1 | //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the collection of functions and classes used for |
10 | // emission of code and data into object/binary file. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "bolt/Core/BinaryEmitter.h" |
15 | #include "bolt/Core/BinaryContext.h" |
16 | #include "bolt/Core/BinaryFunction.h" |
17 | #include "bolt/Core/DebugData.h" |
18 | #include "bolt/Core/FunctionLayout.h" |
19 | #include "bolt/Utils/CommandLineOpts.h" |
20 | #include "bolt/Utils/Utils.h" |
21 | #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" |
22 | #include "llvm/MC/MCSection.h" |
23 | #include "llvm/MC/MCStreamer.h" |
24 | #include "llvm/Support/CommandLine.h" |
25 | #include "llvm/Support/LEB128.h" |
26 | #include "llvm/Support/SMLoc.h" |
27 | |
28 | #define DEBUG_TYPE "bolt" |
29 | |
30 | using namespace llvm; |
31 | using namespace bolt; |
32 | |
33 | namespace opts { |
34 | |
35 | extern cl::opt<JumpTableSupportLevel> JumpTables; |
36 | extern cl::opt<bool> PreserveBlocksAlignment; |
37 | |
38 | cl::opt<bool> AlignBlocks("align-blocks" , cl::desc("align basic blocks" ), |
39 | cl::cat(BoltOptCategory)); |
40 | |
41 | cl::opt<MacroFusionType> |
42 | AlignMacroOpFusion("align-macro-fusion" , |
43 | cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)" ), |
44 | cl::init(Val: MFT_HOT), |
45 | cl::values(clEnumValN(MFT_NONE, "none" , |
46 | "do not insert alignment no-ops for macro-fusion" ), |
47 | clEnumValN(MFT_HOT, "hot" , |
48 | "only insert alignment no-ops on hot execution paths (default)" ), |
49 | clEnumValN(MFT_ALL, "all" , |
50 | "always align instructions to allow macro-fusion" )), |
51 | cl::ZeroOrMore, |
52 | cl::cat(BoltRelocCategory)); |
53 | |
54 | static cl::list<std::string> |
55 | BreakFunctionNames("break-funcs" , |
56 | cl::CommaSeparated, |
57 | cl::desc("list of functions to core dump on (debugging)" ), |
58 | cl::value_desc("func1,func2,func3,..." ), |
59 | cl::Hidden, |
60 | cl::cat(BoltCategory)); |
61 | |
62 | static cl::list<std::string> |
63 | FunctionPadSpec("pad-funcs" , |
64 | cl::CommaSeparated, |
65 | cl::desc("list of functions to pad with amount of bytes" ), |
66 | cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..." ), |
67 | cl::Hidden, |
68 | cl::cat(BoltCategory)); |
69 | |
70 | static cl::opt<bool> MarkFuncs( |
71 | "mark-funcs" , |
72 | cl::desc("mark function boundaries with break instruction to make " |
73 | "sure we accidentally don't cross them" ), |
74 | cl::ReallyHidden, cl::cat(BoltCategory)); |
75 | |
76 | static cl::opt<bool> PrintJumpTables("print-jump-tables" , |
77 | cl::desc("print jump tables" ), cl::Hidden, |
78 | cl::cat(BoltCategory)); |
79 | |
80 | static cl::opt<bool> |
81 | X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only" , |
82 | cl::desc("only apply branch boundary alignment in hot code" ), |
83 | cl::init(Val: true), |
84 | cl::cat(BoltOptCategory)); |
85 | |
86 | size_t padFunction(const BinaryFunction &Function) { |
87 | static std::map<std::string, size_t> FunctionPadding; |
88 | |
89 | if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { |
90 | for (std::string &Spec : FunctionPadSpec) { |
91 | size_t N = Spec.find(c: ':'); |
92 | if (N == std::string::npos) |
93 | continue; |
94 | std::string Name = Spec.substr(pos: 0, n: N); |
95 | size_t Padding = std::stoull(str: Spec.substr(pos: N + 1)); |
96 | FunctionPadding[Name] = Padding; |
97 | } |
98 | } |
99 | |
100 | for (auto &FPI : FunctionPadding) { |
101 | std::string Name = FPI.first; |
102 | size_t Padding = FPI.second; |
103 | if (Function.hasNameRegex(NameRegex: Name)) |
104 | return Padding; |
105 | } |
106 | |
107 | return 0; |
108 | } |
109 | |
110 | } // namespace opts |
111 | |
112 | namespace { |
113 | using JumpTable = bolt::JumpTable; |
114 | |
115 | class BinaryEmitter { |
116 | private: |
117 | BinaryEmitter(const BinaryEmitter &) = delete; |
118 | BinaryEmitter &operator=(const BinaryEmitter &) = delete; |
119 | |
120 | MCStreamer &Streamer; |
121 | BinaryContext &BC; |
122 | |
123 | public: |
124 | BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) |
125 | : Streamer(Streamer), BC(BC) {} |
126 | |
127 | /// Emit all code and data. |
128 | void emitAll(StringRef OrgSecPrefix); |
129 | |
130 | /// Emit function code. The caller is responsible for emitting function |
131 | /// symbol(s) and setting the section to emit the code to. |
132 | void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, |
133 | bool EmitCodeOnly = false); |
134 | |
135 | private: |
136 | /// Emit function code. |
137 | void emitFunctions(); |
138 | |
139 | /// Emit a single function. |
140 | bool emitFunction(BinaryFunction &BF, FunctionFragment &FF); |
141 | |
142 | /// Helper for emitFunctionBody to write data inside a function |
143 | /// (used for AArch64) |
144 | void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, |
145 | BinaryFunction *OnBehalfOf = nullptr); |
146 | |
147 | /// Emit jump tables for the function. |
148 | void emitJumpTables(const BinaryFunction &BF); |
149 | |
150 | /// Emit jump table data. Callee supplies sections for the data. |
151 | void emitJumpTable(const JumpTable &JT, MCSection *HotSection, |
152 | MCSection *ColdSection); |
153 | |
154 | void emitCFIInstruction(const MCCFIInstruction &Inst) const; |
155 | |
156 | /// Emit exception handling ranges for the function. |
157 | void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF); |
158 | |
159 | /// Emit line number information corresponding to \p NewLoc. \p PrevLoc |
160 | /// provides a context for de-duplication of line number info. |
161 | /// \p FirstInstr indicates if \p NewLoc represents the first instruction |
162 | /// in a sequence, such as a function fragment. |
163 | /// |
164 | /// If \p NewLoc location matches \p PrevLoc, no new line number entry will be |
165 | /// created and the function will return \p PrevLoc while \p InstrLabel will |
166 | /// be ignored. Otherwise, the caller should use \p InstrLabel to mark the |
167 | /// corresponding instruction by emitting \p InstrLabel before it. |
168 | /// If \p InstrLabel is set by the caller, its value will be used with \p |
169 | /// \p NewLoc. If it was nullptr on entry, it will be populated with a pointer |
170 | /// to a new temp symbol used with \p NewLoc. |
171 | /// |
172 | /// Return new current location which is either \p NewLoc or \p PrevLoc. |
173 | SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, |
174 | bool FirstInstr, MCSymbol *&InstrLabel); |
175 | |
176 | /// Use \p FunctionEndSymbol to mark the end of the line info sequence. |
177 | /// Note that it does not automatically result in the insertion of the EOS |
178 | /// marker in the line table program, but provides one to the DWARF generator |
179 | /// when it needs it. |
180 | void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); |
181 | |
182 | /// Emit debug line info for unprocessed functions from CUs that include |
183 | /// emitted functions. |
184 | void emitDebugLineInfoForOriginalFunctions(); |
185 | |
186 | /// Emit debug line for CUs that were not modified. |
187 | void emitDebugLineInfoForUnprocessedCUs(); |
188 | |
189 | /// Emit data sections that have code references in them. |
190 | void emitDataSections(StringRef OrgSecPrefix); |
191 | }; |
192 | |
193 | } // anonymous namespace |
194 | |
195 | void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { |
196 | Streamer.initSections(NoExecStack: false, STI: *BC.STI); |
197 | |
198 | if (opts::UpdateDebugSections && BC.isELF()) { |
199 | // Force the emission of debug line info into allocatable section to ensure |
200 | // JITLink will process it. |
201 | // |
202 | // NB: on MachO all sections are required for execution, hence no need |
203 | // to change flags/attributes. |
204 | MCSectionELF *ELFDwarfLineSection = |
205 | static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); |
206 | ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); |
207 | MCSectionELF *ELFDwarfLineStrSection = |
208 | static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineStrSection()); |
209 | ELFDwarfLineStrSection->setFlags(ELF::SHF_ALLOC); |
210 | } |
211 | |
212 | if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) |
213 | RtLibrary->emitBinary(BC, Streamer); |
214 | |
215 | BC.getTextSection()->setAlignment(Align(opts::AlignText)); |
216 | |
217 | emitFunctions(); |
218 | |
219 | if (opts::UpdateDebugSections) { |
220 | emitDebugLineInfoForOriginalFunctions(); |
221 | DwarfLineTable::emit(BC, Streamer); |
222 | } |
223 | |
224 | emitDataSections(OrgSecPrefix); |
225 | |
226 | // TODO Enable for Mach-O once BinaryContext::getDataSection supports it. |
227 | if (BC.isELF()) |
228 | AddressMap::emit(Streamer, BC); |
229 | } |
230 | |
231 | void BinaryEmitter::emitFunctions() { |
232 | auto emit = [&](const std::vector<BinaryFunction *> &Functions) { |
233 | const bool HasProfile = BC.NumProfiledFuncs > 0; |
234 | const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); |
235 | for (BinaryFunction *Function : Functions) { |
236 | if (!BC.shouldEmit(Function: *Function)) |
237 | continue; |
238 | |
239 | LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function |
240 | << "\" : " << Function->getFunctionNumber() << '\n'); |
241 | |
242 | // Was any part of the function emitted. |
243 | bool Emitted = false; |
244 | |
245 | // Turn off Intel JCC Erratum mitigation for cold code if requested |
246 | if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && |
247 | !Function->hasValidProfile()) |
248 | Streamer.setAllowAutoPadding(false); |
249 | |
250 | FunctionLayout &Layout = Function->getLayout(); |
251 | Emitted |= emitFunction(BF&: *Function, FF&: Layout.getMainFragment()); |
252 | |
253 | if (Function->isSplit()) { |
254 | if (opts::X86AlignBranchBoundaryHotOnly) |
255 | Streamer.setAllowAutoPadding(false); |
256 | |
257 | assert((Layout.fragment_size() == 1 || Function->isSimple()) && |
258 | "Only simple functions can have fragments" ); |
259 | for (FunctionFragment &FF : Layout.getSplitFragments()) { |
260 | // Skip empty fragments so no symbols and sections for empty fragments |
261 | // are generated |
262 | if (FF.empty() && !Function->hasConstantIsland()) |
263 | continue; |
264 | Emitted |= emitFunction(BF&: *Function, FF); |
265 | } |
266 | } |
267 | |
268 | Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); |
269 | |
270 | if (Emitted) |
271 | Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); |
272 | } |
273 | }; |
274 | |
275 | // Mark the start of hot text. |
276 | if (opts::HotText) { |
277 | Streamer.switchSection(Section: BC.getTextSection()); |
278 | Streamer.emitLabel(Symbol: BC.getHotTextStartSymbol()); |
279 | } |
280 | |
281 | // Emit functions in sorted order. |
282 | std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); |
283 | emit(SortedFunctions); |
284 | |
285 | // Emit functions added by BOLT. |
286 | emit(BC.getInjectedBinaryFunctions()); |
287 | |
288 | // Mark the end of hot text. |
289 | if (opts::HotText) { |
290 | if (BC.HasWarmSection) |
291 | Streamer.switchSection(Section: BC.getCodeSection(SectionName: BC.getWarmCodeSectionName())); |
292 | else |
293 | Streamer.switchSection(Section: BC.getTextSection()); |
294 | Streamer.emitLabel(Symbol: BC.getHotTextEndSymbol()); |
295 | } |
296 | } |
297 | |
298 | bool BinaryEmitter::emitFunction(BinaryFunction &Function, |
299 | FunctionFragment &FF) { |
300 | if (Function.size() == 0 && !Function.hasIslandsInfo()) |
301 | return false; |
302 | |
303 | if (Function.getState() == BinaryFunction::State::Empty) |
304 | return false; |
305 | |
306 | // Avoid emitting function without instructions when overwriting the original |
307 | // function in-place. Otherwise, emit the empty function to define the symbol. |
308 | if (!BC.HasRelocations && !Function.hasNonPseudoInstructions()) |
309 | return false; |
310 | |
311 | MCSection *Section = |
312 | BC.getCodeSection(SectionName: Function.getCodeSectionName(Fragment: FF.getFragmentNum())); |
313 | Streamer.switchSection(Section); |
314 | Section->setHasInstructions(true); |
315 | BC.Ctx->addGenDwarfSection(Sec: Section); |
316 | |
317 | if (BC.HasRelocations) { |
318 | // Set section alignment to at least maximum possible object alignment. |
319 | // We need this to support LongJmp and other passes that calculates |
320 | // tentative layout. |
321 | Section->ensureMinAlignment(MinAlignment: Align(opts::AlignFunctions)); |
322 | |
323 | Streamer.emitCodeAlignment(Alignment: Function.getMinAlign(), STI: &*BC.STI); |
324 | uint16_t MaxAlignBytes = FF.isSplitFragment() |
325 | ? Function.getMaxColdAlignmentBytes() |
326 | : Function.getMaxAlignmentBytes(); |
327 | if (MaxAlignBytes > 0) |
328 | Streamer.emitCodeAlignment(Alignment: Function.getAlign(), STI: &*BC.STI, MaxBytesToEmit: MaxAlignBytes); |
329 | } else { |
330 | Streamer.emitCodeAlignment(Alignment: Function.getAlign(), STI: &*BC.STI); |
331 | } |
332 | |
333 | MCContext &Context = Streamer.getContext(); |
334 | const MCAsmInfo *MAI = Context.getAsmInfo(); |
335 | |
336 | MCSymbol *const StartSymbol = Function.getSymbol(Fragment: FF.getFragmentNum()); |
337 | |
338 | // Emit all symbols associated with the main function entry. |
339 | if (FF.isMainFragment()) { |
340 | for (MCSymbol *Symbol : Function.getSymbols()) { |
341 | Streamer.emitSymbolAttribute(Symbol, Attribute: MCSA_ELF_TypeFunction); |
342 | Streamer.emitLabel(Symbol); |
343 | } |
344 | } else { |
345 | Streamer.emitSymbolAttribute(Symbol: StartSymbol, Attribute: MCSA_ELF_TypeFunction); |
346 | Streamer.emitLabel(Symbol: StartSymbol); |
347 | } |
348 | |
349 | // Emit CFI start |
350 | if (Function.hasCFI()) { |
351 | Streamer.emitCFIStartProc(/*IsSimple=*/false); |
352 | if (Function.getPersonalityFunction() != nullptr) |
353 | Streamer.emitCFIPersonality(Sym: Function.getPersonalityFunction(), |
354 | Encoding: Function.getPersonalityEncoding()); |
355 | MCSymbol *LSDASymbol = Function.getLSDASymbol(F: FF.getFragmentNum()); |
356 | if (LSDASymbol) |
357 | Streamer.emitCFILsda(Sym: LSDASymbol, Encoding: BC.LSDAEncoding); |
358 | else |
359 | Streamer.emitCFILsda(Sym: 0, Encoding: dwarf::DW_EH_PE_omit); |
360 | // Emit CFI instructions relative to the CIE |
361 | for (const MCCFIInstruction &CFIInstr : Function.cie()) { |
362 | // Only write CIE CFI insns that LLVM will not already emit |
363 | const std::vector<MCCFIInstruction> &FrameInstrs = |
364 | MAI->getInitialFrameState(); |
365 | if (!llvm::is_contained(Range: FrameInstrs, Element: CFIInstr)) |
366 | emitCFIInstruction(Inst: CFIInstr); |
367 | } |
368 | } |
369 | |
370 | assert((Function.empty() || !(*Function.begin()).isCold()) && |
371 | "first basic block should never be cold" ); |
372 | |
373 | // Emit UD2 at the beginning if requested by user. |
374 | if (!opts::BreakFunctionNames.empty()) { |
375 | for (std::string &Name : opts::BreakFunctionNames) { |
376 | if (Function.hasNameRegex(NameRegex: Name)) { |
377 | Streamer.emitIntValue(Value: 0x0B0F, Size: 2); // UD2: 0F 0B |
378 | break; |
379 | } |
380 | } |
381 | } |
382 | |
383 | // Emit code. |
384 | emitFunctionBody(BF&: Function, FF, /*EmitCodeOnly=*/false); |
385 | |
386 | // Emit padding if requested. |
387 | if (size_t Padding = opts::padFunction(Function)) { |
388 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " |
389 | << Padding << " bytes\n" ); |
390 | Streamer.emitFill(NumBytes: Padding, FillValue: MAI->getTextAlignFillValue()); |
391 | } |
392 | |
393 | if (opts::MarkFuncs) |
394 | Streamer.emitBytes(Data: BC.MIB->getTrapFillValue()); |
395 | |
396 | // Emit CFI end |
397 | if (Function.hasCFI()) |
398 | Streamer.emitCFIEndProc(); |
399 | |
400 | MCSymbol *EndSymbol = Function.getFunctionEndLabel(Fragment: FF.getFragmentNum()); |
401 | Streamer.emitLabel(Symbol: EndSymbol); |
402 | |
403 | if (MAI->hasDotTypeDotSizeDirective()) { |
404 | const MCExpr *SizeExpr = MCBinaryExpr::createSub( |
405 | LHS: MCSymbolRefExpr::create(Symbol: EndSymbol, Ctx&: Context), |
406 | RHS: MCSymbolRefExpr::create(Symbol: StartSymbol, Ctx&: Context), Ctx&: Context); |
407 | Streamer.emitELFSize(Symbol: StartSymbol, Value: SizeExpr); |
408 | } |
409 | |
410 | if (opts::UpdateDebugSections && Function.getDWARFUnit()) |
411 | emitLineInfoEnd(BF: Function, FunctionEndSymbol: EndSymbol); |
412 | |
413 | // Exception handling info for the function. |
414 | emitLSDA(BF&: Function, FF); |
415 | |
416 | if (FF.isMainFragment() && opts::JumpTables > JTS_NONE) |
417 | emitJumpTables(BF: Function); |
418 | |
419 | return true; |
420 | } |
421 | |
422 | void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, |
423 | bool EmitCodeOnly) { |
424 | if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) { |
425 | assert(BF.getLayout().isHotColdSplit() && |
426 | "Constant island support only with hot/cold split" ); |
427 | BF.duplicateConstantIslands(); |
428 | } |
429 | |
430 | if (!FF.empty() && FF.front()->isLandingPad()) { |
431 | assert(!FF.front()->isEntryPoint() && |
432 | "Landing pad cannot be entry point of function" ); |
433 | // If the first block of the fragment is a landing pad, it's offset from the |
434 | // start of the area that the corresponding LSDA describes is zero. In this |
435 | // case, the call site entries in that LSDA have 0 as offset to the landing |
436 | // pad, which the runtime interprets as "no handler". To prevent this, |
437 | // insert some padding. |
438 | Streamer.emitBytes(Data: BC.MIB->getTrapFillValue()); |
439 | } |
440 | |
441 | // Track the first emitted instruction with debug info. |
442 | bool FirstInstr = true; |
443 | for (BinaryBasicBlock *const BB : FF) { |
444 | if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && |
445 | BB->getAlignment() > 1) |
446 | Streamer.emitCodeAlignment(Alignment: BB->getAlign(), STI: &*BC.STI, |
447 | MaxBytesToEmit: BB->getAlignmentMaxBytes()); |
448 | Streamer.emitLabel(Symbol: BB->getLabel()); |
449 | if (!EmitCodeOnly) { |
450 | if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(BB: *BB)) |
451 | Streamer.emitLabel(Symbol: EntrySymbol); |
452 | } |
453 | |
454 | // Check if special alignment for macro-fusion is needed. |
455 | bool MayNeedMacroFusionAlignment = |
456 | (opts::AlignMacroOpFusion == MFT_ALL) || |
457 | (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); |
458 | BinaryBasicBlock::const_iterator MacroFusionPair; |
459 | if (MayNeedMacroFusionAlignment) { |
460 | MacroFusionPair = BB->getMacroOpFusionPair(); |
461 | if (MacroFusionPair == BB->end()) |
462 | MayNeedMacroFusionAlignment = false; |
463 | } |
464 | |
465 | SMLoc LastLocSeen; |
466 | // Remember if the last instruction emitted was a prefix. |
467 | bool LastIsPrefix = false; |
468 | for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { |
469 | MCInst &Instr = *I; |
470 | |
471 | if (EmitCodeOnly && BC.MIB->isPseudo(Inst: Instr)) |
472 | continue; |
473 | |
474 | // Handle pseudo instructions. |
475 | if (BC.MIB->isCFI(Inst: Instr)) { |
476 | emitCFIInstruction(Inst: *BF.getCFIFor(Instr)); |
477 | continue; |
478 | } |
479 | |
480 | // Handle macro-fusion alignment. If we emitted a prefix as |
481 | // the last instruction, we should've already emitted the associated |
482 | // alignment hint, so don't emit it twice. |
483 | if (MayNeedMacroFusionAlignment && !LastIsPrefix && |
484 | I == MacroFusionPair) { |
485 | // This assumes the second instruction in the macro-op pair will get |
486 | // assigned to its own MCRelaxableFragment. Since all JCC instructions |
487 | // are relaxable, we should be safe. |
488 | } |
489 | |
490 | if (!EmitCodeOnly) { |
491 | // A symbol to be emitted before the instruction to mark its location. |
492 | MCSymbol *InstrLabel = BC.MIB->getInstLabel(Inst: Instr); |
493 | |
494 | if (opts::UpdateDebugSections && BF.getDWARFUnit()) { |
495 | LastLocSeen = emitLineInfo(BF, NewLoc: Instr.getLoc(), PrevLoc: LastLocSeen, |
496 | FirstInstr, InstrLabel); |
497 | FirstInstr = false; |
498 | } |
499 | |
500 | // Prepare to tag this location with a label if we need to keep track of |
501 | // the location of calls/returns for BOLT address translation maps |
502 | if (BF.requiresAddressTranslation() && BC.MIB->getOffset(Inst: Instr)) { |
503 | const uint32_t Offset = *BC.MIB->getOffset(Inst: Instr); |
504 | if (!InstrLabel) |
505 | InstrLabel = BC.Ctx->createTempSymbol(); |
506 | BB->getLocSyms().emplace_back(args: Offset, args&: InstrLabel); |
507 | } |
508 | |
509 | if (InstrLabel) |
510 | Streamer.emitLabel(Symbol: InstrLabel); |
511 | } |
512 | |
513 | // Emit sized NOPs via MCAsmBackend::writeNopData() interface on x86. |
514 | // This is a workaround for invalid NOPs handling by asm/disasm layer. |
515 | if (BC.isX86() && BC.MIB->isNoop(Inst: Instr)) { |
516 | if (std::optional<uint32_t> Size = BC.MIB->getSize(Inst: Instr)) { |
517 | SmallString<15> Code; |
518 | raw_svector_ostream VecOS(Code); |
519 | BC.MAB->writeNopData(OS&: VecOS, Count: *Size, STI: BC.STI.get()); |
520 | Streamer.emitBytes(Data: Code); |
521 | continue; |
522 | } |
523 | } |
524 | |
525 | Streamer.emitInstruction(Inst: Instr, STI: *BC.STI); |
526 | LastIsPrefix = BC.MIB->isPrefix(Inst: Instr); |
527 | } |
528 | } |
529 | |
530 | if (!EmitCodeOnly) |
531 | emitConstantIslands(BF, EmitColdPart: FF.isSplitFragment()); |
532 | } |
533 | |
534 | void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, |
535 | BinaryFunction *OnBehalfOf) { |
536 | if (!BF.hasIslandsInfo()) |
537 | return; |
538 | |
539 | BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); |
540 | if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) |
541 | return; |
542 | |
543 | // AArch64 requires CI to be aligned to 8 bytes due to access instructions |
544 | // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. |
545 | const uint16_t Alignment = OnBehalfOf |
546 | ? OnBehalfOf->getConstantIslandAlignment() |
547 | : BF.getConstantIslandAlignment(); |
548 | Streamer.emitCodeAlignment(Alignment: Align(Alignment), STI: &*BC.STI); |
549 | |
550 | if (!OnBehalfOf) { |
551 | if (!EmitColdPart) |
552 | Streamer.emitLabel(Symbol: BF.getFunctionConstantIslandLabel()); |
553 | else |
554 | Streamer.emitLabel(Symbol: BF.getFunctionColdConstantIslandLabel()); |
555 | } |
556 | |
557 | assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && |
558 | "spurious OnBehalfOf constant island emission" ); |
559 | |
560 | assert(!BF.isInjected() && |
561 | "injected functions should not have constant islands" ); |
562 | // Raw contents of the function. |
563 | StringRef SectionContents = BF.getOriginSection()->getContents(); |
564 | |
565 | // Raw contents of the function. |
566 | StringRef FunctionContents = SectionContents.substr( |
567 | Start: BF.getAddress() - BF.getOriginSection()->getAddress(), N: BF.getMaxSize()); |
568 | |
569 | if (opts::Verbosity && !OnBehalfOf) |
570 | BC.outs() << "BOLT-INFO: emitting constant island for function " << BF |
571 | << "\n" ; |
572 | |
573 | // We split the island into smaller blocks and output labels between them. |
574 | auto IS = Islands.Offsets.begin(); |
575 | for (auto DataIter = Islands.DataOffsets.begin(); |
576 | DataIter != Islands.DataOffsets.end(); ++DataIter) { |
577 | uint64_t FunctionOffset = *DataIter; |
578 | uint64_t EndOffset = 0ULL; |
579 | |
580 | // Determine size of this data chunk |
581 | auto NextData = std::next(x: DataIter); |
582 | auto CodeIter = Islands.CodeOffsets.lower_bound(x: *DataIter); |
583 | if (CodeIter == Islands.CodeOffsets.end() && |
584 | NextData == Islands.DataOffsets.end()) |
585 | EndOffset = BF.getMaxSize(); |
586 | else if (CodeIter == Islands.CodeOffsets.end()) |
587 | EndOffset = *NextData; |
588 | else if (NextData == Islands.DataOffsets.end()) |
589 | EndOffset = *CodeIter; |
590 | else |
591 | EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; |
592 | |
593 | if (FunctionOffset == EndOffset) |
594 | continue; // Size is zero, nothing to emit |
595 | |
596 | auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { |
597 | if (FunctionOffset >= EndOffset) |
598 | return; |
599 | |
600 | for (auto It = Islands.Relocations.lower_bound(x: FunctionOffset); |
601 | It != Islands.Relocations.end(); ++It) { |
602 | if (It->first >= EndOffset) |
603 | break; |
604 | |
605 | const Relocation &Relocation = It->second; |
606 | if (FunctionOffset < Relocation.Offset) { |
607 | Streamer.emitBytes( |
608 | Data: FunctionContents.slice(Start: FunctionOffset, End: Relocation.Offset)); |
609 | FunctionOffset = Relocation.Offset; |
610 | } |
611 | |
612 | LLVM_DEBUG( |
613 | dbgs() << "BOLT-DEBUG: emitting constant island relocation" |
614 | << " for " << BF << " at offset 0x" |
615 | << Twine::utohexstr(Relocation.Offset) << " with size " |
616 | << Relocation::getSizeForType(Relocation.Type) << '\n'); |
617 | |
618 | FunctionOffset += Relocation.emit(Streamer: &Streamer); |
619 | } |
620 | |
621 | assert(FunctionOffset <= EndOffset && "overflow error" ); |
622 | if (FunctionOffset < EndOffset) { |
623 | Streamer.emitBytes(Data: FunctionContents.slice(Start: FunctionOffset, End: EndOffset)); |
624 | FunctionOffset = EndOffset; |
625 | } |
626 | }; |
627 | |
628 | // Emit labels, relocs and data |
629 | while (IS != Islands.Offsets.end() && IS->first < EndOffset) { |
630 | auto NextLabelOffset = |
631 | IS == Islands.Offsets.end() ? EndOffset : IS->first; |
632 | auto NextStop = std::min(a: NextLabelOffset, b: EndOffset); |
633 | assert(NextStop <= EndOffset && "internal overflow error" ); |
634 | emitCI(FunctionOffset, NextStop); |
635 | if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { |
636 | // This is a slightly complex code to decide which label to emit. We |
637 | // have 4 cases to handle: regular symbol, cold symbol, regular or cold |
638 | // symbol being emitted on behalf of an external function. |
639 | if (!OnBehalfOf) { |
640 | if (!EmitColdPart) { |
641 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " |
642 | << IS->second->getName() << " at offset 0x" |
643 | << Twine::utohexstr(IS->first) << '\n'); |
644 | if (IS->second->isUndefined()) |
645 | Streamer.emitLabel(Symbol: IS->second); |
646 | else |
647 | assert(BF.hasName(std::string(IS->second->getName()))); |
648 | } else if (Islands.ColdSymbols.count(Val: IS->second) != 0) { |
649 | LLVM_DEBUG(dbgs() |
650 | << "BOLT-DEBUG: emitted label " |
651 | << Islands.ColdSymbols[IS->second]->getName() << '\n'); |
652 | if (Islands.ColdSymbols[IS->second]->isUndefined()) |
653 | Streamer.emitLabel(Symbol: Islands.ColdSymbols[IS->second]); |
654 | } |
655 | } else { |
656 | if (!EmitColdPart) { |
657 | if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { |
658 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " |
659 | << Sym->getName() << '\n'); |
660 | Streamer.emitLabel(Symbol: Sym); |
661 | } |
662 | } else if (MCSymbol *Sym = |
663 | Islands.ColdProxies[OnBehalfOf][IS->second]) { |
664 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() |
665 | << '\n'); |
666 | Streamer.emitLabel(Symbol: Sym); |
667 | } |
668 | } |
669 | ++IS; |
670 | } |
671 | } |
672 | assert(FunctionOffset <= EndOffset && "overflow error" ); |
673 | emitCI(FunctionOffset, EndOffset); |
674 | } |
675 | assert(IS == Islands.Offsets.end() && "some symbols were not emitted!" ); |
676 | |
677 | if (OnBehalfOf) |
678 | return; |
679 | // Now emit constant islands from other functions that we may have used in |
680 | // this function. |
681 | for (BinaryFunction *ExternalFunc : Islands.Dependency) |
682 | emitConstantIslands(BF&: *ExternalFunc, EmitColdPart, OnBehalfOf: &BF); |
683 | } |
684 | |
685 | SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, |
686 | SMLoc PrevLoc, bool FirstInstr, |
687 | MCSymbol *&InstrLabel) { |
688 | DWARFUnit *FunctionCU = BF.getDWARFUnit(); |
689 | const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); |
690 | assert(FunctionCU && "cannot emit line info for function without CU" ); |
691 | |
692 | DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(Loc: NewLoc); |
693 | |
694 | // Check if no new line info needs to be emitted. |
695 | if (RowReference == DebugLineTableRowRef::NULL_ROW || |
696 | NewLoc.getPointer() == PrevLoc.getPointer()) |
697 | return PrevLoc; |
698 | |
699 | unsigned CurrentFilenum = 0; |
700 | const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; |
701 | |
702 | // If the CU id from the current instruction location does not |
703 | // match the CU id from the current function, it means that we |
704 | // have come across some inlined code. We must look up the CU |
705 | // for the instruction's original function and get the line table |
706 | // from that. |
707 | const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); |
708 | const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; |
709 | if (CurrentUnitIndex != FunctionUnitIndex) { |
710 | CurrentLineTable = BC.DwCtx->getLineTableForUnit( |
711 | U: BC.DwCtx->getCompileUnitForOffset(Offset: CurrentUnitIndex)); |
712 | // Add filename from the inlined function to the current CU. |
713 | CurrentFilenum = BC.addDebugFilenameToUnit( |
714 | DestCUID: FunctionUnitIndex, SrcCUID: CurrentUnitIndex, |
715 | FileIndex: CurrentLineTable->Rows[RowReference.RowIndex - 1].File); |
716 | } |
717 | |
718 | const DWARFDebugLine::Row &CurrentRow = |
719 | CurrentLineTable->Rows[RowReference.RowIndex - 1]; |
720 | if (!CurrentFilenum) |
721 | CurrentFilenum = CurrentRow.File; |
722 | |
723 | unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | |
724 | (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | |
725 | (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | |
726 | (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); |
727 | |
728 | // Always emit is_stmt at the beginning of function fragment. |
729 | if (FirstInstr) |
730 | Flags |= DWARF2_FLAG_IS_STMT; |
731 | |
732 | BC.Ctx->setCurrentDwarfLoc(FileNum: CurrentFilenum, Line: CurrentRow.Line, Column: CurrentRow.Column, |
733 | Flags, Isa: CurrentRow.Isa, Discriminator: CurrentRow.Discriminator); |
734 | const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); |
735 | BC.Ctx->clearDwarfLocSeen(); |
736 | |
737 | if (!InstrLabel) |
738 | InstrLabel = BC.Ctx->createTempSymbol(); |
739 | |
740 | BC.getDwarfLineTable(CUID: FunctionUnitIndex) |
741 | .getMCLineSections() |
742 | .addLineEntry(LineEntry: MCDwarfLineEntry(InstrLabel, DwarfLoc), |
743 | Sec: Streamer.getCurrentSectionOnly()); |
744 | |
745 | return NewLoc; |
746 | } |
747 | |
748 | void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, |
749 | MCSymbol *FunctionEndLabel) { |
750 | DWARFUnit *FunctionCU = BF.getDWARFUnit(); |
751 | assert(FunctionCU && "DWARF unit expected" ); |
752 | BC.Ctx->setCurrentDwarfLoc(FileNum: 0, Line: 0, Column: 0, DWARF2_FLAG_END_SEQUENCE, Isa: 0, Discriminator: 0); |
753 | const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); |
754 | BC.Ctx->clearDwarfLocSeen(); |
755 | BC.getDwarfLineTable(CUID: FunctionCU->getOffset()) |
756 | .getMCLineSections() |
757 | .addLineEntry(LineEntry: MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), |
758 | Sec: Streamer.getCurrentSectionOnly()); |
759 | } |
760 | |
761 | void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { |
762 | MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); |
763 | MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( |
764 | Section: ".rodata.cold" , Type: ELF::SHT_PROGBITS, Flags: ELF::SHF_ALLOC); |
765 | |
766 | if (!BF.hasJumpTables()) |
767 | return; |
768 | |
769 | if (opts::PrintJumpTables) |
770 | BC.outs() << "BOLT-INFO: jump tables for function " << BF << ":\n" ; |
771 | |
772 | for (auto &JTI : BF.jumpTables()) { |
773 | JumpTable &JT = *JTI.second; |
774 | // Only emit shared jump tables once, when processing the first parent |
775 | if (JT.Parents.size() > 1 && JT.Parents[0] != &BF) |
776 | continue; |
777 | if (opts::PrintJumpTables) |
778 | JT.print(OS&: BC.outs()); |
779 | if (opts::JumpTables == JTS_BASIC && BC.HasRelocations) { |
780 | JT.updateOriginal(); |
781 | } else { |
782 | MCSection *HotSection, *ColdSection; |
783 | if (opts::JumpTables == JTS_BASIC) { |
784 | // In non-relocation mode we have to emit jump tables in local sections. |
785 | // This way we only overwrite them when the corresponding function is |
786 | // overwritten. |
787 | std::string Name = ".local." + JT.Labels[0]->getName().str(); |
788 | std::replace(first: Name.begin(), last: Name.end(), old_value: '/', new_value: '.'); |
789 | BinarySection &Section = |
790 | BC.registerOrUpdateSection(Name, ELFType: ELF::SHT_PROGBITS, ELFFlags: ELF::SHF_ALLOC); |
791 | Section.setAnonymous(true); |
792 | JT.setOutputSection(Section); |
793 | HotSection = BC.getDataSection(SectionName: Name); |
794 | ColdSection = HotSection; |
795 | } else { |
796 | if (BF.isSimple()) { |
797 | HotSection = ReadOnlySection; |
798 | ColdSection = ReadOnlyColdSection; |
799 | } else { |
800 | HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; |
801 | ColdSection = HotSection; |
802 | } |
803 | } |
804 | emitJumpTable(JT, HotSection, ColdSection); |
805 | } |
806 | } |
807 | } |
808 | |
809 | void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, |
810 | MCSection *ColdSection) { |
811 | // Pre-process entries for aggressive splitting. |
812 | // Each label represents a separate switch table and gets its own count |
813 | // determining its destination. |
814 | std::map<MCSymbol *, uint64_t> LabelCounts; |
815 | if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { |
816 | MCSymbol *CurrentLabel = JT.Labels.at(k: 0); |
817 | uint64_t CurrentLabelCount = 0; |
818 | for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { |
819 | auto LI = JT.Labels.find(x: Index * JT.EntrySize); |
820 | if (LI != JT.Labels.end()) { |
821 | LabelCounts[CurrentLabel] = CurrentLabelCount; |
822 | CurrentLabel = LI->second; |
823 | CurrentLabelCount = 0; |
824 | } |
825 | CurrentLabelCount += JT.Counts[Index].Count; |
826 | } |
827 | LabelCounts[CurrentLabel] = CurrentLabelCount; |
828 | } else { |
829 | Streamer.switchSection(Section: JT.Count > 0 ? HotSection : ColdSection); |
830 | Streamer.emitValueToAlignment(Alignment: Align(JT.EntrySize)); |
831 | } |
832 | MCSymbol *LastLabel = nullptr; |
833 | uint64_t Offset = 0; |
834 | for (MCSymbol *Entry : JT.Entries) { |
835 | auto LI = JT.Labels.find(x: Offset); |
836 | if (LI != JT.Labels.end()) { |
837 | LLVM_DEBUG({ |
838 | dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName() |
839 | << " (originally was at address 0x" |
840 | << Twine::utohexstr(JT.getAddress() + Offset) |
841 | << (Offset ? ") as part of larger jump table\n" : ")\n" ); |
842 | }); |
843 | if (!LabelCounts.empty()) { |
844 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " |
845 | << LabelCounts[LI->second] << '\n'); |
846 | if (LabelCounts[LI->second] > 0) |
847 | Streamer.switchSection(Section: HotSection); |
848 | else |
849 | Streamer.switchSection(Section: ColdSection); |
850 | Streamer.emitValueToAlignment(Alignment: Align(JT.EntrySize)); |
851 | } |
852 | // Emit all labels registered at the address of this jump table |
853 | // to sync with our global symbol table. We may have two labels |
854 | // registered at this address if one label was created via |
855 | // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing |
856 | // this location) and another via getOrCreateJumpTable(). This |
857 | // creates a race where the symbols created by these two |
858 | // functions may or may not be the same, but they are both |
859 | // registered in our symbol table at the same address. By |
860 | // emitting them all here we make sure there is no ambiguity |
861 | // that depends on the order that these symbols were created, so |
862 | // whenever this address is referenced in the binary, it is |
863 | // certain to point to the jump table identified at this |
864 | // address. |
865 | if (BinaryData *BD = BC.getBinaryDataByName(Name: LI->second->getName())) { |
866 | for (MCSymbol *S : BD->getSymbols()) |
867 | Streamer.emitLabel(Symbol: S); |
868 | } else { |
869 | Streamer.emitLabel(Symbol: LI->second); |
870 | } |
871 | LastLabel = LI->second; |
872 | } |
873 | if (JT.Type == JumpTable::JTT_NORMAL) { |
874 | Streamer.emitSymbolValue(Sym: Entry, Size: JT.OutputEntrySize); |
875 | } else { // JTT_PIC |
876 | const MCSymbolRefExpr *JTExpr = |
877 | MCSymbolRefExpr::create(Symbol: LastLabel, Ctx&: Streamer.getContext()); |
878 | const MCSymbolRefExpr *E = |
879 | MCSymbolRefExpr::create(Symbol: Entry, Ctx&: Streamer.getContext()); |
880 | const MCBinaryExpr *Value = |
881 | MCBinaryExpr::createSub(LHS: E, RHS: JTExpr, Ctx&: Streamer.getContext()); |
882 | Streamer.emitValue(Value, Size: JT.EntrySize); |
883 | } |
884 | Offset += JT.EntrySize; |
885 | } |
886 | } |
887 | |
888 | void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { |
889 | switch (Inst.getOperation()) { |
890 | default: |
891 | llvm_unreachable("Unexpected instruction" ); |
892 | case MCCFIInstruction::OpDefCfaOffset: |
893 | Streamer.emitCFIDefCfaOffset(Offset: Inst.getOffset()); |
894 | break; |
895 | case MCCFIInstruction::OpAdjustCfaOffset: |
896 | Streamer.emitCFIAdjustCfaOffset(Adjustment: Inst.getOffset()); |
897 | break; |
898 | case MCCFIInstruction::OpDefCfa: |
899 | Streamer.emitCFIDefCfa(Register: Inst.getRegister(), Offset: Inst.getOffset()); |
900 | break; |
901 | case MCCFIInstruction::OpDefCfaRegister: |
902 | Streamer.emitCFIDefCfaRegister(Register: Inst.getRegister()); |
903 | break; |
904 | case MCCFIInstruction::OpOffset: |
905 | Streamer.emitCFIOffset(Register: Inst.getRegister(), Offset: Inst.getOffset()); |
906 | break; |
907 | case MCCFIInstruction::OpRegister: |
908 | Streamer.emitCFIRegister(Register1: Inst.getRegister(), Register2: Inst.getRegister2()); |
909 | break; |
910 | case MCCFIInstruction::OpWindowSave: |
911 | Streamer.emitCFIWindowSave(); |
912 | break; |
913 | case MCCFIInstruction::OpNegateRAState: |
914 | Streamer.emitCFINegateRAState(); |
915 | break; |
916 | case MCCFIInstruction::OpSameValue: |
917 | Streamer.emitCFISameValue(Register: Inst.getRegister()); |
918 | break; |
919 | case MCCFIInstruction::OpGnuArgsSize: |
920 | Streamer.emitCFIGnuArgsSize(Size: Inst.getOffset()); |
921 | break; |
922 | case MCCFIInstruction::OpEscape: |
923 | Streamer.AddComment(T: Inst.getComment()); |
924 | Streamer.emitCFIEscape(Values: Inst.getValues()); |
925 | break; |
926 | case MCCFIInstruction::OpRestore: |
927 | Streamer.emitCFIRestore(Register: Inst.getRegister()); |
928 | break; |
929 | case MCCFIInstruction::OpUndefined: |
930 | Streamer.emitCFIUndefined(Register: Inst.getRegister()); |
931 | break; |
932 | } |
933 | } |
934 | |
935 | // The code is based on EHStreamer::emitExceptionTable(). |
936 | void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) { |
937 | const BinaryFunction::CallSitesRange Sites = |
938 | BF.getCallSites(F: FF.getFragmentNum()); |
939 | if (Sites.empty()) |
940 | return; |
941 | |
942 | // Calculate callsite table size. Size of each callsite entry is: |
943 | // |
944 | // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) |
945 | // |
946 | // or |
947 | // |
948 | // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) |
949 | uint64_t CallSiteTableLength = llvm::size(Range: Sites) * 4 * 3; |
950 | for (const auto &FragmentCallSite : Sites) |
951 | CallSiteTableLength += getULEB128Size(Value: FragmentCallSite.second.Action); |
952 | |
953 | Streamer.switchSection(Section: BC.MOFI->getLSDASection()); |
954 | |
955 | const unsigned TTypeEncoding = BF.getLSDATypeEncoding(); |
956 | const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(Encoding: TTypeEncoding); |
957 | const uint16_t TTypeAlignment = 4; |
958 | |
959 | // Type tables have to be aligned at 4 bytes. |
960 | Streamer.emitValueToAlignment(Alignment: Align(TTypeAlignment)); |
961 | |
962 | // Emit the LSDA label. |
963 | MCSymbol *LSDASymbol = BF.getLSDASymbol(F: FF.getFragmentNum()); |
964 | assert(LSDASymbol && "no LSDA symbol set" ); |
965 | Streamer.emitLabel(Symbol: LSDASymbol); |
966 | |
967 | // Corresponding FDE start. |
968 | const MCSymbol *StartSymbol = BF.getSymbol(Fragment: FF.getFragmentNum()); |
969 | |
970 | // Emit the LSDA header. |
971 | |
972 | // If LPStart is omitted, then the start of the FDE is used as a base for |
973 | // landing pad displacements. Then if a cold fragment starts with |
974 | // a landing pad, this means that the first landing pad offset will be 0. |
975 | // As a result, the exception handling runtime will ignore this landing pad |
976 | // because zero offset denotes the absence of a landing pad. |
977 | // For this reason, when the binary has fixed starting address we emit LPStart |
978 | // as 0 and output the absolute value of the landing pad in the table. |
979 | // |
980 | // If the base address can change, we cannot use absolute addresses for |
981 | // landing pads (at least not without runtime relocations). Hence, we fall |
982 | // back to emitting landing pads relative to the FDE start. |
983 | // As we are emitting label differences, we have to guarantee both labels are |
984 | // defined in the same section and hence cannot place the landing pad into a |
985 | // cold fragment when the corresponding call site is in the hot fragment. |
986 | // Because of this issue and the previously described issue of possible |
987 | // zero-offset landing pad we have to place landing pads in the same section |
988 | // as the corresponding invokes for shared objects. |
989 | std::function<void(const MCSymbol *)> emitLandingPad; |
990 | if (BC.HasFixedLoadAddress) { |
991 | Streamer.emitIntValue(Value: dwarf::DW_EH_PE_udata4, Size: 1); // LPStart format |
992 | Streamer.emitIntValue(Value: 0, Size: 4); // LPStart |
993 | emitLandingPad = [&](const MCSymbol *LPSymbol) { |
994 | if (!LPSymbol) |
995 | Streamer.emitIntValue(Value: 0, Size: 4); |
996 | else |
997 | Streamer.emitSymbolValue(Sym: LPSymbol, Size: 4); |
998 | }; |
999 | } else { |
1000 | Streamer.emitIntValue(Value: dwarf::DW_EH_PE_omit, Size: 1); // LPStart format |
1001 | emitLandingPad = [&](const MCSymbol *LPSymbol) { |
1002 | if (!LPSymbol) |
1003 | Streamer.emitIntValue(Value: 0, Size: 4); |
1004 | else |
1005 | Streamer.emitAbsoluteSymbolDiff(Hi: LPSymbol, Lo: StartSymbol, Size: 4); |
1006 | }; |
1007 | } |
1008 | |
1009 | Streamer.emitIntValue(Value: TTypeEncoding, Size: 1); // TType format |
1010 | |
1011 | // See the comment in EHStreamer::emitExceptionTable() on to use |
1012 | // uleb128 encoding (which can use variable number of bytes to encode the same |
1013 | // value) to ensure type info table is properly aligned at 4 bytes without |
1014 | // iteratively fixing sizes of the tables. |
1015 | unsigned CallSiteTableLengthSize = getULEB128Size(Value: CallSiteTableLength); |
1016 | unsigned TTypeBaseOffset = |
1017 | sizeof(int8_t) + // Call site format |
1018 | CallSiteTableLengthSize + // Call site table length size |
1019 | CallSiteTableLength + // Call site table length |
1020 | BF.getLSDAActionTable().size() + // Actions table size |
1021 | BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size |
1022 | unsigned TTypeBaseOffsetSize = getULEB128Size(Value: TTypeBaseOffset); |
1023 | unsigned TotalSize = sizeof(int8_t) + // LPStart format |
1024 | sizeof(int8_t) + // TType format |
1025 | TTypeBaseOffsetSize + // TType base offset size |
1026 | TTypeBaseOffset; // TType base offset |
1027 | unsigned SizeAlign = (4 - TotalSize) & 3; |
1028 | |
1029 | if (TTypeEncoding != dwarf::DW_EH_PE_omit) |
1030 | // Account for any extra padding that will be added to the call site table |
1031 | // length. |
1032 | Streamer.emitULEB128IntValue(Value: TTypeBaseOffset, |
1033 | /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); |
1034 | |
1035 | // Emit the landing pad call site table. We use signed data4 since we can emit |
1036 | // a landing pad in a different part of the split function that could appear |
1037 | // earlier in the address space than LPStart. |
1038 | Streamer.emitIntValue(Value: dwarf::DW_EH_PE_sdata4, Size: 1); |
1039 | Streamer.emitULEB128IntValue(Value: CallSiteTableLength); |
1040 | |
1041 | for (const auto &FragmentCallSite : Sites) { |
1042 | const BinaryFunction::CallSite &CallSite = FragmentCallSite.second; |
1043 | const MCSymbol *BeginLabel = CallSite.Start; |
1044 | const MCSymbol *EndLabel = CallSite.End; |
1045 | |
1046 | assert(BeginLabel && "start EH label expected" ); |
1047 | assert(EndLabel && "end EH label expected" ); |
1048 | |
1049 | // Start of the range is emitted relative to the start of current |
1050 | // function split part. |
1051 | Streamer.emitAbsoluteSymbolDiff(Hi: BeginLabel, Lo: StartSymbol, Size: 4); |
1052 | Streamer.emitAbsoluteSymbolDiff(Hi: EndLabel, Lo: BeginLabel, Size: 4); |
1053 | emitLandingPad(CallSite.LP); |
1054 | Streamer.emitULEB128IntValue(Value: CallSite.Action); |
1055 | } |
1056 | |
1057 | // Write out action, type, and type index tables at the end. |
1058 | // |
1059 | // For action and type index tables there's no need to change the original |
1060 | // table format unless we are doing function splitting, in which case we can |
1061 | // split and optimize the tables. |
1062 | // |
1063 | // For type table we (re-)encode the table using TTypeEncoding matching |
1064 | // the current assembler mode. |
1065 | for (uint8_t const &Byte : BF.getLSDAActionTable()) |
1066 | Streamer.emitIntValue(Value: Byte, Size: 1); |
1067 | |
1068 | const BinaryFunction::LSDATypeTableTy &TypeTable = |
1069 | (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() |
1070 | : BF.getLSDATypeTable(); |
1071 | assert(TypeTable.size() == BF.getLSDATypeTable().size() && |
1072 | "indirect type table size mismatch" ); |
1073 | |
1074 | for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { |
1075 | const uint64_t TypeAddress = TypeTable[Index]; |
1076 | switch (TTypeEncoding & 0x70) { |
1077 | default: |
1078 | llvm_unreachable("unsupported TTypeEncoding" ); |
1079 | case dwarf::DW_EH_PE_absptr: |
1080 | Streamer.emitIntValue(Value: TypeAddress, Size: TTypeEncodingSize); |
1081 | break; |
1082 | case dwarf::DW_EH_PE_pcrel: { |
1083 | if (TypeAddress) { |
1084 | const MCSymbol *TypeSymbol = |
1085 | BC.getOrCreateGlobalSymbol(Address: TypeAddress, Prefix: "TI" , Size: 0, Alignment: TTypeAlignment); |
1086 | MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); |
1087 | Streamer.emitLabel(Symbol: DotSymbol); |
1088 | const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( |
1089 | LHS: MCSymbolRefExpr::create(Symbol: TypeSymbol, Ctx&: *BC.Ctx), |
1090 | RHS: MCSymbolRefExpr::create(Symbol: DotSymbol, Ctx&: *BC.Ctx), Ctx&: *BC.Ctx); |
1091 | Streamer.emitValue(Value: SubDotExpr, Size: TTypeEncodingSize); |
1092 | } else { |
1093 | Streamer.emitIntValue(Value: 0, Size: TTypeEncodingSize); |
1094 | } |
1095 | break; |
1096 | } |
1097 | } |
1098 | } |
1099 | for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) |
1100 | Streamer.emitIntValue(Value: Byte, Size: 1); |
1101 | } |
1102 | |
1103 | void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { |
1104 | // If a function is in a CU containing at least one processed function, we |
1105 | // have to rewrite the whole line table for that CU. For unprocessed functions |
1106 | // we use data from the input line table. |
1107 | for (auto &It : BC.getBinaryFunctions()) { |
1108 | const BinaryFunction &Function = It.second; |
1109 | |
1110 | // If the function was emitted, its line info was emitted with it. |
1111 | if (Function.isEmitted()) |
1112 | continue; |
1113 | |
1114 | const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); |
1115 | if (!LineTable) |
1116 | continue; // nothing to update for this function |
1117 | |
1118 | const uint64_t Address = Function.getAddress(); |
1119 | std::vector<uint32_t> Results; |
1120 | if (!LineTable->lookupAddressRange( |
1121 | Address: {.Address: Address, .SectionIndex: object::SectionedAddress::UndefSection}, |
1122 | Size: Function.getSize(), Result&: Results)) |
1123 | continue; |
1124 | |
1125 | if (Results.empty()) |
1126 | continue; |
1127 | |
1128 | // The first row returned could be the last row matching the start address. |
1129 | // Find the first row with the same address that is not the end of the |
1130 | // sequence. |
1131 | uint64_t FirstRow = Results.front(); |
1132 | while (FirstRow > 0) { |
1133 | const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; |
1134 | if (PrevRow.Address.Address != Address || PrevRow.EndSequence) |
1135 | break; |
1136 | --FirstRow; |
1137 | } |
1138 | |
1139 | const uint64_t EndOfSequenceAddress = |
1140 | Function.getAddress() + Function.getMaxSize(); |
1141 | BC.getDwarfLineTable(CUID: Function.getDWARFUnit()->getOffset()) |
1142 | .addLineTableSequence(Table: LineTable, FirstRow, LastRow: Results.back(), |
1143 | EndOfSequenceAddress); |
1144 | } |
1145 | |
1146 | // For units that are completely unprocessed, use original debug line contents |
1147 | // eliminating the need to regenerate line info program. |
1148 | emitDebugLineInfoForUnprocessedCUs(); |
1149 | } |
1150 | |
1151 | void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { |
1152 | // Sorted list of section offsets provides boundaries for section fragments, |
1153 | // where each fragment is the unit's contribution to debug line section. |
1154 | std::vector<uint64_t> StmtListOffsets; |
1155 | StmtListOffsets.reserve(n: BC.DwCtx->getNumCompileUnits()); |
1156 | for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { |
1157 | DWARFDie CUDie = CU->getUnitDIE(); |
1158 | auto StmtList = dwarf::toSectionOffset(V: CUDie.find(Attr: dwarf::DW_AT_stmt_list)); |
1159 | if (!StmtList) |
1160 | continue; |
1161 | |
1162 | StmtListOffsets.push_back(x: *StmtList); |
1163 | } |
1164 | llvm::sort(C&: StmtListOffsets); |
1165 | |
1166 | // For each CU that was not processed, emit its line info as a binary blob. |
1167 | for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { |
1168 | if (BC.ProcessedCUs.count(x: CU.get())) |
1169 | continue; |
1170 | |
1171 | DWARFDie CUDie = CU->getUnitDIE(); |
1172 | auto StmtList = dwarf::toSectionOffset(V: CUDie.find(Attr: dwarf::DW_AT_stmt_list)); |
1173 | if (!StmtList) |
1174 | continue; |
1175 | |
1176 | StringRef DebugLineContents = CU->getLineSection().Data; |
1177 | |
1178 | const uint64_t Begin = *StmtList; |
1179 | |
1180 | // Statement list ends where the next unit contribution begins, or at the |
1181 | // end of the section. |
1182 | auto It = llvm::upper_bound(Range&: StmtListOffsets, Value: Begin); |
1183 | const uint64_t End = |
1184 | It == StmtListOffsets.end() ? DebugLineContents.size() : *It; |
1185 | |
1186 | BC.getDwarfLineTable(CUID: CU->getOffset()) |
1187 | .addRawContents(DebugLineContents: DebugLineContents.slice(Start: Begin, End)); |
1188 | } |
1189 | } |
1190 | |
1191 | void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { |
1192 | for (BinarySection &Section : BC.sections()) { |
1193 | if (!Section.hasRelocations()) |
1194 | continue; |
1195 | |
1196 | StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : "" ; |
1197 | Section.emitAsData(Streamer, SectionName: Prefix + Section.getName()); |
1198 | Section.clearRelocations(); |
1199 | } |
1200 | } |
1201 | |
1202 | namespace llvm { |
1203 | namespace bolt { |
1204 | |
1205 | void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, |
1206 | StringRef OrgSecPrefix) { |
1207 | BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); |
1208 | } |
1209 | |
1210 | void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, |
1211 | FunctionFragment &FF, bool EmitCodeOnly) { |
1212 | BinaryEmitter(Streamer, BF.getBinaryContext()) |
1213 | .emitFunctionBody(BF, FF, EmitCodeOnly); |
1214 | } |
1215 | |
1216 | } // namespace bolt |
1217 | } // namespace llvm |
1218 | |