| 1 | //===- bolt/Passes/LongJmp.cpp --------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the LongJmpPass class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "bolt/Passes/LongJmp.h" |
| 14 | #include "bolt/Core/ParallelUtilities.h" |
| 15 | #include "bolt/Utils/CommandLineOpts.h" |
| 16 | #include "llvm/Support/MathExtras.h" |
| 17 | |
| 18 | #define DEBUG_TYPE "longjmp" |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | namespace opts { |
| 23 | extern cl::OptionCategory BoltCategory; |
| 24 | extern cl::OptionCategory BoltOptCategory; |
| 25 | extern llvm::cl::opt<unsigned> AlignText; |
| 26 | extern cl::opt<unsigned> AlignFunctions; |
| 27 | extern cl::opt<bool> UseOldText; |
| 28 | extern cl::opt<bool> HotFunctionsAtEnd; |
| 29 | |
| 30 | static cl::opt<bool> GroupStubs("group-stubs" , |
| 31 | cl::desc("share stubs across functions" ), |
| 32 | cl::init(Val: true), cl::cat(BoltOptCategory)); |
| 33 | } |
| 34 | |
| 35 | namespace llvm { |
| 36 | namespace bolt { |
| 37 | |
| 38 | constexpr unsigned ColdFragAlign = 16; |
| 39 | |
| 40 | static void relaxStubToShortJmp(BinaryBasicBlock &StubBB, const MCSymbol *Tgt) { |
| 41 | const BinaryContext &BC = StubBB.getFunction()->getBinaryContext(); |
| 42 | InstructionListType Seq; |
| 43 | BC.MIB->createShortJmp(Seq, Target: Tgt, Ctx: BC.Ctx.get()); |
| 44 | StubBB.clear(); |
| 45 | StubBB.addInstructions(Begin: Seq.begin(), End: Seq.end()); |
| 46 | } |
| 47 | |
| 48 | static void relaxStubToLongJmp(BinaryBasicBlock &StubBB, const MCSymbol *Tgt) { |
| 49 | const BinaryContext &BC = StubBB.getFunction()->getBinaryContext(); |
| 50 | InstructionListType Seq; |
| 51 | BC.MIB->createLongJmp(Seq, Target: Tgt, Ctx: BC.Ctx.get()); |
| 52 | StubBB.clear(); |
| 53 | StubBB.addInstructions(Begin: Seq.begin(), End: Seq.end()); |
| 54 | } |
| 55 | |
| 56 | static BinaryBasicBlock *getBBAtHotColdSplitPoint(BinaryFunction &Func) { |
| 57 | if (!Func.isSplit() || Func.empty()) |
| 58 | return nullptr; |
| 59 | |
| 60 | assert(!(*Func.begin()).isCold() && "Entry cannot be cold" ); |
| 61 | for (auto I = Func.getLayout().block_begin(), |
| 62 | E = Func.getLayout().block_end(); |
| 63 | I != E; ++I) { |
| 64 | auto Next = std::next(x: I); |
| 65 | if (Next != E && (*Next)->isCold()) |
| 66 | return *I; |
| 67 | } |
| 68 | llvm_unreachable("No hot-cold split point found" ); |
| 69 | } |
| 70 | |
| 71 | static bool mayNeedStub(const BinaryContext &BC, const MCInst &Inst) { |
| 72 | return (BC.MIB->isBranch(Inst) || BC.MIB->isCall(Inst)) && |
| 73 | !BC.MIB->isIndirectBranch(Inst) && !BC.MIB->isIndirectCall(Inst); |
| 74 | } |
| 75 | |
| 76 | std::pair<std::unique_ptr<BinaryBasicBlock>, MCSymbol *> |
| 77 | LongJmpPass::createNewStub(BinaryBasicBlock &SourceBB, const MCSymbol *TgtSym, |
| 78 | bool TgtIsFunc, uint64_t AtAddress) { |
| 79 | BinaryFunction &Func = *SourceBB.getFunction(); |
| 80 | const BinaryContext &BC = Func.getBinaryContext(); |
| 81 | const bool IsCold = SourceBB.isCold(); |
| 82 | MCSymbol *StubSym = BC.Ctx->createNamedTempSymbol(Name: "Stub" ); |
| 83 | std::unique_ptr<BinaryBasicBlock> StubBB = Func.createBasicBlock(Label: StubSym); |
| 84 | MCInst Inst; |
| 85 | BC.MIB->createUncondBranch(Inst, TBB: TgtSym, Ctx: BC.Ctx.get()); |
| 86 | if (TgtIsFunc) |
| 87 | BC.MIB->convertJmpToTailCall(Inst); |
| 88 | StubBB->addInstruction(Inst); |
| 89 | StubBB->setExecutionCount(0); |
| 90 | |
| 91 | // Register this in stubs maps |
| 92 | auto registerInMap = [&](StubGroupsTy &Map) { |
| 93 | StubGroupTy &StubGroup = Map[TgtSym]; |
| 94 | StubGroup.insert( |
| 95 | I: llvm::lower_bound( |
| 96 | Range&: StubGroup, Value: std::make_pair(x&: AtAddress, y: nullptr), |
| 97 | C: [&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS, |
| 98 | const std::pair<uint64_t, BinaryBasicBlock *> &RHS) { |
| 99 | return LHS.first < RHS.first; |
| 100 | }), |
| 101 | Elt: std::make_pair(x&: AtAddress, y: StubBB.get())); |
| 102 | }; |
| 103 | |
| 104 | Stubs[&Func].insert(x: StubBB.get()); |
| 105 | StubBits[StubBB.get()] = BC.MIB->getUncondBranchEncodingSize(); |
| 106 | if (IsCold) { |
| 107 | registerInMap(ColdLocalStubs[&Func]); |
| 108 | if (opts::GroupStubs && TgtIsFunc) |
| 109 | registerInMap(ColdStubGroups); |
| 110 | ++NumColdStubs; |
| 111 | } else { |
| 112 | registerInMap(HotLocalStubs[&Func]); |
| 113 | if (opts::GroupStubs && TgtIsFunc) |
| 114 | registerInMap(HotStubGroups); |
| 115 | ++NumHotStubs; |
| 116 | } |
| 117 | |
| 118 | return std::make_pair(x: std::move(StubBB), y&: StubSym); |
| 119 | } |
| 120 | |
| 121 | BinaryBasicBlock *LongJmpPass::lookupStubFromGroup( |
| 122 | const StubGroupsTy &StubGroups, const BinaryFunction &Func, |
| 123 | const MCInst &Inst, const MCSymbol *TgtSym, uint64_t DotAddress) const { |
| 124 | const BinaryContext &BC = Func.getBinaryContext(); |
| 125 | auto CandidatesIter = StubGroups.find(Val: TgtSym); |
| 126 | if (CandidatesIter == StubGroups.end()) |
| 127 | return nullptr; |
| 128 | const StubGroupTy &Candidates = CandidatesIter->second; |
| 129 | if (Candidates.empty()) |
| 130 | return nullptr; |
| 131 | auto Cand = llvm::lower_bound( |
| 132 | Range: Candidates, Value: std::make_pair(x&: DotAddress, y: nullptr), |
| 133 | C: [&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS, |
| 134 | const std::pair<uint64_t, BinaryBasicBlock *> &RHS) { |
| 135 | return LHS.first < RHS.first; |
| 136 | }); |
| 137 | if (Cand == Candidates.end()) { |
| 138 | Cand = std::prev(x: Cand); |
| 139 | } else if (Cand != Candidates.begin()) { |
| 140 | const StubTy *LeftCand = std::prev(x: Cand); |
| 141 | if (Cand->first - DotAddress > DotAddress - LeftCand->first) |
| 142 | Cand = LeftCand; |
| 143 | } |
| 144 | int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1; |
| 145 | assert(BitsAvail < 63 && "PCRelEncodingSize is too large to use int64_t to" |
| 146 | "check for out-of-bounds." ); |
| 147 | int64_t MaxVal = (1ULL << BitsAvail) - 1; |
| 148 | int64_t MinVal = -(1ULL << BitsAvail); |
| 149 | uint64_t PCRelTgtAddress = Cand->first; |
| 150 | int64_t PCOffset = (int64_t)(PCRelTgtAddress - DotAddress); |
| 151 | |
| 152 | LLVM_DEBUG({ |
| 153 | if (Candidates.size() > 1) |
| 154 | dbgs() << "Considering stub group with " << Candidates.size() |
| 155 | << " candidates. DotAddress is " << Twine::utohexstr(DotAddress) |
| 156 | << ", chosen candidate address is " |
| 157 | << Twine::utohexstr(Cand->first) << "\n" ; |
| 158 | }); |
| 159 | return (PCOffset < MinVal || PCOffset > MaxVal) ? nullptr : Cand->second; |
| 160 | } |
| 161 | |
| 162 | BinaryBasicBlock * |
| 163 | LongJmpPass::lookupGlobalStub(const BinaryBasicBlock &SourceBB, |
| 164 | const MCInst &Inst, const MCSymbol *TgtSym, |
| 165 | uint64_t DotAddress) const { |
| 166 | const BinaryFunction &Func = *SourceBB.getFunction(); |
| 167 | const StubGroupsTy &StubGroups = |
| 168 | SourceBB.isCold() ? ColdStubGroups : HotStubGroups; |
| 169 | return lookupStubFromGroup(StubGroups, Func, Inst, TgtSym, DotAddress); |
| 170 | } |
| 171 | |
| 172 | BinaryBasicBlock *LongJmpPass::lookupLocalStub(const BinaryBasicBlock &SourceBB, |
| 173 | const MCInst &Inst, |
| 174 | const MCSymbol *TgtSym, |
| 175 | uint64_t DotAddress) const { |
| 176 | const BinaryFunction &Func = *SourceBB.getFunction(); |
| 177 | const DenseMap<const BinaryFunction *, StubGroupsTy> &StubGroups = |
| 178 | SourceBB.isCold() ? ColdLocalStubs : HotLocalStubs; |
| 179 | const auto Iter = StubGroups.find(Val: &Func); |
| 180 | if (Iter == StubGroups.end()) |
| 181 | return nullptr; |
| 182 | return lookupStubFromGroup(StubGroups: Iter->second, Func, Inst, TgtSym, DotAddress); |
| 183 | } |
| 184 | |
| 185 | std::unique_ptr<BinaryBasicBlock> |
| 186 | LongJmpPass::replaceTargetWithStub(BinaryBasicBlock &BB, MCInst &Inst, |
| 187 | uint64_t DotAddress, |
| 188 | uint64_t StubCreationAddress) { |
| 189 | const BinaryFunction &Func = *BB.getFunction(); |
| 190 | const BinaryContext &BC = Func.getBinaryContext(); |
| 191 | std::unique_ptr<BinaryBasicBlock> NewBB; |
| 192 | const MCSymbol *TgtSym = BC.MIB->getTargetSymbol(Inst); |
| 193 | assert(TgtSym && "getTargetSymbol failed" ); |
| 194 | |
| 195 | BinaryBasicBlock::BinaryBranchInfo BI{.Count: 0, .MispredictedCount: 0}; |
| 196 | BinaryBasicBlock *TgtBB = BB.getSuccessor(Label: TgtSym, BI); |
| 197 | auto LocalStubsIter = Stubs.find(Val: &Func); |
| 198 | |
| 199 | // If already using stub and the stub is from another function, create a local |
| 200 | // stub, since the foreign stub is now out of range |
| 201 | if (!TgtBB) { |
| 202 | auto SSIter = SharedStubs.find(Val: TgtSym); |
| 203 | if (SSIter != SharedStubs.end()) { |
| 204 | TgtSym = BC.MIB->getTargetSymbol(Inst: *SSIter->second->begin()); |
| 205 | --NumSharedStubs; |
| 206 | } |
| 207 | } else if (LocalStubsIter != Stubs.end() && |
| 208 | LocalStubsIter->second.count(x: TgtBB)) { |
| 209 | // The TgtBB and TgtSym now are the local out-of-range stub and its label. |
| 210 | // So, we are attempting to restore BB to its previous state without using |
| 211 | // this stub. |
| 212 | TgtSym = BC.MIB->getTargetSymbol(Inst: *TgtBB->begin()); |
| 213 | assert(TgtSym && |
| 214 | "First instruction is expected to contain a target symbol." ); |
| 215 | BinaryBasicBlock *TgtBBSucc = TgtBB->getSuccessor(Label: TgtSym, BI); |
| 216 | |
| 217 | // TgtBB might have no successor. e.g. a stub for a function call. |
| 218 | if (TgtBBSucc) { |
| 219 | BB.replaceSuccessor(Succ: TgtBB, NewSucc: TgtBBSucc, Count: BI.Count, MispredictedCount: BI.MispredictedCount); |
| 220 | assert(TgtBB->getExecutionCount() >= BI.Count && |
| 221 | "At least equal or greater than the branch count." ); |
| 222 | TgtBB->setExecutionCount(TgtBB->getExecutionCount() - BI.Count); |
| 223 | } |
| 224 | |
| 225 | TgtBB = TgtBBSucc; |
| 226 | } |
| 227 | |
| 228 | BinaryBasicBlock *StubBB = lookupLocalStub(SourceBB: BB, Inst, TgtSym, DotAddress); |
| 229 | // If not found, look it up in globally shared stub maps if it is a function |
| 230 | // call (TgtBB is not set) |
| 231 | if (!StubBB && !TgtBB) { |
| 232 | StubBB = lookupGlobalStub(SourceBB: BB, Inst, TgtSym, DotAddress); |
| 233 | if (StubBB) { |
| 234 | SharedStubs[StubBB->getLabel()] = StubBB; |
| 235 | ++NumSharedStubs; |
| 236 | } |
| 237 | } |
| 238 | MCSymbol *StubSymbol = StubBB ? StubBB->getLabel() : nullptr; |
| 239 | |
| 240 | if (!StubBB) { |
| 241 | std::tie(args&: NewBB, args&: StubSymbol) = |
| 242 | createNewStub(SourceBB&: BB, TgtSym, /*is func?*/ TgtIsFunc: !TgtBB, AtAddress: StubCreationAddress); |
| 243 | StubBB = NewBB.get(); |
| 244 | } |
| 245 | |
| 246 | // Local branch |
| 247 | if (TgtBB) { |
| 248 | uint64_t OrigCount = BI.Count; |
| 249 | uint64_t OrigMispreds = BI.MispredictedCount; |
| 250 | BB.replaceSuccessor(Succ: TgtBB, NewSucc: StubBB, Count: OrigCount, MispredictedCount: OrigMispreds); |
| 251 | StubBB->setExecutionCount(StubBB->getExecutionCount() + OrigCount); |
| 252 | if (NewBB) { |
| 253 | StubBB->addSuccessor(Succ: TgtBB, Count: OrigCount, MispredictedCount: OrigMispreds); |
| 254 | StubBB->setIsCold(BB.isCold()); |
| 255 | } |
| 256 | // Call / tail call |
| 257 | } else { |
| 258 | StubBB->setExecutionCount(StubBB->getExecutionCount() + |
| 259 | BB.getExecutionCount()); |
| 260 | if (NewBB) { |
| 261 | assert(TgtBB == nullptr); |
| 262 | StubBB->setIsCold(BB.isCold()); |
| 263 | // Set as entry point because this block is valid but we have no preds |
| 264 | StubBB->getFunction()->addEntryPoint(BB: *StubBB); |
| 265 | } |
| 266 | } |
| 267 | BC.MIB->replaceBranchTarget(Inst, TBB: StubSymbol, Ctx: BC.Ctx.get()); |
| 268 | |
| 269 | return NewBB; |
| 270 | } |
| 271 | |
| 272 | void LongJmpPass::updateStubGroups() { |
| 273 | auto update = [&](StubGroupsTy &StubGroups) { |
| 274 | for (auto &KeyVal : StubGroups) { |
| 275 | for (StubTy &Elem : KeyVal.second) |
| 276 | Elem.first = BBAddresses[Elem.second]; |
| 277 | llvm::sort(C&: KeyVal.second, Comp: llvm::less_first()); |
| 278 | } |
| 279 | }; |
| 280 | |
| 281 | for (auto &KeyVal : HotLocalStubs) |
| 282 | update(KeyVal.second); |
| 283 | for (auto &KeyVal : ColdLocalStubs) |
| 284 | update(KeyVal.second); |
| 285 | update(HotStubGroups); |
| 286 | update(ColdStubGroups); |
| 287 | } |
| 288 | |
| 289 | void LongJmpPass::tentativeBBLayout(const BinaryFunction &Func) { |
| 290 | const BinaryContext &BC = Func.getBinaryContext(); |
| 291 | uint64_t HotDot = HotAddresses[&Func]; |
| 292 | uint64_t ColdDot = ColdAddresses[&Func]; |
| 293 | bool Cold = false; |
| 294 | for (const BinaryBasicBlock *BB : Func.getLayout().blocks()) { |
| 295 | if (Cold || BB->isCold()) { |
| 296 | Cold = true; |
| 297 | BBAddresses[BB] = ColdDot; |
| 298 | ColdDot += BC.computeCodeSize(Beg: BB->begin(), End: BB->end()); |
| 299 | } else { |
| 300 | BBAddresses[BB] = HotDot; |
| 301 | HotDot += BC.computeCodeSize(Beg: BB->begin(), End: BB->end()); |
| 302 | } |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | uint64_t LongJmpPass::tentativeLayoutRelocColdPart( |
| 307 | const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions, |
| 308 | uint64_t DotAddress) { |
| 309 | DotAddress = alignTo(Size: DotAddress, A: llvm::Align(opts::AlignFunctions)); |
| 310 | for (BinaryFunction *Func : SortedFunctions) { |
| 311 | if (!Func->isSplit()) |
| 312 | continue; |
| 313 | DotAddress = alignTo(Value: DotAddress, Align: Func->getMinAlignment()); |
| 314 | uint64_t Pad = |
| 315 | offsetToAlignment(Value: DotAddress, Alignment: llvm::Align(Func->getAlignment())); |
| 316 | if (Pad <= Func->getMaxColdAlignmentBytes()) |
| 317 | DotAddress += Pad; |
| 318 | ColdAddresses[Func] = DotAddress; |
| 319 | LLVM_DEBUG(dbgs() << Func->getPrintName() << " cold tentative: " |
| 320 | << Twine::utohexstr(DotAddress) << "\n" ); |
| 321 | DotAddress += Func->estimateColdSize(); |
| 322 | DotAddress = alignTo(Value: DotAddress, Align: Func->getConstantIslandAlignment()); |
| 323 | DotAddress += Func->estimateConstantIslandSize(); |
| 324 | } |
| 325 | return DotAddress; |
| 326 | } |
| 327 | |
| 328 | uint64_t LongJmpPass::tentativeLayoutRelocMode( |
| 329 | const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions, |
| 330 | uint64_t DotAddress) { |
| 331 | // Compute hot cold frontier |
| 332 | int64_t LastHotIndex = -1u; |
| 333 | uint32_t CurrentIndex = 0; |
| 334 | if (opts::HotFunctionsAtEnd) { |
| 335 | for (BinaryFunction *BF : SortedFunctions) { |
| 336 | if (BF->hasValidIndex()) { |
| 337 | LastHotIndex = CurrentIndex; |
| 338 | break; |
| 339 | } |
| 340 | |
| 341 | ++CurrentIndex; |
| 342 | } |
| 343 | } else { |
| 344 | for (BinaryFunction *BF : SortedFunctions) { |
| 345 | if (!BF->hasValidIndex()) { |
| 346 | LastHotIndex = CurrentIndex; |
| 347 | break; |
| 348 | } |
| 349 | |
| 350 | ++CurrentIndex; |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | // Hot |
| 355 | CurrentIndex = 0; |
| 356 | bool ColdLayoutDone = false; |
| 357 | auto runColdLayout = [&]() { |
| 358 | DotAddress = tentativeLayoutRelocColdPart(BC, SortedFunctions, DotAddress); |
| 359 | ColdLayoutDone = true; |
| 360 | if (opts::HotFunctionsAtEnd) |
| 361 | DotAddress = alignTo(Value: DotAddress, Align: opts::AlignText); |
| 362 | }; |
| 363 | for (BinaryFunction *Func : SortedFunctions) { |
| 364 | if (!BC.shouldEmit(Function: *Func)) { |
| 365 | HotAddresses[Func] = Func->getAddress(); |
| 366 | continue; |
| 367 | } |
| 368 | |
| 369 | if (!ColdLayoutDone && CurrentIndex >= LastHotIndex) |
| 370 | runColdLayout(); |
| 371 | |
| 372 | DotAddress = alignTo(Value: DotAddress, Align: Func->getMinAlignment()); |
| 373 | uint64_t Pad = |
| 374 | offsetToAlignment(Value: DotAddress, Alignment: llvm::Align(Func->getAlignment())); |
| 375 | if (Pad <= Func->getMaxAlignmentBytes()) |
| 376 | DotAddress += Pad; |
| 377 | HotAddresses[Func] = DotAddress; |
| 378 | LLVM_DEBUG(dbgs() << Func->getPrintName() << " tentative: " |
| 379 | << Twine::utohexstr(DotAddress) << "\n" ); |
| 380 | if (!Func->isSplit()) |
| 381 | DotAddress += Func->estimateSize(); |
| 382 | else |
| 383 | DotAddress += Func->estimateHotSize(); |
| 384 | |
| 385 | DotAddress = alignTo(Value: DotAddress, Align: Func->getConstantIslandAlignment()); |
| 386 | DotAddress += Func->estimateConstantIslandSize(); |
| 387 | ++CurrentIndex; |
| 388 | } |
| 389 | |
| 390 | // Ensure that tentative code layout always runs for cold blocks. |
| 391 | if (!ColdLayoutDone) |
| 392 | runColdLayout(); |
| 393 | |
| 394 | // BBs |
| 395 | for (BinaryFunction *Func : SortedFunctions) |
| 396 | tentativeBBLayout(Func: *Func); |
| 397 | |
| 398 | return DotAddress; |
| 399 | } |
| 400 | |
| 401 | void LongJmpPass::tentativeLayout( |
| 402 | const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions) { |
| 403 | uint64_t DotAddress = BC.LayoutStartAddress; |
| 404 | |
| 405 | if (!BC.HasRelocations) { |
| 406 | for (BinaryFunction *Func : SortedFunctions) { |
| 407 | HotAddresses[Func] = Func->getAddress(); |
| 408 | DotAddress = alignTo(Value: DotAddress, Align: ColdFragAlign); |
| 409 | ColdAddresses[Func] = DotAddress; |
| 410 | if (Func->isSplit()) |
| 411 | DotAddress += Func->estimateColdSize(); |
| 412 | tentativeBBLayout(Func: *Func); |
| 413 | } |
| 414 | |
| 415 | return; |
| 416 | } |
| 417 | |
| 418 | // Relocation mode |
| 419 | uint64_t EstimatedTextSize = 0; |
| 420 | if (opts::UseOldText) { |
| 421 | EstimatedTextSize = tentativeLayoutRelocMode(BC, SortedFunctions, DotAddress: 0); |
| 422 | |
| 423 | // Initial padding |
| 424 | if (EstimatedTextSize <= BC.OldTextSectionSize) { |
| 425 | DotAddress = BC.OldTextSectionAddress; |
| 426 | uint64_t Pad = |
| 427 | offsetToAlignment(Value: DotAddress, Alignment: llvm::Align(opts::AlignText)); |
| 428 | if (Pad + EstimatedTextSize <= BC.OldTextSectionSize) { |
| 429 | DotAddress += Pad; |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | if (!EstimatedTextSize || EstimatedTextSize > BC.OldTextSectionSize) |
| 435 | DotAddress = alignTo(Value: BC.LayoutStartAddress, Align: opts::AlignText); |
| 436 | |
| 437 | tentativeLayoutRelocMode(BC, SortedFunctions, DotAddress); |
| 438 | } |
| 439 | |
| 440 | bool LongJmpPass::usesStub(const BinaryFunction &Func, |
| 441 | const MCInst &Inst) const { |
| 442 | const MCSymbol *TgtSym = Func.getBinaryContext().MIB->getTargetSymbol(Inst); |
| 443 | const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(Label: TgtSym); |
| 444 | auto Iter = Stubs.find(Val: &Func); |
| 445 | if (Iter != Stubs.end()) |
| 446 | return Iter->second.count(x: TgtBB); |
| 447 | return false; |
| 448 | } |
| 449 | |
| 450 | uint64_t LongJmpPass::getSymbolAddress(const BinaryContext &BC, |
| 451 | const MCSymbol *Target, |
| 452 | const BinaryBasicBlock *TgtBB) const { |
| 453 | if (TgtBB) { |
| 454 | auto Iter = BBAddresses.find(Val: TgtBB); |
| 455 | assert(Iter != BBAddresses.end() && "Unrecognized BB" ); |
| 456 | return Iter->second; |
| 457 | } |
| 458 | uint64_t EntryID = 0; |
| 459 | const BinaryFunction *TargetFunc = BC.getFunctionForSymbol(Symbol: Target, EntryDesc: &EntryID); |
| 460 | auto Iter = HotAddresses.find(Val: TargetFunc); |
| 461 | if (Iter == HotAddresses.end() || (TargetFunc && EntryID)) { |
| 462 | // Look at BinaryContext's resolution for this symbol - this is a symbol not |
| 463 | // mapped to a BinaryFunction |
| 464 | ErrorOr<uint64_t> ValueOrError = BC.getSymbolValue(Symbol: *Target); |
| 465 | assert(ValueOrError && "Unrecognized symbol" ); |
| 466 | return *ValueOrError; |
| 467 | } |
| 468 | return Iter->second; |
| 469 | } |
| 470 | |
| 471 | Error LongJmpPass::relaxStub(BinaryBasicBlock &StubBB, bool &Modified) { |
| 472 | const BinaryFunction &Func = *StubBB.getFunction(); |
| 473 | const BinaryContext &BC = Func.getBinaryContext(); |
| 474 | const int Bits = StubBits[&StubBB]; |
| 475 | // Already working with the largest range? |
| 476 | if (Bits == static_cast<int>(BC.AsmInfo->getCodePointerSize() * 8)) |
| 477 | return Error::success(); |
| 478 | |
| 479 | const static int RangeShortJmp = BC.MIB->getShortJmpEncodingSize(); |
| 480 | const static int RangeSingleInstr = BC.MIB->getUncondBranchEncodingSize(); |
| 481 | const static uint64_t ShortJmpMask = ~((1ULL << RangeShortJmp) - 1); |
| 482 | const static uint64_t SingleInstrMask = |
| 483 | ~((1ULL << (RangeSingleInstr - 1)) - 1); |
| 484 | |
| 485 | const MCSymbol *RealTargetSym = BC.MIB->getTargetSymbol(Inst: *StubBB.begin()); |
| 486 | const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(Label: RealTargetSym); |
| 487 | uint64_t TgtAddress = getSymbolAddress(BC, Target: RealTargetSym, TgtBB); |
| 488 | uint64_t DotAddress = BBAddresses[&StubBB]; |
| 489 | uint64_t PCRelTgtAddress = DotAddress > TgtAddress ? DotAddress - TgtAddress |
| 490 | : TgtAddress - DotAddress; |
| 491 | // If it fits in one instruction, do not relax |
| 492 | if (!(PCRelTgtAddress & SingleInstrMask)) |
| 493 | return Error::success(); |
| 494 | |
| 495 | // Fits short jmp |
| 496 | if (!(PCRelTgtAddress & ShortJmpMask)) { |
| 497 | if (Bits >= RangeShortJmp) |
| 498 | return Error::success(); |
| 499 | |
| 500 | LLVM_DEBUG(dbgs() << "Relaxing stub to short jump. PCRelTgtAddress = " |
| 501 | << Twine::utohexstr(PCRelTgtAddress) |
| 502 | << " RealTargetSym = " << RealTargetSym->getName() |
| 503 | << "\n" ); |
| 504 | relaxStubToShortJmp(StubBB, Tgt: RealTargetSym); |
| 505 | StubBits[&StubBB] = RangeShortJmp; |
| 506 | Modified = true; |
| 507 | return Error::success(); |
| 508 | } |
| 509 | |
| 510 | // The long jmp uses absolute address on AArch64 |
| 511 | // So we could not use it for PIC binaries |
| 512 | if (BC.isAArch64() && !BC.HasFixedLoadAddress) |
| 513 | return createFatalBOLTError( |
| 514 | S: "BOLT-ERROR: Unable to relax stub for PIC binary\n" ); |
| 515 | |
| 516 | LLVM_DEBUG(dbgs() << "Relaxing stub to long jump. PCRelTgtAddress = " |
| 517 | << Twine::utohexstr(PCRelTgtAddress) |
| 518 | << " RealTargetSym = " << RealTargetSym->getName() << "\n" ); |
| 519 | relaxStubToLongJmp(StubBB, Tgt: RealTargetSym); |
| 520 | StubBits[&StubBB] = static_cast<int>(BC.AsmInfo->getCodePointerSize() * 8); |
| 521 | Modified = true; |
| 522 | return Error::success(); |
| 523 | } |
| 524 | |
| 525 | bool LongJmpPass::needsStub(const BinaryBasicBlock &BB, const MCInst &Inst, |
| 526 | uint64_t DotAddress) const { |
| 527 | const BinaryFunction &Func = *BB.getFunction(); |
| 528 | const BinaryContext &BC = Func.getBinaryContext(); |
| 529 | const MCSymbol *TgtSym = BC.MIB->getTargetSymbol(Inst); |
| 530 | assert(TgtSym && "getTargetSymbol failed" ); |
| 531 | |
| 532 | const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(Label: TgtSym); |
| 533 | // Check for shared stubs from foreign functions |
| 534 | if (!TgtBB) { |
| 535 | auto SSIter = SharedStubs.find(Val: TgtSym); |
| 536 | if (SSIter != SharedStubs.end()) |
| 537 | TgtBB = SSIter->second; |
| 538 | } |
| 539 | |
| 540 | int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1; |
| 541 | assert(BitsAvail < 63 && "PCRelEncodingSize is too large to use int64_t to" |
| 542 | "check for out-of-bounds." ); |
| 543 | int64_t MaxVal = (1ULL << BitsAvail) - 1; |
| 544 | int64_t MinVal = -(1ULL << BitsAvail); |
| 545 | |
| 546 | uint64_t PCRelTgtAddress = getSymbolAddress(BC, Target: TgtSym, TgtBB); |
| 547 | int64_t PCOffset = (int64_t)(PCRelTgtAddress - DotAddress); |
| 548 | |
| 549 | return PCOffset < MinVal || PCOffset > MaxVal; |
| 550 | } |
| 551 | |
| 552 | Error LongJmpPass::relax(BinaryFunction &Func, bool &Modified) { |
| 553 | const BinaryContext &BC = Func.getBinaryContext(); |
| 554 | |
| 555 | assert(BC.isAArch64() && "Unsupported arch" ); |
| 556 | constexpr int InsnSize = 4; // AArch64 |
| 557 | std::vector<std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>>> |
| 558 | Insertions; |
| 559 | |
| 560 | BinaryBasicBlock *Frontier = getBBAtHotColdSplitPoint(Func); |
| 561 | uint64_t FrontierAddress = Frontier ? BBAddresses[Frontier] : 0; |
| 562 | if (FrontierAddress) |
| 563 | FrontierAddress += Frontier->getNumNonPseudos() * InsnSize; |
| 564 | |
| 565 | // Add necessary stubs for branch targets we know we can't fit in the |
| 566 | // instruction |
| 567 | for (BinaryBasicBlock &BB : Func) { |
| 568 | uint64_t DotAddress = BBAddresses[&BB]; |
| 569 | // Stubs themselves are relaxed on the next loop |
| 570 | if (Stubs[&Func].count(x: &BB)) |
| 571 | continue; |
| 572 | |
| 573 | for (MCInst &Inst : BB) { |
| 574 | if (BC.MIB->isPseudo(Inst)) |
| 575 | continue; |
| 576 | |
| 577 | if (!mayNeedStub(BC, Inst)) { |
| 578 | DotAddress += InsnSize; |
| 579 | continue; |
| 580 | } |
| 581 | |
| 582 | // Check and relax direct branch or call |
| 583 | if (!needsStub(BB, Inst, DotAddress)) { |
| 584 | DotAddress += InsnSize; |
| 585 | continue; |
| 586 | } |
| 587 | Modified = true; |
| 588 | |
| 589 | // Insert stubs close to the patched BB if call, but far away from the |
| 590 | // hot path if a branch, since this branch target is the cold region |
| 591 | // (but first check that the far away stub will be in range). |
| 592 | BinaryBasicBlock *InsertionPoint = &BB; |
| 593 | if (Func.isSimple() && !BC.MIB->isCall(Inst) && FrontierAddress && |
| 594 | !BB.isCold()) { |
| 595 | int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1; |
| 596 | uint64_t Mask = ~((1ULL << BitsAvail) - 1); |
| 597 | assert(FrontierAddress > DotAddress && |
| 598 | "Hot code should be before the frontier" ); |
| 599 | uint64_t PCRelTgt = FrontierAddress - DotAddress; |
| 600 | if (!(PCRelTgt & Mask)) |
| 601 | InsertionPoint = Frontier; |
| 602 | } |
| 603 | // Always put stubs at the end of the function if non-simple. We can't |
| 604 | // change the layout of non-simple functions because it has jump tables |
| 605 | // that we do not control. |
| 606 | if (!Func.isSimple()) |
| 607 | InsertionPoint = &*std::prev(x: Func.end()); |
| 608 | |
| 609 | // Create a stub to handle a far-away target |
| 610 | Insertions.emplace_back(args&: InsertionPoint, |
| 611 | args: replaceTargetWithStub(BB, Inst, DotAddress, |
| 612 | StubCreationAddress: InsertionPoint == Frontier |
| 613 | ? FrontierAddress |
| 614 | : DotAddress)); |
| 615 | |
| 616 | DotAddress += InsnSize; |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | // Relax stubs if necessary |
| 621 | for (BinaryBasicBlock &BB : Func) { |
| 622 | if (!Stubs[&Func].count(x: &BB) || !BB.isValid()) |
| 623 | continue; |
| 624 | |
| 625 | if (auto E = relaxStub(StubBB&: BB, Modified)) |
| 626 | return Error(std::move(E)); |
| 627 | } |
| 628 | |
| 629 | for (std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>> &Elmt : |
| 630 | Insertions) { |
| 631 | if (!Elmt.second) |
| 632 | continue; |
| 633 | std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; |
| 634 | NewBBs.emplace_back(args: std::move(Elmt.second)); |
| 635 | Func.insertBasicBlocks(Start: Elmt.first, NewBBs: std::move(NewBBs), UpdateLayout: true); |
| 636 | } |
| 637 | |
| 638 | return Error::success(); |
| 639 | } |
| 640 | |
| 641 | void LongJmpPass::relaxLocalBranches(BinaryFunction &BF) { |
| 642 | BinaryContext &BC = BF.getBinaryContext(); |
| 643 | auto &MIB = BC.MIB; |
| 644 | |
| 645 | // Quick path. |
| 646 | if (!BF.isSplit() && BF.estimateSize() < ShortestJumpSpan) |
| 647 | return; |
| 648 | |
| 649 | auto isBranchOffsetInRange = [&](const MCInst &Inst, int64_t Offset) { |
| 650 | const unsigned Bits = MIB->getPCRelEncodingSize(Inst); |
| 651 | return isIntN(N: Bits, x: Offset); |
| 652 | }; |
| 653 | |
| 654 | auto isBlockInRange = [&](const MCInst &Inst, uint64_t InstAddress, |
| 655 | const BinaryBasicBlock &BB) { |
| 656 | const int64_t Offset = BB.getOutputStartAddress() - InstAddress; |
| 657 | return isBranchOffsetInRange(Inst, Offset); |
| 658 | }; |
| 659 | |
| 660 | // Keep track of *all* function trampolines that are going to be added to the |
| 661 | // function layout at the end of relaxation. |
| 662 | std::vector<std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>>> |
| 663 | FunctionTrampolines; |
| 664 | |
| 665 | // Function fragments are relaxed independently. |
| 666 | for (FunctionFragment &FF : BF.getLayout().fragments()) { |
| 667 | // Fill out code size estimation for the fragment. Use output BB address |
| 668 | // ranges to store offsets from the start of the function fragment. |
| 669 | uint64_t CodeSize = 0; |
| 670 | for (BinaryBasicBlock *BB : FF) { |
| 671 | BB->setOutputStartAddress(CodeSize); |
| 672 | CodeSize += BB->estimateSize(); |
| 673 | BB->setOutputEndAddress(CodeSize); |
| 674 | } |
| 675 | |
| 676 | // Dynamically-updated size of the fragment. |
| 677 | uint64_t FragmentSize = CodeSize; |
| 678 | |
| 679 | // Size of the trampoline in bytes. |
| 680 | constexpr uint64_t TrampolineSize = 4; |
| 681 | |
| 682 | // Trampolines created for the fragment. DestinationBB -> TrampolineBB. |
| 683 | // NB: here we store only the first trampoline created for DestinationBB. |
| 684 | DenseMap<const BinaryBasicBlock *, BinaryBasicBlock *> FragmentTrampolines; |
| 685 | |
| 686 | // Create a trampoline code after \p BB or at the end of the fragment if BB |
| 687 | // is nullptr. If \p UpdateOffsets is true, update FragmentSize and offsets |
| 688 | // for basic blocks affected by the insertion of the trampoline. |
| 689 | auto addTrampolineAfter = [&](BinaryBasicBlock *BB, |
| 690 | BinaryBasicBlock *TargetBB, uint64_t Count, |
| 691 | bool UpdateOffsets = true) { |
| 692 | FunctionTrampolines.emplace_back(args: BB ? BB : FF.back(), |
| 693 | args: BF.createBasicBlock()); |
| 694 | BinaryBasicBlock *TrampolineBB = FunctionTrampolines.back().second.get(); |
| 695 | |
| 696 | MCInst Inst; |
| 697 | { |
| 698 | auto L = BC.scopeLock(); |
| 699 | MIB->createUncondBranch(Inst, TBB: TargetBB->getLabel(), Ctx: BC.Ctx.get()); |
| 700 | } |
| 701 | TrampolineBB->addInstruction(Inst); |
| 702 | TrampolineBB->addSuccessor(Succ: TargetBB, Count); |
| 703 | TrampolineBB->setExecutionCount(Count); |
| 704 | const uint64_t TrampolineAddress = |
| 705 | BB ? BB->getOutputEndAddress() : FragmentSize; |
| 706 | TrampolineBB->setOutputStartAddress(TrampolineAddress); |
| 707 | TrampolineBB->setOutputEndAddress(TrampolineAddress + TrampolineSize); |
| 708 | TrampolineBB->setFragmentNum(FF.getFragmentNum()); |
| 709 | |
| 710 | if (!FragmentTrampolines.lookup(Val: TargetBB)) |
| 711 | FragmentTrampolines[TargetBB] = TrampolineBB; |
| 712 | |
| 713 | if (!UpdateOffsets) |
| 714 | return TrampolineBB; |
| 715 | |
| 716 | FragmentSize += TrampolineSize; |
| 717 | |
| 718 | // If the trampoline was added at the end of the fragment, offsets of |
| 719 | // other fragments should stay intact. |
| 720 | if (!BB) |
| 721 | return TrampolineBB; |
| 722 | |
| 723 | // Update offsets for blocks after BB. |
| 724 | for (BinaryBasicBlock *IBB : FF) { |
| 725 | if (IBB->getOutputStartAddress() >= TrampolineAddress) { |
| 726 | IBB->setOutputStartAddress(IBB->getOutputStartAddress() + |
| 727 | TrampolineSize); |
| 728 | IBB->setOutputEndAddress(IBB->getOutputEndAddress() + TrampolineSize); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | // Update offsets for trampolines in this fragment that are placed after |
| 733 | // the new trampoline. Note that trampoline blocks are not part of the |
| 734 | // function/fragment layout until we add them right before the return |
| 735 | // from relaxLocalBranches(). |
| 736 | for (auto &Pair : FunctionTrampolines) { |
| 737 | BinaryBasicBlock *IBB = Pair.second.get(); |
| 738 | if (IBB->getFragmentNum() != TrampolineBB->getFragmentNum()) |
| 739 | continue; |
| 740 | if (IBB == TrampolineBB) |
| 741 | continue; |
| 742 | if (IBB->getOutputStartAddress() >= TrampolineAddress) { |
| 743 | IBB->setOutputStartAddress(IBB->getOutputStartAddress() + |
| 744 | TrampolineSize); |
| 745 | IBB->setOutputEndAddress(IBB->getOutputEndAddress() + TrampolineSize); |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | return TrampolineBB; |
| 750 | }; |
| 751 | |
| 752 | // Pre-populate trampolines by splitting unconditional branches from the |
| 753 | // containing basic block. |
| 754 | for (BinaryBasicBlock *BB : FF) { |
| 755 | MCInst *Inst = BB->getLastNonPseudoInstr(); |
| 756 | if (!Inst || !MIB->isUnconditionalBranch(Inst: *Inst)) |
| 757 | continue; |
| 758 | |
| 759 | const MCSymbol *TargetSymbol = MIB->getTargetSymbol(Inst: *Inst); |
| 760 | BB->eraseInstruction(II: BB->findInstruction(Inst)); |
| 761 | BB->setOutputEndAddress(BB->getOutputEndAddress() - TrampolineSize); |
| 762 | |
| 763 | BinaryBasicBlock::BinaryBranchInfo BI; |
| 764 | BinaryBasicBlock *TargetBB = BB->getSuccessor(Label: TargetSymbol, BI); |
| 765 | |
| 766 | BinaryBasicBlock *TrampolineBB = |
| 767 | addTrampolineAfter(BB, TargetBB, BI.Count, /*UpdateOffsets*/ false); |
| 768 | BB->replaceSuccessor(Succ: TargetBB, NewSucc: TrampolineBB, Count: BI.Count); |
| 769 | } |
| 770 | |
| 771 | /// Relax the branch \p Inst in basic block \p BB that targets \p TargetBB. |
| 772 | /// \p InstAddress contains offset of the branch from the start of the |
| 773 | /// containing function fragment. |
| 774 | auto relaxBranch = [&](BinaryBasicBlock *BB, MCInst &Inst, |
| 775 | uint64_t InstAddress, BinaryBasicBlock *TargetBB) { |
| 776 | BinaryFunction *BF = BB->getParent(); |
| 777 | |
| 778 | // Use branch taken count for optimal relaxation. |
| 779 | const uint64_t Count = BB->getBranchInfo(Succ: *TargetBB).Count; |
| 780 | assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE && |
| 781 | "Expected valid branch execution count" ); |
| 782 | |
| 783 | // Try to reuse an existing trampoline without introducing any new code. |
| 784 | BinaryBasicBlock *TrampolineBB = FragmentTrampolines.lookup(Val: TargetBB); |
| 785 | if (TrampolineBB && isBlockInRange(Inst, InstAddress, *TrampolineBB)) { |
| 786 | BB->replaceSuccessor(Succ: TargetBB, NewSucc: TrampolineBB, Count); |
| 787 | TrampolineBB->setExecutionCount(TrampolineBB->getExecutionCount() + |
| 788 | Count); |
| 789 | auto L = BC.scopeLock(); |
| 790 | MIB->replaceBranchTarget(Inst, TBB: TrampolineBB->getLabel(), Ctx: BC.Ctx.get()); |
| 791 | return; |
| 792 | } |
| 793 | |
| 794 | // For cold branches, check if we can introduce a trampoline at the end |
| 795 | // of the fragment that is within the branch reach. Note that such |
| 796 | // trampoline may change address later and become unreachable in which |
| 797 | // case we will need further relaxation. |
| 798 | const int64_t OffsetToEnd = FragmentSize - InstAddress; |
| 799 | if (Count == 0 && isBranchOffsetInRange(Inst, OffsetToEnd)) { |
| 800 | TrampolineBB = addTrampolineAfter(nullptr, TargetBB, Count); |
| 801 | BB->replaceSuccessor(Succ: TargetBB, NewSucc: TrampolineBB, Count); |
| 802 | auto L = BC.scopeLock(); |
| 803 | MIB->replaceBranchTarget(Inst, TBB: TrampolineBB->getLabel(), Ctx: BC.Ctx.get()); |
| 804 | |
| 805 | return; |
| 806 | } |
| 807 | |
| 808 | // Insert a new block after the current one and use it as a trampoline. |
| 809 | TrampolineBB = addTrampolineAfter(BB, TargetBB, Count); |
| 810 | |
| 811 | // If the other successor is a fall-through, invert the condition code. |
| 812 | const BinaryBasicBlock *const NextBB = |
| 813 | BF->getLayout().getBasicBlockAfter(BB, /*IgnoreSplits*/ false); |
| 814 | if (BB->getConditionalSuccessor(Condition: false) == NextBB) { |
| 815 | BB->swapConditionalSuccessors(); |
| 816 | auto L = BC.scopeLock(); |
| 817 | MIB->reverseBranchCondition(Inst, TBB: NextBB->getLabel(), Ctx: BC.Ctx.get()); |
| 818 | } else { |
| 819 | auto L = BC.scopeLock(); |
| 820 | MIB->replaceBranchTarget(Inst, TBB: TrampolineBB->getLabel(), Ctx: BC.Ctx.get()); |
| 821 | } |
| 822 | BB->replaceSuccessor(Succ: TargetBB, NewSucc: TrampolineBB, Count); |
| 823 | }; |
| 824 | |
| 825 | bool MayNeedRelaxation; |
| 826 | uint64_t NumIterations = 0; |
| 827 | do { |
| 828 | MayNeedRelaxation = false; |
| 829 | ++NumIterations; |
| 830 | for (auto BBI = FF.begin(); BBI != FF.end(); ++BBI) { |
| 831 | BinaryBasicBlock *BB = *BBI; |
| 832 | uint64_t NextInstOffset = BB->getOutputStartAddress(); |
| 833 | for (MCInst &Inst : *BB) { |
| 834 | const size_t InstAddress = NextInstOffset; |
| 835 | if (!MIB->isPseudo(Inst)) |
| 836 | NextInstOffset += 4; |
| 837 | |
| 838 | if (!mayNeedStub(BC: BF.getBinaryContext(), Inst)) |
| 839 | continue; |
| 840 | |
| 841 | const size_t BitsAvailable = MIB->getPCRelEncodingSize(Inst); |
| 842 | |
| 843 | // Span of +/-128MB. |
| 844 | if (BitsAvailable == LongestJumpBits) |
| 845 | continue; |
| 846 | |
| 847 | const MCSymbol *TargetSymbol = MIB->getTargetSymbol(Inst); |
| 848 | BinaryBasicBlock *TargetBB = BB->getSuccessor(Label: TargetSymbol); |
| 849 | assert(TargetBB && |
| 850 | "Basic block target expected for conditional branch." ); |
| 851 | |
| 852 | // Check if the relaxation is needed. |
| 853 | if (TargetBB->getFragmentNum() == FF.getFragmentNum() && |
| 854 | isBlockInRange(Inst, InstAddress, *TargetBB)) |
| 855 | continue; |
| 856 | |
| 857 | relaxBranch(BB, Inst, InstAddress, TargetBB); |
| 858 | |
| 859 | MayNeedRelaxation = true; |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | // We may have added new instructions, but the whole fragment is less than |
| 864 | // the minimum branch span. |
| 865 | if (FragmentSize < ShortestJumpSpan) |
| 866 | MayNeedRelaxation = false; |
| 867 | |
| 868 | } while (MayNeedRelaxation); |
| 869 | |
| 870 | LLVM_DEBUG({ |
| 871 | if (NumIterations > 2) { |
| 872 | dbgs() << "BOLT-DEBUG: relaxed fragment " << FF.getFragmentNum().get() |
| 873 | << " of " << BF << " in " << NumIterations << " iterations\n" ; |
| 874 | } |
| 875 | }); |
| 876 | (void)NumIterations; |
| 877 | } |
| 878 | |
| 879 | // Add trampoline blocks from all fragments to the layout. |
| 880 | DenseMap<BinaryBasicBlock *, std::vector<std::unique_ptr<BinaryBasicBlock>>> |
| 881 | Insertions; |
| 882 | for (std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>> &Pair : |
| 883 | FunctionTrampolines) { |
| 884 | if (!Pair.second) |
| 885 | continue; |
| 886 | Insertions[Pair.first].emplace_back(args: std::move(Pair.second)); |
| 887 | } |
| 888 | |
| 889 | for (auto &Pair : Insertions) { |
| 890 | BF.insertBasicBlocks(Start: Pair.first, NewBBs: std::move(Pair.second), |
| 891 | /*UpdateLayout*/ true, /*UpdateCFI*/ UpdateCFIState: true, |
| 892 | /*RecomputeLPs*/ RecomputeLandingPads: false); |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | Error LongJmpPass::runOnFunctions(BinaryContext &BC) { |
| 897 | |
| 898 | if (opts::CompactCodeModel) { |
| 899 | BC.outs() |
| 900 | << "BOLT-INFO: relaxing branches for compact code model (<128MB)\n" ; |
| 901 | |
| 902 | ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { |
| 903 | relaxLocalBranches(BF); |
| 904 | }; |
| 905 | |
| 906 | ParallelUtilities::PredicateTy SkipPredicate = |
| 907 | [&](const BinaryFunction &BF) { |
| 908 | return !BC.shouldEmit(Function: BF) || !BF.isSimple(); |
| 909 | }; |
| 910 | |
| 911 | ParallelUtilities::runOnEachFunction( |
| 912 | BC, SchedPolicy: ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFunction: WorkFun, |
| 913 | SkipPredicate, LogName: "RelaxLocalBranches" ); |
| 914 | |
| 915 | return Error::success(); |
| 916 | } |
| 917 | |
| 918 | BC.outs() << "BOLT-INFO: Starting stub-insertion pass\n" ; |
| 919 | std::vector<BinaryFunction *> Sorted = BC.getSortedFunctions(); |
| 920 | bool Modified; |
| 921 | uint32_t Iterations = 0; |
| 922 | do { |
| 923 | ++Iterations; |
| 924 | Modified = false; |
| 925 | tentativeLayout(BC, SortedFunctions&: Sorted); |
| 926 | updateStubGroups(); |
| 927 | for (BinaryFunction *Func : Sorted) { |
| 928 | if (auto E = relax(Func&: *Func, Modified)) |
| 929 | return Error(std::move(E)); |
| 930 | // Don't ruin non-simple functions, they can't afford to have the layout |
| 931 | // changed. |
| 932 | if (Modified && Func->isSimple()) |
| 933 | Func->fixBranches(); |
| 934 | } |
| 935 | } while (Modified); |
| 936 | BC.outs() << "BOLT-INFO: Inserted " << NumHotStubs |
| 937 | << " stubs in the hot area and " << NumColdStubs |
| 938 | << " stubs in the cold area. Shared " << NumSharedStubs |
| 939 | << " times, iterated " << Iterations << " times.\n" ; |
| 940 | return Error::success(); |
| 941 | } |
| 942 | } // namespace bolt |
| 943 | } // namespace llvm |
| 944 | |