1 | //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the collection of functions and classes used for |
10 | // emission of code and data into object/binary file. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "bolt/Core/BinaryEmitter.h" |
15 | #include "bolt/Core/BinaryContext.h" |
16 | #include "bolt/Core/BinaryFunction.h" |
17 | #include "bolt/Core/DebugData.h" |
18 | #include "bolt/Core/FunctionLayout.h" |
19 | #include "bolt/Utils/CommandLineOpts.h" |
20 | #include "bolt/Utils/Utils.h" |
21 | #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" |
22 | #include "llvm/MC/MCSection.h" |
23 | #include "llvm/MC/MCStreamer.h" |
24 | #include "llvm/Support/CommandLine.h" |
25 | #include "llvm/Support/LEB128.h" |
26 | #include "llvm/Support/SMLoc.h" |
27 | |
28 | #define DEBUG_TYPE "bolt" |
29 | |
30 | using namespace llvm; |
31 | using namespace bolt; |
32 | |
33 | namespace opts { |
34 | |
35 | extern cl::opt<JumpTableSupportLevel> JumpTables; |
36 | extern cl::opt<bool> PreserveBlocksAlignment; |
37 | |
38 | cl::opt<bool> AlignBlocks("align-blocks", cl::desc( "align basic blocks"), |
39 | cl::cat(BoltOptCategory)); |
40 | |
41 | static cl::list<std::string> |
42 | BreakFunctionNames("break-funcs", |
43 | cl::CommaSeparated, |
44 | cl::desc("list of functions to core dump on (debugging)"), |
45 | cl::value_desc("func1,func2,func3,..."), |
46 | cl::Hidden, |
47 | cl::cat(BoltCategory)); |
48 | |
49 | static cl::list<std::string> |
50 | FunctionPadSpec("pad-funcs", cl::CommaSeparated, |
51 | cl::desc("list of functions to pad with amount of bytes"), |
52 | cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), |
53 | cl::Hidden, cl::cat(BoltCategory)); |
54 | |
55 | static cl::list<std::string> FunctionPadBeforeSpec( |
56 | "pad-funcs-before", cl::CommaSeparated, |
57 | cl::desc("list of functions to pad with amount of bytes"), |
58 | cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), cl::Hidden, |
59 | cl::cat(BoltCategory)); |
60 | |
61 | static cl::opt<bool> MarkFuncs( |
62 | "mark-funcs", |
63 | cl::desc("mark function boundaries with break instruction to make " |
64 | "sure we accidentally don't cross them"), |
65 | cl::ReallyHidden, cl::cat(BoltCategory)); |
66 | |
67 | static cl::opt<bool> PrintJumpTables("print-jump-tables", |
68 | cl::desc("print jump tables"), cl::Hidden, |
69 | cl::cat(BoltCategory)); |
70 | |
71 | static cl::opt<bool> |
72 | X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", |
73 | cl::desc("only apply branch boundary alignment in hot code"), |
74 | cl::init(Val: true), |
75 | cl::cat(BoltOptCategory)); |
76 | |
77 | size_t padFunction(std::map<std::string, size_t> &FunctionPadding, |
78 | const cl::list<std::string> &Spec, |
79 | const BinaryFunction &Function) { |
80 | if (FunctionPadding.empty() && !Spec.empty()) { |
81 | for (const std::string &Spec : Spec) { |
82 | size_t N = Spec.find(c: ':'); |
83 | if (N == std::string::npos) |
84 | continue; |
85 | std::string Name = Spec.substr(pos: 0, n: N); |
86 | size_t Padding = std::stoull(str: Spec.substr(pos: N + 1)); |
87 | FunctionPadding[Name] = Padding; |
88 | } |
89 | } |
90 | |
91 | for (auto &FPI : FunctionPadding) { |
92 | std::string Name = FPI.first; |
93 | size_t Padding = FPI.second; |
94 | if (Function.hasNameRegex(NameRegex: Name)) |
95 | return Padding; |
96 | } |
97 | |
98 | return 0; |
99 | } |
100 | |
101 | size_t padFunctionBefore(const BinaryFunction &Function) { |
102 | static std::map<std::string, size_t> CacheFunctionPadding; |
103 | return padFunction(FunctionPadding&: CacheFunctionPadding, Spec: FunctionPadBeforeSpec, Function); |
104 | } |
105 | size_t padFunctionAfter(const BinaryFunction &Function) { |
106 | static std::map<std::string, size_t> CacheFunctionPadding; |
107 | return padFunction(FunctionPadding&: CacheFunctionPadding, Spec: FunctionPadSpec, Function); |
108 | } |
109 | |
110 | } // namespace opts |
111 | |
112 | namespace { |
113 | using JumpTable = bolt::JumpTable; |
114 | |
115 | class BinaryEmitter { |
116 | private: |
117 | BinaryEmitter(const BinaryEmitter &) = delete; |
118 | BinaryEmitter &operator=(const BinaryEmitter &) = delete; |
119 | |
120 | MCStreamer &Streamer; |
121 | BinaryContext &BC; |
122 | |
123 | public: |
124 | BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) |
125 | : Streamer(Streamer), BC(BC) {} |
126 | |
127 | /// Emit all code and data. |
128 | void emitAll(StringRef OrgSecPrefix); |
129 | |
130 | /// Emit function code. The caller is responsible for emitting function |
131 | /// symbol(s) and setting the section to emit the code to. |
132 | void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, |
133 | bool EmitCodeOnly = false); |
134 | |
135 | private: |
136 | /// Emit function code. |
137 | void emitFunctions(); |
138 | |
139 | /// Emit a single function. |
140 | bool emitFunction(BinaryFunction &BF, FunctionFragment &FF); |
141 | |
142 | /// Helper for emitFunctionBody to write data inside a function |
143 | /// (used for AArch64) |
144 | void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, |
145 | BinaryFunction *OnBehalfOf = nullptr); |
146 | |
147 | /// Emit jump tables for the function. |
148 | void emitJumpTables(const BinaryFunction &BF); |
149 | |
150 | /// Emit jump table data. Callee supplies sections for the data. |
151 | void emitJumpTable(const JumpTable &JT, MCSection *HotSection, |
152 | MCSection *ColdSection); |
153 | |
154 | void emitCFIInstruction(const MCCFIInstruction &Inst) const; |
155 | |
156 | /// Emit exception handling ranges for the function fragment. |
157 | void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF); |
158 | |
159 | /// Emit line number information corresponding to \p NewLoc. \p PrevLoc |
160 | /// provides a context for de-duplication of line number info. |
161 | /// \p FirstInstr indicates if \p NewLoc represents the first instruction |
162 | /// in a sequence, such as a function fragment. |
163 | /// |
164 | /// If \p NewLoc location matches \p PrevLoc, no new line number entry will be |
165 | /// created and the function will return \p PrevLoc while \p InstrLabel will |
166 | /// be ignored. Otherwise, the caller should use \p InstrLabel to mark the |
167 | /// corresponding instruction by emitting \p InstrLabel before it. |
168 | /// If \p InstrLabel is set by the caller, its value will be used with \p |
169 | /// \p NewLoc. If it was nullptr on entry, it will be populated with a pointer |
170 | /// to a new temp symbol used with \p NewLoc. |
171 | /// |
172 | /// Return new current location which is either \p NewLoc or \p PrevLoc. |
173 | SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, |
174 | bool FirstInstr, MCSymbol *&InstrLabel); |
175 | |
176 | /// Use \p FunctionEndSymbol to mark the end of the line info sequence. |
177 | /// Note that it does not automatically result in the insertion of the EOS |
178 | /// marker in the line table program, but provides one to the DWARF generator |
179 | /// when it needs it. |
180 | void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); |
181 | |
182 | /// Emit debug line info for unprocessed functions from CUs that include |
183 | /// emitted functions. |
184 | void emitDebugLineInfoForOriginalFunctions(); |
185 | |
186 | /// Emit debug line for CUs that were not modified. |
187 | void emitDebugLineInfoForUnprocessedCUs(); |
188 | |
189 | /// Emit data sections that have code references in them. |
190 | void emitDataSections(StringRef OrgSecPrefix); |
191 | }; |
192 | |
193 | } // anonymous namespace |
194 | |
195 | void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { |
196 | Streamer.initSections(NoExecStack: false, STI: *BC.STI); |
197 | Streamer.setUseAssemblerInfoForParsing(false); |
198 | |
199 | if (opts::UpdateDebugSections && BC.isELF()) { |
200 | // Force the emission of debug line info into allocatable section to ensure |
201 | // JITLink will process it. |
202 | // |
203 | // NB: on MachO all sections are required for execution, hence no need |
204 | // to change flags/attributes. |
205 | MCSectionELF *ELFDwarfLineSection = |
206 | static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); |
207 | ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); |
208 | MCSectionELF *ELFDwarfLineStrSection = |
209 | static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineStrSection()); |
210 | ELFDwarfLineStrSection->setFlags(ELF::SHF_ALLOC); |
211 | } |
212 | |
213 | if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) |
214 | RtLibrary->emitBinary(BC, Streamer); |
215 | |
216 | BC.getTextSection()->setAlignment(Align(opts::AlignText)); |
217 | |
218 | emitFunctions(); |
219 | |
220 | if (opts::UpdateDebugSections) { |
221 | emitDebugLineInfoForOriginalFunctions(); |
222 | DwarfLineTable::emit(BC, Streamer); |
223 | } |
224 | |
225 | emitDataSections(OrgSecPrefix); |
226 | |
227 | // TODO Enable for Mach-O once BinaryContext::getDataSection supports it. |
228 | if (BC.isELF()) |
229 | AddressMap::emit(Streamer, BC); |
230 | Streamer.setUseAssemblerInfoForParsing(true); |
231 | } |
232 | |
233 | void BinaryEmitter::emitFunctions() { |
234 | auto emit = [&](const std::vector<BinaryFunction *> &Functions) { |
235 | const bool HasProfile = BC.NumProfiledFuncs > 0; |
236 | const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); |
237 | for (BinaryFunction *Function : Functions) { |
238 | if (!BC.shouldEmit(Function: *Function)) |
239 | continue; |
240 | |
241 | LLVM_DEBUG(dbgs() << "BOLT: generating code for function \""<< *Function |
242 | << "\" : "<< Function->getFunctionNumber() << '\n'); |
243 | |
244 | // Was any part of the function emitted. |
245 | bool Emitted = false; |
246 | |
247 | // Turn off Intel JCC Erratum mitigation for cold code if requested |
248 | if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && |
249 | !Function->hasValidProfile()) |
250 | Streamer.setAllowAutoPadding(false); |
251 | |
252 | FunctionLayout &Layout = Function->getLayout(); |
253 | Emitted |= emitFunction(BF&: *Function, FF&: Layout.getMainFragment()); |
254 | |
255 | if (Function->isSplit()) { |
256 | if (opts::X86AlignBranchBoundaryHotOnly) |
257 | Streamer.setAllowAutoPadding(false); |
258 | |
259 | assert((Layout.fragment_size() == 1 || Function->isSimple()) && |
260 | "Only simple functions can have fragments"); |
261 | for (FunctionFragment &FF : Layout.getSplitFragments()) { |
262 | // Skip empty fragments so no symbols and sections for empty fragments |
263 | // are generated |
264 | if (FF.empty() && !Function->hasConstantIsland()) |
265 | continue; |
266 | Emitted |= emitFunction(BF&: *Function, FF); |
267 | } |
268 | } |
269 | |
270 | Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); |
271 | |
272 | if (Emitted) |
273 | Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); |
274 | } |
275 | }; |
276 | |
277 | // Mark the start of hot text. |
278 | if (opts::HotText) { |
279 | Streamer.switchSection(Section: BC.getTextSection()); |
280 | Streamer.emitLabel(Symbol: BC.getHotTextStartSymbol()); |
281 | } |
282 | |
283 | // Emit functions in sorted order. |
284 | std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); |
285 | emit(SortedFunctions); |
286 | |
287 | // Emit functions added by BOLT. |
288 | emit(BC.getInjectedBinaryFunctions()); |
289 | |
290 | // Mark the end of hot text. |
291 | if (opts::HotText) { |
292 | if (BC.HasWarmSection) |
293 | Streamer.switchSection(Section: BC.getCodeSection(SectionName: BC.getWarmCodeSectionName())); |
294 | else |
295 | Streamer.switchSection(Section: BC.getTextSection()); |
296 | Streamer.emitLabel(Symbol: BC.getHotTextEndSymbol()); |
297 | } |
298 | } |
299 | |
300 | bool BinaryEmitter::emitFunction(BinaryFunction &Function, |
301 | FunctionFragment &FF) { |
302 | if (Function.size() == 0 && !Function.hasIslandsInfo()) |
303 | return false; |
304 | |
305 | if (Function.getState() == BinaryFunction::State::Empty) |
306 | return false; |
307 | |
308 | // Avoid emitting function without instructions when overwriting the original |
309 | // function in-place. Otherwise, emit the empty function to define the symbol. |
310 | if (!BC.HasRelocations && !Function.hasNonPseudoInstructions()) |
311 | return false; |
312 | |
313 | MCSection *Section = |
314 | BC.getCodeSection(SectionName: Function.getCodeSectionName(Fragment: FF.getFragmentNum())); |
315 | Streamer.switchSection(Section); |
316 | Section->setHasInstructions(true); |
317 | BC.Ctx->addGenDwarfSection(Sec: Section); |
318 | |
319 | if (BC.HasRelocations) { |
320 | // Set section alignment to at least maximum possible object alignment. |
321 | // We need this to support LongJmp and other passes that calculates |
322 | // tentative layout. |
323 | Section->ensureMinAlignment(MinAlignment: Align(opts::AlignFunctions)); |
324 | |
325 | Streamer.emitCodeAlignment(Alignment: Function.getMinAlign(), STI: &*BC.STI); |
326 | uint16_t MaxAlignBytes = FF.isSplitFragment() |
327 | ? Function.getMaxColdAlignmentBytes() |
328 | : Function.getMaxAlignmentBytes(); |
329 | if (MaxAlignBytes > 0) |
330 | Streamer.emitCodeAlignment(Alignment: Function.getAlign(), STI: &*BC.STI, MaxBytesToEmit: MaxAlignBytes); |
331 | } else { |
332 | Streamer.emitCodeAlignment(Alignment: Function.getAlign(), STI: &*BC.STI); |
333 | } |
334 | |
335 | if (size_t Padding = opts::padFunctionBefore(Function)) { |
336 | // Handle padFuncsBefore after the above alignment logic but before |
337 | // symbol addresses are decided. |
338 | if (!BC.HasRelocations) { |
339 | BC.errs() << "BOLT-ERROR: -pad-before-funcs is not supported in " |
340 | << "non-relocation mode\n"; |
341 | exit(status: 1); |
342 | } |
343 | |
344 | // Preserve Function.getMinAlign(). |
345 | if (!isAligned(Lhs: Function.getMinAlign(), SizeInBytes: Padding)) { |
346 | BC.errs() << "BOLT-ERROR: user-requested "<< Padding |
347 | << " padding bytes before function "<< Function |
348 | << " is not a multiple of the minimum function alignment (" |
349 | << Function.getMinAlign().value() << ").\n"; |
350 | exit(status: 1); |
351 | } |
352 | |
353 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding before function "<< Function |
354 | << " with "<< Padding << " bytes\n"); |
355 | |
356 | // Since the padding is not executed, it can be null bytes. |
357 | Streamer.emitFill(NumBytes: Padding, FillValue: 0); |
358 | } |
359 | |
360 | MCContext &Context = Streamer.getContext(); |
361 | const MCAsmInfo *MAI = Context.getAsmInfo(); |
362 | |
363 | MCSymbol *const StartSymbol = Function.getSymbol(Fragment: FF.getFragmentNum()); |
364 | |
365 | // Emit all symbols associated with the main function entry. |
366 | if (FF.isMainFragment()) { |
367 | for (MCSymbol *Symbol : Function.getSymbols()) { |
368 | Streamer.emitSymbolAttribute(Symbol, Attribute: MCSA_ELF_TypeFunction); |
369 | Streamer.emitLabel(Symbol); |
370 | } |
371 | } else { |
372 | Streamer.emitSymbolAttribute(Symbol: StartSymbol, Attribute: MCSA_ELF_TypeFunction); |
373 | Streamer.emitLabel(Symbol: StartSymbol); |
374 | } |
375 | |
376 | const bool NeedsFDE = |
377 | Function.hasCFI() && !(Function.isPatch() && Function.isAnonymous()); |
378 | // Emit CFI start |
379 | if (NeedsFDE) { |
380 | Streamer.emitCFIStartProc(/*IsSimple=*/false); |
381 | if (Function.getPersonalityFunction() != nullptr) |
382 | Streamer.emitCFIPersonality(Sym: Function.getPersonalityFunction(), |
383 | Encoding: Function.getPersonalityEncoding()); |
384 | MCSymbol *LSDASymbol = Function.getLSDASymbol(F: FF.getFragmentNum()); |
385 | if (LSDASymbol) |
386 | Streamer.emitCFILsda(Sym: LSDASymbol, Encoding: BC.LSDAEncoding); |
387 | else |
388 | Streamer.emitCFILsda(Sym: 0, Encoding: dwarf::DW_EH_PE_omit); |
389 | // Emit CFI instructions relative to the CIE |
390 | for (const MCCFIInstruction &CFIInstr : Function.cie()) { |
391 | // Only write CIE CFI insns that LLVM will not already emit |
392 | const std::vector<MCCFIInstruction> &FrameInstrs = |
393 | MAI->getInitialFrameState(); |
394 | if (!llvm::is_contained(Range: FrameInstrs, Element: CFIInstr)) |
395 | emitCFIInstruction(Inst: CFIInstr); |
396 | } |
397 | } |
398 | |
399 | assert((Function.empty() || !(*Function.begin()).isCold()) && |
400 | "first basic block should never be cold"); |
401 | |
402 | // Emit UD2 at the beginning if requested by user. |
403 | if (!opts::BreakFunctionNames.empty()) { |
404 | for (std::string &Name : opts::BreakFunctionNames) { |
405 | if (Function.hasNameRegex(NameRegex: Name)) { |
406 | Streamer.emitIntValue(Value: 0x0B0F, Size: 2); // UD2: 0F 0B |
407 | break; |
408 | } |
409 | } |
410 | } |
411 | |
412 | // Emit code. |
413 | emitFunctionBody(BF&: Function, FF, /*EmitCodeOnly=*/false); |
414 | |
415 | // Emit padding if requested. |
416 | if (size_t Padding = opts::padFunctionAfter(Function)) { |
417 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function "<< Function << " with " |
418 | << Padding << " bytes\n"); |
419 | Streamer.emitFill(NumBytes: Padding, FillValue: MAI->getTextAlignFillValue()); |
420 | } |
421 | |
422 | if (opts::MarkFuncs) |
423 | Streamer.emitBytes(Data: BC.MIB->getTrapFillValue()); |
424 | |
425 | // Emit CFI end |
426 | if (NeedsFDE) |
427 | Streamer.emitCFIEndProc(); |
428 | |
429 | MCSymbol *EndSymbol = Function.getFunctionEndLabel(Fragment: FF.getFragmentNum()); |
430 | Streamer.emitLabel(Symbol: EndSymbol); |
431 | |
432 | if (MAI->hasDotTypeDotSizeDirective()) { |
433 | const MCExpr *SizeExpr = MCBinaryExpr::createSub( |
434 | LHS: MCSymbolRefExpr::create(Symbol: EndSymbol, Ctx&: Context), |
435 | RHS: MCSymbolRefExpr::create(Symbol: StartSymbol, Ctx&: Context), Ctx&: Context); |
436 | Streamer.emitELFSize(Symbol: StartSymbol, Value: SizeExpr); |
437 | } |
438 | |
439 | if (opts::UpdateDebugSections && Function.getDWARFUnit()) |
440 | emitLineInfoEnd(BF: Function, FunctionEndSymbol: EndSymbol); |
441 | |
442 | // Exception handling info for the function. |
443 | emitLSDA(BF&: Function, FF); |
444 | |
445 | if (FF.isMainFragment() && opts::JumpTables > JTS_NONE) |
446 | emitJumpTables(BF: Function); |
447 | |
448 | return true; |
449 | } |
450 | |
451 | void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, |
452 | bool EmitCodeOnly) { |
453 | if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) { |
454 | assert(BF.getLayout().isHotColdSplit() && |
455 | "Constant island support only with hot/cold split"); |
456 | BF.duplicateConstantIslands(); |
457 | } |
458 | |
459 | // Track the first emitted instruction with debug info. |
460 | bool FirstInstr = true; |
461 | for (BinaryBasicBlock *const BB : FF) { |
462 | if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && |
463 | BB->getAlignment() > 1) |
464 | Streamer.emitCodeAlignment(Alignment: BB->getAlign(), STI: &*BC.STI, |
465 | MaxBytesToEmit: BB->getAlignmentMaxBytes()); |
466 | Streamer.emitLabel(Symbol: BB->getLabel()); |
467 | if (!EmitCodeOnly) { |
468 | if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(BB: *BB)) |
469 | Streamer.emitLabel(Symbol: EntrySymbol); |
470 | } |
471 | |
472 | SMLoc LastLocSeen; |
473 | for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { |
474 | MCInst &Instr = *I; |
475 | |
476 | if (EmitCodeOnly && BC.MIB->isPseudo(Inst: Instr)) |
477 | continue; |
478 | |
479 | // Handle pseudo instructions. |
480 | if (BC.MIB->isCFI(Inst: Instr)) { |
481 | emitCFIInstruction(Inst: *BF.getCFIFor(Instr)); |
482 | continue; |
483 | } |
484 | |
485 | if (!EmitCodeOnly) { |
486 | // A symbol to be emitted before the instruction to mark its location. |
487 | MCSymbol *InstrLabel = BC.MIB->getInstLabel(Inst: Instr); |
488 | |
489 | if (opts::UpdateDebugSections && BF.getDWARFUnit()) { |
490 | LastLocSeen = emitLineInfo(BF, NewLoc: Instr.getLoc(), PrevLoc: LastLocSeen, |
491 | FirstInstr, InstrLabel); |
492 | FirstInstr = false; |
493 | } |
494 | |
495 | // Prepare to tag this location with a label if we need to keep track of |
496 | // the location of calls/returns for BOLT address translation maps |
497 | if (BF.requiresAddressTranslation() && BC.MIB->getOffset(Inst: Instr)) { |
498 | const uint32_t Offset = *BC.MIB->getOffset(Inst: Instr); |
499 | if (!InstrLabel) |
500 | InstrLabel = BC.Ctx->createTempSymbol(); |
501 | BB->getLocSyms().emplace_back(args: Offset, args&: InstrLabel); |
502 | } |
503 | |
504 | if (InstrLabel) |
505 | Streamer.emitLabel(Symbol: InstrLabel); |
506 | } |
507 | |
508 | // Emit sized NOPs via MCAsmBackend::writeNopData() interface on x86. |
509 | // This is a workaround for invalid NOPs handling by asm/disasm layer. |
510 | if (BC.isX86() && BC.MIB->isNoop(Inst: Instr)) { |
511 | if (std::optional<uint32_t> Size = BC.MIB->getSize(Inst: Instr)) { |
512 | SmallString<15> Code; |
513 | raw_svector_ostream VecOS(Code); |
514 | BC.MAB->writeNopData(OS&: VecOS, Count: *Size, STI: BC.STI.get()); |
515 | Streamer.emitBytes(Data: Code); |
516 | continue; |
517 | } |
518 | } |
519 | |
520 | Streamer.emitInstruction(Inst: Instr, STI: *BC.STI); |
521 | } |
522 | } |
523 | |
524 | if (!EmitCodeOnly) |
525 | emitConstantIslands(BF, EmitColdPart: FF.isSplitFragment()); |
526 | } |
527 | |
528 | void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, |
529 | BinaryFunction *OnBehalfOf) { |
530 | if (!BF.hasIslandsInfo()) |
531 | return; |
532 | |
533 | BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); |
534 | if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) |
535 | return; |
536 | |
537 | // AArch64 requires CI to be aligned to 8 bytes due to access instructions |
538 | // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. |
539 | const uint16_t Alignment = OnBehalfOf |
540 | ? OnBehalfOf->getConstantIslandAlignment() |
541 | : BF.getConstantIslandAlignment(); |
542 | Streamer.emitCodeAlignment(Alignment: Align(Alignment), STI: &*BC.STI); |
543 | |
544 | if (!OnBehalfOf) { |
545 | if (!EmitColdPart) |
546 | Streamer.emitLabel(Symbol: BF.getFunctionConstantIslandLabel()); |
547 | else |
548 | Streamer.emitLabel(Symbol: BF.getFunctionColdConstantIslandLabel()); |
549 | } |
550 | |
551 | assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && |
552 | "spurious OnBehalfOf constant island emission"); |
553 | |
554 | assert(!BF.isInjected() && |
555 | "injected functions should not have constant islands"); |
556 | // Raw contents of the function. |
557 | StringRef SectionContents = BF.getOriginSection()->getContents(); |
558 | |
559 | // Raw contents of the function. |
560 | StringRef FunctionContents = SectionContents.substr( |
561 | Start: BF.getAddress() - BF.getOriginSection()->getAddress(), N: BF.getMaxSize()); |
562 | |
563 | if (opts::Verbosity && !OnBehalfOf) |
564 | BC.outs() << "BOLT-INFO: emitting constant island for function "<< BF |
565 | << "\n"; |
566 | |
567 | // We split the island into smaller blocks and output labels between them. |
568 | auto IS = Islands.Offsets.begin(); |
569 | for (auto DataIter = Islands.DataOffsets.begin(); |
570 | DataIter != Islands.DataOffsets.end(); ++DataIter) { |
571 | uint64_t FunctionOffset = *DataIter; |
572 | uint64_t EndOffset = 0ULL; |
573 | |
574 | // Determine size of this data chunk |
575 | auto NextData = std::next(x: DataIter); |
576 | auto CodeIter = Islands.CodeOffsets.lower_bound(x: *DataIter); |
577 | if (CodeIter == Islands.CodeOffsets.end() && |
578 | NextData == Islands.DataOffsets.end()) |
579 | EndOffset = BF.getMaxSize(); |
580 | else if (CodeIter == Islands.CodeOffsets.end()) |
581 | EndOffset = *NextData; |
582 | else if (NextData == Islands.DataOffsets.end()) |
583 | EndOffset = *CodeIter; |
584 | else |
585 | EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; |
586 | |
587 | if (FunctionOffset == EndOffset) |
588 | continue; // Size is zero, nothing to emit |
589 | |
590 | auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { |
591 | if (FunctionOffset >= EndOffset) |
592 | return; |
593 | |
594 | for (auto It = Islands.Relocations.lower_bound(x: FunctionOffset); |
595 | It != Islands.Relocations.end(); ++It) { |
596 | if (It->first >= EndOffset) |
597 | break; |
598 | |
599 | const Relocation &Relocation = It->second; |
600 | if (FunctionOffset < Relocation.Offset) { |
601 | Streamer.emitBytes( |
602 | Data: FunctionContents.slice(Start: FunctionOffset, End: Relocation.Offset)); |
603 | FunctionOffset = Relocation.Offset; |
604 | } |
605 | |
606 | LLVM_DEBUG( |
607 | dbgs() << "BOLT-DEBUG: emitting constant island relocation" |
608 | << " for "<< BF << " at offset 0x" |
609 | << Twine::utohexstr(Relocation.Offset) << " with size " |
610 | << Relocation::getSizeForType(Relocation.Type) << '\n'); |
611 | |
612 | FunctionOffset += Relocation.emit(Streamer: &Streamer); |
613 | } |
614 | |
615 | assert(FunctionOffset <= EndOffset && "overflow error"); |
616 | if (FunctionOffset < EndOffset) { |
617 | Streamer.emitBytes(Data: FunctionContents.slice(Start: FunctionOffset, End: EndOffset)); |
618 | FunctionOffset = EndOffset; |
619 | } |
620 | }; |
621 | |
622 | // Emit labels, relocs and data |
623 | while (IS != Islands.Offsets.end() && IS->first < EndOffset) { |
624 | auto NextLabelOffset = |
625 | IS == Islands.Offsets.end() ? EndOffset : IS->first; |
626 | auto NextStop = std::min(a: NextLabelOffset, b: EndOffset); |
627 | assert(NextStop <= EndOffset && "internal overflow error"); |
628 | emitCI(FunctionOffset, NextStop); |
629 | if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { |
630 | // This is a slightly complex code to decide which label to emit. We |
631 | // have 4 cases to handle: regular symbol, cold symbol, regular or cold |
632 | // symbol being emitted on behalf of an external function. |
633 | if (!OnBehalfOf) { |
634 | if (!EmitColdPart) { |
635 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " |
636 | << IS->second->getName() << " at offset 0x" |
637 | << Twine::utohexstr(IS->first) << '\n'); |
638 | if (IS->second->isUndefined()) |
639 | Streamer.emitLabel(Symbol: IS->second); |
640 | else |
641 | assert(BF.hasName(std::string(IS->second->getName()))); |
642 | } else if (Islands.ColdSymbols.count(Val: IS->second) != 0) { |
643 | LLVM_DEBUG(dbgs() |
644 | << "BOLT-DEBUG: emitted label " |
645 | << Islands.ColdSymbols[IS->second]->getName() << '\n'); |
646 | if (Islands.ColdSymbols[IS->second]->isUndefined()) |
647 | Streamer.emitLabel(Symbol: Islands.ColdSymbols[IS->second]); |
648 | } |
649 | } else { |
650 | if (!EmitColdPart) { |
651 | if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { |
652 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " |
653 | << Sym->getName() << '\n'); |
654 | Streamer.emitLabel(Symbol: Sym); |
655 | } |
656 | } else if (MCSymbol *Sym = |
657 | Islands.ColdProxies[OnBehalfOf][IS->second]) { |
658 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "<< Sym->getName() |
659 | << '\n'); |
660 | Streamer.emitLabel(Symbol: Sym); |
661 | } |
662 | } |
663 | ++IS; |
664 | } |
665 | } |
666 | assert(FunctionOffset <= EndOffset && "overflow error"); |
667 | emitCI(FunctionOffset, EndOffset); |
668 | } |
669 | assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); |
670 | |
671 | if (OnBehalfOf) |
672 | return; |
673 | // Now emit constant islands from other functions that we may have used in |
674 | // this function. |
675 | for (BinaryFunction *ExternalFunc : Islands.Dependency) |
676 | emitConstantIslands(BF&: *ExternalFunc, EmitColdPart, OnBehalfOf: &BF); |
677 | } |
678 | |
679 | SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, |
680 | SMLoc PrevLoc, bool FirstInstr, |
681 | MCSymbol *&InstrLabel) { |
682 | DWARFUnit *FunctionCU = BF.getDWARFUnit(); |
683 | const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); |
684 | assert(FunctionCU && "cannot emit line info for function without CU"); |
685 | |
686 | DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(Loc: NewLoc); |
687 | |
688 | // Check if no new line info needs to be emitted. |
689 | if (RowReference == DebugLineTableRowRef::NULL_ROW || |
690 | NewLoc.getPointer() == PrevLoc.getPointer()) |
691 | return PrevLoc; |
692 | |
693 | unsigned CurrentFilenum = 0; |
694 | const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; |
695 | |
696 | // If the CU id from the current instruction location does not |
697 | // match the CU id from the current function, it means that we |
698 | // have come across some inlined code. We must look up the CU |
699 | // for the instruction's original function and get the line table |
700 | // from that. |
701 | const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); |
702 | const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; |
703 | if (CurrentUnitIndex != FunctionUnitIndex) { |
704 | CurrentLineTable = BC.DwCtx->getLineTableForUnit( |
705 | U: BC.DwCtx->getCompileUnitForOffset(Offset: CurrentUnitIndex)); |
706 | // Add filename from the inlined function to the current CU. |
707 | CurrentFilenum = BC.addDebugFilenameToUnit( |
708 | DestCUID: FunctionUnitIndex, SrcCUID: CurrentUnitIndex, |
709 | FileIndex: CurrentLineTable->Rows[RowReference.RowIndex - 1].File); |
710 | } |
711 | |
712 | const DWARFDebugLine::Row &CurrentRow = |
713 | CurrentLineTable->Rows[RowReference.RowIndex - 1]; |
714 | if (!CurrentFilenum) |
715 | CurrentFilenum = CurrentRow.File; |
716 | |
717 | unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | |
718 | (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | |
719 | (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | |
720 | (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); |
721 | |
722 | // Always emit is_stmt at the beginning of function fragment. |
723 | if (FirstInstr) |
724 | Flags |= DWARF2_FLAG_IS_STMT; |
725 | |
726 | BC.Ctx->setCurrentDwarfLoc(FileNum: CurrentFilenum, Line: CurrentRow.Line, Column: CurrentRow.Column, |
727 | Flags, Isa: CurrentRow.Isa, Discriminator: CurrentRow.Discriminator); |
728 | const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); |
729 | BC.Ctx->clearDwarfLocSeen(); |
730 | |
731 | if (!InstrLabel) |
732 | InstrLabel = BC.Ctx->createTempSymbol(); |
733 | |
734 | BC.getDwarfLineTable(CUID: FunctionUnitIndex) |
735 | .getMCLineSections() |
736 | .addLineEntry(LineEntry: MCDwarfLineEntry(InstrLabel, DwarfLoc), |
737 | Sec: Streamer.getCurrentSectionOnly()); |
738 | |
739 | return NewLoc; |
740 | } |
741 | |
742 | void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, |
743 | MCSymbol *FunctionEndLabel) { |
744 | DWARFUnit *FunctionCU = BF.getDWARFUnit(); |
745 | assert(FunctionCU && "DWARF unit expected"); |
746 | BC.Ctx->setCurrentDwarfLoc(FileNum: 0, Line: 0, Column: 0, DWARF2_FLAG_END_SEQUENCE, Isa: 0, Discriminator: 0); |
747 | const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); |
748 | BC.Ctx->clearDwarfLocSeen(); |
749 | BC.getDwarfLineTable(CUID: FunctionCU->getOffset()) |
750 | .getMCLineSections() |
751 | .addLineEntry(LineEntry: MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), |
752 | Sec: Streamer.getCurrentSectionOnly()); |
753 | } |
754 | |
755 | void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { |
756 | MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); |
757 | MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( |
758 | Section: ".rodata.cold", Type: ELF::SHT_PROGBITS, Flags: ELF::SHF_ALLOC); |
759 | |
760 | if (!BF.hasJumpTables()) |
761 | return; |
762 | |
763 | if (opts::PrintJumpTables) |
764 | BC.outs() << "BOLT-INFO: jump tables for function "<< BF << ":\n"; |
765 | |
766 | for (auto &JTI : BF.jumpTables()) { |
767 | JumpTable &JT = *JTI.second; |
768 | // Only emit shared jump tables once, when processing the first parent |
769 | if (JT.Parents.size() > 1 && JT.Parents[0] != &BF) |
770 | continue; |
771 | if (opts::PrintJumpTables) |
772 | JT.print(OS&: BC.outs()); |
773 | if (opts::JumpTables == JTS_BASIC) { |
774 | JT.updateOriginal(); |
775 | } else { |
776 | MCSection *HotSection, *ColdSection; |
777 | if (BF.isSimple()) { |
778 | HotSection = ReadOnlySection; |
779 | ColdSection = ReadOnlyColdSection; |
780 | } else { |
781 | HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; |
782 | ColdSection = HotSection; |
783 | } |
784 | emitJumpTable(JT, HotSection, ColdSection); |
785 | } |
786 | } |
787 | } |
788 | |
789 | void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, |
790 | MCSection *ColdSection) { |
791 | // Pre-process entries for aggressive splitting. |
792 | // Each label represents a separate switch table and gets its own count |
793 | // determining its destination. |
794 | std::map<MCSymbol *, uint64_t> LabelCounts; |
795 | if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { |
796 | auto It = JT.Labels.find(x: 0); |
797 | assert(It != JT.Labels.end()); |
798 | MCSymbol *CurrentLabel = It->second; |
799 | uint64_t CurrentLabelCount = 0; |
800 | for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { |
801 | auto LI = JT.Labels.find(x: Index * JT.EntrySize); |
802 | if (LI != JT.Labels.end()) { |
803 | LabelCounts[CurrentLabel] = CurrentLabelCount; |
804 | CurrentLabel = LI->second; |
805 | CurrentLabelCount = 0; |
806 | } |
807 | CurrentLabelCount += JT.Counts[Index].Count; |
808 | } |
809 | LabelCounts[CurrentLabel] = CurrentLabelCount; |
810 | } else { |
811 | Streamer.switchSection(Section: JT.Count > 0 ? HotSection : ColdSection); |
812 | Streamer.emitValueToAlignment(Alignment: Align(JT.EntrySize)); |
813 | } |
814 | MCSymbol *JTLabel = nullptr; |
815 | uint64_t Offset = 0; |
816 | for (MCSymbol *Entry : JT.Entries) { |
817 | auto LI = JT.Labels.find(x: Offset); |
818 | if (LI == JT.Labels.end()) |
819 | goto emitEntry; |
820 | JTLabel = LI->second; |
821 | LLVM_DEBUG({ |
822 | dbgs() << "BOLT-DEBUG: emitting jump table "<< JTLabel->getName() |
823 | << " (originally was at address 0x" |
824 | << Twine::utohexstr(JT.getAddress() + Offset) |
825 | << (Offset ? ") as part of larger jump table\n": ")\n"); |
826 | }); |
827 | if (!LabelCounts.empty()) { |
828 | const uint64_t JTCount = LabelCounts[JTLabel]; |
829 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "<< JTCount << '\n'); |
830 | Streamer.switchSection(Section: JTCount ? HotSection : ColdSection); |
831 | Streamer.emitValueToAlignment(Alignment: Align(JT.EntrySize)); |
832 | } |
833 | // Emit all labels registered at the address of this jump table |
834 | // to sync with our global symbol table. We may have two labels |
835 | // registered at this address if one label was created via |
836 | // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing |
837 | // this location) and another via getOrCreateJumpTable(). This |
838 | // creates a race where the symbols created by these two |
839 | // functions may or may not be the same, but they are both |
840 | // registered in our symbol table at the same address. By |
841 | // emitting them all here we make sure there is no ambiguity |
842 | // that depends on the order that these symbols were created, so |
843 | // whenever this address is referenced in the binary, it is |
844 | // certain to point to the jump table identified at this |
845 | // address. |
846 | if (BinaryData *BD = BC.getBinaryDataByName(Name: JTLabel->getName())) { |
847 | for (MCSymbol *S : BD->getSymbols()) |
848 | Streamer.emitLabel(Symbol: S); |
849 | } else { |
850 | Streamer.emitLabel(Symbol: JTLabel); |
851 | } |
852 | emitEntry: |
853 | if (JT.Type == JumpTable::JTT_NORMAL) { |
854 | Streamer.emitSymbolValue(Sym: Entry, Size: JT.OutputEntrySize); |
855 | } else { // JTT_PIC |
856 | const MCSymbolRefExpr *JTExpr = |
857 | MCSymbolRefExpr::create(Symbol: JTLabel, Ctx&: Streamer.getContext()); |
858 | const MCSymbolRefExpr *E = |
859 | MCSymbolRefExpr::create(Symbol: Entry, Ctx&: Streamer.getContext()); |
860 | const MCBinaryExpr *Value = |
861 | MCBinaryExpr::createSub(LHS: E, RHS: JTExpr, Ctx&: Streamer.getContext()); |
862 | Streamer.emitValue(Value, Size: JT.EntrySize); |
863 | } |
864 | Offset += JT.EntrySize; |
865 | } |
866 | } |
867 | |
868 | void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { |
869 | switch (Inst.getOperation()) { |
870 | default: |
871 | llvm_unreachable("Unexpected instruction"); |
872 | case MCCFIInstruction::OpDefCfaOffset: |
873 | Streamer.emitCFIDefCfaOffset(Offset: Inst.getOffset()); |
874 | break; |
875 | case MCCFIInstruction::OpAdjustCfaOffset: |
876 | Streamer.emitCFIAdjustCfaOffset(Adjustment: Inst.getOffset()); |
877 | break; |
878 | case MCCFIInstruction::OpDefCfa: |
879 | Streamer.emitCFIDefCfa(Register: Inst.getRegister(), Offset: Inst.getOffset()); |
880 | break; |
881 | case MCCFIInstruction::OpDefCfaRegister: |
882 | Streamer.emitCFIDefCfaRegister(Register: Inst.getRegister()); |
883 | break; |
884 | case MCCFIInstruction::OpOffset: |
885 | Streamer.emitCFIOffset(Register: Inst.getRegister(), Offset: Inst.getOffset()); |
886 | break; |
887 | case MCCFIInstruction::OpRegister: |
888 | Streamer.emitCFIRegister(Register1: Inst.getRegister(), Register2: Inst.getRegister2()); |
889 | break; |
890 | case MCCFIInstruction::OpWindowSave: |
891 | Streamer.emitCFIWindowSave(); |
892 | break; |
893 | case MCCFIInstruction::OpNegateRAState: |
894 | Streamer.emitCFINegateRAState(); |
895 | break; |
896 | case MCCFIInstruction::OpSameValue: |
897 | Streamer.emitCFISameValue(Register: Inst.getRegister()); |
898 | break; |
899 | case MCCFIInstruction::OpGnuArgsSize: |
900 | Streamer.emitCFIGnuArgsSize(Size: Inst.getOffset()); |
901 | break; |
902 | case MCCFIInstruction::OpEscape: |
903 | Streamer.AddComment(T: Inst.getComment()); |
904 | Streamer.emitCFIEscape(Values: Inst.getValues()); |
905 | break; |
906 | case MCCFIInstruction::OpRestore: |
907 | Streamer.emitCFIRestore(Register: Inst.getRegister()); |
908 | break; |
909 | case MCCFIInstruction::OpUndefined: |
910 | Streamer.emitCFIUndefined(Register: Inst.getRegister()); |
911 | break; |
912 | } |
913 | } |
914 | |
915 | // The code is based on EHStreamer::emitExceptionTable(). |
916 | void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) { |
917 | const BinaryFunction::CallSitesRange Sites = |
918 | BF.getCallSites(F: FF.getFragmentNum()); |
919 | if (Sites.empty()) |
920 | return; |
921 | |
922 | Streamer.switchSection(Section: BC.MOFI->getLSDASection()); |
923 | |
924 | const unsigned TTypeEncoding = BF.getLSDATypeEncoding(); |
925 | const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(Encoding: TTypeEncoding); |
926 | const uint16_t TTypeAlignment = 4; |
927 | |
928 | // Type tables have to be aligned at 4 bytes. |
929 | Streamer.emitValueToAlignment(Alignment: Align(TTypeAlignment)); |
930 | |
931 | // Emit the LSDA label. |
932 | MCSymbol *LSDASymbol = BF.getLSDASymbol(F: FF.getFragmentNum()); |
933 | assert(LSDASymbol && "no LSDA symbol set"); |
934 | Streamer.emitLabel(Symbol: LSDASymbol); |
935 | |
936 | // Corresponding FDE start. |
937 | const MCSymbol *StartSymbol = BF.getSymbol(Fragment: FF.getFragmentNum()); |
938 | |
939 | // Emit the LSDA header. |
940 | |
941 | // If LPStart is omitted, then the start of the FDE is used as a base for |
942 | // landing pad displacements. Then, if a cold fragment starts with |
943 | // a landing pad, this means that the first landing pad offset will be 0. |
944 | // However, C++ runtime will treat 0 as if there is no landing pad, thus we |
945 | // cannot emit LP offset as 0. |
946 | // |
947 | // As a solution, for fixed-address binaries we set LPStart to 0, and for |
948 | // position-independent binaries we offset LP start by one byte. |
949 | bool NeedsLPAdjustment = false; |
950 | std::function<void(const MCSymbol *)> emitLandingPad; |
951 | |
952 | // Check if there's a symbol associated with a landing pad fragment. |
953 | const MCSymbol *LPStartSymbol = BF.getLPStartSymbol(F: FF.getFragmentNum()); |
954 | if (!LPStartSymbol) { |
955 | // Since landing pads are not in the same fragment, we fall back to emitting |
956 | // absolute addresses for this FDE. |
957 | if (opts::Verbosity >= 2) { |
958 | BC.outs() << "BOLT-INFO: falling back to generating absolute-address " |
959 | << "exception ranges for "<< BF << '\n'; |
960 | } |
961 | |
962 | assert(BC.HasFixedLoadAddress && |
963 | "Cannot emit absolute-address landing pads for PIE/DSO"); |
964 | |
965 | Streamer.emitIntValue(Value: dwarf::DW_EH_PE_udata4, Size: 1); // LPStart format |
966 | Streamer.emitIntValue(Value: 0, Size: 4); // LPStart |
967 | emitLandingPad = [&](const MCSymbol *LPSymbol) { |
968 | if (LPSymbol) |
969 | Streamer.emitSymbolValue(Sym: LPSymbol, Size: 4); |
970 | else |
971 | Streamer.emitIntValue(Value: 0, Size: 4); |
972 | }; |
973 | } else { |
974 | std::optional<FragmentNum> LPFN = BF.getLPFragment(F: FF.getFragmentNum()); |
975 | const FunctionFragment &LPFragment = BF.getLayout().getFragment(Num: *LPFN); |
976 | NeedsLPAdjustment = |
977 | (!LPFragment.empty() && LPFragment.front()->isLandingPad()); |
978 | |
979 | // Emit LPStart encoding and optionally LPStart. |
980 | if (NeedsLPAdjustment || LPStartSymbol != StartSymbol) { |
981 | Streamer.emitIntValue(Value: dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4, Size: 1); |
982 | MCSymbol *DotSymbol = BC.Ctx->createTempSymbol(Name: "LPBase"); |
983 | Streamer.emitLabel(Symbol: DotSymbol); |
984 | |
985 | const MCExpr *LPStartExpr = MCBinaryExpr::createSub( |
986 | LHS: MCSymbolRefExpr::create(Symbol: LPStartSymbol, Ctx&: *BC.Ctx), |
987 | RHS: MCSymbolRefExpr::create(Symbol: DotSymbol, Ctx&: *BC.Ctx), Ctx&: *BC.Ctx); |
988 | if (NeedsLPAdjustment) |
989 | LPStartExpr = MCBinaryExpr::createSub( |
990 | LHS: LPStartExpr, RHS: MCConstantExpr::create(Value: 1, Ctx&: *BC.Ctx), Ctx&: *BC.Ctx); |
991 | Streamer.emitValue(Value: LPStartExpr, Size: 4); |
992 | } else { |
993 | // DW_EH_PE_omit means FDE start (StartSymbol) will be used as LPStart. |
994 | Streamer.emitIntValue(Value: dwarf::DW_EH_PE_omit, Size: 1); |
995 | } |
996 | emitLandingPad = [&](const MCSymbol *LPSymbol) { |
997 | if (LPSymbol) { |
998 | const MCExpr *LPOffsetExpr = MCBinaryExpr::createSub( |
999 | LHS: MCSymbolRefExpr::create(Symbol: LPSymbol, Ctx&: *BC.Ctx), |
1000 | RHS: MCSymbolRefExpr::create(Symbol: LPStartSymbol, Ctx&: *BC.Ctx), Ctx&: *BC.Ctx); |
1001 | if (NeedsLPAdjustment) |
1002 | LPOffsetExpr = MCBinaryExpr::createAdd( |
1003 | LHS: LPOffsetExpr, RHS: MCConstantExpr::create(Value: 1, Ctx&: *BC.Ctx), Ctx&: *BC.Ctx); |
1004 | Streamer.emitULEB128Value(Value: LPOffsetExpr); |
1005 | } else { |
1006 | Streamer.emitULEB128IntValue(Value: 0); |
1007 | } |
1008 | }; |
1009 | } |
1010 | |
1011 | Streamer.emitIntValue(Value: TTypeEncoding, Size: 1); // TType format |
1012 | |
1013 | MCSymbol *TTBaseLabel = nullptr; |
1014 | if (TTypeEncoding != dwarf::DW_EH_PE_omit) { |
1015 | TTBaseLabel = BC.Ctx->createTempSymbol(Name: "TTBase"); |
1016 | MCSymbol *TTBaseRefLabel = BC.Ctx->createTempSymbol(Name: "TTBaseRef"); |
1017 | Streamer.emitAbsoluteSymbolDiffAsULEB128(Hi: TTBaseLabel, Lo: TTBaseRefLabel); |
1018 | Streamer.emitLabel(Symbol: TTBaseRefLabel); |
1019 | } |
1020 | |
1021 | // Emit encoding of entries in the call site table. The format is used for the |
1022 | // call site start, length, and corresponding landing pad. |
1023 | if (!LPStartSymbol) |
1024 | Streamer.emitIntValue(Value: dwarf::DW_EH_PE_sdata4, Size: 1); |
1025 | else |
1026 | Streamer.emitIntValue(Value: dwarf::DW_EH_PE_uleb128, Size: 1); |
1027 | |
1028 | MCSymbol *CSTStartLabel = BC.Ctx->createTempSymbol(Name: "CSTStart"); |
1029 | MCSymbol *CSTEndLabel = BC.Ctx->createTempSymbol(Name: "CSTEnd"); |
1030 | Streamer.emitAbsoluteSymbolDiffAsULEB128(Hi: CSTEndLabel, Lo: CSTStartLabel); |
1031 | |
1032 | Streamer.emitLabel(Symbol: CSTStartLabel); |
1033 | for (const auto &FragmentCallSite : Sites) { |
1034 | const BinaryFunction::CallSite &CallSite = FragmentCallSite.second; |
1035 | const MCSymbol *BeginLabel = CallSite.Start; |
1036 | const MCSymbol *EndLabel = CallSite.End; |
1037 | |
1038 | assert(BeginLabel && "start EH label expected"); |
1039 | assert(EndLabel && "end EH label expected"); |
1040 | |
1041 | // Start of the range is emitted relative to the start of current |
1042 | // function split part. |
1043 | if (!LPStartSymbol) { |
1044 | Streamer.emitAbsoluteSymbolDiff(Hi: BeginLabel, Lo: StartSymbol, Size: 4); |
1045 | Streamer.emitAbsoluteSymbolDiff(Hi: EndLabel, Lo: BeginLabel, Size: 4); |
1046 | } else { |
1047 | Streamer.emitAbsoluteSymbolDiffAsULEB128(Hi: BeginLabel, Lo: StartSymbol); |
1048 | Streamer.emitAbsoluteSymbolDiffAsULEB128(Hi: EndLabel, Lo: BeginLabel); |
1049 | } |
1050 | emitLandingPad(CallSite.LP); |
1051 | Streamer.emitULEB128IntValue(Value: CallSite.Action); |
1052 | } |
1053 | Streamer.emitLabel(Symbol: CSTEndLabel); |
1054 | |
1055 | // Write out action, type, and type index tables at the end. |
1056 | // |
1057 | // For action and type index tables there's no need to change the original |
1058 | // table format unless we are doing function splitting, in which case we can |
1059 | // split and optimize the tables. |
1060 | // |
1061 | // For type table we (re-)encode the table using TTypeEncoding matching |
1062 | // the current assembler mode. |
1063 | for (uint8_t const &Byte : BF.getLSDAActionTable()) |
1064 | Streamer.emitIntValue(Value: Byte, Size: 1); |
1065 | |
1066 | const BinaryFunction::LSDATypeTableTy &TypeTable = |
1067 | (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() |
1068 | : BF.getLSDATypeTable(); |
1069 | assert(TypeTable.size() == BF.getLSDATypeTable().size() && |
1070 | "indirect type table size mismatch"); |
1071 | |
1072 | Streamer.emitValueToAlignment(Alignment: Align(TTypeAlignment)); |
1073 | |
1074 | for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { |
1075 | const uint64_t TypeAddress = TypeTable[Index]; |
1076 | switch (TTypeEncoding & 0x70) { |
1077 | default: |
1078 | llvm_unreachable("unsupported TTypeEncoding"); |
1079 | case dwarf::DW_EH_PE_absptr: |
1080 | Streamer.emitIntValue(Value: TypeAddress, Size: TTypeEncodingSize); |
1081 | break; |
1082 | case dwarf::DW_EH_PE_pcrel: { |
1083 | if (TypeAddress) { |
1084 | const MCSymbol *TypeSymbol = |
1085 | BC.getOrCreateGlobalSymbol(Address: TypeAddress, Prefix: "TI", Size: 0, Alignment: TTypeAlignment); |
1086 | MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); |
1087 | Streamer.emitLabel(Symbol: DotSymbol); |
1088 | const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( |
1089 | LHS: MCSymbolRefExpr::create(Symbol: TypeSymbol, Ctx&: *BC.Ctx), |
1090 | RHS: MCSymbolRefExpr::create(Symbol: DotSymbol, Ctx&: *BC.Ctx), Ctx&: *BC.Ctx); |
1091 | Streamer.emitValue(Value: SubDotExpr, Size: TTypeEncodingSize); |
1092 | } else { |
1093 | Streamer.emitIntValue(Value: 0, Size: TTypeEncodingSize); |
1094 | } |
1095 | break; |
1096 | } |
1097 | } |
1098 | } |
1099 | |
1100 | if (TTypeEncoding != dwarf::DW_EH_PE_omit) |
1101 | Streamer.emitLabel(Symbol: TTBaseLabel); |
1102 | |
1103 | for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) |
1104 | Streamer.emitIntValue(Value: Byte, Size: 1); |
1105 | } |
1106 | |
1107 | void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { |
1108 | // If a function is in a CU containing at least one processed function, we |
1109 | // have to rewrite the whole line table for that CU. For unprocessed functions |
1110 | // we use data from the input line table. |
1111 | for (auto &It : BC.getBinaryFunctions()) { |
1112 | const BinaryFunction &Function = It.second; |
1113 | |
1114 | // If the function was emitted, its line info was emitted with it. |
1115 | if (Function.isEmitted()) |
1116 | continue; |
1117 | |
1118 | const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); |
1119 | if (!LineTable) |
1120 | continue; // nothing to update for this function |
1121 | |
1122 | const uint64_t Address = Function.getAddress(); |
1123 | std::vector<uint32_t> Results; |
1124 | if (!LineTable->lookupAddressRange( |
1125 | Address: {.Address: Address, .SectionIndex: object::SectionedAddress::UndefSection}, |
1126 | Size: Function.getSize(), Result&: Results)) |
1127 | continue; |
1128 | |
1129 | if (Results.empty()) |
1130 | continue; |
1131 | |
1132 | // The first row returned could be the last row matching the start address. |
1133 | // Find the first row with the same address that is not the end of the |
1134 | // sequence. |
1135 | uint64_t FirstRow = Results.front(); |
1136 | while (FirstRow > 0) { |
1137 | const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; |
1138 | if (PrevRow.Address.Address != Address || PrevRow.EndSequence) |
1139 | break; |
1140 | --FirstRow; |
1141 | } |
1142 | |
1143 | const uint64_t EndOfSequenceAddress = |
1144 | Function.getAddress() + Function.getMaxSize(); |
1145 | BC.getDwarfLineTable(CUID: Function.getDWARFUnit()->getOffset()) |
1146 | .addLineTableSequence(Table: LineTable, FirstRow, LastRow: Results.back(), |
1147 | EndOfSequenceAddress); |
1148 | } |
1149 | |
1150 | // For units that are completely unprocessed, use original debug line contents |
1151 | // eliminating the need to regenerate line info program. |
1152 | emitDebugLineInfoForUnprocessedCUs(); |
1153 | } |
1154 | |
1155 | void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { |
1156 | // Sorted list of section offsets provides boundaries for section fragments, |
1157 | // where each fragment is the unit's contribution to debug line section. |
1158 | std::vector<uint64_t> StmtListOffsets; |
1159 | StmtListOffsets.reserve(n: BC.DwCtx->getNumCompileUnits()); |
1160 | for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { |
1161 | DWARFDie CUDie = CU->getUnitDIE(); |
1162 | auto StmtList = dwarf::toSectionOffset(V: CUDie.find(Attr: dwarf::DW_AT_stmt_list)); |
1163 | if (!StmtList) |
1164 | continue; |
1165 | |
1166 | StmtListOffsets.push_back(x: *StmtList); |
1167 | } |
1168 | llvm::sort(C&: StmtListOffsets); |
1169 | |
1170 | // For each CU that was not processed, emit its line info as a binary blob. |
1171 | for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { |
1172 | if (BC.ProcessedCUs.count(x: CU.get())) |
1173 | continue; |
1174 | |
1175 | DWARFDie CUDie = CU->getUnitDIE(); |
1176 | auto StmtList = dwarf::toSectionOffset(V: CUDie.find(Attr: dwarf::DW_AT_stmt_list)); |
1177 | if (!StmtList) |
1178 | continue; |
1179 | |
1180 | StringRef DebugLineContents = CU->getLineSection().Data; |
1181 | |
1182 | const uint64_t Begin = *StmtList; |
1183 | |
1184 | // Statement list ends where the next unit contribution begins, or at the |
1185 | // end of the section. |
1186 | auto It = llvm::upper_bound(Range&: StmtListOffsets, Value: Begin); |
1187 | const uint64_t End = |
1188 | It == StmtListOffsets.end() ? DebugLineContents.size() : *It; |
1189 | |
1190 | BC.getDwarfLineTable(CUID: CU->getOffset()) |
1191 | .addRawContents(DebugLineContents: DebugLineContents.slice(Start: Begin, End)); |
1192 | } |
1193 | } |
1194 | |
1195 | void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { |
1196 | for (BinarySection &Section : BC.sections()) { |
1197 | if (!Section.hasRelocations()) |
1198 | continue; |
1199 | |
1200 | StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : ""; |
1201 | Section.emitAsData(Streamer, SectionName: Prefix + Section.getName()); |
1202 | Section.clearRelocations(); |
1203 | } |
1204 | } |
1205 | |
1206 | namespace llvm { |
1207 | namespace bolt { |
1208 | |
1209 | void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, |
1210 | StringRef OrgSecPrefix) { |
1211 | BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); |
1212 | } |
1213 | |
1214 | void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, |
1215 | FunctionFragment &FF, bool EmitCodeOnly) { |
1216 | BinaryEmitter(Streamer, BF.getBinaryContext()) |
1217 | .emitFunctionBody(BF, FF, EmitCodeOnly); |
1218 | } |
1219 | |
1220 | } // namespace bolt |
1221 | } // namespace llvm |
1222 |
Definitions
- AlignBlocks
- BreakFunctionNames
- FunctionPadSpec
- FunctionPadBeforeSpec
- MarkFuncs
- PrintJumpTables
- X86AlignBranchBoundaryHotOnly
- padFunction
- padFunctionBefore
- padFunctionAfter
- BinaryEmitter
- BinaryEmitter
- operator=
- BinaryEmitter
- emitAll
- emitFunctions
- emitFunction
- emitFunctionBody
- emitConstantIslands
- emitLineInfo
- emitLineInfoEnd
- emitJumpTables
- emitJumpTable
- emitCFIInstruction
- emitLSDA
- emitDebugLineInfoForOriginalFunctions
- emitDebugLineInfoForUnprocessedCUs
- emitDataSections
- emitBinaryContext
Learn to use CMake with our Intro Training
Find out more