1//===--- EasilySwappableParametersCheck.cpp - clang-tidy ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "EasilySwappableParametersCheck.h"
10#include "../utils/OptionsUtils.h"
11#include "clang/AST/ASTContext.h"
12#include "clang/AST/RecursiveASTVisitor.h"
13#include "clang/ASTMatchers/ASTMatchFinder.h"
14#include "clang/Lex/Lexer.h"
15#include "llvm/ADT/SmallSet.h"
16
17#define DEBUG_TYPE "EasilySwappableParametersCheck"
18#include "llvm/Support/Debug.h"
19#include <optional>
20
21namespace optutils = clang::tidy::utils::options;
22
23/// The default value for the MinimumLength check option.
24static constexpr std::size_t DefaultMinimumLength = 2;
25
26/// The default value for ignored parameter names.
27static constexpr llvm::StringLiteral DefaultIgnoredParameterNames = "\"\";"
28 "iterator;"
29 "Iterator;"
30 "begin;"
31 "Begin;"
32 "end;"
33 "End;"
34 "first;"
35 "First;"
36 "last;"
37 "Last;"
38 "lhs;"
39 "LHS;"
40 "rhs;"
41 "RHS";
42
43/// The default value for ignored parameter type suffixes.
44static constexpr llvm::StringLiteral DefaultIgnoredParameterTypeSuffixes =
45 "bool;"
46 "Bool;"
47 "_Bool;"
48 "it;"
49 "It;"
50 "iterator;"
51 "Iterator;"
52 "inputit;"
53 "InputIt;"
54 "forwardit;"
55 "ForwardIt;"
56 "bidirit;"
57 "BidirIt;"
58 "constiterator;"
59 "const_iterator;"
60 "Const_Iterator;"
61 "Constiterator;"
62 "ConstIterator;"
63 "RandomIt;"
64 "randomit;"
65 "random_iterator;"
66 "ReverseIt;"
67 "reverse_iterator;"
68 "reverse_const_iterator;"
69 "ConstReverseIterator;"
70 "Const_Reverse_Iterator;"
71 "const_reverse_iterator;"
72 "Constreverseiterator;"
73 "constreverseiterator";
74
75/// The default value for the QualifiersMix check option.
76static constexpr bool DefaultQualifiersMix = false;
77
78/// The default value for the ModelImplicitConversions check option.
79static constexpr bool DefaultModelImplicitConversions = true;
80
81/// The default value for suppressing diagnostics about parameters that are
82/// used together.
83static constexpr bool DefaultSuppressParametersUsedTogether = true;
84
85/// The default value for the NamePrefixSuffixSilenceDissimilarityTreshold
86/// check option.
87static constexpr std::size_t
88 DefaultNamePrefixSuffixSilenceDissimilarityTreshold = 1;
89
90using namespace clang::ast_matchers;
91
92namespace clang::tidy::bugprone {
93
94using TheCheck = EasilySwappableParametersCheck;
95
96namespace filter {
97class SimilarlyUsedParameterPairSuppressor;
98
99static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node);
100static inline bool
101isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor,
102 const ParmVarDecl *Param1, const ParmVarDecl *Param2);
103static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold,
104 StringRef Str1, StringRef Str2);
105} // namespace filter
106
107namespace model {
108
109/// The language features involved in allowing the mix between two parameters.
110enum class MixFlags : unsigned char {
111 Invalid = 0, ///< Sentinel bit pattern. DO NOT USE!
112
113 /// Certain constructs (such as pointers to noexcept/non-noexcept functions)
114 /// have the same CanonicalType, which would result in false positives.
115 /// During the recursive modelling call, this flag is set if a later diagnosed
116 /// canonical type equivalence should be thrown away.
117 WorkaroundDisableCanonicalEquivalence = 1,
118
119 None = 2, ///< Mix between the two parameters is not possible.
120 Trivial = 4, ///< The two mix trivially, and are the exact same type.
121 Canonical = 8, ///< The two mix because the types refer to the same
122 /// CanonicalType, but we do not elaborate as to how.
123 TypeAlias = 16, ///< The path from one type to the other involves
124 /// desugaring type aliases.
125 ReferenceBind = 32, ///< The mix involves the binding power of "const &".
126 Qualifiers = 64, ///< The mix involves change in the qualifiers.
127 ImplicitConversion = 128, ///< The mixing of the parameters is possible
128 /// through implicit conversions between the types.
129
130 LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue =*/ImplicitConversion)
131};
132LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
133
134/// Returns whether the SearchedFlag is turned on in the Data.
135static inline bool hasFlag(MixFlags Data, MixFlags SearchedFlag) {
136 assert(SearchedFlag != MixFlags::Invalid &&
137 "can't be used to detect lack of all bits!");
138
139 // "Data & SearchedFlag" would need static_cast<bool>() in conditions.
140 return (Data & SearchedFlag) == SearchedFlag;
141}
142
143#ifndef NDEBUG
144
145// The modelling logic of this check is more complex than usual, and
146// potentially hard to understand without the ability to see into the
147// representation during the recursive descent. This debug code is only
148// compiled in 'Debug' mode, or if LLVM_ENABLE_ASSERTIONS config is turned on.
149
150/// Formats the MixFlags enum into a useful, user-readable representation.
151static inline std::string formatMixFlags(MixFlags F) {
152 if (F == MixFlags::Invalid)
153 return "#Inv!";
154
155 SmallString<8> Str{"-------"};
156
157 if (hasFlag(Data: F, SearchedFlag: MixFlags::None))
158 // Shows the None bit explicitly, as it can be applied in the recursion
159 // even if other bits are set.
160 Str[0] = '!';
161 if (hasFlag(Data: F, SearchedFlag: MixFlags::Trivial))
162 Str[1] = 'T';
163 if (hasFlag(Data: F, SearchedFlag: MixFlags::Canonical))
164 Str[2] = 'C';
165 if (hasFlag(Data: F, SearchedFlag: MixFlags::TypeAlias))
166 Str[3] = 't';
167 if (hasFlag(Data: F, SearchedFlag: MixFlags::ReferenceBind))
168 Str[4] = '&';
169 if (hasFlag(Data: F, SearchedFlag: MixFlags::Qualifiers))
170 Str[5] = 'Q';
171 if (hasFlag(Data: F, SearchedFlag: MixFlags::ImplicitConversion))
172 Str[6] = 'i';
173
174 if (hasFlag(Data: F, SearchedFlag: MixFlags::WorkaroundDisableCanonicalEquivalence))
175 Str.append(RHS: "(~C)");
176
177 return Str.str().str();
178}
179
180#endif // NDEBUG
181
182/// The results of the steps of an Implicit Conversion Sequence is saved in
183/// an instance of this record.
184///
185/// A ConversionSequence maps the steps of the conversion with a member for
186/// each type involved in the conversion. Imagine going from a hypothetical
187/// Complex class to projecting it to the real part as a const double.
188///
189/// I.e., given:
190///
191/// struct Complex {
192/// operator double() const;
193/// };
194///
195/// void functionBeingAnalysed(Complex C, const double R);
196///
197/// we will get the following sequence:
198///
199/// (Begin=) Complex
200///
201/// The first standard conversion is a qualification adjustment.
202/// (AfterFirstStandard=) const Complex
203///
204/// Then the user-defined conversion is executed.
205/// (UDConvOp.ConversionOperatorResultType=) double
206///
207/// Then this 'double' is qualifier-adjusted to 'const double'.
208/// (AfterSecondStandard=) double
209///
210/// The conversion's result has now been calculated, so it ends here.
211/// (End=) double.
212///
213/// Explicit storing of Begin and End in this record is needed, because
214/// getting to what Begin and End here are needs further resolution of types,
215/// e.g. in the case of typedefs:
216///
217/// using Comp = Complex;
218/// using CD = const double;
219/// void functionBeingAnalysed2(Comp C, CD R);
220///
221/// In this case, the user will be diagnosed with a potential conversion
222/// between the two typedefs as written in the code, but to elaborate the
223/// reasoning behind this conversion, we also need to show what the typedefs
224/// mean. See FormattedConversionSequence towards the bottom of this file!
225struct ConversionSequence {
226 enum UserDefinedConversionKind { UDCK_None, UDCK_Ctor, UDCK_Oper };
227
228 struct UserDefinedConvertingConstructor {
229 const CXXConstructorDecl *Fun;
230 QualType ConstructorParameterType;
231 QualType UserDefinedType;
232 };
233
234 struct UserDefinedConversionOperator {
235 const CXXConversionDecl *Fun;
236 QualType UserDefinedType;
237 QualType ConversionOperatorResultType;
238 };
239
240 /// The type the conversion stared from.
241 QualType Begin;
242
243 /// The intermediate type after the first Standard Conversion Sequence.
244 QualType AfterFirstStandard;
245
246 /// The details of the user-defined conversion involved, as a tagged union.
247 union {
248 char None;
249 UserDefinedConvertingConstructor UDConvCtor;
250 UserDefinedConversionOperator UDConvOp;
251 };
252 UserDefinedConversionKind UDConvKind;
253
254 /// The intermediate type after performing the second Standard Conversion
255 /// Sequence.
256 QualType AfterSecondStandard;
257
258 /// The result type the conversion targeted.
259 QualType End;
260
261 ConversionSequence() : None(0), UDConvKind(UDCK_None) {}
262 ConversionSequence(QualType From, QualType To)
263 : Begin(From), None(0), UDConvKind(UDCK_None), End(To) {}
264
265 explicit operator bool() const {
266 return !AfterFirstStandard.isNull() || UDConvKind != UDCK_None ||
267 !AfterSecondStandard.isNull();
268 }
269
270 /// Returns all the "steps" (non-unique and non-similar) types involved in
271 /// the conversion sequence. This method does **NOT** return Begin and End.
272 SmallVector<QualType, 4> getInvolvedTypesInSequence() const {
273 SmallVector<QualType, 4> Ret;
274 auto EmplaceIfDifferent = [&Ret](QualType QT) {
275 if (QT.isNull())
276 return;
277 if (Ret.empty())
278 Ret.emplace_back(Args&: QT);
279 else if (Ret.back() != QT)
280 Ret.emplace_back(Args&: QT);
281 };
282
283 EmplaceIfDifferent(AfterFirstStandard);
284 switch (UDConvKind) {
285 case UDCK_Ctor:
286 EmplaceIfDifferent(UDConvCtor.ConstructorParameterType);
287 EmplaceIfDifferent(UDConvCtor.UserDefinedType);
288 break;
289 case UDCK_Oper:
290 EmplaceIfDifferent(UDConvOp.UserDefinedType);
291 EmplaceIfDifferent(UDConvOp.ConversionOperatorResultType);
292 break;
293 case UDCK_None:
294 break;
295 }
296 EmplaceIfDifferent(AfterSecondStandard);
297
298 return Ret;
299 }
300
301 /// Updates the steps of the conversion sequence with the steps from the
302 /// other instance.
303 ///
304 /// \note This method does not check if the resulting conversion sequence is
305 /// sensible!
306 ConversionSequence &update(const ConversionSequence &RHS) {
307 if (!RHS.AfterFirstStandard.isNull())
308 AfterFirstStandard = RHS.AfterFirstStandard;
309 switch (RHS.UDConvKind) {
310 case UDCK_Ctor:
311 UDConvKind = UDCK_Ctor;
312 UDConvCtor = RHS.UDConvCtor;
313 break;
314 case UDCK_Oper:
315 UDConvKind = UDCK_Oper;
316 UDConvOp = RHS.UDConvOp;
317 break;
318 case UDCK_None:
319 break;
320 }
321 if (!RHS.AfterSecondStandard.isNull())
322 AfterSecondStandard = RHS.AfterSecondStandard;
323
324 return *this;
325 }
326
327 /// Sets the user-defined conversion to the given constructor.
328 void setConversion(const UserDefinedConvertingConstructor &UDCC) {
329 UDConvKind = UDCK_Ctor;
330 UDConvCtor = UDCC;
331 }
332
333 /// Sets the user-defined conversion to the given operator.
334 void setConversion(const UserDefinedConversionOperator &UDCO) {
335 UDConvKind = UDCK_Oper;
336 UDConvOp = UDCO;
337 }
338
339 /// Returns the type in the conversion that's formally "in our hands" once
340 /// the user-defined conversion is executed.
341 QualType getTypeAfterUserDefinedConversion() const {
342 switch (UDConvKind) {
343 case UDCK_Ctor:
344 return UDConvCtor.UserDefinedType;
345 case UDCK_Oper:
346 return UDConvOp.ConversionOperatorResultType;
347 case UDCK_None:
348 return {};
349 }
350 llvm_unreachable("Invalid UDConv kind.");
351 }
352
353 const CXXMethodDecl *getUserDefinedConversionFunction() const {
354 switch (UDConvKind) {
355 case UDCK_Ctor:
356 return UDConvCtor.Fun;
357 case UDCK_Oper:
358 return UDConvOp.Fun;
359 case UDCK_None:
360 return {};
361 }
362 llvm_unreachable("Invalid UDConv kind.");
363 }
364
365 /// Returns the SourceRange in the text that corresponds to the interesting
366 /// part of the user-defined conversion. This is either the parameter type
367 /// in a converting constructor, or the conversion result type in a conversion
368 /// operator.
369 SourceRange getUserDefinedConversionHighlight() const {
370 switch (UDConvKind) {
371 case UDCK_Ctor:
372 return UDConvCtor.Fun->getParamDecl(0)->getSourceRange();
373 case UDCK_Oper:
374 // getReturnTypeSourceRange() does not work for CXXConversionDecls as the
375 // returned type is physically behind the declaration's name ("operator").
376 if (const FunctionTypeLoc FTL = UDConvOp.Fun->getFunctionTypeLoc())
377 if (const TypeLoc RetLoc = FTL.getReturnLoc())
378 return RetLoc.getSourceRange();
379 return {};
380 case UDCK_None:
381 return {};
382 }
383 llvm_unreachable("Invalid UDConv kind.");
384 }
385};
386
387/// Contains the metadata for the mixability result between two types,
388/// independently of which parameters they were calculated from.
389struct MixData {
390 /// The flag bits of the mix indicating what language features allow for it.
391 MixFlags Flags = MixFlags::Invalid;
392
393 /// A potentially calculated common underlying type after desugaring, that
394 /// both sides of the mix can originate from.
395 QualType CommonType;
396
397 /// The steps an implicit conversion performs to get from one type to the
398 /// other.
399 ConversionSequence Conversion, ConversionRTL;
400
401 /// True if the MixData was specifically created with only a one-way
402 /// conversion modelled.
403 bool CreatedFromOneWayConversion = false;
404
405 MixData(MixFlags Flags) : Flags(Flags) {}
406 MixData(MixFlags Flags, QualType CommonType)
407 : Flags(Flags), CommonType(CommonType) {}
408 MixData(MixFlags Flags, ConversionSequence Conv)
409 : Flags(Flags), Conversion(Conv), CreatedFromOneWayConversion(true) {}
410 MixData(MixFlags Flags, ConversionSequence LTR, ConversionSequence RTL)
411 : Flags(Flags), Conversion(LTR), ConversionRTL(RTL) {}
412 MixData(MixFlags Flags, QualType CommonType, ConversionSequence LTR,
413 ConversionSequence RTL)
414 : Flags(Flags), CommonType(CommonType), Conversion(LTR),
415 ConversionRTL(RTL) {}
416
417 void sanitize() {
418 assert(Flags != MixFlags::Invalid && "sanitize() called on invalid bitvec");
419
420 MixFlags CanonicalAndWorkaround =
421 MixFlags::Canonical | MixFlags::WorkaroundDisableCanonicalEquivalence;
422 if ((Flags & CanonicalAndWorkaround) == CanonicalAndWorkaround) {
423 // A workaround for too eagerly equivalent canonical types was requested,
424 // and a canonical equivalence was proven. Fulfill the request and throw
425 // this result away.
426 Flags = MixFlags::None;
427 return;
428 }
429
430 if (hasFlag(Data: Flags, SearchedFlag: MixFlags::None)) {
431 // If anywhere down the recursion a potential mix "path" is deemed
432 // impossible, throw away all the other bits because the mix is not
433 // possible.
434 Flags = MixFlags::None;
435 return;
436 }
437
438 if (Flags == MixFlags::Trivial)
439 return;
440
441 if (static_cast<bool>(Flags ^ MixFlags::Trivial))
442 // If the mix involves somewhere trivial equivalence but down the
443 // recursion other bit(s) were set, remove the trivial bit, as it is not
444 // trivial.
445 Flags &= ~MixFlags::Trivial;
446
447 bool ShouldHaveImplicitConvFlag = false;
448 if (CreatedFromOneWayConversion && Conversion)
449 ShouldHaveImplicitConvFlag = true;
450 else if (!CreatedFromOneWayConversion && Conversion && ConversionRTL)
451 // Only say that we have implicit conversion mix possibility if it is
452 // bidirectional. Otherwise, the compiler would report an *actual* swap
453 // at a call site...
454 ShouldHaveImplicitConvFlag = true;
455
456 if (ShouldHaveImplicitConvFlag)
457 Flags |= MixFlags::ImplicitConversion;
458 else
459 Flags &= ~MixFlags::ImplicitConversion;
460 }
461
462 bool isValid() const { return Flags >= MixFlags::None; }
463
464 bool indicatesMixability() const { return Flags > MixFlags::None; }
465
466 /// Add the specified flag bits to the flags.
467 MixData operator|(MixFlags EnableFlags) const {
468 if (CreatedFromOneWayConversion) {
469 MixData M{Flags | EnableFlags, Conversion};
470 M.CommonType = CommonType;
471 return M;
472 }
473 return {Flags | EnableFlags, CommonType, Conversion, ConversionRTL};
474 }
475
476 /// Add the specified flag bits to the flags.
477 MixData &operator|=(MixFlags EnableFlags) {
478 Flags |= EnableFlags;
479 return *this;
480 }
481
482 template <typename F> MixData withCommonTypeTransformed(const F &Func) const {
483 if (CommonType.isNull())
484 return *this;
485
486 QualType NewCommonType = Func(CommonType);
487
488 if (CreatedFromOneWayConversion) {
489 MixData M{Flags, Conversion};
490 M.CommonType = NewCommonType;
491 return M;
492 }
493
494 return {Flags, NewCommonType, Conversion, ConversionRTL};
495 }
496};
497
498/// A named tuple that contains the information for a mix between two concrete
499/// parameters.
500struct Mix {
501 const ParmVarDecl *First, *Second;
502 MixData Data;
503
504 Mix(const ParmVarDecl *F, const ParmVarDecl *S, MixData Data)
505 : First(F), Second(S), Data(std::move(Data)) {}
506
507 void sanitize() { Data.sanitize(); }
508 MixFlags flags() const { return Data.Flags; }
509 bool flagsValid() const { return Data.isValid(); }
510 bool mixable() const { return Data.indicatesMixability(); }
511 QualType commonUnderlyingType() const { return Data.CommonType; }
512 const ConversionSequence &leftToRightConversionSequence() const {
513 return Data.Conversion;
514 }
515 const ConversionSequence &rightToLeftConversionSequence() const {
516 return Data.ConversionRTL;
517 }
518};
519
520// NOLINTNEXTLINE(misc-redundant-expression): Seems to be a bogus warning.
521static_assert(std::is_trivially_copyable_v<Mix> &&
522 std::is_trivially_move_constructible_v<Mix> &&
523 std::is_trivially_move_assignable_v<Mix>,
524 "Keep frequently used data simple!");
525
526struct MixableParameterRange {
527 /// A container for Mixes.
528 using MixVector = SmallVector<Mix, 8>;
529
530 /// The number of parameters iterated to build the instance.
531 std::size_t NumParamsChecked = 0;
532
533 /// The individual flags and supporting information for the mixes.
534 MixVector Mixes;
535
536 /// Gets the leftmost parameter of the range.
537 const ParmVarDecl *getFirstParam() const {
538 // The first element is the LHS of the very first mix in the range.
539 assert(!Mixes.empty());
540 return Mixes.front().First;
541 }
542
543 /// Gets the rightmost parameter of the range.
544 const ParmVarDecl *getLastParam() const {
545 // The builder function breaks building an instance of this type if it
546 // finds something that can not be mixed with the rest, by going *forward*
547 // in the list of parameters. So at any moment of break, the RHS of the last
548 // element of the mix vector is also the last element of the mixing range.
549 assert(!Mixes.empty());
550 return Mixes.back().Second;
551 }
552};
553
554/// Helper enum for the recursive calls in the modelling that toggle what kinds
555/// of implicit conversions are to be modelled.
556enum class ImplicitConversionModellingMode : unsigned char {
557 ///< No implicit conversions are modelled.
558 None,
559
560 ///< The full implicit conversion sequence is modelled.
561 All,
562
563 ///< Only model a unidirectional implicit conversion and within it only one
564 /// standard conversion sequence.
565 OneWaySingleStandardOnly
566};
567
568static MixData
569isLRefEquallyBindingToType(const TheCheck &Check,
570 const LValueReferenceType *LRef, QualType Ty,
571 const ASTContext &Ctx, bool IsRefRHS,
572 ImplicitConversionModellingMode ImplicitMode);
573
574static MixData
575approximateImplicitConversion(const TheCheck &Check, QualType LType,
576 QualType RType, const ASTContext &Ctx,
577 ImplicitConversionModellingMode ImplicitMode);
578
579static inline bool isUselessSugar(const Type *T) {
580 return isa<AttributedType, DecayedType, ElaboratedType, ParenType>(Val: T);
581}
582
583namespace {
584
585struct NonCVRQualifiersResult {
586 /// True if the types are qualified in a way that even after equating or
587 /// removing local CVR qualification, even if the unqualified types
588 /// themselves would mix, the qualified ones don't, because there are some
589 /// other local qualifiers that are not equal.
590 bool HasMixabilityBreakingQualifiers;
591
592 /// The set of equal qualifiers between the two types.
593 Qualifiers CommonQualifiers;
594};
595
596} // namespace
597
598/// Returns if the two types are qualified in a way that ever after equating or
599/// removing local CVR qualification, even if the unqualified types would mix,
600/// the qualified ones don't, because there are some other local qualifiers
601/// that aren't equal.
602static NonCVRQualifiersResult
603getNonCVRQualifiers(const ASTContext &Ctx, QualType LType, QualType RType) {
604 LLVM_DEBUG(llvm::dbgs() << ">>> getNonCVRQualifiers for LType:\n";
605 LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
606 RType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
607 Qualifiers LQual = LType.getLocalQualifiers(),
608 RQual = RType.getLocalQualifiers();
609
610 // Strip potential CVR. That is handled by the check option QualifiersMix.
611 LQual.removeCVRQualifiers();
612 RQual.removeCVRQualifiers();
613
614 NonCVRQualifiersResult Ret;
615 Ret.CommonQualifiers = Qualifiers::removeCommonQualifiers(L&: LQual, R&: RQual);
616
617 LLVM_DEBUG(llvm::dbgs() << "--- hasNonCVRMixabilityBreakingQualifiers. "
618 "Removed common qualifiers: ";
619 Ret.CommonQualifiers.print(llvm::dbgs(), Ctx.getPrintingPolicy());
620 llvm::dbgs() << "\n\tremaining on LType: ";
621 LQual.print(llvm::dbgs(), Ctx.getPrintingPolicy());
622 llvm::dbgs() << "\n\tremaining on RType: ";
623 RQual.print(llvm::dbgs(), Ctx.getPrintingPolicy());
624 llvm::dbgs() << '\n';);
625
626 // If there are no other non-cvr non-common qualifiers left, we can deduce
627 // that mixability isn't broken.
628 Ret.HasMixabilityBreakingQualifiers =
629 LQual.hasQualifiers() || RQual.hasQualifiers();
630
631 return Ret;
632}
633
634/// Approximate the way how LType and RType might refer to "essentially the
635/// same" type, in a sense that at a particular call site, an expression of
636/// type LType and RType might be successfully passed to a variable (in our
637/// specific case, a parameter) of type RType and LType, respectively.
638/// Note the swapped order!
639///
640/// The returned data structure is not guaranteed to be properly set, as this
641/// function is potentially recursive. It is the caller's responsibility to
642/// call sanitize() on the result once the recursion is over.
643static MixData
644calculateMixability(const TheCheck &Check, QualType LType, QualType RType,
645 const ASTContext &Ctx,
646 ImplicitConversionModellingMode ImplicitMode) {
647 LLVM_DEBUG(llvm::dbgs() << ">>> calculateMixability for LType:\n";
648 LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
649 RType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
650 if (LType == RType) {
651 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Trivial equality.\n");
652 return {MixFlags::Trivial, LType};
653 }
654
655 // Dissolve certain type sugars that do not affect the mixability of one type
656 // with the other, and also do not require any sort of elaboration for the
657 // user to understand.
658 if (isUselessSugar(T: LType.getTypePtr())) {
659 LLVM_DEBUG(llvm::dbgs()
660 << "--- calculateMixability. LHS is useless sugar.\n");
661 return calculateMixability(Check, LType: LType.getSingleStepDesugaredType(Context: Ctx),
662 RType, Ctx, ImplicitMode);
663 }
664 if (isUselessSugar(T: RType.getTypePtr())) {
665 LLVM_DEBUG(llvm::dbgs()
666 << "--- calculateMixability. RHS is useless sugar.\n");
667 return calculateMixability(
668 Check, LType, RType: RType.getSingleStepDesugaredType(Context: Ctx), Ctx, ImplicitMode);
669 }
670
671 const auto *LLRef = LType->getAs<LValueReferenceType>();
672 const auto *RLRef = RType->getAs<LValueReferenceType>();
673 if (LLRef && RLRef) {
674 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS and RHS are &.\n");
675
676 return calculateMixability(Check, LLRef->getPointeeType(),
677 RLRef->getPointeeType(), Ctx, ImplicitMode)
678 .withCommonTypeTransformed(
679 [&Ctx](QualType QT) { return Ctx.getLValueReferenceType(T: QT); });
680 }
681 // At a particular call site, what could be passed to a 'T' or 'const T' might
682 // also be passed to a 'const T &' without the call site putting a direct
683 // side effect on the passed expressions.
684 if (LLRef) {
685 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is &.\n");
686 return isLRefEquallyBindingToType(Check, LRef: LLRef, Ty: RType, Ctx, IsRefRHS: false,
687 ImplicitMode) |
688 MixFlags::ReferenceBind;
689 }
690 if (RLRef) {
691 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is &.\n");
692 return isLRefEquallyBindingToType(Check, LRef: RLRef, Ty: LType, Ctx, IsRefRHS: true,
693 ImplicitMode) |
694 MixFlags::ReferenceBind;
695 }
696
697 if (LType->getAs<TypedefType>()) {
698 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is typedef.\n");
699 return calculateMixability(Check, LType: LType.getSingleStepDesugaredType(Context: Ctx),
700 RType, Ctx, ImplicitMode) |
701 MixFlags::TypeAlias;
702 }
703 if (RType->getAs<TypedefType>()) {
704 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is typedef.\n");
705 return calculateMixability(Check, LType,
706 RType: RType.getSingleStepDesugaredType(Context: Ctx), Ctx,
707 ImplicitMode) |
708 MixFlags::TypeAlias;
709 }
710
711 // A parameter of type 'cvr1 T' and another of potentially differently
712 // qualified 'cvr2 T' may bind with the same power, if the user so requested.
713 //
714 // Whether to do this check for the inner unqualified types.
715 bool CompareUnqualifiedTypes = false;
716 if (LType.getLocalCVRQualifiers() != RType.getLocalCVRQualifiers()) {
717 LLVM_DEBUG(if (LType.getLocalCVRQualifiers()) {
718 llvm::dbgs() << "--- calculateMixability. LHS has CVR-Qualifiers: ";
719 Qualifiers::fromCVRMask(LType.getLocalCVRQualifiers())
720 .print(llvm::dbgs(), Ctx.getPrintingPolicy());
721 llvm::dbgs() << '\n';
722 });
723 LLVM_DEBUG(if (RType.getLocalCVRQualifiers()) {
724 llvm::dbgs() << "--- calculateMixability. RHS has CVR-Qualifiers: ";
725 Qualifiers::fromCVRMask(RType.getLocalCVRQualifiers())
726 .print(llvm::dbgs(), Ctx.getPrintingPolicy());
727 llvm::dbgs() << '\n';
728 });
729
730 if (!Check.QualifiersMix) {
731 LLVM_DEBUG(llvm::dbgs()
732 << "<<< calculateMixability. QualifiersMix turned off - not "
733 "mixable.\n");
734 return {MixFlags::None};
735 }
736
737 CompareUnqualifiedTypes = true;
738 }
739 // Whether the two types had the same CVR qualifiers.
740 bool OriginallySameQualifiers = false;
741 if (LType.getLocalCVRQualifiers() == RType.getLocalCVRQualifiers() &&
742 LType.getLocalCVRQualifiers() != 0) {
743 LLVM_DEBUG(if (LType.getLocalCVRQualifiers()) {
744 llvm::dbgs()
745 << "--- calculateMixability. LHS and RHS have same CVR-Qualifiers: ";
746 Qualifiers::fromCVRMask(LType.getLocalCVRQualifiers())
747 .print(llvm::dbgs(), Ctx.getPrintingPolicy());
748 llvm::dbgs() << '\n';
749 });
750
751 CompareUnqualifiedTypes = true;
752 OriginallySameQualifiers = true;
753 }
754
755 if (CompareUnqualifiedTypes) {
756 NonCVRQualifiersResult AdditionalQuals =
757 getNonCVRQualifiers(Ctx, LType, RType);
758 if (AdditionalQuals.HasMixabilityBreakingQualifiers) {
759 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Additional "
760 "non-equal incompatible qualifiers.\n");
761 return {MixFlags::None};
762 }
763
764 MixData UnqualifiedMixability =
765 calculateMixability(Check, LType: LType.getLocalUnqualifiedType(),
766 RType: RType.getLocalUnqualifiedType(), Ctx, ImplicitMode)
767 .withCommonTypeTransformed(Func: [&AdditionalQuals, &Ctx](QualType QT) {
768 // Once the mixability was deduced, apply the qualifiers common
769 // to the two type back onto the diagnostic printout.
770 return Ctx.getQualifiedType(T: QT, Qs: AdditionalQuals.CommonQualifiers);
771 });
772
773 if (!OriginallySameQualifiers)
774 // User-enabled qualifier change modelled for the mix.
775 return UnqualifiedMixability | MixFlags::Qualifiers;
776
777 // Apply the same qualifier back into the found common type if they were
778 // the same.
779 return UnqualifiedMixability.withCommonTypeTransformed(
780 Func: [&Ctx, LType](QualType QT) {
781 return Ctx.getQualifiedType(T: QT, Qs: LType.getLocalQualifiers());
782 });
783 }
784
785 // Certain constructs match on the last catch-all getCanonicalType() equality,
786 // which is perhaps something not what we want. If this variable is true,
787 // the canonical type equality will be ignored.
788 bool RecursiveReturnDiscardingCanonicalType = false;
789
790 if (LType->isPointerType() && RType->isPointerType()) {
791 // If both types are pointers, and pointed to the exact same type,
792 // LType == RType took care of that. Try to see if the pointee type has
793 // some other match. However, this must not consider implicit conversions.
794 LLVM_DEBUG(llvm::dbgs()
795 << "--- calculateMixability. LHS and RHS are Ptrs.\n");
796 MixData MixOfPointee =
797 calculateMixability(Check, LType: LType->getPointeeType(),
798 RType: RType->getPointeeType(), Ctx,
799 ImplicitMode: ImplicitConversionModellingMode::None)
800 .withCommonTypeTransformed(
801 Func: [&Ctx](QualType QT) { return Ctx.getPointerType(T: QT); });
802 if (hasFlag(Data: MixOfPointee.Flags,
803 SearchedFlag: MixFlags::WorkaroundDisableCanonicalEquivalence))
804 RecursiveReturnDiscardingCanonicalType = true;
805
806 MixOfPointee.sanitize();
807 if (MixOfPointee.indicatesMixability()) {
808 LLVM_DEBUG(llvm::dbgs()
809 << "<<< calculateMixability. Pointees are mixable.\n");
810 return MixOfPointee;
811 }
812 }
813
814 if (ImplicitMode > ImplicitConversionModellingMode::None) {
815 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Start implicit...\n");
816 MixData MixLTR =
817 approximateImplicitConversion(Check, LType, RType, Ctx, ImplicitMode);
818 LLVM_DEBUG(
819 if (hasFlag(MixLTR.Flags, MixFlags::ImplicitConversion)) llvm::dbgs()
820 << "--- calculateMixability. Implicit Left -> Right found.\n";);
821
822 if (ImplicitMode ==
823 ImplicitConversionModellingMode::OneWaySingleStandardOnly &&
824 MixLTR.Conversion && !MixLTR.Conversion.AfterFirstStandard.isNull() &&
825 MixLTR.Conversion.UDConvKind == ConversionSequence::UDCK_None &&
826 MixLTR.Conversion.AfterSecondStandard.isNull()) {
827 // The invoker of the method requested only modelling a single standard
828 // conversion, in only the forward direction, and they got just that.
829 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Implicit "
830 "conversion, one-way, standard-only.\n");
831 return {MixFlags::ImplicitConversion, MixLTR.Conversion};
832 }
833
834 // Otherwise if the invoker requested a full modelling, do the other
835 // direction as well.
836 MixData MixRTL =
837 approximateImplicitConversion(Check, LType: RType, RType: LType, Ctx, ImplicitMode);
838 LLVM_DEBUG(
839 if (hasFlag(MixRTL.Flags, MixFlags::ImplicitConversion)) llvm::dbgs()
840 << "--- calculateMixability. Implicit Right -> Left found.\n";);
841
842 if (MixLTR.Conversion && MixRTL.Conversion) {
843 LLVM_DEBUG(
844 llvm::dbgs()
845 << "<<< calculateMixability. Implicit conversion, bidirectional.\n");
846 return {MixFlags::ImplicitConversion, MixLTR.Conversion,
847 MixRTL.Conversion};
848 }
849 }
850
851 if (RecursiveReturnDiscardingCanonicalType)
852 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Before CanonicalType, "
853 "Discard was enabled.\n");
854
855 // Certain kinds unfortunately need to be side-stepped for canonical type
856 // matching.
857 if (LType->getAs<FunctionProtoType>() || RType->getAs<FunctionProtoType>()) {
858 // Unfortunately, the canonical type of a function pointer becomes the
859 // same even if exactly one is "noexcept" and the other isn't, making us
860 // give a false positive report irrespective of implicit conversions.
861 LLVM_DEBUG(llvm::dbgs()
862 << "--- calculateMixability. Discarding potential canonical "
863 "equivalence on FunctionProtoTypes.\n");
864 RecursiveReturnDiscardingCanonicalType = true;
865 }
866
867 MixData MixToReturn{MixFlags::None};
868
869 // If none of the previous logic found a match, try if Clang otherwise
870 // believes the types to be the same.
871 QualType LCanonical = LType.getCanonicalType();
872 if (LCanonical == RType.getCanonicalType()) {
873 LLVM_DEBUG(llvm::dbgs()
874 << "<<< calculateMixability. Same CanonicalType.\n");
875 MixToReturn = {MixFlags::Canonical, LCanonical};
876 }
877
878 if (RecursiveReturnDiscardingCanonicalType)
879 MixToReturn |= MixFlags::WorkaroundDisableCanonicalEquivalence;
880
881 LLVM_DEBUG(if (MixToReturn.Flags == MixFlags::None) llvm::dbgs()
882 << "<<< calculateMixability. No match found.\n");
883 return MixToReturn;
884}
885
886/// Calculates if the reference binds an expression of the given type. This is
887/// true iff 'LRef' is some 'const T &' type, and the 'Ty' is 'T' or 'const T'.
888///
889/// \param ImplicitMode is forwarded in the possible recursive call to
890/// calculateMixability.
891static MixData
892isLRefEquallyBindingToType(const TheCheck &Check,
893 const LValueReferenceType *LRef, QualType Ty,
894 const ASTContext &Ctx, bool IsRefRHS,
895 ImplicitConversionModellingMode ImplicitMode) {
896 LLVM_DEBUG(llvm::dbgs() << ">>> isLRefEquallyBindingToType for LRef:\n";
897 LRef->dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand Type:\n";
898 Ty.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
899
900 QualType ReferredType = LRef->getPointeeType();
901 if (!ReferredType.isLocalConstQualified() &&
902 ReferredType->getAs<TypedefType>()) {
903 LLVM_DEBUG(
904 llvm::dbgs()
905 << "--- isLRefEquallyBindingToType. Non-const LRef to Typedef.\n");
906 ReferredType = ReferredType.getDesugaredType(Context: Ctx);
907 if (!ReferredType.isLocalConstQualified()) {
908 LLVM_DEBUG(llvm::dbgs()
909 << "<<< isLRefEquallyBindingToType. Typedef is not const.\n");
910 return {MixFlags::None};
911 }
912
913 LLVM_DEBUG(llvm::dbgs() << "--- isLRefEquallyBindingToType. Typedef is "
914 "const, considering as const LRef.\n");
915 } else if (!ReferredType.isLocalConstQualified()) {
916 LLVM_DEBUG(llvm::dbgs()
917 << "<<< isLRefEquallyBindingToType. Not const LRef.\n");
918 return {MixFlags::None};
919 };
920
921 assert(ReferredType.isLocalConstQualified() &&
922 "Reaching this point means we are sure LRef is effectively a const&.");
923
924 if (ReferredType == Ty) {
925 LLVM_DEBUG(
926 llvm::dbgs()
927 << "<<< isLRefEquallyBindingToType. Type of referred matches.\n");
928 return {MixFlags::Trivial, ReferredType};
929 }
930
931 QualType NonConstReferredType = ReferredType;
932 NonConstReferredType.removeLocalConst();
933 if (NonConstReferredType == Ty) {
934 LLVM_DEBUG(llvm::dbgs() << "<<< isLRefEquallyBindingToType. Type of "
935 "referred matches to non-const qualified.\n");
936 return {MixFlags::Trivial, NonConstReferredType};
937 }
938
939 LLVM_DEBUG(
940 llvm::dbgs()
941 << "--- isLRefEquallyBindingToType. Checking mix for underlying type.\n");
942 return IsRefRHS ? calculateMixability(Check, LType: Ty, RType: NonConstReferredType, Ctx,
943 ImplicitMode)
944 : calculateMixability(Check, LType: NonConstReferredType, RType: Ty, Ctx,
945 ImplicitMode);
946}
947
948static inline bool isDerivedToBase(const CXXRecordDecl *Derived,
949 const CXXRecordDecl *Base) {
950 return Derived && Base && Derived->isCompleteDefinition() &&
951 Base->isCompleteDefinition() && Derived->isDerivedFrom(Base);
952}
953
954static std::optional<QualType>
955approximateStandardConversionSequence(const TheCheck &Check, QualType From,
956 QualType To, const ASTContext &Ctx) {
957 LLVM_DEBUG(llvm::dbgs() << ">>> approximateStdConv for LType:\n";
958 From.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
959 To.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
960
961 // A standard conversion sequence consists of the following, in order:
962 // * Maybe either LValue->RValue conv., Array->Ptr conv., Function->Ptr conv.
963 // * Maybe Numeric promotion or conversion.
964 // * Maybe function pointer conversion.
965 // * Maybe qualifier adjustments.
966 QualType WorkType = From;
967 // Get out the qualifiers of the original type. This will always be
968 // re-applied to the WorkType to ensure it is the same qualification as the
969 // original From was.
970 auto QualifiersToApply = From.split().Quals.getAsOpaqueValue();
971
972 // LValue->RValue is irrelevant for the check, because it is a thing to be
973 // done at a call site, and will be performed if need be performed.
974
975 // Array->Pointer decay is handled by the main method in desugaring
976 // the parameter's DecayedType as "useless sugar".
977
978 // Function->Pointer conversions are also irrelevant, because a
979 // "FunctionType" cannot be the type of a parameter variable, so this
980 // conversion is only meaningful at call sites.
981
982 // Numeric promotions and conversions.
983 const auto *FromBuiltin = WorkType->getAs<BuiltinType>();
984 const auto *ToBuiltin = To->getAs<BuiltinType>();
985 bool FromNumeric = FromBuiltin && (FromBuiltin->isIntegerType() ||
986 FromBuiltin->isFloatingType());
987 bool ToNumeric =
988 ToBuiltin && (ToBuiltin->isIntegerType() || ToBuiltin->isFloatingType());
989 if (FromNumeric && ToNumeric) {
990 // If both are integral types, the numeric conversion is performed.
991 // Reapply the qualifiers of the original type, however, so
992 // "const int -> double" in this case moves over to
993 // "const double -> double".
994 LLVM_DEBUG(llvm::dbgs()
995 << "--- approximateStdConv. Conversion between numerics.\n");
996 WorkType = QualType{ToBuiltin, QualifiersToApply};
997 }
998
999 const auto *FromEnum = WorkType->getAs<EnumType>();
1000 const auto *ToEnum = To->getAs<EnumType>();
1001 if (FromEnum && ToNumeric && FromEnum->isUnscopedEnumerationType()) {
1002 // Unscoped enumerations (or enumerations in C) convert to numerics.
1003 LLVM_DEBUG(llvm::dbgs()
1004 << "--- approximateStdConv. Unscoped enum to numeric.\n");
1005 WorkType = QualType{ToBuiltin, QualifiersToApply};
1006 } else if (FromNumeric && ToEnum && ToEnum->isUnscopedEnumerationType()) {
1007 // Numeric types convert to enumerations only in C.
1008 if (Ctx.getLangOpts().CPlusPlus) {
1009 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Numeric to unscoped "
1010 "enum, not possible in C++!\n");
1011 return {};
1012 }
1013
1014 LLVM_DEBUG(llvm::dbgs()
1015 << "--- approximateStdConv. Numeric to unscoped enum.\n");
1016 WorkType = QualType{ToEnum, QualifiersToApply};
1017 }
1018
1019 // Check for pointer conversions.
1020 const auto *FromPtr = WorkType->getAs<PointerType>();
1021 const auto *ToPtr = To->getAs<PointerType>();
1022 if (FromPtr && ToPtr) {
1023 if (ToPtr->isVoidPointerType()) {
1024 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. To void pointer.\n");
1025 WorkType = QualType{ToPtr, QualifiersToApply};
1026 }
1027
1028 const auto *FromRecordPtr = FromPtr->getPointeeCXXRecordDecl();
1029 const auto *ToRecordPtr = ToPtr->getPointeeCXXRecordDecl();
1030 if (isDerivedToBase(FromRecordPtr, ToRecordPtr)) {
1031 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived* to Base*\n");
1032 WorkType = QualType{ToPtr, QualifiersToApply};
1033 }
1034 }
1035
1036 // Model the slicing Derived-to-Base too, as "BaseT temporary = derived;"
1037 // can also be compiled.
1038 const auto *FromRecord = WorkType->getAsCXXRecordDecl();
1039 const auto *ToRecord = To->getAsCXXRecordDecl();
1040 if (isDerivedToBase(Derived: FromRecord, Base: ToRecord)) {
1041 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived To Base.\n");
1042 WorkType = QualType{ToRecord->getTypeForDecl(), QualifiersToApply};
1043 }
1044
1045 if (Ctx.getLangOpts().CPlusPlus17 && FromPtr && ToPtr) {
1046 // Function pointer conversion: A noexcept function pointer can be passed
1047 // to a non-noexcept one.
1048 const auto *FromFunctionPtr =
1049 FromPtr->getPointeeType()->getAs<FunctionProtoType>();
1050 const auto *ToFunctionPtr =
1051 ToPtr->getPointeeType()->getAs<FunctionProtoType>();
1052 if (FromFunctionPtr && ToFunctionPtr &&
1053 FromFunctionPtr->hasNoexceptExceptionSpec() &&
1054 !ToFunctionPtr->hasNoexceptExceptionSpec()) {
1055 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. noexcept function "
1056 "pointer to non-noexcept.\n");
1057 WorkType = QualType{ToPtr, QualifiersToApply};
1058 }
1059 }
1060
1061 // Qualifier adjustments are modelled according to the user's request in
1062 // the QualifiersMix check config.
1063 LLVM_DEBUG(llvm::dbgs()
1064 << "--- approximateStdConv. Trying qualifier adjustment...\n");
1065 MixData QualConv = calculateMixability(Check, LType: WorkType, RType: To, Ctx,
1066 ImplicitMode: ImplicitConversionModellingMode::None);
1067 QualConv.sanitize();
1068 if (hasFlag(Data: QualConv.Flags, SearchedFlag: MixFlags::Qualifiers)) {
1069 LLVM_DEBUG(llvm::dbgs()
1070 << "<<< approximateStdConv. Qualifiers adjusted.\n");
1071 WorkType = To;
1072 }
1073
1074 if (WorkType == To) {
1075 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Reached 'To' type.\n");
1076 return {WorkType};
1077 }
1078
1079 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Did not reach 'To'.\n");
1080 return {};
1081}
1082
1083namespace {
1084
1085/// Helper class for storing possible user-defined conversion calls that
1086/// *could* take place in an implicit conversion, and selecting the one that
1087/// most likely *does*, if any.
1088class UserDefinedConversionSelector {
1089public:
1090 /// The conversion associated with a conversion function, together with the
1091 /// mixability flags of the conversion function's parameter or return type
1092 /// to the rest of the sequence the selector is used in, and the sequence
1093 /// that applied through the conversion itself.
1094 struct PreparedConversion {
1095 const CXXMethodDecl *ConversionFun;
1096 MixFlags Flags;
1097 ConversionSequence Seq;
1098
1099 PreparedConversion(const CXXMethodDecl *CMD, MixFlags F,
1100 ConversionSequence S)
1101 : ConversionFun(CMD), Flags(F), Seq(S) {}
1102 };
1103
1104 UserDefinedConversionSelector(const TheCheck &Check) : Check(Check) {}
1105
1106 /// Adds the conversion between the two types for the given function into
1107 /// the possible implicit conversion set. FromType and ToType is either:
1108 /// * the result of a standard sequence and a converting ctor parameter
1109 /// * the return type of a conversion operator and the expected target of
1110 /// an implicit conversion.
1111 void addConversion(const CXXMethodDecl *ConvFun, QualType FromType,
1112 QualType ToType) {
1113 // Try to go from the FromType to the ToType with only a single implicit
1114 // conversion, to see if the conversion function is applicable.
1115 MixData Mix = calculateMixability(
1116 Check, FromType, ToType, ConvFun->getASTContext(),
1117 ImplicitConversionModellingMode::OneWaySingleStandardOnly);
1118 Mix.sanitize();
1119 if (!Mix.indicatesMixability())
1120 return;
1121
1122 LLVM_DEBUG(llvm::dbgs() << "--- tryConversion. Found viable with flags: "
1123 << formatMixFlags(Mix.Flags) << '\n');
1124 FlaggedConversions.emplace_back(ConvFun, Mix.Flags, Mix.Conversion);
1125 }
1126
1127 /// Selects the best conversion function that is applicable from the
1128 /// prepared set of potential conversion functions taken.
1129 std::optional<PreparedConversion> operator()() const {
1130 if (FlaggedConversions.empty()) {
1131 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Empty.\n");
1132 return {};
1133 }
1134 if (FlaggedConversions.size() == 1) {
1135 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Single.\n");
1136 return FlaggedConversions.front();
1137 }
1138
1139 std::optional<PreparedConversion> BestConversion;
1140 unsigned short HowManyGoodConversions = 0;
1141 for (const auto &Prepared : FlaggedConversions) {
1142 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Candidate flags: "
1143 << formatMixFlags(Prepared.Flags) << '\n');
1144 if (!BestConversion) {
1145 BestConversion = Prepared;
1146 ++HowManyGoodConversions;
1147 continue;
1148 }
1149
1150 bool BestConversionHasImplicit =
1151 hasFlag(Data: BestConversion->Flags, SearchedFlag: MixFlags::ImplicitConversion);
1152 bool ThisConversionHasImplicit =
1153 hasFlag(Data: Prepared.Flags, SearchedFlag: MixFlags::ImplicitConversion);
1154 if (!BestConversionHasImplicit && ThisConversionHasImplicit)
1155 // This is a worse conversion, because a better one was found earlier.
1156 continue;
1157
1158 if (BestConversionHasImplicit && !ThisConversionHasImplicit) {
1159 // If the so far best selected conversion needs a previous implicit
1160 // conversion to match the user-defined converting function, but this
1161 // conversion does not, this is a better conversion, and we can throw
1162 // away the previously selected conversion(s).
1163 BestConversion = Prepared;
1164 HowManyGoodConversions = 1;
1165 continue;
1166 }
1167
1168 if (BestConversionHasImplicit == ThisConversionHasImplicit)
1169 // The current conversion is the same in term of goodness than the
1170 // already selected one.
1171 ++HowManyGoodConversions;
1172 }
1173
1174 if (HowManyGoodConversions == 1) {
1175 LLVM_DEBUG(llvm::dbgs()
1176 << "--- selectUserDefinedConv. Unique result. Flags: "
1177 << formatMixFlags(BestConversion->Flags) << '\n');
1178 return BestConversion;
1179 }
1180
1181 LLVM_DEBUG(llvm::dbgs()
1182 << "--- selectUserDefinedConv. No, or ambiguous.\n");
1183 return {};
1184 }
1185
1186private:
1187 llvm::SmallVector<PreparedConversion, 2> FlaggedConversions;
1188 const TheCheck &Check;
1189};
1190
1191} // namespace
1192
1193static std::optional<ConversionSequence>
1194tryConversionOperators(const TheCheck &Check, const CXXRecordDecl *RD,
1195 QualType ToType) {
1196 if (!RD || !RD->isCompleteDefinition())
1197 return {};
1198 RD = RD->getDefinition();
1199
1200 LLVM_DEBUG(llvm::dbgs() << ">>> tryConversionOperators: " << RD->getName()
1201 << " to:\n";
1202 ToType.dump(llvm::dbgs(), RD->getASTContext());
1203 llvm::dbgs() << '\n';);
1204
1205 UserDefinedConversionSelector ConversionSet{Check};
1206
1207 for (const NamedDecl *Method : RD->getVisibleConversionFunctions()) {
1208 const auto *Con = dyn_cast<CXXConversionDecl>(Val: Method);
1209 if (!Con || Con->isExplicit())
1210 continue;
1211 LLVM_DEBUG(llvm::dbgs() << "--- tryConversionOperators. Trying:\n";
1212 Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';);
1213
1214 // Try to go from the result of conversion operator to the expected type,
1215 // without calculating another user-defined conversion.
1216 ConversionSet.addConversion(Con, Con->getConversionType(), ToType);
1217 }
1218
1219 if (std::optional<UserDefinedConversionSelector::PreparedConversion>
1220 SelectedConversion = ConversionSet()) {
1221 QualType RecordType{RD->getTypeForDecl(), 0};
1222
1223 ConversionSequence Result{RecordType, ToType};
1224 // The conversion from the operator call's return type to ToType was
1225 // modelled as a "pre-conversion" in the operator call, but it is the
1226 // "post-conversion" from the point of view of the original conversion
1227 // we are modelling.
1228 Result.AfterSecondStandard = SelectedConversion->Seq.AfterFirstStandard;
1229
1230 ConversionSequence::UserDefinedConversionOperator ConvOp;
1231 ConvOp.Fun = cast<CXXConversionDecl>(Val: SelectedConversion->ConversionFun);
1232 ConvOp.UserDefinedType = RecordType;
1233 ConvOp.ConversionOperatorResultType = ConvOp.Fun->getConversionType();
1234 Result.setConversion(ConvOp);
1235
1236 LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. Found result.\n");
1237 return Result;
1238 }
1239
1240 LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. No conversion.\n");
1241 return {};
1242}
1243
1244static std::optional<ConversionSequence>
1245tryConvertingConstructors(const TheCheck &Check, QualType FromType,
1246 const CXXRecordDecl *RD) {
1247 if (!RD || !RD->isCompleteDefinition())
1248 return {};
1249 RD = RD->getDefinition();
1250
1251 LLVM_DEBUG(llvm::dbgs() << ">>> tryConveringConstructors: " << RD->getName()
1252 << " from:\n";
1253 FromType.dump(llvm::dbgs(), RD->getASTContext());
1254 llvm::dbgs() << '\n';);
1255
1256 UserDefinedConversionSelector ConversionSet{Check};
1257
1258 for (const CXXConstructorDecl *Con : RD->ctors()) {
1259 if (Con->isCopyOrMoveConstructor() ||
1260 !Con->isConvertingConstructor(/* AllowExplicit =*/false))
1261 continue;
1262 LLVM_DEBUG(llvm::dbgs() << "--- tryConvertingConstructors. Trying:\n";
1263 Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';);
1264
1265 // Try to go from the original FromType to the converting constructor's
1266 // parameter type without another user-defined conversion.
1267 ConversionSet.addConversion(ConvFun: Con, FromType, ToType: Con->getParamDecl(0)->getType());
1268 }
1269
1270 if (std::optional<UserDefinedConversionSelector::PreparedConversion>
1271 SelectedConversion = ConversionSet()) {
1272 QualType RecordType{RD->getTypeForDecl(), 0};
1273
1274 ConversionSequence Result{FromType, RecordType};
1275 Result.AfterFirstStandard = SelectedConversion->Seq.AfterFirstStandard;
1276
1277 ConversionSequence::UserDefinedConvertingConstructor Ctor;
1278 Ctor.Fun = cast<CXXConstructorDecl>(Val: SelectedConversion->ConversionFun);
1279 Ctor.ConstructorParameterType = Ctor.Fun->getParamDecl(0)->getType();
1280 Ctor.UserDefinedType = RecordType;
1281 Result.setConversion(Ctor);
1282
1283 LLVM_DEBUG(llvm::dbgs()
1284 << "<<< tryConvertingConstructors. Found result.\n");
1285 return Result;
1286 }
1287
1288 LLVM_DEBUG(llvm::dbgs() << "<<< tryConvertingConstructors. No conversion.\n");
1289 return {};
1290}
1291
1292/// Returns whether an expression of LType can be used in an RType context, as
1293/// per the implicit conversion rules.
1294///
1295/// Note: the result of this operation, unlike that of calculateMixability, is
1296/// **NOT** symmetric.
1297static MixData
1298approximateImplicitConversion(const TheCheck &Check, QualType LType,
1299 QualType RType, const ASTContext &Ctx,
1300 ImplicitConversionModellingMode ImplicitMode) {
1301 LLVM_DEBUG(llvm::dbgs() << ">>> approximateImplicitConversion for LType:\n";
1302 LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
1303 RType.dump(llvm::dbgs(), Ctx);
1304 llvm::dbgs() << "\nimplicit mode: "; switch (ImplicitMode) {
1305 case ImplicitConversionModellingMode::None:
1306 llvm::dbgs() << "None";
1307 break;
1308 case ImplicitConversionModellingMode::All:
1309 llvm::dbgs() << "All";
1310 break;
1311 case ImplicitConversionModellingMode::OneWaySingleStandardOnly:
1312 llvm::dbgs() << "OneWay, Single, STD Only";
1313 break;
1314 } llvm::dbgs() << '\n';);
1315 if (LType == RType)
1316 return {MixFlags::Trivial, LType};
1317
1318 // An implicit conversion sequence consists of the following, in order:
1319 // * Maybe standard conversion sequence.
1320 // * Maybe user-defined conversion.
1321 // * Maybe standard conversion sequence.
1322 ConversionSequence ImplicitSeq{LType, RType};
1323 QualType WorkType = LType;
1324
1325 std::optional<QualType> AfterFirstStdConv =
1326 approximateStandardConversionSequence(Check, LType, RType, Ctx);
1327 if (AfterFirstStdConv) {
1328 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard "
1329 "Pre-Conversion found!\n");
1330 ImplicitSeq.AfterFirstStandard = *AfterFirstStdConv;
1331 WorkType = ImplicitSeq.AfterFirstStandard;
1332 }
1333
1334 if (ImplicitMode == ImplicitConversionModellingMode::OneWaySingleStandardOnly)
1335 // If the caller only requested modelling of a standard conversion, bail.
1336 return {ImplicitSeq.AfterFirstStandard.isNull()
1337 ? MixFlags::None
1338 : MixFlags::ImplicitConversion,
1339 ImplicitSeq};
1340
1341 if (Ctx.getLangOpts().CPlusPlus) {
1342 bool FoundConversionOperator = false, FoundConvertingCtor = false;
1343
1344 if (const auto *LRD = WorkType->getAsCXXRecordDecl()) {
1345 std::optional<ConversionSequence> ConversionOperatorResult =
1346 tryConversionOperators(Check, LRD, RType);
1347 if (ConversionOperatorResult) {
1348 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found "
1349 "conversion operator.\n");
1350 ImplicitSeq.update(RHS: *ConversionOperatorResult);
1351 WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion();
1352 FoundConversionOperator = true;
1353 }
1354 }
1355
1356 if (const auto *RRD = RType->getAsCXXRecordDecl()) {
1357 // Use the original "LType" here, and not WorkType, because the
1358 // conversion to the converting constructors' parameters will be
1359 // modelled in the recursive call.
1360 std::optional<ConversionSequence> ConvCtorResult =
1361 tryConvertingConstructors(Check, FromType: LType, RD: RRD);
1362 if (ConvCtorResult) {
1363 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found "
1364 "converting constructor.\n");
1365 ImplicitSeq.update(RHS: *ConvCtorResult);
1366 WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion();
1367 FoundConvertingCtor = true;
1368 }
1369 }
1370
1371 if (FoundConversionOperator && FoundConvertingCtor) {
1372 // If both an operator and a ctor matches, the sequence is ambiguous.
1373 LLVM_DEBUG(llvm::dbgs()
1374 << "<<< approximateImplicitConversion. Found both "
1375 "user-defined conversion kinds in the same sequence!\n");
1376 return {MixFlags::None};
1377 }
1378 }
1379
1380 // After the potential user-defined conversion, another standard conversion
1381 // sequence might exist.
1382 LLVM_DEBUG(
1383 llvm::dbgs()
1384 << "--- approximateImplicitConversion. Try to find post-conversion.\n");
1385 MixData SecondStdConv = approximateImplicitConversion(
1386 Check, LType: WorkType, RType, Ctx,
1387 ImplicitMode: ImplicitConversionModellingMode::OneWaySingleStandardOnly);
1388 if (SecondStdConv.indicatesMixability()) {
1389 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard "
1390 "Post-Conversion found!\n");
1391
1392 // The single-step modelling puts the modelled conversion into the "PreStd"
1393 // variable in the recursive call, but from the PoV of this function, it is
1394 // the post-conversion.
1395 ImplicitSeq.AfterSecondStandard =
1396 SecondStdConv.Conversion.AfterFirstStandard;
1397 WorkType = ImplicitSeq.AfterSecondStandard;
1398 }
1399
1400 if (ImplicitSeq) {
1401 LLVM_DEBUG(llvm::dbgs()
1402 << "<<< approximateImplicitConversion. Found a conversion.\n");
1403 return {MixFlags::ImplicitConversion, ImplicitSeq};
1404 }
1405
1406 LLVM_DEBUG(
1407 llvm::dbgs() << "<<< approximateImplicitConversion. No match found.\n");
1408 return {MixFlags::None};
1409}
1410
1411static MixableParameterRange modelMixingRange(
1412 const TheCheck &Check, const FunctionDecl *FD, std::size_t StartIndex,
1413 const filter::SimilarlyUsedParameterPairSuppressor &UsageBasedSuppressor) {
1414 std::size_t NumParams = FD->getNumParams();
1415 assert(StartIndex < NumParams && "out of bounds for start");
1416 const ASTContext &Ctx = FD->getASTContext();
1417
1418 MixableParameterRange Ret;
1419 // A parameter at index 'StartIndex' had been trivially "checked".
1420 Ret.NumParamsChecked = 1;
1421
1422 for (std::size_t I = StartIndex + 1; I < NumParams; ++I) {
1423 const ParmVarDecl *Ith = FD->getParamDecl(i: I);
1424 StringRef ParamName = Ith->getName();
1425 LLVM_DEBUG(llvm::dbgs()
1426 << "Check param #" << I << " '" << ParamName << "'...\n");
1427 if (filter::isIgnoredParameter(Check, Node: Ith)) {
1428 LLVM_DEBUG(llvm::dbgs() << "Param #" << I << " is ignored. Break!\n");
1429 break;
1430 }
1431
1432 StringRef PrevParamName = FD->getParamDecl(i: I - 1)->getName();
1433 if (!ParamName.empty() && !PrevParamName.empty() &&
1434 filter::prefixSuffixCoverUnderThreshold(
1435 Threshold: Check.NamePrefixSuffixSilenceDissimilarityTreshold, Str1: PrevParamName,
1436 Str2: ParamName)) {
1437 LLVM_DEBUG(llvm::dbgs() << "Parameter '" << ParamName
1438 << "' follows a pattern with previous parameter '"
1439 << PrevParamName << "'. Break!\n");
1440 break;
1441 }
1442
1443 // Now try to go forward and build the range of [Start, ..., I, I + 1, ...]
1444 // parameters that can be messed up at a call site.
1445 MixableParameterRange::MixVector MixesOfIth;
1446 for (std::size_t J = StartIndex; J < I; ++J) {
1447 const ParmVarDecl *Jth = FD->getParamDecl(i: J);
1448 LLVM_DEBUG(llvm::dbgs()
1449 << "Check mix of #" << J << " against #" << I << "...\n");
1450
1451 if (isSimilarlyUsedParameter(Suppressor: UsageBasedSuppressor, Param1: Ith, Param2: Jth)) {
1452 // Consider the two similarly used parameters to not be possible in a
1453 // mix-up at the user's request, if they enabled this heuristic.
1454 LLVM_DEBUG(llvm::dbgs() << "Parameters #" << I << " and #" << J
1455 << " deemed related, ignoring...\n");
1456
1457 // If the parameter #I and #J mixes, then I is mixable with something
1458 // in the current range, so the range has to be broken and I not
1459 // included.
1460 MixesOfIth.clear();
1461 break;
1462 }
1463
1464 Mix M{Jth, Ith,
1465 calculateMixability(Check, Jth->getType(), Ith->getType(), Ctx,
1466 Check.ModelImplicitConversions
1467 ? ImplicitConversionModellingMode::All
1468 : ImplicitConversionModellingMode::None)};
1469 LLVM_DEBUG(llvm::dbgs() << "Mix flags (raw) : "
1470 << formatMixFlags(M.flags()) << '\n');
1471 M.sanitize();
1472 LLVM_DEBUG(llvm::dbgs() << "Mix flags (after sanitize): "
1473 << formatMixFlags(M.flags()) << '\n');
1474
1475 assert(M.flagsValid() && "All flags decayed!");
1476
1477 if (M.mixable())
1478 MixesOfIth.emplace_back(Args: std::move(M));
1479 }
1480
1481 if (MixesOfIth.empty()) {
1482 // If there weren't any new mixes stored for Ith, the range is
1483 // [Start, ..., I].
1484 LLVM_DEBUG(llvm::dbgs()
1485 << "Param #" << I
1486 << " does not mix with any in the current range. Break!\n");
1487 break;
1488 }
1489
1490 Ret.Mixes.insert(I: Ret.Mixes.end(), From: MixesOfIth.begin(), To: MixesOfIth.end());
1491 ++Ret.NumParamsChecked; // Otherwise a new param was iterated.
1492 }
1493
1494 return Ret;
1495}
1496
1497} // namespace model
1498
1499/// Matches DeclRefExprs and their ignorable wrappers to ParmVarDecls.
1500AST_MATCHER_FUNCTION(ast_matchers::internal::Matcher<Stmt>, paramRefExpr) {
1501 return expr(ignoringParenImpCasts(InnerMatcher: ignoringElidableConstructorCall(
1502 InnerMatcher: declRefExpr(to(InnerMatcher: parmVarDecl().bind(ID: "param"))))));
1503}
1504
1505namespace filter {
1506
1507/// Returns whether the parameter's name or the parameter's type's name is
1508/// configured by the user to be ignored from analysis and diagnostic.
1509static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node) {
1510 LLVM_DEBUG(llvm::dbgs() << "Checking if '" << Node->getName()
1511 << "' is ignored.\n");
1512
1513 if (!Node->getIdentifier())
1514 return llvm::is_contained(Range: Check.IgnoredParameterNames, Element: "\"\"");
1515
1516 StringRef NodeName = Node->getName();
1517 if (llvm::is_contained(Range: Check.IgnoredParameterNames, Element: NodeName)) {
1518 LLVM_DEBUG(llvm::dbgs() << "\tName ignored.\n");
1519 return true;
1520 }
1521
1522 StringRef NodeTypeName = [Node] {
1523 const ASTContext &Ctx = Node->getASTContext();
1524 const SourceManager &SM = Ctx.getSourceManager();
1525 SourceLocation B = Node->getTypeSpecStartLoc();
1526 SourceLocation E = Node->getTypeSpecEndLoc();
1527 LangOptions LO;
1528
1529 LLVM_DEBUG(llvm::dbgs() << "\tType name code is '"
1530 << Lexer::getSourceText(
1531 CharSourceRange::getTokenRange(B, E), SM, LO)
1532 << "'...\n");
1533 if (B.isMacroID()) {
1534 LLVM_DEBUG(llvm::dbgs() << "\t\tBeginning is macro.\n");
1535 B = SM.getTopMacroCallerLoc(Loc: B);
1536 }
1537 if (E.isMacroID()) {
1538 LLVM_DEBUG(llvm::dbgs() << "\t\tEnding is macro.\n");
1539 E = Lexer::getLocForEndOfToken(Loc: SM.getTopMacroCallerLoc(Loc: E), Offset: 0, SM, LangOpts: LO);
1540 }
1541 LLVM_DEBUG(llvm::dbgs() << "\tType name code is '"
1542 << Lexer::getSourceText(
1543 CharSourceRange::getTokenRange(B, E), SM, LO)
1544 << "'...\n");
1545
1546 return Lexer::getSourceText(CharSourceRange::getTokenRange(B, E), SM, LO);
1547 }();
1548
1549 LLVM_DEBUG(llvm::dbgs() << "\tType name is '" << NodeTypeName << "'\n");
1550 if (!NodeTypeName.empty()) {
1551 if (llvm::any_of(Range: Check.IgnoredParameterTypeSuffixes,
1552 P: [NodeTypeName](StringRef E) {
1553 return !E.empty() && NodeTypeName.ends_with(E);
1554 })) {
1555 LLVM_DEBUG(llvm::dbgs() << "\tType suffix ignored.\n");
1556 return true;
1557 }
1558 }
1559
1560 return false;
1561}
1562
1563/// This namespace contains the implementations for the suppression of
1564/// diagnostics from similarly-used ("related") parameters.
1565namespace relatedness_heuristic {
1566
1567static constexpr std::size_t SmallDataStructureSize = 4;
1568
1569template <typename T, std::size_t N = SmallDataStructureSize>
1570using ParamToSmallSetMap =
1571 llvm::DenseMap<const ParmVarDecl *, llvm::SmallSet<T, N>>;
1572
1573/// Returns whether the sets mapped to the two elements in the map have at
1574/// least one element in common.
1575template <typename MapTy, typename ElemTy>
1576bool lazyMapOfSetsIntersectionExists(const MapTy &Map, const ElemTy &E1,
1577 const ElemTy &E2) {
1578 auto E1Iterator = Map.find(E1);
1579 auto E2Iterator = Map.find(E2);
1580 if (E1Iterator == Map.end() || E2Iterator == Map.end())
1581 return false;
1582
1583 for (const auto &E1SetElem : E1Iterator->second)
1584 if (E2Iterator->second.contains(E1SetElem))
1585 return true;
1586
1587 return false;
1588}
1589
1590/// Implements the heuristic that marks two parameters related if there is
1591/// a usage for both in the same strict expression subtree. A strict
1592/// expression subtree is a tree which only includes Expr nodes, i.e. no
1593/// Stmts and no Decls.
1594class AppearsInSameExpr : public RecursiveASTVisitor<AppearsInSameExpr> {
1595 using Base = RecursiveASTVisitor<AppearsInSameExpr>;
1596
1597 const FunctionDecl *FD;
1598 const Expr *CurrentExprOnlyTreeRoot = nullptr;
1599 llvm::DenseMap<const ParmVarDecl *,
1600 llvm::SmallPtrSet<const Expr *, SmallDataStructureSize>>
1601 ParentExprsForParamRefs;
1602
1603public:
1604 void setup(const FunctionDecl *FD) {
1605 this->FD = FD;
1606 TraverseFunctionDecl(const_cast<FunctionDecl *>(FD));
1607 }
1608
1609 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1610 return lazyMapOfSetsIntersectionExists(Map: ParentExprsForParamRefs, E1: Param1,
1611 E2: Param2);
1612 }
1613
1614 bool TraverseDecl(Decl *D) {
1615 CurrentExprOnlyTreeRoot = nullptr;
1616 return Base::TraverseDecl(D);
1617 }
1618
1619 bool TraverseStmt(Stmt *S, DataRecursionQueue *Queue = nullptr) {
1620 if (auto *E = dyn_cast_or_null<Expr>(Val: S)) {
1621 bool RootSetInCurrentStackFrame = false;
1622 if (!CurrentExprOnlyTreeRoot) {
1623 CurrentExprOnlyTreeRoot = E;
1624 RootSetInCurrentStackFrame = true;
1625 }
1626
1627 bool Ret = Base::TraverseStmt(S);
1628
1629 if (RootSetInCurrentStackFrame)
1630 CurrentExprOnlyTreeRoot = nullptr;
1631
1632 return Ret;
1633 }
1634
1635 // A Stmt breaks the strictly Expr subtree.
1636 CurrentExprOnlyTreeRoot = nullptr;
1637 return Base::TraverseStmt(S);
1638 }
1639
1640 bool VisitDeclRefExpr(DeclRefExpr *DRE) {
1641 if (!CurrentExprOnlyTreeRoot)
1642 return true;
1643
1644 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl()))
1645 if (llvm::find(Range: FD->parameters(), Val: PVD))
1646 ParentExprsForParamRefs[PVD].insert(Ptr: CurrentExprOnlyTreeRoot);
1647
1648 return true;
1649 }
1650};
1651
1652/// Implements the heuristic that marks two parameters related if there are
1653/// two separate calls to the same function (overload) and the parameters are
1654/// passed to the same index in both calls, i.e f(a, b) and f(a, c) passes
1655/// b and c to the same index (2) of f(), marking them related.
1656class PassedToSameFunction {
1657 ParamToSmallSetMap<std::pair<const FunctionDecl *, unsigned>> TargetParams;
1658
1659public:
1660 void setup(const FunctionDecl *FD) {
1661 auto ParamsAsArgsInFnCalls =
1662 match(functionDecl(forEachDescendant(
1663 callExpr(forEachArgumentWithParam(
1664 ArgMatcher: paramRefExpr(), ParamMatcher: parmVarDecl().bind(ID: "passed-to")))
1665 .bind(ID: "call-expr"))),
1666 *FD, FD->getASTContext());
1667 for (const auto &Match : ParamsAsArgsInFnCalls) {
1668 const auto *PassedParamOfThisFn = Match.getNodeAs<ParmVarDecl>("param");
1669 const auto *CE = Match.getNodeAs<CallExpr>("call-expr");
1670 const auto *PassedToParam = Match.getNodeAs<ParmVarDecl>("passed-to");
1671 assert(PassedParamOfThisFn && CE && PassedToParam);
1672
1673 const FunctionDecl *CalledFn = CE->getDirectCallee();
1674 if (!CalledFn)
1675 continue;
1676
1677 std::optional<unsigned> TargetIdx;
1678 unsigned NumFnParams = CalledFn->getNumParams();
1679 for (unsigned Idx = 0; Idx < NumFnParams; ++Idx)
1680 if (CalledFn->getParamDecl(Idx) == PassedToParam)
1681 TargetIdx.emplace(Idx);
1682
1683 assert(TargetIdx && "Matched, but didn't find index?");
1684 TargetParams[PassedParamOfThisFn].insert(
1685 {CalledFn->getCanonicalDecl(), *TargetIdx});
1686 }
1687 }
1688
1689 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1690 return lazyMapOfSetsIntersectionExists(Map: TargetParams, E1: Param1, E2: Param2);
1691 }
1692};
1693
1694/// Implements the heuristic that marks two parameters related if the same
1695/// member is accessed (referred to) inside the current function's body.
1696class AccessedSameMemberOf {
1697 ParamToSmallSetMap<const Decl *> AccessedMembers;
1698
1699public:
1700 void setup(const FunctionDecl *FD) {
1701 auto MembersCalledOnParams = match(
1702 functionDecl(forEachDescendant(
1703 memberExpr(hasObjectExpression(InnerMatcher: paramRefExpr())).bind(ID: "mem-expr"))),
1704 *FD, FD->getASTContext());
1705
1706 for (const auto &Match : MembersCalledOnParams) {
1707 const auto *AccessedParam = Match.getNodeAs<ParmVarDecl>("param");
1708 const auto *ME = Match.getNodeAs<MemberExpr>("mem-expr");
1709 assert(AccessedParam && ME);
1710 AccessedMembers[AccessedParam].insert(
1711 ME->getMemberDecl()->getCanonicalDecl());
1712 }
1713 }
1714
1715 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1716 return lazyMapOfSetsIntersectionExists(Map: AccessedMembers, E1: Param1, E2: Param2);
1717 }
1718};
1719
1720/// Implements the heuristic that marks two parameters related if different
1721/// ReturnStmts return them from the function.
1722class Returned {
1723 llvm::SmallVector<const ParmVarDecl *, SmallDataStructureSize> ReturnedParams;
1724
1725public:
1726 void setup(const FunctionDecl *FD) {
1727 // TODO: Handle co_return.
1728 auto ParamReturns = match(functionDecl(forEachDescendant(
1729 returnStmt(hasReturnValue(InnerMatcher: paramRefExpr())))),
1730 *FD, FD->getASTContext());
1731 for (const auto &Match : ParamReturns) {
1732 const auto *ReturnedParam = Match.getNodeAs<ParmVarDecl>("param");
1733 assert(ReturnedParam);
1734
1735 if (find(FD->parameters(), ReturnedParam) == FD->param_end())
1736 // Inside the subtree of a FunctionDecl there might be ReturnStmts of
1737 // a parameter that isn't the parameter of the function, e.g. in the
1738 // case of lambdas.
1739 continue;
1740
1741 ReturnedParams.emplace_back(ReturnedParam);
1742 }
1743 }
1744
1745 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1746 return llvm::is_contained(Range: ReturnedParams, Element: Param1) &&
1747 llvm::is_contained(Range: ReturnedParams, Element: Param2);
1748 }
1749};
1750
1751} // namespace relatedness_heuristic
1752
1753/// Helper class that is used to detect if two parameters of the same function
1754/// are used in a similar fashion, to suppress the result.
1755class SimilarlyUsedParameterPairSuppressor {
1756 const bool Enabled;
1757 relatedness_heuristic::AppearsInSameExpr SameExpr;
1758 relatedness_heuristic::PassedToSameFunction PassToFun;
1759 relatedness_heuristic::AccessedSameMemberOf SameMember;
1760 relatedness_heuristic::Returned Returns;
1761
1762public:
1763 SimilarlyUsedParameterPairSuppressor(const FunctionDecl *FD, bool Enable)
1764 : Enabled(Enable) {
1765 if (!Enable)
1766 return;
1767
1768 SameExpr.setup(FD);
1769 PassToFun.setup(FD);
1770 SameMember.setup(FD);
1771 Returns.setup(FD);
1772 }
1773
1774 /// Returns whether the specified two parameters are deemed similarly used
1775 /// or related by the heuristics.
1776 bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
1777 if (!Enabled)
1778 return false;
1779
1780 LLVM_DEBUG(llvm::dbgs()
1781 << "::: Matching similar usage / relatedness heuristic...\n");
1782
1783 if (SameExpr(Param1, Param2)) {
1784 LLVM_DEBUG(llvm::dbgs() << "::: Used in the same expression.\n");
1785 return true;
1786 }
1787
1788 if (PassToFun(Param1, Param2)) {
1789 LLVM_DEBUG(llvm::dbgs()
1790 << "::: Passed to same function in different calls.\n");
1791 return true;
1792 }
1793
1794 if (SameMember(Param1, Param2)) {
1795 LLVM_DEBUG(llvm::dbgs()
1796 << "::: Same member field access or method called.\n");
1797 return true;
1798 }
1799
1800 if (Returns(Param1, Param2)) {
1801 LLVM_DEBUG(llvm::dbgs() << "::: Both parameter returned.\n");
1802 return true;
1803 }
1804
1805 LLVM_DEBUG(llvm::dbgs() << "::: None.\n");
1806 return false;
1807 }
1808};
1809
1810// (This function hoists the call to operator() of the wrapper, so we do not
1811// need to define the previous class at the top of the file.)
1812static inline bool
1813isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor,
1814 const ParmVarDecl *Param1, const ParmVarDecl *Param2) {
1815 return Suppressor(Param1, Param2);
1816}
1817
1818static void padStringAtEnd(SmallVectorImpl<char> &Str, std::size_t ToLen) {
1819 while (Str.size() < ToLen)
1820 Str.emplace_back(Args: '\0');
1821}
1822
1823static void padStringAtBegin(SmallVectorImpl<char> &Str, std::size_t ToLen) {
1824 while (Str.size() < ToLen)
1825 Str.insert(I: Str.begin(), Elt: '\0');
1826}
1827
1828static bool isCommonPrefixWithoutSomeCharacters(std::size_t N, StringRef S1,
1829 StringRef S2) {
1830 assert(S1.size() >= N && S2.size() >= N);
1831 StringRef S1Prefix = S1.take_front(N: S1.size() - N),
1832 S2Prefix = S2.take_front(N: S2.size() - N);
1833 return S1Prefix == S2Prefix && !S1Prefix.empty();
1834}
1835
1836static bool isCommonSuffixWithoutSomeCharacters(std::size_t N, StringRef S1,
1837 StringRef S2) {
1838 assert(S1.size() >= N && S2.size() >= N);
1839 StringRef S1Suffix = S1.take_back(N: S1.size() - N),
1840 S2Suffix = S2.take_back(N: S2.size() - N);
1841 return S1Suffix == S2Suffix && !S1Suffix.empty();
1842}
1843
1844/// Returns whether the two strings are prefixes or suffixes of each other with
1845/// at most Threshold characters differing on the non-common end.
1846static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold,
1847 StringRef Str1, StringRef Str2) {
1848 if (Threshold == 0)
1849 return false;
1850
1851 // Pad the two strings to the longer length.
1852 std::size_t BiggerLength = std::max(a: Str1.size(), b: Str2.size());
1853
1854 if (BiggerLength <= Threshold)
1855 // If the length of the strings is still smaller than the threshold, they
1856 // would be covered by an empty prefix/suffix with the rest differing.
1857 // (E.g. "A" and "X" with Threshold = 1 would mean we think they are
1858 // similar and do not warn about them, which is a too eager assumption.)
1859 return false;
1860
1861 SmallString<32> S1PadE{Str1}, S2PadE{Str2};
1862 padStringAtEnd(Str&: S1PadE, ToLen: BiggerLength);
1863 padStringAtEnd(Str&: S2PadE, ToLen: BiggerLength);
1864
1865 if (isCommonPrefixWithoutSomeCharacters(
1866 N: Threshold, S1: StringRef{S1PadE.begin(), BiggerLength},
1867 S2: StringRef{S2PadE.begin(), BiggerLength}))
1868 return true;
1869
1870 SmallString<32> S1PadB{Str1}, S2PadB{Str2};
1871 padStringAtBegin(Str&: S1PadB, ToLen: BiggerLength);
1872 padStringAtBegin(Str&: S2PadB, ToLen: BiggerLength);
1873
1874 if (isCommonSuffixWithoutSomeCharacters(
1875 N: Threshold, S1: StringRef{S1PadB.begin(), BiggerLength},
1876 S2: StringRef{S2PadB.begin(), BiggerLength}))
1877 return true;
1878
1879 return false;
1880}
1881
1882} // namespace filter
1883
1884/// Matches functions that have at least the specified amount of parameters.
1885AST_MATCHER_P(FunctionDecl, parameterCountGE, unsigned, N) {
1886 return Node.getNumParams() >= N;
1887}
1888
1889/// Matches *any* overloaded unary and binary operators.
1890AST_MATCHER(FunctionDecl, isOverloadedUnaryOrBinaryOperator) {
1891 switch (Node.getOverloadedOperator()) {
1892 case OO_None:
1893 case OO_New:
1894 case OO_Delete:
1895 case OO_Array_New:
1896 case OO_Array_Delete:
1897 case OO_Conditional:
1898 case OO_Coawait:
1899 return false;
1900
1901 default:
1902 return Node.getNumParams() <= 2;
1903 }
1904}
1905
1906/// Returns the DefaultMinimumLength if the Value of requested minimum length
1907/// is less than 2. Minimum lengths of 0 or 1 are not accepted.
1908static inline unsigned clampMinimumLength(const unsigned Value) {
1909 return Value < 2 ? DefaultMinimumLength : Value;
1910}
1911
1912// FIXME: Maybe unneeded, getNameForDiagnostic() is expected to change to return
1913// a crafted location when the node itself is unnamed. (See D84658, D85033.)
1914/// Returns the diagnostic-friendly name of the node, or empty string.
1915static SmallString<64> getName(const NamedDecl *ND) {
1916 SmallString<64> Name;
1917 llvm::raw_svector_ostream OS{Name};
1918 ND->getNameForDiagnostic(OS, Policy: ND->getASTContext().getPrintingPolicy(), Qualified: false);
1919 return Name;
1920}
1921
1922/// Returns the diagnostic-friendly name of the node, or a constant value.
1923static SmallString<64> getNameOrUnnamed(const NamedDecl *ND) {
1924 auto Name = getName(ND);
1925 if (Name.empty())
1926 Name = "<unnamed>";
1927 return Name;
1928}
1929
1930/// Returns whether a particular Mix between two parameters should have the
1931/// types involved diagnosed to the user. This is only a flag check.
1932static inline bool needsToPrintTypeInDiagnostic(const model::Mix &M) {
1933 using namespace model;
1934 return static_cast<bool>(
1935 M.flags() &
1936 (MixFlags::TypeAlias | MixFlags::ReferenceBind | MixFlags::Qualifiers));
1937}
1938
1939/// Returns whether a particular Mix between the two parameters should have
1940/// implicit conversions elaborated.
1941static inline bool needsToElaborateImplicitConversion(const model::Mix &M) {
1942 return hasFlag(Data: M.flags(), SearchedFlag: model::MixFlags::ImplicitConversion);
1943}
1944
1945namespace {
1946
1947/// This class formats a conversion sequence into a "Ty1 -> Ty2 -> Ty3" line
1948/// that can be used in diagnostics.
1949struct FormattedConversionSequence {
1950 std::string DiagnosticText;
1951
1952 /// The formatted sequence is trivial if it is "Ty1 -> Ty2", but Ty1 and
1953 /// Ty2 are the types that are shown in the code. A trivial diagnostic
1954 /// does not need to be printed.
1955 bool Trivial = true;
1956
1957 FormattedConversionSequence(const PrintingPolicy &PP,
1958 StringRef StartTypeAsDiagnosed,
1959 const model::ConversionSequence &Conv,
1960 StringRef DestinationTypeAsDiagnosed) {
1961 llvm::raw_string_ostream OS{DiagnosticText};
1962
1963 // Print the type name as it is printed in other places in the diagnostic.
1964 OS << '\'' << StartTypeAsDiagnosed << '\'';
1965 std::string LastAddedType = StartTypeAsDiagnosed.str();
1966 std::size_t NumElementsAdded = 1;
1967
1968 // However, the parameter's defined type might not be what the implicit
1969 // conversion started with, e.g. if a typedef is found to convert.
1970 std::string SeqBeginTypeStr = Conv.Begin.getAsString(PP);
1971 std::string SeqEndTypeStr = Conv.End.getAsString(PP);
1972 if (StartTypeAsDiagnosed != SeqBeginTypeStr) {
1973 OS << " (as '" << SeqBeginTypeStr << "')";
1974 LastAddedType = SeqBeginTypeStr;
1975 Trivial = false;
1976 }
1977
1978 auto AddType = [&](StringRef ToAdd) {
1979 if (LastAddedType != ToAdd && ToAdd != SeqEndTypeStr) {
1980 OS << " -> '" << ToAdd << "'";
1981 LastAddedType = ToAdd.str();
1982 ++NumElementsAdded;
1983 }
1984 };
1985 for (QualType InvolvedType : Conv.getInvolvedTypesInSequence())
1986 // Print every type that's unique in the sequence into the diagnosis.
1987 AddType(InvolvedType.getAsString(Policy: PP));
1988
1989 if (LastAddedType != DestinationTypeAsDiagnosed) {
1990 OS << " -> '" << DestinationTypeAsDiagnosed << "'";
1991 LastAddedType = DestinationTypeAsDiagnosed.str();
1992 ++NumElementsAdded;
1993 }
1994
1995 // Same reasoning as with the Begin, e.g. if the converted-to type is a
1996 // typedef, it will not be the same inside the conversion sequence (where
1997 // the model already tore off typedefs) as in the code.
1998 if (DestinationTypeAsDiagnosed != SeqEndTypeStr) {
1999 OS << " (as '" << SeqEndTypeStr << "')";
2000 LastAddedType = SeqEndTypeStr;
2001 Trivial = false;
2002 }
2003
2004 if (Trivial && NumElementsAdded > 2)
2005 // If the thing is still marked trivial but we have more than the
2006 // from and to types added, it should not be trivial, and elaborated
2007 // when printing the diagnostic.
2008 Trivial = false;
2009 }
2010};
2011
2012/// Retains the elements called with and returns whether the call is done with
2013/// a new element.
2014template <typename E, std::size_t N> class InsertOnce {
2015 llvm::SmallSet<E, N> CalledWith;
2016
2017public:
2018 bool operator()(E El) { return CalledWith.insert(std::move(El)).second; }
2019
2020 bool calledWith(const E &El) const { return CalledWith.contains(El); }
2021};
2022
2023struct SwappedEqualQualTypePair {
2024 QualType LHSType, RHSType;
2025
2026 bool operator==(const SwappedEqualQualTypePair &Other) const {
2027 return (LHSType == Other.LHSType && RHSType == Other.RHSType) ||
2028 (LHSType == Other.RHSType && RHSType == Other.LHSType);
2029 }
2030
2031 bool operator<(const SwappedEqualQualTypePair &Other) const {
2032 return LHSType < Other.LHSType && RHSType < Other.RHSType;
2033 }
2034};
2035
2036struct TypeAliasDiagnosticTuple {
2037 QualType LHSType, RHSType, CommonType;
2038
2039 bool operator==(const TypeAliasDiagnosticTuple &Other) const {
2040 return CommonType == Other.CommonType &&
2041 ((LHSType == Other.LHSType && RHSType == Other.RHSType) ||
2042 (LHSType == Other.RHSType && RHSType == Other.LHSType));
2043 }
2044
2045 bool operator<(const TypeAliasDiagnosticTuple &Other) const {
2046 return CommonType < Other.CommonType && LHSType < Other.LHSType &&
2047 RHSType < Other.RHSType;
2048 }
2049};
2050
2051/// Helper class to only emit a diagnostic related to MixFlags::TypeAlias once.
2052class UniqueTypeAliasDiagnosticHelper
2053 : public InsertOnce<TypeAliasDiagnosticTuple, 8> {
2054 using Base = InsertOnce<TypeAliasDiagnosticTuple, 8>;
2055
2056public:
2057 /// Returns whether the diagnostic for LHSType and RHSType which are both
2058 /// referring to CommonType being the same has not been emitted already.
2059 bool operator()(QualType LHSType, QualType RHSType, QualType CommonType) {
2060 if (CommonType.isNull() || CommonType == LHSType || CommonType == RHSType)
2061 return Base::operator()({LHSType, RHSType, {}});
2062
2063 TypeAliasDiagnosticTuple ThreeTuple{LHSType, RHSType, CommonType};
2064 if (!Base::operator()(El: ThreeTuple))
2065 return false;
2066
2067 bool AlreadySaidLHSAndCommonIsSame = calledWith({LHSType, CommonType, {}});
2068 bool AlreadySaidRHSAndCommonIsSame = calledWith({RHSType, CommonType, {}});
2069 if (AlreadySaidLHSAndCommonIsSame && AlreadySaidRHSAndCommonIsSame) {
2070 // "SomeInt == int" && "SomeOtherInt == int" => "Common(SomeInt,
2071 // SomeOtherInt) == int", no need to diagnose it. Save the 3-tuple only
2072 // for shortcut if it ever appears again.
2073 return false;
2074 }
2075
2076 return true;
2077 }
2078};
2079
2080} // namespace
2081
2082EasilySwappableParametersCheck::EasilySwappableParametersCheck(
2083 StringRef Name, ClangTidyContext *Context)
2084 : ClangTidyCheck(Name, Context),
2085 MinimumLength(clampMinimumLength(
2086 Value: Options.get(LocalName: "MinimumLength", Default: DefaultMinimumLength))),
2087 IgnoredParameterNames(optutils::parseStringList(
2088 Option: Options.get(LocalName: "IgnoredParameterNames", Default: DefaultIgnoredParameterNames))),
2089 IgnoredParameterTypeSuffixes(optutils::parseStringList(
2090 Option: Options.get(LocalName: "IgnoredParameterTypeSuffixes",
2091 Default: DefaultIgnoredParameterTypeSuffixes))),
2092 QualifiersMix(Options.get(LocalName: "QualifiersMix", Default: DefaultQualifiersMix)),
2093 ModelImplicitConversions(Options.get(LocalName: "ModelImplicitConversions",
2094 Default: DefaultModelImplicitConversions)),
2095 SuppressParametersUsedTogether(
2096 Options.get(LocalName: "SuppressParametersUsedTogether",
2097 Default: DefaultSuppressParametersUsedTogether)),
2098 NamePrefixSuffixSilenceDissimilarityTreshold(
2099 Options.get(LocalName: "NamePrefixSuffixSilenceDissimilarityTreshold",
2100 Default: DefaultNamePrefixSuffixSilenceDissimilarityTreshold)) {}
2101
2102void EasilySwappableParametersCheck::storeOptions(
2103 ClangTidyOptions::OptionMap &Opts) {
2104 Options.store(Options&: Opts, LocalName: "MinimumLength", Value: MinimumLength);
2105 Options.store(Options&: Opts, LocalName: "IgnoredParameterNames",
2106 Value: optutils::serializeStringList(Strings: IgnoredParameterNames));
2107 Options.store(Options&: Opts, LocalName: "IgnoredParameterTypeSuffixes",
2108 Value: optutils::serializeStringList(Strings: IgnoredParameterTypeSuffixes));
2109 Options.store(Options&: Opts, LocalName: "QualifiersMix", Value: QualifiersMix);
2110 Options.store(Options&: Opts, LocalName: "ModelImplicitConversions", Value: ModelImplicitConversions);
2111 Options.store(Options&: Opts, LocalName: "SuppressParametersUsedTogether",
2112 Value: SuppressParametersUsedTogether);
2113 Options.store(Options&: Opts, LocalName: "NamePrefixSuffixSilenceDissimilarityTreshold",
2114 Value: NamePrefixSuffixSilenceDissimilarityTreshold);
2115}
2116
2117void EasilySwappableParametersCheck::registerMatchers(MatchFinder *Finder) {
2118 const auto BaseConstraints = functionDecl(
2119 // Only report for definition nodes, as fixing the issues reported
2120 // requires the user to be able to change code.
2121 isDefinition(), parameterCountGE(N: MinimumLength),
2122 unless(isOverloadedUnaryOrBinaryOperator()));
2123
2124 Finder->addMatcher(
2125 NodeMatch: functionDecl(BaseConstraints,
2126 unless(ast_matchers::isTemplateInstantiation()))
2127 .bind(ID: "func"),
2128 Action: this);
2129 Finder->addMatcher(
2130 NodeMatch: functionDecl(BaseConstraints, isExplicitTemplateSpecialization())
2131 .bind(ID: "func"),
2132 Action: this);
2133}
2134
2135void EasilySwappableParametersCheck::check(
2136 const MatchFinder::MatchResult &Result) {
2137 using namespace model;
2138 using namespace filter;
2139
2140 const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>(ID: "func");
2141 assert(FD);
2142
2143 const PrintingPolicy &PP = FD->getASTContext().getPrintingPolicy();
2144 std::size_t NumParams = FD->getNumParams();
2145 std::size_t MixableRangeStartIndex = 0;
2146
2147 // Spawn one suppressor and if the user requested, gather information from
2148 // the AST for the parameters' usages.
2149 filter::SimilarlyUsedParameterPairSuppressor UsageBasedSuppressor{
2150 FD, SuppressParametersUsedTogether};
2151
2152 LLVM_DEBUG(llvm::dbgs() << "Begin analysis of " << getName(FD) << " with "
2153 << NumParams << " parameters...\n");
2154 while (MixableRangeStartIndex < NumParams) {
2155 if (isIgnoredParameter(Check: *this, Node: FD->getParamDecl(i: MixableRangeStartIndex))) {
2156 LLVM_DEBUG(llvm::dbgs()
2157 << "Parameter #" << MixableRangeStartIndex << " ignored.\n");
2158 ++MixableRangeStartIndex;
2159 continue;
2160 }
2161
2162 MixableParameterRange R = modelMixingRange(
2163 Check: *this, FD, StartIndex: MixableRangeStartIndex, UsageBasedSuppressor);
2164 assert(R.NumParamsChecked > 0 && "Ensure forward progress!");
2165 MixableRangeStartIndex += R.NumParamsChecked;
2166 if (R.NumParamsChecked < MinimumLength) {
2167 LLVM_DEBUG(llvm::dbgs() << "Ignoring range of " << R.NumParamsChecked
2168 << " lower than limit.\n");
2169 continue;
2170 }
2171
2172 bool NeedsAnyTypeNote = llvm::any_of(Range&: R.Mixes, P: needsToPrintTypeInDiagnostic);
2173 bool HasAnyImplicits =
2174 llvm::any_of(Range&: R.Mixes, P: needsToElaborateImplicitConversion);
2175 const ParmVarDecl *First = R.getFirstParam(), *Last = R.getLastParam();
2176 std::string FirstParamTypeAsWritten = First->getType().getAsString(PP);
2177 {
2178 StringRef DiagText;
2179
2180 if (HasAnyImplicits)
2181 DiagText = "%0 adjacent parameters of %1 of convertible types are "
2182 "easily swapped by mistake";
2183 else if (NeedsAnyTypeNote)
2184 DiagText = "%0 adjacent parameters of %1 of similar type are easily "
2185 "swapped by mistake";
2186 else
2187 DiagText = "%0 adjacent parameters of %1 of similar type ('%2') are "
2188 "easily swapped by mistake";
2189
2190 auto Diag = diag(First->getOuterLocStart(), DiagText)
2191 << static_cast<unsigned>(R.NumParamsChecked) << FD;
2192 if (!NeedsAnyTypeNote)
2193 Diag << FirstParamTypeAsWritten;
2194
2195 CharSourceRange HighlightRange = CharSourceRange::getTokenRange(
2196 First->getBeginLoc(), Last->getEndLoc());
2197 Diag << HighlightRange;
2198 }
2199
2200 // There is a chance that the previous highlight did not succeed, e.g. when
2201 // the two parameters are on different lines. For clarity, show the user
2202 // the involved variable explicitly.
2203 diag(First->getLocation(), "the first parameter in the range is '%0'",
2204 DiagnosticIDs::Note)
2205 << getNameOrUnnamed(First)
2206 << CharSourceRange::getTokenRange(First->getLocation(),
2207 First->getLocation());
2208 diag(Last->getLocation(), "the last parameter in the range is '%0'",
2209 DiagnosticIDs::Note)
2210 << getNameOrUnnamed(Last)
2211 << CharSourceRange::getTokenRange(Last->getLocation(),
2212 Last->getLocation());
2213
2214 // Helper classes to silence elaborative diagnostic notes that would be
2215 // too verbose.
2216 UniqueTypeAliasDiagnosticHelper UniqueTypeAlias;
2217 InsertOnce<SwappedEqualQualTypePair, 8> UniqueBindPower;
2218 InsertOnce<SwappedEqualQualTypePair, 8> UniqueImplicitConversion;
2219
2220 for (const model::Mix &M : R.Mixes) {
2221 assert(M.mixable() && "Sentinel or false mix in result.");
2222 if (!needsToPrintTypeInDiagnostic(M) &&
2223 !needsToElaborateImplicitConversion(M))
2224 continue;
2225
2226 // Typedefs might result in the type of the variable needing to be
2227 // emitted to a note diagnostic, so prepare it.
2228 const ParmVarDecl *LVar = M.First;
2229 const ParmVarDecl *RVar = M.Second;
2230 QualType LType = LVar->getType();
2231 QualType RType = RVar->getType();
2232 QualType CommonType = M.commonUnderlyingType();
2233 std::string LTypeStr = LType.getAsString(Policy: PP);
2234 std::string RTypeStr = RType.getAsString(Policy: PP);
2235 std::string CommonTypeStr = CommonType.getAsString(Policy: PP);
2236
2237 if (hasFlag(Data: M.flags(), SearchedFlag: MixFlags::TypeAlias) &&
2238 UniqueTypeAlias(LType, RType, CommonType)) {
2239 StringRef DiagText;
2240 bool ExplicitlyPrintCommonType = false;
2241 if (LTypeStr == CommonTypeStr || RTypeStr == CommonTypeStr) {
2242 if (hasFlag(Data: M.flags(), SearchedFlag: MixFlags::Qualifiers))
2243 DiagText = "after resolving type aliases, '%0' and '%1' share a "
2244 "common type";
2245 else
2246 DiagText =
2247 "after resolving type aliases, '%0' and '%1' are the same";
2248 } else if (!CommonType.isNull()) {
2249 DiagText = "after resolving type aliases, the common type of '%0' "
2250 "and '%1' is '%2'";
2251 ExplicitlyPrintCommonType = true;
2252 }
2253
2254 auto Diag =
2255 diag(LVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
2256 << LTypeStr << RTypeStr;
2257 if (ExplicitlyPrintCommonType)
2258 Diag << CommonTypeStr;
2259 }
2260
2261 if ((hasFlag(Data: M.flags(), SearchedFlag: MixFlags::ReferenceBind) ||
2262 hasFlag(Data: M.flags(), SearchedFlag: MixFlags::Qualifiers)) &&
2263 UniqueBindPower({LType, RType})) {
2264 StringRef DiagText = "'%0' and '%1' parameters accept and bind the "
2265 "same kind of values";
2266 diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
2267 << LTypeStr << RTypeStr;
2268 }
2269
2270 if (needsToElaborateImplicitConversion(M) &&
2271 UniqueImplicitConversion({LType, RType})) {
2272 const model::ConversionSequence &LTR =
2273 M.leftToRightConversionSequence();
2274 const model::ConversionSequence &RTL =
2275 M.rightToLeftConversionSequence();
2276 FormattedConversionSequence LTRFmt{PP, LTypeStr, LTR, RTypeStr};
2277 FormattedConversionSequence RTLFmt{PP, RTypeStr, RTL, LTypeStr};
2278
2279 StringRef DiagText = "'%0' and '%1' may be implicitly converted";
2280 if (!LTRFmt.Trivial || !RTLFmt.Trivial)
2281 DiagText = "'%0' and '%1' may be implicitly converted: %2, %3";
2282
2283 {
2284 auto Diag =
2285 diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
2286 << LTypeStr << RTypeStr;
2287
2288 if (!LTRFmt.Trivial || !RTLFmt.Trivial)
2289 Diag << LTRFmt.DiagnosticText << RTLFmt.DiagnosticText;
2290 }
2291
2292 StringRef ConversionFunctionDiagText =
2293 "the implicit conversion involves the "
2294 "%select{|converting constructor|conversion operator}0 "
2295 "declared here";
2296 if (const FunctionDecl *LFD = LTR.getUserDefinedConversionFunction())
2297 diag(LFD->getLocation(), ConversionFunctionDiagText,
2298 DiagnosticIDs::Note)
2299 << static_cast<unsigned>(LTR.UDConvKind)
2300 << LTR.getUserDefinedConversionHighlight();
2301 if (const FunctionDecl *RFD = RTL.getUserDefinedConversionFunction())
2302 diag(RFD->getLocation(), ConversionFunctionDiagText,
2303 DiagnosticIDs::Note)
2304 << static_cast<unsigned>(RTL.UDConvKind)
2305 << RTL.getUserDefinedConversionHighlight();
2306 }
2307 }
2308 }
2309}
2310
2311} // namespace clang::tidy::bugprone
2312

source code of clang-tools-extra/clang-tidy/bugprone/EasilySwappableParametersCheck.cpp