| 1 | //===- bolt/Passes/MCF.cpp ------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements functions for solving minimum-cost flow problem. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "bolt/Passes/MCF.h" |
| 14 | #include "bolt/Core/BinaryFunction.h" |
| 15 | #include "bolt/Core/ParallelUtilities.h" |
| 16 | #include "bolt/Passes/DataflowInfoManager.h" |
| 17 | #include "bolt/Utils/CommandLineOpts.h" |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
| 20 | #include "llvm/Support/CommandLine.h" |
| 21 | #include <algorithm> |
| 22 | #include <vector> |
| 23 | |
| 24 | #undef DEBUG_TYPE |
| 25 | #define DEBUG_TYPE "mcf" |
| 26 | |
| 27 | using namespace llvm; |
| 28 | using namespace bolt; |
| 29 | |
| 30 | namespace opts { |
| 31 | |
| 32 | extern cl::OptionCategory BoltOptCategory; |
| 33 | |
| 34 | static cl::opt<bool> IterativeGuess( |
| 35 | "iterative-guess" , |
| 36 | cl::desc("in non-LBR mode, guess edge counts using iterative technique" ), |
| 37 | cl::Hidden, cl::cat(BoltOptCategory)); |
| 38 | } // namespace opts |
| 39 | |
| 40 | namespace llvm { |
| 41 | namespace bolt { |
| 42 | |
| 43 | namespace { |
| 44 | |
| 45 | // Edge Weight Inference Heuristic |
| 46 | // |
| 47 | // We start by maintaining the invariant used in LBR mode where the sum of |
| 48 | // pred edges count is equal to the block execution count. This loop will set |
| 49 | // pred edges count by balancing its own execution count in different pred |
| 50 | // edges. The weight of each edge is guessed by looking at how hot each pred |
| 51 | // block is (in terms of samples). |
| 52 | // There are two caveats in this approach. One is for critical edges and the |
| 53 | // other is for self-referencing blocks (loops of 1 BB). For critical edges, |
| 54 | // we can't infer the hotness of them based solely on pred BBs execution |
| 55 | // count. For each critical edge we look at the pred BB, then look at its |
| 56 | // succs to adjust its weight. |
| 57 | // |
| 58 | // [ 60 ] [ 25 ] |
| 59 | // | \ | |
| 60 | // [ 10 ] [ 75 ] |
| 61 | // |
| 62 | // The illustration above shows a critical edge \. We wish to adjust bb count |
| 63 | // 60 to 50 to properly determine the weight of the critical edge to be |
| 64 | // 50 / 75. |
| 65 | // For self-referencing edges, we attribute its weight by subtracting the |
| 66 | // current BB execution count by the sum of predecessors count if this result |
| 67 | // is non-negative. |
| 68 | using EdgeWeightMap = |
| 69 | DenseMap<std::pair<const BinaryBasicBlock *, const BinaryBasicBlock *>, |
| 70 | double>; |
| 71 | |
| 72 | template <class NodeT> |
| 73 | void updateEdgeWeight(EdgeWeightMap &EdgeWeights, const BinaryBasicBlock *A, |
| 74 | const BinaryBasicBlock *B, double Weight); |
| 75 | |
| 76 | template <> |
| 77 | void updateEdgeWeight<BinaryBasicBlock *>(EdgeWeightMap &EdgeWeights, |
| 78 | const BinaryBasicBlock *A, |
| 79 | const BinaryBasicBlock *B, |
| 80 | double Weight) { |
| 81 | EdgeWeights[std::make_pair(x&: A, y&: B)] = Weight; |
| 82 | } |
| 83 | |
| 84 | template <> |
| 85 | void updateEdgeWeight<Inverse<BinaryBasicBlock *>>(EdgeWeightMap &EdgeWeights, |
| 86 | const BinaryBasicBlock *A, |
| 87 | const BinaryBasicBlock *B, |
| 88 | double Weight) { |
| 89 | EdgeWeights[std::make_pair(x&: B, y&: A)] = Weight; |
| 90 | } |
| 91 | |
| 92 | template <class NodeT> |
| 93 | void computeEdgeWeights(BinaryBasicBlock *BB, EdgeWeightMap &EdgeWeights) { |
| 94 | typedef GraphTraits<NodeT> GraphT; |
| 95 | typedef GraphTraits<Inverse<NodeT>> InvTraits; |
| 96 | |
| 97 | double TotalChildrenCount = 0.0; |
| 98 | SmallVector<double, 4> ChildrenExecCount; |
| 99 | // First pass computes total children execution count that directly |
| 100 | // contribute to this BB. |
| 101 | for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB), |
| 102 | E = GraphT::child_end(BB); |
| 103 | CI != E; ++CI) { |
| 104 | typename GraphT::NodeRef Child = *CI; |
| 105 | double ChildExecCount = Child->getExecutionCount(); |
| 106 | // Is self-reference? |
| 107 | if (Child == BB) { |
| 108 | ChildExecCount = 0.0; // will fill this in second pass |
| 109 | } else if (GraphT::child_end(BB) - GraphT::child_begin(BB) > 1 && |
| 110 | InvTraits::child_end(Child) - InvTraits::child_begin(Child) > |
| 111 | 1) { |
| 112 | // Handle critical edges. This will cause a skew towards crit edges, but |
| 113 | // it is a quick solution. |
| 114 | double CritWeight = 0.0; |
| 115 | uint64_t Denominator = 0; |
| 116 | for (typename InvTraits::ChildIteratorType |
| 117 | II = InvTraits::child_begin(Child), |
| 118 | IE = InvTraits::child_end(Child); |
| 119 | II != IE; ++II) { |
| 120 | typename GraphT::NodeRef N = *II; |
| 121 | Denominator += N->getExecutionCount(); |
| 122 | if (N != BB) |
| 123 | continue; |
| 124 | CritWeight = N->getExecutionCount(); |
| 125 | } |
| 126 | if (Denominator) |
| 127 | CritWeight /= static_cast<double>(Denominator); |
| 128 | ChildExecCount *= CritWeight; |
| 129 | } |
| 130 | ChildrenExecCount.push_back(Elt: ChildExecCount); |
| 131 | TotalChildrenCount += ChildExecCount; |
| 132 | } |
| 133 | // Second pass fixes the weight of a possible self-reference edge |
| 134 | uint32_t ChildIndex = 0; |
| 135 | for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB), |
| 136 | E = GraphT::child_end(BB); |
| 137 | CI != E; ++CI) { |
| 138 | typename GraphT::NodeRef Child = *CI; |
| 139 | if (Child != BB) { |
| 140 | ++ChildIndex; |
| 141 | continue; |
| 142 | } |
| 143 | if (static_cast<double>(BB->getExecutionCount()) > TotalChildrenCount) { |
| 144 | ChildrenExecCount[ChildIndex] = |
| 145 | BB->getExecutionCount() - TotalChildrenCount; |
| 146 | TotalChildrenCount += ChildrenExecCount[ChildIndex]; |
| 147 | } |
| 148 | break; |
| 149 | } |
| 150 | // Third pass finally assigns weights to edges |
| 151 | ChildIndex = 0; |
| 152 | for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB), |
| 153 | E = GraphT::child_end(BB); |
| 154 | CI != E; ++CI) { |
| 155 | typename GraphT::NodeRef Child = *CI; |
| 156 | double Weight = 1 / (GraphT::child_end(BB) - GraphT::child_begin(BB)); |
| 157 | if (TotalChildrenCount != 0.0) |
| 158 | Weight = ChildrenExecCount[ChildIndex] / TotalChildrenCount; |
| 159 | updateEdgeWeight<NodeT>(EdgeWeights, BB, Child, Weight); |
| 160 | ++ChildIndex; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | template <class NodeT> |
| 165 | void computeEdgeWeights(BinaryFunction &BF, EdgeWeightMap &EdgeWeights) { |
| 166 | for (BinaryBasicBlock &BB : BF) |
| 167 | computeEdgeWeights<NodeT>(&BB, EdgeWeights); |
| 168 | } |
| 169 | |
| 170 | /// Make BB count match the sum of all incoming edges. If AllEdges is true, |
| 171 | /// make it match max(SumPredEdges, SumSuccEdges). |
| 172 | void recalculateBBCounts(BinaryFunction &BF, bool AllEdges) { |
| 173 | for (BinaryBasicBlock &BB : BF) { |
| 174 | uint64_t TotalPredsEWeight = 0; |
| 175 | for (BinaryBasicBlock *Pred : BB.predecessors()) |
| 176 | TotalPredsEWeight += Pred->getBranchInfo(Succ: BB).Count; |
| 177 | |
| 178 | if (TotalPredsEWeight > BB.getExecutionCount()) |
| 179 | BB.setExecutionCount(TotalPredsEWeight); |
| 180 | |
| 181 | if (!AllEdges) |
| 182 | continue; |
| 183 | |
| 184 | uint64_t TotalSuccsEWeight = 0; |
| 185 | for (BinaryBasicBlock::BinaryBranchInfo &BI : BB.branch_info()) |
| 186 | TotalSuccsEWeight += BI.Count; |
| 187 | |
| 188 | if (TotalSuccsEWeight > BB.getExecutionCount()) |
| 189 | BB.setExecutionCount(TotalSuccsEWeight); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | // This is our main edge count guessing heuristic. Look at predecessors and |
| 194 | // assign a proportionally higher count to pred edges coming from blocks with |
| 195 | // a higher execution count in comparison with the other predecessor blocks, |
| 196 | // making SumPredEdges match the current BB count. |
| 197 | // If "UseSucc" is true, apply the same logic to successor edges as well. Since |
| 198 | // some successor edges may already have assigned a count, only update it if the |
| 199 | // new count is higher. |
| 200 | void guessEdgeByRelHotness(BinaryFunction &BF, bool UseSucc, |
| 201 | EdgeWeightMap &PredEdgeWeights, |
| 202 | EdgeWeightMap &SuccEdgeWeights) { |
| 203 | for (BinaryBasicBlock &BB : BF) { |
| 204 | for (BinaryBasicBlock *Pred : BB.predecessors()) { |
| 205 | double RelativeExec = PredEdgeWeights[std::make_pair(x&: Pred, y: &BB)]; |
| 206 | RelativeExec *= BB.getExecutionCount(); |
| 207 | BinaryBasicBlock::BinaryBranchInfo &BI = Pred->getBranchInfo(Succ: BB); |
| 208 | if (static_cast<uint64_t>(RelativeExec) > BI.Count) |
| 209 | BI.Count = static_cast<uint64_t>(RelativeExec); |
| 210 | } |
| 211 | |
| 212 | if (!UseSucc) |
| 213 | continue; |
| 214 | |
| 215 | auto BI = BB.branch_info_begin(); |
| 216 | for (BinaryBasicBlock *Succ : BB.successors()) { |
| 217 | double RelativeExec = SuccEdgeWeights[std::make_pair(x: &BB, y&: Succ)]; |
| 218 | RelativeExec *= BB.getExecutionCount(); |
| 219 | if (static_cast<uint64_t>(RelativeExec) > BI->Count) |
| 220 | BI->Count = static_cast<uint64_t>(RelativeExec); |
| 221 | ++BI; |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | using ArcSet = |
| 227 | DenseSet<std::pair<const BinaryBasicBlock *, const BinaryBasicBlock *>>; |
| 228 | |
| 229 | /// Predecessor edges version of guessEdgeByIterativeApproach. GuessedArcs has |
| 230 | /// all edges we already established their count. Try to guess the count of |
| 231 | /// the remaining edge, if there is only one to guess, and return true if we |
| 232 | /// were able to guess. |
| 233 | bool guessPredEdgeCounts(BinaryBasicBlock *BB, ArcSet &GuessedArcs) { |
| 234 | if (BB->pred_size() == 0) |
| 235 | return false; |
| 236 | |
| 237 | uint64_t TotalPredCount = 0; |
| 238 | unsigned NumGuessedEdges = 0; |
| 239 | for (BinaryBasicBlock *Pred : BB->predecessors()) { |
| 240 | if (GuessedArcs.count(V: std::make_pair(x&: Pred, y&: BB))) |
| 241 | ++NumGuessedEdges; |
| 242 | TotalPredCount += Pred->getBranchInfo(Succ: *BB).Count; |
| 243 | } |
| 244 | |
| 245 | if (NumGuessedEdges != BB->pred_size() - 1) |
| 246 | return false; |
| 247 | |
| 248 | int64_t Guessed = |
| 249 | static_cast<int64_t>(BB->getExecutionCount()) - TotalPredCount; |
| 250 | if (Guessed < 0) |
| 251 | Guessed = 0; |
| 252 | |
| 253 | for (BinaryBasicBlock *Pred : BB->predecessors()) { |
| 254 | if (GuessedArcs.count(V: std::make_pair(x&: Pred, y&: BB))) |
| 255 | continue; |
| 256 | |
| 257 | Pred->getBranchInfo(Succ: *BB).Count = Guessed; |
| 258 | GuessedArcs.insert(V: std::make_pair(x&: Pred, y&: BB)); |
| 259 | return true; |
| 260 | } |
| 261 | llvm_unreachable("Expected unguessed arc" ); |
| 262 | } |
| 263 | |
| 264 | /// Successor edges version of guessEdgeByIterativeApproach. GuessedArcs has |
| 265 | /// all edges we already established their count. Try to guess the count of |
| 266 | /// the remaining edge, if there is only one to guess, and return true if we |
| 267 | /// were able to guess. |
| 268 | bool guessSuccEdgeCounts(BinaryBasicBlock *BB, ArcSet &GuessedArcs) { |
| 269 | if (BB->succ_size() == 0) |
| 270 | return false; |
| 271 | |
| 272 | uint64_t TotalSuccCount = 0; |
| 273 | unsigned NumGuessedEdges = 0; |
| 274 | auto BI = BB->branch_info_begin(); |
| 275 | for (BinaryBasicBlock *Succ : BB->successors()) { |
| 276 | if (GuessedArcs.count(V: std::make_pair(x&: BB, y&: Succ))) |
| 277 | ++NumGuessedEdges; |
| 278 | TotalSuccCount += BI->Count; |
| 279 | ++BI; |
| 280 | } |
| 281 | |
| 282 | if (NumGuessedEdges != BB->succ_size() - 1) |
| 283 | return false; |
| 284 | |
| 285 | int64_t Guessed = |
| 286 | static_cast<int64_t>(BB->getExecutionCount()) - TotalSuccCount; |
| 287 | if (Guessed < 0) |
| 288 | Guessed = 0; |
| 289 | |
| 290 | BI = BB->branch_info_begin(); |
| 291 | for (BinaryBasicBlock *Succ : BB->successors()) { |
| 292 | if (GuessedArcs.count(V: std::make_pair(x&: BB, y&: Succ))) { |
| 293 | ++BI; |
| 294 | continue; |
| 295 | } |
| 296 | |
| 297 | BI->Count = Guessed; |
| 298 | GuessedArcs.insert(V: std::make_pair(x&: BB, y&: Succ)); |
| 299 | return true; |
| 300 | } |
| 301 | llvm_unreachable("Expected unguessed arc" ); |
| 302 | } |
| 303 | |
| 304 | /// Guess edge count whenever we have only one edge (pred or succ) left |
| 305 | /// to guess. Then make its count equal to BB count minus all other edge |
| 306 | /// counts we already know their count. Repeat this until there is no |
| 307 | /// change. |
| 308 | void guessEdgeByIterativeApproach(BinaryFunction &BF) { |
| 309 | ArcSet KnownArcs; |
| 310 | bool Changed = false; |
| 311 | |
| 312 | do { |
| 313 | Changed = false; |
| 314 | for (BinaryBasicBlock &BB : BF) { |
| 315 | if (guessPredEdgeCounts(BB: &BB, GuessedArcs&: KnownArcs)) |
| 316 | Changed = true; |
| 317 | if (guessSuccEdgeCounts(BB: &BB, GuessedArcs&: KnownArcs)) |
| 318 | Changed = true; |
| 319 | } |
| 320 | } while (Changed); |
| 321 | |
| 322 | // Guess count for non-inferred edges |
| 323 | for (BinaryBasicBlock &BB : BF) { |
| 324 | for (BinaryBasicBlock *Pred : BB.predecessors()) { |
| 325 | if (KnownArcs.count(V: std::make_pair(x&: Pred, y: &BB))) |
| 326 | continue; |
| 327 | BinaryBasicBlock::BinaryBranchInfo &BI = Pred->getBranchInfo(Succ: BB); |
| 328 | BI.Count = |
| 329 | std::min(a: Pred->getExecutionCount(), b: BB.getExecutionCount()) / 2; |
| 330 | KnownArcs.insert(V: std::make_pair(x&: Pred, y: &BB)); |
| 331 | } |
| 332 | auto BI = BB.branch_info_begin(); |
| 333 | for (BinaryBasicBlock *Succ : BB.successors()) { |
| 334 | if (KnownArcs.count(V: std::make_pair(x: &BB, y&: Succ))) { |
| 335 | ++BI; |
| 336 | continue; |
| 337 | } |
| 338 | BI->Count = |
| 339 | std::min(a: BB.getExecutionCount(), b: Succ->getExecutionCount()) / 2; |
| 340 | KnownArcs.insert(V: std::make_pair(x: &BB, y&: Succ)); |
| 341 | break; |
| 342 | } |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | /// Associate each basic block with the BinaryLoop object corresponding to the |
| 347 | /// innermost loop containing this block. |
| 348 | DenseMap<const BinaryBasicBlock *, const BinaryLoop *> |
| 349 | createLoopNestLevelMap(BinaryFunction &BF) { |
| 350 | DenseMap<const BinaryBasicBlock *, const BinaryLoop *> LoopNestLevel; |
| 351 | const BinaryLoopInfo &BLI = BF.getLoopInfo(); |
| 352 | |
| 353 | for (BinaryBasicBlock &BB : BF) |
| 354 | LoopNestLevel[&BB] = BLI[&BB]; |
| 355 | |
| 356 | return LoopNestLevel; |
| 357 | } |
| 358 | |
| 359 | } // end anonymous namespace |
| 360 | |
| 361 | void equalizeBBCounts(DataflowInfoManager &Info, BinaryFunction &BF) { |
| 362 | if (BF.begin() == BF.end()) |
| 363 | return; |
| 364 | |
| 365 | DominatorAnalysis<false> &DA = Info.getDominatorAnalysis(); |
| 366 | DominatorAnalysis<true> &PDA = Info.getPostDominatorAnalysis(); |
| 367 | auto &InsnToBB = Info.getInsnToBBMap(); |
| 368 | // These analyses work at the instruction granularity, but we really only need |
| 369 | // basic block granularity here. So we'll use a set of visited edges to avoid |
| 370 | // revisiting the same BBs again and again. |
| 371 | DenseMap<const BinaryBasicBlock *, std::set<const BinaryBasicBlock *>> |
| 372 | Visited; |
| 373 | // Equivalence classes mapping. Each equivalence class is defined by the set |
| 374 | // of BBs that obeys the aforementioned properties. |
| 375 | DenseMap<const BinaryBasicBlock *, signed> BBsToEC; |
| 376 | std::vector<std::vector<BinaryBasicBlock *>> Classes; |
| 377 | |
| 378 | BF.calculateLoopInfo(); |
| 379 | DenseMap<const BinaryBasicBlock *, const BinaryLoop *> LoopNestLevel = |
| 380 | createLoopNestLevelMap(BF); |
| 381 | |
| 382 | for (BinaryBasicBlock &BB : BF) |
| 383 | BBsToEC[&BB] = -1; |
| 384 | |
| 385 | for (BinaryBasicBlock &BB : BF) { |
| 386 | auto I = BB.begin(); |
| 387 | if (I == BB.end()) |
| 388 | continue; |
| 389 | |
| 390 | DA.doForAllDominators(Inst: *I, Task: [&](const MCInst &DomInst) { |
| 391 | BinaryBasicBlock *DomBB = InsnToBB[&DomInst]; |
| 392 | if (Visited[DomBB].count(x: &BB)) |
| 393 | return; |
| 394 | Visited[DomBB].insert(x: &BB); |
| 395 | if (!PDA.doesADominateB(A: *I, B: DomInst)) |
| 396 | return; |
| 397 | if (LoopNestLevel[&BB] != LoopNestLevel[DomBB]) |
| 398 | return; |
| 399 | if (BBsToEC[DomBB] == -1 && BBsToEC[&BB] == -1) { |
| 400 | BBsToEC[DomBB] = Classes.size(); |
| 401 | BBsToEC[&BB] = Classes.size(); |
| 402 | Classes.emplace_back(); |
| 403 | Classes.back().push_back(x: DomBB); |
| 404 | Classes.back().push_back(x: &BB); |
| 405 | return; |
| 406 | } |
| 407 | if (BBsToEC[DomBB] == -1) { |
| 408 | BBsToEC[DomBB] = BBsToEC[&BB]; |
| 409 | Classes[BBsToEC[&BB]].push_back(x: DomBB); |
| 410 | return; |
| 411 | } |
| 412 | if (BBsToEC[&BB] == -1) { |
| 413 | BBsToEC[&BB] = BBsToEC[DomBB]; |
| 414 | Classes[BBsToEC[DomBB]].push_back(x: &BB); |
| 415 | return; |
| 416 | } |
| 417 | signed BBECNum = BBsToEC[&BB]; |
| 418 | std::vector<BinaryBasicBlock *> DomEC = Classes[BBsToEC[DomBB]]; |
| 419 | std::vector<BinaryBasicBlock *> BBEC = Classes[BBECNum]; |
| 420 | for (BinaryBasicBlock *Block : DomEC) { |
| 421 | BBsToEC[Block] = BBECNum; |
| 422 | BBEC.push_back(x: Block); |
| 423 | } |
| 424 | DomEC.clear(); |
| 425 | }); |
| 426 | } |
| 427 | |
| 428 | for (std::vector<BinaryBasicBlock *> &Class : Classes) { |
| 429 | uint64_t Max = 0ULL; |
| 430 | for (BinaryBasicBlock *BB : Class) |
| 431 | Max = std::max(a: Max, b: BB->getExecutionCount()); |
| 432 | for (BinaryBasicBlock *BB : Class) |
| 433 | BB->setExecutionCount(Max); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | void EstimateEdgeCounts::runOnFunction(BinaryFunction &BF) { |
| 438 | EdgeWeightMap PredEdgeWeights; |
| 439 | EdgeWeightMap SuccEdgeWeights; |
| 440 | if (!opts::IterativeGuess) { |
| 441 | computeEdgeWeights<Inverse<BinaryBasicBlock *>>(BF, EdgeWeights&: PredEdgeWeights); |
| 442 | computeEdgeWeights<BinaryBasicBlock *>(BF, EdgeWeights&: SuccEdgeWeights); |
| 443 | } |
| 444 | if (opts::EqualizeBBCounts) { |
| 445 | LLVM_DEBUG(BF.print(dbgs(), "before equalize BB counts" )); |
| 446 | auto Info = DataflowInfoManager(BF, nullptr, nullptr); |
| 447 | equalizeBBCounts(Info, BF); |
| 448 | LLVM_DEBUG(BF.print(dbgs(), "after equalize BB counts" )); |
| 449 | } |
| 450 | if (opts::IterativeGuess) |
| 451 | guessEdgeByIterativeApproach(BF); |
| 452 | else |
| 453 | guessEdgeByRelHotness(BF, /*UseSuccs=*/UseSucc: false, PredEdgeWeights, |
| 454 | SuccEdgeWeights); |
| 455 | recalculateBBCounts(BF, /*AllEdges=*/false); |
| 456 | } |
| 457 | |
| 458 | Error EstimateEdgeCounts::runOnFunctions(BinaryContext &BC) { |
| 459 | if (llvm::none_of(Range: llvm::make_second_range(c&: BC.getBinaryFunctions()), |
| 460 | P: [](const BinaryFunction &BF) { |
| 461 | return BF.getProfileFlags() == BinaryFunction::PF_BASIC; |
| 462 | })) |
| 463 | return Error::success(); |
| 464 | |
| 465 | ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { |
| 466 | runOnFunction(BF); |
| 467 | }; |
| 468 | ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) { |
| 469 | return BF.getProfileFlags() != BinaryFunction::PF_BASIC; |
| 470 | }; |
| 471 | |
| 472 | ParallelUtilities::runOnEachFunction( |
| 473 | BC, SchedPolicy: ParallelUtilities::SchedulingPolicy::SP_BB_QUADRATIC, WorkFunction: WorkFun, |
| 474 | SkipPredicate: SkipFunc, LogName: "EstimateEdgeCounts" ); |
| 475 | return Error::success(); |
| 476 | } |
| 477 | |
| 478 | } // namespace bolt |
| 479 | } // namespace llvm |
| 480 | |