| 1 | //===- bolt/Rewrite/LinuxKernelRewriter.cpp -------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Support for updating Linux Kernel metadata. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "bolt/Core/BinaryFunction.h" |
| 14 | #include "bolt/Rewrite/MetadataRewriter.h" |
| 15 | #include "bolt/Rewrite/MetadataRewriters.h" |
| 16 | #include "bolt/Utils/CommandLineOpts.h" |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/DenseSet.h" |
| 19 | #include "llvm/MC/MCDisassembler/MCDisassembler.h" |
| 20 | #include "llvm/Support/BinaryStreamWriter.h" |
| 21 | #include "llvm/Support/CommandLine.h" |
| 22 | #include "llvm/Support/Debug.h" |
| 23 | #include "llvm/Support/Errc.h" |
| 24 | #include "llvm/Support/ErrorOr.h" |
| 25 | #include <regex> |
| 26 | |
| 27 | #define DEBUG_TYPE "bolt-linux" |
| 28 | |
| 29 | using namespace llvm; |
| 30 | using namespace bolt; |
| 31 | |
| 32 | namespace opts { |
| 33 | |
| 34 | static cl::opt<bool> |
| 35 | AltInstHasPadLen("alt-inst-has-padlen" , |
| 36 | cl::desc("specify that .altinstructions has padlen field" ), |
| 37 | cl::init(Val: false), cl::Hidden, cl::cat(BoltCategory)); |
| 38 | |
| 39 | static cl::opt<uint32_t> |
| 40 | AltInstFeatureSize("alt-inst-feature-size" , |
| 41 | cl::desc("size of feature field in .altinstructions" ), |
| 42 | cl::init(Val: 2), cl::Hidden, cl::cat(BoltCategory)); |
| 43 | |
| 44 | static cl::opt<bool> |
| 45 | DumpAltInstructions("dump-alt-instructions" , |
| 46 | cl::desc("dump Linux alternative instructions info" ), |
| 47 | cl::init(Val: false), cl::Hidden, cl::cat(BoltCategory)); |
| 48 | |
| 49 | static cl::opt<bool> |
| 50 | DumpExceptions("dump-linux-exceptions" , |
| 51 | cl::desc("dump Linux kernel exception table" ), |
| 52 | cl::init(Val: false), cl::Hidden, cl::cat(BoltCategory)); |
| 53 | |
| 54 | static cl::opt<bool> |
| 55 | DumpORC("dump-orc" , cl::desc("dump raw ORC unwind information (sorted)" ), |
| 56 | cl::init(Val: false), cl::Hidden, cl::cat(BoltCategory)); |
| 57 | |
| 58 | static cl::opt<bool> DumpParavirtualPatchSites( |
| 59 | "dump-para-sites" , cl::desc("dump Linux kernel paravitual patch sites" ), |
| 60 | cl::init(Val: false), cl::Hidden, cl::cat(BoltCategory)); |
| 61 | |
| 62 | static cl::opt<bool> |
| 63 | DumpPCIFixups("dump-pci-fixups" , |
| 64 | cl::desc("dump Linux kernel PCI fixup table" ), |
| 65 | cl::init(Val: false), cl::Hidden, cl::cat(BoltCategory)); |
| 66 | |
| 67 | static cl::opt<bool> DumpSMPLocks("dump-smp-locks" , |
| 68 | cl::desc("dump Linux kernel SMP locks" ), |
| 69 | cl::init(Val: false), cl::Hidden, |
| 70 | cl::cat(BoltCategory)); |
| 71 | |
| 72 | static cl::opt<bool> DumpStaticCalls("dump-static-calls" , |
| 73 | cl::desc("dump Linux kernel static calls" ), |
| 74 | cl::init(Val: false), cl::Hidden, |
| 75 | cl::cat(BoltCategory)); |
| 76 | |
| 77 | static cl::opt<bool> |
| 78 | DumpStaticKeys("dump-static-keys" , |
| 79 | cl::desc("dump Linux kernel static keys jump table" ), |
| 80 | cl::init(Val: false), cl::Hidden, cl::cat(BoltCategory)); |
| 81 | |
| 82 | static cl::opt<bool> LongJumpLabels( |
| 83 | "long-jump-labels" , |
| 84 | cl::desc("always use long jumps/nops for Linux kernel static keys" ), |
| 85 | cl::init(Val: false), cl::Hidden, cl::cat(BoltCategory)); |
| 86 | |
| 87 | static cl::opt<bool> |
| 88 | PrintORC("print-orc" , |
| 89 | cl::desc("print ORC unwind information for instructions" ), |
| 90 | cl::init(Val: true), cl::Hidden, cl::cat(BoltCategory)); |
| 91 | |
| 92 | } // namespace opts |
| 93 | |
| 94 | /// Linux kernel version |
| 95 | struct LKVersion { |
| 96 | LKVersion() {} |
| 97 | LKVersion(unsigned Major, unsigned Minor, unsigned Rev) |
| 98 | : Major(Major), Minor(Minor), Rev(Rev) {} |
| 99 | |
| 100 | bool operator<(const LKVersion &Other) const { |
| 101 | return std::make_tuple(args: Major, args: Minor, args: Rev) < |
| 102 | std::make_tuple(args: Other.Major, args: Other.Minor, args: Other.Rev); |
| 103 | } |
| 104 | |
| 105 | bool operator>(const LKVersion &Other) const { return Other < *this; } |
| 106 | |
| 107 | bool operator<=(const LKVersion &Other) const { return !(*this > Other); } |
| 108 | |
| 109 | bool operator>=(const LKVersion &Other) const { return !(*this < Other); } |
| 110 | |
| 111 | bool operator==(const LKVersion &Other) const { |
| 112 | return Major == Other.Major && Minor == Other.Minor && Rev == Other.Rev; |
| 113 | } |
| 114 | |
| 115 | bool operator!=(const LKVersion &Other) const { return !(*this == Other); } |
| 116 | |
| 117 | unsigned Major{0}; |
| 118 | unsigned Minor{0}; |
| 119 | unsigned Rev{0}; |
| 120 | }; |
| 121 | |
| 122 | /// Linux Kernel supports stack unwinding using ORC (oops rewind capability). |
| 123 | /// ORC state at every IP can be described by the following data structure. |
| 124 | struct ORCState { |
| 125 | int16_t SPOffset; |
| 126 | int16_t BPOffset; |
| 127 | int16_t Info; |
| 128 | |
| 129 | bool operator==(const ORCState &Other) const { |
| 130 | return SPOffset == Other.SPOffset && BPOffset == Other.BPOffset && |
| 131 | Info == Other.Info; |
| 132 | } |
| 133 | |
| 134 | bool operator!=(const ORCState &Other) const { return !(*this == Other); } |
| 135 | }; |
| 136 | |
| 137 | /// Section terminator ORC entry. |
| 138 | static ORCState NullORC = {.SPOffset: 0, .BPOffset: 0, .Info: 0}; |
| 139 | |
| 140 | /// Basic printer for ORC entry. It does not provide the same level of |
| 141 | /// information as objtool (for now). |
| 142 | inline raw_ostream &operator<<(raw_ostream &OS, const ORCState &E) { |
| 143 | if (!opts::PrintORC) |
| 144 | return OS; |
| 145 | if (E != NullORC) |
| 146 | OS << format(Fmt: "{sp: %d, bp: %d, info: 0x%x}" , Vals: E.SPOffset, Vals: E.BPOffset, |
| 147 | Vals: E.Info); |
| 148 | else |
| 149 | OS << "{terminator}" ; |
| 150 | |
| 151 | return OS; |
| 152 | } |
| 153 | |
| 154 | namespace { |
| 155 | |
| 156 | /// Extension to DataExtractor that supports reading addresses stored in |
| 157 | /// PC-relative format. |
| 158 | class : public DataExtractor { |
| 159 | uint64_t ; |
| 160 | |
| 161 | public: |
| 162 | (StringRef Data, uint64_t DataAddress, bool IsLittleEndian, |
| 163 | uint8_t AddressSize) |
| 164 | : DataExtractor(Data, IsLittleEndian, AddressSize), |
| 165 | DataAddress(DataAddress) {} |
| 166 | |
| 167 | /// Extract 32-bit PC-relative address/pointer. |
| 168 | uint64_t (Cursor &C) { |
| 169 | const uint64_t Base = DataAddress + C.tell(); |
| 170 | return Base + (int32_t)getU32(C); |
| 171 | } |
| 172 | |
| 173 | /// Extract 64-bit PC-relative address/pointer. |
| 174 | uint64_t (Cursor &C) { |
| 175 | const uint64_t Base = DataAddress + C.tell(); |
| 176 | return Base + (int64_t)getU64(C); |
| 177 | } |
| 178 | }; |
| 179 | |
| 180 | class LinuxKernelRewriter final : public MetadataRewriter { |
| 181 | LKVersion LinuxKernelVersion; |
| 182 | |
| 183 | /// Information required for updating metadata referencing an instruction. |
| 184 | struct InstructionFixup { |
| 185 | BinarySection &Section; // Section referencing the instruction. |
| 186 | uint64_t Offset; // Offset in the section above. |
| 187 | BinaryFunction &BF; // Function containing the instruction. |
| 188 | MCSymbol &Label; // Label marking the instruction. |
| 189 | bool IsPCRelative; // If the reference type is relative. |
| 190 | }; |
| 191 | std::vector<InstructionFixup> Fixups; |
| 192 | |
| 193 | /// Size of an entry in .smp_locks section. |
| 194 | static constexpr size_t SMP_LOCKS_ENTRY_SIZE = 4; |
| 195 | |
| 196 | /// Linux ORC sections. |
| 197 | ErrorOr<BinarySection &> ORCUnwindSection = std::errc::bad_address; |
| 198 | ErrorOr<BinarySection &> ORCUnwindIPSection = std::errc::bad_address; |
| 199 | |
| 200 | /// Size of entries in ORC sections. |
| 201 | static constexpr size_t ORC_UNWIND_ENTRY_SIZE = 6; |
| 202 | static constexpr size_t ORC_UNWIND_IP_ENTRY_SIZE = 4; |
| 203 | |
| 204 | struct ORCListEntry { |
| 205 | uint64_t IP; /// Instruction address. |
| 206 | BinaryFunction *BF; /// Binary function corresponding to the entry. |
| 207 | ORCState ORC; /// Stack unwind info in ORC format. |
| 208 | |
| 209 | /// ORC entries are sorted by their IPs. Terminator entries (NullORC) |
| 210 | /// should precede other entries with the same address. |
| 211 | bool operator<(const ORCListEntry &Other) const { |
| 212 | if (IP < Other.IP) |
| 213 | return 1; |
| 214 | if (IP > Other.IP) |
| 215 | return 0; |
| 216 | return ORC == NullORC && Other.ORC != NullORC; |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | using ORCListType = std::vector<ORCListEntry>; |
| 221 | ORCListType ORCEntries; |
| 222 | |
| 223 | /// Number of entries in the input file ORC sections. |
| 224 | uint64_t NumORCEntries = 0; |
| 225 | |
| 226 | /// Section containing static keys jump table. |
| 227 | ErrorOr<BinarySection &> StaticKeysJumpSection = std::errc::bad_address; |
| 228 | uint64_t StaticKeysJumpTableAddress = 0; |
| 229 | static constexpr size_t STATIC_KEYS_JUMP_ENTRY_SIZE = 8; |
| 230 | |
| 231 | struct JumpInfoEntry { |
| 232 | bool Likely; |
| 233 | bool InitValue; |
| 234 | }; |
| 235 | SmallVector<JumpInfoEntry, 16> JumpInfo; |
| 236 | |
| 237 | /// Static key entries that need nop conversion. |
| 238 | DenseSet<uint32_t> NopIDs; |
| 239 | |
| 240 | /// Section containing static call table. |
| 241 | ErrorOr<BinarySection &> StaticCallSection = std::errc::bad_address; |
| 242 | uint64_t StaticCallTableAddress = 0; |
| 243 | static constexpr size_t STATIC_CALL_ENTRY_SIZE = 8; |
| 244 | |
| 245 | struct StaticCallInfo { |
| 246 | uint32_t ID; /// Identifier of the entry in the table. |
| 247 | BinaryFunction *Function; /// Function containing associated call. |
| 248 | MCSymbol *Label; /// Label attached to the call. |
| 249 | }; |
| 250 | using StaticCallListType = std::vector<StaticCallInfo>; |
| 251 | StaticCallListType StaticCallEntries; |
| 252 | |
| 253 | /// Section containing the Linux exception table. |
| 254 | ErrorOr<BinarySection &> ExceptionsSection = std::errc::bad_address; |
| 255 | static constexpr size_t EXCEPTION_TABLE_ENTRY_SIZE = 12; |
| 256 | |
| 257 | /// Functions with exception handling code. |
| 258 | DenseSet<BinaryFunction *> FunctionsWithExceptions; |
| 259 | |
| 260 | /// Section with paravirtual patch sites. |
| 261 | ErrorOr<BinarySection &> ParavirtualPatchSection = std::errc::bad_address; |
| 262 | |
| 263 | /// Alignment of paravirtual patch structures. |
| 264 | static constexpr size_t PARA_PATCH_ALIGN = 8; |
| 265 | |
| 266 | /// .altinstructions section. |
| 267 | ErrorOr<BinarySection &> AltInstrSection = std::errc::bad_address; |
| 268 | |
| 269 | /// Section containing Linux bug table. |
| 270 | ErrorOr<BinarySection &> BugTableSection = std::errc::bad_address; |
| 271 | |
| 272 | /// Size of bug_entry struct. |
| 273 | static constexpr size_t BUG_TABLE_ENTRY_SIZE = 12; |
| 274 | |
| 275 | /// List of bug entries per function. |
| 276 | using FunctionBugListType = |
| 277 | DenseMap<BinaryFunction *, SmallVector<uint32_t, 2>>; |
| 278 | FunctionBugListType FunctionBugList; |
| 279 | |
| 280 | /// .pci_fixup section. |
| 281 | ErrorOr<BinarySection &> PCIFixupSection = std::errc::bad_address; |
| 282 | static constexpr size_t PCI_FIXUP_ENTRY_SIZE = 16; |
| 283 | |
| 284 | Error detectLinuxKernelVersion(); |
| 285 | |
| 286 | /// Process linux kernel special sections and their relocations. |
| 287 | void processLKSections(); |
| 288 | |
| 289 | /// Process __ksymtab and __ksymtab_gpl. |
| 290 | void processLKKSymtab(bool IsGPL = false); |
| 291 | |
| 292 | // Create relocations in sections requiring fixups. |
| 293 | // |
| 294 | // Make sure functions that will not be emitted are marked as such before this |
| 295 | // function is executed. |
| 296 | void processInstructionFixups(); |
| 297 | |
| 298 | /// Process .smp_locks section. |
| 299 | Error processSMPLocks(); |
| 300 | |
| 301 | /// Read ORC unwind information and annotate instructions. |
| 302 | Error readORCTables(); |
| 303 | |
| 304 | /// Update ORC for functions once CFG is constructed. |
| 305 | Error processORCPostCFG(); |
| 306 | |
| 307 | /// Update ORC data in the binary. |
| 308 | Error rewriteORCTables(); |
| 309 | |
| 310 | /// Validate written ORC tables after binary emission. |
| 311 | Error validateORCTables(); |
| 312 | |
| 313 | /// Static call table handling. |
| 314 | Error readStaticCalls(); |
| 315 | Error rewriteStaticCalls(); |
| 316 | |
| 317 | Error readExceptionTable(); |
| 318 | Error rewriteExceptionTable(); |
| 319 | |
| 320 | /// Paravirtual instruction patch sites. |
| 321 | Error readParaInstructions(); |
| 322 | Error rewriteParaInstructions(); |
| 323 | |
| 324 | /// __bug_table section handling. |
| 325 | Error readBugTable(); |
| 326 | Error rewriteBugTable(); |
| 327 | |
| 328 | /// Do no process functions containing instruction annotated with |
| 329 | /// \p Annotation. |
| 330 | void skipFunctionsWithAnnotation(StringRef Annotation) const; |
| 331 | |
| 332 | /// Handle alternative instruction info from .altinstructions. |
| 333 | Error readAltInstructions(); |
| 334 | void processAltInstructionsPostCFG(); |
| 335 | Error tryReadAltInstructions(uint32_t AltInstFeatureSize, |
| 336 | bool AltInstHasPadLen, bool ParseOnly); |
| 337 | |
| 338 | /// Read .pci_fixup |
| 339 | Error readPCIFixupTable(); |
| 340 | |
| 341 | /// Handle static keys jump table. |
| 342 | Error readStaticKeysJumpTable(); |
| 343 | Error rewriteStaticKeysJumpTable(); |
| 344 | Error updateStaticKeysJumpTablePostEmit(); |
| 345 | |
| 346 | public: |
| 347 | LinuxKernelRewriter(BinaryContext &BC) |
| 348 | : MetadataRewriter("linux-kernel-rewriter" , BC) {} |
| 349 | |
| 350 | Error preCFGInitializer() override { |
| 351 | if (Error E = detectLinuxKernelVersion()) |
| 352 | return E; |
| 353 | |
| 354 | processLKSections(); |
| 355 | |
| 356 | if (Error E = processSMPLocks()) |
| 357 | return E; |
| 358 | |
| 359 | if (Error E = readStaticCalls()) |
| 360 | return E; |
| 361 | |
| 362 | if (Error E = readExceptionTable()) |
| 363 | return E; |
| 364 | |
| 365 | if (Error E = readParaInstructions()) |
| 366 | return E; |
| 367 | |
| 368 | if (Error E = readBugTable()) |
| 369 | return E; |
| 370 | |
| 371 | if (Error E = readAltInstructions()) |
| 372 | return E; |
| 373 | |
| 374 | // Some ORC entries could be linked to alternative instruction |
| 375 | // sequences. Hence, we read ORC after .altinstructions. |
| 376 | if (Error E = readORCTables()) |
| 377 | return E; |
| 378 | |
| 379 | if (Error E = readPCIFixupTable()) |
| 380 | return E; |
| 381 | |
| 382 | if (Error E = readStaticKeysJumpTable()) |
| 383 | return E; |
| 384 | |
| 385 | return Error::success(); |
| 386 | } |
| 387 | |
| 388 | Error postCFGInitializer() override { |
| 389 | if (Error E = processORCPostCFG()) |
| 390 | return E; |
| 391 | |
| 392 | processAltInstructionsPostCFG(); |
| 393 | |
| 394 | return Error::success(); |
| 395 | } |
| 396 | |
| 397 | Error preEmitFinalizer() override { |
| 398 | // Since rewriteExceptionTable() can mark functions as non-simple, run it |
| 399 | // before other rewriters that depend on simple/emit status. |
| 400 | if (Error E = rewriteExceptionTable()) |
| 401 | return E; |
| 402 | |
| 403 | if (Error E = rewriteParaInstructions()) |
| 404 | return E; |
| 405 | |
| 406 | if (Error E = rewriteORCTables()) |
| 407 | return E; |
| 408 | |
| 409 | if (Error E = rewriteStaticCalls()) |
| 410 | return E; |
| 411 | |
| 412 | if (Error E = rewriteStaticKeysJumpTable()) |
| 413 | return E; |
| 414 | |
| 415 | if (Error E = rewriteBugTable()) |
| 416 | return E; |
| 417 | |
| 418 | processInstructionFixups(); |
| 419 | |
| 420 | return Error::success(); |
| 421 | } |
| 422 | |
| 423 | Error postEmitFinalizer() override { |
| 424 | if (Error E = updateStaticKeysJumpTablePostEmit()) |
| 425 | return E; |
| 426 | |
| 427 | if (Error E = validateORCTables()) |
| 428 | return E; |
| 429 | |
| 430 | return Error::success(); |
| 431 | } |
| 432 | }; |
| 433 | |
| 434 | Error LinuxKernelRewriter::detectLinuxKernelVersion() { |
| 435 | if (BinaryData *BD = BC.getBinaryDataByName(Name: "linux_banner" )) { |
| 436 | const BinarySection &Section = BD->getSection(); |
| 437 | const std::string S = |
| 438 | Section.getContents().substr(Start: BD->getOffset(), N: BD->getSize()).str(); |
| 439 | |
| 440 | const std::regex Re(R"---(Linux version ((\d+)\.(\d+)(\.(\d+))?))---" ); |
| 441 | std::smatch Match; |
| 442 | if (std::regex_search(s: S, m&: Match, e: Re)) { |
| 443 | const unsigned Major = std::stoi(str: Match[2].str()); |
| 444 | const unsigned Minor = std::stoi(str: Match[3].str()); |
| 445 | const unsigned Rev = Match[5].matched ? std::stoi(str: Match[5].str()) : 0; |
| 446 | LinuxKernelVersion = LKVersion(Major, Minor, Rev); |
| 447 | BC.outs() << "BOLT-INFO: Linux kernel version is " << Match[1].str() |
| 448 | << "\n" ; |
| 449 | return Error::success(); |
| 450 | } |
| 451 | } |
| 452 | return createStringError(EC: errc::executable_format_error, |
| 453 | S: "Linux kernel version is unknown" ); |
| 454 | } |
| 455 | |
| 456 | void LinuxKernelRewriter::processLKSections() { |
| 457 | processLKKSymtab(); |
| 458 | processLKKSymtab(IsGPL: true); |
| 459 | } |
| 460 | |
| 461 | /// Process __ksymtab[_gpl] sections of Linux Kernel. |
| 462 | /// This section lists all the vmlinux symbols that kernel modules can access. |
| 463 | /// |
| 464 | /// All the entries are 4 bytes each and hence we can read them by one by one |
| 465 | /// and ignore the ones that are not pointing to the .text section. All pointers |
| 466 | /// are PC relative offsets. Always, points to the beginning of the function. |
| 467 | void LinuxKernelRewriter::processLKKSymtab(bool IsGPL) { |
| 468 | StringRef SectionName = "__ksymtab" ; |
| 469 | if (IsGPL) |
| 470 | SectionName = "__ksymtab_gpl" ; |
| 471 | ErrorOr<BinarySection &> SectionOrError = |
| 472 | BC.getUniqueSectionByName(SectionName); |
| 473 | assert(SectionOrError && |
| 474 | "__ksymtab[_gpl] section not found in Linux Kernel binary" ); |
| 475 | const uint64_t SectionSize = SectionOrError->getSize(); |
| 476 | const uint64_t SectionAddress = SectionOrError->getAddress(); |
| 477 | assert((SectionSize % 4) == 0 && |
| 478 | "The size of the __ksymtab[_gpl] section should be a multiple of 4" ); |
| 479 | |
| 480 | for (uint64_t I = 0; I < SectionSize; I += 4) { |
| 481 | const uint64_t EntryAddress = SectionAddress + I; |
| 482 | ErrorOr<int64_t> Offset = BC.getSignedValueAtAddress(Address: EntryAddress, Size: 4); |
| 483 | assert(Offset && "Reading valid PC-relative offset for a ksymtab entry" ); |
| 484 | const int32_t SignedOffset = *Offset; |
| 485 | const uint64_t RefAddress = EntryAddress + SignedOffset; |
| 486 | BinaryFunction *BF = BC.getBinaryFunctionAtAddress(Address: RefAddress); |
| 487 | if (!BF) |
| 488 | continue; |
| 489 | |
| 490 | BC.addRelocation(Address: EntryAddress, Symbol: BF->getSymbol(), Type: Relocation::getPC32(), Addend: 0, |
| 491 | Value: *Offset); |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | /// .smp_locks section contains PC-relative references to instructions with LOCK |
| 496 | /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. |
| 497 | Error LinuxKernelRewriter::processSMPLocks() { |
| 498 | ErrorOr<BinarySection &> SMPLocksSection = |
| 499 | BC.getUniqueSectionByName(SectionName: ".smp_locks" ); |
| 500 | if (!SMPLocksSection) |
| 501 | return Error::success(); |
| 502 | |
| 503 | const uint64_t SectionSize = SMPLocksSection->getSize(); |
| 504 | const uint64_t SectionAddress = SMPLocksSection->getAddress(); |
| 505 | if (SectionSize % SMP_LOCKS_ENTRY_SIZE) |
| 506 | return createStringError(EC: errc::executable_format_error, |
| 507 | S: "bad size of .smp_locks section" ); |
| 508 | |
| 509 | AddressExtractor AE(SMPLocksSection->getContents(), SectionAddress, |
| 510 | BC.AsmInfo->isLittleEndian(), |
| 511 | BC.AsmInfo->getCodePointerSize()); |
| 512 | AddressExtractor::Cursor Cursor(0); |
| 513 | while (Cursor && Cursor.tell() < SectionSize) { |
| 514 | const uint64_t Offset = Cursor.tell(); |
| 515 | const uint64_t IP = AE.getPCRelAddress32(C&: Cursor); |
| 516 | |
| 517 | // Consume the status of the cursor. |
| 518 | if (!Cursor) |
| 519 | return createStringError(EC: errc::executable_format_error, |
| 520 | Fmt: "error while reading .smp_locks: %s" , |
| 521 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 522 | |
| 523 | if (opts::DumpSMPLocks) |
| 524 | BC.outs() << "SMP lock at 0x: " << Twine::utohexstr(Val: IP) << '\n'; |
| 525 | |
| 526 | BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(Address: IP); |
| 527 | if (!BF || !BC.shouldEmit(Function: *BF)) |
| 528 | continue; |
| 529 | |
| 530 | MCInst *Inst = BF->getInstructionAtOffset(Offset: IP - BF->getAddress()); |
| 531 | if (!Inst) |
| 532 | return createStringError(EC: errc::executable_format_error, |
| 533 | Fmt: "no instruction matches lock at 0x%" PRIx64, Vals: IP); |
| 534 | |
| 535 | // Check for duplicate entries. |
| 536 | if (BC.MIB->hasAnnotation(Inst: *Inst, Name: "SMPLock" )) |
| 537 | return createStringError(EC: errc::executable_format_error, |
| 538 | Fmt: "duplicate SMP lock at 0x%" PRIx64, Vals: IP); |
| 539 | |
| 540 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "SMPLock" , Val: true); |
| 541 | MCSymbol *Label = |
| 542 | BC.MIB->getOrCreateInstLabel(Inst&: *Inst, Name: "__SMPLock_" , Ctx: BC.Ctx.get()); |
| 543 | |
| 544 | Fixups.push_back(x: {.Section: *SMPLocksSection, .Offset: Offset, .BF: *BF, .Label: *Label, |
| 545 | /*IsPCRelative*/ true}); |
| 546 | } |
| 547 | |
| 548 | const uint64_t NumEntries = SectionSize / SMP_LOCKS_ENTRY_SIZE; |
| 549 | BC.outs() << "BOLT-INFO: parsed " << NumEntries << " SMP lock entries\n" ; |
| 550 | |
| 551 | return Error::success(); |
| 552 | } |
| 553 | |
| 554 | void LinuxKernelRewriter::processInstructionFixups() { |
| 555 | for (InstructionFixup &Fixup : Fixups) { |
| 556 | if (!BC.shouldEmit(Function: Fixup.BF)) |
| 557 | continue; |
| 558 | |
| 559 | Fixup.Section.addRelocation(Offset: Fixup.Offset, Symbol: &Fixup.Label, |
| 560 | Type: Fixup.IsPCRelative ? ELF::R_X86_64_PC32 |
| 561 | : ELF::R_X86_64_64, |
| 562 | /*Addend*/ 0); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | Error LinuxKernelRewriter::readORCTables() { |
| 567 | // NOTE: we should ignore relocations for orc tables as the tables are sorted |
| 568 | // post-link time and relocations are not updated. |
| 569 | ORCUnwindSection = BC.getUniqueSectionByName(SectionName: ".orc_unwind" ); |
| 570 | ORCUnwindIPSection = BC.getUniqueSectionByName(SectionName: ".orc_unwind_ip" ); |
| 571 | |
| 572 | if (!ORCUnwindSection && !ORCUnwindIPSection) |
| 573 | return Error::success(); |
| 574 | |
| 575 | if (!ORCUnwindSection || !ORCUnwindIPSection) |
| 576 | return createStringError(EC: errc::executable_format_error, |
| 577 | S: "missing ORC section" ); |
| 578 | |
| 579 | NumORCEntries = ORCUnwindIPSection->getSize() / ORC_UNWIND_IP_ENTRY_SIZE; |
| 580 | if (ORCUnwindSection->getSize() != NumORCEntries * ORC_UNWIND_ENTRY_SIZE || |
| 581 | ORCUnwindIPSection->getSize() != NumORCEntries * ORC_UNWIND_IP_ENTRY_SIZE) |
| 582 | return createStringError(EC: errc::executable_format_error, |
| 583 | S: "ORC entries number mismatch detected" ); |
| 584 | |
| 585 | DataExtractor OrcDE(ORCUnwindSection->getContents(), |
| 586 | BC.AsmInfo->isLittleEndian(), |
| 587 | BC.AsmInfo->getCodePointerSize()); |
| 588 | AddressExtractor IPAE( |
| 589 | ORCUnwindIPSection->getContents(), ORCUnwindIPSection->getAddress(), |
| 590 | BC.AsmInfo->isLittleEndian(), BC.AsmInfo->getCodePointerSize()); |
| 591 | DataExtractor::Cursor ORCCursor(0); |
| 592 | DataExtractor::Cursor IPCursor(0); |
| 593 | uint64_t PrevIP = 0; |
| 594 | for (uint32_t Index = 0; Index < NumORCEntries; ++Index) { |
| 595 | const uint64_t IP = IPAE.getPCRelAddress32(C&: IPCursor); |
| 596 | // Consume the status of the cursor. |
| 597 | if (!IPCursor) |
| 598 | return createStringError(EC: errc::executable_format_error, |
| 599 | Fmt: "out of bounds while reading ORC IP table: %s" , |
| 600 | Vals: toString(E: IPCursor.takeError()).c_str()); |
| 601 | |
| 602 | if (IP < PrevIP && opts::Verbosity) |
| 603 | BC.errs() << "BOLT-WARNING: out of order IP 0x" << Twine::utohexstr(Val: IP) |
| 604 | << " detected while reading ORC\n" ; |
| 605 | |
| 606 | PrevIP = IP; |
| 607 | |
| 608 | // Store all entries, includes those we are not going to update as the |
| 609 | // tables need to be sorted globally before being written out. |
| 610 | ORCEntries.push_back(x: ORCListEntry()); |
| 611 | ORCListEntry &Entry = ORCEntries.back(); |
| 612 | |
| 613 | Entry.IP = IP; |
| 614 | Entry.ORC.SPOffset = (int16_t)OrcDE.getU16(C&: ORCCursor); |
| 615 | Entry.ORC.BPOffset = (int16_t)OrcDE.getU16(C&: ORCCursor); |
| 616 | Entry.ORC.Info = (int16_t)OrcDE.getU16(C&: ORCCursor); |
| 617 | Entry.BF = nullptr; |
| 618 | |
| 619 | // Consume the status of the cursor. |
| 620 | if (!ORCCursor) |
| 621 | return createStringError(EC: errc::executable_format_error, |
| 622 | Fmt: "out of bounds while reading ORC: %s" , |
| 623 | Vals: toString(E: ORCCursor.takeError()).c_str()); |
| 624 | |
| 625 | if (Entry.ORC == NullORC) |
| 626 | continue; |
| 627 | |
| 628 | BinaryFunction *&BF = Entry.BF; |
| 629 | BF = BC.getBinaryFunctionContainingAddress(Address: IP, /*CheckPastEnd*/ true); |
| 630 | |
| 631 | // If the entry immediately pointing past the end of the function is not |
| 632 | // the terminator entry, then it does not belong to this function. |
| 633 | if (BF && BF->getAddress() + BF->getSize() == IP) |
| 634 | BF = 0; |
| 635 | |
| 636 | if (!BF) { |
| 637 | if (opts::Verbosity) |
| 638 | BC.errs() << "BOLT-WARNING: no binary function found matching ORC 0x" |
| 639 | << Twine::utohexstr(Val: IP) << ": " << Entry.ORC << '\n'; |
| 640 | continue; |
| 641 | } |
| 642 | |
| 643 | BF->setHasORC(true); |
| 644 | |
| 645 | if (!BF->hasInstructions()) |
| 646 | continue; |
| 647 | |
| 648 | const uint64_t Offset = IP - BF->getAddress(); |
| 649 | MCInst *Inst = BF->getInstructionAtOffset(Offset); |
| 650 | if (!Inst) { |
| 651 | // Check if there is an alternative instruction(s) at this IP. Multiple |
| 652 | // alternative instructions can take a place of a single original |
| 653 | // instruction and each alternative can have a separate ORC entry. |
| 654 | // Since ORC table is shared between all alternative sequences, there's |
| 655 | // a requirement that only one (out of many) sequences can have an |
| 656 | // instruction from the ORC table to avoid ambiguities/conflicts. |
| 657 | // |
| 658 | // For now, we have limited support for alternatives. I.e. we still print |
| 659 | // functions with them, but will not change the code in the output binary. |
| 660 | // As such, we can ignore alternative ORC entries. They will be preserved |
| 661 | // in the binary, but will not get printed in the instruction stream. |
| 662 | Inst = BF->getInstructionContainingOffset(Offset); |
| 663 | if (Inst || BC.MIB->hasAnnotation(Inst: *Inst, Name: "AltInst" )) |
| 664 | continue; |
| 665 | |
| 666 | return createStringError( |
| 667 | EC: errc::executable_format_error, |
| 668 | Fmt: "no instruction at address 0x%" PRIx64 " in .orc_unwind_ip" , Vals: IP); |
| 669 | } |
| 670 | |
| 671 | // Some addresses will have two entries associated with them. The first |
| 672 | // one being a "weak" section terminator. Since we ignore the terminator, |
| 673 | // we should only assign one entry per instruction. |
| 674 | if (BC.MIB->hasAnnotation(Inst: *Inst, Name: "ORC" )) |
| 675 | return createStringError( |
| 676 | EC: errc::executable_format_error, |
| 677 | Fmt: "duplicate non-terminal ORC IP 0x%" PRIx64 " in .orc_unwind_ip" , Vals: IP); |
| 678 | |
| 679 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "ORC" , Val: Entry.ORC); |
| 680 | } |
| 681 | |
| 682 | BC.outs() << "BOLT-INFO: parsed " << NumORCEntries << " ORC entries\n" ; |
| 683 | |
| 684 | if (opts::DumpORC) { |
| 685 | BC.outs() << "BOLT-INFO: ORC unwind information:\n" ; |
| 686 | for (const ORCListEntry &E : ORCEntries) { |
| 687 | BC.outs() << "0x" << Twine::utohexstr(Val: E.IP) << ": " << E.ORC; |
| 688 | if (E.BF) |
| 689 | BC.outs() << ": " << *E.BF; |
| 690 | BC.outs() << '\n'; |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | // Add entries for functions that don't have explicit ORC info at the start. |
| 695 | // We'll have the correct info for them even if ORC for the preceding function |
| 696 | // changes. |
| 697 | ORCListType NewEntries; |
| 698 | for (BinaryFunction &BF : llvm::make_second_range(c&: BC.getBinaryFunctions())) { |
| 699 | auto It = llvm::partition_point(Range&: ORCEntries, P: [&](const ORCListEntry &E) { |
| 700 | return E.IP <= BF.getAddress(); |
| 701 | }); |
| 702 | if (It != ORCEntries.begin()) |
| 703 | --It; |
| 704 | |
| 705 | if (It->BF == &BF) |
| 706 | continue; |
| 707 | |
| 708 | if (It->ORC == NullORC && It->IP == BF.getAddress()) { |
| 709 | assert(!It->BF); |
| 710 | It->BF = &BF; |
| 711 | continue; |
| 712 | } |
| 713 | |
| 714 | NewEntries.push_back(x: {.IP: BF.getAddress(), .BF: &BF, .ORC: It->ORC}); |
| 715 | if (It->ORC != NullORC) |
| 716 | BF.setHasORC(true); |
| 717 | } |
| 718 | |
| 719 | llvm::copy(Range&: NewEntries, Out: std::back_inserter(x&: ORCEntries)); |
| 720 | llvm::sort(C&: ORCEntries); |
| 721 | |
| 722 | if (opts::DumpORC) { |
| 723 | BC.outs() << "BOLT-INFO: amended ORC unwind information:\n" ; |
| 724 | for (const ORCListEntry &E : ORCEntries) { |
| 725 | BC.outs() << "0x" << Twine::utohexstr(Val: E.IP) << ": " << E.ORC; |
| 726 | if (E.BF) |
| 727 | BC.outs() << ": " << *E.BF; |
| 728 | BC.outs() << '\n'; |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | return Error::success(); |
| 733 | } |
| 734 | |
| 735 | Error LinuxKernelRewriter::processORCPostCFG() { |
| 736 | if (!NumORCEntries) |
| 737 | return Error::success(); |
| 738 | |
| 739 | // Propagate ORC to the rest of the function. We can annotate every |
| 740 | // instruction in every function, but to minimize the overhead, we annotate |
| 741 | // the first instruction in every basic block to reflect the state at the |
| 742 | // entry. This way, the ORC state can be calculated based on annotations |
| 743 | // regardless of the basic block layout. Note that if we insert/delete |
| 744 | // instructions, we must take care to attach ORC info to the new/deleted ones. |
| 745 | for (BinaryFunction &BF : llvm::make_second_range(c&: BC.getBinaryFunctions())) { |
| 746 | |
| 747 | std::optional<ORCState> CurrentState; |
| 748 | for (BinaryBasicBlock &BB : BF) { |
| 749 | for (MCInst &Inst : BB) { |
| 750 | ErrorOr<ORCState> State = |
| 751 | BC.MIB->tryGetAnnotationAs<ORCState>(Inst, Name: "ORC" ); |
| 752 | |
| 753 | if (State) { |
| 754 | CurrentState = *State; |
| 755 | continue; |
| 756 | } |
| 757 | |
| 758 | // Get state for the start of the function. |
| 759 | if (!CurrentState) { |
| 760 | // A terminator entry (NullORC) can match the function address. If |
| 761 | // there's also a non-terminator entry, it will be placed after the |
| 762 | // terminator. Hence, we are looking for the last ORC entry that |
| 763 | // matches the address. |
| 764 | auto It = |
| 765 | llvm::partition_point(Range&: ORCEntries, P: [&](const ORCListEntry &E) { |
| 766 | return E.IP <= BF.getAddress(); |
| 767 | }); |
| 768 | if (It != ORCEntries.begin()) |
| 769 | --It; |
| 770 | |
| 771 | assert(It->IP == BF.getAddress() && (!It->BF || It->BF == &BF) && |
| 772 | "ORC info at function entry expected." ); |
| 773 | |
| 774 | if (It->ORC == NullORC && BF.hasORC()) { |
| 775 | BC.errs() << "BOLT-WARNING: ORC unwind info excludes prologue for " |
| 776 | << BF << '\n'; |
| 777 | } |
| 778 | |
| 779 | It->BF = &BF; |
| 780 | |
| 781 | CurrentState = It->ORC; |
| 782 | if (It->ORC != NullORC) |
| 783 | BF.setHasORC(true); |
| 784 | } |
| 785 | |
| 786 | // While printing ORC, attach info to every instruction for convenience. |
| 787 | if (opts::PrintORC || &Inst == &BB.front()) |
| 788 | BC.MIB->addAnnotation(Inst, Name: "ORC" , Val: *CurrentState); |
| 789 | } |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | return Error::success(); |
| 794 | } |
| 795 | |
| 796 | Error LinuxKernelRewriter::rewriteORCTables() { |
| 797 | if (!NumORCEntries) |
| 798 | return Error::success(); |
| 799 | |
| 800 | // Update ORC sections in-place. As we change the code, the number of ORC |
| 801 | // entries may increase for some functions. However, as we remove terminator |
| 802 | // redundancy (see below), more space is freed up and we should always be able |
| 803 | // to fit new ORC tables in the reserved space. |
| 804 | auto createInPlaceWriter = [&](BinarySection &Section) -> BinaryStreamWriter { |
| 805 | const size_t Size = Section.getSize(); |
| 806 | uint8_t *NewContents = new uint8_t[Size]; |
| 807 | Section.updateContents(NewData: NewContents, NewSize: Size); |
| 808 | Section.setOutputFileOffset(Section.getInputFileOffset()); |
| 809 | return BinaryStreamWriter({NewContents, Size}, BC.AsmInfo->isLittleEndian() |
| 810 | ? endianness::little |
| 811 | : endianness::big); |
| 812 | }; |
| 813 | BinaryStreamWriter UnwindWriter = createInPlaceWriter(*ORCUnwindSection); |
| 814 | BinaryStreamWriter UnwindIPWriter = createInPlaceWriter(*ORCUnwindIPSection); |
| 815 | |
| 816 | uint64_t NumEmitted = 0; |
| 817 | std::optional<ORCState> LastEmittedORC; |
| 818 | auto emitORCEntry = [&](const uint64_t IP, const ORCState &ORC, |
| 819 | MCSymbol *Label = 0, bool Force = false) -> Error { |
| 820 | if (LastEmittedORC && ORC == *LastEmittedORC && !Force) |
| 821 | return Error::success(); |
| 822 | |
| 823 | LastEmittedORC = ORC; |
| 824 | |
| 825 | if (++NumEmitted > NumORCEntries) |
| 826 | return createStringError(EC: errc::executable_format_error, |
| 827 | S: "exceeded the number of allocated ORC entries" ); |
| 828 | |
| 829 | if (Label) |
| 830 | ORCUnwindIPSection->addRelocation(Offset: UnwindIPWriter.getOffset(), Symbol: Label, |
| 831 | Type: Relocation::getPC32(), /*Addend*/ 0); |
| 832 | |
| 833 | const int32_t IPValue = |
| 834 | IP - ORCUnwindIPSection->getAddress() - UnwindIPWriter.getOffset(); |
| 835 | if (Error E = UnwindIPWriter.writeInteger(Value: IPValue)) |
| 836 | return E; |
| 837 | |
| 838 | if (Error E = UnwindWriter.writeInteger(Value: ORC.SPOffset)) |
| 839 | return E; |
| 840 | if (Error E = UnwindWriter.writeInteger(Value: ORC.BPOffset)) |
| 841 | return E; |
| 842 | if (Error E = UnwindWriter.writeInteger(Value: ORC.Info)) |
| 843 | return E; |
| 844 | |
| 845 | return Error::success(); |
| 846 | }; |
| 847 | |
| 848 | // Emit new ORC entries for the emitted function. |
| 849 | auto emitORC = [&](const FunctionFragment &FF) -> Error { |
| 850 | ORCState CurrentState = NullORC; |
| 851 | for (BinaryBasicBlock *BB : FF) { |
| 852 | for (MCInst &Inst : *BB) { |
| 853 | ErrorOr<ORCState> ErrorOrState = |
| 854 | BC.MIB->tryGetAnnotationAs<ORCState>(Inst, Name: "ORC" ); |
| 855 | if (!ErrorOrState || *ErrorOrState == CurrentState) |
| 856 | continue; |
| 857 | |
| 858 | // Issue label for the instruction. |
| 859 | MCSymbol *Label = |
| 860 | BC.MIB->getOrCreateInstLabel(Inst, Name: "__ORC_" , Ctx: BC.Ctx.get()); |
| 861 | |
| 862 | if (Error E = emitORCEntry(0, *ErrorOrState, Label)) |
| 863 | return E; |
| 864 | |
| 865 | CurrentState = *ErrorOrState; |
| 866 | } |
| 867 | } |
| 868 | |
| 869 | return Error::success(); |
| 870 | }; |
| 871 | |
| 872 | // Emit ORC entries for cold fragments. We assume that these fragments are |
| 873 | // emitted contiguously in memory using reserved space in the kernel. This |
| 874 | // assumption is validated in post-emit pass validateORCTables() where we |
| 875 | // check that ORC entries are sorted by their addresses. |
| 876 | auto emitColdORC = [&]() -> Error { |
| 877 | for (BinaryFunction &BF : |
| 878 | llvm::make_second_range(c&: BC.getBinaryFunctions())) { |
| 879 | if (!BC.shouldEmit(Function: BF)) |
| 880 | continue; |
| 881 | for (FunctionFragment &FF : BF.getLayout().getSplitFragments()) |
| 882 | if (Error E = emitORC(FF)) |
| 883 | return E; |
| 884 | } |
| 885 | |
| 886 | return Error::success(); |
| 887 | }; |
| 888 | |
| 889 | bool ShouldEmitCold = !BC.BOLTReserved.empty(); |
| 890 | for (ORCListEntry &Entry : ORCEntries) { |
| 891 | if (ShouldEmitCold && Entry.IP > BC.BOLTReserved.start()) { |
| 892 | if (Error E = emitColdORC()) |
| 893 | return E; |
| 894 | |
| 895 | // Emit terminator entry at the end of the reserved region. |
| 896 | if (Error E = emitORCEntry(BC.BOLTReserved.end(), NullORC)) |
| 897 | return E; |
| 898 | |
| 899 | ShouldEmitCold = false; |
| 900 | } |
| 901 | |
| 902 | // Emit original entries for functions that we haven't modified. |
| 903 | if (!Entry.BF || !BC.shouldEmit(Function: *Entry.BF)) { |
| 904 | // Emit terminator only if it marks the start of a function. |
| 905 | if (Entry.ORC == NullORC && !Entry.BF) |
| 906 | continue; |
| 907 | if (Error E = emitORCEntry(Entry.IP, Entry.ORC)) |
| 908 | return E; |
| 909 | continue; |
| 910 | } |
| 911 | |
| 912 | // Emit all ORC entries for a function referenced by an entry and skip over |
| 913 | // the rest of entries for this function by resetting its ORC attribute. |
| 914 | if (Entry.BF->hasORC()) { |
| 915 | if (Error E = emitORC(Entry.BF->getLayout().getMainFragment())) |
| 916 | return E; |
| 917 | Entry.BF->setHasORC(false); |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted " << NumEmitted |
| 922 | << " ORC entries\n" ); |
| 923 | |
| 924 | // Populate ORC tables with a terminator entry with max address to match the |
| 925 | // original table sizes. |
| 926 | const uint64_t LastIP = std::numeric_limits<uint64_t>::max(); |
| 927 | while (UnwindWriter.bytesRemaining()) { |
| 928 | if (Error E = emitORCEntry(LastIP, NullORC, nullptr, /*Force*/ true)) |
| 929 | return E; |
| 930 | } |
| 931 | |
| 932 | return Error::success(); |
| 933 | } |
| 934 | |
| 935 | Error LinuxKernelRewriter::validateORCTables() { |
| 936 | if (!ORCUnwindIPSection) |
| 937 | return Error::success(); |
| 938 | |
| 939 | AddressExtractor IPAE( |
| 940 | ORCUnwindIPSection->getOutputContents(), ORCUnwindIPSection->getAddress(), |
| 941 | BC.AsmInfo->isLittleEndian(), BC.AsmInfo->getCodePointerSize()); |
| 942 | AddressExtractor::Cursor IPCursor(0); |
| 943 | uint64_t PrevIP = 0; |
| 944 | for (uint32_t Index = 0; Index < NumORCEntries; ++Index) { |
| 945 | const uint64_t IP = IPAE.getPCRelAddress32(C&: IPCursor); |
| 946 | if (!IPCursor) |
| 947 | return createStringError(EC: errc::executable_format_error, |
| 948 | Fmt: "out of bounds while reading ORC IP table: %s" , |
| 949 | Vals: toString(E: IPCursor.takeError()).c_str()); |
| 950 | |
| 951 | assert(IP >= PrevIP && "Unsorted ORC table detected" ); |
| 952 | (void)PrevIP; |
| 953 | PrevIP = IP; |
| 954 | } |
| 955 | |
| 956 | return Error::success(); |
| 957 | } |
| 958 | |
| 959 | /// The static call site table is created by objtool and contains entries in the |
| 960 | /// following format: |
| 961 | /// |
| 962 | /// struct static_call_site { |
| 963 | /// s32 addr; |
| 964 | /// s32 key; |
| 965 | /// }; |
| 966 | /// |
| 967 | Error LinuxKernelRewriter::readStaticCalls() { |
| 968 | const BinaryData *StaticCallTable = |
| 969 | BC.getBinaryDataByName(Name: "__start_static_call_sites" ); |
| 970 | if (!StaticCallTable) |
| 971 | return Error::success(); |
| 972 | |
| 973 | StaticCallTableAddress = StaticCallTable->getAddress(); |
| 974 | |
| 975 | const BinaryData *Stop = BC.getBinaryDataByName(Name: "__stop_static_call_sites" ); |
| 976 | if (!Stop) |
| 977 | return createStringError(EC: errc::executable_format_error, |
| 978 | S: "missing __stop_static_call_sites symbol" ); |
| 979 | |
| 980 | ErrorOr<BinarySection &> ErrorOrSection = |
| 981 | BC.getSectionForAddress(Address: StaticCallTableAddress); |
| 982 | if (!ErrorOrSection) |
| 983 | return createStringError(EC: errc::executable_format_error, |
| 984 | S: "no section matching __start_static_call_sites" ); |
| 985 | |
| 986 | StaticCallSection = *ErrorOrSection; |
| 987 | if (!StaticCallSection->containsAddress(Address: Stop->getAddress() - 1)) |
| 988 | return createStringError(EC: errc::executable_format_error, |
| 989 | S: "__stop_static_call_sites not in the same section " |
| 990 | "as __start_static_call_sites" ); |
| 991 | |
| 992 | if ((Stop->getAddress() - StaticCallTableAddress) % STATIC_CALL_ENTRY_SIZE) |
| 993 | return createStringError(EC: errc::executable_format_error, |
| 994 | S: "static call table size error" ); |
| 995 | |
| 996 | const uint64_t SectionAddress = StaticCallSection->getAddress(); |
| 997 | AddressExtractor AE(StaticCallSection->getContents(), SectionAddress, |
| 998 | BC.AsmInfo->isLittleEndian(), |
| 999 | BC.AsmInfo->getCodePointerSize()); |
| 1000 | AddressExtractor::Cursor Cursor(StaticCallTableAddress - SectionAddress); |
| 1001 | uint32_t EntryID = 0; |
| 1002 | while (Cursor && Cursor.tell() < Stop->getAddress() - SectionAddress) { |
| 1003 | const uint64_t CallAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1004 | const uint64_t KeyAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1005 | |
| 1006 | // Consume the status of the cursor. |
| 1007 | if (!Cursor) |
| 1008 | return createStringError(EC: errc::executable_format_error, |
| 1009 | Fmt: "out of bounds while reading static calls: %s" , |
| 1010 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 1011 | |
| 1012 | ++EntryID; |
| 1013 | |
| 1014 | if (opts::DumpStaticCalls) { |
| 1015 | BC.outs() << "Static Call Site: " << EntryID << '\n'; |
| 1016 | BC.outs() << "\tCallAddress: 0x" << Twine::utohexstr(Val: CallAddress) |
| 1017 | << "\n\tKeyAddress: 0x" << Twine::utohexstr(Val: KeyAddress) |
| 1018 | << '\n'; |
| 1019 | } |
| 1020 | |
| 1021 | BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(Address: CallAddress); |
| 1022 | if (!BF) |
| 1023 | continue; |
| 1024 | |
| 1025 | if (!BC.shouldEmit(Function: *BF)) |
| 1026 | continue; |
| 1027 | |
| 1028 | if (!BF->hasInstructions()) |
| 1029 | continue; |
| 1030 | |
| 1031 | MCInst *Inst = BF->getInstructionAtOffset(Offset: CallAddress - BF->getAddress()); |
| 1032 | if (!Inst) |
| 1033 | return createStringError(EC: errc::executable_format_error, |
| 1034 | Fmt: "no instruction at call site address 0x%" PRIx64, |
| 1035 | Vals: CallAddress); |
| 1036 | |
| 1037 | // Check for duplicate entries. |
| 1038 | if (BC.MIB->hasAnnotation(Inst: *Inst, Name: "StaticCall" )) |
| 1039 | return createStringError(EC: errc::executable_format_error, |
| 1040 | Fmt: "duplicate static call site at 0x%" PRIx64, |
| 1041 | Vals: CallAddress); |
| 1042 | |
| 1043 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "StaticCall" , Val: EntryID); |
| 1044 | |
| 1045 | MCSymbol *Label = |
| 1046 | BC.MIB->getOrCreateInstLabel(Inst&: *Inst, Name: "__SC_" , Ctx: BC.Ctx.get()); |
| 1047 | |
| 1048 | StaticCallEntries.push_back(x: {.ID: EntryID, .Function: BF, .Label: Label}); |
| 1049 | } |
| 1050 | |
| 1051 | BC.outs() << "BOLT-INFO: parsed " << StaticCallEntries.size() |
| 1052 | << " static call entries\n" ; |
| 1053 | |
| 1054 | return Error::success(); |
| 1055 | } |
| 1056 | |
| 1057 | /// The static call table is sorted during boot time in |
| 1058 | /// static_call_sort_entries(). This makes it possible to update existing |
| 1059 | /// entries in-place ignoring their relative order. |
| 1060 | Error LinuxKernelRewriter::rewriteStaticCalls() { |
| 1061 | if (!StaticCallTableAddress || !StaticCallSection) |
| 1062 | return Error::success(); |
| 1063 | |
| 1064 | for (auto &Entry : StaticCallEntries) { |
| 1065 | if (!Entry.Function) |
| 1066 | continue; |
| 1067 | |
| 1068 | BinaryFunction &BF = *Entry.Function; |
| 1069 | if (!BC.shouldEmit(Function: BF)) |
| 1070 | continue; |
| 1071 | |
| 1072 | // Create a relocation against the label. |
| 1073 | const uint64_t EntryOffset = StaticCallTableAddress - |
| 1074 | StaticCallSection->getAddress() + |
| 1075 | (Entry.ID - 1) * STATIC_CALL_ENTRY_SIZE; |
| 1076 | StaticCallSection->addRelocation(Offset: EntryOffset, Symbol: Entry.Label, |
| 1077 | Type: ELF::R_X86_64_PC32, /*Addend*/ 0); |
| 1078 | } |
| 1079 | |
| 1080 | return Error::success(); |
| 1081 | } |
| 1082 | |
| 1083 | /// Instructions that access user-space memory can cause page faults. These |
| 1084 | /// faults will be handled by the kernel and execution will resume at the fixup |
| 1085 | /// code location if the address was invalid. The kernel uses the exception |
| 1086 | /// table to match the faulting instruction to its fixup. The table consists of |
| 1087 | /// the following entries: |
| 1088 | /// |
| 1089 | /// struct exception_table_entry { |
| 1090 | /// int insn; |
| 1091 | /// int fixup; |
| 1092 | /// int data; |
| 1093 | /// }; |
| 1094 | /// |
| 1095 | /// More info at: |
| 1096 | /// https://www.kernel.org/doc/Documentation/x86/exception-tables.txt |
| 1097 | Error LinuxKernelRewriter::readExceptionTable() { |
| 1098 | ExceptionsSection = BC.getUniqueSectionByName(SectionName: "__ex_table" ); |
| 1099 | if (!ExceptionsSection) |
| 1100 | return Error::success(); |
| 1101 | |
| 1102 | if (ExceptionsSection->getSize() % EXCEPTION_TABLE_ENTRY_SIZE) |
| 1103 | return createStringError(EC: errc::executable_format_error, |
| 1104 | S: "exception table size error" ); |
| 1105 | |
| 1106 | AddressExtractor AE( |
| 1107 | ExceptionsSection->getContents(), ExceptionsSection->getAddress(), |
| 1108 | BC.AsmInfo->isLittleEndian(), BC.AsmInfo->getCodePointerSize()); |
| 1109 | AddressExtractor::Cursor Cursor(0); |
| 1110 | uint32_t EntryID = 0; |
| 1111 | while (Cursor && Cursor.tell() < ExceptionsSection->getSize()) { |
| 1112 | const uint64_t InstAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1113 | const uint64_t FixupAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1114 | const uint64_t Data = AE.getU32(C&: Cursor); |
| 1115 | |
| 1116 | // Consume the status of the cursor. |
| 1117 | if (!Cursor) |
| 1118 | return createStringError( |
| 1119 | EC: errc::executable_format_error, |
| 1120 | Fmt: "out of bounds while reading exception table: %s" , |
| 1121 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 1122 | |
| 1123 | ++EntryID; |
| 1124 | |
| 1125 | if (opts::DumpExceptions) { |
| 1126 | BC.outs() << "Exception Entry: " << EntryID << '\n'; |
| 1127 | BC.outs() << "\tInsn: 0x" << Twine::utohexstr(Val: InstAddress) << '\n' |
| 1128 | << "\tFixup: 0x" << Twine::utohexstr(Val: FixupAddress) << '\n' |
| 1129 | << "\tData: 0x" << Twine::utohexstr(Val: Data) << '\n'; |
| 1130 | } |
| 1131 | |
| 1132 | MCInst *Inst = nullptr; |
| 1133 | MCSymbol *FixupLabel = nullptr; |
| 1134 | |
| 1135 | BinaryFunction *InstBF = BC.getBinaryFunctionContainingAddress(Address: InstAddress); |
| 1136 | if (InstBF && BC.shouldEmit(Function: *InstBF)) { |
| 1137 | Inst = InstBF->getInstructionAtOffset(Offset: InstAddress - InstBF->getAddress()); |
| 1138 | if (!Inst) |
| 1139 | return createStringError(EC: errc::executable_format_error, |
| 1140 | Fmt: "no instruction at address 0x%" PRIx64 |
| 1141 | " in exception table" , |
| 1142 | Vals: InstAddress); |
| 1143 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "ExceptionEntry" , Val: EntryID); |
| 1144 | FunctionsWithExceptions.insert(V: InstBF); |
| 1145 | } |
| 1146 | |
| 1147 | if (!InstBF && opts::Verbosity) { |
| 1148 | BC.outs() << "BOLT-INFO: no function matches instruction at 0x" |
| 1149 | << Twine::utohexstr(Val: InstAddress) |
| 1150 | << " referenced by Linux exception table\n" ; |
| 1151 | } |
| 1152 | |
| 1153 | BinaryFunction *FixupBF = |
| 1154 | BC.getBinaryFunctionContainingAddress(Address: FixupAddress); |
| 1155 | if (FixupBF && BC.shouldEmit(Function: *FixupBF)) { |
| 1156 | const uint64_t Offset = FixupAddress - FixupBF->getAddress(); |
| 1157 | if (!FixupBF->getInstructionAtOffset(Offset)) |
| 1158 | return createStringError(EC: errc::executable_format_error, |
| 1159 | Fmt: "no instruction at fixup address 0x%" PRIx64 |
| 1160 | " in exception table" , |
| 1161 | Vals: FixupAddress); |
| 1162 | FixupLabel = Offset ? FixupBF->addEntryPointAtOffset(Offset) |
| 1163 | : FixupBF->getSymbol(); |
| 1164 | if (Inst) |
| 1165 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "Fixup" , Val: FixupLabel->getName()); |
| 1166 | FunctionsWithExceptions.insert(V: FixupBF); |
| 1167 | } |
| 1168 | |
| 1169 | if (!FixupBF && opts::Verbosity) { |
| 1170 | BC.outs() << "BOLT-INFO: no function matches fixup code at 0x" |
| 1171 | << Twine::utohexstr(Val: FixupAddress) |
| 1172 | << " referenced by Linux exception table\n" ; |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | BC.outs() << "BOLT-INFO: parsed " |
| 1177 | << ExceptionsSection->getSize() / EXCEPTION_TABLE_ENTRY_SIZE |
| 1178 | << " exception table entries\n" ; |
| 1179 | |
| 1180 | return Error::success(); |
| 1181 | } |
| 1182 | |
| 1183 | /// Depending on the value of CONFIG_BUILDTIME_TABLE_SORT, the kernel expects |
| 1184 | /// the exception table to be sorted. Hence we have to sort it after code |
| 1185 | /// reordering. |
| 1186 | Error LinuxKernelRewriter::rewriteExceptionTable() { |
| 1187 | // Disable output of functions with exceptions before rewrite support is |
| 1188 | // added. |
| 1189 | for (BinaryFunction *BF : FunctionsWithExceptions) |
| 1190 | BF->setSimple(false); |
| 1191 | |
| 1192 | return Error::success(); |
| 1193 | } |
| 1194 | |
| 1195 | /// .parainsrtuctions section contains information for patching parvirtual call |
| 1196 | /// instructions during runtime. The entries in the section are in the form: |
| 1197 | /// |
| 1198 | /// struct paravirt_patch_site { |
| 1199 | /// u8 *instr; /* original instructions */ |
| 1200 | /// u8 type; /* type of this instruction */ |
| 1201 | /// u8 len; /* length of original instruction */ |
| 1202 | /// }; |
| 1203 | /// |
| 1204 | /// Note that the structures are aligned at 8-byte boundary. |
| 1205 | Error LinuxKernelRewriter::readParaInstructions() { |
| 1206 | ParavirtualPatchSection = BC.getUniqueSectionByName(SectionName: ".parainstructions" ); |
| 1207 | if (!ParavirtualPatchSection) |
| 1208 | return Error::success(); |
| 1209 | |
| 1210 | DataExtractor DE(ParavirtualPatchSection->getContents(), |
| 1211 | BC.AsmInfo->isLittleEndian(), |
| 1212 | BC.AsmInfo->getCodePointerSize()); |
| 1213 | uint32_t EntryID = 0; |
| 1214 | DataExtractor::Cursor Cursor(0); |
| 1215 | while (Cursor && !DE.eof(C: Cursor)) { |
| 1216 | const uint64_t NextOffset = alignTo(Size: Cursor.tell(), A: Align(PARA_PATCH_ALIGN)); |
| 1217 | if (!DE.isValidOffset(offset: NextOffset)) |
| 1218 | break; |
| 1219 | |
| 1220 | Cursor.seek(NewOffSet: NextOffset); |
| 1221 | |
| 1222 | const uint64_t InstrLocation = DE.getU64(C&: Cursor); |
| 1223 | const uint8_t Type = DE.getU8(C&: Cursor); |
| 1224 | const uint8_t Len = DE.getU8(C&: Cursor); |
| 1225 | |
| 1226 | if (!Cursor) |
| 1227 | return createStringError( |
| 1228 | EC: errc::executable_format_error, |
| 1229 | Fmt: "out of bounds while reading .parainstructions: %s" , |
| 1230 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 1231 | |
| 1232 | ++EntryID; |
| 1233 | |
| 1234 | if (opts::DumpParavirtualPatchSites) { |
| 1235 | BC.outs() << "Paravirtual patch site: " << EntryID << '\n'; |
| 1236 | BC.outs() << "\tInstr: 0x" << Twine::utohexstr(Val: InstrLocation) |
| 1237 | << "\n\tType: 0x" << Twine::utohexstr(Val: Type) << "\n\tLen: 0x" |
| 1238 | << Twine::utohexstr(Val: Len) << '\n'; |
| 1239 | } |
| 1240 | |
| 1241 | BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(Address: InstrLocation); |
| 1242 | if (!BF && opts::Verbosity) { |
| 1243 | BC.outs() << "BOLT-INFO: no function matches address 0x" |
| 1244 | << Twine::utohexstr(Val: InstrLocation) |
| 1245 | << " referenced by paravirutal patch site\n" ; |
| 1246 | } |
| 1247 | |
| 1248 | if (BF && BC.shouldEmit(Function: *BF)) { |
| 1249 | MCInst *Inst = |
| 1250 | BF->getInstructionAtOffset(Offset: InstrLocation - BF->getAddress()); |
| 1251 | if (!Inst) |
| 1252 | return createStringError(EC: errc::executable_format_error, |
| 1253 | Fmt: "no instruction at address 0x%" PRIx64 |
| 1254 | " in paravirtual call site %d" , |
| 1255 | Vals: InstrLocation, Vals: EntryID); |
| 1256 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "ParaSite" , Val: EntryID); |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | BC.outs() << "BOLT-INFO: parsed " << EntryID << " paravirtual patch sites\n" ; |
| 1261 | |
| 1262 | return Error::success(); |
| 1263 | } |
| 1264 | |
| 1265 | void LinuxKernelRewriter::skipFunctionsWithAnnotation( |
| 1266 | StringRef Annotation) const { |
| 1267 | for (BinaryFunction &BF : llvm::make_second_range(c&: BC.getBinaryFunctions())) { |
| 1268 | if (!BC.shouldEmit(Function: BF)) |
| 1269 | continue; |
| 1270 | for (const BinaryBasicBlock &BB : BF) { |
| 1271 | const bool HasAnnotation = llvm::any_of(Range: BB, P: [&](const MCInst &Inst) { |
| 1272 | return BC.MIB->hasAnnotation(Inst, Name: Annotation); |
| 1273 | }); |
| 1274 | if (HasAnnotation) { |
| 1275 | BF.setSimple(false); |
| 1276 | break; |
| 1277 | } |
| 1278 | } |
| 1279 | } |
| 1280 | } |
| 1281 | |
| 1282 | Error LinuxKernelRewriter::rewriteParaInstructions() { |
| 1283 | // Disable output of functions with paravirtual instructions before the |
| 1284 | // rewrite support is complete. |
| 1285 | skipFunctionsWithAnnotation(Annotation: "ParaSite" ); |
| 1286 | |
| 1287 | return Error::success(); |
| 1288 | } |
| 1289 | |
| 1290 | /// Process __bug_table section. |
| 1291 | /// This section contains information useful for kernel debugging, mostly |
| 1292 | /// utilized by WARN()/WARN_ON() macros and deprecated BUG()/BUG_ON(). |
| 1293 | /// |
| 1294 | /// Each entry in the section is a struct bug_entry that contains a pointer to |
| 1295 | /// the ud2 instruction corresponding to the bug, corresponding file name (both |
| 1296 | /// pointers use PC relative offset addressing), line number, and flags. |
| 1297 | /// The definition of the struct bug_entry can be found in |
| 1298 | /// `include/asm-generic/bug.h`. The first entry in the struct is an instruction |
| 1299 | /// address encoded as a PC-relative offset. In theory, it could be an absolute |
| 1300 | /// address if CONFIG_GENERIC_BUG_RELATIVE_POINTERS is not set, but in practice |
| 1301 | /// the kernel code relies on it being a relative offset on x86-64. |
| 1302 | Error LinuxKernelRewriter::readBugTable() { |
| 1303 | BugTableSection = BC.getUniqueSectionByName(SectionName: "__bug_table" ); |
| 1304 | if (!BugTableSection) |
| 1305 | return Error::success(); |
| 1306 | |
| 1307 | if (BugTableSection->getSize() % BUG_TABLE_ENTRY_SIZE) |
| 1308 | return createStringError(EC: errc::executable_format_error, |
| 1309 | S: "bug table size error" ); |
| 1310 | |
| 1311 | AddressExtractor AE( |
| 1312 | BugTableSection->getContents(), BugTableSection->getAddress(), |
| 1313 | BC.AsmInfo->isLittleEndian(), BC.AsmInfo->getCodePointerSize()); |
| 1314 | AddressExtractor::Cursor Cursor(0); |
| 1315 | uint32_t EntryID = 0; |
| 1316 | while (Cursor && Cursor.tell() < BugTableSection->getSize()) { |
| 1317 | const uint64_t Pos = Cursor.tell(); |
| 1318 | const uint64_t InstAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1319 | Cursor.seek(NewOffSet: Pos + BUG_TABLE_ENTRY_SIZE); |
| 1320 | |
| 1321 | if (!Cursor) |
| 1322 | return createStringError(EC: errc::executable_format_error, |
| 1323 | Fmt: "out of bounds while reading __bug_table: %s" , |
| 1324 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 1325 | |
| 1326 | ++EntryID; |
| 1327 | |
| 1328 | BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(Address: InstAddress); |
| 1329 | if (!BF && opts::Verbosity) { |
| 1330 | BC.outs() << "BOLT-INFO: no function matches address 0x" |
| 1331 | << Twine::utohexstr(Val: InstAddress) |
| 1332 | << " referenced by bug table\n" ; |
| 1333 | } |
| 1334 | |
| 1335 | if (BF && BC.shouldEmit(Function: *BF)) { |
| 1336 | MCInst *Inst = BF->getInstructionAtOffset(Offset: InstAddress - BF->getAddress()); |
| 1337 | if (!Inst) |
| 1338 | return createStringError(EC: errc::executable_format_error, |
| 1339 | Fmt: "no instruction at address 0x%" PRIx64 |
| 1340 | " referenced by bug table entry %d" , |
| 1341 | Vals: InstAddress, Vals: EntryID); |
| 1342 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "BugEntry" , Val: EntryID); |
| 1343 | |
| 1344 | FunctionBugList[BF].push_back(Elt: EntryID); |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | BC.outs() << "BOLT-INFO: parsed " << EntryID << " bug table entries\n" ; |
| 1349 | |
| 1350 | return Error::success(); |
| 1351 | } |
| 1352 | |
| 1353 | /// find_bug() uses linear search to match an address to an entry in the bug |
| 1354 | /// table. Hence, there is no need to sort entries when rewriting the table. |
| 1355 | /// When we need to erase an entry, we set its instruction address to zero. |
| 1356 | Error LinuxKernelRewriter::rewriteBugTable() { |
| 1357 | if (!BugTableSection) |
| 1358 | return Error::success(); |
| 1359 | |
| 1360 | for (BinaryFunction &BF : llvm::make_second_range(c&: BC.getBinaryFunctions())) { |
| 1361 | if (!BC.shouldEmit(Function: BF)) |
| 1362 | continue; |
| 1363 | |
| 1364 | if (!FunctionBugList.count(Val: &BF)) |
| 1365 | continue; |
| 1366 | |
| 1367 | // Bugs that will be emitted for this function. |
| 1368 | DenseSet<uint32_t> EmittedIDs; |
| 1369 | for (BinaryBasicBlock &BB : BF) { |
| 1370 | for (MCInst &Inst : BB) { |
| 1371 | if (!BC.MIB->hasAnnotation(Inst, Name: "BugEntry" )) |
| 1372 | continue; |
| 1373 | const uint32_t ID = BC.MIB->getAnnotationAs<uint32_t>(Inst, Name: "BugEntry" ); |
| 1374 | EmittedIDs.insert(V: ID); |
| 1375 | |
| 1376 | // Create a relocation entry for this bug entry. |
| 1377 | MCSymbol *Label = |
| 1378 | BC.MIB->getOrCreateInstLabel(Inst, Name: "__BUG_" , Ctx: BC.Ctx.get()); |
| 1379 | const uint64_t EntryOffset = (ID - 1) * BUG_TABLE_ENTRY_SIZE; |
| 1380 | BugTableSection->addRelocation(Offset: EntryOffset, Symbol: Label, Type: ELF::R_X86_64_PC32, |
| 1381 | /*Addend*/ 0); |
| 1382 | } |
| 1383 | } |
| 1384 | |
| 1385 | // Clear bug entries that were not emitted for this function, e.g. as a |
| 1386 | // result of DCE, but setting their instruction address to zero. |
| 1387 | for (const uint32_t ID : FunctionBugList[&BF]) { |
| 1388 | if (!EmittedIDs.count(V: ID)) { |
| 1389 | const uint64_t EntryOffset = (ID - 1) * BUG_TABLE_ENTRY_SIZE; |
| 1390 | BugTableSection->addRelocation(Offset: EntryOffset, Symbol: nullptr, Type: ELF::R_X86_64_PC32, |
| 1391 | /*Addend*/ 0); |
| 1392 | } |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | return Error::success(); |
| 1397 | } |
| 1398 | |
| 1399 | /// The kernel can replace certain instruction sequences depending on hardware |
| 1400 | /// it is running on and features specified during boot time. The information |
| 1401 | /// about alternative instruction sequences is stored in .altinstructions |
| 1402 | /// section. The format of entries in this section is defined in |
| 1403 | /// arch/x86/include/asm/alternative.h: |
| 1404 | /// |
| 1405 | /// struct alt_instr { |
| 1406 | /// s32 instr_offset; |
| 1407 | /// s32 repl_offset; |
| 1408 | /// uXX feature; |
| 1409 | /// u8 instrlen; |
| 1410 | /// u8 replacementlen; |
| 1411 | /// u8 padlen; // present in older kernels |
| 1412 | /// } __packed; |
| 1413 | /// |
| 1414 | /// Note that the structure is packed. |
| 1415 | /// |
| 1416 | /// Since the size of the "feature" field could be either u16 or u32, and |
| 1417 | /// "padlen" presence is unknown, we attempt to parse .altinstructions section |
| 1418 | /// using all possible combinations (four at this time). Since we validate the |
| 1419 | /// contents of the section and its size, the detection works quite well. |
| 1420 | /// Still, we leave the user the opportunity to specify these features on the |
| 1421 | /// command line and skip the guesswork. |
| 1422 | Error LinuxKernelRewriter::readAltInstructions() { |
| 1423 | AltInstrSection = BC.getUniqueSectionByName(SectionName: ".altinstructions" ); |
| 1424 | if (!AltInstrSection) |
| 1425 | return Error::success(); |
| 1426 | |
| 1427 | // Presence of "padlen" field. |
| 1428 | std::vector<bool> PadLenVariants; |
| 1429 | if (opts::AltInstHasPadLen.getNumOccurrences()) |
| 1430 | PadLenVariants.push_back(x: opts::AltInstHasPadLen); |
| 1431 | else |
| 1432 | PadLenVariants = {false, true}; |
| 1433 | |
| 1434 | // Size (in bytes) variants of "feature" field. |
| 1435 | std::vector<uint32_t> FeatureSizeVariants; |
| 1436 | if (opts::AltInstFeatureSize.getNumOccurrences()) |
| 1437 | FeatureSizeVariants.push_back(x: opts::AltInstFeatureSize); |
| 1438 | else |
| 1439 | FeatureSizeVariants = {2, 4}; |
| 1440 | |
| 1441 | for (bool AltInstHasPadLen : PadLenVariants) { |
| 1442 | for (uint32_t AltInstFeatureSize : FeatureSizeVariants) { |
| 1443 | LLVM_DEBUG({ |
| 1444 | dbgs() << "BOLT-DEBUG: trying AltInstHasPadLen = " << AltInstHasPadLen |
| 1445 | << "; AltInstFeatureSize = " << AltInstFeatureSize << ";\n" ; |
| 1446 | }); |
| 1447 | if (Error E = tryReadAltInstructions(AltInstFeatureSize, AltInstHasPadLen, |
| 1448 | /*ParseOnly*/ true)) { |
| 1449 | consumeError(Err: std::move(E)); |
| 1450 | continue; |
| 1451 | } |
| 1452 | |
| 1453 | LLVM_DEBUG(dbgs() << "Matched .altinstructions format\n" ); |
| 1454 | |
| 1455 | if (!opts::AltInstHasPadLen.getNumOccurrences()) |
| 1456 | BC.outs() << "BOLT-INFO: setting --" << opts::AltInstHasPadLen.ArgStr |
| 1457 | << '=' << AltInstHasPadLen << '\n'; |
| 1458 | |
| 1459 | if (!opts::AltInstFeatureSize.getNumOccurrences()) |
| 1460 | BC.outs() << "BOLT-INFO: setting --" << opts::AltInstFeatureSize.ArgStr |
| 1461 | << '=' << AltInstFeatureSize << '\n'; |
| 1462 | |
| 1463 | return tryReadAltInstructions(AltInstFeatureSize, AltInstHasPadLen, |
| 1464 | /*ParseOnly*/ false); |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | // We couldn't match the format. Read again to properly propagate the error |
| 1469 | // to the user. |
| 1470 | return tryReadAltInstructions(AltInstFeatureSize: opts::AltInstFeatureSize, |
| 1471 | AltInstHasPadLen: opts::AltInstHasPadLen, /*ParseOnly*/ false); |
| 1472 | } |
| 1473 | |
| 1474 | Error LinuxKernelRewriter::tryReadAltInstructions(uint32_t AltInstFeatureSize, |
| 1475 | bool AltInstHasPadLen, |
| 1476 | bool ParseOnly) { |
| 1477 | AddressExtractor AE( |
| 1478 | AltInstrSection->getContents(), AltInstrSection->getAddress(), |
| 1479 | BC.AsmInfo->isLittleEndian(), BC.AsmInfo->getCodePointerSize()); |
| 1480 | AddressExtractor::Cursor Cursor(0); |
| 1481 | uint64_t EntryID = 0; |
| 1482 | while (Cursor && !AE.eof(C: Cursor)) { |
| 1483 | const uint64_t OrgInstAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1484 | const uint64_t AltInstAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1485 | const uint64_t Feature = AE.getUnsigned(C&: Cursor, Size: AltInstFeatureSize); |
| 1486 | const uint8_t OrgSize = AE.getU8(C&: Cursor); |
| 1487 | const uint8_t AltSize = AE.getU8(C&: Cursor); |
| 1488 | |
| 1489 | // Older kernels may have the padlen field. |
| 1490 | const uint8_t PadLen = AltInstHasPadLen ? AE.getU8(C&: Cursor) : 0; |
| 1491 | |
| 1492 | if (!Cursor) |
| 1493 | return createStringError( |
| 1494 | EC: errc::executable_format_error, |
| 1495 | Fmt: "out of bounds while reading .altinstructions: %s" , |
| 1496 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 1497 | |
| 1498 | ++EntryID; |
| 1499 | |
| 1500 | if (opts::DumpAltInstructions) { |
| 1501 | BC.outs() << "Alternative instruction entry: " << EntryID |
| 1502 | << "\n\tOrg: 0x" << Twine::utohexstr(Val: OrgInstAddress) |
| 1503 | << "\n\tAlt: 0x" << Twine::utohexstr(Val: AltInstAddress) |
| 1504 | << "\n\tFeature: 0x" << Twine::utohexstr(Val: Feature) |
| 1505 | << "\n\tOrgSize: " << (int)OrgSize |
| 1506 | << "\n\tAltSize: " << (int)AltSize << '\n'; |
| 1507 | if (AltInstHasPadLen) |
| 1508 | BC.outs() << "\tPadLen: " << (int)PadLen << '\n'; |
| 1509 | } |
| 1510 | |
| 1511 | if (AltSize > OrgSize) |
| 1512 | return createStringError(EC: errc::executable_format_error, |
| 1513 | S: "error reading .altinstructions" ); |
| 1514 | |
| 1515 | BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(Address: OrgInstAddress); |
| 1516 | if (!BF && opts::Verbosity) { |
| 1517 | BC.outs() << "BOLT-INFO: no function matches address 0x" |
| 1518 | << Twine::utohexstr(Val: OrgInstAddress) |
| 1519 | << " of instruction from .altinstructions\n" ; |
| 1520 | } |
| 1521 | |
| 1522 | BinaryFunction *AltBF = |
| 1523 | BC.getBinaryFunctionContainingAddress(Address: AltInstAddress); |
| 1524 | if (!ParseOnly && AltBF && BC.shouldEmit(Function: *AltBF)) { |
| 1525 | BC.errs() |
| 1526 | << "BOLT-WARNING: alternative instruction sequence found in function " |
| 1527 | << *AltBF << '\n'; |
| 1528 | AltBF->setIgnored(); |
| 1529 | } |
| 1530 | |
| 1531 | if (!BF || !BF->hasInstructions()) |
| 1532 | continue; |
| 1533 | |
| 1534 | if (OrgInstAddress + OrgSize > BF->getAddress() + BF->getSize()) |
| 1535 | return createStringError(EC: errc::executable_format_error, |
| 1536 | S: "error reading .altinstructions" ); |
| 1537 | |
| 1538 | MCInst *Inst = |
| 1539 | BF->getInstructionAtOffset(Offset: OrgInstAddress - BF->getAddress()); |
| 1540 | if (!Inst) |
| 1541 | return createStringError(EC: errc::executable_format_error, |
| 1542 | Fmt: "no instruction at address 0x%" PRIx64 |
| 1543 | " referenced by .altinstructions entry %d" , |
| 1544 | Vals: OrgInstAddress, Vals: EntryID); |
| 1545 | |
| 1546 | if (ParseOnly) |
| 1547 | continue; |
| 1548 | |
| 1549 | // There could be more than one alternative instruction sequences for the |
| 1550 | // same original instruction. Annotate each alternative separately. |
| 1551 | std::string AnnotationName = "AltInst" ; |
| 1552 | unsigned N = 2; |
| 1553 | while (BC.MIB->hasAnnotation(Inst: *Inst, Name: AnnotationName)) |
| 1554 | AnnotationName = "AltInst" + std::to_string(val: N++); |
| 1555 | |
| 1556 | BC.MIB->addAnnotation(Inst&: *Inst, Name: AnnotationName, Val: EntryID); |
| 1557 | |
| 1558 | // Annotate all instructions from the original sequence. Note that it's not |
| 1559 | // the most efficient way to look for instructions in the address range, |
| 1560 | // but since alternative instructions are uncommon, it will do for now. |
| 1561 | for (uint32_t Offset = 1; Offset < OrgSize; ++Offset) { |
| 1562 | Inst = BF->getInstructionAtOffset(Offset: OrgInstAddress + Offset - |
| 1563 | BF->getAddress()); |
| 1564 | if (Inst) |
| 1565 | BC.MIB->addAnnotation(Inst&: *Inst, Name: AnnotationName, Val: EntryID); |
| 1566 | } |
| 1567 | } |
| 1568 | |
| 1569 | if (!ParseOnly) |
| 1570 | BC.outs() << "BOLT-INFO: parsed " << EntryID |
| 1571 | << " alternative instruction entries\n" ; |
| 1572 | |
| 1573 | return Error::success(); |
| 1574 | } |
| 1575 | |
| 1576 | void LinuxKernelRewriter::processAltInstructionsPostCFG() { |
| 1577 | // Disable optimization and output of functions with alt instructions before |
| 1578 | // the rewrite support is complete. Alt instructions can modify the control |
| 1579 | // flow, hence we may end up deleting seemingly unreachable code. |
| 1580 | skipFunctionsWithAnnotation(Annotation: "AltInst" ); |
| 1581 | } |
| 1582 | |
| 1583 | /// When the Linux kernel needs to handle an error associated with a given PCI |
| 1584 | /// device, it uses a table stored in .pci_fixup section to locate a fixup code |
| 1585 | /// specific to the vendor and the problematic device. The section contains a |
| 1586 | /// list of the following structures defined in include/linux/pci.h: |
| 1587 | /// |
| 1588 | /// struct pci_fixup { |
| 1589 | /// u16 vendor; /* Or PCI_ANY_ID */ |
| 1590 | /// u16 device; /* Or PCI_ANY_ID */ |
| 1591 | /// u32 class; /* Or PCI_ANY_ID */ |
| 1592 | /// unsigned int class_shift; /* should be 0, 8, 16 */ |
| 1593 | /// int hook_offset; |
| 1594 | /// }; |
| 1595 | /// |
| 1596 | /// Normally, the hook will point to a function start and we don't have to |
| 1597 | /// update the pointer if we are not relocating functions. Hence, while reading |
| 1598 | /// the table we validate this assumption. If a function has a fixup code in the |
| 1599 | /// middle of its body, we issue a warning and ignore it. |
| 1600 | Error LinuxKernelRewriter::readPCIFixupTable() { |
| 1601 | PCIFixupSection = BC.getUniqueSectionByName(SectionName: ".pci_fixup" ); |
| 1602 | if (!PCIFixupSection) |
| 1603 | return Error::success(); |
| 1604 | |
| 1605 | if (PCIFixupSection->getSize() % PCI_FIXUP_ENTRY_SIZE) |
| 1606 | return createStringError(EC: errc::executable_format_error, |
| 1607 | S: "PCI fixup table size error" ); |
| 1608 | |
| 1609 | AddressExtractor AE( |
| 1610 | PCIFixupSection->getContents(), PCIFixupSection->getAddress(), |
| 1611 | BC.AsmInfo->isLittleEndian(), BC.AsmInfo->getCodePointerSize()); |
| 1612 | AddressExtractor::Cursor Cursor(0); |
| 1613 | uint64_t EntryID = 0; |
| 1614 | while (Cursor && !AE.eof(C: Cursor)) { |
| 1615 | const uint16_t Vendor = AE.getU16(C&: Cursor); |
| 1616 | const uint16_t Device = AE.getU16(C&: Cursor); |
| 1617 | const uint32_t Class = AE.getU32(C&: Cursor); |
| 1618 | const uint32_t ClassShift = AE.getU32(C&: Cursor); |
| 1619 | const uint64_t HookAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1620 | |
| 1621 | if (!Cursor) |
| 1622 | return createStringError(EC: errc::executable_format_error, |
| 1623 | Fmt: "out of bounds while reading .pci_fixup: %s" , |
| 1624 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 1625 | |
| 1626 | ++EntryID; |
| 1627 | |
| 1628 | if (opts::DumpPCIFixups) { |
| 1629 | BC.outs() << "PCI fixup entry: " << EntryID << "\n\tVendor 0x" |
| 1630 | << Twine::utohexstr(Val: Vendor) << "\n\tDevice: 0x" |
| 1631 | << Twine::utohexstr(Val: Device) << "\n\tClass: 0x" |
| 1632 | << Twine::utohexstr(Val: Class) << "\n\tClassShift: 0x" |
| 1633 | << Twine::utohexstr(Val: ClassShift) << "\n\tHookAddress: 0x" |
| 1634 | << Twine::utohexstr(Val: HookAddress) << '\n'; |
| 1635 | } |
| 1636 | |
| 1637 | BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(Address: HookAddress); |
| 1638 | if (!BF && opts::Verbosity) { |
| 1639 | BC.outs() << "BOLT-INFO: no function matches address 0x" |
| 1640 | << Twine::utohexstr(Val: HookAddress) |
| 1641 | << " of hook from .pci_fixup\n" ; |
| 1642 | } |
| 1643 | |
| 1644 | if (!BF || !BC.shouldEmit(Function: *BF)) |
| 1645 | continue; |
| 1646 | |
| 1647 | if (const uint64_t Offset = HookAddress - BF->getAddress()) { |
| 1648 | BC.errs() << "BOLT-WARNING: PCI fixup detected in the middle of function " |
| 1649 | << *BF << " at offset 0x" << Twine::utohexstr(Val: Offset) << '\n'; |
| 1650 | BF->setSimple(false); |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | BC.outs() << "BOLT-INFO: parsed " << EntryID << " PCI fixup entries\n" ; |
| 1655 | |
| 1656 | return Error::success(); |
| 1657 | } |
| 1658 | |
| 1659 | /// Runtime code modification used by static keys is the most ubiquitous |
| 1660 | /// self-modifying feature of the Linux kernel. The idea is to eliminate the |
| 1661 | /// condition check and associated conditional jump on a hot path if that |
| 1662 | /// condition (based on a boolean value of a static key) does not change often. |
| 1663 | /// Whenever the condition changes, the kernel runtime modifies all code paths |
| 1664 | /// associated with that key flipping the code between nop and (unconditional) |
| 1665 | /// jump. The information about the code is stored in a static key jump table |
| 1666 | /// and contains the list of entries of the following type from |
| 1667 | /// include/linux/jump_label.h: |
| 1668 | // |
| 1669 | /// struct jump_entry { |
| 1670 | /// s32 code; |
| 1671 | /// s32 target; |
| 1672 | /// long key; // key may be far away from the core kernel under KASLR |
| 1673 | /// }; |
| 1674 | /// |
| 1675 | /// The list does not have to be stored in any sorted way, but it is sorted at |
| 1676 | /// boot time (or module initialization time) first by "key" and then by "code". |
| 1677 | /// jump_label_sort_entries() is responsible for sorting the table. |
| 1678 | /// |
| 1679 | /// The key in jump_entry structure uses lower two bits of the key address |
| 1680 | /// (which itself is aligned) to store extra information. We are interested in |
| 1681 | /// the lower bit which indicates if the key is likely to be set on the code |
| 1682 | /// path associated with this jump_entry. |
| 1683 | /// |
| 1684 | /// static_key_{enable,disable}() functions modify the code based on key and |
| 1685 | /// jump table entries. |
| 1686 | /// |
| 1687 | /// jump_label_update() updates all code entries for a given key. Batch mode is |
| 1688 | /// used for x86. |
| 1689 | /// |
| 1690 | /// The actual patching happens in text_poke_bp_batch() that overrides the first |
| 1691 | /// byte of the sequence with int3 before proceeding with actual code |
| 1692 | /// replacement. |
| 1693 | Error LinuxKernelRewriter::readStaticKeysJumpTable() { |
| 1694 | const BinaryData *StaticKeysJumpTable = |
| 1695 | BC.getBinaryDataByName(Name: "__start___jump_table" ); |
| 1696 | if (!StaticKeysJumpTable) |
| 1697 | return Error::success(); |
| 1698 | |
| 1699 | StaticKeysJumpTableAddress = StaticKeysJumpTable->getAddress(); |
| 1700 | |
| 1701 | const BinaryData *Stop = BC.getBinaryDataByName(Name: "__stop___jump_table" ); |
| 1702 | if (!Stop) |
| 1703 | return createStringError(EC: errc::executable_format_error, |
| 1704 | S: "missing __stop___jump_table symbol" ); |
| 1705 | |
| 1706 | ErrorOr<BinarySection &> ErrorOrSection = |
| 1707 | BC.getSectionForAddress(Address: StaticKeysJumpTableAddress); |
| 1708 | if (!ErrorOrSection) |
| 1709 | return createStringError(EC: errc::executable_format_error, |
| 1710 | S: "no section matching __start___jump_table" ); |
| 1711 | |
| 1712 | StaticKeysJumpSection = *ErrorOrSection; |
| 1713 | if (!StaticKeysJumpSection->containsAddress(Address: Stop->getAddress() - 1)) |
| 1714 | return createStringError(EC: errc::executable_format_error, |
| 1715 | S: "__stop___jump_table not in the same section " |
| 1716 | "as __start___jump_table" ); |
| 1717 | |
| 1718 | if ((Stop->getAddress() - StaticKeysJumpTableAddress) % |
| 1719 | STATIC_KEYS_JUMP_ENTRY_SIZE) |
| 1720 | return createStringError(EC: errc::executable_format_error, |
| 1721 | S: "static keys jump table size error" ); |
| 1722 | |
| 1723 | const uint64_t SectionAddress = StaticKeysJumpSection->getAddress(); |
| 1724 | AddressExtractor AE(StaticKeysJumpSection->getContents(), SectionAddress, |
| 1725 | BC.AsmInfo->isLittleEndian(), |
| 1726 | BC.AsmInfo->getCodePointerSize()); |
| 1727 | AddressExtractor::Cursor Cursor(StaticKeysJumpTableAddress - SectionAddress); |
| 1728 | uint32_t EntryID = 0; |
| 1729 | while (Cursor && Cursor.tell() < Stop->getAddress() - SectionAddress) { |
| 1730 | const uint64_t JumpAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1731 | const uint64_t TargetAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1732 | const uint64_t KeyAddress = AE.getPCRelAddress64(C&: Cursor); |
| 1733 | |
| 1734 | // Consume the status of the cursor. |
| 1735 | if (!Cursor) |
| 1736 | return createStringError( |
| 1737 | EC: errc::executable_format_error, |
| 1738 | Fmt: "out of bounds while reading static keys jump table: %s" , |
| 1739 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 1740 | |
| 1741 | ++EntryID; |
| 1742 | |
| 1743 | JumpInfo.push_back(Elt: JumpInfoEntry()); |
| 1744 | JumpInfoEntry &Info = JumpInfo.back(); |
| 1745 | Info.Likely = KeyAddress & 1; |
| 1746 | |
| 1747 | if (opts::DumpStaticKeys) { |
| 1748 | BC.outs() << "Static key jump entry: " << EntryID |
| 1749 | << "\n\tJumpAddress: 0x" << Twine::utohexstr(Val: JumpAddress) |
| 1750 | << "\n\tTargetAddress: 0x" << Twine::utohexstr(Val: TargetAddress) |
| 1751 | << "\n\tKeyAddress: 0x" << Twine::utohexstr(Val: KeyAddress) |
| 1752 | << "\n\tIsLikely: " << Info.Likely << '\n'; |
| 1753 | } |
| 1754 | |
| 1755 | BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(Address: JumpAddress); |
| 1756 | if (!BF && opts::Verbosity) { |
| 1757 | BC.outs() |
| 1758 | << "BOLT-INFO: no function matches address 0x" |
| 1759 | << Twine::utohexstr(Val: JumpAddress) |
| 1760 | << " of jump instruction referenced from static keys jump table\n" ; |
| 1761 | } |
| 1762 | |
| 1763 | if (!BF || !BC.shouldEmit(Function: *BF)) |
| 1764 | continue; |
| 1765 | |
| 1766 | MCInst *Inst = BF->getInstructionAtOffset(Offset: JumpAddress - BF->getAddress()); |
| 1767 | if (!Inst) |
| 1768 | return createStringError( |
| 1769 | EC: errc::executable_format_error, |
| 1770 | Fmt: "no instruction at static keys jump site address 0x%" PRIx64, |
| 1771 | Vals: JumpAddress); |
| 1772 | |
| 1773 | if (!BF->containsAddress(PC: TargetAddress)) |
| 1774 | return createStringError( |
| 1775 | EC: errc::executable_format_error, |
| 1776 | Fmt: "invalid target of static keys jump at 0x%" PRIx64 " : 0x%" PRIx64, |
| 1777 | Vals: JumpAddress, Vals: TargetAddress); |
| 1778 | |
| 1779 | const bool IsBranch = BC.MIB->isBranch(Inst: *Inst); |
| 1780 | if (!IsBranch && !BC.MIB->isNoop(Inst: *Inst)) |
| 1781 | return createStringError(EC: errc::executable_format_error, |
| 1782 | Fmt: "jump or nop expected at address 0x%" PRIx64, |
| 1783 | Vals: JumpAddress); |
| 1784 | |
| 1785 | const uint64_t Size = BC.computeInstructionSize(Inst: *Inst); |
| 1786 | if (Size != 2 && Size != 5) { |
| 1787 | return createStringError( |
| 1788 | EC: errc::executable_format_error, |
| 1789 | Fmt: "unexpected static keys jump size at address 0x%" PRIx64, |
| 1790 | Vals: JumpAddress); |
| 1791 | } |
| 1792 | |
| 1793 | MCSymbol *Target = BF->registerBranch(Src: JumpAddress, Dst: TargetAddress); |
| 1794 | MCInst StaticKeyBranch; |
| 1795 | |
| 1796 | // Create a conditional branch instruction. The actual conditional code type |
| 1797 | // should not matter as long as it's a valid code. The instruction should be |
| 1798 | // treated as a conditional branch for control-flow purposes. Before we emit |
| 1799 | // the code, it will be converted to a different instruction in |
| 1800 | // rewriteStaticKeysJumpTable(). |
| 1801 | // |
| 1802 | // NB: for older kernels, under LongJumpLabels option, we create long |
| 1803 | // conditional branch to guarantee that code size estimation takes |
| 1804 | // into account the extra bytes needed for long branch that will be used |
| 1805 | // by the kernel patching code. Newer kernels can work with both short |
| 1806 | // and long branches. The code for long conditional branch is larger |
| 1807 | // than unconditional one, so we are pessimistic in our estimations. |
| 1808 | if (opts::LongJumpLabels) |
| 1809 | BC.MIB->createLongCondBranch(Inst&: StaticKeyBranch, Target, CC: 0, Ctx: BC.Ctx.get()); |
| 1810 | else |
| 1811 | BC.MIB->createCondBranch(Inst&: StaticKeyBranch, Target, CC: 0, Ctx: BC.Ctx.get()); |
| 1812 | BC.MIB->moveAnnotations(SrcInst: std::move(*Inst), DstInst&: StaticKeyBranch); |
| 1813 | BC.MIB->setDynamicBranch(Inst&: StaticKeyBranch, ID: EntryID); |
| 1814 | *Inst = StaticKeyBranch; |
| 1815 | |
| 1816 | // IsBranch = InitialValue ^ LIKELY |
| 1817 | // |
| 1818 | // 0 0 0 |
| 1819 | // 1 0 1 |
| 1820 | // 1 1 0 |
| 1821 | // 0 1 1 |
| 1822 | // |
| 1823 | // => InitialValue = IsBranch ^ LIKELY |
| 1824 | Info.InitValue = IsBranch ^ Info.Likely; |
| 1825 | |
| 1826 | // Add annotations to facilitate manual code analysis. |
| 1827 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "Likely" , Val: Info.Likely); |
| 1828 | BC.MIB->addAnnotation(Inst&: *Inst, Name: "InitValue" , Val: Info.InitValue); |
| 1829 | if (!BC.MIB->getSize(Inst: *Inst)) |
| 1830 | BC.MIB->setSize(Inst&: *Inst, Size); |
| 1831 | |
| 1832 | if (!BC.MIB->getOffset(Inst: *Inst)) |
| 1833 | BC.MIB->setOffset(Inst&: *Inst, Offset: JumpAddress - BF->getAddress()); |
| 1834 | |
| 1835 | if (opts::LongJumpLabels) |
| 1836 | BC.MIB->setSize(Inst&: *Inst, Size: 5); |
| 1837 | } |
| 1838 | |
| 1839 | BC.outs() << "BOLT-INFO: parsed " << EntryID << " static keys jump entries\n" ; |
| 1840 | |
| 1841 | return Error::success(); |
| 1842 | } |
| 1843 | |
| 1844 | // Pre-emit pass. Convert dynamic branch instructions into jumps that could be |
| 1845 | // relaxed. In post-emit pass we will convert those jumps into nops when |
| 1846 | // necessary. We do the unconditional conversion into jumps so that the jumps |
| 1847 | // can be relaxed and the optimal size of jump/nop instruction is selected. |
| 1848 | Error LinuxKernelRewriter::rewriteStaticKeysJumpTable() { |
| 1849 | if (!StaticKeysJumpSection) |
| 1850 | return Error::success(); |
| 1851 | |
| 1852 | uint64_t NumShort = 0; |
| 1853 | uint64_t NumLong = 0; |
| 1854 | for (BinaryFunction &BF : llvm::make_second_range(c&: BC.getBinaryFunctions())) { |
| 1855 | if (!BC.shouldEmit(Function: BF)) |
| 1856 | continue; |
| 1857 | |
| 1858 | for (BinaryBasicBlock &BB : BF) { |
| 1859 | for (MCInst &Inst : BB) { |
| 1860 | if (!BC.MIB->isDynamicBranch(Inst)) |
| 1861 | continue; |
| 1862 | |
| 1863 | const uint32_t EntryID = *BC.MIB->getDynamicBranchID(Inst); |
| 1864 | MCSymbol *Target = |
| 1865 | const_cast<MCSymbol *>(BC.MIB->getTargetSymbol(Inst)); |
| 1866 | assert(Target && "Target symbol should be set." ); |
| 1867 | |
| 1868 | const JumpInfoEntry &Info = JumpInfo[EntryID - 1]; |
| 1869 | const bool IsBranch = Info.Likely ^ Info.InitValue; |
| 1870 | |
| 1871 | uint32_t Size = *BC.MIB->getSize(Inst); |
| 1872 | if (Size == 2) |
| 1873 | ++NumShort; |
| 1874 | else if (Size == 5) |
| 1875 | ++NumLong; |
| 1876 | else |
| 1877 | llvm_unreachable("Wrong size for static keys jump instruction." ); |
| 1878 | |
| 1879 | MCInst NewInst; |
| 1880 | // Replace the instruction with unconditional jump even if it needs to |
| 1881 | // be nop in the binary. |
| 1882 | if (opts::LongJumpLabels) { |
| 1883 | BC.MIB->createLongUncondBranch(Inst&: NewInst, Target, Ctx: BC.Ctx.get()); |
| 1884 | } else { |
| 1885 | // Newer kernels can handle short and long jumps for static keys. |
| 1886 | // Optimistically, emit short jump and check if it gets relaxed into |
| 1887 | // a long one during post-emit. Only then convert the jump to a nop. |
| 1888 | BC.MIB->createUncondBranch(Inst&: NewInst, TBB: Target, Ctx: BC.Ctx.get()); |
| 1889 | } |
| 1890 | |
| 1891 | BC.MIB->moveAnnotations(SrcInst: std::move(Inst), DstInst&: NewInst); |
| 1892 | Inst = NewInst; |
| 1893 | |
| 1894 | // Mark the instruction for nop conversion. |
| 1895 | if (!IsBranch) |
| 1896 | NopIDs.insert(V: EntryID); |
| 1897 | |
| 1898 | MCSymbol *Label = |
| 1899 | BC.MIB->getOrCreateInstLabel(Inst, Name: "__SK_" , Ctx: BC.Ctx.get()); |
| 1900 | |
| 1901 | // Create a relocation against the label. |
| 1902 | const uint64_t EntryOffset = StaticKeysJumpTableAddress - |
| 1903 | StaticKeysJumpSection->getAddress() + |
| 1904 | (EntryID - 1) * 16; |
| 1905 | StaticKeysJumpSection->addRelocation(Offset: EntryOffset, Symbol: Label, |
| 1906 | Type: ELF::R_X86_64_PC32, |
| 1907 | /*Addend*/ 0); |
| 1908 | StaticKeysJumpSection->addRelocation(Offset: EntryOffset + 4, Symbol: Target, |
| 1909 | Type: ELF::R_X86_64_PC32, /*Addend*/ 0); |
| 1910 | } |
| 1911 | } |
| 1912 | } |
| 1913 | |
| 1914 | BC.outs() << "BOLT-INFO: the input contains " << NumShort << " short and " |
| 1915 | << NumLong << " long static keys jumps in optimized functions\n" ; |
| 1916 | |
| 1917 | return Error::success(); |
| 1918 | } |
| 1919 | |
| 1920 | // Post-emit pass of static keys jump section. Convert jumps to nops. |
| 1921 | Error LinuxKernelRewriter::updateStaticKeysJumpTablePostEmit() { |
| 1922 | if (!StaticKeysJumpSection || !StaticKeysJumpSection->isFinalized()) |
| 1923 | return Error::success(); |
| 1924 | |
| 1925 | const uint64_t SectionAddress = StaticKeysJumpSection->getAddress(); |
| 1926 | AddressExtractor AE(StaticKeysJumpSection->getOutputContents(), |
| 1927 | SectionAddress, BC.AsmInfo->isLittleEndian(), |
| 1928 | BC.AsmInfo->getCodePointerSize()); |
| 1929 | AddressExtractor::Cursor Cursor(StaticKeysJumpTableAddress - SectionAddress); |
| 1930 | const BinaryData *Stop = BC.getBinaryDataByName(Name: "__stop___jump_table" ); |
| 1931 | uint32_t EntryID = 0; |
| 1932 | uint64_t NumShort = 0; |
| 1933 | uint64_t NumLong = 0; |
| 1934 | while (Cursor && Cursor.tell() < Stop->getAddress() - SectionAddress) { |
| 1935 | const uint64_t JumpAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1936 | const uint64_t TargetAddress = AE.getPCRelAddress32(C&: Cursor); |
| 1937 | const uint64_t KeyAddress = AE.getPCRelAddress64(C&: Cursor); |
| 1938 | |
| 1939 | // Consume the status of the cursor. |
| 1940 | if (!Cursor) |
| 1941 | return createStringError(EC: errc::executable_format_error, |
| 1942 | Fmt: "out of bounds while updating static keys: %s" , |
| 1943 | Vals: toString(E: Cursor.takeError()).c_str()); |
| 1944 | |
| 1945 | ++EntryID; |
| 1946 | |
| 1947 | LLVM_DEBUG({ |
| 1948 | dbgs() << "\n\tJumpAddress: 0x" << Twine::utohexstr(JumpAddress) |
| 1949 | << "\n\tTargetAddress: 0x" << Twine::utohexstr(TargetAddress) |
| 1950 | << "\n\tKeyAddress: 0x" << Twine::utohexstr(KeyAddress) << '\n'; |
| 1951 | }); |
| 1952 | (void)TargetAddress; |
| 1953 | (void)KeyAddress; |
| 1954 | |
| 1955 | BinaryFunction *BF = |
| 1956 | BC.getBinaryFunctionContainingAddress(Address: JumpAddress, |
| 1957 | /*CheckPastEnd*/ false, |
| 1958 | /*UseMaxSize*/ true); |
| 1959 | assert(BF && "Cannot get function for modified static key." ); |
| 1960 | |
| 1961 | if (!BF->isEmitted()) |
| 1962 | continue; |
| 1963 | |
| 1964 | // Disassemble instruction to collect stats even if nop-conversion is |
| 1965 | // unnecessary. |
| 1966 | MutableArrayRef<uint8_t> Contents = MutableArrayRef<uint8_t>( |
| 1967 | reinterpret_cast<uint8_t *>(BF->getImageAddress()), BF->getImageSize()); |
| 1968 | assert(Contents.size() && "Non-empty function image expected." ); |
| 1969 | |
| 1970 | MCInst Inst; |
| 1971 | uint64_t Size; |
| 1972 | const uint64_t JumpOffset = JumpAddress - BF->getAddress(); |
| 1973 | if (!BC.DisAsm->getInstruction(Instr&: Inst, Size, Bytes: Contents.slice(N: JumpOffset), Address: 0, |
| 1974 | CStream&: nulls())) { |
| 1975 | llvm_unreachable("Unable to disassemble jump instruction." ); |
| 1976 | } |
| 1977 | assert(BC.MIB->isBranch(Inst) && "Branch instruction expected." ); |
| 1978 | |
| 1979 | if (Size == 2) |
| 1980 | ++NumShort; |
| 1981 | else if (Size == 5) |
| 1982 | ++NumLong; |
| 1983 | else |
| 1984 | llvm_unreachable("Unexpected size for static keys jump instruction." ); |
| 1985 | |
| 1986 | // Check if we need to convert jump instruction into a nop. |
| 1987 | if (!NopIDs.contains(V: EntryID)) |
| 1988 | continue; |
| 1989 | |
| 1990 | SmallString<15> NopCode; |
| 1991 | raw_svector_ostream VecOS(NopCode); |
| 1992 | BC.MAB->writeNopData(OS&: VecOS, Count: Size, STI: BC.STI.get()); |
| 1993 | for (uint64_t I = 0; I < Size; ++I) |
| 1994 | Contents[JumpOffset + I] = NopCode[I]; |
| 1995 | } |
| 1996 | |
| 1997 | BC.outs() << "BOLT-INFO: written " << NumShort << " short and " << NumLong |
| 1998 | << " long static keys jumps in optimized functions\n" ; |
| 1999 | |
| 2000 | return Error::success(); |
| 2001 | } |
| 2002 | |
| 2003 | } // namespace |
| 2004 | |
| 2005 | std::unique_ptr<MetadataRewriter> |
| 2006 | llvm::bolt::createLinuxKernelRewriter(BinaryContext &BC) { |
| 2007 | return std::make_unique<LinuxKernelRewriter>(args&: BC); |
| 2008 | } |
| 2009 | |