1 | //===--- HeuristicResolver.cpp ---------------------------*- C++-*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "HeuristicResolver.h" |
10 | #include "clang/AST/ASTContext.h" |
11 | #include "clang/AST/CXXInheritance.h" |
12 | #include "clang/AST/DeclTemplate.h" |
13 | #include "clang/AST/ExprCXX.h" |
14 | #include "clang/AST/Type.h" |
15 | |
16 | namespace clang { |
17 | namespace clangd { |
18 | |
19 | namespace { |
20 | |
21 | // Helper class for implementing HeuristicResolver. |
22 | // Unlike HeuristicResolver which is a long-lived class, |
23 | // a new instance of this class is created for every external |
24 | // call into a HeuristicResolver operation. That allows this |
25 | // class to store state that's local to such a top-level call, |
26 | // particularly "recursion protection sets" that keep track of |
27 | // nodes that have already been seen to avoid infinite recursion. |
28 | class HeuristicResolverImpl { |
29 | public: |
30 | HeuristicResolverImpl(ASTContext &Ctx) : Ctx(Ctx) {} |
31 | |
32 | // These functions match the public interface of HeuristicResolver |
33 | // (but aren't const since they may modify the recursion protection sets). |
34 | std::vector<const NamedDecl *> |
35 | resolveMemberExpr(const CXXDependentScopeMemberExpr *ME); |
36 | std::vector<const NamedDecl *> |
37 | resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE); |
38 | std::vector<const NamedDecl *> resolveTypeOfCallExpr(const CallExpr *CE); |
39 | std::vector<const NamedDecl *> resolveCalleeOfCallExpr(const CallExpr *CE); |
40 | std::vector<const NamedDecl *> |
41 | resolveUsingValueDecl(const UnresolvedUsingValueDecl *UUVD); |
42 | std::vector<const NamedDecl *> |
43 | resolveDependentNameType(const DependentNameType *DNT); |
44 | std::vector<const NamedDecl *> resolveTemplateSpecializationType( |
45 | const DependentTemplateSpecializationType *DTST); |
46 | const Type *resolveNestedNameSpecifierToType(const NestedNameSpecifier *NNS); |
47 | const Type *getPointeeType(const Type *T); |
48 | |
49 | private: |
50 | ASTContext &Ctx; |
51 | |
52 | // Recursion protection sets |
53 | llvm::SmallSet<const DependentNameType *, 4> SeenDependentNameTypes; |
54 | |
55 | // Given a tag-decl type and a member name, heuristically resolve the |
56 | // name to one or more declarations. |
57 | // The current heuristic is simply to look up the name in the primary |
58 | // template. This is a heuristic because the template could potentially |
59 | // have specializations that declare different members. |
60 | // Multiple declarations could be returned if the name is overloaded |
61 | // (e.g. an overloaded method in the primary template). |
62 | // This heuristic will give the desired answer in many cases, e.g. |
63 | // for a call to vector<T>::size(). |
64 | std::vector<const NamedDecl *> |
65 | resolveDependentMember(const Type *T, DeclarationName Name, |
66 | llvm::function_ref<bool(const NamedDecl *ND)> Filter); |
67 | |
68 | // Try to heuristically resolve the type of a possibly-dependent expression |
69 | // `E`. |
70 | const Type *resolveExprToType(const Expr *E); |
71 | std::vector<const NamedDecl *> resolveExprToDecls(const Expr *E); |
72 | |
73 | // Helper function for HeuristicResolver::resolveDependentMember() |
74 | // which takes a possibly-dependent type `T` and heuristically |
75 | // resolves it to a CXXRecordDecl in which we can try name lookup. |
76 | CXXRecordDecl *resolveTypeToRecordDecl(const Type *T); |
77 | |
78 | // This is a reimplementation of CXXRecordDecl::lookupDependentName() |
79 | // so that the implementation can call into other HeuristicResolver helpers. |
80 | // FIXME: Once HeuristicResolver is upstreamed to the clang libraries |
81 | // (https://github.com/clangd/clangd/discussions/1662), |
82 | // CXXRecordDecl::lookupDepenedentName() can be removed, and its call sites |
83 | // can be modified to benefit from the more comprehensive heuristics offered |
84 | // by HeuristicResolver instead. |
85 | std::vector<const NamedDecl *> |
86 | lookupDependentName(CXXRecordDecl *RD, DeclarationName Name, |
87 | llvm::function_ref<bool(const NamedDecl *ND)> Filter); |
88 | bool findOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier, |
89 | CXXBasePath &Path, |
90 | DeclarationName Name); |
91 | }; |
92 | |
93 | // Convenience lambdas for use as the 'Filter' parameter of |
94 | // HeuristicResolver::resolveDependentMember(). |
95 | const auto NoFilter = [](const NamedDecl *D) { return true; }; |
96 | const auto NonStaticFilter = [](const NamedDecl *D) { |
97 | return D->isCXXInstanceMember(); |
98 | }; |
99 | const auto StaticFilter = [](const NamedDecl *D) { |
100 | return !D->isCXXInstanceMember(); |
101 | }; |
102 | const auto ValueFilter = [](const NamedDecl *D) { return isa<ValueDecl>(Val: D); }; |
103 | const auto TypeFilter = [](const NamedDecl *D) { return isa<TypeDecl>(Val: D); }; |
104 | const auto TemplateFilter = [](const NamedDecl *D) { |
105 | return isa<TemplateDecl>(Val: D); |
106 | }; |
107 | |
108 | const Type *resolveDeclsToType(const std::vector<const NamedDecl *> &Decls, |
109 | ASTContext &Ctx) { |
110 | if (Decls.size() != 1) // Names an overload set -- just bail. |
111 | return nullptr; |
112 | if (const auto *TD = dyn_cast<TypeDecl>(Val: Decls[0])) { |
113 | return Ctx.getTypeDeclType(Decl: TD).getTypePtr(); |
114 | } |
115 | if (const auto *VD = dyn_cast<ValueDecl>(Val: Decls[0])) { |
116 | return VD->getType().getTypePtrOrNull(); |
117 | } |
118 | return nullptr; |
119 | } |
120 | |
121 | // Helper function for HeuristicResolver::resolveDependentMember() |
122 | // which takes a possibly-dependent type `T` and heuristically |
123 | // resolves it to a CXXRecordDecl in which we can try name lookup. |
124 | CXXRecordDecl *HeuristicResolverImpl::resolveTypeToRecordDecl(const Type *T) { |
125 | assert(T); |
126 | |
127 | // Unwrap type sugar such as type aliases. |
128 | T = T->getCanonicalTypeInternal().getTypePtr(); |
129 | |
130 | if (const auto *DNT = T->getAs<DependentNameType>()) { |
131 | T = resolveDeclsToType(Decls: resolveDependentNameType(DNT), Ctx); |
132 | if (!T) |
133 | return nullptr; |
134 | T = T->getCanonicalTypeInternal().getTypePtr(); |
135 | } |
136 | |
137 | if (const auto *RT = T->getAs<RecordType>()) |
138 | return dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
139 | |
140 | if (const auto *ICNT = T->getAs<InjectedClassNameType>()) |
141 | T = ICNT->getInjectedSpecializationType().getTypePtrOrNull(); |
142 | if (!T) |
143 | return nullptr; |
144 | |
145 | const auto *TST = T->getAs<TemplateSpecializationType>(); |
146 | if (!TST) |
147 | return nullptr; |
148 | |
149 | const ClassTemplateDecl *TD = dyn_cast_or_null<ClassTemplateDecl>( |
150 | Val: TST->getTemplateName().getAsTemplateDecl()); |
151 | if (!TD) |
152 | return nullptr; |
153 | |
154 | return TD->getTemplatedDecl(); |
155 | } |
156 | |
157 | const Type *HeuristicResolverImpl::getPointeeType(const Type *T) { |
158 | if (!T) |
159 | return nullptr; |
160 | |
161 | if (T->isPointerType()) |
162 | return T->castAs<PointerType>()->getPointeeType().getTypePtrOrNull(); |
163 | |
164 | // Try to handle smart pointer types. |
165 | |
166 | // Look up operator-> in the primary template. If we find one, it's probably a |
167 | // smart pointer type. |
168 | auto ArrowOps = resolveDependentMember( |
169 | T, Name: Ctx.DeclarationNames.getCXXOperatorName(Op: OO_Arrow), Filter: NonStaticFilter); |
170 | if (ArrowOps.empty()) |
171 | return nullptr; |
172 | |
173 | // Getting the return type of the found operator-> method decl isn't useful, |
174 | // because we discarded template arguments to perform lookup in the primary |
175 | // template scope, so the return type would just have the form U* where U is a |
176 | // template parameter type. |
177 | // Instead, just handle the common case where the smart pointer type has the |
178 | // form of SmartPtr<X, ...>, and assume X is the pointee type. |
179 | auto *TST = T->getAs<TemplateSpecializationType>(); |
180 | if (!TST) |
181 | return nullptr; |
182 | if (TST->template_arguments().size() == 0) |
183 | return nullptr; |
184 | const TemplateArgument &FirstArg = TST->template_arguments()[0]; |
185 | if (FirstArg.getKind() != TemplateArgument::Type) |
186 | return nullptr; |
187 | return FirstArg.getAsType().getTypePtrOrNull(); |
188 | } |
189 | |
190 | std::vector<const NamedDecl *> HeuristicResolverImpl::resolveMemberExpr( |
191 | const CXXDependentScopeMemberExpr *ME) { |
192 | // If the expression has a qualifier, try resolving the member inside the |
193 | // qualifier's type. |
194 | // Note that we cannot use a NonStaticFilter in either case, for a couple |
195 | // of reasons: |
196 | // 1. It's valid to access a static member using instance member syntax, |
197 | // e.g. `instance.static_member`. |
198 | // 2. We can sometimes get a CXXDependentScopeMemberExpr for static |
199 | // member syntax too, e.g. if `X::static_member` occurs inside |
200 | // an instance method, it's represented as a CXXDependentScopeMemberExpr |
201 | // with `this` as the base expression as `X` as the qualifier |
202 | // (which could be valid if `X` names a base class after instantiation). |
203 | if (NestedNameSpecifier *NNS = ME->getQualifier()) { |
204 | if (const Type *QualifierType = resolveNestedNameSpecifierToType(NNS)) { |
205 | auto Decls = |
206 | resolveDependentMember(T: QualifierType, Name: ME->getMember(), Filter: NoFilter); |
207 | if (!Decls.empty()) |
208 | return Decls; |
209 | } |
210 | |
211 | // Do not proceed to try resolving the member in the expression's base type |
212 | // without regard to the qualifier, as that could produce incorrect results. |
213 | // For example, `void foo() { this->Base::foo(); }` shouldn't resolve to |
214 | // foo() itself! |
215 | return {}; |
216 | } |
217 | |
218 | // Try resolving the member inside the expression's base type. |
219 | const Type *BaseType = ME->getBaseType().getTypePtrOrNull(); |
220 | if (ME->isArrow()) { |
221 | BaseType = getPointeeType(T: BaseType); |
222 | } |
223 | if (!BaseType) |
224 | return {}; |
225 | if (const auto *BT = BaseType->getAs<BuiltinType>()) { |
226 | // If BaseType is the type of a dependent expression, it's just |
227 | // represented as BuiltinType::Dependent which gives us no information. We |
228 | // can get further by analyzing the dependent expression. |
229 | Expr *Base = ME->isImplicitAccess() ? nullptr : ME->getBase(); |
230 | if (Base && BT->getKind() == BuiltinType::Dependent) { |
231 | BaseType = resolveExprToType(E: Base); |
232 | } |
233 | } |
234 | return resolveDependentMember(T: BaseType, Name: ME->getMember(), Filter: NoFilter); |
235 | } |
236 | |
237 | std::vector<const NamedDecl *> |
238 | HeuristicResolverImpl::resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE) { |
239 | return resolveDependentMember(T: RE->getQualifier()->getAsType(), |
240 | Name: RE->getDeclName(), Filter: StaticFilter); |
241 | } |
242 | |
243 | std::vector<const NamedDecl *> |
244 | HeuristicResolverImpl::resolveTypeOfCallExpr(const CallExpr *CE) { |
245 | const auto *CalleeType = resolveExprToType(E: CE->getCallee()); |
246 | if (!CalleeType) |
247 | return {}; |
248 | if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) |
249 | CalleeType = FnTypePtr->getPointeeType().getTypePtr(); |
250 | if (const FunctionType *FnType = CalleeType->getAs<FunctionType>()) { |
251 | if (const auto *D = |
252 | resolveTypeToRecordDecl(T: FnType->getReturnType().getTypePtr())) { |
253 | return {D}; |
254 | } |
255 | } |
256 | return {}; |
257 | } |
258 | |
259 | std::vector<const NamedDecl *> |
260 | HeuristicResolverImpl::resolveCalleeOfCallExpr(const CallExpr *CE) { |
261 | if (const auto *ND = dyn_cast_or_null<NamedDecl>(Val: CE->getCalleeDecl())) { |
262 | return {ND}; |
263 | } |
264 | |
265 | return resolveExprToDecls(E: CE->getCallee()); |
266 | } |
267 | |
268 | std::vector<const NamedDecl *> HeuristicResolverImpl::resolveUsingValueDecl( |
269 | const UnresolvedUsingValueDecl *UUVD) { |
270 | return resolveDependentMember(T: UUVD->getQualifier()->getAsType(), |
271 | Name: UUVD->getNameInfo().getName(), Filter: ValueFilter); |
272 | } |
273 | |
274 | std::vector<const NamedDecl *> |
275 | HeuristicResolverImpl::resolveDependentNameType(const DependentNameType *DNT) { |
276 | if (auto [_, inserted] = SeenDependentNameTypes.insert(Ptr: DNT); !inserted) |
277 | return {}; |
278 | return resolveDependentMember( |
279 | T: resolveNestedNameSpecifierToType(NNS: DNT->getQualifier()), |
280 | Name: DNT->getIdentifier(), Filter: TypeFilter); |
281 | } |
282 | |
283 | std::vector<const NamedDecl *> |
284 | HeuristicResolverImpl::resolveTemplateSpecializationType( |
285 | const DependentTemplateSpecializationType *DTST) { |
286 | return resolveDependentMember( |
287 | T: resolveNestedNameSpecifierToType(NNS: DTST->getQualifier()), |
288 | Name: DTST->getIdentifier(), Filter: TemplateFilter); |
289 | } |
290 | |
291 | std::vector<const NamedDecl *> |
292 | HeuristicResolverImpl::resolveExprToDecls(const Expr *E) { |
293 | if (const auto *ME = dyn_cast<CXXDependentScopeMemberExpr>(Val: E)) { |
294 | return resolveMemberExpr(ME); |
295 | } |
296 | if (const auto *RE = dyn_cast<DependentScopeDeclRefExpr>(Val: E)) { |
297 | return resolveDeclRefExpr(RE); |
298 | } |
299 | if (const auto *OE = dyn_cast<OverloadExpr>(Val: E)) { |
300 | return {OE->decls_begin(), OE->decls_end()}; |
301 | } |
302 | if (const auto *CE = dyn_cast<CallExpr>(Val: E)) { |
303 | return resolveTypeOfCallExpr(CE); |
304 | } |
305 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
306 | return {ME->getMemberDecl()}; |
307 | |
308 | return {}; |
309 | } |
310 | |
311 | const Type *HeuristicResolverImpl::resolveExprToType(const Expr *E) { |
312 | std::vector<const NamedDecl *> Decls = resolveExprToDecls(E); |
313 | if (!Decls.empty()) |
314 | return resolveDeclsToType(Decls, Ctx); |
315 | |
316 | return E->getType().getTypePtr(); |
317 | } |
318 | |
319 | const Type *HeuristicResolverImpl::resolveNestedNameSpecifierToType( |
320 | const NestedNameSpecifier *NNS) { |
321 | if (!NNS) |
322 | return nullptr; |
323 | |
324 | // The purpose of this function is to handle the dependent (Kind == |
325 | // Identifier) case, but we need to recurse on the prefix because |
326 | // that may be dependent as well, so for convenience handle |
327 | // the TypeSpec cases too. |
328 | switch (NNS->getKind()) { |
329 | case NestedNameSpecifier::TypeSpec: |
330 | case NestedNameSpecifier::TypeSpecWithTemplate: |
331 | return NNS->getAsType(); |
332 | case NestedNameSpecifier::Identifier: { |
333 | return resolveDeclsToType( |
334 | Decls: resolveDependentMember( |
335 | T: resolveNestedNameSpecifierToType(NNS: NNS->getPrefix()), |
336 | Name: NNS->getAsIdentifier(), Filter: TypeFilter), |
337 | Ctx); |
338 | } |
339 | default: |
340 | break; |
341 | } |
342 | return nullptr; |
343 | } |
344 | |
345 | bool isOrdinaryMember(const NamedDecl *ND) { |
346 | return ND->isInIdentifierNamespace(Decl::IDNS_Ordinary | Decl::IDNS_Tag | |
347 | Decl::IDNS_Member); |
348 | } |
349 | |
350 | bool findOrdinaryMember(const CXXRecordDecl *RD, CXXBasePath &Path, |
351 | DeclarationName Name) { |
352 | Path.Decls = RD->lookup(Name).begin(); |
353 | for (DeclContext::lookup_iterator I = Path.Decls, E = I.end(); I != E; ++I) |
354 | if (isOrdinaryMember(ND: *I)) |
355 | return true; |
356 | |
357 | return false; |
358 | } |
359 | |
360 | bool HeuristicResolverImpl::findOrdinaryMemberInDependentClasses( |
361 | const CXXBaseSpecifier *Specifier, CXXBasePath &Path, |
362 | DeclarationName Name) { |
363 | CXXRecordDecl *RD = |
364 | resolveTypeToRecordDecl(T: Specifier->getType().getTypePtr()); |
365 | if (!RD) |
366 | return false; |
367 | return findOrdinaryMember(RD, Path, Name); |
368 | } |
369 | |
370 | std::vector<const NamedDecl *> HeuristicResolverImpl::lookupDependentName( |
371 | CXXRecordDecl *RD, DeclarationName Name, |
372 | llvm::function_ref<bool(const NamedDecl *ND)> Filter) { |
373 | std::vector<const NamedDecl *> Results; |
374 | |
375 | // Lookup in the class. |
376 | bool AnyOrdinaryMembers = false; |
377 | for (const NamedDecl *ND : RD->lookup(Name)) { |
378 | if (isOrdinaryMember(ND)) |
379 | AnyOrdinaryMembers = true; |
380 | if (Filter(ND)) |
381 | Results.push_back(ND); |
382 | } |
383 | if (AnyOrdinaryMembers) |
384 | return Results; |
385 | |
386 | // Perform lookup into our base classes. |
387 | CXXBasePaths Paths; |
388 | Paths.setOrigin(RD); |
389 | if (!RD->lookupInBases( |
390 | BaseMatches: [&](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { |
391 | return findOrdinaryMemberInDependentClasses(Specifier, Path, Name); |
392 | }, |
393 | Paths, /*LookupInDependent=*/true)) |
394 | return Results; |
395 | for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); |
396 | I != E; ++I) { |
397 | if (isOrdinaryMember(ND: *I) && Filter(*I)) |
398 | Results.push_back(x: *I); |
399 | } |
400 | return Results; |
401 | } |
402 | |
403 | std::vector<const NamedDecl *> HeuristicResolverImpl::resolveDependentMember( |
404 | const Type *T, DeclarationName Name, |
405 | llvm::function_ref<bool(const NamedDecl *ND)> Filter) { |
406 | if (!T) |
407 | return {}; |
408 | if (auto *ET = T->getAs<EnumType>()) { |
409 | auto Result = ET->getDecl()->lookup(Name); |
410 | return {Result.begin(), Result.end()}; |
411 | } |
412 | if (auto *RD = resolveTypeToRecordDecl(T)) { |
413 | if (!RD->hasDefinition()) |
414 | return {}; |
415 | RD = RD->getDefinition(); |
416 | return lookupDependentName(RD, Name, Filter); |
417 | } |
418 | return {}; |
419 | } |
420 | } // namespace |
421 | |
422 | std::vector<const NamedDecl *> HeuristicResolver::resolveMemberExpr( |
423 | const CXXDependentScopeMemberExpr *ME) const { |
424 | return HeuristicResolverImpl(Ctx).resolveMemberExpr(ME); |
425 | } |
426 | std::vector<const NamedDecl *> HeuristicResolver::resolveDeclRefExpr( |
427 | const DependentScopeDeclRefExpr *RE) const { |
428 | return HeuristicResolverImpl(Ctx).resolveDeclRefExpr(RE); |
429 | } |
430 | std::vector<const NamedDecl *> |
431 | HeuristicResolver::resolveTypeOfCallExpr(const CallExpr *CE) const { |
432 | return HeuristicResolverImpl(Ctx).resolveTypeOfCallExpr(CE); |
433 | } |
434 | std::vector<const NamedDecl *> |
435 | HeuristicResolver::resolveCalleeOfCallExpr(const CallExpr *CE) const { |
436 | return HeuristicResolverImpl(Ctx).resolveCalleeOfCallExpr(CE); |
437 | } |
438 | std::vector<const NamedDecl *> HeuristicResolver::resolveUsingValueDecl( |
439 | const UnresolvedUsingValueDecl *UUVD) const { |
440 | return HeuristicResolverImpl(Ctx).resolveUsingValueDecl(UUVD); |
441 | } |
442 | std::vector<const NamedDecl *> HeuristicResolver::resolveDependentNameType( |
443 | const DependentNameType *DNT) const { |
444 | return HeuristicResolverImpl(Ctx).resolveDependentNameType(DNT); |
445 | } |
446 | std::vector<const NamedDecl *> |
447 | HeuristicResolver::resolveTemplateSpecializationType( |
448 | const DependentTemplateSpecializationType *DTST) const { |
449 | return HeuristicResolverImpl(Ctx).resolveTemplateSpecializationType(DTST); |
450 | } |
451 | const Type *HeuristicResolver::resolveNestedNameSpecifierToType( |
452 | const NestedNameSpecifier *NNS) const { |
453 | return HeuristicResolverImpl(Ctx).resolveNestedNameSpecifierToType(NNS); |
454 | } |
455 | const Type *HeuristicResolver::getPointeeType(const Type *T) const { |
456 | return HeuristicResolverImpl(Ctx).getPointeeType(T); |
457 | } |
458 | |
459 | } // namespace clangd |
460 | } // namespace clang |
461 | |