| 1 | //===- bolt/Passes/ProfileQualityStats.cpp ----------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the profile quality stats calculation pass. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "bolt/Passes/ProfileQualityStats.h" |
| 14 | #include "bolt/Core/BinaryBasicBlock.h" |
| 15 | #include "bolt/Core/BinaryFunction.h" |
| 16 | #include "bolt/Utils/CommandLineOpts.h" |
| 17 | #include "llvm/Support/CommandLine.h" |
| 18 | #include <queue> |
| 19 | #include <unordered_map> |
| 20 | #include <unordered_set> |
| 21 | |
| 22 | using namespace llvm; |
| 23 | using namespace bolt; |
| 24 | |
| 25 | namespace opts { |
| 26 | extern cl::opt<unsigned> Verbosity; |
| 27 | static cl::opt<unsigned> TopFunctionsForProfileQualityCheck( |
| 28 | "top-functions-for-profile-quality-check" , |
| 29 | cl::desc("number of hottest functions to print aggregated " |
| 30 | "profile quality stats of." ), |
| 31 | cl::init(Val: 1000), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); |
| 32 | static cl::opt<unsigned> PercentileForProfileQualityCheck( |
| 33 | "percentile-for-profile-quality-check" , |
| 34 | cl::desc("Percentile of profile quality distributions over hottest " |
| 35 | "functions to report." ), |
| 36 | cl::init(Val: 95), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); |
| 37 | } // namespace opts |
| 38 | |
| 39 | namespace { |
| 40 | using FunctionListType = std::vector<const BinaryFunction *>; |
| 41 | using function_iterator = FunctionListType::iterator; |
| 42 | |
| 43 | // Function number -> vector of flows for BBs in the function |
| 44 | using TotalFlowMapTy = std::unordered_map<uint64_t, std::vector<uint64_t>>; |
| 45 | // Function number -> flow count |
| 46 | using FunctionFlowMapTy = std::unordered_map<uint64_t, uint64_t>; |
| 47 | struct FlowInfo { |
| 48 | TotalFlowMapTy TotalIncomingFlows; |
| 49 | TotalFlowMapTy TotalOutgoingFlows; |
| 50 | TotalFlowMapTy TotalMaxCountMaps; |
| 51 | TotalFlowMapTy TotalMinCountMaps; |
| 52 | FunctionFlowMapTy CallGraphIncomingFlows; |
| 53 | }; |
| 54 | |
| 55 | // When reporting exception handling stats, we only consider functions with at |
| 56 | // least MinLPECSum counts in landing pads to avoid false positives due to |
| 57 | // sampling noise |
| 58 | const uint16_t MinLPECSum = 50; |
| 59 | |
| 60 | // When reporting CFG flow conservation stats, we only consider blocks with |
| 61 | // execution counts > MinBlockCount when reporting the distribution of worst |
| 62 | // gaps. |
| 63 | const uint16_t MinBlockCount = 500; |
| 64 | |
| 65 | template <typename T> |
| 66 | void printDistribution(raw_ostream &OS, std::vector<T> &values, |
| 67 | bool Fraction = false) { |
| 68 | // Assume values are sorted. |
| 69 | if (values.empty()) |
| 70 | return; |
| 71 | |
| 72 | OS << " Length : " << values.size() << "\n" ; |
| 73 | |
| 74 | auto printLine = [&](std::string Text, double Percent) { |
| 75 | int Rank = int(values.size() * (100 - Percent) / 100); |
| 76 | if (Percent == 0) |
| 77 | Rank = values.size() - 1; |
| 78 | if (Fraction) |
| 79 | OS << " " << Text << std::string(11 - Text.length(), ' ') << ": " |
| 80 | << formatv("{0:P}" , values[Rank]) << "\n" ; |
| 81 | else |
| 82 | OS << " " << Text << std::string(11 - Text.length(), ' ') << ": " |
| 83 | << values[Rank] << "\n" ; |
| 84 | }; |
| 85 | |
| 86 | printLine("MAX" , 0); |
| 87 | const int percentages[] = {1, 5, 10, 20, 50, 80}; |
| 88 | for (size_t i = 0; i < sizeof(percentages) / sizeof(percentages[0]); ++i) { |
| 89 | printLine("TOP " + std::to_string(val: percentages[i]) + "%" , percentages[i]); |
| 90 | } |
| 91 | printLine("MIN" , 100); |
| 92 | } |
| 93 | |
| 94 | void printCFGContinuityStats(raw_ostream &OS, |
| 95 | iterator_range<function_iterator> &Functions) { |
| 96 | // Given a perfect profile, every positive-execution-count BB should be |
| 97 | // connected to an entry of the function through a positive-execution-count |
| 98 | // directed path in the control flow graph. |
| 99 | std::vector<size_t> NumUnreachables; |
| 100 | std::vector<size_t> SumECUnreachables; |
| 101 | std::vector<double> FractionECUnreachables; |
| 102 | |
| 103 | for (const BinaryFunction *Function : Functions) { |
| 104 | if (Function->size() <= 1) { |
| 105 | NumUnreachables.push_back(x: 0); |
| 106 | SumECUnreachables.push_back(x: 0); |
| 107 | FractionECUnreachables.push_back(x: 0.0); |
| 108 | continue; |
| 109 | } |
| 110 | |
| 111 | // Compute the sum of all BB execution counts (ECs). |
| 112 | size_t NumPosECBBs = 0; |
| 113 | size_t SumAllBBEC = 0; |
| 114 | for (const BinaryBasicBlock &BB : *Function) { |
| 115 | const size_t BBEC = BB.getKnownExecutionCount(); |
| 116 | NumPosECBBs += !!BBEC; |
| 117 | SumAllBBEC += BBEC; |
| 118 | } |
| 119 | |
| 120 | // Perform BFS on subgraph of CFG induced by positive weight edges. |
| 121 | // Compute the number of BBs reachable from the entry(s) of the function and |
| 122 | // the sum of their execution counts (ECs). |
| 123 | std::unordered_set<unsigned> Visited; |
| 124 | std::queue<unsigned> Queue; |
| 125 | size_t SumReachableBBEC = 0; |
| 126 | |
| 127 | Function->forEachEntryPoint(Callback: [&](uint64_t Offset, const MCSymbol *Label) { |
| 128 | const BinaryBasicBlock *EntryBB = Function->getBasicBlockAtOffset(Offset); |
| 129 | if (!EntryBB || EntryBB->getKnownExecutionCount() == 0) |
| 130 | return true; |
| 131 | Queue.push(x: EntryBB->getLayoutIndex()); |
| 132 | Visited.insert(x: EntryBB->getLayoutIndex()); |
| 133 | SumReachableBBEC += EntryBB->getKnownExecutionCount(); |
| 134 | return true; |
| 135 | }); |
| 136 | |
| 137 | const FunctionLayout &Layout = Function->getLayout(); |
| 138 | |
| 139 | while (!Queue.empty()) { |
| 140 | const unsigned BBIndex = Queue.front(); |
| 141 | const BinaryBasicBlock *BB = Layout.getBlock(Index: BBIndex); |
| 142 | Queue.pop(); |
| 143 | for (const auto &[Succ, BI] : |
| 144 | llvm::zip(t: BB->successors(), u: BB->branch_info())) { |
| 145 | const uint64_t Count = BI.Count; |
| 146 | if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0 || |
| 147 | !Visited.insert(x: Succ->getLayoutIndex()).second) |
| 148 | continue; |
| 149 | SumReachableBBEC += Succ->getKnownExecutionCount(); |
| 150 | Queue.push(x: Succ->getLayoutIndex()); |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | const size_t NumReachableBBs = Visited.size(); |
| 155 | |
| 156 | const size_t NumPosECBBsUnreachableFromEntry = |
| 157 | NumPosECBBs - NumReachableBBs; |
| 158 | const size_t SumUnreachableBBEC = SumAllBBEC - SumReachableBBEC; |
| 159 | |
| 160 | double FractionECUnreachable = 0.0; |
| 161 | if (SumAllBBEC > 0) |
| 162 | FractionECUnreachable = (double)SumUnreachableBBEC / SumAllBBEC; |
| 163 | |
| 164 | if (opts::Verbosity >= 2 && FractionECUnreachable >= 0.05) { |
| 165 | OS << "Non-trivial CFG discontinuity observed in function " |
| 166 | << Function->getPrintName() << "\n" ; |
| 167 | if (opts::Verbosity >= 3) |
| 168 | Function->dump(); |
| 169 | } |
| 170 | |
| 171 | NumUnreachables.push_back(x: NumPosECBBsUnreachableFromEntry); |
| 172 | SumECUnreachables.push_back(x: SumUnreachableBBEC); |
| 173 | FractionECUnreachables.push_back(x: FractionECUnreachable); |
| 174 | } |
| 175 | |
| 176 | llvm::sort(C&: FractionECUnreachables); |
| 177 | const int Rank = int(FractionECUnreachables.size() * |
| 178 | opts::PercentileForProfileQualityCheck / 100); |
| 179 | OS << formatv(Fmt: "function CFG discontinuity {0:P}; " , |
| 180 | Vals&: FractionECUnreachables[Rank]); |
| 181 | if (opts::Verbosity >= 1) { |
| 182 | OS << "\nabbreviations: EC = execution count, POS BBs = positive EC BBs\n" |
| 183 | << "distribution of NUM(unreachable POS BBs) per function\n" ; |
| 184 | llvm::sort(C&: NumUnreachables); |
| 185 | printDistribution(OS, values&: NumUnreachables); |
| 186 | |
| 187 | OS << "distribution of SUM_EC(unreachable POS BBs) per function\n" ; |
| 188 | llvm::sort(C&: SumECUnreachables); |
| 189 | printDistribution(OS, values&: SumECUnreachables); |
| 190 | |
| 191 | OS << "distribution of [(SUM_EC(unreachable POS BBs) / SUM_EC(all " |
| 192 | "POS BBs))] per function\n" ; |
| 193 | printDistribution(OS, values&: FractionECUnreachables, /*Fraction=*/true); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | void printCallGraphFlowConservationStats( |
| 198 | raw_ostream &OS, iterator_range<function_iterator> &Functions, |
| 199 | FlowInfo &TotalFlowMap) { |
| 200 | std::vector<double> CallGraphGaps; |
| 201 | |
| 202 | for (const BinaryFunction *Function : Functions) { |
| 203 | if (Function->size() <= 1 || !Function->isSimple()) { |
| 204 | CallGraphGaps.push_back(x: 0.0); |
| 205 | continue; |
| 206 | } |
| 207 | |
| 208 | const uint64_t FunctionNum = Function->getFunctionNumber(); |
| 209 | std::vector<uint64_t> &IncomingFlows = |
| 210 | TotalFlowMap.TotalIncomingFlows[FunctionNum]; |
| 211 | std::vector<uint64_t> &OutgoingFlows = |
| 212 | TotalFlowMap.TotalOutgoingFlows[FunctionNum]; |
| 213 | FunctionFlowMapTy &CallGraphIncomingFlows = |
| 214 | TotalFlowMap.CallGraphIncomingFlows; |
| 215 | |
| 216 | // Only consider functions that are not a program entry. |
| 217 | if (CallGraphIncomingFlows.find(x: FunctionNum) == |
| 218 | CallGraphIncomingFlows.end()) { |
| 219 | CallGraphGaps.push_back(x: 0.0); |
| 220 | continue; |
| 221 | } |
| 222 | |
| 223 | uint64_t EntryInflow = 0; |
| 224 | uint64_t EntryOutflow = 0; |
| 225 | uint32_t NumConsideredEntryBlocks = 0; |
| 226 | |
| 227 | Function->forEachEntryPoint(Callback: [&](uint64_t Offset, const MCSymbol *Label) { |
| 228 | const BinaryBasicBlock *EntryBB = Function->getBasicBlockAtOffset(Offset); |
| 229 | if (!EntryBB || EntryBB->succ_size() == 0) |
| 230 | return true; |
| 231 | NumConsideredEntryBlocks++; |
| 232 | EntryInflow += IncomingFlows[EntryBB->getLayoutIndex()]; |
| 233 | EntryOutflow += OutgoingFlows[EntryBB->getLayoutIndex()]; |
| 234 | return true; |
| 235 | }); |
| 236 | |
| 237 | uint64_t NetEntryOutflow = 0; |
| 238 | if (EntryOutflow < EntryInflow) { |
| 239 | if (opts::Verbosity >= 2) { |
| 240 | // We expect entry blocks' CFG outflow >= inflow, i.e., it has a |
| 241 | // non-negative net outflow. If this is not the case, then raise a |
| 242 | // warning if requested. |
| 243 | OS << "BOLT WARNING: unexpected entry block CFG outflow < inflow " |
| 244 | "in function " |
| 245 | << Function->getPrintName() << "\n" ; |
| 246 | if (opts::Verbosity >= 3) |
| 247 | Function->dump(); |
| 248 | } |
| 249 | } else { |
| 250 | NetEntryOutflow = EntryOutflow - EntryInflow; |
| 251 | } |
| 252 | if (NumConsideredEntryBlocks > 0) { |
| 253 | const uint64_t CallGraphInflow = |
| 254 | TotalFlowMap.CallGraphIncomingFlows[Function->getFunctionNumber()]; |
| 255 | const uint64_t Min = std::min(a: NetEntryOutflow, b: CallGraphInflow); |
| 256 | const uint64_t Max = std::max(a: NetEntryOutflow, b: CallGraphInflow); |
| 257 | double CallGraphGap = 0.0; |
| 258 | if (Max > 0) |
| 259 | CallGraphGap = 1 - (double)Min / Max; |
| 260 | |
| 261 | if (opts::Verbosity >= 2 && CallGraphGap >= 0.5) { |
| 262 | OS << "Non-trivial call graph gap of size " |
| 263 | << formatv(Fmt: "{0:P}" , Vals&: CallGraphGap) << " observed in function " |
| 264 | << Function->getPrintName() << "\n" ; |
| 265 | if (opts::Verbosity >= 3) |
| 266 | Function->dump(); |
| 267 | } |
| 268 | |
| 269 | CallGraphGaps.push_back(x: CallGraphGap); |
| 270 | } else { |
| 271 | CallGraphGaps.push_back(x: 0.0); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | llvm::sort(C&: CallGraphGaps); |
| 276 | const int Rank = |
| 277 | int(CallGraphGaps.size() * opts::PercentileForProfileQualityCheck / 100); |
| 278 | OS << formatv(Fmt: "call graph flow conservation gap {0:P}; " , |
| 279 | Vals&: CallGraphGaps[Rank]); |
| 280 | if (opts::Verbosity >= 1) { |
| 281 | OS << "\ndistribution of function entry flow conservation gaps\n" ; |
| 282 | printDistribution(OS, values&: CallGraphGaps, /*Fraction=*/true); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | void printCFGFlowConservationStats(const BinaryContext &BC, raw_ostream &OS, |
| 287 | iterator_range<function_iterator> &Functions, |
| 288 | FlowInfo &TotalFlowMap) { |
| 289 | std::vector<double> CFGGapsWeightedAvg; |
| 290 | std::vector<double> CFGGapsWorst; |
| 291 | std::vector<uint64_t> CFGGapsWorstAbs; |
| 292 | for (const BinaryFunction *Function : Functions) { |
| 293 | if (Function->size() <= 1 || !Function->isSimple()) { |
| 294 | CFGGapsWeightedAvg.push_back(x: 0.0); |
| 295 | CFGGapsWorst.push_back(x: 0.0); |
| 296 | CFGGapsWorstAbs.push_back(x: 0); |
| 297 | continue; |
| 298 | } |
| 299 | |
| 300 | const uint64_t FunctionNum = Function->getFunctionNumber(); |
| 301 | std::vector<uint64_t> &MaxCountMaps = |
| 302 | TotalFlowMap.TotalMaxCountMaps[FunctionNum]; |
| 303 | std::vector<uint64_t> &MinCountMaps = |
| 304 | TotalFlowMap.TotalMinCountMaps[FunctionNum]; |
| 305 | double WeightedGapSum = 0.0; |
| 306 | double WeightSum = 0.0; |
| 307 | double WorstGap = 0.0; |
| 308 | uint64_t WorstGapAbs = 0; |
| 309 | BinaryBasicBlock *BBWorstGap = nullptr; |
| 310 | BinaryBasicBlock *BBWorstGapAbs = nullptr; |
| 311 | for (BinaryBasicBlock &BB : *Function) { |
| 312 | // We don't consider function entry or exit blocks for CFG flow |
| 313 | // conservation |
| 314 | if (BB.isEntryPoint() || BB.succ_size() == 0) |
| 315 | continue; |
| 316 | |
| 317 | if (BB.getKnownExecutionCount() == 0 || BB.getNumNonPseudos() == 0) |
| 318 | continue; |
| 319 | |
| 320 | // We don't consider blocks that is a landing pad or has a |
| 321 | // positive-execution-count landing pad |
| 322 | if (BB.isLandingPad()) |
| 323 | continue; |
| 324 | |
| 325 | if (llvm::any_of(Range: BB.landing_pads(), |
| 326 | P: std::mem_fn(pm: &BinaryBasicBlock::getKnownExecutionCount))) |
| 327 | continue; |
| 328 | |
| 329 | // We don't consider blocks that end with a recursive call instruction |
| 330 | const MCInst *Inst = BB.getLastNonPseudoInstr(); |
| 331 | if (BC.MIB->isCall(Inst: *Inst)) { |
| 332 | const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst: *Inst); |
| 333 | const BinaryFunction *DstFunc = |
| 334 | DstSym ? BC.getFunctionForSymbol(Symbol: DstSym) : nullptr; |
| 335 | if (DstFunc == Function) |
| 336 | continue; |
| 337 | } |
| 338 | |
| 339 | const uint64_t Max = MaxCountMaps[BB.getLayoutIndex()]; |
| 340 | const uint64_t Min = MinCountMaps[BB.getLayoutIndex()]; |
| 341 | double Gap = 0.0; |
| 342 | if (Max > 0) |
| 343 | Gap = 1 - (double)Min / Max; |
| 344 | double Weight = BB.getKnownExecutionCount() * BB.getNumNonPseudos(); |
| 345 | // We use log to prevent the stats from being dominated by extremely hot |
| 346 | // blocks |
| 347 | Weight = log(x: Weight); |
| 348 | WeightedGapSum += Gap * Weight; |
| 349 | WeightSum += Weight; |
| 350 | if (BB.getKnownExecutionCount() > MinBlockCount && Gap > WorstGap) { |
| 351 | WorstGap = Gap; |
| 352 | BBWorstGap = &BB; |
| 353 | } |
| 354 | if (BB.getKnownExecutionCount() > MinBlockCount && |
| 355 | Max - Min > WorstGapAbs) { |
| 356 | WorstGapAbs = Max - Min; |
| 357 | BBWorstGapAbs = &BB; |
| 358 | } |
| 359 | } |
| 360 | double WeightedGap = WeightedGapSum; |
| 361 | if (WeightSum > 0) |
| 362 | WeightedGap /= WeightSum; |
| 363 | if (opts::Verbosity >= 2 && WorstGap >= 0.9) { |
| 364 | OS << "Non-trivial CFG gap observed in function " |
| 365 | << Function->getPrintName() << "\n" |
| 366 | << "Weighted gap: " << formatv(Fmt: "{0:P}" , Vals&: WeightedGap) << "\n" ; |
| 367 | if (BBWorstGap) |
| 368 | OS << "Worst gap: " << formatv(Fmt: "{0:P}" , Vals&: WorstGap) |
| 369 | << " at BB with input offset: 0x" |
| 370 | << Twine::utohexstr(Val: BBWorstGap->getInputOffset()) << "\n" ; |
| 371 | if (BBWorstGapAbs) |
| 372 | OS << "Worst gap (absolute value): " << WorstGapAbs << " at BB with " |
| 373 | << "input offset 0x" |
| 374 | << Twine::utohexstr(Val: BBWorstGapAbs->getInputOffset()) << "\n" ; |
| 375 | if (opts::Verbosity >= 3) |
| 376 | Function->dump(); |
| 377 | } |
| 378 | CFGGapsWeightedAvg.push_back(x: WeightedGap); |
| 379 | CFGGapsWorst.push_back(x: WorstGap); |
| 380 | CFGGapsWorstAbs.push_back(x: WorstGapAbs); |
| 381 | } |
| 382 | |
| 383 | llvm::sort(C&: CFGGapsWeightedAvg); |
| 384 | const int RankWA = int(CFGGapsWeightedAvg.size() * |
| 385 | opts::PercentileForProfileQualityCheck / 100); |
| 386 | llvm::sort(C&: CFGGapsWorst); |
| 387 | const int RankW = |
| 388 | int(CFGGapsWorst.size() * opts::PercentileForProfileQualityCheck / 100); |
| 389 | OS << formatv(Fmt: "CFG flow conservation gap {0:P} (weighted) {1:P} (worst); " , |
| 390 | Vals&: CFGGapsWeightedAvg[RankWA], Vals&: CFGGapsWorst[RankW]); |
| 391 | if (opts::Verbosity >= 1) { |
| 392 | OS << "distribution of weighted CFG flow conservation gaps\n" ; |
| 393 | printDistribution(OS, values&: CFGGapsWeightedAvg, /*Fraction=*/true); |
| 394 | OS << format(Fmt: "Consider only blocks with execution counts > %zu:\n" , |
| 395 | Vals: MinBlockCount) |
| 396 | << "distribution of worst block flow conservation gap per " |
| 397 | "function \n" ; |
| 398 | printDistribution(OS, values&: CFGGapsWorst, /*Fraction=*/true); |
| 399 | OS << "distribution of worst block flow conservation gap (absolute " |
| 400 | "value) per function\n" ; |
| 401 | llvm::sort(C&: CFGGapsWorstAbs); |
| 402 | printDistribution(OS, values&: CFGGapsWorstAbs, /*Fraction=*/false); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | void printExceptionHandlingStats(const BinaryContext &BC, raw_ostream &OS, |
| 407 | iterator_range<function_iterator> &Functions) { |
| 408 | std::vector<double> LPCountFractionsOfTotalBBEC; |
| 409 | std::vector<double> LPCountFractionsOfTotalInvokeEC; |
| 410 | for (const BinaryFunction *Function : Functions) { |
| 411 | size_t LPECSum = 0; |
| 412 | size_t BBECSum = 0; |
| 413 | size_t InvokeECSum = 0; |
| 414 | for (BinaryBasicBlock &BB : *Function) { |
| 415 | const size_t BBEC = BB.getKnownExecutionCount(); |
| 416 | BBECSum += BBEC; |
| 417 | if (BB.isLandingPad()) |
| 418 | LPECSum += BBEC; |
| 419 | for (const MCInst &Inst : BB) { |
| 420 | if (!BC.MIB->isInvoke(Inst)) |
| 421 | continue; |
| 422 | const std::optional<MCPlus::MCLandingPad> EHInfo = |
| 423 | BC.MIB->getEHInfo(Inst); |
| 424 | if (EHInfo->first) |
| 425 | InvokeECSum += BBEC; |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | if (LPECSum <= MinLPECSum) { |
| 430 | LPCountFractionsOfTotalBBEC.push_back(x: 0.0); |
| 431 | LPCountFractionsOfTotalInvokeEC.push_back(x: 0.0); |
| 432 | continue; |
| 433 | } |
| 434 | double FracTotalBBEC = 0.0; |
| 435 | if (BBECSum > 0) |
| 436 | FracTotalBBEC = (double)LPECSum / BBECSum; |
| 437 | double FracTotalInvokeEC = 0.0; |
| 438 | if (InvokeECSum > 0) |
| 439 | FracTotalInvokeEC = (double)LPECSum / InvokeECSum; |
| 440 | LPCountFractionsOfTotalBBEC.push_back(x: FracTotalBBEC); |
| 441 | LPCountFractionsOfTotalInvokeEC.push_back(x: FracTotalInvokeEC); |
| 442 | |
| 443 | if (opts::Verbosity >= 2 && FracTotalInvokeEC >= 0.05) { |
| 444 | OS << "Non-trivial usage of exception handling observed in function " |
| 445 | << Function->getPrintName() << "\n" |
| 446 | << formatv( |
| 447 | Fmt: "Fraction of total InvokeEC that goes to landing pads: {0:P}\n" , |
| 448 | Vals&: FracTotalInvokeEC); |
| 449 | if (opts::Verbosity >= 3) |
| 450 | Function->dump(); |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | llvm::sort(C&: LPCountFractionsOfTotalBBEC); |
| 455 | const int RankBBEC = int(LPCountFractionsOfTotalBBEC.size() * |
| 456 | opts::PercentileForProfileQualityCheck / 100); |
| 457 | llvm::sort(C&: LPCountFractionsOfTotalInvokeEC); |
| 458 | const int RankInvoke = int(LPCountFractionsOfTotalInvokeEC.size() * |
| 459 | opts::PercentileForProfileQualityCheck / 100); |
| 460 | OS << formatv(Fmt: "exception handling usage {0:P} (of total BBEC) {1:P} (of " |
| 461 | "total InvokeEC)\n" , |
| 462 | Vals&: LPCountFractionsOfTotalBBEC[RankBBEC], |
| 463 | Vals&: LPCountFractionsOfTotalInvokeEC[RankInvoke]); |
| 464 | if (opts::Verbosity >= 1) { |
| 465 | OS << "distribution of exception handling usage as a fraction of total " |
| 466 | "BBEC of each function\n" ; |
| 467 | printDistribution(OS, values&: LPCountFractionsOfTotalBBEC, /*Fraction=*/true); |
| 468 | OS << "distribution of exception handling usage as a fraction of total " |
| 469 | "InvokeEC of each function\n" ; |
| 470 | printDistribution(OS, values&: LPCountFractionsOfTotalInvokeEC, /*Fraction=*/true); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | void computeFlowMappings(const BinaryContext &BC, FlowInfo &TotalFlowMap) { |
| 475 | // Increment block inflow and outflow with CFG jump counts. |
| 476 | TotalFlowMapTy &TotalIncomingFlows = TotalFlowMap.TotalIncomingFlows; |
| 477 | TotalFlowMapTy &TotalOutgoingFlows = TotalFlowMap.TotalOutgoingFlows; |
| 478 | for (const auto &BFI : BC.getBinaryFunctions()) { |
| 479 | const BinaryFunction *Function = &BFI.second; |
| 480 | std::vector<uint64_t> &IncomingFlows = |
| 481 | TotalIncomingFlows[Function->getFunctionNumber()]; |
| 482 | std::vector<uint64_t> &OutgoingFlows = |
| 483 | TotalOutgoingFlows[Function->getFunctionNumber()]; |
| 484 | const uint64_t NumBlocks = Function->size(); |
| 485 | IncomingFlows.resize(new_size: NumBlocks, x: 0); |
| 486 | OutgoingFlows.resize(new_size: NumBlocks, x: 0); |
| 487 | if (Function->empty() || !Function->hasValidProfile()) |
| 488 | continue; |
| 489 | for (const BinaryBasicBlock &BB : *Function) { |
| 490 | uint64_t TotalOutgoing = 0ULL; |
| 491 | for (const auto &[Succ, BI] : |
| 492 | llvm::zip(t: BB.successors(), u: BB.branch_info())) { |
| 493 | const uint64_t Count = BI.Count; |
| 494 | if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0) |
| 495 | continue; |
| 496 | TotalOutgoing += Count; |
| 497 | IncomingFlows[Succ->getLayoutIndex()] += Count; |
| 498 | } |
| 499 | OutgoingFlows[BB.getLayoutIndex()] = TotalOutgoing; |
| 500 | } |
| 501 | } |
| 502 | // Initialize TotalMaxCountMaps and TotalMinCountMaps using |
| 503 | // TotalIncomingFlows and TotalOutgoingFlows |
| 504 | TotalFlowMapTy &TotalMaxCountMaps = TotalFlowMap.TotalMaxCountMaps; |
| 505 | TotalFlowMapTy &TotalMinCountMaps = TotalFlowMap.TotalMinCountMaps; |
| 506 | for (const auto &BFI : BC.getBinaryFunctions()) { |
| 507 | const BinaryFunction *Function = &BFI.second; |
| 508 | uint64_t FunctionNum = Function->getFunctionNumber(); |
| 509 | std::vector<uint64_t> &IncomingFlows = TotalIncomingFlows[FunctionNum]; |
| 510 | std::vector<uint64_t> &OutgoingFlows = TotalOutgoingFlows[FunctionNum]; |
| 511 | std::vector<uint64_t> &MaxCountMap = TotalMaxCountMaps[FunctionNum]; |
| 512 | std::vector<uint64_t> &MinCountMap = TotalMinCountMaps[FunctionNum]; |
| 513 | const uint64_t NumBlocks = Function->size(); |
| 514 | MaxCountMap.resize(new_size: NumBlocks, x: 0); |
| 515 | MinCountMap.resize(new_size: NumBlocks, x: 0); |
| 516 | if (Function->empty() || !Function->hasValidProfile()) |
| 517 | continue; |
| 518 | for (const BinaryBasicBlock &BB : *Function) { |
| 519 | uint64_t BBNum = BB.getLayoutIndex(); |
| 520 | MaxCountMap[BBNum] = std::max(a: IncomingFlows[BBNum], b: OutgoingFlows[BBNum]); |
| 521 | MinCountMap[BBNum] = std::min(a: IncomingFlows[BBNum], b: OutgoingFlows[BBNum]); |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | // Modify TotalMaxCountMaps and TotalMinCountMaps using call counts and |
| 526 | // fill out CallGraphIncomingFlows |
| 527 | FunctionFlowMapTy &CallGraphIncomingFlows = |
| 528 | TotalFlowMap.CallGraphIncomingFlows; |
| 529 | for (const auto &BFI : BC.getBinaryFunctions()) { |
| 530 | const BinaryFunction *Function = &BFI.second; |
| 531 | uint64_t FunctionNum = Function->getFunctionNumber(); |
| 532 | std::vector<uint64_t> &MaxCountMap = TotalMaxCountMaps[FunctionNum]; |
| 533 | std::vector<uint64_t> &MinCountMap = TotalMinCountMaps[FunctionNum]; |
| 534 | |
| 535 | // Record external entry count into CallGraphIncomingFlows |
| 536 | CallGraphIncomingFlows[FunctionNum] += Function->getExternEntryCount(); |
| 537 | |
| 538 | // Update MaxCountMap, MinCountMap, and CallGraphIncomingFlows |
| 539 | auto recordCall = [&](const BinaryBasicBlock *SourceBB, |
| 540 | const MCSymbol *DestSymbol, uint64_t Count, |
| 541 | uint64_t TotalCallCount) { |
| 542 | if (Count == BinaryBasicBlock::COUNT_NO_PROFILE) |
| 543 | Count = 0; |
| 544 | const BinaryFunction *DstFunc = |
| 545 | DestSymbol ? BC.getFunctionForSymbol(Symbol: DestSymbol) : nullptr; |
| 546 | if (DstFunc) |
| 547 | CallGraphIncomingFlows[DstFunc->getFunctionNumber()] += Count; |
| 548 | if (SourceBB) { |
| 549 | unsigned BlockIndex = SourceBB->getLayoutIndex(); |
| 550 | MaxCountMap[BlockIndex] = |
| 551 | std::max(a: MaxCountMap[BlockIndex], b: TotalCallCount); |
| 552 | MinCountMap[BlockIndex] = |
| 553 | std::min(a: MinCountMap[BlockIndex], b: TotalCallCount); |
| 554 | } |
| 555 | }; |
| 556 | |
| 557 | // Get pairs of (symbol, count) for each target at this callsite. |
| 558 | // If the call is to an unknown function the symbol will be nullptr. |
| 559 | // If there is no profiling data the count will be COUNT_NO_PROFILE. |
| 560 | using TargetDesc = std::pair<const MCSymbol *, uint64_t>; |
| 561 | using CallInfoTy = std::vector<TargetDesc>; |
| 562 | auto getCallInfo = [&](const BinaryBasicBlock *BB, const MCInst &Inst) { |
| 563 | CallInfoTy Counts; |
| 564 | const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst); |
| 565 | |
| 566 | if (!DstSym && BC.MIB->hasAnnotation(Inst, Name: "CallProfile" )) { |
| 567 | for (const auto &CSI : BC.MIB->getAnnotationAs<IndirectCallSiteProfile>( |
| 568 | Inst, Name: "CallProfile" )) |
| 569 | if (CSI.Symbol) |
| 570 | Counts.emplace_back(args: CSI.Symbol, args: CSI.Count); |
| 571 | } else { |
| 572 | const uint64_t Count = BB->getExecutionCount(); |
| 573 | Counts.emplace_back(args&: DstSym, args: Count); |
| 574 | } |
| 575 | |
| 576 | return Counts; |
| 577 | }; |
| 578 | |
| 579 | // If the function has an invalid profile, try to use the perf data |
| 580 | // directly. The call EC is only used to update CallGraphIncomingFlows. |
| 581 | if (!Function->hasValidProfile() && !Function->getAllCallSites().empty()) { |
| 582 | for (const IndirectCallProfile &CSI : Function->getAllCallSites()) |
| 583 | if (CSI.Symbol) |
| 584 | recordCall(nullptr, CSI.Symbol, CSI.Count, CSI.Count); |
| 585 | continue; |
| 586 | } else { |
| 587 | // If the function has a valid profile |
| 588 | for (const BinaryBasicBlock &BB : *Function) { |
| 589 | for (const MCInst &Inst : BB) { |
| 590 | if (!BC.MIB->isCall(Inst)) |
| 591 | continue; |
| 592 | // Find call instructions and extract target symbols from each |
| 593 | // one. |
| 594 | const CallInfoTy CallInfo = getCallInfo(&BB, Inst); |
| 595 | // We need the total call count to update MaxCountMap and |
| 596 | // MinCountMap in recordCall for indirect calls |
| 597 | uint64_t TotalCallCount = 0; |
| 598 | for (const TargetDesc &CI : CallInfo) |
| 599 | TotalCallCount += CI.second; |
| 600 | for (const TargetDesc &CI : CallInfo) |
| 601 | recordCall(&BB, CI.first, CI.second, TotalCallCount); |
| 602 | } |
| 603 | } |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | void printAll(BinaryContext &BC, FunctionListType &ValidFunctions, |
| 609 | size_t NumTopFunctions) { |
| 610 | // Sort the list of functions by execution counts (reverse). |
| 611 | llvm::sort(C&: ValidFunctions, |
| 612 | Comp: [&](const BinaryFunction *A, const BinaryFunction *B) { |
| 613 | return A->getKnownExecutionCount() > B->getKnownExecutionCount(); |
| 614 | }); |
| 615 | |
| 616 | const size_t RealNumTopFunctions = |
| 617 | std::min(a: NumTopFunctions, b: ValidFunctions.size()); |
| 618 | |
| 619 | iterator_range<function_iterator> Functions( |
| 620 | ValidFunctions.begin(), ValidFunctions.begin() + RealNumTopFunctions); |
| 621 | |
| 622 | FlowInfo TotalFlowMap; |
| 623 | computeFlowMappings(BC, TotalFlowMap); |
| 624 | |
| 625 | BC.outs() << format(Fmt: "BOLT-INFO: profile quality metrics for the hottest %zu " |
| 626 | "functions (reporting top %zu%% values): " , |
| 627 | Vals: RealNumTopFunctions, |
| 628 | Vals: 100 - opts::PercentileForProfileQualityCheck); |
| 629 | printCFGContinuityStats(OS&: BC.outs(), Functions); |
| 630 | printCallGraphFlowConservationStats(OS&: BC.outs(), Functions, TotalFlowMap); |
| 631 | printCFGFlowConservationStats(BC, OS&: BC.outs(), Functions, TotalFlowMap); |
| 632 | printExceptionHandlingStats(BC, OS&: BC.outs(), Functions); |
| 633 | // Print more detailed bucketed stats if requested. |
| 634 | if (opts::Verbosity >= 1 && RealNumTopFunctions >= 5) { |
| 635 | const size_t PerBucketSize = RealNumTopFunctions / 5; |
| 636 | BC.outs() << format( |
| 637 | Fmt: "Detailed stats for 5 buckets, each with %zu functions:\n" , |
| 638 | Vals: PerBucketSize); |
| 639 | |
| 640 | // For each bucket, print the CFG continuity stats of the functions in |
| 641 | // the bucket. |
| 642 | for (size_t BucketIndex = 0; BucketIndex < 5; ++BucketIndex) { |
| 643 | const size_t StartIndex = BucketIndex * PerBucketSize; |
| 644 | const size_t EndIndex = StartIndex + PerBucketSize; |
| 645 | iterator_range<function_iterator> Functions( |
| 646 | ValidFunctions.begin() + StartIndex, |
| 647 | ValidFunctions.begin() + EndIndex); |
| 648 | const size_t MaxFunctionExecutionCount = |
| 649 | ValidFunctions[StartIndex]->getKnownExecutionCount(); |
| 650 | const size_t MinFunctionExecutionCount = |
| 651 | ValidFunctions[EndIndex - 1]->getKnownExecutionCount(); |
| 652 | BC.outs() << format(Fmt: "----------------\n| Bucket %zu: " |
| 653 | "|\n----------------\n" , |
| 654 | Vals: BucketIndex + 1) |
| 655 | << format( |
| 656 | Fmt: "execution counts of the %zu functions in the bucket: " |
| 657 | "%zu-%zu\n" , |
| 658 | Vals: EndIndex - StartIndex, Vals: MinFunctionExecutionCount, |
| 659 | Vals: MaxFunctionExecutionCount); |
| 660 | printCFGContinuityStats(OS&: BC.outs(), Functions); |
| 661 | printCallGraphFlowConservationStats(OS&: BC.outs(), Functions, TotalFlowMap); |
| 662 | printCFGFlowConservationStats(BC, OS&: BC.outs(), Functions, TotalFlowMap); |
| 663 | printExceptionHandlingStats(BC, OS&: BC.outs(), Functions); |
| 664 | } |
| 665 | } |
| 666 | } |
| 667 | } // namespace |
| 668 | |
| 669 | bool PrintProfileQualityStats::shouldOptimize(const BinaryFunction &BF) const { |
| 670 | if (BF.empty() || !BF.hasValidProfile()) |
| 671 | return false; |
| 672 | |
| 673 | return BinaryFunctionPass::shouldOptimize(BF); |
| 674 | } |
| 675 | |
| 676 | Error PrintProfileQualityStats::runOnFunctions(BinaryContext &BC) { |
| 677 | // Create a list of functions with valid profiles. |
| 678 | FunctionListType ValidFunctions; |
| 679 | for (const auto &BFI : BC.getBinaryFunctions()) { |
| 680 | const BinaryFunction *Function = &BFI.second; |
| 681 | if (PrintProfileQualityStats::shouldOptimize(BF: *Function)) |
| 682 | ValidFunctions.push_back(x: Function); |
| 683 | } |
| 684 | if (ValidFunctions.empty() || opts::TopFunctionsForProfileQualityCheck == 0) |
| 685 | return Error::success(); |
| 686 | |
| 687 | printAll(BC, ValidFunctions, NumTopFunctions: opts::TopFunctionsForProfileQualityCheck); |
| 688 | return Error::success(); |
| 689 | } |
| 690 | |