1 | //===- bolt/Passes/ProfileQualityStats.cpp ----------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the profile quality stats calculation pass. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "bolt/Passes/ProfileQualityStats.h" |
14 | #include "bolt/Core/BinaryBasicBlock.h" |
15 | #include "bolt/Core/BinaryFunction.h" |
16 | #include "bolt/Utils/CommandLineOpts.h" |
17 | #include "llvm/Support/CommandLine.h" |
18 | #include <queue> |
19 | #include <unordered_map> |
20 | #include <unordered_set> |
21 | |
22 | using namespace llvm; |
23 | using namespace bolt; |
24 | |
25 | namespace opts { |
26 | extern cl::opt<unsigned> Verbosity; |
27 | static cl::opt<unsigned> TopFunctionsForProfileQualityCheck( |
28 | "top-functions-for-profile-quality-check" , |
29 | cl::desc("number of hottest functions to print aggregated " |
30 | "profile quality stats of." ), |
31 | cl::init(Val: 1000), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); |
32 | static cl::opt<unsigned> PercentileForProfileQualityCheck( |
33 | "percentile-for-profile-quality-check" , |
34 | cl::desc("Percentile of profile quality distributions over hottest " |
35 | "functions to report." ), |
36 | cl::init(Val: 95), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); |
37 | } // namespace opts |
38 | |
39 | namespace { |
40 | using FunctionListType = std::vector<const BinaryFunction *>; |
41 | using function_iterator = FunctionListType::iterator; |
42 | |
43 | // Function number -> vector of flows for BBs in the function |
44 | using TotalFlowMapTy = std::unordered_map<uint64_t, std::vector<uint64_t>>; |
45 | // Function number -> flow count |
46 | using FunctionFlowMapTy = std::unordered_map<uint64_t, uint64_t>; |
47 | struct FlowInfo { |
48 | TotalFlowMapTy TotalIncomingFlows; |
49 | TotalFlowMapTy TotalOutgoingFlows; |
50 | TotalFlowMapTy TotalMaxCountMaps; |
51 | TotalFlowMapTy TotalMinCountMaps; |
52 | FunctionFlowMapTy CallGraphIncomingFlows; |
53 | }; |
54 | |
55 | // When reporting exception handling stats, we only consider functions with at |
56 | // least MinLPECSum counts in landing pads to avoid false positives due to |
57 | // sampling noise |
58 | const uint16_t MinLPECSum = 50; |
59 | |
60 | // When reporting CFG flow conservation stats, we only consider blocks with |
61 | // execution counts > MinBlockCount when reporting the distribution of worst |
62 | // gaps. |
63 | const uint16_t MinBlockCount = 500; |
64 | |
65 | template <typename T> |
66 | void printDistribution(raw_ostream &OS, std::vector<T> &values, |
67 | bool Fraction = false) { |
68 | // Assume values are sorted. |
69 | if (values.empty()) |
70 | return; |
71 | |
72 | OS << " Length : " << values.size() << "\n" ; |
73 | |
74 | auto printLine = [&](std::string Text, double Percent) { |
75 | int Rank = int(values.size() * (100 - Percent) / 100); |
76 | if (Percent == 0) |
77 | Rank = values.size() - 1; |
78 | if (Fraction) |
79 | OS << " " << Text << std::string(11 - Text.length(), ' ') << ": " |
80 | << formatv("{0:P}" , values[Rank]) << "\n" ; |
81 | else |
82 | OS << " " << Text << std::string(11 - Text.length(), ' ') << ": " |
83 | << values[Rank] << "\n" ; |
84 | }; |
85 | |
86 | printLine("MAX" , 0); |
87 | const int percentages[] = {1, 5, 10, 20, 50, 80}; |
88 | for (size_t i = 0; i < sizeof(percentages) / sizeof(percentages[0]); ++i) { |
89 | printLine("TOP " + std::to_string(val: percentages[i]) + "%" , percentages[i]); |
90 | } |
91 | printLine("MIN" , 100); |
92 | } |
93 | |
94 | void printCFGContinuityStats(raw_ostream &OS, |
95 | iterator_range<function_iterator> &Functions) { |
96 | // Given a perfect profile, every positive-execution-count BB should be |
97 | // connected to an entry of the function through a positive-execution-count |
98 | // directed path in the control flow graph. |
99 | std::vector<size_t> NumUnreachables; |
100 | std::vector<size_t> SumECUnreachables; |
101 | std::vector<double> FractionECUnreachables; |
102 | |
103 | for (const BinaryFunction *Function : Functions) { |
104 | if (Function->size() <= 1) { |
105 | NumUnreachables.push_back(x: 0); |
106 | SumECUnreachables.push_back(x: 0); |
107 | FractionECUnreachables.push_back(x: 0.0); |
108 | continue; |
109 | } |
110 | |
111 | // Compute the sum of all BB execution counts (ECs). |
112 | size_t NumPosECBBs = 0; |
113 | size_t SumAllBBEC = 0; |
114 | for (const BinaryBasicBlock &BB : *Function) { |
115 | const size_t BBEC = BB.getKnownExecutionCount(); |
116 | NumPosECBBs += !!BBEC; |
117 | SumAllBBEC += BBEC; |
118 | } |
119 | |
120 | // Perform BFS on subgraph of CFG induced by positive weight edges. |
121 | // Compute the number of BBs reachable from the entry(s) of the function and |
122 | // the sum of their execution counts (ECs). |
123 | std::unordered_set<unsigned> Visited; |
124 | std::queue<unsigned> Queue; |
125 | size_t SumReachableBBEC = 0; |
126 | |
127 | Function->forEachEntryPoint(Callback: [&](uint64_t Offset, const MCSymbol *Label) { |
128 | const BinaryBasicBlock *EntryBB = Function->getBasicBlockAtOffset(Offset); |
129 | if (!EntryBB || EntryBB->getKnownExecutionCount() == 0) |
130 | return true; |
131 | Queue.push(x: EntryBB->getLayoutIndex()); |
132 | Visited.insert(x: EntryBB->getLayoutIndex()); |
133 | SumReachableBBEC += EntryBB->getKnownExecutionCount(); |
134 | return true; |
135 | }); |
136 | |
137 | const FunctionLayout &Layout = Function->getLayout(); |
138 | |
139 | while (!Queue.empty()) { |
140 | const unsigned BBIndex = Queue.front(); |
141 | const BinaryBasicBlock *BB = Layout.getBlock(Index: BBIndex); |
142 | Queue.pop(); |
143 | for (const auto &[Succ, BI] : |
144 | llvm::zip(t: BB->successors(), u: BB->branch_info())) { |
145 | const uint64_t Count = BI.Count; |
146 | if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0 || |
147 | !Visited.insert(x: Succ->getLayoutIndex()).second) |
148 | continue; |
149 | SumReachableBBEC += Succ->getKnownExecutionCount(); |
150 | Queue.push(x: Succ->getLayoutIndex()); |
151 | } |
152 | } |
153 | |
154 | const size_t NumReachableBBs = Visited.size(); |
155 | |
156 | const size_t NumPosECBBsUnreachableFromEntry = |
157 | NumPosECBBs - NumReachableBBs; |
158 | const size_t SumUnreachableBBEC = SumAllBBEC - SumReachableBBEC; |
159 | |
160 | double FractionECUnreachable = 0.0; |
161 | if (SumAllBBEC > 0) |
162 | FractionECUnreachable = (double)SumUnreachableBBEC / SumAllBBEC; |
163 | |
164 | if (opts::Verbosity >= 2 && FractionECUnreachable >= 0.05) { |
165 | OS << "Non-trivial CFG discontinuity observed in function " |
166 | << Function->getPrintName() << "\n" ; |
167 | if (opts::Verbosity >= 3) |
168 | Function->dump(); |
169 | } |
170 | |
171 | NumUnreachables.push_back(x: NumPosECBBsUnreachableFromEntry); |
172 | SumECUnreachables.push_back(x: SumUnreachableBBEC); |
173 | FractionECUnreachables.push_back(x: FractionECUnreachable); |
174 | } |
175 | |
176 | llvm::sort(C&: FractionECUnreachables); |
177 | const int Rank = int(FractionECUnreachables.size() * |
178 | opts::PercentileForProfileQualityCheck / 100); |
179 | OS << formatv(Fmt: "function CFG discontinuity {0:P}; " , |
180 | Vals&: FractionECUnreachables[Rank]); |
181 | if (opts::Verbosity >= 1) { |
182 | OS << "\nabbreviations: EC = execution count, POS BBs = positive EC BBs\n" |
183 | << "distribution of NUM(unreachable POS BBs) per function\n" ; |
184 | llvm::sort(C&: NumUnreachables); |
185 | printDistribution(OS, values&: NumUnreachables); |
186 | |
187 | OS << "distribution of SUM_EC(unreachable POS BBs) per function\n" ; |
188 | llvm::sort(C&: SumECUnreachables); |
189 | printDistribution(OS, values&: SumECUnreachables); |
190 | |
191 | OS << "distribution of [(SUM_EC(unreachable POS BBs) / SUM_EC(all " |
192 | "POS BBs))] per function\n" ; |
193 | printDistribution(OS, values&: FractionECUnreachables, /*Fraction=*/true); |
194 | } |
195 | } |
196 | |
197 | void printCallGraphFlowConservationStats( |
198 | raw_ostream &OS, iterator_range<function_iterator> &Functions, |
199 | FlowInfo &TotalFlowMap) { |
200 | std::vector<double> CallGraphGaps; |
201 | |
202 | for (const BinaryFunction *Function : Functions) { |
203 | if (Function->size() <= 1 || !Function->isSimple()) { |
204 | CallGraphGaps.push_back(x: 0.0); |
205 | continue; |
206 | } |
207 | |
208 | const uint64_t FunctionNum = Function->getFunctionNumber(); |
209 | std::vector<uint64_t> &IncomingFlows = |
210 | TotalFlowMap.TotalIncomingFlows[FunctionNum]; |
211 | std::vector<uint64_t> &OutgoingFlows = |
212 | TotalFlowMap.TotalOutgoingFlows[FunctionNum]; |
213 | FunctionFlowMapTy &CallGraphIncomingFlows = |
214 | TotalFlowMap.CallGraphIncomingFlows; |
215 | |
216 | // Only consider functions that are not a program entry. |
217 | if (CallGraphIncomingFlows.find(x: FunctionNum) == |
218 | CallGraphIncomingFlows.end()) { |
219 | CallGraphGaps.push_back(x: 0.0); |
220 | continue; |
221 | } |
222 | |
223 | uint64_t EntryInflow = 0; |
224 | uint64_t EntryOutflow = 0; |
225 | uint32_t NumConsideredEntryBlocks = 0; |
226 | |
227 | Function->forEachEntryPoint(Callback: [&](uint64_t Offset, const MCSymbol *Label) { |
228 | const BinaryBasicBlock *EntryBB = Function->getBasicBlockAtOffset(Offset); |
229 | if (!EntryBB || EntryBB->succ_size() == 0) |
230 | return true; |
231 | NumConsideredEntryBlocks++; |
232 | EntryInflow += IncomingFlows[EntryBB->getLayoutIndex()]; |
233 | EntryOutflow += OutgoingFlows[EntryBB->getLayoutIndex()]; |
234 | return true; |
235 | }); |
236 | |
237 | uint64_t NetEntryOutflow = 0; |
238 | if (EntryOutflow < EntryInflow) { |
239 | if (opts::Verbosity >= 2) { |
240 | // We expect entry blocks' CFG outflow >= inflow, i.e., it has a |
241 | // non-negative net outflow. If this is not the case, then raise a |
242 | // warning if requested. |
243 | OS << "BOLT WARNING: unexpected entry block CFG outflow < inflow " |
244 | "in function " |
245 | << Function->getPrintName() << "\n" ; |
246 | if (opts::Verbosity >= 3) |
247 | Function->dump(); |
248 | } |
249 | } else { |
250 | NetEntryOutflow = EntryOutflow - EntryInflow; |
251 | } |
252 | if (NumConsideredEntryBlocks > 0) { |
253 | const uint64_t CallGraphInflow = |
254 | TotalFlowMap.CallGraphIncomingFlows[Function->getFunctionNumber()]; |
255 | const uint64_t Min = std::min(a: NetEntryOutflow, b: CallGraphInflow); |
256 | const uint64_t Max = std::max(a: NetEntryOutflow, b: CallGraphInflow); |
257 | double CallGraphGap = 0.0; |
258 | if (Max > 0) |
259 | CallGraphGap = 1 - (double)Min / Max; |
260 | |
261 | if (opts::Verbosity >= 2 && CallGraphGap >= 0.5) { |
262 | OS << "Non-trivial call graph gap of size " |
263 | << formatv(Fmt: "{0:P}" , Vals&: CallGraphGap) << " observed in function " |
264 | << Function->getPrintName() << "\n" ; |
265 | if (opts::Verbosity >= 3) |
266 | Function->dump(); |
267 | } |
268 | |
269 | CallGraphGaps.push_back(x: CallGraphGap); |
270 | } else { |
271 | CallGraphGaps.push_back(x: 0.0); |
272 | } |
273 | } |
274 | |
275 | llvm::sort(C&: CallGraphGaps); |
276 | const int Rank = |
277 | int(CallGraphGaps.size() * opts::PercentileForProfileQualityCheck / 100); |
278 | OS << formatv(Fmt: "call graph flow conservation gap {0:P}; " , |
279 | Vals&: CallGraphGaps[Rank]); |
280 | if (opts::Verbosity >= 1) { |
281 | OS << "\ndistribution of function entry flow conservation gaps\n" ; |
282 | printDistribution(OS, values&: CallGraphGaps, /*Fraction=*/true); |
283 | } |
284 | } |
285 | |
286 | void printCFGFlowConservationStats(const BinaryContext &BC, raw_ostream &OS, |
287 | iterator_range<function_iterator> &Functions, |
288 | FlowInfo &TotalFlowMap) { |
289 | std::vector<double> CFGGapsWeightedAvg; |
290 | std::vector<double> CFGGapsWorst; |
291 | std::vector<uint64_t> CFGGapsWorstAbs; |
292 | for (const BinaryFunction *Function : Functions) { |
293 | if (Function->size() <= 1 || !Function->isSimple()) { |
294 | CFGGapsWeightedAvg.push_back(x: 0.0); |
295 | CFGGapsWorst.push_back(x: 0.0); |
296 | CFGGapsWorstAbs.push_back(x: 0); |
297 | continue; |
298 | } |
299 | |
300 | const uint64_t FunctionNum = Function->getFunctionNumber(); |
301 | std::vector<uint64_t> &MaxCountMaps = |
302 | TotalFlowMap.TotalMaxCountMaps[FunctionNum]; |
303 | std::vector<uint64_t> &MinCountMaps = |
304 | TotalFlowMap.TotalMinCountMaps[FunctionNum]; |
305 | double WeightedGapSum = 0.0; |
306 | double WeightSum = 0.0; |
307 | double WorstGap = 0.0; |
308 | uint64_t WorstGapAbs = 0; |
309 | BinaryBasicBlock *BBWorstGap = nullptr; |
310 | BinaryBasicBlock *BBWorstGapAbs = nullptr; |
311 | for (BinaryBasicBlock &BB : *Function) { |
312 | // We don't consider function entry or exit blocks for CFG flow |
313 | // conservation |
314 | if (BB.isEntryPoint() || BB.succ_size() == 0) |
315 | continue; |
316 | |
317 | if (BB.getKnownExecutionCount() == 0 || BB.getNumNonPseudos() == 0) |
318 | continue; |
319 | |
320 | // We don't consider blocks that is a landing pad or has a |
321 | // positive-execution-count landing pad |
322 | if (BB.isLandingPad()) |
323 | continue; |
324 | |
325 | if (llvm::any_of(Range: BB.landing_pads(), |
326 | P: std::mem_fn(pm: &BinaryBasicBlock::getKnownExecutionCount))) |
327 | continue; |
328 | |
329 | // We don't consider blocks that end with a recursive call instruction |
330 | const MCInst *Inst = BB.getLastNonPseudoInstr(); |
331 | if (BC.MIB->isCall(Inst: *Inst)) { |
332 | const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst: *Inst); |
333 | const BinaryFunction *DstFunc = |
334 | DstSym ? BC.getFunctionForSymbol(Symbol: DstSym) : nullptr; |
335 | if (DstFunc == Function) |
336 | continue; |
337 | } |
338 | |
339 | const uint64_t Max = MaxCountMaps[BB.getLayoutIndex()]; |
340 | const uint64_t Min = MinCountMaps[BB.getLayoutIndex()]; |
341 | double Gap = 0.0; |
342 | if (Max > 0) |
343 | Gap = 1 - (double)Min / Max; |
344 | double Weight = BB.getKnownExecutionCount() * BB.getNumNonPseudos(); |
345 | // We use log to prevent the stats from being dominated by extremely hot |
346 | // blocks |
347 | Weight = log(x: Weight); |
348 | WeightedGapSum += Gap * Weight; |
349 | WeightSum += Weight; |
350 | if (BB.getKnownExecutionCount() > MinBlockCount && Gap > WorstGap) { |
351 | WorstGap = Gap; |
352 | BBWorstGap = &BB; |
353 | } |
354 | if (BB.getKnownExecutionCount() > MinBlockCount && |
355 | Max - Min > WorstGapAbs) { |
356 | WorstGapAbs = Max - Min; |
357 | BBWorstGapAbs = &BB; |
358 | } |
359 | } |
360 | double WeightedGap = WeightedGapSum; |
361 | if (WeightSum > 0) |
362 | WeightedGap /= WeightSum; |
363 | if (opts::Verbosity >= 2 && WorstGap >= 0.9) { |
364 | OS << "Non-trivial CFG gap observed in function " |
365 | << Function->getPrintName() << "\n" |
366 | << "Weighted gap: " << formatv(Fmt: "{0:P}" , Vals&: WeightedGap) << "\n" ; |
367 | if (BBWorstGap) |
368 | OS << "Worst gap: " << formatv(Fmt: "{0:P}" , Vals&: WorstGap) |
369 | << " at BB with input offset: 0x" |
370 | << Twine::utohexstr(Val: BBWorstGap->getInputOffset()) << "\n" ; |
371 | if (BBWorstGapAbs) |
372 | OS << "Worst gap (absolute value): " << WorstGapAbs << " at BB with " |
373 | << "input offset 0x" |
374 | << Twine::utohexstr(Val: BBWorstGapAbs->getInputOffset()) << "\n" ; |
375 | if (opts::Verbosity >= 3) |
376 | Function->dump(); |
377 | } |
378 | CFGGapsWeightedAvg.push_back(x: WeightedGap); |
379 | CFGGapsWorst.push_back(x: WorstGap); |
380 | CFGGapsWorstAbs.push_back(x: WorstGapAbs); |
381 | } |
382 | |
383 | llvm::sort(C&: CFGGapsWeightedAvg); |
384 | const int RankWA = int(CFGGapsWeightedAvg.size() * |
385 | opts::PercentileForProfileQualityCheck / 100); |
386 | llvm::sort(C&: CFGGapsWorst); |
387 | const int RankW = |
388 | int(CFGGapsWorst.size() * opts::PercentileForProfileQualityCheck / 100); |
389 | OS << formatv(Fmt: "CFG flow conservation gap {0:P} (weighted) {1:P} (worst); " , |
390 | Vals&: CFGGapsWeightedAvg[RankWA], Vals&: CFGGapsWorst[RankW]); |
391 | if (opts::Verbosity >= 1) { |
392 | OS << "distribution of weighted CFG flow conservation gaps\n" ; |
393 | printDistribution(OS, values&: CFGGapsWeightedAvg, /*Fraction=*/true); |
394 | OS << format(Fmt: "Consider only blocks with execution counts > %zu:\n" , |
395 | Vals: MinBlockCount) |
396 | << "distribution of worst block flow conservation gap per " |
397 | "function \n" ; |
398 | printDistribution(OS, values&: CFGGapsWorst, /*Fraction=*/true); |
399 | OS << "distribution of worst block flow conservation gap (absolute " |
400 | "value) per function\n" ; |
401 | llvm::sort(C&: CFGGapsWorstAbs); |
402 | printDistribution(OS, values&: CFGGapsWorstAbs, /*Fraction=*/false); |
403 | } |
404 | } |
405 | |
406 | void printExceptionHandlingStats(const BinaryContext &BC, raw_ostream &OS, |
407 | iterator_range<function_iterator> &Functions) { |
408 | std::vector<double> LPCountFractionsOfTotalBBEC; |
409 | std::vector<double> LPCountFractionsOfTotalInvokeEC; |
410 | for (const BinaryFunction *Function : Functions) { |
411 | size_t LPECSum = 0; |
412 | size_t BBECSum = 0; |
413 | size_t InvokeECSum = 0; |
414 | for (BinaryBasicBlock &BB : *Function) { |
415 | const size_t BBEC = BB.getKnownExecutionCount(); |
416 | BBECSum += BBEC; |
417 | if (BB.isLandingPad()) |
418 | LPECSum += BBEC; |
419 | for (const MCInst &Inst : BB) { |
420 | if (!BC.MIB->isInvoke(Inst)) |
421 | continue; |
422 | const std::optional<MCPlus::MCLandingPad> EHInfo = |
423 | BC.MIB->getEHInfo(Inst); |
424 | if (EHInfo->first) |
425 | InvokeECSum += BBEC; |
426 | } |
427 | } |
428 | |
429 | if (LPECSum <= MinLPECSum) { |
430 | LPCountFractionsOfTotalBBEC.push_back(x: 0.0); |
431 | LPCountFractionsOfTotalInvokeEC.push_back(x: 0.0); |
432 | continue; |
433 | } |
434 | double FracTotalBBEC = 0.0; |
435 | if (BBECSum > 0) |
436 | FracTotalBBEC = (double)LPECSum / BBECSum; |
437 | double FracTotalInvokeEC = 0.0; |
438 | if (InvokeECSum > 0) |
439 | FracTotalInvokeEC = (double)LPECSum / InvokeECSum; |
440 | LPCountFractionsOfTotalBBEC.push_back(x: FracTotalBBEC); |
441 | LPCountFractionsOfTotalInvokeEC.push_back(x: FracTotalInvokeEC); |
442 | |
443 | if (opts::Verbosity >= 2 && FracTotalInvokeEC >= 0.05) { |
444 | OS << "Non-trivial usage of exception handling observed in function " |
445 | << Function->getPrintName() << "\n" |
446 | << formatv( |
447 | Fmt: "Fraction of total InvokeEC that goes to landing pads: {0:P}\n" , |
448 | Vals&: FracTotalInvokeEC); |
449 | if (opts::Verbosity >= 3) |
450 | Function->dump(); |
451 | } |
452 | } |
453 | |
454 | llvm::sort(C&: LPCountFractionsOfTotalBBEC); |
455 | const int RankBBEC = int(LPCountFractionsOfTotalBBEC.size() * |
456 | opts::PercentileForProfileQualityCheck / 100); |
457 | llvm::sort(C&: LPCountFractionsOfTotalInvokeEC); |
458 | const int RankInvoke = int(LPCountFractionsOfTotalInvokeEC.size() * |
459 | opts::PercentileForProfileQualityCheck / 100); |
460 | OS << formatv(Fmt: "exception handling usage {0:P} (of total BBEC) {1:P} (of " |
461 | "total InvokeEC)\n" , |
462 | Vals&: LPCountFractionsOfTotalBBEC[RankBBEC], |
463 | Vals&: LPCountFractionsOfTotalInvokeEC[RankInvoke]); |
464 | if (opts::Verbosity >= 1) { |
465 | OS << "distribution of exception handling usage as a fraction of total " |
466 | "BBEC of each function\n" ; |
467 | printDistribution(OS, values&: LPCountFractionsOfTotalBBEC, /*Fraction=*/true); |
468 | OS << "distribution of exception handling usage as a fraction of total " |
469 | "InvokeEC of each function\n" ; |
470 | printDistribution(OS, values&: LPCountFractionsOfTotalInvokeEC, /*Fraction=*/true); |
471 | } |
472 | } |
473 | |
474 | void computeFlowMappings(const BinaryContext &BC, FlowInfo &TotalFlowMap) { |
475 | // Increment block inflow and outflow with CFG jump counts. |
476 | TotalFlowMapTy &TotalIncomingFlows = TotalFlowMap.TotalIncomingFlows; |
477 | TotalFlowMapTy &TotalOutgoingFlows = TotalFlowMap.TotalOutgoingFlows; |
478 | for (const auto &BFI : BC.getBinaryFunctions()) { |
479 | const BinaryFunction *Function = &BFI.second; |
480 | std::vector<uint64_t> &IncomingFlows = |
481 | TotalIncomingFlows[Function->getFunctionNumber()]; |
482 | std::vector<uint64_t> &OutgoingFlows = |
483 | TotalOutgoingFlows[Function->getFunctionNumber()]; |
484 | const uint64_t NumBlocks = Function->size(); |
485 | IncomingFlows.resize(new_size: NumBlocks, x: 0); |
486 | OutgoingFlows.resize(new_size: NumBlocks, x: 0); |
487 | if (Function->empty() || !Function->hasValidProfile()) |
488 | continue; |
489 | for (const BinaryBasicBlock &BB : *Function) { |
490 | uint64_t TotalOutgoing = 0ULL; |
491 | for (const auto &[Succ, BI] : |
492 | llvm::zip(t: BB.successors(), u: BB.branch_info())) { |
493 | const uint64_t Count = BI.Count; |
494 | if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0) |
495 | continue; |
496 | TotalOutgoing += Count; |
497 | IncomingFlows[Succ->getLayoutIndex()] += Count; |
498 | } |
499 | OutgoingFlows[BB.getLayoutIndex()] = TotalOutgoing; |
500 | } |
501 | } |
502 | // Initialize TotalMaxCountMaps and TotalMinCountMaps using |
503 | // TotalIncomingFlows and TotalOutgoingFlows |
504 | TotalFlowMapTy &TotalMaxCountMaps = TotalFlowMap.TotalMaxCountMaps; |
505 | TotalFlowMapTy &TotalMinCountMaps = TotalFlowMap.TotalMinCountMaps; |
506 | for (const auto &BFI : BC.getBinaryFunctions()) { |
507 | const BinaryFunction *Function = &BFI.second; |
508 | uint64_t FunctionNum = Function->getFunctionNumber(); |
509 | std::vector<uint64_t> &IncomingFlows = TotalIncomingFlows[FunctionNum]; |
510 | std::vector<uint64_t> &OutgoingFlows = TotalOutgoingFlows[FunctionNum]; |
511 | std::vector<uint64_t> &MaxCountMap = TotalMaxCountMaps[FunctionNum]; |
512 | std::vector<uint64_t> &MinCountMap = TotalMinCountMaps[FunctionNum]; |
513 | const uint64_t NumBlocks = Function->size(); |
514 | MaxCountMap.resize(new_size: NumBlocks, x: 0); |
515 | MinCountMap.resize(new_size: NumBlocks, x: 0); |
516 | if (Function->empty() || !Function->hasValidProfile()) |
517 | continue; |
518 | for (const BinaryBasicBlock &BB : *Function) { |
519 | uint64_t BBNum = BB.getLayoutIndex(); |
520 | MaxCountMap[BBNum] = std::max(a: IncomingFlows[BBNum], b: OutgoingFlows[BBNum]); |
521 | MinCountMap[BBNum] = std::min(a: IncomingFlows[BBNum], b: OutgoingFlows[BBNum]); |
522 | } |
523 | } |
524 | |
525 | // Modify TotalMaxCountMaps and TotalMinCountMaps using call counts and |
526 | // fill out CallGraphIncomingFlows |
527 | FunctionFlowMapTy &CallGraphIncomingFlows = |
528 | TotalFlowMap.CallGraphIncomingFlows; |
529 | for (const auto &BFI : BC.getBinaryFunctions()) { |
530 | const BinaryFunction *Function = &BFI.second; |
531 | uint64_t FunctionNum = Function->getFunctionNumber(); |
532 | std::vector<uint64_t> &MaxCountMap = TotalMaxCountMaps[FunctionNum]; |
533 | std::vector<uint64_t> &MinCountMap = TotalMinCountMaps[FunctionNum]; |
534 | |
535 | // Record external entry count into CallGraphIncomingFlows |
536 | CallGraphIncomingFlows[FunctionNum] += Function->getExternEntryCount(); |
537 | |
538 | // Update MaxCountMap, MinCountMap, and CallGraphIncomingFlows |
539 | auto recordCall = [&](const BinaryBasicBlock *SourceBB, |
540 | const MCSymbol *DestSymbol, uint64_t Count, |
541 | uint64_t TotalCallCount) { |
542 | if (Count == BinaryBasicBlock::COUNT_NO_PROFILE) |
543 | Count = 0; |
544 | const BinaryFunction *DstFunc = |
545 | DestSymbol ? BC.getFunctionForSymbol(Symbol: DestSymbol) : nullptr; |
546 | if (DstFunc) |
547 | CallGraphIncomingFlows[DstFunc->getFunctionNumber()] += Count; |
548 | if (SourceBB) { |
549 | unsigned BlockIndex = SourceBB->getLayoutIndex(); |
550 | MaxCountMap[BlockIndex] = |
551 | std::max(a: MaxCountMap[BlockIndex], b: TotalCallCount); |
552 | MinCountMap[BlockIndex] = |
553 | std::min(a: MinCountMap[BlockIndex], b: TotalCallCount); |
554 | } |
555 | }; |
556 | |
557 | // Get pairs of (symbol, count) for each target at this callsite. |
558 | // If the call is to an unknown function the symbol will be nullptr. |
559 | // If there is no profiling data the count will be COUNT_NO_PROFILE. |
560 | using TargetDesc = std::pair<const MCSymbol *, uint64_t>; |
561 | using CallInfoTy = std::vector<TargetDesc>; |
562 | auto getCallInfo = [&](const BinaryBasicBlock *BB, const MCInst &Inst) { |
563 | CallInfoTy Counts; |
564 | const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst); |
565 | |
566 | if (!DstSym && BC.MIB->hasAnnotation(Inst, Name: "CallProfile" )) { |
567 | for (const auto &CSI : BC.MIB->getAnnotationAs<IndirectCallSiteProfile>( |
568 | Inst, Name: "CallProfile" )) |
569 | if (CSI.Symbol) |
570 | Counts.emplace_back(args: CSI.Symbol, args: CSI.Count); |
571 | } else { |
572 | const uint64_t Count = BB->getExecutionCount(); |
573 | Counts.emplace_back(args&: DstSym, args: Count); |
574 | } |
575 | |
576 | return Counts; |
577 | }; |
578 | |
579 | // If the function has an invalid profile, try to use the perf data |
580 | // directly. The call EC is only used to update CallGraphIncomingFlows. |
581 | if (!Function->hasValidProfile() && !Function->getAllCallSites().empty()) { |
582 | for (const IndirectCallProfile &CSI : Function->getAllCallSites()) |
583 | if (CSI.Symbol) |
584 | recordCall(nullptr, CSI.Symbol, CSI.Count, CSI.Count); |
585 | continue; |
586 | } else { |
587 | // If the function has a valid profile |
588 | for (const BinaryBasicBlock &BB : *Function) { |
589 | for (const MCInst &Inst : BB) { |
590 | if (!BC.MIB->isCall(Inst)) |
591 | continue; |
592 | // Find call instructions and extract target symbols from each |
593 | // one. |
594 | const CallInfoTy CallInfo = getCallInfo(&BB, Inst); |
595 | // We need the total call count to update MaxCountMap and |
596 | // MinCountMap in recordCall for indirect calls |
597 | uint64_t TotalCallCount = 0; |
598 | for (const TargetDesc &CI : CallInfo) |
599 | TotalCallCount += CI.second; |
600 | for (const TargetDesc &CI : CallInfo) |
601 | recordCall(&BB, CI.first, CI.second, TotalCallCount); |
602 | } |
603 | } |
604 | } |
605 | } |
606 | } |
607 | |
608 | void printAll(BinaryContext &BC, FunctionListType &ValidFunctions, |
609 | size_t NumTopFunctions) { |
610 | // Sort the list of functions by execution counts (reverse). |
611 | llvm::sort(C&: ValidFunctions, |
612 | Comp: [&](const BinaryFunction *A, const BinaryFunction *B) { |
613 | return A->getKnownExecutionCount() > B->getKnownExecutionCount(); |
614 | }); |
615 | |
616 | const size_t RealNumTopFunctions = |
617 | std::min(a: NumTopFunctions, b: ValidFunctions.size()); |
618 | |
619 | iterator_range<function_iterator> Functions( |
620 | ValidFunctions.begin(), ValidFunctions.begin() + RealNumTopFunctions); |
621 | |
622 | FlowInfo TotalFlowMap; |
623 | computeFlowMappings(BC, TotalFlowMap); |
624 | |
625 | BC.outs() << format(Fmt: "BOLT-INFO: profile quality metrics for the hottest %zu " |
626 | "functions (reporting top %zu%% values): " , |
627 | Vals: RealNumTopFunctions, |
628 | Vals: 100 - opts::PercentileForProfileQualityCheck); |
629 | printCFGContinuityStats(OS&: BC.outs(), Functions); |
630 | printCallGraphFlowConservationStats(OS&: BC.outs(), Functions, TotalFlowMap); |
631 | printCFGFlowConservationStats(BC, OS&: BC.outs(), Functions, TotalFlowMap); |
632 | printExceptionHandlingStats(BC, OS&: BC.outs(), Functions); |
633 | // Print more detailed bucketed stats if requested. |
634 | if (opts::Verbosity >= 1 && RealNumTopFunctions >= 5) { |
635 | const size_t PerBucketSize = RealNumTopFunctions / 5; |
636 | BC.outs() << format( |
637 | Fmt: "Detailed stats for 5 buckets, each with %zu functions:\n" , |
638 | Vals: PerBucketSize); |
639 | |
640 | // For each bucket, print the CFG continuity stats of the functions in |
641 | // the bucket. |
642 | for (size_t BucketIndex = 0; BucketIndex < 5; ++BucketIndex) { |
643 | const size_t StartIndex = BucketIndex * PerBucketSize; |
644 | const size_t EndIndex = StartIndex + PerBucketSize; |
645 | iterator_range<function_iterator> Functions( |
646 | ValidFunctions.begin() + StartIndex, |
647 | ValidFunctions.begin() + EndIndex); |
648 | const size_t MaxFunctionExecutionCount = |
649 | ValidFunctions[StartIndex]->getKnownExecutionCount(); |
650 | const size_t MinFunctionExecutionCount = |
651 | ValidFunctions[EndIndex - 1]->getKnownExecutionCount(); |
652 | BC.outs() << format(Fmt: "----------------\n| Bucket %zu: " |
653 | "|\n----------------\n" , |
654 | Vals: BucketIndex + 1) |
655 | << format( |
656 | Fmt: "execution counts of the %zu functions in the bucket: " |
657 | "%zu-%zu\n" , |
658 | Vals: EndIndex - StartIndex, Vals: MinFunctionExecutionCount, |
659 | Vals: MaxFunctionExecutionCount); |
660 | printCFGContinuityStats(OS&: BC.outs(), Functions); |
661 | printCallGraphFlowConservationStats(OS&: BC.outs(), Functions, TotalFlowMap); |
662 | printCFGFlowConservationStats(BC, OS&: BC.outs(), Functions, TotalFlowMap); |
663 | printExceptionHandlingStats(BC, OS&: BC.outs(), Functions); |
664 | } |
665 | } |
666 | } |
667 | } // namespace |
668 | |
669 | bool PrintProfileQualityStats::shouldOptimize(const BinaryFunction &BF) const { |
670 | if (BF.empty() || !BF.hasValidProfile()) |
671 | return false; |
672 | |
673 | return BinaryFunctionPass::shouldOptimize(BF); |
674 | } |
675 | |
676 | Error PrintProfileQualityStats::runOnFunctions(BinaryContext &BC) { |
677 | // Create a list of functions with valid profiles. |
678 | FunctionListType ValidFunctions; |
679 | for (const auto &BFI : BC.getBinaryFunctions()) { |
680 | const BinaryFunction *Function = &BFI.second; |
681 | if (PrintProfileQualityStats::shouldOptimize(BF: *Function)) |
682 | ValidFunctions.push_back(x: Function); |
683 | } |
684 | if (ValidFunctions.empty() || opts::TopFunctionsForProfileQualityCheck == 0) |
685 | return Error::success(); |
686 | |
687 | printAll(BC, ValidFunctions, NumTopFunctions: opts::TopFunctionsForProfileQualityCheck); |
688 | return Error::success(); |
689 | } |
690 | |