(this)->getFunctionForSymbol(Symbol, |
1268 | EntryDesc); |
1269 | } |
1270 | |
1271 | /// Associate the symbol \p Sym with the function \p BF for lookups with |
1272 | /// getFunctionForSymbol(). |
1273 | void setSymbolToFunctionMap(const MCSymbol *Sym, BinaryFunction *BF) { |
1274 | SymbolToFunctionMap[Sym] = BF; |
1275 | } |
1276 | |
1277 | /// Populate some internal data structures with debug info. |
1278 | void preprocessDebugInfo(); |
1279 | |
1280 | /// Add a filename entry from SrcCUID to DestCUID. |
1281 | unsigned addDebugFilenameToUnit(const uint32_t DestCUID, |
1282 | const uint32_t SrcCUID, unsigned FileIndex); |
1283 | |
1284 | /// Return functions in output layout order |
1285 | std::vector<BinaryFunction *> getSortedFunctions(); |
1286 | |
1287 | /// Do the best effort to calculate the size of the function by emitting |
1288 | /// its code, and relaxing branch instructions. By default, branch |
1289 | /// instructions are updated to match the layout. Pass \p FixBranches set to |
1290 | /// false if the branches are known to be up to date with the code layout. |
1291 | /// |
1292 | /// Return the pair where the first size is for the main part, and the second |
1293 | /// size is for the cold one. |
1294 | /// Modify BinaryBasicBlock::OutputAddressRange for each basic block in the |
1295 | /// function in place so that BinaryBasicBlock::getOutputSize() gives the |
1296 | /// emitted size of the basic block. |
1297 | std::pair<size_t, size_t> calculateEmittedSize(BinaryFunction &BF, |
1298 | bool FixBranches = true); |
1299 | |
1300 | /// Calculate the size of the instruction \p Inst optionally using a |
1301 | /// user-supplied emitter for lock-free multi-thread work. MCCodeEmitter is |
1302 | /// not thread safe and each thread should operate with its own copy of it. |
1303 | uint64_t |
1304 | computeInstructionSize(const MCInst &Inst, |
1305 | const MCCodeEmitter *Emitter = nullptr) const { |
1306 | if (std::optional<uint32_t> Size = MIB->getSize(Inst)) |
1307 | return *Size; |
1308 | |
1309 | if (!Emitter) |
1310 | Emitter = this->MCE.get(); |
1311 | SmallString<256> Code; |
1312 | SmallVector<MCFixup, 4> Fixups; |
1313 | Emitter->encodeInstruction(Inst, CB&: Code, Fixups, STI: *STI); |
1314 | return Code.size(); |
1315 | } |
1316 | |
1317 | /// Compute the native code size for a range of instructions. |
1318 | /// Note: this can be imprecise wrt the final binary since happening prior to |
1319 | /// relaxation, as well as wrt the original binary because of opcode |
1320 | /// shortening.MCCodeEmitter is not thread safe and each thread should operate |
1321 | /// with its own copy of it. |
1322 | template <typename Itr> |
1323 | uint64_t computeCodeSize(Itr Beg, Itr End, |
1324 | const MCCodeEmitter *Emitter = nullptr) const { |
1325 | uint64_t Size = 0; |
1326 | while (Beg != End) { |
1327 | if (!MIB->isPseudo(Inst: *Beg)) |
1328 | Size += computeInstructionSize(Inst: *Beg, Emitter); |
1329 | ++Beg; |
1330 | } |
1331 | return Size; |
1332 | } |
1333 | |
1334 | /// Validate that disassembling the \p Sequence of bytes into an instruction |
1335 | /// and assembling the instruction again, results in a byte sequence identical |
1336 | /// to the original one. |
1337 | bool validateInstructionEncoding(ArrayRef<uint8_t> Sequence) const; |
1338 | |
1339 | /// Return a function execution count threshold for determining whether |
1340 | /// the function is 'hot'. Consider it hot if count is above the average exec |
1341 | /// count of profiled functions. |
1342 | uint64_t getHotThreshold() const; |
1343 | |
1344 | /// Return true if instruction \p Inst requires an offset for further |
1345 | /// processing (e.g. assigning a profile). |
1346 | bool keepOffsetForInstruction(const MCInst &Inst) const { |
1347 | if (MIB->isCall(Inst) || MIB->isBranch(Inst) || MIB->isReturn(Inst) || |
1348 | MIB->isPrefix(Inst) || MIB->isIndirectBranch(Inst)) { |
1349 | return true; |
1350 | } |
1351 | return false; |
1352 | } |
1353 | |
1354 | /// Return true if the function should be emitted to the output file. |
1355 | bool shouldEmit(const BinaryFunction &Function) const; |
1356 | |
1357 | /// Dump the assembly representation of MCInst to debug output. |
1358 | void dump(const MCInst &Inst) const; |
1359 | |
1360 | /// Print the string name for a CFI operation. |
1361 | static void printCFI(raw_ostream &OS, const MCCFIInstruction &Inst); |
1362 | |
1363 | /// Print a single MCInst in native format. If Function is non-null, |
1364 | /// the instruction will be annotated with CFI and possibly DWARF line table |
1365 | /// info. |
1366 | /// If printMCInst is true, the instruction is also printed in the |
1367 | /// architecture independent format. |
1368 | void printInstruction(raw_ostream &OS, const MCInst &Instruction, |
1369 | uint64_t Offset = 0, |
1370 | const BinaryFunction *Function = nullptr, |
1371 | bool PrintMCInst = false, bool PrintMemData = false, |
1372 | bool PrintRelocations = false, |
1373 | StringRef Endl = "\n" ) const; |
1374 | |
1375 | /// Print a range of instructions. |
1376 | template <typename Itr> |
1377 | uint64_t |
1378 | printInstructions(raw_ostream &OS, Itr Begin, Itr End, uint64_t Offset = 0, |
1379 | const BinaryFunction *Function = nullptr, |
1380 | bool PrintMCInst = false, bool PrintMemData = false, |
1381 | bool PrintRelocations = false, |
1382 | StringRef Endl = "\n" ) const { |
1383 | while (Begin != End) { |
1384 | printInstruction(OS, Instruction: *Begin, Offset, Function, PrintMCInst, PrintMemData, |
1385 | PrintRelocations, Endl); |
1386 | Offset += computeCodeSize(Begin, Begin + 1); |
1387 | ++Begin; |
1388 | } |
1389 | return Offset; |
1390 | } |
1391 | |
1392 | /// Log BOLT errors to journaling streams and quit process with non-zero error |
1393 | /// code 1 if error is fatal. |
1394 | void logBOLTErrorsAndQuitOnFatal(Error E); |
1395 | |
1396 | std::string generateBugReportMessage(StringRef Message, |
1397 | const BinaryFunction &Function) const; |
1398 | |
1399 | struct IndependentCodeEmitter { |
1400 | std::unique_ptr<MCObjectFileInfo> LocalMOFI; |
1401 | std::unique_ptr<MCContext> LocalCtx; |
1402 | std::unique_ptr<MCCodeEmitter> MCE; |
1403 | }; |
1404 | |
1405 | /// Encapsulates an independent MCCodeEmitter that doesn't share resources |
1406 | /// with the main one available through BinaryContext::MCE, managed by |
1407 | /// BinaryContext. |
1408 | /// This is intended to create a lock-free environment for an auxiliary thread |
1409 | /// that needs to perform work with an MCCodeEmitter that can be transient or |
1410 | /// won't be used in the main code emitter. |
1411 | IndependentCodeEmitter createIndependentMCCodeEmitter() const { |
1412 | IndependentCodeEmitter MCEInstance; |
1413 | MCEInstance.LocalCtx.reset( |
1414 | p: new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get())); |
1415 | MCEInstance.LocalMOFI.reset( |
1416 | p: TheTarget->createMCObjectFileInfo(Ctx&: *MCEInstance.LocalCtx.get(), |
1417 | /*PIC=*/PIC: !HasFixedLoadAddress)); |
1418 | MCEInstance.LocalCtx->setObjectFileInfo(MCEInstance.LocalMOFI.get()); |
1419 | MCEInstance.MCE.reset( |
1420 | p: TheTarget->createMCCodeEmitter(II: *MII, Ctx&: *MCEInstance.LocalCtx)); |
1421 | return MCEInstance; |
1422 | } |
1423 | |
1424 | /// Creating MCStreamer instance. |
1425 | std::unique_ptr<MCStreamer> |
1426 | createStreamer(llvm::raw_pwrite_stream &OS) const { |
1427 | MCCodeEmitter *MCE = TheTarget->createMCCodeEmitter(II: *MII, Ctx&: *Ctx); |
1428 | MCAsmBackend *MAB = |
1429 | TheTarget->createMCAsmBackend(STI: *STI, MRI: *MRI, Options: MCTargetOptions()); |
1430 | std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(OS); |
1431 | std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer( |
1432 | T: *TheTriple, Ctx&: *Ctx, TAB: std::unique_ptr<MCAsmBackend>(MAB), OW: std::move(OW), |
1433 | Emitter: std::unique_ptr<MCCodeEmitter>(MCE), STI: *STI, |
1434 | /* RelaxAll */ RelaxAll: false, |
1435 | /* IncrementalLinkerCompatible */ IncrementalLinkerCompatible: false, |
1436 | /* DWARFMustBeAtTheEnd */ DWARFMustBeAtTheEnd: false)); |
1437 | return Streamer; |
1438 | } |
1439 | |
1440 | void setIOAddressMap(AddressMap Map) { IOAddressMap = std::move(Map); } |
1441 | const AddressMap &getIOAddressMap() const { |
1442 | assert(IOAddressMap && "Address map not set yet" ); |
1443 | return *IOAddressMap; |
1444 | } |
1445 | |
1446 | raw_ostream &outs() const { return Logger.Out; } |
1447 | |
1448 | raw_ostream &errs() const { return Logger.Err; } |
1449 | }; |
1450 | |
1451 | template <typename T, typename = std::enable_if_t<sizeof(T) == 1>> |
1452 | inline raw_ostream &operator<<(raw_ostream &OS, const ArrayRef<T> &ByteArray) { |
1453 | const char *Sep = "" ; |
1454 | for (const auto Byte : ByteArray) { |
1455 | OS << Sep << format("%.2x" , Byte); |
1456 | Sep = " " ; |
1457 | } |
1458 | return OS; |
1459 | } |
1460 | |
1461 | } // namespace bolt |
1462 | } // namespace llvm |
1463 | |
1464 | #endif |
1465 | |