| 1 | //===- bolt/Core/BinaryContext.h - Low-level context ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Context for processing binary executable/library files. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef BOLT_CORE_BINARY_CONTEXT_H |
| 14 | #define BOLT_CORE_BINARY_CONTEXT_H |
| 15 | |
| 16 | #include "bolt/Core/AddressMap.h" |
| 17 | #include "bolt/Core/BinaryData.h" |
| 18 | #include "bolt/Core/BinarySection.h" |
| 19 | #include "bolt/Core/DebugData.h" |
| 20 | #include "bolt/Core/DynoStats.h" |
| 21 | #include "bolt/Core/JumpTable.h" |
| 22 | #include "bolt/Core/MCPlusBuilder.h" |
| 23 | #include "bolt/RuntimeLibs/RuntimeLibrary.h" |
| 24 | #include "llvm/ADT/AddressRanges.h" |
| 25 | #include "llvm/ADT/ArrayRef.h" |
| 26 | #include "llvm/ADT/EquivalenceClasses.h" |
| 27 | #include "llvm/ADT/StringMap.h" |
| 28 | #include "llvm/ADT/iterator.h" |
| 29 | #include "llvm/BinaryFormat/Dwarf.h" |
| 30 | #include "llvm/BinaryFormat/MachO.h" |
| 31 | #include "llvm/ExecutionEngine/Orc/SymbolStringPool.h" |
| 32 | #include "llvm/MC/MCAsmInfo.h" |
| 33 | #include "llvm/MC/MCCodeEmitter.h" |
| 34 | #include "llvm/MC/MCContext.h" |
| 35 | #include "llvm/MC/MCObjectFileInfo.h" |
| 36 | #include "llvm/MC/MCObjectWriter.h" |
| 37 | #include "llvm/MC/MCPseudoProbe.h" |
| 38 | #include "llvm/MC/MCSectionELF.h" |
| 39 | #include "llvm/MC/MCSectionMachO.h" |
| 40 | #include "llvm/MC/MCStreamer.h" |
| 41 | #include "llvm/MC/MCSymbol.h" |
| 42 | #include "llvm/MC/TargetRegistry.h" |
| 43 | #include "llvm/Support/ErrorOr.h" |
| 44 | #include "llvm/Support/RWMutex.h" |
| 45 | #include "llvm/Support/raw_ostream.h" |
| 46 | #include "llvm/TargetParser/Triple.h" |
| 47 | #include <functional> |
| 48 | #include <list> |
| 49 | #include <map> |
| 50 | #include <optional> |
| 51 | #include <set> |
| 52 | #include <string> |
| 53 | #include <system_error> |
| 54 | #include <type_traits> |
| 55 | #include <unordered_map> |
| 56 | #include <vector> |
| 57 | |
| 58 | namespace llvm { |
| 59 | class MCDisassembler; |
| 60 | class MCInstPrinter; |
| 61 | |
| 62 | using namespace object; |
| 63 | |
| 64 | namespace bolt { |
| 65 | |
| 66 | class BinaryFunction; |
| 67 | |
| 68 | /// Information on loadable part of the file. |
| 69 | struct SegmentInfo { |
| 70 | uint64_t Address; /// Address of the segment in memory. |
| 71 | uint64_t Size; /// Size of the segment in memory. |
| 72 | uint64_t FileOffset; /// Offset in the file. |
| 73 | uint64_t FileSize; /// Size in file. |
| 74 | uint64_t Alignment; /// Alignment of the segment. |
| 75 | bool IsExecutable; /// Is the executable bit set on the Segment? |
| 76 | |
| 77 | void print(raw_ostream &OS) const { |
| 78 | OS << "SegmentInfo { Address: 0x" << Twine::utohexstr(Val: Address) |
| 79 | << ", Size: 0x" << Twine::utohexstr(Val: Size) << ", FileOffset: 0x" |
| 80 | << Twine::utohexstr(Val: FileOffset) << ", FileSize: 0x" |
| 81 | << Twine::utohexstr(Val: FileSize) << ", Alignment: 0x" |
| 82 | << Twine::utohexstr(Val: Alignment) << ", " << (IsExecutable ? "x" : " " ) |
| 83 | << "}" ; |
| 84 | }; |
| 85 | }; |
| 86 | |
| 87 | inline raw_ostream &operator<<(raw_ostream &OS, const SegmentInfo &SegInfo) { |
| 88 | SegInfo.print(OS); |
| 89 | return OS; |
| 90 | } |
| 91 | |
| 92 | // AArch64-specific symbol markers used to delimit code/data in .text. |
| 93 | enum class MarkerSymType : char { |
| 94 | NONE = 0, |
| 95 | CODE, |
| 96 | DATA, |
| 97 | }; |
| 98 | |
| 99 | enum class MemoryContentsType : char { |
| 100 | UNKNOWN = 0, /// Unknown contents. |
| 101 | POSSIBLE_JUMP_TABLE, /// Possibly a non-PIC jump table. |
| 102 | POSSIBLE_PIC_JUMP_TABLE, /// Possibly a PIC jump table. |
| 103 | }; |
| 104 | |
| 105 | /// Helper function to truncate a \p Value to given size in \p Bytes. |
| 106 | inline int64_t truncateToSize(int64_t Value, unsigned Bytes) { |
| 107 | return Value & ((uint64_t)(int64_t)-1 >> (64 - Bytes * 8)); |
| 108 | } |
| 109 | |
| 110 | /// Filter iterator. |
| 111 | template <typename ItrType, |
| 112 | typename PredType = std::function<bool(const ItrType &)>> |
| 113 | class FilterIterator { |
| 114 | using inner_traits = std::iterator_traits<ItrType>; |
| 115 | using Iterator = FilterIterator; |
| 116 | |
| 117 | PredType Pred; |
| 118 | ItrType Itr, End; |
| 119 | |
| 120 | void prev() { |
| 121 | while (!Pred(--Itr)) |
| 122 | ; |
| 123 | } |
| 124 | void next() { |
| 125 | ++Itr; |
| 126 | nextMatching(); |
| 127 | } |
| 128 | void nextMatching() { |
| 129 | while (Itr != End && !Pred(Itr)) |
| 130 | ++Itr; |
| 131 | } |
| 132 | |
| 133 | public: |
| 134 | using iterator_category = std::bidirectional_iterator_tag; |
| 135 | using value_type = typename inner_traits::value_type; |
| 136 | using difference_type = typename inner_traits::difference_type; |
| 137 | using pointer = typename inner_traits::pointer; |
| 138 | using reference = typename inner_traits::reference; |
| 139 | |
| 140 | Iterator &operator++() { next(); return *this; } |
| 141 | Iterator &operator--() { prev(); return *this; } |
| 142 | Iterator operator++(int) { auto Tmp(Itr); next(); return Tmp; } |
| 143 | Iterator operator--(int) { auto Tmp(Itr); prev(); return Tmp; } |
| 144 | bool operator==(const Iterator &Other) const { return Itr == Other.Itr; } |
| 145 | bool operator!=(const Iterator &Other) const { return !operator==(Other); } |
| 146 | reference operator*() { return *Itr; } |
| 147 | pointer operator->() { return &operator*(); } |
| 148 | FilterIterator(PredType Pred, ItrType Itr, ItrType End) |
| 149 | : Pred(Pred), Itr(Itr), End(End) { |
| 150 | nextMatching(); |
| 151 | } |
| 152 | }; |
| 153 | |
| 154 | /// BOLT-exclusive errors generated in core BOLT libraries, optionally holding a |
| 155 | /// string message and whether it is fatal or not. In case it is fatal and if |
| 156 | /// BOLT is running as a standalone process, the process might be killed as soon |
| 157 | /// as the error is checked. |
| 158 | class BOLTError : public ErrorInfo<BOLTError> { |
| 159 | public: |
| 160 | static char ID; |
| 161 | |
| 162 | BOLTError(bool IsFatal, const Twine &S = Twine()); |
| 163 | void log(raw_ostream &OS) const override; |
| 164 | bool isFatal() const { return IsFatal; } |
| 165 | |
| 166 | const std::string &getMessage() const { return Msg; } |
| 167 | std::error_code convertToErrorCode() const override; |
| 168 | |
| 169 | private: |
| 170 | bool IsFatal; |
| 171 | std::string Msg; |
| 172 | }; |
| 173 | |
| 174 | /// Streams used by BOLT to log regular or error events |
| 175 | struct JournalingStreams { |
| 176 | raw_ostream &Out; |
| 177 | raw_ostream &Err; |
| 178 | }; |
| 179 | |
| 180 | Error createNonFatalBOLTError(const Twine &S); |
| 181 | Error createFatalBOLTError(const Twine &S); |
| 182 | |
| 183 | class BinaryContext { |
| 184 | BinaryContext() = delete; |
| 185 | |
| 186 | /// Name of the binary file the context originated from. |
| 187 | std::string Filename; |
| 188 | |
| 189 | /// Unique build ID if available for the binary. |
| 190 | std::optional<std::string> FileBuildID; |
| 191 | |
| 192 | /// Set of all sections. |
| 193 | struct CompareSections { |
| 194 | bool operator()(const BinarySection *A, const BinarySection *B) const { |
| 195 | return *A < *B; |
| 196 | } |
| 197 | }; |
| 198 | using SectionSetType = std::set<BinarySection *, CompareSections>; |
| 199 | SectionSetType Sections; |
| 200 | |
| 201 | using SectionIterator = pointee_iterator<SectionSetType::iterator>; |
| 202 | using SectionConstIterator = pointee_iterator<SectionSetType::const_iterator>; |
| 203 | |
| 204 | using FilteredSectionIterator = FilterIterator<SectionIterator>; |
| 205 | using FilteredSectionConstIterator = FilterIterator<SectionConstIterator>; |
| 206 | |
| 207 | /// Map virtual address to a section. It is possible to have more than one |
| 208 | /// section mapped to the same address, e.g. non-allocatable sections. |
| 209 | using AddressToSectionMapType = std::multimap<uint64_t, BinarySection *>; |
| 210 | AddressToSectionMapType AddressToSection; |
| 211 | |
| 212 | /// multimap of section name to BinarySection object. Some binaries |
| 213 | /// have multiple sections with the same name. |
| 214 | using NameToSectionMapType = std::multimap<std::string, BinarySection *>; |
| 215 | NameToSectionMapType NameToSection; |
| 216 | |
| 217 | /// Map section references to BinarySection for matching sections in the |
| 218 | /// input file to internal section representation. |
| 219 | DenseMap<SectionRef, BinarySection *> SectionRefToBinarySection; |
| 220 | |
| 221 | /// Low level section registration. |
| 222 | BinarySection ®isterSection(BinarySection *Section); |
| 223 | |
| 224 | /// Store all functions in the binary, sorted by original address. |
| 225 | std::map<uint64_t, BinaryFunction> BinaryFunctions; |
| 226 | |
| 227 | /// A mutex that is used to control parallel accesses to BinaryFunctions |
| 228 | mutable llvm::sys::RWMutex BinaryFunctionsMutex; |
| 229 | |
| 230 | /// Functions injected by BOLT |
| 231 | std::vector<BinaryFunction *> InjectedBinaryFunctions; |
| 232 | |
| 233 | /// Jump tables for all functions mapped by address. |
| 234 | std::map<uint64_t, JumpTable *> JumpTables; |
| 235 | |
| 236 | /// Locations of PC-relative relocations in data objects. |
| 237 | std::unordered_set<uint64_t> DataPCRelocations; |
| 238 | |
| 239 | /// Used in duplicateJumpTable() to uniquely identify a JT clone |
| 240 | /// Start our IDs with a high number so getJumpTableContainingAddress checks |
| 241 | /// with size won't overflow |
| 242 | uint32_t DuplicatedJumpTables{0x10000000}; |
| 243 | |
| 244 | /// Function fragments to skip. |
| 245 | std::unordered_set<BinaryFunction *> FragmentsToSkip; |
| 246 | |
| 247 | /// Fragment equivalence classes to query belonging to the same "family" in |
| 248 | /// presence of multiple fragments/multiple parents. |
| 249 | EquivalenceClasses<const BinaryFunction *> FragmentClasses; |
| 250 | |
| 251 | /// The runtime library. |
| 252 | std::unique_ptr<RuntimeLibrary> RtLibrary; |
| 253 | |
| 254 | /// DWP Context. |
| 255 | std::shared_ptr<DWARFContext> DWPContext; |
| 256 | |
| 257 | /// Decoded pseudo probes. |
| 258 | std::shared_ptr<MCPseudoProbeDecoder> PseudoProbeDecoder; |
| 259 | |
| 260 | /// A map of DWO Ids to CUs. |
| 261 | using DWOIdToCUMapType = std::unordered_map<uint64_t, DWARFUnit *>; |
| 262 | DWOIdToCUMapType DWOCUs; |
| 263 | |
| 264 | bool ContainsDwarf5{false}; |
| 265 | bool ContainsDwarfLegacy{false}; |
| 266 | |
| 267 | /// Mapping from input to output addresses. |
| 268 | std::optional<AddressMap> IOAddressMap; |
| 269 | |
| 270 | /// Preprocess DWO debug information. |
| 271 | void preprocessDWODebugInfo(); |
| 272 | |
| 273 | /// DWARF line info for CUs. |
| 274 | std::map<unsigned, DwarfLineTable> DwarfLineTablesCUMap; |
| 275 | |
| 276 | /// Internal helper for removing section name from a lookup table. |
| 277 | void deregisterSectionName(const BinarySection &Section); |
| 278 | |
| 279 | public: |
| 280 | static Expected<std::unique_ptr<BinaryContext>> createBinaryContext( |
| 281 | Triple TheTriple, std::shared_ptr<orc::SymbolStringPool> SSP, |
| 282 | StringRef InputFileName, SubtargetFeatures *Features, bool IsPIC, |
| 283 | std::unique_ptr<DWARFContext> DwCtx, JournalingStreams Logger); |
| 284 | |
| 285 | /// Superset of compiler units that will contain overwritten code that needs |
| 286 | /// new debug info. In a few cases, functions may end up not being |
| 287 | /// overwritten, but it is okay to re-generate debug info for them. |
| 288 | std::set<const DWARFUnit *> ProcessedCUs; |
| 289 | |
| 290 | // Setup MCPlus target builder |
| 291 | void initializeTarget(std::unique_ptr<MCPlusBuilder> TargetBuilder) { |
| 292 | MIB = std::move(TargetBuilder); |
| 293 | } |
| 294 | |
| 295 | /// Return function fragments to skip. |
| 296 | const std::unordered_set<BinaryFunction *> &getFragmentsToSkip() { |
| 297 | return FragmentsToSkip; |
| 298 | } |
| 299 | |
| 300 | /// Add function fragment to skip |
| 301 | void addFragmentsToSkip(BinaryFunction *Function) { |
| 302 | FragmentsToSkip.insert(x: Function); |
| 303 | } |
| 304 | |
| 305 | void clearFragmentsToSkip() { FragmentsToSkip.clear(); } |
| 306 | |
| 307 | /// Given DWOId returns CU if it exists in DWOCUs. |
| 308 | std::optional<DWARFUnit *> getDWOCU(uint64_t DWOId); |
| 309 | |
| 310 | /// Returns DWOContext if it exists. |
| 311 | DWARFContext *getDWOContext() const; |
| 312 | |
| 313 | /// Get Number of DWOCUs in a map. |
| 314 | uint32_t getNumDWOCUs() { return DWOCUs.size(); } |
| 315 | |
| 316 | /// Returns true if DWARF5 is used. |
| 317 | bool isDWARF5Used() const { return ContainsDwarf5; } |
| 318 | |
| 319 | /// Returns true if DWARF4 or lower is used. |
| 320 | bool isDWARFLegacyUsed() const { return ContainsDwarfLegacy; } |
| 321 | |
| 322 | std::map<unsigned, DwarfLineTable> &getDwarfLineTables() { |
| 323 | return DwarfLineTablesCUMap; |
| 324 | } |
| 325 | |
| 326 | DwarfLineTable &getDwarfLineTable(unsigned CUID) { |
| 327 | return DwarfLineTablesCUMap[CUID]; |
| 328 | } |
| 329 | |
| 330 | Expected<unsigned> getDwarfFile(StringRef Directory, StringRef FileName, |
| 331 | unsigned FileNumber, |
| 332 | std::optional<MD5::MD5Result> Checksum, |
| 333 | std::optional<StringRef> Source, |
| 334 | unsigned CUID, unsigned DWARFVersion); |
| 335 | |
| 336 | /// [start memory address] -> [segment info] mapping. |
| 337 | std::map<uint64_t, SegmentInfo> SegmentMapInfo; |
| 338 | |
| 339 | /// Symbols that are expected to be undefined in MCContext during emission. |
| 340 | std::unordered_set<MCSymbol *> UndefinedSymbols; |
| 341 | |
| 342 | /// [name] -> [BinaryData*] map used for global symbol resolution. |
| 343 | using SymbolMapType = StringMap<BinaryData *>; |
| 344 | SymbolMapType GlobalSymbols; |
| 345 | |
| 346 | /// [address] -> [BinaryData], ... |
| 347 | /// Addresses never change. |
| 348 | /// Note: it is important that clients do not hold on to instances of |
| 349 | /// BinaryData* while the map is still being modified during BinaryFunction |
| 350 | /// disassembly. This is because of the possibility that a regular |
| 351 | /// BinaryData is later discovered to be a JumpTable. |
| 352 | using BinaryDataMapType = std::map<uint64_t, BinaryData *>; |
| 353 | using binary_data_iterator = BinaryDataMapType::iterator; |
| 354 | using binary_data_const_iterator = BinaryDataMapType::const_iterator; |
| 355 | BinaryDataMapType BinaryDataMap; |
| 356 | |
| 357 | using FilteredBinaryDataConstIterator = |
| 358 | FilterIterator<binary_data_const_iterator>; |
| 359 | using FilteredBinaryDataIterator = FilterIterator<binary_data_iterator>; |
| 360 | |
| 361 | StringRef getFilename() const { return Filename; } |
| 362 | void setFilename(StringRef Name) { Filename = std::string(Name); } |
| 363 | |
| 364 | std::optional<StringRef> getFileBuildID() const { |
| 365 | if (FileBuildID) |
| 366 | return StringRef(*FileBuildID); |
| 367 | |
| 368 | return std::nullopt; |
| 369 | } |
| 370 | void setFileBuildID(StringRef ID) { FileBuildID = std::string(ID); } |
| 371 | |
| 372 | bool hasSymbolsWithFileName() const { return HasSymbolsWithFileName; } |
| 373 | void setHasSymbolsWithFileName(bool Value) { HasSymbolsWithFileName = Value; } |
| 374 | |
| 375 | std::shared_ptr<orc::SymbolStringPool> getSymbolStringPool() { return SSP; } |
| 376 | /// Return true if relocations against symbol with a given name |
| 377 | /// must be created. |
| 378 | bool forceSymbolRelocations(StringRef SymbolName) const; |
| 379 | |
| 380 | uint64_t getNumUnusedProfiledObjects() const { |
| 381 | return NumUnusedProfiledObjects; |
| 382 | } |
| 383 | void setNumUnusedProfiledObjects(uint64_t N) { NumUnusedProfiledObjects = N; } |
| 384 | |
| 385 | RuntimeLibrary *getRuntimeLibrary() { return RtLibrary.get(); } |
| 386 | void setRuntimeLibrary(std::unique_ptr<RuntimeLibrary> Lib) { |
| 387 | assert(!RtLibrary && "Cannot set runtime library twice." ); |
| 388 | RtLibrary = std::move(Lib); |
| 389 | } |
| 390 | |
| 391 | const MCPseudoProbeDecoder *getPseudoProbeDecoder() const { |
| 392 | return PseudoProbeDecoder.get(); |
| 393 | } |
| 394 | |
| 395 | void setPseudoProbeDecoder(std::shared_ptr<MCPseudoProbeDecoder> Decoder) { |
| 396 | assert(!PseudoProbeDecoder && "Cannot set pseudo probe decoder twice." ); |
| 397 | PseudoProbeDecoder = Decoder; |
| 398 | } |
| 399 | |
| 400 | /// Return BinaryFunction containing a given \p Address or nullptr if |
| 401 | /// no registered function contains the \p Address. |
| 402 | /// |
| 403 | /// In a binary a function has somewhat vague boundaries. E.g. a function can |
| 404 | /// refer to the first byte past the end of the function, and it will still be |
| 405 | /// referring to this function, not the function following it in the address |
| 406 | /// space. Thus we have the following flags that allow to lookup for |
| 407 | /// a function where a caller has more context for the search. |
| 408 | /// |
| 409 | /// If \p CheckPastEnd is true and the \p Address falls on a byte |
| 410 | /// immediately following the last byte of some function and there's no other |
| 411 | /// function that starts there, then return the function as the one containing |
| 412 | /// the \p Address. This is useful when we need to locate functions for |
| 413 | /// references pointing immediately past a function body. |
| 414 | /// |
| 415 | /// If \p UseMaxSize is true, then include the space between this function |
| 416 | /// body and the next object in address ranges that we check. |
| 417 | BinaryFunction *getBinaryFunctionContainingAddress(uint64_t Address, |
| 418 | bool CheckPastEnd = false, |
| 419 | bool UseMaxSize = false); |
| 420 | const BinaryFunction * |
| 421 | getBinaryFunctionContainingAddress(uint64_t Address, |
| 422 | bool CheckPastEnd = false, |
| 423 | bool UseMaxSize = false) const { |
| 424 | return const_cast<BinaryContext *>(this) |
| 425 | ->getBinaryFunctionContainingAddress(Address, CheckPastEnd, UseMaxSize); |
| 426 | } |
| 427 | |
| 428 | /// Return a BinaryFunction that starts at a given \p Address. |
| 429 | BinaryFunction *getBinaryFunctionAtAddress(uint64_t Address); |
| 430 | |
| 431 | const BinaryFunction *getBinaryFunctionAtAddress(uint64_t Address) const { |
| 432 | return const_cast<BinaryContext *>(this)->getBinaryFunctionAtAddress( |
| 433 | Address); |
| 434 | } |
| 435 | |
| 436 | /// Return size of an entry for the given jump table \p Type. |
| 437 | uint64_t getJumpTableEntrySize(JumpTable::JumpTableType Type) const { |
| 438 | return Type == JumpTable::JTT_PIC ? 4 : AsmInfo->getCodePointerSize(); |
| 439 | } |
| 440 | |
| 441 | /// Return JumpTable containing a given \p Address. |
| 442 | JumpTable *getJumpTableContainingAddress(uint64_t Address) { |
| 443 | auto JTI = JumpTables.upper_bound(x: Address); |
| 444 | if (JTI == JumpTables.begin()) |
| 445 | return nullptr; |
| 446 | --JTI; |
| 447 | if (JTI->first + JTI->second->getSize() > Address) |
| 448 | return JTI->second; |
| 449 | if (JTI->second->getSize() == 0 && JTI->first == Address) |
| 450 | return JTI->second; |
| 451 | return nullptr; |
| 452 | } |
| 453 | |
| 454 | /// Deregister JumpTable registered at a given \p Address and delete it. |
| 455 | void deleteJumpTable(uint64_t Address); |
| 456 | |
| 457 | unsigned getDWARFEncodingSize(unsigned Encoding) { |
| 458 | if (Encoding == dwarf::DW_EH_PE_omit) |
| 459 | return 0; |
| 460 | switch (Encoding & 0x0f) { |
| 461 | default: |
| 462 | llvm_unreachable("unknown encoding" ); |
| 463 | case dwarf::DW_EH_PE_absptr: |
| 464 | case dwarf::DW_EH_PE_signed: |
| 465 | return AsmInfo->getCodePointerSize(); |
| 466 | case dwarf::DW_EH_PE_udata2: |
| 467 | case dwarf::DW_EH_PE_sdata2: |
| 468 | return 2; |
| 469 | case dwarf::DW_EH_PE_udata4: |
| 470 | case dwarf::DW_EH_PE_sdata4: |
| 471 | return 4; |
| 472 | case dwarf::DW_EH_PE_udata8: |
| 473 | case dwarf::DW_EH_PE_sdata8: |
| 474 | return 8; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | /// [MCSymbol] -> [BinaryFunction] |
| 479 | /// |
| 480 | /// As we fold identical functions, multiple symbols can point |
| 481 | /// to the same BinaryFunction. |
| 482 | std::unordered_map<const MCSymbol *, BinaryFunction *> SymbolToFunctionMap; |
| 483 | |
| 484 | /// A mutex that is used to control parallel accesses to SymbolToFunctionMap |
| 485 | mutable llvm::sys::RWMutex SymbolToFunctionMapMutex; |
| 486 | |
| 487 | /// Look up the symbol entry that contains the given \p Address (based on |
| 488 | /// the start address and size for each symbol). Returns a pointer to |
| 489 | /// the BinaryData for that symbol. If no data is found, nullptr is returned. |
| 490 | const BinaryData *getBinaryDataContainingAddressImpl(uint64_t Address) const; |
| 491 | |
| 492 | /// Update the Parent fields in BinaryDatas after adding a new entry into |
| 493 | /// \p BinaryDataMap. |
| 494 | void updateObjectNesting(BinaryDataMapType::iterator GAI); |
| 495 | |
| 496 | /// Validate that if object address ranges overlap that the object with |
| 497 | /// the larger range is a parent of the object with the smaller range. |
| 498 | bool validateObjectNesting() const; |
| 499 | |
| 500 | /// Validate that there are no top level "holes" in each section |
| 501 | /// and that all relocations with a section are mapped to a valid |
| 502 | /// top level BinaryData. |
| 503 | bool validateHoles() const; |
| 504 | |
| 505 | /// Produce output address ranges based on input ranges for some module. |
| 506 | DebugAddressRangesVector translateModuleAddressRanges( |
| 507 | const DWARFAddressRangesVector &InputRanges) const; |
| 508 | |
| 509 | /// Get a bogus "absolute" section that will be associated with all |
| 510 | /// absolute BinaryDatas. |
| 511 | BinarySection &absoluteSection(); |
| 512 | |
| 513 | /// Process "holes" in between known BinaryData objects. For now, |
| 514 | /// symbols are padded with the space before the next BinaryData object. |
| 515 | void fixBinaryDataHoles(); |
| 516 | |
| 517 | /// Generate names based on data hashes for unknown symbols. |
| 518 | void generateSymbolHashes(); |
| 519 | |
| 520 | /// Construct BinaryFunction object and add it to internal maps. |
| 521 | BinaryFunction *createBinaryFunction(const std::string &Name, |
| 522 | BinarySection &Section, uint64_t Address, |
| 523 | uint64_t Size, uint64_t SymbolSize = 0, |
| 524 | uint16_t Alignment = 0); |
| 525 | |
| 526 | /// Return all functions for this rewrite instance. |
| 527 | std::map<uint64_t, BinaryFunction> &getBinaryFunctions() { |
| 528 | return BinaryFunctions; |
| 529 | } |
| 530 | |
| 531 | /// Return all functions for this rewrite instance. |
| 532 | const std::map<uint64_t, BinaryFunction> &getBinaryFunctions() const { |
| 533 | return BinaryFunctions; |
| 534 | } |
| 535 | |
| 536 | /// Create BOLT-injected function |
| 537 | BinaryFunction *createInjectedBinaryFunction(const std::string &Name, |
| 538 | bool IsSimple = true); |
| 539 | |
| 540 | /// Patch the original binary contents at address \p Address with a sequence |
| 541 | /// of instructions from the \p Instructions list. The callee is responsible |
| 542 | /// for checking that the sequence doesn't cross any function or section |
| 543 | /// boundaries. |
| 544 | /// |
| 545 | /// Optional \p Name can be assigned to the patch. The name will be emitted to |
| 546 | /// the symbol table at \p Address. |
| 547 | BinaryFunction * |
| 548 | createInstructionPatch(uint64_t Address, |
| 549 | const InstructionListType &Instructions, |
| 550 | const Twine &Name = "" ); |
| 551 | |
| 552 | std::vector<BinaryFunction *> &getInjectedBinaryFunctions() { |
| 553 | return InjectedBinaryFunctions; |
| 554 | } |
| 555 | |
| 556 | /// Return vector with all functions, i.e. include functions from the input |
| 557 | /// binary and functions created by BOLT. |
| 558 | std::vector<BinaryFunction *> getAllBinaryFunctions(); |
| 559 | |
| 560 | /// Construct a jump table for \p Function at \p Address or return an existing |
| 561 | /// one at that location. |
| 562 | /// |
| 563 | /// May create an embedded jump table and return its label as the second |
| 564 | /// element of the pair. |
| 565 | const MCSymbol *getOrCreateJumpTable(BinaryFunction &Function, |
| 566 | uint64_t Address, |
| 567 | JumpTable::JumpTableType Type); |
| 568 | |
| 569 | /// Analyze a possible jump table of type \p Type at a given \p Address. |
| 570 | /// \p BF is a function referencing the jump table. |
| 571 | /// Return true if the jump table was detected at \p Address, and false |
| 572 | /// otherwise. |
| 573 | /// |
| 574 | /// If \p NextJTAddress is different from zero, it is used as an upper |
| 575 | /// bound for jump table memory layout. |
| 576 | /// |
| 577 | /// Optionally, populate \p Address from jump table entries. The entries |
| 578 | /// could be partially populated if the jump table detection fails. |
| 579 | bool analyzeJumpTable(const uint64_t Address, |
| 580 | const JumpTable::JumpTableType Type, |
| 581 | const BinaryFunction &BF, |
| 582 | const uint64_t NextJTAddress = 0, |
| 583 | JumpTable::AddressesType *EntriesAsAddress = nullptr, |
| 584 | bool *HasEntryInFragment = nullptr) const; |
| 585 | |
| 586 | /// After jump table locations are established, this function will populate |
| 587 | /// their EntriesAsAddress based on memory contents. |
| 588 | void populateJumpTables(); |
| 589 | |
| 590 | /// Returns a jump table ID and label pointing to the duplicated jump table. |
| 591 | /// Ordinarily, jump tables are identified by their address in the input |
| 592 | /// binary. We return an ID with the high bit set to differentiate it from |
| 593 | /// regular addresses, avoiding conflicts with standard jump tables. |
| 594 | std::pair<uint64_t, const MCSymbol *> |
| 595 | duplicateJumpTable(BinaryFunction &Function, JumpTable *JT, |
| 596 | const MCSymbol *OldLabel); |
| 597 | |
| 598 | /// Generate a unique name for jump table at a given \p Address belonging |
| 599 | /// to function \p BF. |
| 600 | std::string generateJumpTableName(const BinaryFunction &BF, uint64_t Address); |
| 601 | |
| 602 | /// Free memory used by JumpTable's EntriesAsAddress |
| 603 | void clearJumpTableTempData() { |
| 604 | for (auto &JTI : JumpTables) { |
| 605 | JumpTable &JT = *JTI.second; |
| 606 | JumpTable::AddressesType Temp; |
| 607 | Temp.swap(x&: JT.EntriesAsAddress); |
| 608 | } |
| 609 | } |
| 610 | /// Return true if the array of bytes represents a valid code padding. |
| 611 | bool hasValidCodePadding(const BinaryFunction &BF); |
| 612 | |
| 613 | /// Verify padding area between functions, and adjust max function size |
| 614 | /// accordingly. |
| 615 | void adjustCodePadding(); |
| 616 | |
| 617 | /// Regular page size. |
| 618 | unsigned RegularPageSize{0x1000}; |
| 619 | static constexpr unsigned RegularPageSizeX86 = 0x1000; |
| 620 | static constexpr unsigned RegularPageSizeAArch64 = 0x10000; |
| 621 | |
| 622 | /// Huge page size to use. |
| 623 | static constexpr unsigned HugePageSize = 0x200000; |
| 624 | |
| 625 | /// Addresses reserved for kernel on x86_64 start at this location. |
| 626 | static constexpr uint64_t KernelStartX86_64 = 0xFFFF'FFFF'8000'0000; |
| 627 | |
| 628 | /// Map address to a constant island owner (constant data in code section) |
| 629 | std::map<uint64_t, BinaryFunction *> AddressToConstantIslandMap; |
| 630 | |
| 631 | /// A map from jump table address to insertion order. Used for generating |
| 632 | /// jump table names. |
| 633 | std::map<uint64_t, size_t> JumpTableIds; |
| 634 | |
| 635 | std::unique_ptr<MCContext> Ctx; |
| 636 | |
| 637 | /// A mutex that is used to control parallel accesses to Ctx |
| 638 | mutable llvm::sys::RWMutex CtxMutex; |
| 639 | std::unique_lock<llvm::sys::RWMutex> scopeLock() const { |
| 640 | return std::unique_lock<llvm::sys::RWMutex>(CtxMutex); |
| 641 | } |
| 642 | |
| 643 | std::unique_ptr<DWARFContext> DwCtx; |
| 644 | |
| 645 | std::unique_ptr<Triple> TheTriple; |
| 646 | |
| 647 | std::shared_ptr<orc::SymbolStringPool> SSP; |
| 648 | |
| 649 | const Target *TheTarget; |
| 650 | |
| 651 | std::string TripleName; |
| 652 | |
| 653 | std::unique_ptr<MCCodeEmitter> MCE; |
| 654 | |
| 655 | std::unique_ptr<MCObjectFileInfo> MOFI; |
| 656 | |
| 657 | std::unique_ptr<const MCAsmInfo> AsmInfo; |
| 658 | |
| 659 | std::unique_ptr<const MCInstrInfo> MII; |
| 660 | |
| 661 | std::unique_ptr<const MCSubtargetInfo> STI; |
| 662 | |
| 663 | std::unique_ptr<MCInstPrinter> InstPrinter; |
| 664 | |
| 665 | std::unique_ptr<const MCInstrAnalysis> MIA; |
| 666 | |
| 667 | std::unique_ptr<MCPlusBuilder> MIB; |
| 668 | |
| 669 | std::unique_ptr<const MCRegisterInfo> MRI; |
| 670 | |
| 671 | std::unique_ptr<MCDisassembler> DisAsm; |
| 672 | |
| 673 | /// Symbolic disassembler. |
| 674 | std::unique_ptr<MCDisassembler> SymbolicDisAsm; |
| 675 | |
| 676 | std::unique_ptr<MCAsmBackend> MAB; |
| 677 | |
| 678 | /// Allows BOLT to print to log whenever it is necessary (with or without |
| 679 | /// const references) |
| 680 | mutable JournalingStreams Logger; |
| 681 | |
| 682 | /// Indicates if the binary is Linux kernel. |
| 683 | bool IsLinuxKernel{false}; |
| 684 | |
| 685 | /// Indicates if relocations are available for usage. |
| 686 | bool HasRelocations{false}; |
| 687 | |
| 688 | /// Indicates if the binary is stripped |
| 689 | bool IsStripped{false}; |
| 690 | |
| 691 | /// Indicates if the binary contains split functions. |
| 692 | bool HasSplitFunctions{false}; |
| 693 | |
| 694 | /// Indicates if the function ordering of the binary is finalized. |
| 695 | bool HasFinalizedFunctionOrder{false}; |
| 696 | |
| 697 | /// Indicates if a separate .text.warm section is needed that contains |
| 698 | /// function fragments with |
| 699 | /// FunctionFragment::getFragmentNum() == FragmentNum::warm() |
| 700 | bool HasWarmSection{false}; |
| 701 | |
| 702 | /// Is the binary always loaded at a fixed address. Shared objects and |
| 703 | /// position-independent executables (PIEs) are examples of binaries that |
| 704 | /// will have HasFixedLoadAddress set to false. |
| 705 | bool HasFixedLoadAddress{true}; |
| 706 | |
| 707 | /// True if the binary has no dynamic dependencies, i.e., if it was statically |
| 708 | /// linked. |
| 709 | bool IsStaticExecutable{false}; |
| 710 | |
| 711 | /// Set to true if the binary contains PT_INTERP header. |
| 712 | bool {false}; |
| 713 | |
| 714 | /// Indicates if any of local symbols used for functions or data objects |
| 715 | /// have an origin file name available. |
| 716 | bool HasSymbolsWithFileName{false}; |
| 717 | |
| 718 | /// Does the binary have BAT section. |
| 719 | bool HasBATSection{false}; |
| 720 | |
| 721 | /// Sum of execution count of all functions |
| 722 | uint64_t SumExecutionCount{0}; |
| 723 | |
| 724 | /// Number of functions with profile information |
| 725 | uint64_t NumProfiledFuncs{0}; |
| 726 | |
| 727 | /// Number of functions with stale profile information |
| 728 | uint64_t NumStaleProfileFuncs{0}; |
| 729 | |
| 730 | /// Number of objects in profile whose profile was ignored. |
| 731 | uint64_t NumUnusedProfiledObjects{0}; |
| 732 | |
| 733 | /// Total hotness score according to profiling data for this binary. |
| 734 | uint64_t TotalScore{0}; |
| 735 | |
| 736 | /// Binary-wide aggregated stats. |
| 737 | struct BinaryStats { |
| 738 | /// Stats for stale profile matching: |
| 739 | /// the total number of basic blocks in the profile |
| 740 | uint32_t NumStaleBlocks{0}; |
| 741 | /// the number of exactly matched basic blocks |
| 742 | uint32_t NumExactMatchedBlocks{0}; |
| 743 | /// the number of loosely matched basic blocks |
| 744 | uint32_t NumLooseMatchedBlocks{0}; |
| 745 | /// the number of exactly pseudo probe matched basic blocks |
| 746 | uint32_t NumPseudoProbeExactMatchedBlocks{0}; |
| 747 | /// the number of loosely pseudo probe matched basic blocks |
| 748 | uint32_t NumPseudoProbeLooseMatchedBlocks{0}; |
| 749 | /// the number of call matched basic blocks |
| 750 | uint32_t NumCallMatchedBlocks{0}; |
| 751 | /// the total count of samples in the profile |
| 752 | uint64_t StaleSampleCount{0}; |
| 753 | /// the count of exactly matched samples |
| 754 | uint64_t ExactMatchedSampleCount{0}; |
| 755 | /// the count of loosely matched samples |
| 756 | uint64_t LooseMatchedSampleCount{0}; |
| 757 | /// the count of exactly pseudo probe matched samples |
| 758 | uint64_t PseudoProbeExactMatchedSampleCount{0}; |
| 759 | /// the count of loosely pseudo probe matched samples |
| 760 | uint64_t PseudoProbeLooseMatchedSampleCount{0}; |
| 761 | /// the count of call matched samples |
| 762 | uint64_t CallMatchedSampleCount{0}; |
| 763 | /// the number of stale functions that have matching number of blocks in |
| 764 | /// the profile |
| 765 | uint64_t NumStaleFuncsWithEqualBlockCount{0}; |
| 766 | /// the number of blocks that have matching size but a differing hash |
| 767 | uint64_t NumStaleBlocksWithEqualIcount{0}; |
| 768 | } Stats; |
| 769 | |
| 770 | // Original binary execution count stats. |
| 771 | DynoStats InitialDynoStats; |
| 772 | |
| 773 | // Address of the first allocated segment. |
| 774 | uint64_t FirstAllocAddress{std::numeric_limits<uint64_t>::max()}; |
| 775 | |
| 776 | /// Track next available address for new allocatable sections. RewriteInstance |
| 777 | /// sets this prior to running BOLT passes, so layout passes are aware of the |
| 778 | /// final addresses functions will have. |
| 779 | uint64_t LayoutStartAddress{0}; |
| 780 | |
| 781 | /// Old .text info. |
| 782 | uint64_t OldTextSectionAddress{0}; |
| 783 | uint64_t OldTextSectionOffset{0}; |
| 784 | uint64_t OldTextSectionSize{0}; |
| 785 | |
| 786 | /// Area in the input binary reserved for BOLT. |
| 787 | AddressRange BOLTReserved; |
| 788 | |
| 789 | /// Address of the code/function that is executed before any other code in |
| 790 | /// the binary. |
| 791 | std::optional<uint64_t> StartFunctionAddress; |
| 792 | |
| 793 | /// Address of the code/function that is going to be executed right before |
| 794 | /// the execution of the binary is completed. |
| 795 | std::optional<uint64_t> FiniFunctionAddress; |
| 796 | |
| 797 | /// DT_FINI. |
| 798 | std::optional<uint64_t> FiniAddress; |
| 799 | |
| 800 | /// DT_FINI_ARRAY. Only used when DT_FINI is not set. |
| 801 | std::optional<uint64_t> FiniArrayAddress; |
| 802 | |
| 803 | /// DT_FINI_ARRAYSZ. Only used when DT_FINI is not set. |
| 804 | std::optional<uint64_t> FiniArraySize; |
| 805 | |
| 806 | /// Page alignment used for code layout. |
| 807 | uint64_t PageAlign{HugePageSize}; |
| 808 | |
| 809 | /// True if the binary requires immediate relocation processing. |
| 810 | bool RequiresZNow{false}; |
| 811 | |
| 812 | /// List of functions that always trap. |
| 813 | std::vector<const BinaryFunction *> TrappedFunctions; |
| 814 | |
| 815 | /// List of external addresses in the code that are not a function start |
| 816 | /// and are referenced from BinaryFunction. |
| 817 | std::list<std::pair<BinaryFunction *, uint64_t>> InterproceduralReferences; |
| 818 | |
| 819 | /// DWARF encoding. Available encoding types defined in BinaryFormat/Dwarf.h |
| 820 | /// enum Constants, e.g. DW_EH_PE_omit. |
| 821 | unsigned LSDAEncoding = dwarf::DW_EH_PE_omit; |
| 822 | |
| 823 | BinaryContext(std::unique_ptr<MCContext> Ctx, |
| 824 | std::unique_ptr<DWARFContext> DwCtx, |
| 825 | std::unique_ptr<Triple> TheTriple, |
| 826 | std::shared_ptr<orc::SymbolStringPool> SSP, |
| 827 | const Target *TheTarget, std::string TripleName, |
| 828 | std::unique_ptr<MCCodeEmitter> MCE, |
| 829 | std::unique_ptr<MCObjectFileInfo> MOFI, |
| 830 | std::unique_ptr<const MCAsmInfo> AsmInfo, |
| 831 | std::unique_ptr<const MCInstrInfo> MII, |
| 832 | std::unique_ptr<const MCSubtargetInfo> STI, |
| 833 | std::unique_ptr<MCInstPrinter> InstPrinter, |
| 834 | std::unique_ptr<const MCInstrAnalysis> MIA, |
| 835 | std::unique_ptr<MCPlusBuilder> MIB, |
| 836 | std::unique_ptr<const MCRegisterInfo> MRI, |
| 837 | std::unique_ptr<MCDisassembler> DisAsm, |
| 838 | JournalingStreams Logger); |
| 839 | |
| 840 | ~BinaryContext(); |
| 841 | |
| 842 | std::unique_ptr<MCObjectWriter> createObjectWriter(raw_pwrite_stream &OS); |
| 843 | |
| 844 | bool isELF() const { return TheTriple->isOSBinFormatELF(); } |
| 845 | |
| 846 | bool isMachO() const { return TheTriple->isOSBinFormatMachO(); } |
| 847 | |
| 848 | bool isAArch64() const { |
| 849 | return TheTriple->getArch() == llvm::Triple::aarch64; |
| 850 | } |
| 851 | |
| 852 | bool isX86() const { |
| 853 | return TheTriple->getArch() == llvm::Triple::x86 || |
| 854 | TheTriple->getArch() == llvm::Triple::x86_64; |
| 855 | } |
| 856 | |
| 857 | bool isRISCV() const { return TheTriple->getArch() == llvm::Triple::riscv64; } |
| 858 | |
| 859 | // AArch64-specific functions to check if symbol is used to delimit |
| 860 | // code/data in .text. Code is marked by $x, data by $d. |
| 861 | MarkerSymType getMarkerType(const SymbolRef &Symbol) const; |
| 862 | bool isMarker(const SymbolRef &Symbol) const; |
| 863 | |
| 864 | /// Iterate over all BinaryData. |
| 865 | iterator_range<binary_data_const_iterator> getBinaryData() const { |
| 866 | return make_range(x: BinaryDataMap.begin(), y: BinaryDataMap.end()); |
| 867 | } |
| 868 | |
| 869 | /// Iterate over all BinaryData. |
| 870 | iterator_range<binary_data_iterator> getBinaryData() { |
| 871 | return make_range(x: BinaryDataMap.begin(), y: BinaryDataMap.end()); |
| 872 | } |
| 873 | |
| 874 | /// Iterate over all BinaryData associated with the given \p Section. |
| 875 | iterator_range<FilteredBinaryDataConstIterator> |
| 876 | getBinaryDataForSection(const BinarySection &Section) const { |
| 877 | auto Begin = BinaryDataMap.lower_bound(x: Section.getAddress()); |
| 878 | if (Begin != BinaryDataMap.begin()) |
| 879 | --Begin; |
| 880 | auto End = BinaryDataMap.upper_bound(x: Section.getEndAddress()); |
| 881 | auto pred = [&Section](const binary_data_const_iterator &Itr) -> bool { |
| 882 | return Itr->second->getSection() == Section; |
| 883 | }; |
| 884 | return make_range(x: FilteredBinaryDataConstIterator(pred, Begin, End), |
| 885 | y: FilteredBinaryDataConstIterator(pred, End, End)); |
| 886 | } |
| 887 | |
| 888 | /// Iterate over all BinaryData associated with the given \p Section. |
| 889 | iterator_range<FilteredBinaryDataIterator> |
| 890 | getBinaryDataForSection(BinarySection &Section) { |
| 891 | auto Begin = BinaryDataMap.lower_bound(x: Section.getAddress()); |
| 892 | if (Begin != BinaryDataMap.begin()) |
| 893 | --Begin; |
| 894 | auto End = BinaryDataMap.upper_bound(x: Section.getEndAddress()); |
| 895 | auto pred = [&Section](const binary_data_iterator &Itr) -> bool { |
| 896 | return Itr->second->getSection() == Section; |
| 897 | }; |
| 898 | return make_range(x: FilteredBinaryDataIterator(pred, Begin, End), |
| 899 | y: FilteredBinaryDataIterator(pred, End, End)); |
| 900 | } |
| 901 | |
| 902 | /// Iterate over all the sub-symbols of /p BD (if any). |
| 903 | iterator_range<binary_data_iterator> getSubBinaryData(BinaryData *BD); |
| 904 | |
| 905 | /// Clear the global symbol address -> name(s) map. |
| 906 | void clearBinaryData() { |
| 907 | GlobalSymbols.clear(); |
| 908 | for (auto &Entry : BinaryDataMap) |
| 909 | delete Entry.second; |
| 910 | BinaryDataMap.clear(); |
| 911 | } |
| 912 | |
| 913 | /// Process \p Address reference from code in function \BF. |
| 914 | /// \p IsPCRel indicates if the reference is PC-relative. |
| 915 | /// Return <Symbol, Addend> pair corresponding to the \p Address. |
| 916 | std::pair<const MCSymbol *, uint64_t> |
| 917 | handleAddressRef(uint64_t Address, BinaryFunction &BF, bool IsPCRel); |
| 918 | |
| 919 | /// Analyze memory contents at the given \p Address and return the type of |
| 920 | /// memory contents (such as a possible jump table). |
| 921 | MemoryContentsType analyzeMemoryAt(uint64_t Address, BinaryFunction &BF); |
| 922 | |
| 923 | /// Return a value of the global \p Symbol or an error if the value |
| 924 | /// was not set. |
| 925 | ErrorOr<uint64_t> getSymbolValue(const MCSymbol &Symbol) const { |
| 926 | const BinaryData *BD = getBinaryDataByName(Name: Symbol.getName()); |
| 927 | if (!BD) |
| 928 | return std::make_error_code(e: std::errc::bad_address); |
| 929 | return BD->getAddress(); |
| 930 | } |
| 931 | |
| 932 | /// Return a global symbol registered at a given \p Address and \p Size. |
| 933 | /// If no symbol exists, create one with unique name using \p Prefix. |
| 934 | /// If there are multiple symbols registered at the \p Address, then |
| 935 | /// return the first one. |
| 936 | MCSymbol *getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix, |
| 937 | uint64_t Size = 0, uint16_t Alignment = 0, |
| 938 | unsigned Flags = 0); |
| 939 | |
| 940 | /// Create a global symbol without registering an address. |
| 941 | MCSymbol *getOrCreateUndefinedGlobalSymbol(StringRef Name); |
| 942 | |
| 943 | /// Register a symbol with \p Name at a given \p Address using \p Size, |
| 944 | /// \p Alignment, and \p Flags. See llvm::SymbolRef::Flags for the definition |
| 945 | /// of \p Flags. |
| 946 | MCSymbol *registerNameAtAddress(StringRef Name, uint64_t Address, |
| 947 | uint64_t Size, uint16_t Alignment, |
| 948 | unsigned Flags = 0); |
| 949 | |
| 950 | /// Return BinaryData registered at a given \p Address or nullptr if no |
| 951 | /// global symbol was registered at the location. |
| 952 | const BinaryData *getBinaryDataAtAddress(uint64_t Address) const { |
| 953 | auto NI = BinaryDataMap.find(x: Address); |
| 954 | return NI != BinaryDataMap.end() ? NI->second : nullptr; |
| 955 | } |
| 956 | |
| 957 | BinaryData *getBinaryDataAtAddress(uint64_t Address) { |
| 958 | auto NI = BinaryDataMap.find(x: Address); |
| 959 | return NI != BinaryDataMap.end() ? NI->second : nullptr; |
| 960 | } |
| 961 | |
| 962 | /// Look up the symbol entry that contains the given \p Address (based on |
| 963 | /// the start address and size for each symbol). Returns a pointer to |
| 964 | /// the BinaryData for that symbol. If no data is found, nullptr is returned. |
| 965 | const BinaryData *getBinaryDataContainingAddress(uint64_t Address) const { |
| 966 | return getBinaryDataContainingAddressImpl(Address); |
| 967 | } |
| 968 | |
| 969 | BinaryData *getBinaryDataContainingAddress(uint64_t Address) { |
| 970 | return const_cast<BinaryData *>( |
| 971 | getBinaryDataContainingAddressImpl(Address)); |
| 972 | } |
| 973 | |
| 974 | /// Return BinaryData for the given \p Name or nullptr if no |
| 975 | /// global symbol with that name exists. |
| 976 | const BinaryData *getBinaryDataByName(StringRef Name) const { |
| 977 | return GlobalSymbols.lookup(Key: Name); |
| 978 | } |
| 979 | |
| 980 | BinaryData *getBinaryDataByName(StringRef Name) { |
| 981 | return GlobalSymbols.lookup(Key: Name); |
| 982 | } |
| 983 | |
| 984 | /// Return registered PLT entry BinaryData with the given \p Name |
| 985 | /// or nullptr if no global PLT symbol with that name exists. |
| 986 | const BinaryData *getPLTBinaryDataByName(StringRef Name) const { |
| 987 | if (const BinaryData *Data = getBinaryDataByName(Name: Name.str() + "@PLT" )) |
| 988 | return Data; |
| 989 | |
| 990 | // The symbol name might contain versioning information e.g |
| 991 | // memcpy@@GLIBC_2.17. Remove it and try to locate binary data |
| 992 | // without it. |
| 993 | size_t At = Name.find(Str: "@" ); |
| 994 | if (At != std::string::npos) |
| 995 | return getBinaryDataByName(Name: Name.str().substr(pos: 0, n: At) + "@PLT" ); |
| 996 | |
| 997 | return nullptr; |
| 998 | } |
| 999 | |
| 1000 | /// Retrieves a reference to ELF's _GLOBAL_OFFSET_TABLE_ symbol, which points |
| 1001 | /// at GOT, or null if it is not present in the input binary symtab. |
| 1002 | BinaryData *getGOTSymbol(); |
| 1003 | |
| 1004 | /// Checks if symbol name refers to ELF's _GLOBAL_OFFSET_TABLE_ symbol |
| 1005 | bool isGOTSymbol(StringRef SymName) const { |
| 1006 | return SymName == "_GLOBAL_OFFSET_TABLE_" ; |
| 1007 | } |
| 1008 | |
| 1009 | /// Return true if \p SymbolName was generated internally and was not present |
| 1010 | /// in the input binary. |
| 1011 | bool isInternalSymbolName(const StringRef Name) { |
| 1012 | return Name.starts_with(Prefix: "SYMBOLat" ) || Name.starts_with(Prefix: "DATAat" ) || |
| 1013 | Name.starts_with(Prefix: "HOLEat" ); |
| 1014 | } |
| 1015 | |
| 1016 | MCSymbol *getHotTextStartSymbol() const { |
| 1017 | return Ctx->getOrCreateSymbol(Name: "__hot_start" ); |
| 1018 | } |
| 1019 | |
| 1020 | MCSymbol *getHotTextEndSymbol() const { |
| 1021 | return Ctx->getOrCreateSymbol(Name: "__hot_end" ); |
| 1022 | } |
| 1023 | |
| 1024 | MCSection *getTextSection() const { return MOFI->getTextSection(); } |
| 1025 | |
| 1026 | /// Return code section with a given name. |
| 1027 | MCSection *getCodeSection(StringRef SectionName) const { |
| 1028 | if (isELF()) |
| 1029 | return Ctx->getELFSection(Section: SectionName, Type: ELF::SHT_PROGBITS, |
| 1030 | Flags: ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); |
| 1031 | else |
| 1032 | return Ctx->getMachOSection(Segment: "__TEXT" , Section: SectionName, |
| 1033 | TypeAndAttributes: MachO::S_ATTR_PURE_INSTRUCTIONS, |
| 1034 | K: SectionKind::getText()); |
| 1035 | } |
| 1036 | |
| 1037 | /// Return data section with a given name. |
| 1038 | MCSection *getDataSection(StringRef SectionName) const { |
| 1039 | return Ctx->getELFSection(Section: SectionName, Type: ELF::SHT_PROGBITS, Flags: ELF::SHF_ALLOC); |
| 1040 | } |
| 1041 | |
| 1042 | /// \name Pre-assigned Section Names |
| 1043 | /// @{ |
| 1044 | |
| 1045 | const char *getMainCodeSectionName() const { return ".text" ; } |
| 1046 | |
| 1047 | const char *getWarmCodeSectionName() const { return ".text.warm" ; } |
| 1048 | |
| 1049 | const char *getColdCodeSectionName() const { return ".text.cold" ; } |
| 1050 | |
| 1051 | const char *getHotTextMoverSectionName() const { return ".text.mover" ; } |
| 1052 | |
| 1053 | const char *getInjectedCodeSectionName() const { return ".text.injected" ; } |
| 1054 | |
| 1055 | const char *getInjectedColdCodeSectionName() const { |
| 1056 | return ".text.injected.cold" ; |
| 1057 | } |
| 1058 | |
| 1059 | ErrorOr<BinarySection &> getGdbIndexSection() const { |
| 1060 | return getUniqueSectionByName(SectionName: ".gdb_index" ); |
| 1061 | } |
| 1062 | |
| 1063 | ErrorOr<BinarySection &> getDebugNamesSection() const { |
| 1064 | return getUniqueSectionByName(SectionName: ".debug_names" ); |
| 1065 | } |
| 1066 | |
| 1067 | /// @} |
| 1068 | |
| 1069 | /// Register \p TargetFunction as a fragment of \p Function if checks pass: |
| 1070 | /// - if \p TargetFunction name matches \p Function name with a suffix: |
| 1071 | /// fragment_name == parent_name.cold(.\d+)? |
| 1072 | /// True if the Function is registered, false if the check failed. |
| 1073 | bool registerFragment(BinaryFunction &TargetFunction, |
| 1074 | BinaryFunction &Function); |
| 1075 | |
| 1076 | /// Return true if two functions belong to the same "family": are fragments |
| 1077 | /// of one another, or fragments of the same parent, or transitively fragment- |
| 1078 | /// related. |
| 1079 | bool areRelatedFragments(const BinaryFunction *LHS, |
| 1080 | const BinaryFunction *RHS) const { |
| 1081 | return FragmentClasses.isEquivalent(V1: LHS, V2: RHS); |
| 1082 | } |
| 1083 | |
| 1084 | /// Add interprocedural reference for \p Function to \p Address |
| 1085 | void addInterproceduralReference(BinaryFunction *Function, uint64_t Address) { |
| 1086 | InterproceduralReferences.push_back(x: {Function, Address}); |
| 1087 | } |
| 1088 | |
| 1089 | /// Used to fix the target of linker-generated AArch64 adrp + add |
| 1090 | /// sequence with no relocation info. |
| 1091 | void addAdrpAddRelocAArch64(BinaryFunction &BF, MCInst &LoadLowBits, |
| 1092 | MCInst &LoadHiBits, uint64_t Target); |
| 1093 | |
| 1094 | /// Return true if AARch64 veneer was successfully matched at a given |
| 1095 | /// \p Address and register veneer binary function if \p MatchOnly |
| 1096 | /// argument is false. |
| 1097 | bool handleAArch64Veneer(uint64_t Address, bool MatchOnly = false); |
| 1098 | |
| 1099 | /// Resolve inter-procedural dependencies from |
| 1100 | void processInterproceduralReferences(); |
| 1101 | |
| 1102 | /// Skip functions with all parent and child fragments transitively. |
| 1103 | void skipMarkedFragments(); |
| 1104 | |
| 1105 | /// Perform any necessary post processing on the symbol table after |
| 1106 | /// function disassembly is complete. This processing fixes top |
| 1107 | /// level data holes and makes sure the symbol table is valid. |
| 1108 | /// It also assigns all memory profiling info to the appropriate |
| 1109 | /// BinaryData objects. |
| 1110 | void postProcessSymbolTable(); |
| 1111 | |
| 1112 | /// Set the size of the global symbol located at \p Address. Return |
| 1113 | /// false if no symbol exists, true otherwise. |
| 1114 | bool setBinaryDataSize(uint64_t Address, uint64_t Size); |
| 1115 | |
| 1116 | /// Print the global symbol table. |
| 1117 | void printGlobalSymbols(raw_ostream &OS) const; |
| 1118 | |
| 1119 | /// Register information about the given \p Section so we can look up |
| 1120 | /// sections by address. |
| 1121 | BinarySection ®isterSection(SectionRef Section); |
| 1122 | |
| 1123 | /// Register a copy of /p OriginalSection under a different name. |
| 1124 | BinarySection ®isterSection(const Twine &SectionName, |
| 1125 | const BinarySection &OriginalSection); |
| 1126 | |
| 1127 | /// Register or update the information for the section with the given |
| 1128 | /// /p Name. If the section already exists, the information in the |
| 1129 | /// section will be updated with the new data. |
| 1130 | BinarySection ®isterOrUpdateSection(const Twine &Name, unsigned ELFType, |
| 1131 | unsigned ELFFlags, |
| 1132 | uint8_t *Data = nullptr, |
| 1133 | uint64_t Size = 0, |
| 1134 | unsigned Alignment = 1); |
| 1135 | |
| 1136 | /// Register the information for the note (non-allocatable) section |
| 1137 | /// with the given /p Name. If the section already exists, the |
| 1138 | /// information in the section will be updated with the new data. |
| 1139 | BinarySection & |
| 1140 | registerOrUpdateNoteSection(const Twine &Name, uint8_t *Data = nullptr, |
| 1141 | uint64_t Size = 0, unsigned Alignment = 1, |
| 1142 | bool IsReadOnly = true, |
| 1143 | unsigned ELFType = ELF::SHT_PROGBITS) { |
| 1144 | return registerOrUpdateSection(Name, ELFType, |
| 1145 | ELFFlags: BinarySection::getFlags(IsReadOnly), Data, |
| 1146 | Size, Alignment); |
| 1147 | } |
| 1148 | |
| 1149 | /// Remove sections that were preregistered but never used. |
| 1150 | void deregisterUnusedSections(); |
| 1151 | |
| 1152 | /// Remove the given /p Section from the set of all sections. Return |
| 1153 | /// true if the section was removed (and deleted), otherwise false. |
| 1154 | bool deregisterSection(BinarySection &Section); |
| 1155 | |
| 1156 | /// Re-register \p Section under the \p NewName. |
| 1157 | void renameSection(BinarySection &Section, const Twine &NewName); |
| 1158 | |
| 1159 | /// Iterate over all registered sections. |
| 1160 | iterator_range<FilteredSectionIterator> sections() { |
| 1161 | auto notNull = [](const SectionIterator &Itr) { return (bool)*Itr; }; |
| 1162 | return make_range( |
| 1163 | x: FilteredSectionIterator(notNull, Sections.begin(), Sections.end()), |
| 1164 | y: FilteredSectionIterator(notNull, Sections.end(), Sections.end())); |
| 1165 | } |
| 1166 | |
| 1167 | /// Iterate over all registered sections. |
| 1168 | iterator_range<FilteredSectionConstIterator> sections() const { |
| 1169 | return const_cast<BinaryContext *>(this)->sections(); |
| 1170 | } |
| 1171 | |
| 1172 | /// Iterate over all registered allocatable sections. |
| 1173 | iterator_range<FilteredSectionIterator> allocatableSections() { |
| 1174 | auto isAllocatable = [](const SectionIterator &Itr) { |
| 1175 | return *Itr && Itr->isAllocatable(); |
| 1176 | }; |
| 1177 | return make_range( |
| 1178 | x: FilteredSectionIterator(isAllocatable, Sections.begin(), |
| 1179 | Sections.end()), |
| 1180 | y: FilteredSectionIterator(isAllocatable, Sections.end(), Sections.end())); |
| 1181 | } |
| 1182 | |
| 1183 | /// Iterate over all registered code sections. |
| 1184 | iterator_range<FilteredSectionIterator> textSections() { |
| 1185 | auto isText = [](const SectionIterator &Itr) { |
| 1186 | return *Itr && Itr->isAllocatable() && Itr->isText(); |
| 1187 | }; |
| 1188 | return make_range( |
| 1189 | x: FilteredSectionIterator(isText, Sections.begin(), Sections.end()), |
| 1190 | y: FilteredSectionIterator(isText, Sections.end(), Sections.end())); |
| 1191 | } |
| 1192 | |
| 1193 | /// Iterate over all registered allocatable sections. |
| 1194 | iterator_range<FilteredSectionConstIterator> allocatableSections() const { |
| 1195 | return const_cast<BinaryContext *>(this)->allocatableSections(); |
| 1196 | } |
| 1197 | |
| 1198 | /// Iterate over all registered non-allocatable sections. |
| 1199 | iterator_range<FilteredSectionIterator> nonAllocatableSections() { |
| 1200 | auto notAllocated = [](const SectionIterator &Itr) { |
| 1201 | return *Itr && !Itr->isAllocatable(); |
| 1202 | }; |
| 1203 | return make_range( |
| 1204 | x: FilteredSectionIterator(notAllocated, Sections.begin(), Sections.end()), |
| 1205 | y: FilteredSectionIterator(notAllocated, Sections.end(), Sections.end())); |
| 1206 | } |
| 1207 | |
| 1208 | /// Iterate over all registered non-allocatable sections. |
| 1209 | iterator_range<FilteredSectionConstIterator> nonAllocatableSections() const { |
| 1210 | return const_cast<BinaryContext *>(this)->nonAllocatableSections(); |
| 1211 | } |
| 1212 | |
| 1213 | /// Iterate over all allocatable relocation sections. |
| 1214 | iterator_range<FilteredSectionIterator> allocatableRelaSections() { |
| 1215 | auto isAllocatableRela = [](const SectionIterator &Itr) { |
| 1216 | return *Itr && Itr->isAllocatable() && Itr->isRela(); |
| 1217 | }; |
| 1218 | return make_range(x: FilteredSectionIterator(isAllocatableRela, |
| 1219 | Sections.begin(), Sections.end()), |
| 1220 | y: FilteredSectionIterator(isAllocatableRela, Sections.end(), |
| 1221 | Sections.end())); |
| 1222 | } |
| 1223 | |
| 1224 | /// Return base address for the shared object or PIE based on the segment |
| 1225 | /// mapping information. \p MMapAddress is an address where one of the |
| 1226 | /// segments was mapped. \p FileOffset is the offset in the file of the |
| 1227 | /// mapping. Note that \p FileOffset should be page-aligned and could be |
| 1228 | /// different from the file offset of the segment which could be unaligned. |
| 1229 | /// If no segment is found that matches \p FileOffset, return std::nullopt. |
| 1230 | std::optional<uint64_t> getBaseAddressForMapping(uint64_t MMapAddress, |
| 1231 | uint64_t FileOffset) const; |
| 1232 | |
| 1233 | /// Check if the address belongs to this binary's static allocation space. |
| 1234 | bool containsAddress(uint64_t Address) const { |
| 1235 | return Address >= FirstAllocAddress && Address < LayoutStartAddress; |
| 1236 | } |
| 1237 | |
| 1238 | /// Return section name containing the given \p Address. |
| 1239 | ErrorOr<StringRef> getSectionNameForAddress(uint64_t Address) const; |
| 1240 | |
| 1241 | /// Print all sections. |
| 1242 | void printSections(raw_ostream &OS) const; |
| 1243 | |
| 1244 | /// Return largest section containing the given \p Address. These |
| 1245 | /// functions only work for allocatable sections, i.e. ones with non-zero |
| 1246 | /// addresses. |
| 1247 | ErrorOr<BinarySection &> getSectionForAddress(uint64_t Address); |
| 1248 | ErrorOr<const BinarySection &> getSectionForAddress(uint64_t Address) const { |
| 1249 | return const_cast<BinaryContext *>(this)->getSectionForAddress(Address); |
| 1250 | } |
| 1251 | |
| 1252 | /// Return internal section representation for a section in a file. |
| 1253 | BinarySection *getSectionForSectionRef(SectionRef Section) const { |
| 1254 | return SectionRefToBinarySection.lookup(Val: Section); |
| 1255 | } |
| 1256 | |
| 1257 | /// Return section(s) associated with given \p Name. |
| 1258 | iterator_range<NameToSectionMapType::iterator> |
| 1259 | getSectionByName(const Twine &Name) { |
| 1260 | return make_range(p: NameToSection.equal_range(x: Name.str())); |
| 1261 | } |
| 1262 | iterator_range<NameToSectionMapType::const_iterator> |
| 1263 | getSectionByName(const Twine &Name) const { |
| 1264 | return make_range(p: NameToSection.equal_range(x: Name.str())); |
| 1265 | } |
| 1266 | |
| 1267 | /// Return the unique section associated with given \p Name. |
| 1268 | /// If there is more than one section with the same name, return an error |
| 1269 | /// object. |
| 1270 | ErrorOr<BinarySection &> |
| 1271 | getUniqueSectionByName(const Twine &SectionName) const { |
| 1272 | auto Sections = getSectionByName(Name: SectionName); |
| 1273 | if (Sections.begin() != Sections.end() && |
| 1274 | std::next(x: Sections.begin()) == Sections.end()) |
| 1275 | return *Sections.begin()->second; |
| 1276 | return std::make_error_code(e: std::errc::bad_address); |
| 1277 | } |
| 1278 | |
| 1279 | /// Return an unsigned value of \p Size stored at \p Address. The address has |
| 1280 | /// to be a valid statically allocated address for the binary. |
| 1281 | ErrorOr<uint64_t> getUnsignedValueAtAddress(uint64_t Address, |
| 1282 | size_t Size) const; |
| 1283 | |
| 1284 | /// Return a signed value of \p Size stored at \p Address. The address has |
| 1285 | /// to be a valid statically allocated address for the binary. |
| 1286 | ErrorOr<int64_t> getSignedValueAtAddress(uint64_t Address, size_t Size) const; |
| 1287 | |
| 1288 | /// Special case of getUnsignedValueAtAddress() that uses a pointer size. |
| 1289 | ErrorOr<uint64_t> getPointerAtAddress(uint64_t Address) const { |
| 1290 | return getUnsignedValueAtAddress(Address, Size: AsmInfo->getCodePointerSize()); |
| 1291 | } |
| 1292 | |
| 1293 | /// Replaces all references to \p ChildBF with \p ParentBF. \p ChildBF is then |
| 1294 | /// removed from the list of functions \p BFs. The profile data of \p ChildBF |
| 1295 | /// is merged into that of \p ParentBF. This function is thread safe. |
| 1296 | void foldFunction(BinaryFunction &ChildBF, BinaryFunction &ParentBF); |
| 1297 | |
| 1298 | /// Add a Section relocation at a given \p Address. |
| 1299 | void addRelocation(uint64_t Address, MCSymbol *Symbol, uint32_t Type, |
| 1300 | uint64_t Addend = 0, uint64_t Value = 0); |
| 1301 | |
| 1302 | /// Return a relocation registered at a given \p Address, or nullptr if there |
| 1303 | /// is no relocation at such address. |
| 1304 | const Relocation *getRelocationAt(uint64_t Address) const; |
| 1305 | |
| 1306 | /// Register a presence of PC-relative relocation at the given \p Address. |
| 1307 | void addPCRelativeDataRelocation(uint64_t Address) { |
| 1308 | DataPCRelocations.emplace(args&: Address); |
| 1309 | } |
| 1310 | |
| 1311 | /// Register dynamic relocation at \p Address. |
| 1312 | void addDynamicRelocation(uint64_t Address, MCSymbol *Symbol, uint32_t Type, |
| 1313 | uint64_t Addend, uint64_t Value = 0); |
| 1314 | |
| 1315 | /// Return a dynamic relocation registered at a given \p Address, or nullptr |
| 1316 | /// if there is no dynamic relocation at such address. |
| 1317 | const Relocation *getDynamicRelocationAt(uint64_t Address) const; |
| 1318 | |
| 1319 | /// Remove registered relocation at a given \p Address. |
| 1320 | bool removeRelocationAt(uint64_t Address); |
| 1321 | |
| 1322 | /// This function makes sure that symbols referenced by ambiguous relocations |
| 1323 | /// are marked as immovable. For now, if a section relocation points at the |
| 1324 | /// boundary between two symbols then those symbols are marked as immovable. |
| 1325 | void markAmbiguousRelocations(BinaryData &BD, const uint64_t Address); |
| 1326 | |
| 1327 | /// Return BinaryFunction corresponding to \p Symbol. If \p EntryDesc is not |
| 1328 | /// nullptr, set it to entry descriminator corresponding to \p Symbol |
| 1329 | /// (0 for single-entry functions). This function is thread safe. |
| 1330 | BinaryFunction *getFunctionForSymbol(const MCSymbol *Symbol, |
| 1331 | uint64_t *EntryDesc = nullptr); |
| 1332 | |
| 1333 | const BinaryFunction * |
| 1334 | getFunctionForSymbol(const MCSymbol *Symbol, |
| 1335 | uint64_t *EntryDesc = nullptr) const { |
| 1336 | return const_cast<BinaryContext *>(this)->getFunctionForSymbol(Symbol, |
| 1337 | EntryDesc); |
| 1338 | } |
| 1339 | |
| 1340 | /// Associate the symbol \p Sym with the function \p BF for lookups with |
| 1341 | /// getFunctionForSymbol(). |
| 1342 | void setSymbolToFunctionMap(const MCSymbol *Sym, BinaryFunction *BF) { |
| 1343 | SymbolToFunctionMap[Sym] = BF; |
| 1344 | } |
| 1345 | |
| 1346 | /// Populate some internal data structures with debug info. |
| 1347 | void preprocessDebugInfo(); |
| 1348 | |
| 1349 | /// Add a filename entry from SrcCUID to DestCUID. |
| 1350 | unsigned addDebugFilenameToUnit(const uint32_t DestCUID, |
| 1351 | const uint32_t SrcCUID, unsigned FileIndex); |
| 1352 | |
| 1353 | /// Return functions in output layout order |
| 1354 | std::vector<BinaryFunction *> getSortedFunctions(); |
| 1355 | |
| 1356 | /// Do the best effort to calculate the size of the function by emitting |
| 1357 | /// its code, and relaxing branch instructions. By default, branch |
| 1358 | /// instructions are updated to match the layout. Pass \p FixBranches set to |
| 1359 | /// false if the branches are known to be up to date with the code layout. |
| 1360 | /// |
| 1361 | /// Return the pair where the first size is for the main part, and the second |
| 1362 | /// size is for the cold one. |
| 1363 | /// Modify BinaryBasicBlock::OutputAddressRange for each basic block in the |
| 1364 | /// function in place so that BinaryBasicBlock::getOutputSize() gives the |
| 1365 | /// emitted size of the basic block. |
| 1366 | std::pair<size_t, size_t> calculateEmittedSize(BinaryFunction &BF, |
| 1367 | bool FixBranches = true); |
| 1368 | |
| 1369 | /// Calculate the size of the instruction \p Inst optionally using a |
| 1370 | /// user-supplied emitter for lock-free multi-thread work. MCCodeEmitter is |
| 1371 | /// not thread safe and each thread should operate with its own copy of it. |
| 1372 | uint64_t |
| 1373 | computeInstructionSize(const MCInst &Inst, |
| 1374 | const MCCodeEmitter *Emitter = nullptr) const { |
| 1375 | if (std::optional<uint32_t> Size = MIB->getSize(Inst)) |
| 1376 | return *Size; |
| 1377 | |
| 1378 | if (MIB->isPseudo(Inst)) |
| 1379 | return 0; |
| 1380 | |
| 1381 | if (std::optional<uint32_t> Size = MIB->getInstructionSize(Inst)) |
| 1382 | return *Size; |
| 1383 | |
| 1384 | if (!Emitter) |
| 1385 | Emitter = this->MCE.get(); |
| 1386 | SmallString<256> Code; |
| 1387 | SmallVector<MCFixup, 4> Fixups; |
| 1388 | Emitter->encodeInstruction(Inst, CB&: Code, Fixups, STI: *STI); |
| 1389 | return Code.size(); |
| 1390 | } |
| 1391 | |
| 1392 | /// Compute the native code size for a range of instructions. |
| 1393 | /// Note: this can be imprecise wrt the final binary since happening prior to |
| 1394 | /// relaxation, as well as wrt the original binary because of opcode |
| 1395 | /// shortening.MCCodeEmitter is not thread safe and each thread should operate |
| 1396 | /// with its own copy of it. |
| 1397 | template <typename Itr> |
| 1398 | uint64_t computeCodeSize(Itr Beg, Itr End, |
| 1399 | const MCCodeEmitter *Emitter = nullptr) const { |
| 1400 | uint64_t Size = 0; |
| 1401 | while (Beg != End) { |
| 1402 | if (!MIB->isPseudo(Inst: *Beg)) |
| 1403 | Size += computeInstructionSize(Inst: *Beg, Emitter); |
| 1404 | ++Beg; |
| 1405 | } |
| 1406 | return Size; |
| 1407 | } |
| 1408 | |
| 1409 | /// Validate that disassembling the \p Sequence of bytes into an instruction |
| 1410 | /// and assembling the instruction again, results in a byte sequence identical |
| 1411 | /// to the original one. |
| 1412 | bool validateInstructionEncoding(ArrayRef<uint8_t> Sequence) const; |
| 1413 | |
| 1414 | /// Return a function execution count threshold for determining whether |
| 1415 | /// the function is 'hot'. Consider it hot if count is above the average exec |
| 1416 | /// count of profiled functions. |
| 1417 | uint64_t getHotThreshold() const; |
| 1418 | |
| 1419 | /// Return true if instruction \p Inst requires an offset for further |
| 1420 | /// processing (e.g. assigning a profile). |
| 1421 | bool keepOffsetForInstruction(const MCInst &Inst) const { |
| 1422 | if (MIB->isCall(Inst) || MIB->isBranch(Inst) || MIB->isReturn(Inst) || |
| 1423 | MIB->isPrefix(Inst) || MIB->isIndirectBranch(Inst)) { |
| 1424 | return true; |
| 1425 | } |
| 1426 | return false; |
| 1427 | } |
| 1428 | |
| 1429 | /// Return true if the function should be emitted to the output file. |
| 1430 | bool shouldEmit(const BinaryFunction &Function) const; |
| 1431 | |
| 1432 | /// Dump the assembly representation of MCInst to debug output. |
| 1433 | void dump(const MCInst &Inst) const; |
| 1434 | |
| 1435 | /// Print the string name for a CFI operation. |
| 1436 | static void printCFI(raw_ostream &OS, const MCCFIInstruction &Inst); |
| 1437 | |
| 1438 | /// Print a single MCInst in native format. If Function is non-null, |
| 1439 | /// the instruction will be annotated with CFI and possibly DWARF line table |
| 1440 | /// info. |
| 1441 | /// If printMCInst is true, the instruction is also printed in the |
| 1442 | /// architecture independent format. |
| 1443 | void printInstruction(raw_ostream &OS, const MCInst &Instruction, |
| 1444 | uint64_t Offset = 0, |
| 1445 | const BinaryFunction *Function = nullptr, |
| 1446 | bool PrintMCInst = false, bool PrintMemData = false, |
| 1447 | bool PrintRelocations = false, |
| 1448 | StringRef Endl = "\n" ) const; |
| 1449 | |
| 1450 | /// Print data when embedded in the instruction stream keeping the format |
| 1451 | /// similar to printInstruction(). |
| 1452 | void printData(raw_ostream &OS, ArrayRef<uint8_t> Data, |
| 1453 | uint64_t Offset) const; |
| 1454 | |
| 1455 | /// Extract data from the binary corresponding to [Address, Address + Size) |
| 1456 | /// range. Return an empty ArrayRef if the address range does not belong to |
| 1457 | /// any section in the binary, crosses a section boundary, or falls into a |
| 1458 | /// virtual section. |
| 1459 | ArrayRef<uint8_t> (uint64_t Address, uint64_t Size) const; |
| 1460 | |
| 1461 | /// Print a range of instructions. |
| 1462 | template <typename Itr> |
| 1463 | uint64_t |
| 1464 | printInstructions(raw_ostream &OS, Itr Begin, Itr End, uint64_t Offset = 0, |
| 1465 | const BinaryFunction *Function = nullptr, |
| 1466 | bool PrintMCInst = false, bool PrintMemData = false, |
| 1467 | bool PrintRelocations = false, |
| 1468 | StringRef Endl = "\n" ) const { |
| 1469 | while (Begin != End) { |
| 1470 | printInstruction(OS, Instruction: *Begin, Offset, Function, PrintMCInst, PrintMemData, |
| 1471 | PrintRelocations, Endl); |
| 1472 | Offset += computeCodeSize(Begin, Begin + 1); |
| 1473 | ++Begin; |
| 1474 | } |
| 1475 | return Offset; |
| 1476 | } |
| 1477 | |
| 1478 | /// Log BOLT errors to journaling streams and quit process with non-zero error |
| 1479 | /// code 1 if error is fatal. |
| 1480 | void logBOLTErrorsAndQuitOnFatal(Error E); |
| 1481 | |
| 1482 | std::string generateBugReportMessage(StringRef Message, |
| 1483 | const BinaryFunction &Function) const; |
| 1484 | |
| 1485 | struct IndependentCodeEmitter { |
| 1486 | std::unique_ptr<MCObjectFileInfo> LocalMOFI; |
| 1487 | std::unique_ptr<MCContext> LocalCtx; |
| 1488 | std::unique_ptr<MCCodeEmitter> MCE; |
| 1489 | }; |
| 1490 | |
| 1491 | /// Encapsulates an independent MCCodeEmitter that doesn't share resources |
| 1492 | /// with the main one available through BinaryContext::MCE, managed by |
| 1493 | /// BinaryContext. |
| 1494 | /// This is intended to create a lock-free environment for an auxiliary thread |
| 1495 | /// that needs to perform work with an MCCodeEmitter that can be transient or |
| 1496 | /// won't be used in the main code emitter. |
| 1497 | IndependentCodeEmitter createIndependentMCCodeEmitter() const { |
| 1498 | IndependentCodeEmitter MCEInstance; |
| 1499 | MCEInstance.LocalCtx.reset( |
| 1500 | p: new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get())); |
| 1501 | MCEInstance.LocalMOFI.reset( |
| 1502 | p: TheTarget->createMCObjectFileInfo(Ctx&: *MCEInstance.LocalCtx, |
| 1503 | /*PIC=*/PIC: !HasFixedLoadAddress)); |
| 1504 | MCEInstance.LocalCtx->setObjectFileInfo(MCEInstance.LocalMOFI.get()); |
| 1505 | MCEInstance.MCE.reset( |
| 1506 | p: TheTarget->createMCCodeEmitter(II: *MII, Ctx&: *MCEInstance.LocalCtx)); |
| 1507 | return MCEInstance; |
| 1508 | } |
| 1509 | |
| 1510 | /// Creating MCStreamer instance. |
| 1511 | std::unique_ptr<MCStreamer> |
| 1512 | createStreamer(llvm::raw_pwrite_stream &OS) const { |
| 1513 | MCCodeEmitter *MCE = TheTarget->createMCCodeEmitter(II: *MII, Ctx&: *Ctx); |
| 1514 | MCAsmBackend *MAB = |
| 1515 | TheTarget->createMCAsmBackend(STI: *STI, MRI: *MRI, Options: MCTargetOptions()); |
| 1516 | std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(OS); |
| 1517 | std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer( |
| 1518 | T: *TheTriple, Ctx&: *Ctx, TAB: std::unique_ptr<MCAsmBackend>(MAB), OW: std::move(OW), |
| 1519 | Emitter: std::unique_ptr<MCCodeEmitter>(MCE), STI: *STI)); |
| 1520 | return Streamer; |
| 1521 | } |
| 1522 | |
| 1523 | void setIOAddressMap(AddressMap Map) { IOAddressMap = std::move(Map); } |
| 1524 | const AddressMap &getIOAddressMap() const { |
| 1525 | assert(IOAddressMap && "Address map not set yet" ); |
| 1526 | return *IOAddressMap; |
| 1527 | } |
| 1528 | |
| 1529 | raw_ostream &outs() const { return Logger.Out; } |
| 1530 | |
| 1531 | raw_ostream &errs() const { return Logger.Err; } |
| 1532 | }; |
| 1533 | |
| 1534 | template <typename T, typename = std::enable_if_t<sizeof(T) == 1>> |
| 1535 | inline raw_ostream &operator<<(raw_ostream &OS, const ArrayRef<T> &ByteArray) { |
| 1536 | const char *Sep = "" ; |
| 1537 | for (const auto Byte : ByteArray) { |
| 1538 | OS << Sep << format("%.2x" , Byte); |
| 1539 | Sep = " " ; |
| 1540 | } |
| 1541 | return OS; |
| 1542 | } |
| 1543 | |
| 1544 | } // namespace bolt |
| 1545 | } // namespace llvm |
| 1546 | |
| 1547 | #endif |
| 1548 | |