1 | //===--- NewDeleteOverloadsCheck.cpp - clang-tidy--------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "NewDeleteOverloadsCheck.h" |
10 | #include "clang/AST/ASTContext.h" |
11 | #include "clang/ASTMatchers/ASTMatchFinder.h" |
12 | |
13 | using namespace clang::ast_matchers; |
14 | |
15 | namespace clang::tidy::misc { |
16 | |
17 | namespace { |
18 | |
19 | AST_MATCHER(FunctionDecl, isPlacementOverload) { |
20 | bool New = false; |
21 | switch (Node.getOverloadedOperator()) { |
22 | default: |
23 | return false; |
24 | case OO_New: |
25 | case OO_Array_New: |
26 | New = true; |
27 | break; |
28 | case OO_Delete: |
29 | case OO_Array_Delete: |
30 | New = false; |
31 | break; |
32 | } |
33 | |
34 | // Variadic functions are always placement functions. |
35 | if (Node.isVariadic()) |
36 | return true; |
37 | |
38 | // Placement new is easy: it always has more than one parameter (the first |
39 | // parameter is always the size). If it's an overload of delete or delete[] |
40 | // that has only one parameter, it's never a placement delete. |
41 | if (New) |
42 | return Node.getNumParams() > 1; |
43 | if (Node.getNumParams() == 1) |
44 | return false; |
45 | |
46 | // Placement delete is a little more challenging. They always have more than |
47 | // one parameter with the first parameter being a pointer. However, the |
48 | // second parameter can be a size_t for sized deallocation, and that is never |
49 | // a placement delete operator. |
50 | if (Node.getNumParams() <= 1 || Node.getNumParams() > 2) |
51 | return true; |
52 | |
53 | const auto *FPT = Node.getType()->castAs<FunctionProtoType>(); |
54 | ASTContext &Ctx = Node.getASTContext(); |
55 | if (Ctx.getLangOpts().SizedDeallocation && |
56 | Ctx.hasSameType(FPT->getParamType(1), Ctx.getSizeType())) |
57 | return false; |
58 | |
59 | return true; |
60 | } |
61 | |
62 | OverloadedOperatorKind getCorrespondingOverload(const FunctionDecl *FD) { |
63 | switch (FD->getOverloadedOperator()) { |
64 | default: |
65 | break; |
66 | case OO_New: |
67 | return OO_Delete; |
68 | case OO_Delete: |
69 | return OO_New; |
70 | case OO_Array_New: |
71 | return OO_Array_Delete; |
72 | case OO_Array_Delete: |
73 | return OO_Array_New; |
74 | } |
75 | llvm_unreachable("Not an overloaded allocation operator" ); |
76 | } |
77 | |
78 | const char *getOperatorName(OverloadedOperatorKind K) { |
79 | switch (K) { |
80 | default: |
81 | break; |
82 | case OO_New: |
83 | return "operator new" ; |
84 | case OO_Delete: |
85 | return "operator delete" ; |
86 | case OO_Array_New: |
87 | return "operator new[]" ; |
88 | case OO_Array_Delete: |
89 | return "operator delete[]" ; |
90 | } |
91 | llvm_unreachable("Not an overloaded allocation operator" ); |
92 | } |
93 | |
94 | bool areCorrespondingOverloads(const FunctionDecl *LHS, |
95 | const FunctionDecl *RHS) { |
96 | return RHS->getOverloadedOperator() == getCorrespondingOverload(FD: LHS); |
97 | } |
98 | |
99 | bool hasCorrespondingOverloadInBaseClass(const CXXMethodDecl *MD, |
100 | const CXXRecordDecl *RD = nullptr) { |
101 | if (RD) { |
102 | // Check the methods in the given class and accessible to derived classes. |
103 | for (const auto *BMD : RD->methods()) |
104 | if (BMD->isOverloadedOperator() && BMD->getAccess() != AS_private && |
105 | areCorrespondingOverloads(MD, BMD)) |
106 | return true; |
107 | } else { |
108 | // Get the parent class of the method; we do not need to care about checking |
109 | // the methods in this class as the caller has already done that by looking |
110 | // at the declaration contexts. |
111 | RD = MD->getParent(); |
112 | } |
113 | |
114 | for (const auto &BS : RD->bases()) { |
115 | // We can't say much about a dependent base class, but to avoid false |
116 | // positives assume it can have a corresponding overload. |
117 | if (BS.getType()->isDependentType()) |
118 | return true; |
119 | if (const auto *BaseRD = BS.getType()->getAsCXXRecordDecl()) |
120 | if (hasCorrespondingOverloadInBaseClass(MD, RD: BaseRD)) |
121 | return true; |
122 | } |
123 | |
124 | return false; |
125 | } |
126 | |
127 | } // anonymous namespace |
128 | |
129 | void NewDeleteOverloadsCheck::registerMatchers(MatchFinder *Finder) { |
130 | // Match all operator new and operator delete overloads (including the array |
131 | // forms). Do not match implicit operators, placement operators, or |
132 | // deleted/private operators. |
133 | // |
134 | // Technically, trivially-defined operator delete seems like a reasonable |
135 | // thing to also skip. e.g., void operator delete(void *) {} |
136 | // However, I think it's more reasonable to warn in this case as the user |
137 | // should really be writing that as a deleted function. |
138 | Finder->addMatcher( |
139 | NodeMatch: functionDecl(unless(anyOf(isImplicit(), isPlacementOverload(), |
140 | isDeleted(), cxxMethodDecl(isPrivate()))), |
141 | anyOf(hasOverloadedOperatorName(Name: "new" ), |
142 | hasOverloadedOperatorName(Name: "new[]" ), |
143 | hasOverloadedOperatorName(Name: "delete" ), |
144 | hasOverloadedOperatorName(Name: "delete[]" ))) |
145 | .bind(ID: "func" ), |
146 | Action: this); |
147 | } |
148 | |
149 | void NewDeleteOverloadsCheck::check(const MatchFinder::MatchResult &Result) { |
150 | // Add any matches we locate to the list of things to be checked at the |
151 | // end of the translation unit. |
152 | const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>(ID: "func" ); |
153 | const CXXRecordDecl *RD = nullptr; |
154 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
155 | RD = MD->getParent(); |
156 | Overloads[RD].push_back(Elt: FD); |
157 | } |
158 | |
159 | void NewDeleteOverloadsCheck::onEndOfTranslationUnit() { |
160 | // Walk over the list of declarations we've found to see if there is a |
161 | // corresponding overload at the same declaration context or within a base |
162 | // class. If there is not, add the element to the list of declarations to |
163 | // diagnose. |
164 | SmallVector<const FunctionDecl *, 4> Diagnose; |
165 | for (const auto &RP : Overloads) { |
166 | // We don't care about the CXXRecordDecl key in the map; we use it as a way |
167 | // to shard the overloads by declaration context to reduce the algorithmic |
168 | // complexity when searching for corresponding free store functions. |
169 | for (const auto *Overload : RP.second) { |
170 | const auto *Match = |
171 | std::find_if(first: RP.second.begin(), last: RP.second.end(), |
172 | pred: [&Overload](const FunctionDecl *FD) { |
173 | if (FD == Overload) |
174 | return false; |
175 | // If the declaration contexts don't match, we don't |
176 | // need to check any further. |
177 | if (FD->getDeclContext() != Overload->getDeclContext()) |
178 | return false; |
179 | |
180 | // Since the declaration contexts match, see whether |
181 | // the current element is the corresponding operator. |
182 | if (!areCorrespondingOverloads(LHS: Overload, RHS: FD)) |
183 | return false; |
184 | |
185 | return true; |
186 | }); |
187 | |
188 | if (Match == RP.second.end()) { |
189 | // Check to see if there is a corresponding overload in a base class |
190 | // context. If there isn't, or if the overload is not a class member |
191 | // function, then we should diagnose. |
192 | const auto *MD = dyn_cast<CXXMethodDecl>(Val: Overload); |
193 | if (!MD || !hasCorrespondingOverloadInBaseClass(MD)) |
194 | Diagnose.push_back(Elt: Overload); |
195 | } |
196 | } |
197 | } |
198 | |
199 | for (const auto *FD : Diagnose) |
200 | diag(FD->getLocation(), "declaration of %0 has no matching declaration " |
201 | "of '%1' at the same scope" ) |
202 | << FD << getOperatorName(K: getCorrespondingOverload(FD)); |
203 | } |
204 | |
205 | } // namespace clang::tidy::misc |
206 | |